xref: /openbmc/linux/fs/direct-io.c (revision 110e6f26)
1 /*
2  * fs/direct-io.c
3  *
4  * Copyright (C) 2002, Linus Torvalds.
5  *
6  * O_DIRECT
7  *
8  * 04Jul2002	Andrew Morton
9  *		Initial version
10  * 11Sep2002	janetinc@us.ibm.com
11  * 		added readv/writev support.
12  * 29Oct2002	Andrew Morton
13  *		rewrote bio_add_page() support.
14  * 30Oct2002	pbadari@us.ibm.com
15  *		added support for non-aligned IO.
16  * 06Nov2002	pbadari@us.ibm.com
17  *		added asynchronous IO support.
18  * 21Jul2003	nathans@sgi.com
19  *		added IO completion notifier.
20  */
21 
22 #include <linux/kernel.h>
23 #include <linux/module.h>
24 #include <linux/types.h>
25 #include <linux/fs.h>
26 #include <linux/mm.h>
27 #include <linux/slab.h>
28 #include <linux/highmem.h>
29 #include <linux/pagemap.h>
30 #include <linux/task_io_accounting_ops.h>
31 #include <linux/bio.h>
32 #include <linux/wait.h>
33 #include <linux/err.h>
34 #include <linux/blkdev.h>
35 #include <linux/buffer_head.h>
36 #include <linux/rwsem.h>
37 #include <linux/uio.h>
38 #include <linux/atomic.h>
39 #include <linux/prefetch.h>
40 
41 /*
42  * How many user pages to map in one call to get_user_pages().  This determines
43  * the size of a structure in the slab cache
44  */
45 #define DIO_PAGES	64
46 
47 /*
48  * This code generally works in units of "dio_blocks".  A dio_block is
49  * somewhere between the hard sector size and the filesystem block size.  it
50  * is determined on a per-invocation basis.   When talking to the filesystem
51  * we need to convert dio_blocks to fs_blocks by scaling the dio_block quantity
52  * down by dio->blkfactor.  Similarly, fs-blocksize quantities are converted
53  * to bio_block quantities by shifting left by blkfactor.
54  *
55  * If blkfactor is zero then the user's request was aligned to the filesystem's
56  * blocksize.
57  */
58 
59 /* dio_state only used in the submission path */
60 
61 struct dio_submit {
62 	struct bio *bio;		/* bio under assembly */
63 	unsigned blkbits;		/* doesn't change */
64 	unsigned blkfactor;		/* When we're using an alignment which
65 					   is finer than the filesystem's soft
66 					   blocksize, this specifies how much
67 					   finer.  blkfactor=2 means 1/4-block
68 					   alignment.  Does not change */
69 	unsigned start_zero_done;	/* flag: sub-blocksize zeroing has
70 					   been performed at the start of a
71 					   write */
72 	int pages_in_io;		/* approximate total IO pages */
73 	sector_t block_in_file;		/* Current offset into the underlying
74 					   file in dio_block units. */
75 	unsigned blocks_available;	/* At block_in_file.  changes */
76 	int reap_counter;		/* rate limit reaping */
77 	sector_t final_block_in_request;/* doesn't change */
78 	int boundary;			/* prev block is at a boundary */
79 	get_block_t *get_block;		/* block mapping function */
80 	dio_submit_t *submit_io;	/* IO submition function */
81 
82 	loff_t logical_offset_in_bio;	/* current first logical block in bio */
83 	sector_t final_block_in_bio;	/* current final block in bio + 1 */
84 	sector_t next_block_for_io;	/* next block to be put under IO,
85 					   in dio_blocks units */
86 
87 	/*
88 	 * Deferred addition of a page to the dio.  These variables are
89 	 * private to dio_send_cur_page(), submit_page_section() and
90 	 * dio_bio_add_page().
91 	 */
92 	struct page *cur_page;		/* The page */
93 	unsigned cur_page_offset;	/* Offset into it, in bytes */
94 	unsigned cur_page_len;		/* Nr of bytes at cur_page_offset */
95 	sector_t cur_page_block;	/* Where it starts */
96 	loff_t cur_page_fs_offset;	/* Offset in file */
97 
98 	struct iov_iter *iter;
99 	/*
100 	 * Page queue.  These variables belong to dio_refill_pages() and
101 	 * dio_get_page().
102 	 */
103 	unsigned head;			/* next page to process */
104 	unsigned tail;			/* last valid page + 1 */
105 	size_t from, to;
106 };
107 
108 /* dio_state communicated between submission path and end_io */
109 struct dio {
110 	int flags;			/* doesn't change */
111 	int rw;
112 	blk_qc_t bio_cookie;
113 	struct block_device *bio_bdev;
114 	struct inode *inode;
115 	loff_t i_size;			/* i_size when submitted */
116 	dio_iodone_t *end_io;		/* IO completion function */
117 
118 	void *private;			/* copy from map_bh.b_private */
119 
120 	/* BIO completion state */
121 	spinlock_t bio_lock;		/* protects BIO fields below */
122 	int page_errors;		/* errno from get_user_pages() */
123 	int is_async;			/* is IO async ? */
124 	bool defer_completion;		/* defer AIO completion to workqueue? */
125 	bool should_dirty;		/* if pages should be dirtied */
126 	int io_error;			/* IO error in completion path */
127 	unsigned long refcount;		/* direct_io_worker() and bios */
128 	struct bio *bio_list;		/* singly linked via bi_private */
129 	struct task_struct *waiter;	/* waiting task (NULL if none) */
130 
131 	/* AIO related stuff */
132 	struct kiocb *iocb;		/* kiocb */
133 	ssize_t result;                 /* IO result */
134 
135 	/*
136 	 * pages[] (and any fields placed after it) are not zeroed out at
137 	 * allocation time.  Don't add new fields after pages[] unless you
138 	 * wish that they not be zeroed.
139 	 */
140 	union {
141 		struct page *pages[DIO_PAGES];	/* page buffer */
142 		struct work_struct complete_work;/* deferred AIO completion */
143 	};
144 } ____cacheline_aligned_in_smp;
145 
146 static struct kmem_cache *dio_cache __read_mostly;
147 
148 /*
149  * How many pages are in the queue?
150  */
151 static inline unsigned dio_pages_present(struct dio_submit *sdio)
152 {
153 	return sdio->tail - sdio->head;
154 }
155 
156 /*
157  * Go grab and pin some userspace pages.   Typically we'll get 64 at a time.
