1 /* 2 * fs/direct-io.c 3 * 4 * Copyright (C) 2002, Linus Torvalds. 5 * 6 * O_DIRECT 7 * 8 * 04Jul2002 akpm@zip.com.au 9 * Initial version 10 * 11Sep2002 janetinc@us.ibm.com 11 * added readv/writev support. 12 * 29Oct2002 akpm@zip.com.au 13 * rewrote bio_add_page() support. 14 * 30Oct2002 pbadari@us.ibm.com 15 * added support for non-aligned IO. 16 * 06Nov2002 pbadari@us.ibm.com 17 * added asynchronous IO support. 18 * 21Jul2003 nathans@sgi.com 19 * added IO completion notifier. 20 */ 21 22 #include <linux/kernel.h> 23 #include <linux/module.h> 24 #include <linux/types.h> 25 #include <linux/fs.h> 26 #include <linux/mm.h> 27 #include <linux/slab.h> 28 #include <linux/highmem.h> 29 #include <linux/pagemap.h> 30 #include <linux/bio.h> 31 #include <linux/wait.h> 32 #include <linux/err.h> 33 #include <linux/blkdev.h> 34 #include <linux/buffer_head.h> 35 #include <linux/rwsem.h> 36 #include <linux/uio.h> 37 #include <asm/atomic.h> 38 39 /* 40 * How many user pages to map in one call to get_user_pages(). This determines 41 * the size of a structure on the stack. 42 */ 43 #define DIO_PAGES 64 44 45 /* 46 * This code generally works in units of "dio_blocks". A dio_block is 47 * somewhere between the hard sector size and the filesystem block size. it 48 * is determined on a per-invocation basis. When talking to the filesystem 49 * we need to convert dio_blocks to fs_blocks by scaling the dio_block quantity 50 * down by dio->blkfactor. Similarly, fs-blocksize quantities are converted 51 * to bio_block quantities by shifting left by blkfactor. 52 * 53 * If blkfactor is zero then the user's request was aligned to the filesystem's 54 * blocksize. 55 * 56 * lock_type is DIO_LOCKING for regular files on direct-IO-naive filesystems. 57 * This determines whether we need to do the fancy locking which prevents 58 * direct-IO from being able to read uninitialised disk blocks. If its zero 59 * (blockdev) this locking is not done, and if it is DIO_OWN_LOCKING i_sem is 60 * not held for the entire direct write (taken briefly, initially, during a 61 * direct read though, but its never held for the duration of a direct-IO). 62 */ 63 64 struct dio { 65 /* BIO submission state */ 66 struct bio *bio; /* bio under assembly */ 67 struct inode *inode; 68 int rw; 69 int lock_type; /* doesn't change */ 70 unsigned blkbits; /* doesn't change */ 71 unsigned blkfactor; /* When we're using an alignment which 72 is finer than the filesystem's soft 73 blocksize, this specifies how much 74 finer. blkfactor=2 means 1/4-block 75 alignment. Does not change */ 76 unsigned start_zero_done; /* flag: sub-blocksize zeroing has 77 been performed at the start of a 78 write */ 79 int pages_in_io; /* approximate total IO pages */ 80 size_t size; /* total request size (doesn't change)*/ 81 sector_t block_in_file; /* Current offset into the underlying 82 file in dio_block units. */ 83 unsigned blocks_available; /* At block_in_file. changes */ 84 sector_t final_block_in_request;/* doesn't change */ 85 unsigned first_block_in_page; /* doesn't change, Used only once */ 86 int boundary; /* prev block is at a boundary */ 87 int reap_counter; /* rate limit reaping */ 88 get_blocks_t *get_blocks; /* block mapping function */ 89 dio_iodone_t *end_io; /* IO completion function */ 90 sector_t final_block_in_bio; /* current final block in bio + 1 */ 91 sector_t next_block_for_io; /* next block to be put under IO, 92 in dio_blocks units */ 93 struct buffer_head map_bh; /* last get_blocks() result */ 94 95 /* 96 * Deferred addition of a page to the dio. These variables are 97 * private to dio_send_cur_page(), submit_page_section() and 98 * dio_bio_add_page(). 99 */ 100 struct page *cur_page; /* The page */ 101 unsigned cur_page_offset; /* Offset into it, in bytes */ 102 unsigned cur_page_len; /* Nr of bytes at cur_page_offset */ 103 sector_t cur_page_block; /* Where it starts */ 104 105 /* 106 * Page fetching state. These variables belong to dio_refill_pages(). 107 */ 108 int curr_page; /* changes */ 109 int total_pages; /* doesn't change */ 110 unsigned long curr_user_address;/* changes */ 111 112 /* 113 * Page queue. These variables belong to dio_refill_pages() and 114 * dio_get_page(). 115 */ 116 struct page *pages[DIO_PAGES]; /* page buffer */ 117 unsigned head; /* next page to process */ 118 unsigned tail; /* last valid page + 1 */ 119 int page_errors; /* errno from get_user_pages() */ 120 121 /* BIO completion state */ 122 spinlock_t bio_lock; /* protects BIO fields below */ 123 int bio_count; /* nr bios to be completed */ 124 int bios_in_flight; /* nr bios in flight */ 125 struct bio *bio_list; /* singly linked via bi_private */ 126 struct task_struct *waiter; /* waiting task (NULL if none) */ 127 128 /* AIO related stuff */ 129 struct kiocb *iocb; /* kiocb */ 130 int is_async; /* is IO async ? */ 131 ssize_t result; /* IO result */ 132 }; 133 134 /* 135 * How many pages are in the queue? 