xref: /openbmc/linux/fs/direct-io.c (revision 01a6e126)
1 /*
2  * fs/direct-io.c
3  *
4  * Copyright (C) 2002, Linus Torvalds.
5  *
6  * O_DIRECT
7  *
8  * 04Jul2002	Andrew Morton
9  *		Initial version
10  * 11Sep2002	janetinc@us.ibm.com
11  * 		added readv/writev support.
12  * 29Oct2002	Andrew Morton
13  *		rewrote bio_add_page() support.
14  * 30Oct2002	pbadari@us.ibm.com
15  *		added support for non-aligned IO.
16  * 06Nov2002	pbadari@us.ibm.com
17  *		added asynchronous IO support.
18  * 21Jul2003	nathans@sgi.com
19  *		added IO completion notifier.
20  */
21 
22 #include <linux/kernel.h>
23 #include <linux/module.h>
24 #include <linux/types.h>
25 #include <linux/fs.h>
26 #include <linux/mm.h>
27 #include <linux/slab.h>
28 #include <linux/highmem.h>
29 #include <linux/pagemap.h>
30 #include <linux/task_io_accounting_ops.h>
31 #include <linux/bio.h>
32 #include <linux/wait.h>
33 #include <linux/err.h>
34 #include <linux/blkdev.h>
35 #include <linux/buffer_head.h>
36 #include <linux/rwsem.h>
37 #include <linux/uio.h>
38 #include <linux/atomic.h>
39 #include <linux/prefetch.h>
40 
41 /*
42  * How many user pages to map in one call to get_user_pages().  This determines
43  * the size of a structure in the slab cache
44  */
45 #define DIO_PAGES	64
46 
47 /*
48  * Flags for dio_complete()
49  */
50 #define DIO_COMPLETE_ASYNC		0x01	/* This is async IO */
51 #define DIO_COMPLETE_INVALIDATE		0x02	/* Can invalidate pages */
52 
53 /*
54  * This code generally works in units of "dio_blocks".  A dio_block is
55  * somewhere between the hard sector size and the filesystem block size.  it
56  * is determined on a per-invocation basis.   When talking to the filesystem
57  * we need to convert dio_blocks to fs_blocks by scaling the dio_block quantity
58  * down by dio->blkfactor.  Similarly, fs-blocksize quantities are converted
59  * to bio_block quantities by shifting left by blkfactor.
60  *
61  * If blkfactor is zero then the user's request was aligned to the filesystem's
62  * blocksize.
63  */
64 
65 /* dio_state only used in the submission path */
66 
67 struct dio_submit {
68 	struct bio *bio;		/* bio under assembly */
69 	unsigned blkbits;		/* doesn't change */
70 	unsigned blkfactor;		/* When we're using an alignment which
71 					   is finer than the filesystem's soft
72 					   blocksize, this specifies how much
73 					   finer.  blkfactor=2 means 1/4-block
74 					   alignment.  Does not change */
75 	unsigned start_zero_done;	/* flag: sub-blocksize zeroing has
76 					   been performed at the start of a
77 					   write */
78 	int pages_in_io;		/* approximate total IO pages */
79 	sector_t block_in_file;		/* Current offset into the underlying
80 					   file in dio_block units. */
81 	unsigned blocks_available;	/* At block_in_file.  changes */
82 	int reap_counter;		/* rate limit reaping */
83 	sector_t final_block_in_request;/* doesn't change */
84 	int boundary;			/* prev block is at a boundary */
85 	get_block_t *get_block;		/* block mapping function */
86 	dio_submit_t *submit_io;	/* IO submition function */
87 
88 	loff_t logical_offset_in_bio;	/* current first logical block in bio */
89 	sector_t final_block_in_bio;	/* current final block in bio + 1 */
90 	sector_t next_block_for_io;	/* next block to be put under IO,
91 					   in dio_blocks units */
92 
93 	/*
94 	 * Deferred addition of a page to the dio.  These variables are
95 	 * private to dio_send_cur_page(), submit_page_section() and
96 	 * dio_bio_add_page().
97 	 */
98 	struct page *cur_page;		/* The page */
99 	unsigned cur_page_offset;	/* Offset into it, in bytes */
100 	unsigned cur_page_len;		/* Nr of bytes at cur_page_offset */
101 	sector_t cur_page_block;	/* Where it starts */
102 	loff_t cur_page_fs_offset;	/* Offset in file */
103 
104 	struct iov_iter *iter;
105 	/*
106 	 * Page queue.  These variables belong to dio_refill_pages() and
107 	 * dio_get_page().
108 	 */
109 	unsigned head;			/* next page to process */
110 	unsigned tail;			/* last valid page + 1 */
111 	size_t from, to;
112 };
113 
114 /* dio_state communicated between submission path and end_io */
115 struct dio {
116 	int flags;			/* doesn't change */
117 	int op;
118 	int op_flags;
119 	blk_qc_t bio_cookie;
120 	struct gendisk *bio_disk;
121 	struct inode *inode;
122 	loff_t i_size;			/* i_size when submitted */
123 	dio_iodone_t *end_io;		/* IO completion function */
124 
125 	void *private;			/* copy from map_bh.b_private */
126 
127 	/* BIO completion state */
128 	spinlock_t bio_lock;		/* protects BIO fields below */
129 	int page_errors;		/* errno from get_user_pages() */
130 	int is_async;			/* is IO async ? */
131 	bool defer_completion;		/* defer AIO completion to workqueue? */
132 	bool should_dirty;		/* if pages should be dirtied */
133 	int io_error;			/* IO error in completion path */
134 	unsigned long refcount;		/* direct_io_worker() and bios */
135 	struct bio *bio_list;		/* singly linked via bi_private */
136 	struct task_struct *waiter;	/* waiting task (NULL if none) */
137 
138 	/* AIO related stuff */
139 	struct kiocb *iocb;		/* kiocb */
140 	ssize_t result;                 /* IO result */
141 
142 	/*
143 	 * pages[] (and any fields placed after it) are not zeroed out at
144 	 * allocation time.  Don't add new fields after pages[] unless you
145 	 * wish that they not be zeroed.
146 	 */
147 	union {
148 		struct page *pages[DIO_PAGES];	/* page buffer */
149 		struct work_struct complete_work;/* deferred AIO completion */
150 	};
151 } ____cacheline_aligned_in_smp;
152 
153 static struct kmem_cache *dio_cache __read_mostly;
154 
155 /*
156  * How many pages are in the queue?
157  */
158 static inline unsigned dio_pages_present(struct dio_submit *sdio)
159 {
160 	return sdio->tail - sdio->head;
161 }
162 
163 /*
164  * Go grab and pin some userspace pages.   Typically we'll get 64 at a time.
165  */
166 static inline int dio_refill_pages(struct dio *dio, struct dio_submit *sdio)
167 {
168 	ssize_t ret;
169 
170 	ret = iov_iter_get_pages(sdio->iter, dio->pages, LONG_MAX, DIO_PAGES,
171 				&sdio->from);
172 
173 	if (ret < 0 && sdio->blocks_available && (dio->op == REQ_OP_WRITE)) {
174 		struct page *page = ZERO_PAGE(0);
175 		/*
176 		 * A memory fault, but the filesystem has some outstanding
177 		 * mapped blocks.  We need to use those blocks up to avoid
178 		 * leaking stale data in the file.