158  */
159 static inline int dio_refill_pages(struct dio *dio, struct dio_submit *sdio)
160 {
161 	ssize_t ret;
162 
163 	ret = iov_iter_get_pages(sdio->iter, dio->pages, LONG_MAX, DIO_PAGES,
164 				&sdio->from);
165 
166 	if (ret < 0 && sdio->blocks_available && (dio->rw & WRITE)) {
167 		struct page *page = ZERO_PAGE(0);
168 		/*
169 		 * A memory fault, but the filesystem has some outstanding
170 		 * mapped blocks.  We need to use those blocks up to avoid
171 		 * leaking stale data in the file.
172 		 */
173 		if (dio->page_errors == 0)
174 			dio->page_errors = ret;
175 		get_page(page);
176 		dio->pages[0] = page;
177 		sdio->head = 0;
178 		sdio->tail = 1;
179 		sdio->from = 0;
180 		sdio->to = PAGE_SIZE;
181 		return 0;
182 	}
183 
184 	if (ret >= 0) {
185 		iov_iter_advance(sdio->iter, ret);
186 		ret += sdio->from;
187 		sdio->head = 0;
188 		sdio->tail = (ret + PAGE_SIZE - 1) / PAGE_SIZE;
189 		sdio->to = ((ret - 1) & (PAGE_SIZE - 1)) + 1;
190 		return 0;
191 	}
192 	return ret;
193 }
194 
195 /*
196  * Get another userspace page.  Returns an ERR_PTR on error.  Pages are
197  * buffered inside the dio so that we can call get_user_pages() against a
198  * decent number of pages, less frequently.  To provide nicer use of the
199  * L1 cache.
200  */
201 static inline struct page *dio_get_page(struct dio *dio,
202 					struct dio_submit *sdio)
203 {
204 	if (dio_pages_present(sdio) == 0) {
205 		int ret;
206 
207 		ret = dio_refill_pages(dio, sdio);
208 		if (ret)
209 			return ERR_PTR(ret);
210 		BUG_ON(dio_pages_present(sdio) == 0);
211 	}
212 	return dio->pages[sdio->head];
213 }
214 
215 /**
216  * dio_complete() - called when all DIO BIO I/O has been completed
217  * @offset: the byte offset in the file of the completed operation
218  *
219  * This drops i_dio_count, lets interested parties know that a DIO operation
220  * has completed, and calculates the resulting return code for the operation.
221  *
222  * It lets the filesystem know if it registered an interest earlier via
223  * get_block.  Pass the private field of the map buffer_head so that
224  * filesystems can use it to hold additional state between get_block calls and
225  * dio_complete.
226  */
227 static ssize_t dio_complete(struct dio *dio, loff_t offset, ssize_t ret,
228 		bool is_async)
229 {
230 	ssize_t transferred = 0;
231 
232 	/*
233 	 * AIO submission can race with bio completion to get here while
234 	 * expecting to have the last io completed by bio completion.
235 	 * In that case -EIOCBQUEUED is in fact not an error we want
236 	 * to preserve through this call.
237 	 */
238 	if (ret == -EIOCBQUEUED)
239 		ret = 0;
240 
241 	if (dio->result) {
242 		transferred = dio->result;
243 
244 		/* Check for short read case */
245 		if ((dio->rw == READ) && ((offset + transferred) > dio->i_size))
246 			transferred = dio->i_size - offset;
247 	}
248 
249 	if (ret == 0)
250 		ret = dio->page_errors;
251 	if (ret == 0)
252 		ret = dio->io_error;
253 	if (ret == 0)
254 		ret = transferred;
255 
256 	if (dio->end_io) {
257 		int err;
258 
259 		err = dio->end_io(dio->iocb, offset, ret, dio->private);
260 		if (err)
261 			ret = err;
262 	}
263 
264 	if (!(dio->flags & DIO_SKIP_DIO_COUNT))
265 		inode_dio_end(dio->inode);
266 
267 	if (is_async) {
268 		if (dio->rw & WRITE) {
269 			int err;
270 
271 			err = generic_write_sync(dio->iocb->ki_filp, offset,
272 						 transferred);
273 			if (err < 0 && ret > 0)
274 				ret = err;
275 		}
276 
277 		dio->iocb->ki_complete(dio->iocb, ret, 0);
278 	}
279 
280 	kmem_cache_free(dio_cache, dio);
281 	return ret;
282 }
283 
284 static void dio_aio_complete_work(struct work_struct *work)
285 {
286 	struct dio *dio = container_of(work, struct dio, complete_work);
287 
288 	dio_complete(dio, dio->iocb->ki_pos, 0, true);
289 }
290 
291 static int dio_bio_complete(struct dio *dio, struct bio *bio);
292 
293 /*
294  * Asynchronous IO callback.
295  */
296 static void dio_bio_end_aio(struct bio *bio)
297 {
298 	struct dio *dio = bio->bi_private;
299 	unsigned long remaining;
300 	unsigned long flags;
301 
302 	/* cleanup the bio */
303 	dio_bio_complete(dio, bio);
304 
305 	spin_lock_irqsave(&dio->bio_lock, flags);
306 	remaining = --dio->refcount;
307 	if (remaining == 1 && dio->waiter)
308 		wake_up_process(dio->waiter);
309 	spin_unlock_irqrestore(&dio->bio_lock, flags);
310 
311 	if (remaining == 0) {
312 		if (dio->result && dio->defer_completion) {
313 			INIT_WORK(&dio->complete_work, dio_aio_complete_work);
314 			queue_work(dio->inode->i_sb->s_dio_done_wq,
315 				   &dio->complete_work);
316 		} else {
317 			dio_complete(dio, dio->iocb->ki_pos, 0, true);
318 		}
319 	}
320 }
321 
322 /*
323  * The BIO completion handler simply queues the BIO up for the process-context
324  * handler.
325  *
326  * During I/O bi_private points at the dio.  After I/O, bi_private is used to
327  * implement a singly-linked list of completed BIOs, at dio->bio_list.
328  */
329 static void dio_bio_end_io(struct bio *bio)
330 {
331 	struct dio *dio = bio->bi_private;
332 	unsigned long flags;
333 
334 	spin_lock_irqsave(&dio->bio_lock, flags);
335 	bio->bi_private = dio->bio_list;
336 	dio->bio_list = bio;
337 	if (--dio->refcount == 1 && dio->waiter)
338 		wake_up_process(dio->waiter);
339 	spin_unlock_irqrestore(&dio->bio_lock, flags);
340 }
341 
342 /**
343  * dio_end_io - handle the end io action for the given bio
344  * @bio: The direct io bio thats being completed
345  * @error: Error if there was one
346  *
347  * This is meant to be called by any filesystem that uses their own dio_submit_t
348  * so that the DIO specific endio actions are dealt with after the filesystem
349  * has done it's completion work.