136 */ 137 static inline unsigned dio_pages_present(struct dio *dio) 138 { 139 return dio->tail - dio->head; 140 } 141 142 /* 143 * Go grab and pin some userspace pages. Typically we'll get 64 at a time. 144 */ 145 static int dio_refill_pages(struct dio *dio) 146 { 147 int ret; 148 int nr_pages; 149 150 nr_pages = min(dio->total_pages - dio->curr_page, DIO_PAGES); 151 down_read(¤t->mm->mmap_sem); 152 ret = get_user_pages( 153 current, /* Task for fault acounting */ 154 current->mm, /* whose pages? */ 155 dio->curr_user_address, /* Where from? */ 156 nr_pages, /* How many pages? */ 157 dio->rw == READ, /* Write to memory? */ 158 0, /* force (?) */ 159 &dio->pages[0], 160 NULL); /* vmas */ 161 up_read(¤t->mm->mmap_sem); 162 163 if (ret < 0 && dio->blocks_available && (dio->rw == WRITE)) { 164 /* 165 * A memory fault, but the filesystem has some outstanding 166 * mapped blocks. We need to use those blocks up to avoid 167 * leaking stale data in the file. 168 */ 169 if (dio->page_errors == 0) 170 dio->page_errors = ret; 171 dio->pages[0] = ZERO_PAGE(dio->curr_user_address); 172 dio->head = 0; 173 dio->tail = 1; 174 ret = 0; 175 goto out; 176 } 177 178 if (ret >= 0) { 179 dio->curr_user_address += ret * PAGE_SIZE; 180 dio->curr_page += ret; 181 dio->head = 0; 182 dio->tail = ret; 183 ret = 0; 184 } 185 out: 186 return ret; 187 } 188 189 /* 190 * Get another userspace page. Returns an ERR_PTR on error. Pages are 191 * buffered inside the dio so that we can call get_user_pages() against a 192 * decent number of pages, less frequently. To provide nicer use of the 193 * L1 cache. 194 */ 195 static struct page *dio_get_page(struct dio *dio) 196 { 197 if (dio_pages_present(dio) == 0) { 198 int ret; 199 200 ret = dio_refill_pages(dio); 201 if (ret) 202 return ERR_PTR(ret); 203 BUG_ON(dio_pages_present(dio) == 0); 204 } 205 return dio->pages[dio->head++]; 206 } 207 208 /* 209 * Called when all DIO BIO I/O has been completed - let the filesystem 210 * know, if it registered an interest earlier via get_blocks. Pass the 211 * private field of the map buffer_head so that filesystems can use it 212 * to hold additional state between get_blocks calls and dio_complete. 213 */ 214 static void dio_complete(struct dio *dio, loff_t offset, ssize_t bytes) 215 { 216 if (dio->end_io && dio->result) 217 dio->end_io(dio->inode, offset, bytes, dio->map_bh.b_private); 218 if (dio->lock_type == DIO_LOCKING) 219 up_read(&dio->inode->i_alloc_sem); 220 } 221 222 /* 223 * Called when a BIO has been processed. If the count goes to zero then IO is 224 * complete and we can signal this to the AIO layer. 225 */ 226 static void finished_one_bio(struct dio *dio) 227 { 228 unsigned long flags; 229 230 spin_lock_irqsave(&dio->bio_lock, flags); 231 if (dio->bio_count == 1) { 232 if (dio->is_async) { 233 /* 234 * Last reference to the dio is going away. 235 * Drop spinlock and complete the DIO. 236 */ 237 spin_unlock_irqrestore(&dio->bio_lock, flags); 238 dio_complete(dio, dio->block_in_file << dio->blkbits, 239 dio->result); 240 /* Complete AIO later if falling back to buffered i/o */ 241 if (dio->result == dio->size || 242 ((dio->rw == READ) && dio->result)) { 243 aio_complete(dio->iocb, dio->result, 0); 244 kfree(dio); 245 return; 246 } else { 247 /* 248 * Falling back to buffered 249 */ 250 spin_lock_irqsave(&dio->bio_lock, flags); 251 dio->bio_count--; 252 if (dio->waiter) 253 wake_up_process(dio->waiter); 254 spin_unlock_irqrestore(&dio->bio_lock, flags); 255 return; 256 } 257 } 258 } 259 dio->bio_count--; 260 spin_unlock_irqrestore(&dio->bio_lock, flags); 261 } 262 263 static int dio_bio_complete(struct dio *dio, struct bio *bio); 264 /* 265 * Asynchronous IO callback. 266 */ 267 static int dio_bio_end_aio(struct bio *bio, unsigned int bytes_done, int error) 268 { 269 struct dio *dio = bio->bi_private; 270 271 if (bio->bi_size) 272 return 1; 273 274 /* cleanup the bio */ 275 dio_bio_complete(dio, bio); 276 return 0; 277 } 278 279 /* 280 * The BIO completion handler simply queues the BIO up for the process-context 281 * handler. 