179 		 */
180 		if (dio->page_errors == 0)
181 			dio->page_errors = ret;
182 		get_page(page);
183 		dio->pages[0] = page;
184 		sdio->head = 0;
185 		sdio->tail = 1;
186 		sdio->from = 0;
187 		sdio->to = PAGE_SIZE;
188 		return 0;
189 	}
190 
191 	if (ret >= 0) {
192 		iov_iter_advance(sdio->iter, ret);
193 		ret += sdio->from;
194 		sdio->head = 0;
195 		sdio->tail = (ret + PAGE_SIZE - 1) / PAGE_SIZE;
196 		sdio->to = ((ret - 1) & (PAGE_SIZE - 1)) + 1;
197 		return 0;
198 	}
199 	return ret;
200 }
201 
202 /*
203  * Get another userspace page.  Returns an ERR_PTR on error.  Pages are
204  * buffered inside the dio so that we can call get_user_pages() against a
205  * decent number of pages, less frequently.  To provide nicer use of the
206  * L1 cache.
207  */
208 static inline struct page *dio_get_page(struct dio *dio,
209 					struct dio_submit *sdio)
210 {
211 	if (dio_pages_present(sdio) == 0) {
212 		int ret;
213 
214 		ret = dio_refill_pages(dio, sdio);
215 		if (ret)
216 			return ERR_PTR(ret);
217 		BUG_ON(dio_pages_present(sdio) == 0);
218 	}
219 	return dio->pages[sdio->head];
220 }
221 
222 /*
223  * Warn about a page cache invalidation failure during a direct io write.
224  */
225 void dio_warn_stale_pagecache(struct file *filp)
226 {
227 	static DEFINE_RATELIMIT_STATE(_rs, 86400 * HZ, DEFAULT_RATELIMIT_BURST);
228 	char pathname[128];
229 	struct inode *inode = file_inode(filp);
230 	char *path;
231 
232 	errseq_set(&inode->i_mapping->wb_err, -EIO);
233 	if (__ratelimit(&_rs)) {
234 		path = file_path(filp, pathname, sizeof(pathname));
235 		if (IS_ERR(path))
236 			path = "(unknown)";
237 		pr_crit("Page cache invalidation failure on direct I/O.  Possible data corruption due to collision with buffered I/O!\n");
238 		pr_crit("File: %s PID: %d Comm: %.20s\n", path, current->pid,
239 			current->comm);
240 	}
241 }
242 
243 /**
244  * dio_complete() - called when all DIO BIO I/O has been completed
245  * @offset: the byte offset in the file of the completed operation
246  *
247  * This drops i_dio_count, lets interested parties know that a DIO operation
248  * has completed, and calculates the resulting return code for the operation.
249  *
250  * It lets the filesystem know if it registered an interest earlier via
251  * get_block.  Pass the private field of the map buffer_head so that
252  * filesystems can use it to hold additional state between get_block calls and
253  * dio_complete.
254  */
255 static ssize_t dio_complete(struct dio *dio, ssize_t ret, unsigned int flags)
256 {
257 	loff_t offset = dio->iocb->ki_pos;
258 	ssize_t transferred = 0;
259 	int err;
260 
261 	/*
262 	 * AIO submission can race with bio completion to get here while
263 	 * expecting to have the last io completed by bio completion.
264 	 * In that case -EIOCBQUEUED is in fact not an error we want
265 	 * to preserve through this call.
266 	 */
267 	if (ret == -EIOCBQUEUED)
268 		ret = 0;
269 
270 	if (dio->result) {
271 		transferred = dio->result;
272 
273 		/* Check for short read case */
274 		if ((dio->op == REQ_OP_READ) &&
275 		    ((offset + transferred) > dio->i_size))
276 			transferred = dio->i_size - offset;
277 		/* ignore EFAULT if some IO has been done */
278 		if (unlikely(ret == -EFAULT) && transferred)
279 			ret = 0;
280 	}
281 
282 	if (ret == 0)
283 		ret = dio->page_errors;
284 	if (ret == 0)
285 		ret = dio->io_error;
286 	if (ret == 0)
287 		ret = transferred;
288 
289 	if (dio->end_io) {
290 		// XXX: ki_pos??
291 		err = dio->end_io(dio->iocb, offset, ret, dio->private);
292 		if (err)
293 			ret = err;
294 	}
295 
296 	/*
297 	 * Try again to invalidate clean pages which might have been cached by
298 	 * non-direct readahead, or faulted in by get_user_pages() if the source
299 	 * of the write was an mmap'ed region of the file we're writing.  Either
300 	 * one is a pretty crazy thing to do, so we don't support it 100%.  If
301 	 * this invalidation fails, tough, the write still worked...
302 	 *
303 	 * And this page cache invalidation has to be after dio->end_io(), as
304 	 * some filesystems convert unwritten extents to real allocations in
305 	 * end_io() when necessary, otherwise a racing buffer read would cache
306 	 * zeros from unwritten extents.
307 	 */
308 	if (flags & DIO_COMPLETE_INVALIDATE &&
309 	    ret > 0 && dio->op == REQ_OP_WRITE &&
310 	    dio->inode->i_mapping->nrpages) {
311 		err = invalidate_inode_pages2_range(dio->inode->i_mapping,
312 					offset >> PAGE_SHIFT,
313 					(offset + ret - 1) >> PAGE_SHIFT);
314 		if (err)
315 			dio_warn_stale_pagecache(dio->iocb->ki_filp);
316 	}
317 
318 	if (!(dio->flags & DIO_SKIP_DIO_COUNT))
319 		inode_dio_end(dio->inode);
320 
321 	if (flags & DIO_COMPLETE_ASYNC) {
322 		/*
323 		 * generic_write_sync expects ki_pos to have been updated
324 		 * already, but the submission path only does this for
325 		 * synchronous I/O.
326 		 */
327 		dio->iocb->ki_pos += transferred;
328 
329 		if (dio->op == REQ_OP_WRITE)
330 			ret = generic_write_sync(dio->iocb,  transferred);
331 		dio->iocb->ki_complete(dio->iocb, ret, 0);
332 	}
333 
334 	kmem_cache_free(dio_cache, dio);
335 	return ret;
336 }
337 
338 static void dio_aio_complete_work(struct work_struct *work)
339 {
340 	struct dio *dio = container_of(work, struct dio, complete_work);
341 
342 	dio_complete(dio, 0, DIO_COMPLETE_ASYNC | DIO_COMPLETE_INVALIDATE);
343 }
344 
345 static blk_status_t dio_bio_complete(struct dio *dio, struct bio *bio);
346 
347 /*
348  * Asynchronous IO callback.