350  */
351 void dio_end_io(struct bio *bio, int error)
352 {
353 	struct dio *dio = bio->bi_private;
354 
355 	if (dio->is_async)
356 		dio_bio_end_aio(bio);
357 	else
358 		dio_bio_end_io(bio);
359 }
360 EXPORT_SYMBOL_GPL(dio_end_io);
361 
362 static inline void
363 dio_bio_alloc(struct dio *dio, struct dio_submit *sdio,
364 	      struct block_device *bdev,
365 	      sector_t first_sector, int nr_vecs)
366 {
367 	struct bio *bio;
368 
369 	/*
370 	 * bio_alloc() is guaranteed to return a bio when called with
371 	 * __GFP_RECLAIM and we request a valid number of vectors.
372 	 */
373 	bio = bio_alloc(GFP_KERNEL, nr_vecs);
374 
375 	bio->bi_bdev = bdev;
376 	bio->bi_iter.bi_sector = first_sector;
377 	if (dio->is_async)
378 		bio->bi_end_io = dio_bio_end_aio;
379 	else
380 		bio->bi_end_io = dio_bio_end_io;
381 
382 	sdio->bio = bio;
383 	sdio->logical_offset_in_bio = sdio->cur_page_fs_offset;
384 }
385 
386 /*
387  * In the AIO read case we speculatively dirty the pages before starting IO.
388  * During IO completion, any of these pages which happen to have been written
389  * back will be redirtied by bio_check_pages_dirty().
390  *
391  * bios hold a dio reference between submit_bio and ->end_io.
392  */
393 static inline void dio_bio_submit(struct dio *dio, struct dio_submit *sdio)
394 {
395 	struct bio *bio = sdio->bio;
396 	unsigned long flags;
397 
398 	bio->bi_private = dio;
399 
400 	spin_lock_irqsave(&dio->bio_lock, flags);
401 	dio->refcount++;
402 	spin_unlock_irqrestore(&dio->bio_lock, flags);
403 
404 	if (dio->is_async && dio->rw == READ && dio->should_dirty)
405 		bio_set_pages_dirty(bio);
406 
407 	dio->bio_bdev = bio->bi_bdev;
408 
409 	if (sdio->submit_io) {
410 		sdio->submit_io(dio->rw, bio, dio->inode,
411 			       sdio->logical_offset_in_bio);
412 		dio->bio_cookie = BLK_QC_T_NONE;
413 	} else
414 		dio->bio_cookie = submit_bio(dio->rw, bio);
415 
416 	sdio->bio = NULL;
417 	sdio->boundary = 0;
418 	sdio->logical_offset_in_bio = 0;
419 }
420 
421 /*
422  * Release any resources in case of a failure
423  */
424 static inline void dio_cleanup(struct dio *dio, struct dio_submit *sdio)
425 {
426 	while (sdio->head < sdio->tail)
427 		put_page(dio->pages[sdio->head++]);
428 }
429 
430 /*
431  * Wait for the next BIO to complete.  Remove it and return it.  NULL is
432  * returned once all BIOs have been completed.  This must only be called once
433  * all bios have been issued so that dio->refcount can only decrease.  This
434  * requires that that the caller hold a reference on the dio.
435  */
436 static struct bio *dio_await_one(struct dio *dio)
437 {
438 	unsigned long flags;
439 	struct bio *bio = NULL;
440 
441 	spin_lock_irqsave(&dio->bio_lock, flags);
442 
443 	/*
444 	 * Wait as long as the list is empty and there are bios in flight.  bio
445 	 * completion drops the count, maybe adds to the list, and wakes while
446 	 * holding the bio_lock so we don't need set_current_state()'s barrier
447 	 * and can call it after testing our condition.
448 	 */
449 	while (dio->refcount > 1 && dio->bio_list == NULL) {
450 		__set_current_state(TASK_UNINTERRUPTIBLE);
451 		dio->waiter = current;
452 		spin_unlock_irqrestore(&dio->bio_lock, flags);
453 		if (!(dio->iocb->ki_flags & IOCB_HIPRI) ||
454 		    !blk_poll(bdev_get_queue(dio->bio_bdev), dio->bio_cookie))
455 			io_schedule();
456 		/* wake up sets us TASK_RUNNING */
457 		spin_lock_irqsave(&dio->bio_lock, flags);
458 		dio->waiter = NULL;
459 	}
460 	if (dio->bio_list) {
461 		bio = dio->bio_list;
462 		dio->bio_list = bio->bi_private;
463 	}
464 	spin_unlock_irqrestore(&dio->bio_lock, flags);
465 	return bio;
466 }
467 
468 /*
469  * Process one completed BIO.  No locks are held.
470  */
471 static int dio_bio_complete(struct dio *dio, struct bio *bio)
472 {
473 	struct bio_vec *bvec;
474 	unsigned i;
475 	int err;
476 
477 	if (bio->bi_error)
478 		dio->io_error = -EIO;
479 
480 	if (dio->is_async && dio->rw == READ && dio->should_dirty) {
481 		err = bio->bi_error;
482 		bio_check_pages_dirty(bio);	/* transfers ownership */
483 	} else {
484 		bio_for_each_segment_all(bvec, bio, i) {
485 			struct page *page = bvec->bv_page;
486 
487 			if (dio->rw == READ && !PageCompound(page) &&
488 					dio->should_dirty)
489 				set_page_dirty_lock(page);
490 			put_page(page);
491 		}
492 		err = bio->bi_error;
493 		bio_put(bio);
494 	}
495 	return err;
496 }
497 
498 /*
499  * Wait on and process all in-flight BIOs.  This must only be called once
500  * all bios have been issued so that the refcount can only decrease.
501  * This just waits for all bios to make it through dio_bio_complete.  IO
502  * errors are propagated through dio->io_error and should be propagated via
503  * dio_complete().
504  */
505 static void dio_await_completion(struct dio *dio)
506 {
507 	struct bio *bio;
508 	do {
509 		bio = dio_await_one(dio);
510 		if (bio)
511 			dio_bio_complete(dio, bio);
512 	} while (bio);
513 }
514 
515 /*
516  * A really large O_DIRECT read or write can generate a lot of BIOs.  So
517  * to keep the memory consumption sane we periodically reap any completed BIOs
518  * during the BIO generation phase.
519  *
520  * This also helps to limit the peak amount of pinned userspace memory.