282 * 283 * During I/O bi_private points at the dio. After I/O, bi_private is used to 284 * implement a singly-linked list of completed BIOs, at dio->bio_list. 285 */ 286 static int dio_bio_end_io(struct bio *bio, unsigned int bytes_done, int error) 287 { 288 struct dio *dio = bio->bi_private; 289 unsigned long flags; 290 291 if (bio->bi_size) 292 return 1; 293 294 spin_lock_irqsave(&dio->bio_lock, flags); 295 bio->bi_private = dio->bio_list; 296 dio->bio_list = bio; 297 dio->bios_in_flight--; 298 if (dio->waiter && dio->bios_in_flight == 0) 299 wake_up_process(dio->waiter); 300 spin_unlock_irqrestore(&dio->bio_lock, flags); 301 return 0; 302 } 303 304 static int 305 dio_bio_alloc(struct dio *dio, struct block_device *bdev, 306 sector_t first_sector, int nr_vecs) 307 { 308 struct bio *bio; 309 310 bio = bio_alloc(GFP_KERNEL, nr_vecs); 311 if (bio == NULL) 312 return -ENOMEM; 313 314 bio->bi_bdev = bdev; 315 bio->bi_sector = first_sector; 316 if (dio->is_async) 317 bio->bi_end_io = dio_bio_end_aio; 318 else 319 bio->bi_end_io = dio_bio_end_io; 320 321 dio->bio = bio; 322 return 0; 323 } 324 325 /* 326 * In the AIO read case we speculatively dirty the pages before starting IO. 327 * During IO completion, any of these pages which happen to have been written 328 * back will be redirtied by bio_check_pages_dirty(). 329 */ 330 static void dio_bio_submit(struct dio *dio) 331 { 332 struct bio *bio = dio->bio; 333 unsigned long flags; 334 335 bio->bi_private = dio; 336 spin_lock_irqsave(&dio->bio_lock, flags); 337 dio->bio_count++; 338 dio->bios_in_flight++; 339 spin_unlock_irqrestore(&dio->bio_lock, flags); 340 if (dio->is_async && dio->rw == READ) 341 bio_set_pages_dirty(bio); 342 submit_bio(dio->rw, bio); 343 344 dio->bio = NULL; 345 dio->boundary = 0; 346 } 347 348 /* 349 * Release any resources in case of a failure 350 */ 351 static void dio_cleanup(struct dio *dio) 352 { 353 while (dio_pages_present(dio)) 354 page_cache_release(dio_get_page(dio)); 355 } 356 357 /* 358 * Wait for the next BIO to complete. Remove it and return it. 359 */ 360 static struct bio *dio_await_one(struct dio *dio) 361 { 362 unsigned long flags; 363 struct bio *bio; 364 365 spin_lock_irqsave(&dio->bio_lock, flags); 366 while (dio->bio_list == NULL) { 367 set_current_state(TASK_UNINTERRUPTIBLE); 368 if (dio->bio_list == NULL) { 369 dio->waiter = current; 370 spin_unlock_irqrestore(&dio->bio_lock, flags); 371 blk_run_address_space(dio->inode->i_mapping); 372 io_schedule(); 373 spin_lock_irqsave(&dio->bio_lock, flags); 374 dio->waiter = NULL; 375 } 376 set_current_state(TASK_RUNNING); 377 } 378 bio = dio->bio_list; 379 dio->bio_list = bio->bi_private; 380 spin_unlock_irqrestore(&dio->bio_lock, flags); 381 return bio; 382 } 383 384 /* 385 * Process one completed BIO. No locks are held. 386 */ 387 static int dio_bio_complete(struct dio *dio, struct bio *bio) 388 { 389 const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 390 struct bio_vec *bvec = bio->bi_io_vec; 391 int page_no; 392 393 if (!uptodate) 394 dio->result = -EIO; 395 396 if (dio->is_async && dio->rw == READ) { 397 bio_check_pages_dirty(bio); /* transfers ownership */ 398 } else { 399 for (page_no = 0; page_no < bio->bi_vcnt; page_no++) { 400 struct page *page = bvec[page_no].bv_page; 401 402 if (dio->rw == READ && !PageCompound(page)) 403 set_page_dirty_lock(page); 404 page_cache_release(page); 405 } 406 bio_put(bio); 407 } 408 finished_one_bio(dio); 409 return uptodate ? 0 : -EIO; 410 } 411 412 /* 413 * Wait on and process all in-flight BIOs. 414 */ 415 static int dio_await_completion(struct dio *dio) 416 { 417 int ret = 0; 418 419 if (dio->bio) 420 dio_bio_submit(dio); 421 422 /* 423 * The bio_lock is not held for the read of bio_count. 424 * This is ok since it is the dio_bio_complete() that changes 425 * bio_count. 426 */ 427 while (dio->bio_count) { 428 struct bio *bio = dio_await_one(dio); 429 int ret2; 430 431 ret2 = dio_bio_complete(dio, bio); 432 if (ret == 0) 433 ret = ret2; 434 } 435 return ret; 436 } 437 438 /* 439 * A really large O_DIRECT read or write can generate a lot of BIOs. So 440 * to keep the memory consumption sane we periodically reap any completed BIOs 441 * during the BIO generation phase. 442 * 443 * This also helps to limit the peak amount of pinned userspace memory. 444 */ 445 static int dio_bio_reap(struct dio *dio) 446 { 447 int ret = 0; 448 449 if (dio->reap_counter++ >= 64) { 450 while (dio->bio_list) { 451 unsigned long flags; 452 struct bio *bio; 453 int ret2; 454 455 spin_lock_irqsave(&dio->bio_lock, flags); 456 bio = dio->bio_list; 457 dio->bio_list = bio->bi_private; 458 spin_unlock_irqrestore(&dio->bio_lock, flags); 459 ret2 = dio_bio_complete(dio, bio); 460 if (ret == 0) 461 ret = ret2; 462 } 463 dio->reap_counter = 0; 464 } 465 return ret; 466 } 467 468 /* 469 * Call into the fs to map some more disk blocks. We record the current number 470 * of available blocks at dio->blocks_available. These are in units of the 471 * fs blocksize, (1 << inode->i_blkbits). 472 * 473 * The fs is allowed to map lots of blocks at once. If it wants to do that, 474 * it uses the passed inode-relative block number as the file offset, as usual. 