1 /* 2 * fs/direct-io.c 3 * 4 * Copyright (C) 2002, Linus Torvalds. 5 * 6 * O_DIRECT 7 * 8 * 04Jul2002 Andrew Morton 9 * Initial version 10 * 11Sep2002 janetinc@us.ibm.com 11 * added readv/writev support. 12 * 29Oct2002 Andrew Morton 13 * rewrote bio_add_page() support. 14 * 30Oct2002 pbadari@us.ibm.com 15 * added support for non-aligned IO. 16 * 06Nov2002 pbadari@us.ibm.com 17 * added asynchronous IO support. 18 * 21Jul2003 nathans@sgi.com 19 * added IO completion notifier. 20 */ 21 22 #include <linux/kernel.h> 23 #include <linux/module.h> 24 #include <linux/types.h> 25 #include <linux/fs.h> 26 #include <linux/mm.h> 27 #include <linux/slab.h> 28 #include <linux/highmem.h> 29 #include <linux/pagemap.h> 30 #include <linux/task_io_accounting_ops.h> 31 #include <linux/bio.h> 32 #include <linux/wait.h> 33 #include <linux/err.h> 34 #include <linux/blkdev.h> 35 #include <linux/buffer_head.h> 36 #include <linux/rwsem.h> 37 #include <linux/uio.h> 38 #include <linux/atomic.h> 39 #include <linux/prefetch.h> 40 41 /* 42 * How many user pages to map in one call to get_user_pages(). This determines 43 * the size of a structure in the slab cache 44 */ 45 #define DIO_PAGES 64 46 47 /* 48 * This code generally works in units of "dio_blocks". A dio_block is 49 * somewhere between the hard sector size and the filesystem block size. it 50 * is determined on a per-invocation basis. When talking to the filesystem 51 * we need to convert dio_blocks to fs_blocks by scaling the dio_block quantity 52 * down by dio->blkfactor. Similarly, fs-blocksize quantities are converted 53 * to bio_block quantities by shifting left by blkfactor. 54 * 55 * If blkfactor is zero then the user's request was aligned to the filesystem's 56 * blocksize. 57 */ 58 59 /* dio_state only used in the submission path */ 60 61 struct dio_submit { 62 struct bio *bio; /* bio under assembly */ 63 unsigned blkbits; /* doesn't change */ 64 unsigned blkfactor; /* When we're using an alignment which 65 is finer than the filesystem's soft 66 blocksize, this specifies how much 67 finer. blkfactor=2 means 1/4-block 68 alignment. Does not change */ 69 unsigned start_zero_done; /* flag: sub-blocksize zeroing has 70 been performed at the start of a 71 write */ 72 int pages_in_io; /* approximate total IO pages */ 73 sector_t block_in_file; /* Current offset into the underlying 74 file in dio_block units. */ 75 unsigned blocks_available; /* At block_in_file. changes */ 76 int reap_counter; /* rate limit reaping */ 77 sector_t final_block_in_request;/* doesn't change */ 78 int boundary; /* prev block is at a boundary */ 79 get_block_t *get_block; /* block mapping function */ 80 dio_submit_t *submit_io; /* IO submition function */ 81 82 loff_t logical_offset_in_bio; /* current first logical block in bio */ 83 sector_t final_block_in_bio; /* current final block in bio + 1 */ 84 sector_t next_block_for_io; /* next block to be put under IO, 85 in dio_blocks units */ 86 87 /* 88 * Deferred addition of a page to the dio. These variables are 89 * private to dio_send_cur_page(), submit_page_section() and 90 * dio_bio_add_page(). 91 */ 92 struct page *cur_page; /* The page */ 93 unsigned cur_page_offset; /* Offset into it, in bytes */ 94 unsigned cur_page_len; /* Nr of bytes at cur_page_offset */ 95 sector_t cur_page_block; /* Where it starts */ 96 loff_t cur_page_fs_offset; /* Offset in file */ 97 98 struct iov_iter *iter; 99 /* 100 * Page queue. These variables belong to dio_refill_pages() and 101 * dio_get_page(). 102 */ 103 unsigned head; /* next page to process */ 104 unsigned tail; /* last valid page + 1 */ 105 size_t from, to; 106 }; 107 108 /* dio_state communicated between submission path and end_io */ 109 struct dio { 110 int flags; /* doesn't change */ 111 int op; 112 int op_flags; 113 blk_qc_t bio_cookie; 114 struct block_device *bio_bdev; 115 struct inode *inode; 116 loff_t i_size; /* i_size when submitted */ 117 dio_iodone_t *end_io; /* IO completion function */ 118 119 void *private; /* copy from map_bh.b_private */ 120 121 /* BIO completion state */ 122 spinlock_t bio_lock; /* protects BIO fields below */ 123 int page_errors; /* errno from get_user_pages() */ 124 int is_async; /* is IO async ? */ 125 bool defer_completion; /* defer AIO completion to workqueue? */ 126 bool should_dirty; /* if pages should be dirtied */ 127 int io_error; /* IO error in completion path */ 128 unsigned long refcount; /* direct_io_worker() and bios */ 129 struct bio *bio_list; /* singly linked via bi_private */ 130 struct task_struct *waiter; /* waiting task (NULL if none) */ 131 132 /* AIO related stuff */ 133 struct kiocb *iocb; /* kiocb */ 134 ssize_t result; /* IO result */ 135 136 /* 137 * pages[] (and any fields placed after it) are not zeroed out at 138 * allocation time. Don't add new fields after pages[] unless you 139 * wish that they not be zeroed. 140 */ 141 union { 142 struct page *pages[DIO_PAGES]; /* page buffer */ 143 struct work_struct complete_work;/* deferred AIO completion */ 144 }; 145 } ____cacheline_aligned_in_smp; 146 147 static struct kmem_cache *dio_cache __read_mostly; 148 149 /* 150 * How many pages are in the queue? 