521  */
522 static inline int dio_bio_reap(struct dio *dio, struct dio_submit *sdio)
523 {
524 	int ret = 0;
525 
526 	if (sdio->reap_counter++ >= 64) {
527 		while (dio->bio_list) {
528 			unsigned long flags;
529 			struct bio *bio;
530 			int ret2;
531 
532 			spin_lock_irqsave(&dio->bio_lock, flags);
533 			bio = dio->bio_list;
534 			dio->bio_list = bio->bi_private;
535 			spin_unlock_irqrestore(&dio->bio_lock, flags);
536 			ret2 = dio_bio_complete(dio, bio);
537 			if (ret == 0)
538 				ret = ret2;
539 		}
540 		sdio->reap_counter = 0;
541 	}
542 	return ret;
543 }
544 
545 /*
546  * Create workqueue for deferred direct IO completions. We allocate the
547  * workqueue when it's first needed. This avoids creating workqueue for
548  * filesystems that don't need it and also allows us to create the workqueue
549  * late enough so the we can include s_id in the name of the workqueue.
550  */
551 static int sb_init_dio_done_wq(struct super_block *sb)
552 {
553 	struct workqueue_struct *old;
554 	struct workqueue_struct *wq = alloc_workqueue("dio/%s",
555 						      WQ_MEM_RECLAIM, 0,
556 						      sb->s_id);
557 	if (!wq)
558 		return -ENOMEM;
559 	/*
560 	 * This has to be atomic as more DIOs can race to create the workqueue
561 	 */
562 	old = cmpxchg(&sb->s_dio_done_wq, NULL, wq);
563 	/* Someone created workqueue before us? Free ours... */
564 	if (old)
565 		destroy_workqueue(wq);
566 	return 0;
567 }
568 
569 static int dio_set_defer_completion(struct dio *dio)
570 {
571 	struct super_block *sb = dio->inode->i_sb;
572 
573 	if (dio->defer_completion)
574 		return 0;
575 	dio->defer_completion = true;
576 	if (!sb->s_dio_done_wq)
577 		return sb_init_dio_done_wq(sb);
578 	return 0;
579 }
580 
581 /*
582  * Call into the fs to map some more disk blocks.  We record the current number
583  * of available blocks at sdio->blocks_available.  These are in units of the
584  * fs blocksize, (1 << inode->i_blkbits).
585  *
586  * The fs is allowed to map lots of blocks at once.  If it wants to do that,
587  * it uses the passed inode-relative block number as the file offset, as usual.
588  *
589  * get_block() is passed the number of i_blkbits-sized blocks which direct_io
590  * has remaining to do.  The fs should not map more than this number of blocks.
591  *
592  * If the fs has mapped a lot of blocks, it should populate bh->b_size to
593  * indicate how much contiguous disk space has been made available at
594  * bh->b_blocknr.
595  *
596  * If *any* of the mapped blocks are new, then the fs must set buffer_new().
597  * This isn't very efficient...
598  *
599  * In the case of filesystem holes: the fs may return an arbitrarily-large
600  * hole by returning an appropriate value in b_size and by clearing
601  * buffer_mapped().  However the direct-io code will only process holes one
602  * block at a time - it will repeatedly call get_block() as it walks the hole.
603  */
604 static int get_more_blocks(struct dio *dio, struct dio_submit *sdio,
605 			   struct buffer_head *map_bh)
606 {
607 	int ret;
608 	sector_t fs_startblk;	/* Into file, in filesystem-sized blocks */
609 	sector_t fs_endblk;	/* Into file, in filesystem-sized blocks */
610 	unsigned long fs_count;	/* Number of filesystem-sized blocks */
611 	int create;
612 	unsigned int i_blkbits = sdio->blkbits + sdio->blkfactor;
613 
614 	/*
615 	 * If there was a memory error and we've overwritten all the
616 	 * mapped blocks then we can now return that memory error
617 	 */
618 	ret = dio->page_errors;
619 	if (ret == 0) {
620 		BUG_ON(sdio->block_in_file >= sdio->final_block_in_request);
621 		fs_startblk = sdio->block_in_file >> sdio->blkfactor;
622 		fs_endblk = (sdio->final_block_in_request - 1) >>
623 					sdio->blkfactor;
624 		fs_count = fs_endblk - fs_startblk + 1;
625 
626 		map_bh->b_state = 0;
627 		map_bh->b_size = fs_count << i_blkbits;
628 
629 		/*
630 		 * For writes inside i_size on a DIO_SKIP_HOLES filesystem we
631 		 * forbid block creations: only overwrites are permitted.
632 		 * We will return early to the caller once we see an
633 		 * unmapped buffer head returned, and the caller will fall
634 		 * back to buffered I/O.
635 		 *
636 		 * Otherwise the decision is left to the get_blocks method,
637 		 * which may decide to handle it or also return an unmapped
638 		 * buffer head.
639 		 */
640 		create = dio->rw & WRITE;
641 		if (dio->flags & DIO_SKIP_HOLES) {
642 			if (sdio->block_in_file < (i_size_read(dio->inode) >>
643 							sdio->blkbits))
644 				create = 0;
645 		}
646 
647 		ret = (*sdio->get_block)(dio->inode, fs_startblk,
648 						map_bh, create);
649 
650 		/* Store for completion */
651 		dio->private = map_bh->b_private;
652 
653 		if (ret == 0 && buffer_defer_completion(map_bh))
654 			ret = dio_set_defer_completion(dio);
655 	}
656 	return ret;
657 }
658 
659 /*
660  * There is no bio.  Make one now.
661  */
662 static inline int dio_new_bio(struct dio *dio, struct dio_submit *sdio,
663 		sector_t start_sector, struct buffer_head *map_bh)
664 {
665 	sector_t sector;
666 	int ret, nr_pages;
667 
668 	ret = dio_bio_reap(dio, sdio);
669 	if (ret)
670 		goto out;
671 	sector = start_sector << (sdio->blkbits - 9);
672 	nr_pages = min(sdio->pages_in_io, BIO_MAX_PAGES);
673 	BUG_ON(nr_pages <= 0);
674 	dio_bio_alloc(dio, sdio, map_bh->b_bdev, sector, nr_pages);
675 	sdio->boundary = 0;
676 out:
677 	return ret;
678 }
679 
680 /*
681  * Attempt to put the current chunk of 'cur_page' into the current BIO.  If
682  * that was successful then update final_block_in_bio and take a ref against
683  * the just-added page.
684  *
685  * Return zero on success.  Non-zero means the caller needs to start a new BIO.