349  */
350 static void dio_bio_end_aio(struct bio *bio)
351 {
352 	struct dio *dio = bio->bi_private;
353 	unsigned long remaining;
354 	unsigned long flags;
355 	bool defer_completion = false;
356 
357 	/* cleanup the bio */
358 	dio_bio_complete(dio, bio);
359 
360 	spin_lock_irqsave(&dio->bio_lock, flags);
361 	remaining = --dio->refcount;
362 	if (remaining == 1 && dio->waiter)
363 		wake_up_process(dio->waiter);
364 	spin_unlock_irqrestore(&dio->bio_lock, flags);
365 
366 	if (remaining == 0) {
367 		/*
368 		 * Defer completion when defer_completion is set or
369 		 * when the inode has pages mapped and this is AIO write.
370 		 * We need to invalidate those pages because there is a
371 		 * chance they contain stale data in the case buffered IO
372 		 * went in between AIO submission and completion into the
373 		 * same region.
374 		 */
375 		if (dio->result)
376 			defer_completion = dio->defer_completion ||
377 					   (dio->op == REQ_OP_WRITE &&
378 					    dio->inode->i_mapping->nrpages);
379 		if (defer_completion) {
380 			INIT_WORK(&dio->complete_work, dio_aio_complete_work);
381 			queue_work(dio->inode->i_sb->s_dio_done_wq,
382 				   &dio->complete_work);
383 		} else {
384 			dio_complete(dio, 0, DIO_COMPLETE_ASYNC);
385 		}
386 	}
387 }
388 
389 /*
390  * The BIO completion handler simply queues the BIO up for the process-context
391  * handler.
392  *
393  * During I/O bi_private points at the dio.  After I/O, bi_private is used to
394  * implement a singly-linked list of completed BIOs, at dio->bio_list.
395  */
396 static void dio_bio_end_io(struct bio *bio)
397 {
398 	struct dio *dio = bio->bi_private;
399 	unsigned long flags;
400 
401 	spin_lock_irqsave(&dio->bio_lock, flags);
402 	bio->bi_private = dio->bio_list;
403 	dio->bio_list = bio;
404 	if (--dio->refcount == 1 && dio->waiter)
405 		wake_up_process(dio->waiter);
406 	spin_unlock_irqrestore(&dio->bio_lock, flags);
407 }
408 
409 /**
410  * dio_end_io - handle the end io action for the given bio
411  * @bio: The direct io bio thats being completed
412  *
413  * This is meant to be called by any filesystem that uses their own dio_submit_t
414  * so that the DIO specific endio actions are dealt with after the filesystem
415  * has done it's completion work.
416  */
417 void dio_end_io(struct bio *bio)
418 {
419 	struct dio *dio = bio->bi_private;
420 
421 	if (dio->is_async)
422 		dio_bio_end_aio(bio);
423 	else
424 		dio_bio_end_io(bio);
425 }
426 EXPORT_SYMBOL_GPL(dio_end_io);
427 
428 static inline void
429 dio_bio_alloc(struct dio *dio, struct dio_submit *sdio,
430 	      struct block_device *bdev,
431 	      sector_t first_sector, int nr_vecs)
432 {
433 	struct bio *bio;
434 
435 	/*
436 	 * bio_alloc() is guaranteed to return a bio when called with
437 	 * __GFP_RECLAIM and we request a valid number of vectors.
438 	 */
439 	bio = bio_alloc(GFP_KERNEL, nr_vecs);
440 
441 	bio_set_dev(bio, bdev);
442 	bio->bi_iter.bi_sector = first_sector;
443 	bio_set_op_attrs(bio, dio->op, dio->op_flags);
444 	if (dio->is_async)
445 		bio->bi_end_io = dio_bio_end_aio;
446 	else
447 		bio->bi_end_io = dio_bio_end_io;
448 
449 	bio->bi_write_hint = dio->iocb->ki_hint;
450 
451 	sdio->bio = bio;
452 	sdio->logical_offset_in_bio = sdio->cur_page_fs_offset;
453 }
454 
455 /*
456  * In the AIO read case we speculatively dirty the pages before starting IO.
457  * During IO completion, any of these pages which happen to have been written
458  * back will be redirtied by bio_check_pages_dirty().
459  *
460  * bios hold a dio reference between submit_bio and ->end_io.
461  */
462 static inline void dio_bio_submit(struct dio *dio, struct dio_submit *sdio)
463 {
464 	struct bio *bio = sdio->bio;
465 	unsigned long flags;
466 
467 	bio->bi_private = dio;
468 
469 	spin_lock_irqsave(&dio->bio_lock, flags);
470 	dio->refcount++;
471 	spin_unlock_irqrestore(&dio->bio_lock, flags);
472 
473 	if (dio->is_async && dio->op == REQ_OP_READ && dio->should_dirty)
474 		bio_set_pages_dirty(bio);
475 
476 	dio->bio_disk = bio->bi_disk;
477 
478 	if (sdio->submit_io) {
479 		sdio->submit_io(bio, dio->inode, sdio->logical_offset_in_bio);
480 		dio->bio_cookie = BLK_QC_T_NONE;
481 	} else
482 		dio->bio_cookie = submit_bio(bio);
483 
484 	sdio->bio = NULL;
485 	sdio->boundary = 0;
486 	sdio->logical_offset_in_bio = 0;
487 }
488 
489 /*
490  * Release any resources in case of a failure
491  */
492 static inline void dio_cleanup(struct dio *dio, struct dio_submit *sdio)
493 {
494 	while (sdio->head < sdio->tail)
495 		put_page(dio->pages[sdio->head++]);
496 }
497 
498 /*
499  * Wait for the next BIO to complete.  Remove it and return it.  NULL is
500  * returned once all BIOs have been completed.  This must only be called once
501  * all bios have been issued so that dio->refcount can only decrease.  This
502  * requires that that the caller hold a reference on the dio.
503  */
504 static struct bio *dio_await_one(struct dio *dio)
505 {
506 	unsigned long flags;
507 	struct bio *bio = NULL;
508 
509 	spin_lock_irqsave(&dio->bio_lock, flags);
510 
511 	/*
512 	 * Wait as long as the list is empty and there are bios in flight.  bio
513 	 * completion drops the count, maybe adds to the list, and wakes while
514 	 * holding the bio_lock so we don't need set_current_state()'s barrier
515 	 * and can call it after testing our condition.
516 	 */
517 	while (dio->refcount > 1 && dio->bio_list == NULL) {
518 		__set_current_state(TASK_UNINTERRUPTIBLE);
519 		dio->waiter = current;
520 		spin_unlock_irqrestore(&dio->bio_lock, flags);
521 		if (!(dio->iocb->ki_flags & IOCB_HIPRI) ||
522 		    !blk_poll(dio->bio_disk->queue, dio->bio_cookie))
523 			io_schedule();
524 		/* wake up sets us TASK_RUNNING */
525 		spin_lock_irqsave(&dio->bio_lock, flags);
526 		dio->waiter = NULL;
527 	}
528 	if (dio->bio_list) {
529 		bio = dio->bio_list;
530 		dio->bio_list = bio->bi_private;
531 	}
532 	spin_unlock_irqrestore(&dio->bio_lock, flags);
533 	return bio;
534 }
535 
536 /*
537  * Process one completed BIO.  No locks are held.