151 */ 152 static inline unsigned dio_pages_present(struct dio_submit *sdio) 153 { 154 return sdio->tail - sdio->head; 155 } 156 157 /* 158 * Go grab and pin some userspace pages. Typically we'll get 64 at a time. 159 */ 160 static inline int dio_refill_pages(struct dio *dio, struct dio_submit *sdio) 161 { 162 ssize_t ret; 163 164 ret = iov_iter_get_pages(sdio->iter, dio->pages, LONG_MAX, DIO_PAGES, 165 &sdio->from); 166 167 if (ret < 0 && sdio->blocks_available && (dio->op == REQ_OP_WRITE)) { 168 struct page *page = ZERO_PAGE(0); 169 /* 170 * A memory fault, but the filesystem has some outstanding 171 * mapped blocks. We need to use those blocks up to avoid 172 * leaking stale data in the file. 173 */ 174 if (dio->page_errors == 0) 175 dio->page_errors = ret; 176 get_page(page); 177 dio->pages[0] = page; 178 sdio->head = 0; 179 sdio->tail = 1; 180 sdio->from = 0; 181 sdio->to = PAGE_SIZE; 182 return 0; 183 } 184 185 if (ret >= 0) { 186 iov_iter_advance(sdio->iter, ret); 187 ret += sdio->from; 188 sdio->head = 0; 189 sdio->tail = (ret + PAGE_SIZE - 1) / PAGE_SIZE; 190 sdio->to = ((ret - 1) & (PAGE_SIZE - 1)) + 1; 191 return 0; 192 } 193 return ret; 194 } 195 196 /* 197 * Get another userspace page. Returns an ERR_PTR on error. Pages are 198 * buffered inside the dio so that we can call get_user_pages() against a 199 * decent number of pages, less frequently. To provide nicer use of the 200 * L1 cache. 201 */ 202 static inline struct page *dio_get_page(struct dio *dio, 203 struct dio_submit *sdio) 204 { 205 if (dio_pages_present(sdio) == 0) { 206 int ret; 207 208 ret = dio_refill_pages(dio, sdio); 209 if (ret) 210 return ERR_PTR(ret); 211 BUG_ON(dio_pages_present(sdio) == 0); 212 } 213 return dio->pages[sdio->head]; 214 } 215 216 /** 217 * dio_complete() - called when all DIO BIO I/O has been completed 218 * @offset: the byte offset in the file of the completed operation 219 * 220 * This drops i_dio_count, lets interested parties know that a DIO operation 221 * has completed, and calculates the resulting return code for the operation. 222 * 223 * It lets the filesystem know if it registered an interest earlier via 224 * get_block. Pass the private field of the map buffer_head so that 225 * filesystems can use it to hold additional state between get_block calls and 226 * dio_complete. 227 */ 228 static ssize_t dio_complete(struct dio *dio, ssize_t ret, bool is_async) 229 { 230 loff_t offset = dio->iocb->ki_pos; 231 ssize_t transferred = 0; 232 233 /* 234 * AIO submission can race with bio completion to get here while 235 * expecting to have the last io completed by bio completion. 236 * In that case -EIOCBQUEUED is in fact not an error we want 237 * to preserve through this call. 238 */ 239 if (ret == -EIOCBQUEUED) 240 ret = 0; 241 242 if (dio->result) { 243 transferred = dio->result; 244 245 /* Check for short read case */ 246 if ((dio->op == REQ_OP_READ) && 247 ((offset + transferred) > dio->i_size)) 248 transferred = dio->i_size - offset; 249 } 250 251 if (ret == 0) 252 ret = dio->page_errors; 253 if (ret == 0) 254 ret = dio->io_error; 255 if (ret == 0) 256 ret = transferred; 257 258 if (dio->end_io) { 259 int err; 260 261 // XXX: ki_pos?? 262 err = dio->end_io(dio->iocb, offset, ret, dio->private); 263 if (err) 264 ret = err; 265 } 266 267 if (!(dio->flags & DIO_SKIP_DIO_COUNT)) 268 inode_dio_end(dio->inode); 269 270 if (is_async) { 271 /* 272 * generic_write_sync expects ki_pos to have been updated 273 * already, but the submission path only does this for 274 * synchronous I/O. 275 */ 276 dio->iocb->ki_pos += transferred; 277 278 if (dio->op == REQ_OP_WRITE) 279 ret = generic_write_sync(dio->iocb, transferred); 280 dio->iocb->ki_complete(dio->iocb, ret, 0); 281 } 282 283 kmem_cache_free(dio_cache, dio); 284 return ret; 285 } 286 287 static void dio_aio_complete_work(struct work_struct *work) 288 { 289 struct dio *dio = container_of(work, struct dio, complete_work); 290 291 dio_complete(dio, 0, true); 292 } 293 294 static int dio_bio_complete(struct dio *dio, struct bio *bio); 295 296 /* 297 * Asynchronous IO callback. 298 */ 299 static void dio_bio_end_aio(struct bio *bio) 300 { 301 struct dio *dio = bio->bi_private; 302 unsigned long remaining; 303 unsigned long flags; 304 305 /* cleanup the bio */ 306 dio_bio_complete(dio, bio); 307 308 spin_lock_irqsave(&dio->bio_lock, flags); 309 remaining = --dio->refcount; 310 if (remaining == 1 && dio->waiter) 311 wake_up_process(dio->waiter); 312 spin_unlock_irqrestore(&dio->bio_lock, flags); 313 314 if (remaining == 0) { 315 if (dio->result && dio->defer_completion) { 316 INIT_WORK(&dio->complete_work, dio_aio_complete_work); 317 queue_work(dio->inode->i_sb->s_dio_done_wq, 318 &dio->complete_work); 319 } else { 320 dio_complete(dio, 0, true); 321 } 322 } 323 } 324 325 /* 326 * The BIO completion handler simply queues the BIO up for the process-context 327 * handler. 