686  */
687 static inline int dio_bio_add_page(struct dio_submit *sdio)
688 {
689 	int ret;
690 
691 	ret = bio_add_page(sdio->bio, sdio->cur_page,
692 			sdio->cur_page_len, sdio->cur_page_offset);
693 	if (ret == sdio->cur_page_len) {
694 		/*
695 		 * Decrement count only, if we are done with this page
696 		 */
697 		if ((sdio->cur_page_len + sdio->cur_page_offset) == PAGE_SIZE)
698 			sdio->pages_in_io--;
699 		get_page(sdio->cur_page);
700 		sdio->final_block_in_bio = sdio->cur_page_block +
701 			(sdio->cur_page_len >> sdio->blkbits);
702 		ret = 0;
703 	} else {
704 		ret = 1;
705 	}
706 	return ret;
707 }
708 
709 /*
710  * Put cur_page under IO.  The section of cur_page which is described by
711  * cur_page_offset,cur_page_len is put into a BIO.  The section of cur_page
712  * starts on-disk at cur_page_block.
713  *
714  * We take a ref against the page here (on behalf of its presence in the bio).
715  *
716  * The caller of this function is responsible for removing cur_page from the
717  * dio, and for dropping the refcount which came from that presence.
718  */
719 static inline int dio_send_cur_page(struct dio *dio, struct dio_submit *sdio,
720 		struct buffer_head *map_bh)
721 {
722 	int ret = 0;
723 
724 	if (sdio->bio) {
725 		loff_t cur_offset = sdio->cur_page_fs_offset;
726 		loff_t bio_next_offset = sdio->logical_offset_in_bio +
727 			sdio->bio->bi_iter.bi_size;
728 
729 		/*
730 		 * See whether this new request is contiguous with the old.
731 		 *
732 		 * Btrfs cannot handle having logically non-contiguous requests
733 		 * submitted.  For example if you have
734 		 *
735 		 * Logical:  [0-4095][HOLE][8192-12287]
736 		 * Physical: [0-4095]      [4096-8191]
737 		 *
738 		 * We cannot submit those pages together as one BIO.  So if our
739 		 * current logical offset in the file does not equal what would
740 		 * be the next logical offset in the bio, submit the bio we
741 		 * have.
742 		 */
743 		if (sdio->final_block_in_bio != sdio->cur_page_block ||
744 		    cur_offset != bio_next_offset)
745 			dio_bio_submit(dio, sdio);
746 	}
747 
748 	if (sdio->bio == NULL) {
749 		ret = dio_new_bio(dio, sdio, sdio->cur_page_block, map_bh);
750 		if (ret)
751 			goto out;
752 	}
753 
754 	if (dio_bio_add_page(sdio) != 0) {
755 		dio_bio_submit(dio, sdio);
756 		ret = dio_new_bio(dio, sdio, sdio->cur_page_block, map_bh);
757 		if (ret == 0) {
758 			ret = dio_bio_add_page(sdio);
759 			BUG_ON(ret != 0);
760 		}
761 	}
762 out:
763 	return ret;
764 }
765 
766 /*
767  * An autonomous function to put a chunk of a page under deferred IO.
768  *
769  * The caller doesn't actually know (or care) whether this piece of page is in
770  * a BIO, or is under IO or whatever.  We just take care of all possible
771  * situations here.  The separation between the logic of do_direct_IO() and
772  * that of submit_page_section() is important for clarity.  Please don't break.
773  *
774  * The chunk of page starts on-disk at blocknr.
775  *
776  * We perform deferred IO, by recording the last-submitted page inside our
777  * private part of the dio structure.  If possible, we just expand the IO
778  * across that page here.
779  *
780  * If that doesn't work out then we put the old page into the bio and add this
781  * page to the dio instead.
782  */
783 static inline int
784 submit_page_section(struct dio *dio, struct dio_submit *sdio, struct page *page,
785 		    unsigned offset, unsigned len, sector_t blocknr,
786 		    struct buffer_head *map_bh)
787 {
788 	int ret = 0;
789 
790 	if (dio->rw & WRITE) {
791 		/*
792 		 * Read accounting is performed in submit_bio()
793 		 */
794 		task_io_account_write(len);
795 	}
796 
797 	/*
798 	 * Can we just grow the current page's presence in the dio?
799 	 */
800 	if (sdio->cur_page == page &&
801 	    sdio->cur_page_offset + sdio->cur_page_len == offset &&
802 	    sdio->cur_page_block +
803 	    (sdio->cur_page_len >> sdio->blkbits) == blocknr) {
804 		sdio->cur_page_len += len;
805 		goto out;
806 	}
807 
808 	/*
809 	 * If there's a deferred page already there then send it.
810 	 */
811 	if (sdio->cur_page) {
812 		ret = dio_send_cur_page(dio, sdio, map_bh);
813 		put_page(sdio->cur_page);
814 		sdio->cur_page = NULL;
815 		if (ret)
816 			return ret;
817 	}
818 
819 	get_page(page);		/* It is in dio */
820 	sdio->cur_page = page;
821 	sdio->cur_page_offset = offset;
822 	sdio->cur_page_len = len;
823 	sdio->cur_page_block = blocknr;
824 	sdio->cur_page_fs_offset = sdio->block_in_file << sdio->blkbits;
825 out:
826 	/*
827 	 * If sdio->boundary then we want to schedule the IO now to
828 	 * avoid metadata seeks.
829 	 */
830 	if (sdio->boundary) {
831 		ret = dio_send_cur_page(dio, sdio, map_bh);
832 		dio_bio_submit(dio, sdio);
833 		put_page(sdio->cur_page);
834 		sdio->cur_page = NULL;
835 	}
836 	return ret;
837 }
838 
839 /*
840  * Clean any dirty buffers in the blockdev mapping which alias newly-created
841  * file blocks.  Only called for S_ISREG files - blockdevs do not set
842  * buffer_new
843  */
844 static void clean_blockdev_aliases(struct dio *dio, struct buffer_head *map_bh)
845 {
846 	unsigned i;
847 	unsigned nblocks;
848 
849 	nblocks = map_bh->b_size >> dio->inode->i_blkbits;
850 
851 	for (i = 0; i < nblocks; i++) {
852 		unmap_underlying_metadata(map_bh->b_bdev,
853 					  map_bh->b_blocknr + i);
854 	}
855 }
856 
857 /*
858  * If we are not writing the entire block and get_block() allocated
859  * the block for us, we need to fill-in the unused portion of the
860  * block with zeros. This happens only if user-buffer, fileoffset or
861  * io length is not filesystem block-size multiple.
862  *
863  * `end' is zero if we're doing the start of the IO, 1 at the end of the
864  * IO.