475 * 476 * get_blocks() is passed the number of i_blkbits-sized blocks which direct_io 477 * has remaining to do. The fs should not map more than this number of blocks. 478 * 479 * If the fs has mapped a lot of blocks, it should populate bh->b_size to 480 * indicate how much contiguous disk space has been made available at 481 * bh->b_blocknr. 482 * 483 * If *any* of the mapped blocks are new, then the fs must set buffer_new(). 484 * This isn't very efficient... 485 * 486 * In the case of filesystem holes: the fs may return an arbitrarily-large 487 * hole by returning an appropriate value in b_size and by clearing 488 * buffer_mapped(). However the direct-io code will only process holes one 489 * block at a time - it will repeatedly call get_blocks() as it walks the hole. 490 */ 491 static int get_more_blocks(struct dio *dio) 492 { 493 int ret; 494 struct buffer_head *map_bh = &dio->map_bh; 495 sector_t fs_startblk; /* Into file, in filesystem-sized blocks */ 496 unsigned long fs_count; /* Number of filesystem-sized blocks */ 497 unsigned long dio_count;/* Number of dio_block-sized blocks */ 498 unsigned long blkmask; 499 int create; 500 501 /* 502 * If there was a memory error and we've overwritten all the 503 * mapped blocks then we can now return that memory error 504 */ 505 ret = dio->page_errors; 506 if (ret == 0) { 507 map_bh->b_state = 0; 508 map_bh->b_size = 0; 509 BUG_ON(dio->block_in_file >= dio->final_block_in_request); 510 fs_startblk = dio->block_in_file >> dio->blkfactor; 511 dio_count = dio->final_block_in_request - dio->block_in_file; 512 fs_count = dio_count >> dio->blkfactor; 513 blkmask = (1 << dio->blkfactor) - 1; 514 if (dio_count & blkmask) 515 fs_count++; 516 517 create = dio->rw == WRITE; 518 if (dio->lock_type == DIO_LOCKING) { 519 if (dio->block_in_file < (i_size_read(dio->inode) >> 520 dio->blkbits)) 521 create = 0; 522 } else if (dio->lock_type == DIO_NO_LOCKING) { 523 create = 0; 524 } 525 /* 526 * For writes inside i_size we forbid block creations: only 527 * overwrites are permitted. We fall back to buffered writes 528 * at a higher level for inside-i_size block-instantiating 529 * writes. 530 */ 531 ret = (*dio->get_blocks)(dio->inode, fs_startblk, fs_count, 532 map_bh, create); 533 } 534 return ret; 535 } 536 537 /* 538 * There is no bio. Make one now. 539 */ 540 static int dio_new_bio(struct dio *dio, sector_t start_sector) 541 { 542 sector_t sector; 543 int ret, nr_pages; 544 545 ret = dio_bio_reap(dio); 546 if (ret) 547 goto out; 548 sector = start_sector << (dio->blkbits - 9); 549 nr_pages = min(dio->pages_in_io, bio_get_nr_vecs(dio->map_bh.b_bdev)); 550 BUG_ON(nr_pages <= 0); 551 ret = dio_bio_alloc(dio, dio->map_bh.b_bdev, sector, nr_pages); 552 dio->boundary = 0; 553 out: 554 return ret; 555 } 556 557 /* 558 * Attempt to put the current chunk of 'cur_page' into the current BIO. If 559 * that was successful then update final_block_in_bio and take a ref against 560 * the just-added page. 561 * 562 * Return zero on success. Non-zero means the caller needs to start a new BIO. 563 */ 564 static int dio_bio_add_page(struct dio *dio) 565 { 566 int ret; 567 568 ret = bio_add_page(dio->bio, dio->cur_page, 569 dio->cur_page_len, dio->cur_page_offset); 570 if (ret == dio->cur_page_len) { 571 /* 572 * Decrement count only, if we are done with this page 573 */ 574 if ((dio->cur_page_len + dio->cur_page_offset) == PAGE_SIZE) 575 dio->pages_in_io--; 576 page_cache_get(dio->cur_page); 577 dio->final_block_in_bio = dio->cur_page_block + 578 (dio->cur_page_len >> dio->blkbits); 579 ret = 0; 580 } else { 581 ret = 1; 582 } 583 return ret; 584 } 585 586 /* 587 * Put cur_page under IO. The section of cur_page which is described by 588 * cur_page_offset,cur_page_len is put into a BIO. The section of cur_page 589 * starts on-disk at cur_page_block. 590 * 591 * We take a ref against the page here (on behalf of its presence in the bio). 592 * 593 * The caller of this function is responsible for removing cur_page from the 594 * dio, and for dropping the refcount which came from that presence. 595 */ 596 static int dio_send_cur_page(struct dio *dio) 597 { 598 int ret = 0; 599 600 if (dio->bio) { 601 /* 602 * See whether this new request is contiguous with the old 603 */ 604 if (dio->final_block_in_bio != dio->cur_page_block) 605 dio_bio_submit(dio); 606 /* 607 * Submit now if the underlying fs is about to perform a 608 * metadata read 609 */ 610 if (dio->boundary) 611 dio_bio_submit(dio); 612 } 613 614 if (dio->bio == NULL) { 615 ret = dio_new_bio(dio, dio->cur_page_block); 616 if (ret) 617 goto out; 618 } 619 620 if (dio_bio_add_page(dio) != 0) { 621 dio_bio_submit(dio); 622 ret = dio_new_bio(dio, dio->cur_page_block); 623 if (ret == 0) { 624 ret = dio_bio_add_page(dio); 625 BUG_ON(ret != 0); 626 } 627 } 628 out: 629 return ret; 630 } 631 632 /* 633 * An autonomous function to put a chunk of a page under deferred IO. 634 * 635 * The caller doesn't actually know (or care) whether this piece of page is in 636 * a BIO, or is under IO or whatever. We just take care of all possible 637 * situations here. The separation between the logic of do_direct_IO() and 638 * that of submit_page_section() is important for clarity. Please don't break. 