328 * 329 * During I/O bi_private points at the dio. After I/O, bi_private is used to 330 * implement a singly-linked list of completed BIOs, at dio->bio_list. 331 */ 332 static void dio_bio_end_io(struct bio *bio) 333 { 334 struct dio *dio = bio->bi_private; 335 unsigned long flags; 336 337 spin_lock_irqsave(&dio->bio_lock, flags); 338 bio->bi_private = dio->bio_list; 339 dio->bio_list = bio; 340 if (--dio->refcount == 1 && dio->waiter) 341 wake_up_process(dio->waiter); 342 spin_unlock_irqrestore(&dio->bio_lock, flags); 343 } 344 345 /** 346 * dio_end_io - handle the end io action for the given bio 347 * @bio: The direct io bio thats being completed 348 * @error: Error if there was one 349 * 350 * This is meant to be called by any filesystem that uses their own dio_submit_t 351 * so that the DIO specific endio actions are dealt with after the filesystem 352 * has done it's completion work. 353 */ 354 void dio_end_io(struct bio *bio, int error) 355 { 356 struct dio *dio = bio->bi_private; 357 358 if (dio->is_async) 359 dio_bio_end_aio(bio); 360 else 361 dio_bio_end_io(bio); 362 } 363 EXPORT_SYMBOL_GPL(dio_end_io); 364 365 static inline void 366 dio_bio_alloc(struct dio *dio, struct dio_submit *sdio, 367 struct block_device *bdev, 368 sector_t first_sector, int nr_vecs) 369 { 370 struct bio *bio; 371 372 /* 373 * bio_alloc() is guaranteed to return a bio when called with 374 * __GFP_RECLAIM and we request a valid number of vectors. 375 */ 376 bio = bio_alloc(GFP_KERNEL, nr_vecs); 377 378 bio->bi_bdev = bdev; 379 bio->bi_iter.bi_sector = first_sector; 380 bio_set_op_attrs(bio, dio->op, dio->op_flags); 381 if (dio->is_async) 382 bio->bi_end_io = dio_bio_end_aio; 383 else 384 bio->bi_end_io = dio_bio_end_io; 385 386 sdio->bio = bio; 387 sdio->logical_offset_in_bio = sdio->cur_page_fs_offset; 388 } 389 390 /* 391 * In the AIO read case we speculatively dirty the pages before starting IO. 392 * During IO completion, any of these pages which happen to have been written 393 * back will be redirtied by bio_check_pages_dirty(). 394 * 395 * bios hold a dio reference between submit_bio and ->end_io. 396 */ 397 static inline void dio_bio_submit(struct dio *dio, struct dio_submit *sdio) 398 { 399 struct bio *bio = sdio->bio; 400 unsigned long flags; 401 402 bio->bi_private = dio; 403 404 spin_lock_irqsave(&dio->bio_lock, flags); 405 dio->refcount++; 406 spin_unlock_irqrestore(&dio->bio_lock, flags); 407 408 if (dio->is_async && dio->op == REQ_OP_READ && dio->should_dirty) 409 bio_set_pages_dirty(bio); 410 411 dio->bio_bdev = bio->bi_bdev; 412 413 if (sdio->submit_io) { 414 sdio->submit_io(bio, dio->inode, sdio->logical_offset_in_bio); 415 dio->bio_cookie = BLK_QC_T_NONE; 416 } else 417 dio->bio_cookie = submit_bio(bio); 418 419 sdio->bio = NULL; 420 sdio->boundary = 0; 421 sdio->logical_offset_in_bio = 0; 422 } 423 424 /* 425 * Release any resources in case of a failure 426 */ 427 static inline void dio_cleanup(struct dio *dio, struct dio_submit *sdio) 428 { 429 while (sdio->head < sdio->tail) 430 put_page(dio->pages[sdio->head++]); 431 } 432 433 /* 434 * Wait for the next BIO to complete. Remove it and return it. NULL is 435 * returned once all BIOs have been completed. This must only be called once 436 * all bios have been issued so that dio->refcount can only decrease. This 437 * requires that that the caller hold a reference on the dio. 438 */ 439 static struct bio *dio_await_one(struct dio *dio) 440 { 441 unsigned long flags; 442 struct bio *bio = NULL; 443 444 spin_lock_irqsave(&dio->bio_lock, flags); 445 446 /* 447 * Wait as long as the list is empty and there are bios in flight. bio 448 * completion drops the count, maybe adds to the list, and wakes while 449 * holding the bio_lock so we don't need set_current_state()'s barrier 450 * and can call it after testing our condition. 451 */ 452 while (dio->refcount > 1 && dio->bio_list == NULL) { 453 __set_current_state(TASK_UNINTERRUPTIBLE); 454 dio->waiter = current; 455 spin_unlock_irqrestore(&dio->bio_lock, flags); 456 if (!(dio->iocb->ki_flags & IOCB_HIPRI) || 457 !blk_poll(bdev_get_queue(dio->bio_bdev), dio->bio_cookie)) 458 io_schedule(); 459 /* wake up sets us TASK_RUNNING */ 460 spin_lock_irqsave(&dio->bio_lock, flags); 461 dio->waiter = NULL; 462 } 463 if (dio->bio_list) { 464 bio = dio->bio_list; 465 dio->bio_list = bio->bi_private; 466 } 467 spin_unlock_irqrestore(&dio->bio_lock, flags); 468 return bio; 469 } 470 471 /* 472 * Process one completed BIO. No locks are held. 473 */ 474 static int dio_bio_complete(struct dio *dio, struct bio *bio) 475 { 476 struct bio_vec *bvec; 477 unsigned i; 478 int err; 479 480 if (bio->bi_error) 481 dio->io_error = -EIO; 482 483 if (dio->is_async && dio->op == REQ_OP_READ && dio->should_dirty) { 484 err = bio->bi_error; 485 bio_check_pages_dirty(bio); /* transfers ownership */ 486 } else { 487 bio_for_each_segment_all(bvec, bio, i) { 488 struct page *page = bvec->bv_page; 489 490 if (dio->op == REQ_OP_READ && !PageCompound(page) && 491 dio->should_dirty) 492 set_page_dirty_lock(page); 493 put_page(page); 494 } 495 err = bio->bi_error; 496 bio_put(bio); 497 } 498 return err; 499 } 500 501 /* 502 * Wait on and process all in-flight BIOs. This must only be called once 503 * all bios have been issued so that the refcount can only decrease. 504 * This just waits for all bios to make it through dio_bio_complete. IO 505 * errors are propagated through dio->io_error and should be propagated via 506 * dio_complete(). 507 */ 508 static void dio_await_completion(struct dio *dio) 509 { 510 struct bio *bio; 511 do { 512 bio = dio_await_one(dio); 513 if (bio) 514 dio_bio_complete(dio, bio); 515 } while (bio); 516 } 517 518 /* 519 * A really large O_DIRECT read or write can generate a lot of BIOs. So 520 * to keep the memory consumption sane we periodically reap any completed BIOs 521 * during the BIO generation phase. 522 * 523 * This also helps to limit the peak amount of pinned userspace memory. 