865  */
866 static inline void dio_zero_block(struct dio *dio, struct dio_submit *sdio,
867 		int end, struct buffer_head *map_bh)
868 {
869 	unsigned dio_blocks_per_fs_block;
870 	unsigned this_chunk_blocks;	/* In dio_blocks */
871 	unsigned this_chunk_bytes;
872 	struct page *page;
873 
874 	sdio->start_zero_done = 1;
875 	if (!sdio->blkfactor || !buffer_new(map_bh))
876 		return;
877 
878 	dio_blocks_per_fs_block = 1 << sdio->blkfactor;
879 	this_chunk_blocks = sdio->block_in_file & (dio_blocks_per_fs_block - 1);
880 
881 	if (!this_chunk_blocks)
882 		return;
883 
884 	/*
885 	 * We need to zero out part of an fs block.  It is either at the
886 	 * beginning or the end of the fs block.
887 	 */
888 	if (end)
889 		this_chunk_blocks = dio_blocks_per_fs_block - this_chunk_blocks;
890 
891 	this_chunk_bytes = this_chunk_blocks << sdio->blkbits;
892 
893 	page = ZERO_PAGE(0);
894 	if (submit_page_section(dio, sdio, page, 0, this_chunk_bytes,
895 				sdio->next_block_for_io, map_bh))
896 		return;
897 
898 	sdio->next_block_for_io += this_chunk_blocks;
899 }
900 
901 /*
902  * Walk the user pages, and the file, mapping blocks to disk and generating
903  * a sequence of (page,offset,len,block) mappings.  These mappings are injected
904  * into submit_page_section(), which takes care of the next stage of submission
905  *
906  * Direct IO against a blockdev is different from a file.  Because we can
907  * happily perform page-sized but 512-byte aligned IOs.  It is important that
908  * blockdev IO be able to have fine alignment and large sizes.
909  *
910  * So what we do is to permit the ->get_block function to populate bh.b_size
911  * with the size of IO which is permitted at this offset and this i_blkbits.
912  *
913  * For best results, the blockdev should be set up with 512-byte i_blkbits and
914  * it should set b_size to PAGE_SIZE or more inside get_block().  This gives
915  * fine alignment but still allows this function to work in PAGE_SIZE units.
916  */
917 static int do_direct_IO(struct dio *dio, struct dio_submit *sdio,
918 			struct buffer_head *map_bh)
919 {
920 	const unsigned blkbits = sdio->blkbits;
921 	int ret = 0;
922 
923 	while (sdio->block_in_file < sdio->final_block_in_request) {
924 		struct page *page;
925 		size_t from, to;
926 
927 		page = dio_get_page(dio, sdio);
928 		if (IS_ERR(page)) {
929 			ret = PTR_ERR(page);
930 			goto out;
931 		}
932 		from = sdio->head ? 0 : sdio->from;
933 		to = (sdio->head == sdio->tail - 1) ? sdio->to : PAGE_SIZE;
934 		sdio->head++;
935 
936 		while (from < to) {
937 			unsigned this_chunk_bytes;	/* # of bytes mapped */
938 			unsigned this_chunk_blocks;	/* # of blocks */
939 			unsigned u;
940 
941 			if (sdio->blocks_available == 0) {
942 				/*
943 				 * Need to go and map some more disk
944 				 */
945 				unsigned long blkmask;
946 				unsigned long dio_remainder;
947 
948 				ret = get_more_blocks(dio, sdio, map_bh);
949 				if (ret) {
950 					put_page(page);
951 					goto out;
952 				}
953 				if (!buffer_mapped(map_bh))
954 					goto do_holes;
955 
956 				sdio->blocks_available =
957 						map_bh->b_size >> sdio->blkbits;
958 				sdio->next_block_for_io =
959 					map_bh->b_blocknr << sdio->blkfactor;
960 				if (buffer_new(map_bh))
961 					clean_blockdev_aliases(dio, map_bh);
962 
963 				if (!sdio->blkfactor)
964 					goto do_holes;
965 
966 				blkmask = (1 << sdio->blkfactor) - 1;
967 				dio_remainder = (sdio->block_in_file & blkmask);
968 
969 				/*
970 				 * If we are at the start of IO and that IO
971 				 * starts partway into a fs-block,
972 				 * dio_remainder will be non-zero.  If the IO
973 				 * is a read then we can simply advance the IO
974 				 * cursor to the first block which is to be
975 				 * read.  But if the IO is a write and the
976 				 * block was newly allocated we cannot do that;
977 				 * the start of the fs block must be zeroed out
978 				 * on-disk
979 				 */
980 				if (!buffer_new(map_bh))
981 					sdio->next_block_for_io += dio_remainder;
982 				sdio->blocks_available -= dio_remainder;
983 			}
984 do_holes:
985 			/* Handle holes */
986 			if (!buffer_mapped(map_bh)) {
987 				loff_t i_size_aligned;
988 
989 				/* AKPM: eargh, -ENOTBLK is a hack */
990 				if (dio->rw & WRITE) {
991 					put_page(page);
992 					return -ENOTBLK;
993 				}
994 
995 				/*
996 				 * Be sure to account for a partial block as the
997 				 * last block in the file
998 				 */
999 				i_size_aligned = ALIGN(i_size_read(dio->inode),
1000 							1 << blkbits);
1001 				if (sdio->block_in_file >=
1002 						i_size_aligned >> blkbits) {
1003 					/* We hit eof */
1004 					put_page(page);
1005 					goto out;
1006 				}
1007 				zero_user(page, from, 1 << blkbits);
1008 				sdio->block_in_file++;
1009 				from += 1 << blkbits;
1010 				dio->result += 1 << blkbits;
1011 				goto next_block;
1012 			}
1013 
1014 			/*
1015 			 * If we're performing IO which has an alignment which
1016 			 * is finer than the underlying fs, go check to see if
1017 			 * we must zero out the start of this block.