639 * 640 * The chunk of page starts on-disk at blocknr. 641 * 642 * We perform deferred IO, by recording the last-submitted page inside our 643 * private part of the dio structure. If possible, we just expand the IO 644 * across that page here. 645 * 646 * If that doesn't work out then we put the old page into the bio and add this 647 * page to the dio instead. 648 */ 649 static int 650 submit_page_section(struct dio *dio, struct page *page, 651 unsigned offset, unsigned len, sector_t blocknr) 652 { 653 int ret = 0; 654 655 /* 656 * Can we just grow the current page's presence in the dio? 657 */ 658 if ( (dio->cur_page == page) && 659 (dio->cur_page_offset + dio->cur_page_len == offset) && 660 (dio->cur_page_block + 661 (dio->cur_page_len >> dio->blkbits) == blocknr)) { 662 dio->cur_page_len += len; 663 664 /* 665 * If dio->boundary then we want to schedule the IO now to 666 * avoid metadata seeks. 667 */ 668 if (dio->boundary) { 669 ret = dio_send_cur_page(dio); 670 page_cache_release(dio->cur_page); 671 dio->cur_page = NULL; 672 } 673 goto out; 674 } 675 676 /* 677 * If there's a deferred page already there then send it. 678 */ 679 if (dio->cur_page) { 680 ret = dio_send_cur_page(dio); 681 page_cache_release(dio->cur_page); 682 dio->cur_page = NULL; 683 if (ret) 684 goto out; 685 } 686 687 page_cache_get(page); /* It is in dio */ 688 dio->cur_page = page; 689 dio->cur_page_offset = offset; 690 dio->cur_page_len = len; 691 dio->cur_page_block = blocknr; 692 out: 693 return ret; 694 } 695 696 /* 697 * Clean any dirty buffers in the blockdev mapping which alias newly-created 698 * file blocks. Only called for S_ISREG files - blockdevs do not set 699 * buffer_new 700 */ 701 static void clean_blockdev_aliases(struct dio *dio) 702 { 703 unsigned i; 704 unsigned nblocks; 705 706 nblocks = dio->map_bh.b_size >> dio->inode->i_blkbits; 707 708 for (i = 0; i < nblocks; i++) { 709 unmap_underlying_metadata(dio->map_bh.b_bdev, 710 dio->map_bh.b_blocknr + i); 711 } 712 } 713 714 /* 715 * If we are not writing the entire block and get_block() allocated 716 * the block for us, we need to fill-in the unused portion of the 717 * block with zeros. This happens only if user-buffer, fileoffset or 718 * io length is not filesystem block-size multiple. 719 * 720 * `end' is zero if we're doing the start of the IO, 1 at the end of the 721 * IO. 722 */ 723 static void dio_zero_block(struct dio *dio, int end) 724 { 725 unsigned dio_blocks_per_fs_block; 726 unsigned this_chunk_blocks; /* In dio_blocks */ 727 unsigned this_chunk_bytes; 728 struct page *page; 729 730 dio->start_zero_done = 1; 731 if (!dio->blkfactor || !buffer_new(&dio->map_bh)) 732 return; 733 734 dio_blocks_per_fs_block = 1 << dio->blkfactor; 735 this_chunk_blocks = dio->block_in_file & (dio_blocks_per_fs_block - 1); 736 737 if (!this_chunk_blocks) 738 return; 739 740 /* 741 * We need to zero out part of an fs block. It is either at the 742 * beginning or the end of the fs block. 743 */ 744 if (end) 745 this_chunk_blocks = dio_blocks_per_fs_block - this_chunk_blocks; 746 747 this_chunk_bytes = this_chunk_blocks << dio->blkbits; 748 749 page = ZERO_PAGE(dio->curr_user_address); 750 if (submit_page_section(dio, page, 0, this_chunk_bytes, 751 dio->next_block_for_io)) 752 return; 753 754 dio->next_block_for_io += this_chunk_blocks; 755 } 756 757 /* 758 * Walk the user pages, and the file, mapping blocks to disk and generating 759 * a sequence of (page,offset,len,block) mappings. These mappings are injected 760 * into submit_page_section(), which takes care of the next stage of submission 761 * 762 * Direct IO against a blockdev is different from a file. Because we can 763 * happily perform page-sized but 512-byte aligned IOs. It is important that 764 * blockdev IO be able to have fine alignment and large sizes. 765 * 766 * So what we do is to permit the ->get_blocks function to populate bh.b_size 767 * with the size of IO which is permitted at this offset and this i_blkbits. 768 * 769 * For best results, the blockdev should be set up with 512-byte i_blkbits and 770 * it should set b_size to PAGE_SIZE or more inside get_blocks(). This gives 771 * fine alignment but still allows this function to work in PAGE_SIZE units. 