538  */
539 static blk_status_t dio_bio_complete(struct dio *dio, struct bio *bio)
540 {
541 	struct bio_vec *bvec;
542 	unsigned i;
543 	blk_status_t err = bio->bi_status;
544 
545 	if (err) {
546 		if (err == BLK_STS_AGAIN && (bio->bi_opf & REQ_NOWAIT))
547 			dio->io_error = -EAGAIN;
548 		else
549 			dio->io_error = -EIO;
550 	}
551 
552 	if (dio->is_async && dio->op == REQ_OP_READ && dio->should_dirty) {
553 		bio_check_pages_dirty(bio);	/* transfers ownership */
554 	} else {
555 		bio_for_each_segment_all(bvec, bio, i) {
556 			struct page *page = bvec->bv_page;
557 
558 			if (dio->op == REQ_OP_READ && !PageCompound(page) &&
559 					dio->should_dirty)
560 				set_page_dirty_lock(page);
561 			put_page(page);
562 		}
563 		bio_put(bio);
564 	}
565 	return err;
566 }
567 
568 /*
569  * Wait on and process all in-flight BIOs.  This must only be called once
570  * all bios have been issued so that the refcount can only decrease.
571  * This just waits for all bios to make it through dio_bio_complete.  IO
572  * errors are propagated through dio->io_error and should be propagated via
573  * dio_complete().
574  */
575 static void dio_await_completion(struct dio *dio)
576 {
577 	struct bio *bio;
578 	do {
579 		bio = dio_await_one(dio);
580 		if (bio)
581 			dio_bio_complete(dio, bio);
582 	} while (bio);
583 }
584 
585 /*
586  * A really large O_DIRECT read or write can generate a lot of BIOs.  So
587  * to keep the memory consumption sane we periodically reap any completed BIOs
588  * during the BIO generation phase.
589  *
590  * This also helps to limit the peak amount of pinned userspace memory.
591  */
592 static inline int dio_bio_reap(struct dio *dio, struct dio_submit *sdio)
593 {
594 	int ret = 0;
595 
596 	if (sdio->reap_counter++ >= 64) {
597 		while (dio->bio_list) {
598 			unsigned long flags;
599 			struct bio *bio;
600 			int ret2;
601 
602 			spin_lock_irqsave(&dio->bio_lock, flags);
603 			bio = dio->bio_list;
604 			dio->bio_list = bio->bi_private;
605 			spin_unlock_irqrestore(&dio->bio_lock, flags);
606 			ret2 = blk_status_to_errno(dio_bio_complete(dio, bio));
607 			if (ret == 0)
608 				ret = ret2;
609 		}
610 		sdio->reap_counter = 0;
611 	}
612 	return ret;
613 }
614 
615 /*
616  * Create workqueue for deferred direct IO completions. We allocate the
617  * workqueue when it's first needed. This avoids creating workqueue for
618  * filesystems that don't need it and also allows us to create the workqueue
619  * late enough so the we can include s_id in the name of the workqueue.
620  */
621 int sb_init_dio_done_wq(struct super_block *sb)
622 {
623 	struct workqueue_struct *old;
624 	struct workqueue_struct *wq = alloc_workqueue("dio/%s",
625 						      WQ_MEM_RECLAIM, 0,
626 						      sb->s_id);
627 	if (!wq)
628 		return -ENOMEM;
629 	/*
630 	 * This has to be atomic as more DIOs can race to create the workqueue
631 	 */
632 	old = cmpxchg(&sb->s_dio_done_wq, NULL, wq);
633 	/* Someone created workqueue before us? Free ours... */
634 	if (old)
635 		destroy_workqueue(wq);
636 	return 0;
637 }
638 
639 static int dio_set_defer_completion(struct dio *dio)
640 {
641 	struct super_block *sb = dio->inode->i_sb;
642 
643 	if (dio->defer_completion)
644 		return 0;
645 	dio->defer_completion = true;
646 	if (!sb->s_dio_done_wq)
647 		return sb_init_dio_done_wq(sb);
648 	return 0;
649 }
650 
651 /*
652  * Call into the fs to map some more disk blocks.  We record the current number
653  * of available blocks at sdio->blocks_available.  These are in units of the
654  * fs blocksize, i_blocksize(inode).
655  *
656  * The fs is allowed to map lots of blocks at once.  If it wants to do that,
657  * it uses the passed inode-relative block number as the file offset, as usual.
658  *
659  * get_block() is passed the number of i_blkbits-sized blocks which direct_io
660  * has remaining to do.  The fs should not map more than this number of blocks.
661  *
662  * If the fs has mapped a lot of blocks, it should populate bh->b_size to
663  * indicate how much contiguous disk space has been made available at
664  * bh->b_blocknr.
665  *
666  * If *any* of the mapped blocks are new, then the fs must set buffer_new().
667  * This isn't very efficient...
668  *
669  * In the case of filesystem holes: the fs may return an arbitrarily-large
670  * hole by returning an appropriate value in b_size and by clearing
671  * buffer_mapped().  However the direct-io code will only process holes one
672  * block at a time - it will repeatedly call get_block() as it walks the hole.
673  */
674 static int get_more_blocks(struct dio *dio, struct dio_submit *sdio,
675 			   struct buffer_head *map_bh)
676 {
677 	int ret;
678 	sector_t fs_startblk;	/* Into file, in filesystem-sized blocks */
679 	sector_t fs_endblk;	/* Into file, in filesystem-sized blocks */
680 	unsigned long fs_count;	/* Number of filesystem-sized blocks */
681 	int create;
682 	unsigned int i_blkbits = sdio->blkbits + sdio->blkfactor;
683 
684 	/*
685 	 * If there was a memory error and we've overwritten all the
686 	 * mapped blocks then we can now return that memory error
687 	 */
688 	ret = dio->page_errors;
689 	if (ret == 0) {
690 		BUG_ON(sdio->block_in_file >= sdio->final_block_in_request);
691 		fs_startblk = sdio->block_in_file >> sdio->blkfactor;
692 		fs_endblk = (sdio->final_block_in_request - 1) >>
693 					sdio->blkfactor;
694 		fs_count = fs_endblk - fs_startblk + 1;
695 
696 		map_bh->b_state = 0;
697 		map_bh->b_size = fs_count << i_blkbits;
698 
699 		/*
700 		 * For writes that could fill holes inside i_size on a
701 		 * DIO_SKIP_HOLES filesystem we forbid block creations: only
702 		 * overwrites are permitted. We will return early to the caller
703 		 * once we see an unmapped buffer head returned, and the caller
704 		 * will fall back to buffered I/O.
705 		 *
706 		 * Otherwise the decision is left to the get_blocks method,
707 		 * which may decide to handle it or also return an unmapped
708 		 * buffer head.
709 		 */
710 		create = dio->op == REQ_OP_WRITE;
711 		if (dio->flags & DIO_SKIP_HOLES) {
712 			if (fs_startblk <= ((i_size_read(dio->inode) - 1) >>
713 							i_blkbits))
714 				create = 0;
715 		}
716 
717 		ret = (*sdio->get_block)(dio->inode, fs_startblk,
718 						map_bh, create);
719 
720 		/* Store for completion */
721 		dio->private = map_bh->b_private;
722 
723 		if (ret == 0 && buffer_defer_completion(map_bh))
724 			ret = dio_set_defer_completion(dio);
725 	}
726 	return ret;
727 }
728 
729 /*
730  * There is no bio.  Make one now.