524 */ 525 static inline int dio_bio_reap(struct dio *dio, struct dio_submit *sdio) 526 { 527 int ret = 0; 528 529 if (sdio->reap_counter++ >= 64) { 530 while (dio->bio_list) { 531 unsigned long flags; 532 struct bio *bio; 533 int ret2; 534 535 spin_lock_irqsave(&dio->bio_lock, flags); 536 bio = dio->bio_list; 537 dio->bio_list = bio->bi_private; 538 spin_unlock_irqrestore(&dio->bio_lock, flags); 539 ret2 = dio_bio_complete(dio, bio); 540 if (ret == 0) 541 ret = ret2; 542 } 543 sdio->reap_counter = 0; 544 } 545 return ret; 546 } 547 548 /* 549 * Create workqueue for deferred direct IO completions. We allocate the 550 * workqueue when it's first needed. This avoids creating workqueue for 551 * filesystems that don't need it and also allows us to create the workqueue 552 * late enough so the we can include s_id in the name of the workqueue. 553 */ 554 static int sb_init_dio_done_wq(struct super_block *sb) 555 { 556 struct workqueue_struct *old; 557 struct workqueue_struct *wq = alloc_workqueue("dio/%s", 558 WQ_MEM_RECLAIM, 0, 559 sb->s_id); 560 if (!wq) 561 return -ENOMEM; 562 /* 563 * This has to be atomic as more DIOs can race to create the workqueue 564 */ 565 old = cmpxchg(&sb->s_dio_done_wq, NULL, wq); 566 /* Someone created workqueue before us? Free ours... */ 567 if (old) 568 destroy_workqueue(wq); 569 return 0; 570 } 571 572 static int dio_set_defer_completion(struct dio *dio) 573 { 574 struct super_block *sb = dio->inode->i_sb; 575 576 if (dio->defer_completion) 577 return 0; 578 dio->defer_completion = true; 579 if (!sb->s_dio_done_wq) 580 return sb_init_dio_done_wq(sb); 581 return 0; 582 } 583 584 /* 585 * Call into the fs to map some more disk blocks. We record the current number 586 * of available blocks at sdio->blocks_available. These are in units of the 587 * fs blocksize, (1 << inode->i_blkbits). 588 * 589 * The fs is allowed to map lots of blocks at once. If it wants to do that, 590 * it uses the passed inode-relative block number as the file offset, as usual. 591 * 592 * get_block() is passed the number of i_blkbits-sized blocks which direct_io 593 * has remaining to do. The fs should not map more than this number of blocks. 594 * 595 * If the fs has mapped a lot of blocks, it should populate bh->b_size to 596 * indicate how much contiguous disk space has been made available at 597 * bh->b_blocknr. 598 * 599 * If *any* of the mapped blocks are new, then the fs must set buffer_new(). 600 * This isn't very efficient... 601 * 602 * In the case of filesystem holes: the fs may return an arbitrarily-large 603 * hole by returning an appropriate value in b_size and by clearing 604 * buffer_mapped(). However the direct-io code will only process holes one 605 * block at a time - it will repeatedly call get_block() as it walks the hole. 606 */ 607 static int get_more_blocks(struct dio *dio, struct dio_submit *sdio, 608 struct buffer_head *map_bh) 609 { 610 int ret; 611 sector_t fs_startblk; /* Into file, in filesystem-sized blocks */ 612 sector_t fs_endblk; /* Into file, in filesystem-sized blocks */ 613 unsigned long fs_count; /* Number of filesystem-sized blocks */ 614 int create; 615 unsigned int i_blkbits = sdio->blkbits + sdio->blkfactor; 616 617 /* 618 * If there was a memory error and we've overwritten all the 619 * mapped blocks then we can now return that memory error 620 */ 621 ret = dio->page_errors; 622 if (ret == 0) { 623 BUG_ON(sdio->block_in_file >= sdio->final_block_in_request); 624 fs_startblk = sdio->block_in_file >> sdio->blkfactor; 625 fs_endblk = (sdio->final_block_in_request - 1) >> 626 sdio->blkfactor; 627 fs_count = fs_endblk - fs_startblk + 1; 628 629 map_bh->b_state = 0; 630 map_bh->b_size = fs_count << i_blkbits; 631 632 /* 633 * For writes that could fill holes inside i_size on a 634 * DIO_SKIP_HOLES filesystem we forbid block creations: only 635 * overwrites are permitted. We will return early to the caller 636 * once we see an unmapped buffer head returned, and the caller 637 * will fall back to buffered I/O. 638 * 639 * Otherwise the decision is left to the get_blocks method, 640 * which may decide to handle it or also return an unmapped 641 * buffer head. 642 */ 643 create = dio->op == REQ_OP_WRITE; 644 if (dio->flags & DIO_SKIP_HOLES) { 645 if (fs_startblk <= ((i_size_read(dio->inode) - 1) >> 646 i_blkbits)) 647 create = 0; 648 } 649 650 ret = (*sdio->get_block)(dio->inode, fs_startblk, 651 map_bh, create); 652 653 /* Store for completion */ 654 dio->private = map_bh->b_private; 655 656 if (ret == 0 && buffer_defer_completion(map_bh)) 657 ret = dio_set_defer_completion(dio); 658 } 659 return ret; 660 } 661 662 /* 663 * There is no bio. Make one now. 664 */ 665 static inline int dio_new_bio(struct dio *dio, struct dio_submit *sdio, 666 sector_t start_sector, struct buffer_head *map_bh) 667 { 668 sector_t sector; 669 int ret, nr_pages; 670 671 ret = dio_bio_reap(dio, sdio); 672 if (ret) 673 goto out; 674 sector = start_sector << (sdio->blkbits - 9); 675 nr_pages = min(sdio->pages_in_io, BIO_MAX_PAGES); 676 BUG_ON(nr_pages <= 0); 677 dio_bio_alloc(dio, sdio, map_bh->b_bdev, sector, nr_pages); 678 sdio->boundary = 0; 679 out: 680 return ret; 681 } 682 683 /* 684 * Attempt to put the current chunk of 'cur_page' into the current BIO. If 685 * that was successful then update final_block_in_bio and take