772 */ 773 static int do_direct_IO(struct dio *dio) 774 { 775 const unsigned blkbits = dio->blkbits; 776 const unsigned blocks_per_page = PAGE_SIZE >> blkbits; 777 struct page *page; 778 unsigned block_in_page; 779 struct buffer_head *map_bh = &dio->map_bh; 780 int ret = 0; 781 782 /* The I/O can start at any block offset within the first page */ 783 block_in_page = dio->first_block_in_page; 784 785 while (dio->block_in_file < dio->final_block_in_request) { 786 page = dio_get_page(dio); 787 if (IS_ERR(page)) { 788 ret = PTR_ERR(page); 789 goto out; 790 } 791 792 while (block_in_page < blocks_per_page) { 793 unsigned offset_in_page = block_in_page << blkbits; 794 unsigned this_chunk_bytes; /* # of bytes mapped */ 795 unsigned this_chunk_blocks; /* # of blocks */ 796 unsigned u; 797 798 if (dio->blocks_available == 0) { 799 /* 800 * Need to go and map some more disk 801 */ 802 unsigned long blkmask; 803 unsigned long dio_remainder; 804 805 ret = get_more_blocks(dio); 806 if (ret) { 807 page_cache_release(page); 808 goto out; 809 } 810 if (!buffer_mapped(map_bh)) 811 goto do_holes; 812 813 dio->blocks_available = 814 map_bh->b_size >> dio->blkbits; 815 dio->next_block_for_io = 816 map_bh->b_blocknr << dio->blkfactor; 817 if (buffer_new(map_bh)) 818 clean_blockdev_aliases(dio); 819 820 if (!dio->blkfactor) 821 goto do_holes; 822 823 blkmask = (1 << dio->blkfactor) - 1; 824 dio_remainder = (dio->block_in_file & blkmask); 825 826 /* 827 * If we are at the start of IO and that IO 828 * starts partway into a fs-block, 829 * dio_remainder will be non-zero. If the IO 830 * is a read then we can simply advance the IO 831 * cursor to the first block which is to be 832 * read. But if the IO is a write and the 833 * block was newly allocated we cannot do that; 834 * the start of the fs block must be zeroed out 835 * on-disk 836 */ 837 if (!buffer_new(map_bh)) 838 dio->next_block_for_io += dio_remainder; 839 dio->blocks_available -= dio_remainder; 840 } 841 do_holes: 842 /* Handle holes */ 843 if (!buffer_mapped(map_bh)) { 844 char *kaddr; 845 846 /* AKPM: eargh, -ENOTBLK is a hack */ 847 if (dio->rw == WRITE) { 848 page_cache_release(page); 849 return -ENOTBLK; 850 } 851 852 if (dio->block_in_file >= 853 i_size_read(dio->inode)>>blkbits) { 854 /* We hit eof */ 855 page_cache_release(page); 856 goto out; 857 } 858 kaddr = kmap_atomic(page, KM_USER0); 859 memset(kaddr + (block_in_page << blkbits), 860 0, 1 << blkbits); 861 flush_dcache_page(page); 862 kunmap_atomic(kaddr, KM_USER0); 863 dio->block_in_file++; 864 block_in_page++; 865 goto next_block; 866 } 867 868 /* 869 * If we're performing IO which has an alignment which 870 * is finer than the underlying fs, go check to see if 871 * we must zero out the start of this block. 872 */ 873 if (unlikely(dio->blkfactor && !dio->start_zero_done)) 874 dio_zero_block(dio, 0); 875 876 /* 877 * Work out, in this_chunk_blocks, how much disk we 878 * can add to this page 879 */ 880 this_chunk_blocks = dio->blocks_available; 881 u = (PAGE_SIZE - offset_in_page) >> blkbits; 882 if (this_chunk_blocks > u) 883 this_chunk_blocks = u; 884 u = dio->final_block_in_request - dio->block_in_file; 885 if (this_chunk_blocks > u) 886 this_chunk_blocks = u; 887 this_chunk_bytes = this_chunk_blocks << blkbits; 888 BUG_ON(this_chunk_bytes == 0); 889 890 dio->boundary = buffer_boundary(map_bh); 891 ret = submit_page_section(dio, page, offset_in_page, 892 this_chunk_bytes, dio->next_block_for_io); 893 if (ret) { 894 page_cache_release(page); 895 goto out; 896 } 897 dio->next_block_for_io += this_chunk_blocks; 898 899 dio->block_in_file += this_chunk_blocks; 900 block_in_page += this_chunk_blocks; 901 dio->blocks_available -= this_chunk_blocks; 902 next_block: 903 if (dio->block_in_file > dio->final_block_in_request) 904 BUG(); 905 if (dio->block_in_file == dio->final_block_in_request) 906 break; 907 } 908 909 /* Drop the ref which was taken in get_user_pages() */ 910 page_cache_release(page); 911 block_in_page = 0; 912 } 913 out: 914 return ret; 915 } 916 917 /* 918 * Releases both i_sem and i_alloc_sem 919 */ 920 static ssize_t 921 direct_io_worker(int rw, struct kiocb *iocb, struct inode *inode, 922 const struct iovec *iov, loff_t offset, unsigned long nr_segs, 923 unsigned blkbits, get_blocks_t get_blocks, dio_iodone_t end_io, 924 struct dio *dio) 925 { 926 unsigned long user_addr; 927 int seg; 928 ssize_t ret = 0; 929 ssize_t ret2; 930 size_t bytes; 931 932 dio->bio = NULL; 933 dio->inode = inode; 934 dio->rw = rw; 935 dio->blkbits = blkbits; 936 dio->blkfactor = inode->i_blkbits - blkbits; 937 dio->start_zero_done = 0; 938 dio->size = 0; 939 dio->block_in_file = offset >> blkbits; 940 dio->blocks_available = 0; 941 dio->cur_page = NULL; 942 943 dio->boundary = 0; 944 dio->reap_counter = 0; 945 dio->get_blocks = get_blocks; 946 dio->end_io = end_io; 947 dio->map_bh.b_private = NULL; 948 dio->final_block_in_bio = -1; 949 dio->next_block_for_io = -1; 950 951 dio->page_errors = 0; 952 dio->result = 0; 953 dio->iocb = iocb; 954 955 /* 956 * BIO completion state. 