731  */
732 static inline int dio_new_bio(struct dio *dio, struct dio_submit *sdio,
733 		sector_t start_sector, struct buffer_head *map_bh)
734 {
735 	sector_t sector;
736 	int ret, nr_pages;
737 
738 	ret = dio_bio_reap(dio, sdio);
739 	if (ret)
740 		goto out;
741 	sector = start_sector << (sdio->blkbits - 9);
742 	nr_pages = min(sdio->pages_in_io, BIO_MAX_PAGES);
743 	BUG_ON(nr_pages <= 0);
744 	dio_bio_alloc(dio, sdio, map_bh->b_bdev, sector, nr_pages);
745 	sdio->boundary = 0;
746 out:
747 	return ret;
748 }
749 
750 /*
751  * Attempt to put the current chunk of 'cur_page' into the current BIO.  If
752  * that was successful then update final_block_in_bio and take a ref against
753  * the just-added page.
754  *
755  * Return zero on success.  Non-zero means the caller needs to start a new BIO.
756  */
757 static inline int dio_bio_add_page(struct dio_submit *sdio)
758 {
759 	int ret;
760 
761 	ret = bio_add_page(sdio->bio, sdio->cur_page,
762 			sdio->cur_page_len, sdio->cur_page_offset);
763 	if (ret == sdio->cur_page_len) {
764 		/*
765 		 * Decrement count only, if we are done with this page
766 		 */
767 		if ((sdio->cur_page_len + sdio->cur_page_offset) == PAGE_SIZE)
768 			sdio->pages_in_io--;
769 		get_page(sdio->cur_page);
770 		sdio->final_block_in_bio = sdio->cur_page_block +
771 			(sdio->cur_page_len >> sdio->blkbits);
772 		ret = 0;
773 	} else {
774 		ret = 1;
775 	}
776 	return ret;
777 }
778 
779 /*
780  * Put cur_page under IO.  The section of cur_page which is described by
781  * cur_page_offset,cur_page_len is put into a BIO.  The section of cur_page
782  * starts on-disk at cur_page_block.
783  *
784  * We take a ref against the page here (on behalf of its presence in the bio).
785  *
786  * The caller of this function is responsible for removing cur_page from the
787  * dio, and for dropping the refcount which came from that presence.
788  */
789 static inline int dio_send_cur_page(struct dio *dio, struct dio_submit *sdio,
790 		struct buffer_head *map_bh)
791 {
792 	int ret = 0;
793 
794 	if (sdio->bio) {
795 		loff_t cur_offset = sdio->cur_page_fs_offset;
796 		loff_t bio_next_offset = sdio->logical_offset_in_bio +
797 			sdio->bio->bi_iter.bi_size;
798 
799 		/*
800 		 * See whether this new request is contiguous with the old.
801 		 *
802 		 * Btrfs cannot handle having logically non-contiguous requests
803 		 * submitted.  For example if you have
804 		 *
805 		 * Logical:  [0-4095][HOLE][8192-12287]
806 		 * Physical: [0-4095]      [4096-8191]
807 		 *
808 		 * We cannot submit those pages together as one BIO.  So if our
809 		 * current logical offset in the file does not equal what would
810 		 * be the next logical offset in the bio, submit the bio we
811 		 * have.
812 		 */
813 		if (sdio->final_block_in_bio != sdio->cur_page_block ||
814 		    cur_offset != bio_next_offset)
815 			dio_bio_submit(dio, sdio);
816 	}
817 
818 	if (sdio->bio == NULL) {
819 		ret = dio_new_bio(dio, sdio, sdio->cur_page_block, map_bh);
820 		if (ret)
821 			goto out;
822 	}
823 
824 	if (dio_bio_add_page(sdio) != 0) {
825 		dio_bio_submit(dio, sdio);
826 		ret = dio_new_bio(dio, sdio, sdio->cur_page_block, map_bh);
827 		if (ret == 0) {
828 			ret = dio_bio_add_page(sdio);
829 			BUG_ON(ret != 0);
830 		}
831 	}
832 out:
833 	return ret;
834 }
835 
836 /*
837  * An autonomous function to put a chunk of a page under deferred IO.
838  *
839  * The caller doesn't actually know (or care) whether this piece of page is in
840  * a BIO, or is under IO or whatever.  We just take care of all possible
841  * situations here.  The separation between the logic of do_direct_IO() and
842  * that of submit_page_section() is important for clarity.  Please don't break.
843  *
844  * The chunk of page starts on-disk at blocknr.
845  *
846  * We perform deferred IO, by recording the last-submitted page inside our
847  * private part of the dio structure.  If possible, we just expand the IO
848  * across that page here.
849  *
850  * If that doesn't work out then we put the old page into the bio and add this
851  * page to the dio instead.
852  */
853 static inline int
854 submit_page_section(struct dio *dio, struct dio_submit *sdio, struct page *page,
855 		    unsigned offset, unsigned len, sector_t blocknr,
856 		    struct buffer_head *map_bh)
857 {
858 	int ret = 0;
859 
860 	if (dio->op == REQ_OP_WRITE) {
861 		/*
862 		 * Read accounting is performed in submit_bio()
863 		 */
864 		task_io_account_write(len);
865 	}
866 
867 	/*
868 	 * Can we just grow the current page's presence in the dio?
869 	 */
870 	if (sdio->cur_page == page &&
871 	    sdio->cur_page_offset + sdio->cur_page_len == offset &&
872 	    sdio->cur_page_block +
873 	    (sdio->cur_page_len >> sdio->blkbits) == blocknr) {
874 		sdio->cur_page_len += len;
875 		goto out;
876 	}
877 
878 	/*
879 	 * If there's a deferred page already there then send it.
880 	 */
881 	if (sdio->cur_page) {
882 		ret = dio_send_cur_page(dio, sdio, map_bh);
883 		put_page(sdio->cur_page);
884 		sdio->cur_page = NULL;
885 		if (ret)
886 			return ret;
887 	}
888 
889 	get_page(page);		/* It is in dio */
890 	sdio->cur_page = page;
891 	sdio->cur_page_offset = offset;
892 	sdio->cur_page_len = len;
893 	sdio->cur_page_block = blocknr;
894 	sdio->cur_page_fs_offset = sdio->block_in_file << sdio->blkbits;
895 out:
896 	/*
897 	 * If sdio->boundary then we want to schedule the IO now to
898 	 * avoid metadata seeks.
899 	 */
900 	if (sdio->boundary) {
901 		ret = dio_send_cur_page(dio, sdio, map_bh);
902 		if (sdio->bio)
903 			dio_bio_submit(dio, sdio);
904 		put_page(sdio->cur_page);
905 		sdio->cur_page = NULL;
906 	}
907 	return ret;
908 }
909 
910 /*
911  * If we are not writing the entire block and get_block() allocated
912  * the block for us, we need to fill-in the unused portion of the
913  * block with zeros. This happens only if user-buffer, fileoffset or
914  * io length is not filesystem block-size multiple.