1018 			 */
1019 			if (unlikely(sdio->blkfactor && !sdio->start_zero_done))
1020 				dio_zero_block(dio, sdio, 0, map_bh);
1021 
1022 			/*
1023 			 * Work out, in this_chunk_blocks, how much disk we
1024 			 * can add to this page
1025 			 */
1026 			this_chunk_blocks = sdio->blocks_available;
1027 			u = (to - from) >> blkbits;
1028 			if (this_chunk_blocks > u)
1029 				this_chunk_blocks = u;
1030 			u = sdio->final_block_in_request - sdio->block_in_file;
1031 			if (this_chunk_blocks > u)
1032 				this_chunk_blocks = u;
1033 			this_chunk_bytes = this_chunk_blocks << blkbits;
1034 			BUG_ON(this_chunk_bytes == 0);
1035 
1036 			if (this_chunk_blocks == sdio->blocks_available)
1037 				sdio->boundary = buffer_boundary(map_bh);
1038 			ret = submit_page_section(dio, sdio, page,
1039 						  from,
1040 						  this_chunk_bytes,
1041 						  sdio->next_block_for_io,
1042 						  map_bh);
1043 			if (ret) {
1044 				put_page(page);
1045 				goto out;
1046 			}
1047 			sdio->next_block_for_io += this_chunk_blocks;
1048 
1049 			sdio->block_in_file += this_chunk_blocks;
1050 			from += this_chunk_bytes;
1051 			dio->result += this_chunk_bytes;
1052 			sdio->blocks_available -= this_chunk_blocks;
1053 next_block:
1054 			BUG_ON(sdio->block_in_file > sdio->final_block_in_request);
1055 			if (sdio->block_in_file == sdio->final_block_in_request)
1056 				break;
1057 		}
1058 
1059 		/* Drop the ref which was taken in get_user_pages() */
1060 		put_page(page);
1061 	}
1062 out:
1063 	return ret;
1064 }
1065 
1066 static inline int drop_refcount(struct dio *dio)
1067 {
1068 	int ret2;
1069 	unsigned long flags;
1070 
1071 	/*
1072 	 * Sync will always be dropping the final ref and completing the
1073 	 * operation.  AIO can if it was a broken operation described above or
1074 	 * in fact if all the bios race to complete before we get here.  In
1075 	 * that case dio_complete() translates the EIOCBQUEUED into the proper
1076 	 * return code that the caller will hand to ->complete().
1077 	 *
1078 	 * This is managed by the bio_lock instead of being an atomic_t so that
1079 	 * completion paths can drop their ref and use the remaining count to
1080 	 * decide to wake the submission path atomically.
1081 	 */
1082 	spin_lock_irqsave(&dio->bio_lock, flags);
1083 	ret2 = --dio->refcount;
1084 	spin_unlock_irqrestore(&dio->bio_lock, flags);
1085 	return ret2;
1086 }
1087 
1088 /*
1089  * This is a library function for use by filesystem drivers.
1090  *
1091  * The locking rules are governed by the flags parameter:
1092  *  - if the flags value contains DIO_LOCKING we use a fancy locking
1093  *    scheme for dumb filesystems.
1094  *    For writes this function is called under i_mutex and returns with
1095  *    i_mutex held, for reads, i_mutex is not held on entry, but it is
1096  *    taken and dropped again before returning.
1097  *  - if the flags value does NOT contain DIO_LOCKING we don't use any
1098  *    internal locking but rather rely on the filesystem to synchronize
1099  *    direct I/O reads/writes versus each other and truncate.
1100  *
1101  * To help with locking against truncate we incremented the i_dio_count
1102  * counter before starting direct I/O, and decrement it once we are done.
1103  * Truncate can wait for it to reach zero to provide exclusion.  It is
1104  * expected that filesystem provide exclusion between new direct I/O
1105  * and truncates.  For DIO_LOCKING filesystems this is done by i_mutex,
1106  * but other filesystems need to take care of this on their own.
1107  *
1108  * NOTE: if you pass "sdio" to anything by pointer make sure that function
1109  * is always inlined. Otherwise gcc is unable to split the structure into
1110  * individual fields and will generate much worse code. This is important
1111  * for the whole file.
1112  */
1113 static inline ssize_t
1114 do_blockdev_direct_IO(struct kiocb *iocb, struct inode *inode,
1115 		      struct block_device *bdev, struct iov_iter *iter,
1116 		      loff_t offset, get_block_t get_block, dio_iodone_t end_io,
1117 		      dio_submit_t submit_io, int flags)
1118 {
1119 	unsigned i_blkbits = ACCESS_ONCE(inode->i_blkbits);
1120 	unsigned blkbits = i_blkbits;
1121 	unsigned blocksize_mask = (1 << blkbits) - 1;
1122 	ssize_t retval = -EINVAL;
1123 	size_t count = iov_iter_count(iter);
1124 	loff_t end = offset + count;
1125 	struct dio *dio;
1126 	struct dio_submit sdio = { 0, };
1127 	struct buffer_head map_bh = { 0, };
1128 	struct blk_plug plug;
1129 	unsigned long align = offset | iov_iter_alignment(iter);
1130 
1131 	/*
1132 	 * Avoid references to bdev if not absolutely needed to give
1133 	 * the early prefetch in the caller enough time.
1134 	 */
1135 
1136 	if (align & blocksize_mask) {
1137 		if (bdev)
1138 			blkbits = blksize_bits(bdev_logical_block_size(bdev));
1139 		blocksize_mask = (1 << blkbits) - 1;
1140 		if (align & blocksize_mask)
1141 			goto out;
1142 	}
1143 
1144 	/* watch out for a 0 len io from a tricksy fs */
1145 	if (iov_iter_rw(iter) == READ && !iov_iter_count(iter))
1146 		return 0;
1147 
1148 	dio = kmem_cache_alloc(dio_cache, GFP_KERNEL);
1149 	retval = -ENOMEM;
1150 	if (!dio)
1151 		goto out;
1152 	/*
1153 	 * Believe it or not, zeroing out the page array caused a .5%
1154 	 * performance regression in a database benchmark.  So, we take
1155 	 * care to only zero out what's needed.
1156 	 */
1157 	memset(dio, 0, offsetof(struct dio, pages));
1158 
1159 	dio->flags = flags;
1160 	if (dio->flags & DIO_LOCKING) {
1161 		if (iov_iter_rw(iter) == READ) {
1162 			struct address_space *mapping =
1163 					iocb->ki_filp->f_mapping;
1164 
1165 			/* will be released by direct_io_worker */
1166 			inode_lock(inode);
1167 
1168 			retval = filemap_write_and_wait_range(mapping, offset,
1169 							      end - 1);
1170 			if (retval) {
1171 				inode_unlock(inode);
1172 				kmem_cache_free(dio_cache, dio);
1173 				goto out;
1174 			}
1175 		}
1176 	}
1177 
1178 	/* Once we sampled i_size check for reads beyond EOF */
1179 	dio->i_size = i_size_read(inode);
1180 	if (iov_iter_rw(iter) == READ && offset >= dio->i_size) {
1181 		if (dio->flags & DIO_LOCKING)
1182 			inode_unlock(inode);
1183 		kmem_cache_free(dio_cache, dio);
1184 		retval = 0;
1185 		goto out;
1186 	}
1187 
1188 	/*
1189 	 * For file extending writes updating i_size before data writeouts
1190 	 * complete can expose uninitialized blocks in dumb filesystems.
1191 	 * In that case we need to wait for I/O completion even if asked
1192 	 * for an asynchronous write.