957 * 958 * ->bio_count starts out at one, and we decrement it to zero after all 959 * BIOs are submitted. This to avoid the situation where a really fast 960 * (or synchronous) device could take the count to zero while we're 961 * still submitting BIOs. 962 */ 963 dio->bio_count = 1; 964 dio->bios_in_flight = 0; 965 spin_lock_init(&dio->bio_lock); 966 dio->bio_list = NULL; 967 dio->waiter = NULL; 968 969 /* 970 * In case of non-aligned buffers, we may need 2 more 971 * pages since we need to zero out first and last block. 972 */ 973 if (unlikely(dio->blkfactor)) 974 dio->pages_in_io = 2; 975 else 976 dio->pages_in_io = 0; 977 978 for (seg = 0; seg < nr_segs; seg++) { 979 user_addr = (unsigned long)iov[seg].iov_base; 980 dio->pages_in_io += 981 ((user_addr+iov[seg].iov_len +PAGE_SIZE-1)/PAGE_SIZE 982 - user_addr/PAGE_SIZE); 983 } 984 985 for (seg = 0; seg < nr_segs; seg++) { 986 user_addr = (unsigned long)iov[seg].iov_base; 987 dio->size += bytes = iov[seg].iov_len; 988 989 /* Index into the first page of the first block */ 990 dio->first_block_in_page = (user_addr & ~PAGE_MASK) >> blkbits; 991 dio->final_block_in_request = dio->block_in_file + 992 (bytes >> blkbits); 993 /* Page fetching state */ 994 dio->head = 0; 995 dio->tail = 0; 996 dio->curr_page = 0; 997 998 dio->total_pages = 0; 999 if (user_addr & (PAGE_SIZE-1)) { 1000 dio->total_pages++; 1001 bytes -= PAGE_SIZE - (user_addr & (PAGE_SIZE - 1)); 1002 } 1003 dio->total_pages += (bytes + PAGE_SIZE - 1) / PAGE_SIZE; 1004 dio->curr_user_address = user_addr; 1005 1006 ret = do_direct_IO(dio); 1007 1008 dio->result += iov[seg].iov_len - 1009 ((dio->final_block_in_request - dio->block_in_file) << 1010 blkbits); 1011 1012 if (ret) { 1013 dio_cleanup(dio); 1014 break; 1015 } 1016 } /* end iovec loop */ 1017 1018 if (ret == -ENOTBLK && rw == WRITE) { 1019 /* 1020 * The remaining part of the request will be 1021 * be handled by buffered I/O when we return 1022 */ 1023 ret = 0; 1024 } 1025 /* 1026 * There may be some unwritten disk at the end of a part-written 1027 * fs-block-sized block. Go zero that now. 1028 */ 1029 dio_zero_block(dio, 1); 1030 1031 if (dio->cur_page) { 1032 ret2 = dio_send_cur_page(dio); 1033 if (ret == 0) 1034 ret = ret2; 1035 page_cache_release(dio->cur_page); 1036 dio->cur_page = NULL; 1037 } 1038 if (dio->bio) 1039 dio_bio_submit(dio); 1040 1041 /* 1042 * It is possible that, we return short IO due to end of file. 1043 * In that case, we need to release all the pages we got hold on. 1044 */ 1045 dio_cleanup(dio); 1046 1047 /* 1048 * All block lookups have been performed. For READ requests 1049 * we can let i_sem go now that its achieved its purpose 1050 * of protecting us from looking up uninitialized blocks. 1051 */ 1052 if ((rw == READ) && (dio->lock_type == DIO_LOCKING)) 1053 up(&dio->inode->i_sem); 1054 1055 /* 1056 * OK, all BIOs are submitted, so we can decrement bio_count to truly 1057 * reflect the number of to-be-processed BIOs. 1058 */ 1059 if (dio->is_async) { 1060 int should_wait = 0; 1061 1062 if (dio->result < dio->size && rw == WRITE) { 1063 dio->waiter = current; 1064 should_wait = 1; 1065 } 1066 if (ret == 0) 1067 ret = dio->result; 1068 finished_one_bio(dio); /* This can free the dio */ 1069 blk_run_address_space(inode->i_mapping); 1070 if (should_wait) { 1071 unsigned long flags; 1072 /* 1073 * Wait for already issued I/O to drain out and 1074 * release its references to user-space pages 1075 * before returning to fallback on buffered I/O 1076 */ 1077 1078 spin_lock_irqsave(&dio->bio_lock, flags); 1079 set_current_state(TASK_UNINTERRUPTIBLE); 1080 while (dio->bio_count) { 1081 spin_unlock_irqrestore(&dio->bio_lock, flags); 1082 io_schedule(); 1083 spin_lock_irqsave(&dio->bio_lock, flags); 1084 set_current_state(TASK_UNINTERRUPTIBLE); 1085 } 1086 spin_unlock_irqrestore(&dio->bio_lock, flags); 1087 set_current_state(TASK_RUNNING); 1088 kfree(dio); 1089 } 1090 } else { 1091 ssize_t transferred = 0; 1092 1093 finished_one_bio(dio); 1094 ret2 = dio_await_completion(dio); 1095 if (ret == 0) 1096 ret = ret2; 1097 if (ret == 0) 1098 ret = dio->page_errors; 1099 if (dio->result) { 1100 loff_t i_size = i_size_read(inode); 1101 1102 transferred = dio->result; 1103 /* 1104 * Adjust the return value if the read crossed a 1105 * non-block-aligned EOF. 1106 */ 1107 if (rw == READ && (offset + transferred > i_size)) 1108 transferred = i_size - offset; 1109 } 1110 dio_complete(dio, offset, transferred); 1111 if (ret == 0) 1112 ret = transferred; 1113 1114 /* We could have also come here on an AIO file extend */ 1115 if (!is_sync_kiocb(iocb) && rw == WRITE && 1116 ret >= 0 && dio->result == dio->size) 1117 /* 1118 * For AIO writes where we have completed the 1119 * i/o, we have to mark the the aio complete. 