a ref against 686 * the just-added page. 687 * 688 * Return zero on success. Non-zero means the caller needs to start a new BIO. 689 */ 690 static inline int dio_bio_add_page(struct dio_submit *sdio) 691 { 692 int ret; 693 694 ret = bio_add_page(sdio->bio, sdio->cur_page, 695 sdio->cur_page_len, sdio->cur_page_offset); 696 if (ret == sdio->cur_page_len) { 697 /* 698 * Decrement count only, if we are done with this page 699 */ 700 if ((sdio->cur_page_len + sdio->cur_page_offset) == PAGE_SIZE) 701 sdio->pages_in_io--; 702 get_page(sdio->cur_page); 703 sdio->final_block_in_bio = sdio->cur_page_block + 704 (sdio->cur_page_len >> sdio->blkbits); 705 ret = 0; 706 } else { 707 ret = 1; 708 } 709 return ret; 710 } 711 712 /* 713 * Put cur_page under IO. The section of cur_page which is described by 714 * cur_page_offset,cur_page_len is put into a BIO. The section of cur_page 715 * starts on-disk at cur_page_block. 716 * 717 * We take a ref against the page here (on behalf of its presence in the bio). 718 * 719 * The caller of this function is responsible for removing cur_page from the 720 * dio, and for dropping the refcount which came from that presence. 721 */ 722 static inline int dio_send_cur_page(struct dio *dio, struct dio_submit *sdio, 723 struct buffer_head *map_bh) 724 { 725 int ret = 0; 726 727 if (sdio->bio) { 728 loff_t cur_offset = sdio->cur_page_fs_offset; 729 loff_t bio_next_offset = sdio->logical_offset_in_bio + 730 sdio->bio->bi_iter.bi_size; 731 732 /* 733 * See whether this new request is contiguous with the old. 734 * 735 * Btrfs cannot handle having logically non-contiguous requests 736 * submitted. For example if you have 737 * 738 * Logical: [0-4095][HOLE][8192-12287] 739 * Physical: [0-4095] [4096-8191] 740 * 741 * We cannot submit those pages together as one BIO. So if our 742 * current logical offset in the file does not equal what would 743 * be the next logical offset in the bio, submit the bio we 744 * have. 745 */ 746 if (sdio->final_block_in_bio != sdio->cur_page_block || 747 cur_offset != bio_next_offset) 748 dio_bio_submit(dio, sdio); 749 } 750 751 if (sdio->bio == NULL) { 752 ret = dio_new_bio(dio, sdio, sdio->cur_page_block, map_bh); 753 if (ret) 754 goto out; 755 } 756 757 if (dio_bio_add_page(sdio) != 0) { 758 dio_bio_submit(dio, sdio); 759 ret = dio_new_bio(dio, sdio, sdio->cur_page_block, map_bh); 760 if (ret == 0) { 761 ret = dio_bio_add_page(sdio); 762 BUG_ON(ret != 0); 763 } 764 } 765 out: 766 return ret; 767 } 768 769 /* 770 * An autonomous function to put a chunk of a page under deferred IO. 771 * 772 * The caller doesn't actually know (or care) whether this piece of page is in 773 * a BIO, or is under IO or whatever. We just take care of all possible 774 * situations here. The separation between the logic of do_direct_IO() and 775 * that of submit_page_section() is important for clarity. Please don't break. 776 * 777 * The chunk of page starts on-disk at blocknr. 778 * 779 * We perform deferred IO, by recording the last-submitted page inside our 780 * private part of the dio structure. If possible, we just expand the IO 781 * across that page here. 782 * 783 * If that doesn't work out then we put the old page into the bio and add this 784 * page to the dio instead. 785 */ 786 static inline int 787 submit_page_section(struct dio *dio, struct dio_submit *sdio, struct page *page, 788 unsigned offset, unsigned len, sector_t blocknr, 789 struct buffer_head *map_bh) 790 { 791 int ret = 0; 792 793 if (dio->op == REQ_OP_WRITE) { 794 /* 795 * Read accounting is performed in submit_bio() 796 */ 797 task_io_account_write(len); 798 } 799 800 /* 801 * Can we just grow the current page's presence in the dio? 802 */ 803 if (sdio->cur_page == page && 804 sdio->cur_page_offset + sdio->cur_page_len == offset && 805 sdio->cur_page_block + 806 (sdio->cur_page_len >> sdio->blkbits) == blocknr) { 807 sdio->cur_page_len += len; 808 goto out; 809 } 810 811 /* 812 * If there's a deferred page already there then send it. 813 */ 814 if (sdio->cur_page) { 815 ret = dio_send_cur_page(dio, sdio, map_bh); 816 put_page(sdio->cur_page); 817 sdio->cur_page = NULL; 818 if (ret) 819 return ret; 820 } 821 822 get_page(page); /* It is in dio */ 823 sdio->cur_page = page; 824 sdio->cur_page_offset = offset; 825 sdio->cur_page_len = len; 826 sdio->cur_page_block = blocknr; 827 sdio->cur_page_fs_offset = sdio->block_in_file << sdio->blkbits; 828 out: 829 /* 830 * If sdio->boundary then we want to schedule the IO now to 831 * avoid metadata seeks. 832 */ 833 if (sdio->boundary) { 834 ret = dio_send_cur_page(dio, sdio, map_bh); 835 dio_bio_submit(dio, sdio); 836 put_page(sdio->cur_page); 837 sdio->cur_page = NULL; 838 } 839 return ret; 840 } 841 842 /* 843 * Clean any dirty buffers in the blockdev mapping which alias newly-created 844 * file blocks. Only called for S_ISREG files - blockdevs do not set 845 * buffer_new 846 */ 847 static void clean_blockdev_aliases(struct dio *dio, struct buffer_head *map_bh) 848 { 849 unsigned i; 850 unsigned nblocks; 851 852 nblocks = map_bh->b_size >> dio->inode->i_blkbits; 853 854 for (i = 0; i < nblocks; i++) { 855 unmap_underlying_metadata(map_bh->b_bdev, 856 map_bh->b_blocknr + i); 857 } 858 } 859 860 /* 861 * If we are not writing the entire block and get_block() allocated 862 * the block for us, we need to fill-in the unused portion of the 863 * block with zeros. This happens only if user-buffer, fileoffset or 864 * io length is not filesystem block-size multiple. 