915  *
916  * `end' is zero if we're doing the start of the IO, 1 at the end of the
917  * IO.
918  */
919 static inline void dio_zero_block(struct dio *dio, struct dio_submit *sdio,
920 		int end, struct buffer_head *map_bh)
921 {
922 	unsigned dio_blocks_per_fs_block;
923 	unsigned this_chunk_blocks;	/* In dio_blocks */
924 	unsigned this_chunk_bytes;
925 	struct page *page;
926 
927 	sdio->start_zero_done = 1;
928 	if (!sdio->blkfactor || !buffer_new(map_bh))
929 		return;
930 
931 	dio_blocks_per_fs_block = 1 << sdio->blkfactor;
932 	this_chunk_blocks = sdio->block_in_file & (dio_blocks_per_fs_block - 1);
933 
934 	if (!this_chunk_blocks)
935 		return;
936 
937 	/*
938 	 * We need to zero out part of an fs block.  It is either at the
939 	 * beginning or the end of the fs block.
940 	 */
941 	if (end)
942 		this_chunk_blocks = dio_blocks_per_fs_block - this_chunk_blocks;
943 
944 	this_chunk_bytes = this_chunk_blocks << sdio->blkbits;
945 
946 	page = ZERO_PAGE(0);
947 	if (submit_page_section(dio, sdio, page, 0, this_chunk_bytes,
948 				sdio->next_block_for_io, map_bh))
949 		return;
950 
951 	sdio->next_block_for_io += this_chunk_blocks;
952 }
953 
954 /*
955  * Walk the user pages, and the file, mapping blocks to disk and generating
956  * a sequence of (page,offset,len,block) mappings.  These mappings are injected
957  * into submit_page_section(), which takes care of the next stage of submission
958  *
959  * Direct IO against a blockdev is different from a file.  Because we can
960  * happily perform page-sized but 512-byte aligned IOs.  It is important that
961  * blockdev IO be able to have fine alignment and large sizes.
962  *
963  * So what we do is to permit the ->get_block function to populate bh.b_size
964  * with the size of IO which is permitted at this offset and this i_blkbits.
965  *
966  * For best results, the blockdev should be set up with 512-byte i_blkbits and
967  * it should set b_size to PAGE_SIZE or more inside get_block().  This gives
968  * fine alignment but still allows this function to work in PAGE_SIZE units.
969  */
970 static int do_direct_IO(struct dio *dio, struct dio_submit *sdio,
971 			struct buffer_head *map_bh)
972 {
973 	const unsigned blkbits = sdio->blkbits;
974 	const unsigned i_blkbits = blkbits + sdio->blkfactor;
975 	int ret = 0;
976 
977 	while (sdio->block_in_file < sdio->final_block_in_request) {
978 		struct page *page;
979 		size_t from, to;
980 
981 		page = dio_get_page(dio, sdio);
982 		if (IS_ERR(page)) {
983 			ret = PTR_ERR(page);
984 			goto out;
985 		}
986 		from = sdio->head ? 0 : sdio->from;
987 		to = (sdio->head == sdio->tail - 1) ? sdio->to : PAGE_SIZE;
988 		sdio->head++;
989 
990 		while (from < to) {
991 			unsigned this_chunk_bytes;	/* # of bytes mapped */
992 			unsigned this_chunk_blocks;	/* # of blocks */
993 			unsigned u;
994 
995 			if (sdio->blocks_available == 0) {
996 				/*
997 				 * Need to go and map some more disk
998 				 */
999 				unsigned long blkmask;
1000 				unsigned long dio_remainder;
1001 
1002 				ret = get_more_blocks(dio, sdio, map_bh);
1003 				if (ret) {
1004 					put_page(page);
1005 					goto out;
1006 				}
1007 				if (!buffer_mapped(map_bh))
1008 					goto do_holes;
1009 
1010 				sdio->blocks_available =
1011 						map_bh->b_size >> blkbits;
1012 				sdio->next_block_for_io =
1013 					map_bh->b_blocknr << sdio->blkfactor;
1014 				if (buffer_new(map_bh)) {
1015 					clean_bdev_aliases(
1016 						map_bh->b_bdev,
1017 						map_bh->b_blocknr,
1018 						map_bh->b_size >> i_blkbits);
1019 				}
1020 
1021 				if (!sdio->blkfactor)
1022 					goto do_holes;
1023 
1024 				blkmask = (1 << sdio->blkfactor) - 1;
1025 				dio_remainder = (sdio->block_in_file & blkmask);
1026 
1027 				/*
1028 				 * If we are at the start of IO and that IO
1029 				 * starts partway into a fs-block,
1030 				 * dio_remainder will be non-zero.  If the IO
1031 				 * is a read then we can simply advance the IO
1032 				 * cursor to the first block which is to be
1033 				 * read.  But if the IO is a write and the
1034 				 * block was newly allocated we cannot do that;
1035 				 * the start of the fs block must be zeroed out
1036 				 * on-disk
1037 				 */
1038 				if (!buffer_new(map_bh))
1039 					sdio->next_block_for_io += dio_remainder;
1040 				sdio->blocks_available -= dio_remainder;
1041 			}
1042 do_holes:
1043 			/* Handle holes */
1044 			if (!buffer_mapped(map_bh)) {
1045 				loff_t i_size_aligned;
1046 
1047 				/* AKPM: eargh, -ENOTBLK is a hack */
1048 				if (dio->op == REQ_OP_WRITE) {
1049 					put_page(page);
1050 					return -ENOTBLK;
1051 				}
1052 
1053 				/*
1054 				 * Be sure to account for a partial block as the
1055 				 * last block in the file
1056 				 */
1057 				i_size_aligned = ALIGN(i_size_read(dio->inode),
1058 							1 << blkbits);
1059 				if (sdio->block_in_file >=
1060 						i_size_aligned >> blkbits) {
1061 					/* We hit eof */
1062 					put_page(page);
1063 					goto out;
1064 				}
1065 				zero_user(page, from, 1 << blkbits);
1066 				sdio->block_in_file++;
1067 				from += 1 << blkbits;
1068 				dio->result += 1 << blkbits;
1069 				goto next_block;
1070 			}
1071 
1072 			/*
1073 			 * If we're performing IO which has an alignment which
1074 			 * is finer than the underlying fs, go check to see if
1075 			 * we must zero out the start of this block.