1120 */ 1121 aio_complete(iocb, ret, 0); 1122 kfree(dio); 1123 } 1124 return ret; 1125 } 1126 1127 /* 1128 * This is a library function for use by filesystem drivers. 1129 * The locking rules are governed by the dio_lock_type parameter. 1130 * 1131 * DIO_NO_LOCKING (no locking, for raw block device access) 1132 * For writes, i_sem is not held on entry; it is never taken. 1133 * 1134 * DIO_LOCKING (simple locking for regular files) 1135 * For writes we are called under i_sem and return with i_sem held, even though 1136 * it is internally dropped. 1137 * For reads, i_sem is not held on entry, but it is taken and dropped before 1138 * returning. 1139 * 1140 * DIO_OWN_LOCKING (filesystem provides synchronisation and handling of 1141 * uninitialised data, allowing parallel direct readers and writers) 1142 * For writes we are called without i_sem, return without it, never touch it. 1143 * For reads, i_sem is held on entry and will be released before returning. 1144 * 1145 * Additional i_alloc_sem locking requirements described inline below. 1146 */ 1147 ssize_t 1148 __blockdev_direct_IO(int rw, struct kiocb *iocb, struct inode *inode, 1149 struct block_device *bdev, const struct iovec *iov, loff_t offset, 1150 unsigned long nr_segs, get_blocks_t get_blocks, dio_iodone_t end_io, 1151 int dio_lock_type) 1152 { 1153 int seg; 1154 size_t size; 1155 unsigned long addr; 1156 unsigned blkbits = inode->i_blkbits; 1157 unsigned bdev_blkbits = 0; 1158 unsigned blocksize_mask = (1 << blkbits) - 1; 1159 ssize_t retval = -EINVAL; 1160 loff_t end = offset; 1161 struct dio *dio; 1162 int reader_with_isem = (rw == READ && dio_lock_type == DIO_OWN_LOCKING); 1163 1164 if (rw & WRITE) 1165 current->flags |= PF_SYNCWRITE; 1166 1167 if (bdev) 1168 bdev_blkbits = blksize_bits(bdev_hardsect_size(bdev)); 1169 1170 if (offset & blocksize_mask) { 1171 if (bdev) 1172 blkbits = bdev_blkbits; 1173 blocksize_mask = (1 << blkbits) - 1; 1174 if (offset & blocksize_mask) 1175 goto out; 1176 } 1177 1178 /* Check the memory alignment. Blocks cannot straddle pages */ 1179 for (seg = 0; seg < nr_segs; seg++) { 1180 addr = (unsigned long)iov[seg].iov_base; 1181 size = iov[seg].iov_len; 1182 end += size; 1183 if ((addr & blocksize_mask) || (size & blocksize_mask)) { 1184 if (bdev) 1185 blkbits = bdev_blkbits; 1186 blocksize_mask = (1 << blkbits) - 1; 1187 if ((addr & blocksize_mask) || (size & blocksize_mask)) 1188 goto out; 1189 } 1190 } 1191 1192 dio = kmalloc(sizeof(*dio), GFP_KERNEL); 1193 retval = -ENOMEM; 1194 if (!dio) 1195 goto out; 1196 1197 /* 1198 * For block device access DIO_NO_LOCKING is used, 1199 * neither readers nor writers do any locking at all 1200 * For regular files using DIO_LOCKING, 1201 * readers need to grab i_sem and i_alloc_sem 1202 * writers need to grab i_alloc_sem only (i_sem is already held) 1203 * For regular files using DIO_OWN_LOCKING, 1204 * neither readers nor writers take any locks here 1205 * (i_sem is already held and release for writers here) 1206 */ 1207 dio->lock_type = dio_lock_type; 1208 if (dio_lock_type != DIO_NO_LOCKING) { 1209 /* watch out for a 0 len io from a tricksy fs */ 1210 if (rw == READ && end > offset) { 1211 struct address_space *mapping; 1212 1213 mapping = iocb->ki_filp->f_mapping; 1214 if (dio_lock_type != DIO_OWN_LOCKING) { 1215 down(&inode->i_sem); 1216 reader_with_isem = 1; 1217 } 1218 1219 retval = filemap_write_and_wait_range(mapping, offset, 1220 end - 1); 1221 if (retval) { 1222 kfree(dio); 1223 goto out; 1224 } 1225 1226 if (dio_lock_type == DIO_OWN_LOCKING) { 1227 up(&inode->i_sem); 1228 reader_with_isem = 0; 1229 } 1230 } 1231 1232 if (dio_lock_type == DIO_LOCKING) 1233 down_read(&inode->i_alloc_sem); 1234 } 1235 1236 /* 1237 * For file extending writes updating i_size before data 1238 * writeouts complete can expose uninitialized blocks. So 1239 * even for AIO, we need to wait for i/o to complete before 1240 * returning in this case. 1241 */ 1242 dio->is_async = !is_sync_kiocb(iocb) && !((rw == WRITE) && 1243 (end > i_size_read(inode))); 1244 1245 retval = direct_io_worker(rw, iocb, inode, iov, offset, 1246 nr_segs, blkbits, get_blocks, end_io, dio); 1247 1248 if (rw == READ && dio_lock_type == DIO_LOCKING) 1249 reader_with_isem = 0; 1250 1251 out: 1252 if (reader_with_isem) 1253 up(&inode->i_sem); 1254 if (rw & WRITE) 1255 current->flags &= ~PF_SYNCWRITE; 1256 return retval; 1257 } 1258 EXPORT_SYMBOL(__blockdev_direct_IO); 1259