1193 	 */
1194 	if (is_sync_kiocb(iocb))
1195 		dio->is_async = false;
1196 	else if (!(dio->flags & DIO_ASYNC_EXTEND) &&
1197 		 iov_iter_rw(iter) == WRITE && end > i_size_read(inode))
1198 		dio->is_async = false;
1199 	else
1200 		dio->is_async = true;
1201 
1202 	dio->inode = inode;
1203 	dio->rw = iov_iter_rw(iter) == WRITE ? WRITE_ODIRECT : READ;
1204 
1205 	/*
1206 	 * For AIO O_(D)SYNC writes we need to defer completions to a workqueue
1207 	 * so that we can call ->fsync.
1208 	 */
1209 	if (dio->is_async && iov_iter_rw(iter) == WRITE &&
1210 	    ((iocb->ki_filp->f_flags & O_DSYNC) ||
1211 	     IS_SYNC(iocb->ki_filp->f_mapping->host))) {
1212 		retval = dio_set_defer_completion(dio);
1213 		if (retval) {
1214 			/*
1215 			 * We grab i_mutex only for reads so we don't have
1216 			 * to release it here
1217 			 */
1218 			kmem_cache_free(dio_cache, dio);
1219 			goto out;
1220 		}
1221 	}
1222 
1223 	/*
1224 	 * Will be decremented at I/O completion time.
1225 	 */
1226 	if (!(dio->flags & DIO_SKIP_DIO_COUNT))
1227 		inode_dio_begin(inode);
1228 
1229 	retval = 0;
1230 	sdio.blkbits = blkbits;
1231 	sdio.blkfactor = i_blkbits - blkbits;
1232 	sdio.block_in_file = offset >> blkbits;
1233 
1234 	sdio.get_block = get_block;
1235 	dio->end_io = end_io;
1236 	sdio.submit_io = submit_io;
1237 	sdio.final_block_in_bio = -1;
1238 	sdio.next_block_for_io = -1;
1239 
1240 	dio->iocb = iocb;
1241 
1242 	spin_lock_init(&dio->bio_lock);
1243 	dio->refcount = 1;
1244 
1245 	dio->should_dirty = (iter->type == ITER_IOVEC);
1246 	sdio.iter = iter;
1247 	sdio.final_block_in_request =
1248 		(offset + iov_iter_count(iter)) >> blkbits;
1249 
1250 	/*
1251 	 * In case of non-aligned buffers, we may need 2 more
1252 	 * pages since we need to zero out first and last block.
1253 	 */
1254 	if (unlikely(sdio.blkfactor))
1255 		sdio.pages_in_io = 2;
1256 
1257 	sdio.pages_in_io += iov_iter_npages(iter, INT_MAX);
1258 
1259 	blk_start_plug(&plug);
1260 
1261 	retval = do_direct_IO(dio, &sdio, &map_bh);
1262 	if (retval)
1263 		dio_cleanup(dio, &sdio);
1264 
1265 	if (retval == -ENOTBLK) {
1266 		/*
1267 		 * The remaining part of the request will be
1268 		 * be handled by buffered I/O when we return
1269 		 */
1270 		retval = 0;
1271 	}
1272 	/*
1273 	 * There may be some unwritten disk at the end of a part-written
1274 	 * fs-block-sized block.  Go zero that now.
1275 	 */
1276 	dio_zero_block(dio, &sdio, 1, &map_bh);
1277 
1278 	if (sdio.cur_page) {
1279 		ssize_t ret2;
1280 
1281 		ret2 = dio_send_cur_page(dio, &sdio, &map_bh);
1282 		if (retval == 0)
1283 			retval = ret2;
1284 		put_page(sdio.cur_page);
1285 		sdio.cur_page = NULL;
1286 	}
1287 	if (sdio.bio)
1288 		dio_bio_submit(dio, &sdio);
1289 
1290 	blk_finish_plug(&plug);
1291 
1292 	/*
1293 	 * It is possible that, we return short IO due to end of file.
1294 	 * In that case, we need to release all the pages we got hold on.
1295 	 */
1296 	dio_cleanup(dio, &sdio);
1297 
1298 	/*
1299 	 * All block lookups have been performed. For READ requests
1300 	 * we can let i_mutex go now that its achieved its purpose
1301 	 * of protecting us from looking up uninitialized blocks.
1302 	 */
1303 	if (iov_iter_rw(iter) == READ && (dio->flags & DIO_LOCKING))
1304 		inode_unlock(dio->inode);
1305 
1306 	/*
1307 	 * The only time we want to leave bios in flight is when a successful
1308 	 * partial aio read or full aio write have been setup.  In that case
1309 	 * bio completion will call aio_complete.  The only time it's safe to
1310 	 * call aio_complete is when we return -EIOCBQUEUED, so we key on that.
1311 	 * This had *better* be the only place that raises -EIOCBQUEUED.
1312 	 */
1313 	BUG_ON(retval == -EIOCBQUEUED);
1314 	if (dio->is_async && retval == 0 && dio->result &&
1315 	    (iov_iter_rw(iter) == READ || dio->result == count))
1316 		retval = -EIOCBQUEUED;
1317 	else
1318 		dio_await_completion(dio);
1319 
1320 	if (drop_refcount(dio) == 0) {
1321 		retval = dio_complete(dio, offset, retval, false);
1322 	} else
1323 		BUG_ON(retval != -EIOCBQUEUED);
1324 
1325 out:
1326 	return retval;
1327 }
1328 
1329 ssize_t __blockdev_direct_IO(struct kiocb *iocb, struct inode *inode,
1330 			     struct block_device *bdev, struct iov_iter *iter,
1331 			     loff_t offset, get_block_t get_block,
1332 			     dio_iodone_t end_io, dio_submit_t submit_io,
1333 			     int flags)
1334 {
1335 	/*
1336 	 * The block device state is needed in the end to finally
1337 	 * submit everything.  Since it's likely to be cache cold
1338 	 * prefetch it here as first thing to hide some of the
1339 	 * latency.
1340 	 *
1341 	 * Attempt to prefetch the pieces we likely need later.
1342 	 */
1343 	prefetch(&bdev->bd_disk->part_tbl);
1344 	prefetch(bdev->bd_queue);
1345 	prefetch((char *)bdev->bd_queue + SMP_CACHE_BYTES);
1346 
1347 	return do_blockdev_direct_IO(iocb, inode, bdev, iter, offset, get_block,
1348 				     end_io, submit_io, flags);
1349 }
1350 
1351 EXPORT_SYMBOL(__blockdev_direct_IO);
1352 
1353 static __init int dio_init(void)
1354 {
1355 	dio_cache = KMEM_CACHE(dio, SLAB_PANIC);
1356 	return 0;
1357 }
1358 module_init(dio_init)
1359