865 * 866 * `end' is zero if we're doing the start of the IO, 1 at the end of the 867 * IO. 868 */ 869 static inline void dio_zero_block(struct dio *dio, struct dio_submit *sdio, 870 int end, struct buffer_head *map_bh) 871 { 872 unsigned dio_blocks_per_fs_block; 873 unsigned this_chunk_blocks; /* In dio_blocks */ 874 unsigned this_chunk_bytes; 875 struct page *page; 876 877 sdio->start_zero_done = 1; 878 if (!sdio->blkfactor || !buffer_new(map_bh)) 879 return; 880 881 dio_blocks_per_fs_block = 1 << sdio->blkfactor; 882 this_chunk_blocks = sdio->block_in_file & (dio_blocks_per_fs_block - 1); 883 884 if (!this_chunk_blocks) 885 return; 886 887 /* 888 * We need to zero out part of an fs block. It is either at the 889 * beginning or the end of the fs block. 890 */ 891 if (end) 892 this_chunk_blocks = dio_blocks_per_fs_block - this_chunk_blocks; 893 894 this_chunk_bytes = this_chunk_blocks << sdio->blkbits; 895 896 page = ZERO_PAGE(0); 897 if (submit_page_section(dio, sdio, page, 0, this_chunk_bytes, 898 sdio->next_block_for_io, map_bh)) 899 return; 900 901 sdio->next_block_for_io += this_chunk_blocks; 902 } 903 904 /* 905 * Walk the user pages, and the file, mapping blocks to disk and generating 906 * a sequence of (page,offset,len,block) mappings. These mappings are injected 907 * into submit_page_section(), which takes care of the next stage of submission 908 * 909 * Direct IO against a blockdev is different from a file. Because we can 910 * happily perform page-sized but 512-byte aligned IOs. It is important that 911 * blockdev IO be able to have fine alignment and large sizes. 912 * 913 * So what we do is to permit the ->get_block function to populate bh.b_size 914 * with the size of IO which is permitted at this offset and this i_blkbits. 915 * 916 * For best results, the blockdev should be set up with 512-byte i_blkbits and 917 * it should set b_size to PAGE_SIZE or more inside get_block(). This gives 918 * fine alignment but still allows this function to work in PAGE_SIZE units. 919 */ 920 static int do_direct_IO(struct dio *dio, struct dio_submit *sdio, 921 struct buffer_head *map_bh) 922 { 923 const unsigned blkbits = sdio->blkbits; 924 int ret = 0; 925 926 while (sdio->block_in_file < sdio->final_block_in_request) { 927 struct page *page; 928 size_t from, to; 929 930 page = dio_get_page(dio, sdio); 931 if (IS_ERR(page)) { 932 ret = PTR_ERR(page); 933 goto out; 934 } 935 from = sdio->head ? 0 : sdio->from; 936 to = (sdio->head == sdio->tail - 1) ? sdio->to : PAGE_SIZE; 937 sdio->head++; 938 939 while (from < to) { 940 unsigned this_chunk_bytes; /* # of bytes mapped */ 941 unsigned this_chunk_blocks; /* # of blocks */ 942 unsigned u; 943 944 if (sdio->blocks_available == 0) { 945 /* 946 * Need to go and map some more disk 947 */ 948 unsigned long blkmask; 949 unsigned long dio_remainder; 950 951 ret = get_more_blocks(dio, sdio, map_bh); 952 if (ret) { 953 put_page(page); 954 goto out; 955 } 956 if (!buffer_mapped(map_bh)) 957 goto do_holes; 958 959 sdio->blocks_available = 960 map_bh->b_size >> sdio->blkbits; 961 sdio->next_block_for_io = 962 map_bh->b_blocknr << sdio->blkfactor; 963 if (buffer_new(map_bh)) 964 clean_blockdev_aliases(dio, map_bh); 965 966 if (!sdio->blkfactor) 967 goto do_holes; 968 969 blkmask = (1 << sdio->blkfactor) - 1; 970 dio_remainder = (sdio->block_in_file & blkmask); 971 972 /* 973 * If we are at the start of IO and that IO 974 * starts partway into a fs-block, 975 * dio_remainder will be non-zero. If the IO 976 * is a read then we can simply advance the IO 977 * cursor to the first block which is to be 978 * read. But if the IO is a write and the 979 * block was newly allocated we cannot do that; 980 * the start of the fs block must be zeroed out 981 * on-disk 982 */ 983 if (!buffer_new(map_bh)) 984 sdio->next_block_for_io += dio_remainder; 985 sdio->blocks_available -= dio_remainder; 986 } 987 do_holes: 988 /* Handle holes */ 989 if (!buffer_mapped(map_bh)) { 990 loff_t i_size_aligned; 991 992 /* AKPM: eargh, -ENOTBLK is a hack */ 993 if (dio->op == REQ_OP_WRITE) { 994 put_page(page); 995 return -ENOTBLK; 996 } 997 998 /* 999 * Be sure to account for a partial block as the 1000 * last block in the file 1001 */ 1002 i_size_aligned = ALIGN(i_size_read(dio->inode), 1003 1 << blkbits); 1004 if (sdio->block_in_file >= 1005 i_size_aligned >> blkbits) { 1006 /* We hit eof */ 1007 put_page(page); 1008 goto out; 1009 } 1010 zero_user(page, from, 1 << blkbits); 1011 sdio->block_in_file++; 1012 from += 1 << blkbits; 1013 dio->result += 1 << blkbits; 1014 goto next_block; 1015 } 1016 1017 /* 1018 * If we're performing IO which has an alignment which 1019 * is finer than the underlying fs, go check to see if 1020 * we must zero out the start of this block. 