1076 			 */
1077 			if (unlikely(sdio->blkfactor && !sdio->start_zero_done))
1078 				dio_zero_block(dio, sdio, 0, map_bh);
1079 
1080 			/*
1081 			 * Work out, in this_chunk_blocks, how much disk we
1082 			 * can add to this page
1083 			 */
1084 			this_chunk_blocks = sdio->blocks_available;
1085 			u = (to - from) >> blkbits;
1086 			if (this_chunk_blocks > u)
1087 				this_chunk_blocks = u;
1088 			u = sdio->final_block_in_request - sdio->block_in_file;
1089 			if (this_chunk_blocks > u)
1090 				this_chunk_blocks = u;
1091 			this_chunk_bytes = this_chunk_blocks << blkbits;
1092 			BUG_ON(this_chunk_bytes == 0);
1093 
1094 			if (this_chunk_blocks == sdio->blocks_available)
1095 				sdio->boundary = buffer_boundary(map_bh);
1096 			ret = submit_page_section(dio, sdio, page,
1097 						  from,
1098 						  this_chunk_bytes,
1099 						  sdio->next_block_for_io,
1100 						  map_bh);
1101 			if (ret) {
1102 				put_page(page);
1103 				goto out;
1104 			}
1105 			sdio->next_block_for_io += this_chunk_blocks;
1106 
1107 			sdio->block_in_file += this_chunk_blocks;
1108 			from += this_chunk_bytes;
1109 			dio->result += this_chunk_bytes;
1110 			sdio->blocks_available -= this_chunk_blocks;
1111 next_block:
1112 			BUG_ON(sdio->block_in_file > sdio->final_block_in_request);
1113 			if (sdio->block_in_file == sdio->final_block_in_request)
1114 				break;
1115 		}
1116 
1117 		/* Drop the ref which was taken in get_user_pages() */
1118 		put_page(page);
1119 	}
1120 out:
1121 	return ret;
1122 }
1123 
1124 static inline int drop_refcount(struct dio *dio)
1125 {
1126 	int ret2;
1127 	unsigned long flags;
1128 
1129 	/*
1130 	 * Sync will always be dropping the final ref and completing the
1131 	 * operation.  AIO can if it was a broken operation described above or
1132 	 * in fact if all the bios race to complete before we get here.  In
1133 	 * that case dio_complete() translates the EIOCBQUEUED into the proper
1134 	 * return code that the caller will hand to ->complete().
1135 	 *
1136 	 * This is managed by the bio_lock instead of being an atomic_t so that
1137 	 * completion paths can drop their ref and use the remaining count to
1138 	 * decide to wake the submission path atomically.
1139 	 */
1140 	spin_lock_irqsave(&dio->bio_lock, flags);
1141 	ret2 = --dio->refcount;
1142 	spin_unlock_irqrestore(&dio->bio_lock, flags);
1143 	return ret2;
1144 }
1145 
1146 /*
1147  * This is a library function for use by filesystem drivers.
1148  *
1149  * The locking rules are governed by the flags parameter:
1150  *  - if the flags value contains DIO_LOCKING we use a fancy locking
1151  *    scheme for dumb filesystems.
1152  *    For writes this function is called under i_mutex and returns with
1153  *    i_mutex held, for reads, i_mutex is not held on entry, but it is
1154  *    taken and dropped again before returning.
1155  *  - if the flags value does NOT contain DIO_LOCKING we don't use any
1156  *    internal locking but rather rely on the filesystem to synchronize
1157  *    direct I/O reads/writes versus each other and truncate.
1158  *
1159  * To help with locking against truncate we incremented the i_dio_count
1160  * counter before starting direct I/O, and decrement it once we are done.
1161  * Truncate can wait for it to reach zero to provide exclusion.  It is
1162  * expected that filesystem provide exclusion between new direct I/O
1163  * and truncates.  For DIO_LOCKING filesystems this is done by i_mutex,
1164  * but other filesystems need to take care of this on their own.
1165  *
1166  * NOTE: if you pass "sdio" to anything by pointer make sure that function
1167  * is always inlined. Otherwise gcc is unable to split the structure into
1168  * individual fields and will generate much worse code. This is important
1169  * for the whole file.
1170  */
1171 static inline ssize_t
1172 do_blockdev_direct_IO(struct kiocb *iocb, struct inode *inode,
1173 		      struct block_device *bdev, struct iov_iter *iter,
1174 		      get_block_t get_block, dio_iodone_t end_io,
1175 		      dio_submit_t submit_io, int flags)
1176 {
1177 	unsigned i_blkbits = READ_ONCE(inode->i_blkbits);
1178 	unsigned blkbits = i_blkbits;
1179 	unsigned blocksize_mask = (1 << blkbits) - 1;
1180 	ssize_t retval = -EINVAL;
1181 	size_t count = iov_iter_count(iter);
1182 	loff_t offset = iocb->ki_pos;
1183 	loff_t end = offset + count;
1184 	struct dio *dio;
1185 	struct dio_submit sdio = { 0, };
1186 	struct buffer_head map_bh = { 0, };
1187 	struct blk_plug plug;
1188 	unsigned long align = offset | iov_iter_alignment(iter);
1189 
1190 	/*
1191 	 * Avoid references to bdev if not absolutely needed to give
1192 	 * the early prefetch in the caller enough time.
1193 	 */
1194 
1195 	if (align & blocksize_mask) {
1196 		if (bdev)
1197 			blkbits = blksize_bits(bdev_logical_block_size(bdev));
1198 		blocksize_mask = (1 << blkbits) - 1;
1199 		if (align & blocksize_mask)
1200 			goto out;
1201 	}
1202 
1203 	/* watch out for a 0 len io from a tricksy fs */
1204 	if (iov_iter_rw(iter) == READ && !iov_iter_count(iter))
1205 		return 0;
1206 
1207 	dio = kmem_cache_alloc(dio_cache, GFP_KERNEL);
1208 	retval = -ENOMEM;
1209 	if (!dio)
1210 		goto out;
1211 	/*
1212 	 * Believe it or not, zeroing out the page array caused a .5%
1213 	 * performance regression in a database benchmark.  So, we take
1214 	 * care to only zero out what's needed.
1215 	 */
1216 	memset(dio, 0, offsetof(struct dio, pages));
1217 
1218 	dio->flags = flags;
1219 	if (dio->flags & DIO_LOCKING) {
1220 		if (iov_iter_rw(iter) == READ) {
1221 			struct address_space *mapping =
1222 					iocb->ki_filp->f_mapping;
1223 
1224 			/* will be released by direct_io_worker */
1225 			inode_lock(inode);
1226 
1227 			retval = filemap_write_and_wait_range(mapping, offset,
1228 							      end - 1);
1229 			if (retval) {
1230 				inode_unlock(inode);
1231 				kmem_cache_free(dio_cache, dio);
1232 				goto out;
1233 			}
1234 		}
1235 	}
1236 
1237 	/* Once we sampled i_size check for reads beyond EOF */
1238 	dio->i_size = i_size_read(inode);
1239 	if (iov_iter_rw(iter) == READ && offset >= dio->i_size) {
1240 		if (dio->flags & DIO_LOCKING)
1241 			inode_unlock(inode);
1242 		kmem_cache_free(dio_cache, dio);
1243 		retval = 0;
1244 		goto out;
1245 	}
1246 
1247 	/*
1248 	 * For file extending writes updating i_size before data writeouts
1249 	 * complete can expose uninitialized blocks in dumb filesystems.
1250 	 * In that case we need to wait for I/O completion even if asked
1251 	 * for an asynchronous write.