1021 */ 1022 if (unlikely(sdio->blkfactor && !sdio->start_zero_done)) 1023 dio_zero_block(dio, sdio, 0, map_bh); 1024 1025 /* 1026 * Work out, in this_chunk_blocks, how much disk we 1027 * can add to this page 1028 */ 1029 this_chunk_blocks = sdio->blocks_available; 1030 u = (to - from) >> blkbits; 1031 if (this_chunk_blocks > u) 1032 this_chunk_blocks = u; 1033 u = sdio->final_block_in_request - sdio->block_in_file; 1034 if (this_chunk_blocks > u) 1035 this_chunk_blocks = u; 1036 this_chunk_bytes = this_chunk_blocks << blkbits; 1037 BUG_ON(this_chunk_bytes == 0); 1038 1039 if (this_chunk_blocks == sdio->blocks_available) 1040 sdio->boundary = buffer_boundary(map_bh); 1041 ret = submit_page_section(dio, sdio, page, 1042 from, 1043 this_chunk_bytes, 1044 sdio->next_block_for_io, 1045 map_bh); 1046 if (ret) { 1047 put_page(page); 1048 goto out; 1049 } 1050 sdio->next_block_for_io += this_chunk_blocks; 1051 1052 sdio->block_in_file += this_chunk_blocks; 1053 from += this_chunk_bytes; 1054 dio->result += this_chunk_bytes; 1055 sdio->blocks_available -= this_chunk_blocks; 1056 next_block: 1057 BUG_ON(sdio->block_in_file > sdio->final_block_in_request); 1058 if (sdio->block_in_file == sdio->final_block_in_request) 1059 break; 1060 } 1061 1062 /* Drop the ref which was taken in get_user_pages() */ 1063 put_page(page); 1064 } 1065 out: 1066 return ret; 1067 } 1068 1069 static inline int drop_refcount(struct dio *dio) 1070 { 1071 int ret2; 1072 unsigned long flags; 1073 1074 /* 1075 * Sync will always be dropping the final ref and completing the 1076 * operation. AIO can if it was a broken operation described above or 1077 * in fact if all the bios race to complete before we get here. In 1078 * that case dio_complete() translates the EIOCBQUEUED into the proper 1079 * return code that the caller will hand to ->complete(). 1080 * 1081 * This is managed by the bio_lock instead of being an atomic_t so that 1082 * completion paths can drop their ref and use the remaining count to 1083 * decide to wake the submission path atomically. 1084 */ 1085 spin_lock_irqsave(&dio->bio_lock, flags); 1086 ret2 = --dio->refcount; 1087 spin_unlock_irqrestore(&dio->bio_lock, flags); 1088 return ret2; 1089 } 1090 1091 /* 1092 * This is a library function for use by filesystem drivers. 1093 * 1094 * The locking rules are governed by the flags parameter: 1095 * - if the flags value contains DIO_LOCKING we use a fancy locking 1096 * scheme for dumb filesystems. 1097 * For writes this function is called under i_mutex and returns with 1098 * i_mutex held, for reads, i_mutex is not held on entry, but it is 1099 * taken and dropped again before returning. 1100 * - if the flags value does NOT contain DIO_LOCKING we don't use any 1101 * internal locking but rather rely on the filesystem to synchronize 1102 * direct I/O reads/writes versus each other and truncate. 1103 * 1104 * To help with locking against truncate we incremented the i_dio_count 1105 * counter before starting direct I/O, and decrement it once we are done. 1106 * Truncate can wait for it to reach zero to provide exclusion. It is 1107 * expected that filesystem provide exclusion between new direct I/O 1108 * and truncates. For DIO_LOCKING filesystems this is done by i_mutex, 1109 * but other filesystems need to take care of this on their own. 1110 * 1111 * NOTE: if you pass "sdio" to anything by pointer make sure that function 1112 * is always inlined. Otherwise gcc is unable to split the structure into 1113 * individual fields and will generate much worse code. This is important 1114 * for the whole file. 1115 */ 1116 static inline ssize_t 1117 do_blockdev_direct_IO(struct kiocb *iocb, struct inode *inode, 1118 struct block_device *bdev, struct iov_iter *iter, 1119 get_block_t get_block, dio_iodone_t end_io, 1120 dio_submit_t submit_io, int flags) 1121 { 1122 unsigned i_blkbits = ACCESS_ONCE(inode->i_blkbits); 1123 unsigned blkbits = i_blkbits; 1124 unsigned blocksize_mask = (1 << blkbits) - 1; 1125 ssize_t retval = -EINVAL; 1126 size_t count = iov_iter_count(iter); 1127 loff_t offset = iocb->ki_pos; 1128 loff_t end = offset + count; 1129 struct dio *dio; 1130 struct dio_submit sdio = { 0, }; 1131 struct buffer_head map_bh = { 0, }; 1132 struct blk_plug plug; 1133 unsigned long align = offset | iov_iter_alignment(iter); 1134 1135 /* 1136 * Avoid references to bdev if not absolutely needed to give 1137 * the early prefetch in the caller enough time. 1138 */ 1139 1140 if (align & blocksize_mask) { 1141 if (bdev) 1142 blkbits = blksize_bits(bdev_logical_block_size(bdev)); 1143 blocksize_mask = (1 << blkbits) - 1; 1144 if (align & blocksize_mask) 1145 goto out; 1146 } 1147 1148 /* watch out for a 0 len io from a tricksy fs */ 1149 if (iov_iter_rw(iter) == READ && !iov_iter_count(iter)) 1150 return 0; 1151 1152 dio = kmem_cache_alloc(dio_cache, GFP_KERNEL); 1153 retval = -ENOMEM; 1154 if (!dio) 1155 goto out; 1156 /* 1157 * Believe it or not, zeroing out the page array caused a .5% 1158 * performance regression in a database benchmark. So, we take 1159 * care to only zero out what's needed. 1160 */ 1161 memset(dio, 0, offsetof(struct dio, pages)); 1162 1163 dio->flags = flags; 1164 if (dio->flags & DIO_LOCKING) { 1165 if (iov_iter_rw(iter) == READ) { 1166 struct address_space *mapping = 1167 iocb->ki_filp->f_mapping; 1168 1169 /* will be released by direct_io_worker */ 1170 inode_lock(inode); 1171 1172 retval = filemap_write_and_wait_range(mapping, offset, 1173 end - 1); 1174 if (retval) { 1175 inode_unlock(inode); 1176 kmem_cache_free(dio_cache, dio); 1177 goto out; 1178 } 1179 } 1180 } 1181 1182 /* Once we sampled i_size check for reads beyond EOF */ 1183 dio->i_size = i_size_read(inode); 1184 if (iov_iter_rw(iter) == READ && offset >= dio->i_size) { 1185 if (dio->flags & DIO_LOCKING) 1186 inode_unlock(inode); 1187 kmem_cache_free(dio_cache, dio); 1188 retval = 0; 1189 goto out; 1190 } 1191 1192 /* 1193 * For file extending writes updating i_size before data writeouts 1194 * complete can expose uninitialized blocks in dumb filesystems. 