1252 	 */
1253 	if (is_sync_kiocb(iocb))
1254 		dio->is_async = false;
1255 	else if (!(dio->flags & DIO_ASYNC_EXTEND) &&
1256 		 iov_iter_rw(iter) == WRITE && end > i_size_read(inode))
1257 		dio->is_async = false;
1258 	else
1259 		dio->is_async = true;
1260 
1261 	dio->inode = inode;
1262 	if (iov_iter_rw(iter) == WRITE) {
1263 		dio->op = REQ_OP_WRITE;
1264 		dio->op_flags = REQ_SYNC | REQ_IDLE;
1265 		if (iocb->ki_flags & IOCB_NOWAIT)
1266 			dio->op_flags |= REQ_NOWAIT;
1267 	} else {
1268 		dio->op = REQ_OP_READ;
1269 	}
1270 
1271 	/*
1272 	 * For AIO O_(D)SYNC writes we need to defer completions to a workqueue
1273 	 * so that we can call ->fsync.
1274 	 */
1275 	if (dio->is_async && iov_iter_rw(iter) == WRITE) {
1276 		retval = 0;
1277 		if ((iocb->ki_filp->f_flags & O_DSYNC) ||
1278 		    IS_SYNC(iocb->ki_filp->f_mapping->host))
1279 			retval = dio_set_defer_completion(dio);
1280 		else if (!dio->inode->i_sb->s_dio_done_wq) {
1281 			/*
1282 			 * In case of AIO write racing with buffered read we
1283 			 * need to defer completion. We can't decide this now,
1284 			 * however the workqueue needs to be initialized here.
1285 			 */
1286 			retval = sb_init_dio_done_wq(dio->inode->i_sb);
1287 		}
1288 		if (retval) {
1289 			/*
1290 			 * We grab i_mutex only for reads so we don't have
1291 			 * to release it here
1292 			 */
1293 			kmem_cache_free(dio_cache, dio);
1294 			goto out;
1295 		}
1296 	}
1297 
1298 	/*
1299 	 * Will be decremented at I/O completion time.
1300 	 */
1301 	if (!(dio->flags & DIO_SKIP_DIO_COUNT))
1302 		inode_dio_begin(inode);
1303 
1304 	retval = 0;
1305 	sdio.blkbits = blkbits;
1306 	sdio.blkfactor = i_blkbits - blkbits;
1307 	sdio.block_in_file = offset >> blkbits;
1308 
1309 	sdio.get_block = get_block;
1310 	dio->end_io = end_io;
1311 	sdio.submit_io = submit_io;
1312 	sdio.final_block_in_bio = -1;
1313 	sdio.next_block_for_io = -1;
1314 
1315 	dio->iocb = iocb;
1316 
1317 	spin_lock_init(&dio->bio_lock);
1318 	dio->refcount = 1;
1319 
1320 	dio->should_dirty = (iter->type == ITER_IOVEC);
1321 	sdio.iter = iter;
1322 	sdio.final_block_in_request =
1323 		(offset + iov_iter_count(iter)) >> blkbits;
1324 
1325 	/*
1326 	 * In case of non-aligned buffers, we may need 2 more
1327 	 * pages since we need to zero out first and last block.
1328 	 */
1329 	if (unlikely(sdio.blkfactor))
1330 		sdio.pages_in_io = 2;
1331 
1332 	sdio.pages_in_io += iov_iter_npages(iter, INT_MAX);
1333 
1334 	blk_start_plug(&plug);
1335 
1336 	retval = do_direct_IO(dio, &sdio, &map_bh);
1337 	if (retval)
1338 		dio_cleanup(dio, &sdio);
1339 
1340 	if (retval == -ENOTBLK) {
1341 		/*
1342 		 * The remaining part of the request will be
1343 		 * be handled by buffered I/O when we return
1344 		 */
1345 		retval = 0;
1346 	}
1347 	/*
1348 	 * There may be some unwritten disk at the end of a part-written
1349 	 * fs-block-sized block.  Go zero that now.
1350 	 */
1351 	dio_zero_block(dio, &sdio, 1, &map_bh);
1352 
1353 	if (sdio.cur_page) {
1354 		ssize_t ret2;
1355 
1356 		ret2 = dio_send_cur_page(dio, &sdio, &map_bh);
1357 		if (retval == 0)
1358 			retval = ret2;
1359 		put_page(sdio.cur_page);
1360 		sdio.cur_page = NULL;
1361 	}
1362 	if (sdio.bio)
1363 		dio_bio_submit(dio, &sdio);
1364 
1365 	blk_finish_plug(&plug);
1366 
1367 	/*
1368 	 * It is possible that, we return short IO due to end of file.
1369 	 * In that case, we need to release all the pages we got hold on.
1370 	 */
1371 	dio_cleanup(dio, &sdio);
1372 
1373 	/*
1374 	 * All block lookups have been performed. For READ requests
1375 	 * we can let i_mutex go now that its achieved its purpose
1376 	 * of protecting us from looking up uninitialized blocks.
1377 	 */
1378 	if (iov_iter_rw(iter) == READ && (dio->flags & DIO_LOCKING))
1379 		inode_unlock(dio->inode);
1380 
1381 	/*
1382 	 * The only time we want to leave bios in flight is when a successful
1383 	 * partial aio read or full aio write have been setup.  In that case
1384 	 * bio completion will call aio_complete.  The only time it's safe to
1385 	 * call aio_complete is when we return -EIOCBQUEUED, so we key on that.
1386 	 * This had *better* be the only place that raises -EIOCBQUEUED.
1387 	 */
1388 	BUG_ON(retval == -EIOCBQUEUED);
1389 	if (dio->is_async && retval == 0 && dio->result &&
1390 	    (iov_iter_rw(iter) == READ || dio->result == count))
1391 		retval = -EIOCBQUEUED;
1392 	else
1393 		dio_await_completion(dio);
1394 
1395 	if (drop_refcount(dio) == 0) {
1396 		retval = dio_complete(dio, retval, DIO_COMPLETE_INVALIDATE);
1397 	} else
1398 		BUG_ON(retval != -EIOCBQUEUED);
1399 
1400 out:
1401 	return retval;
1402 }
1403 
1404 ssize_t __blockdev_direct_IO(struct kiocb *iocb, struct inode *inode,
1405 			     struct block_device *bdev, struct iov_iter *iter,
1406 			     get_block_t get_block,
1407 			     dio_iodone_t end_io, dio_submit_t submit_io,
1408 			     int flags)
1409 {
1410 	/*
1411 	 * The block device state is needed in the end to finally
1412 	 * submit everything.  Since it's likely to be cache cold
1413 	 * prefetch it here as first thing to hide some of the
1414 	 * latency.
1415 	 *
1416 	 * Attempt to prefetch the pieces we likely need later.
1417 	 */
1418 	prefetch(&bdev->bd_disk->part_tbl);
1419 	prefetch(bdev->bd_queue);
1420 	prefetch((char *)bdev->bd_queue + SMP_CACHE_BYTES);
1421 
1422 	return do_blockdev_direct_IO(iocb, inode, bdev, iter, get_block,
1423 				     end_io, submit_io, flags);
1424 }
1425 
1426 EXPORT_SYMBOL(__blockdev_direct_IO);
1427 
1428 static __init int dio_init(void)
1429 {
1430 	dio_cache = KMEM_CACHE(dio, SLAB_PANIC);
1431 	return 0;
1432 }
1433 module_init(dio_init)
1434