1195 * In that case we need to wait for I/O completion even if asked 1196 * for an asynchronous write. 1197 */ 1198 if (is_sync_kiocb(iocb)) 1199 dio->is_async = false; 1200 else if (!(dio->flags & DIO_ASYNC_EXTEND) && 1201 iov_iter_rw(iter) == WRITE && end > i_size_read(inode)) 1202 dio->is_async = false; 1203 else 1204 dio->is_async = true; 1205 1206 dio->inode = inode; 1207 if (iov_iter_rw(iter) == WRITE) { 1208 dio->op = REQ_OP_WRITE; 1209 dio->op_flags = WRITE_ODIRECT; 1210 } else { 1211 dio->op = REQ_OP_READ; 1212 } 1213 1214 /* 1215 * For AIO O_(D)SYNC writes we need to defer completions to a workqueue 1216 * so that we can call ->fsync. 1217 */ 1218 if (dio->is_async && iov_iter_rw(iter) == WRITE && 1219 ((iocb->ki_filp->f_flags & O_DSYNC) || 1220 IS_SYNC(iocb->ki_filp->f_mapping->host))) { 1221 retval = dio_set_defer_completion(dio); 1222 if (retval) { 1223 /* 1224 * We grab i_mutex only for reads so we don't have 1225 * to release it here 1226 */ 1227 kmem_cache_free(dio_cache, dio); 1228 goto out; 1229 } 1230 } 1231 1232 /* 1233 * Will be decremented at I/O completion time. 1234 */ 1235 if (!(dio->flags & DIO_SKIP_DIO_COUNT)) 1236 inode_dio_begin(inode); 1237 1238 retval = 0; 1239 sdio.blkbits = blkbits; 1240 sdio.blkfactor = i_blkbits - blkbits; 1241 sdio.block_in_file = offset >> blkbits; 1242 1243 sdio.get_block = get_block; 1244 dio->end_io = end_io; 1245 sdio.submit_io = submit_io; 1246 sdio.final_block_in_bio = -1; 1247 sdio.next_block_for_io = -1; 1248 1249 dio->iocb = iocb; 1250 1251 spin_lock_init(&dio->bio_lock); 1252 dio->refcount = 1; 1253 1254 dio->should_dirty = (iter->type == ITER_IOVEC); 1255 sdio.iter = iter; 1256 sdio.final_block_in_request = 1257 (offset + iov_iter_count(iter)) >> blkbits; 1258 1259 /* 1260 * In case of non-aligned buffers, we may need 2 more 1261 * pages since we need to zero out first and last block. 1262 */ 1263 if (unlikely(sdio.blkfactor)) 1264 sdio.pages_in_io = 2; 1265 1266 sdio.pages_in_io += iov_iter_npages(iter, INT_MAX); 1267 1268 blk_start_plug(&plug); 1269 1270 retval = do_direct_IO(dio, &sdio, &map_bh); 1271 if (retval) 1272 dio_cleanup(dio, &sdio); 1273 1274 if (retval == -ENOTBLK) { 1275 /* 1276 * The remaining part of the request will be 1277 * be handled by buffered I/O when we return 1278 */ 1279 retval = 0; 1280 } 1281 /* 1282 * There may be some unwritten disk at the end of a part-written 1283 * fs-block-sized block. Go zero that now. 1284 */ 1285 dio_zero_block(dio, &sdio, 1, &map_bh); 1286 1287 if (sdio.cur_page) { 1288 ssize_t ret2; 1289 1290 ret2 = dio_send_cur_page(dio, &sdio, &map_bh); 1291 if (retval == 0) 1292 retval = ret2; 1293 put_page(sdio.cur_page); 1294 sdio.cur_page = NULL; 1295 } 1296 if (sdio.bio) 1297 dio_bio_submit(dio, &sdio); 1298 1299 blk_finish_plug(&plug); 1300 1301 /* 1302 * It is possible that, we return short IO due to end of file. 1303 * In that case, we need to release all the pages we got hold on. 1304 */ 1305 dio_cleanup(dio, &sdio); 1306 1307 /* 1308 * All block lookups have been performed. For READ requests 1309 * we can let i_mutex go now that its achieved its purpose 1310 * of protecting us from looking up uninitialized blocks. 1311 */ 1312 if (iov_iter_rw(iter) == READ && (dio->flags & DIO_LOCKING)) 1313 inode_unlock(dio->inode); 1314 1315 /* 1316 * The only time we want to leave bios in flight is when a successful 1317 * partial aio read or full aio write have been setup. In that case 1318 * bio completion will call aio_complete. The only time it's safe to 1319 * call aio_complete is when we return -EIOCBQUEUED, so we key on that. 1320 * This had *better* be the only place that raises -EIOCBQUEUED. 1321 */ 1322 BUG_ON(retval == -EIOCBQUEUED); 1323 if (dio->is_async && retval == 0 && dio->result && 1324 (iov_iter_rw(iter) == READ || dio->result == count)) 1325 retval = -EIOCBQUEUED; 1326 else 1327 dio_await_completion(dio); 1328 1329 if (drop_refcount(dio) == 0) { 1330 retval = dio_complete(dio, retval, false); 1331 } else 1332 BUG_ON(retval != -EIOCBQUEUED); 1333 1334 out: 1335 return retval; 1336 } 1337 1338 ssize_t __blockdev_direct_IO(struct kiocb *iocb, struct inode *inode, 1339 struct block_device *bdev, struct iov_iter *iter, 1340 get_block_t get_block, 1341 dio_iodone_t end_io, dio_submit_t submit_io, 1342 int flags) 1343 { 1344 /* 1345 * The block device state is needed in the end to finally 1346 * submit everything. Since it's likely to be cache cold 1347 * prefetch it here as first thing to hide some of the 1348 * latency. 1349 * 1350 * Attempt to prefetch the pieces we likely need later. 1351 */ 1352 prefetch(&bdev->bd_disk->part_tbl); 1353 prefetch(bdev->bd_queue); 1354 prefetch((char *)bdev->bd_queue + SMP_CACHE_BYTES); 1355 1356 return do_blockdev_direct_IO(iocb, inode, bdev, iter, get_block, 1357 end_io, submit_io, flags); 1358 } 1359 1360 EXPORT_SYMBOL(__blockdev_direct_IO); 1361 1362 static __init int dio_init(void) 1363 { 1364 dio_cache = KMEM_CACHE(dio, SLAB_PANIC); 1365 return 0; 1366 } 1367 module_init(dio_init) 1368