1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * fs/dcache.c 4 * 5 * Complete reimplementation 6 * (C) 1997 Thomas Schoebel-Theuer, 7 * with heavy changes by Linus Torvalds 8 */ 9 10 /* 11 * Notes on the allocation strategy: 12 * 13 * The dcache is a master of the icache - whenever a dcache entry 14 * exists, the inode will always exist. "iput()" is done either when 15 * the dcache entry is deleted or garbage collected. 16 */ 17 18 #include <linux/ratelimit.h> 19 #include <linux/string.h> 20 #include <linux/mm.h> 21 #include <linux/fs.h> 22 #include <linux/fscrypt.h> 23 #include <linux/fsnotify.h> 24 #include <linux/slab.h> 25 #include <linux/init.h> 26 #include <linux/hash.h> 27 #include <linux/cache.h> 28 #include <linux/export.h> 29 #include <linux/security.h> 30 #include <linux/seqlock.h> 31 #include <linux/memblock.h> 32 #include <linux/bit_spinlock.h> 33 #include <linux/rculist_bl.h> 34 #include <linux/list_lru.h> 35 #include "internal.h" 36 #include "mount.h" 37 38 /* 39 * Usage: 40 * dcache->d_inode->i_lock protects: 41 * - i_dentry, d_u.d_alias, d_inode of aliases 42 * dcache_hash_bucket lock protects: 43 * - the dcache hash table 44 * s_roots bl list spinlock protects: 45 * - the s_roots list (see __d_drop) 46 * dentry->d_sb->s_dentry_lru_lock protects: 47 * - the dcache lru lists and counters 48 * d_lock protects: 49 * - d_flags 50 * - d_name 51 * - d_lru 52 * - d_count 53 * - d_unhashed() 54 * - d_parent and d_subdirs 55 * - childrens' d_child and d_parent 56 * - d_u.d_alias, d_inode 57 * 58 * Ordering: 59 * dentry->d_inode->i_lock 60 * dentry->d_lock 61 * dentry->d_sb->s_dentry_lru_lock 62 * dcache_hash_bucket lock 63 * s_roots lock 64 * 65 * If there is an ancestor relationship: 66 * dentry->d_parent->...->d_parent->d_lock 67 * ... 68 * dentry->d_parent->d_lock 69 * dentry->d_lock 70 * 71 * If no ancestor relationship: 72 * arbitrary, since it's serialized on rename_lock 73 */ 74 int sysctl_vfs_cache_pressure __read_mostly = 100; 75 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure); 76 77 __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock); 78 79 EXPORT_SYMBOL(rename_lock); 80 81 static struct kmem_cache *dentry_cache __read_mostly; 82 83 const struct qstr empty_name = QSTR_INIT("", 0); 84 EXPORT_SYMBOL(empty_name); 85 const struct qstr slash_name = QSTR_INIT("/", 1); 86 EXPORT_SYMBOL(slash_name); 87 88 /* 89 * This is the single most critical data structure when it comes 90 * to the dcache: the hashtable for lookups. Somebody should try 91 * to make this good - I've just made it work. 92 * 93 * This hash-function tries to avoid losing too many bits of hash 94 * information, yet avoid using a prime hash-size or similar. 95 */ 96 97 static unsigned int d_hash_shift __read_mostly; 98 99 static struct hlist_bl_head *dentry_hashtable __read_mostly; 100 101 static inline struct hlist_bl_head *d_hash(unsigned int hash) 102 { 103 return dentry_hashtable + (hash >> d_hash_shift); 104 } 105 106 #define IN_LOOKUP_SHIFT 10 107 static struct hlist_bl_head in_lookup_hashtable[1 << IN_LOOKUP_SHIFT]; 108 109 static inline struct hlist_bl_head *in_lookup_hash(const struct dentry *parent, 110 unsigned int hash) 111 { 112 hash += (unsigned long) parent / L1_CACHE_BYTES; 113 return in_lookup_hashtable + hash_32(hash, IN_LOOKUP_SHIFT); 114 } 115 116 117 /* Statistics gathering. */ 118 struct dentry_stat_t dentry_stat = { 119 .age_limit = 45, 120 }; 121 122 static DEFINE_PER_CPU(long, nr_dentry); 123 static DEFINE_PER_CPU(long, nr_dentry_unused); 124 static DEFINE_PER_CPU(long, nr_dentry_negative); 125 126 #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS) 127 128 /* 129 * Here we resort to our own counters instead of using generic per-cpu counters 130 * for consistency with what the vfs inode code does. We are expected to harvest 131 * better code and performance by having our own specialized counters. 132 * 133 * Please note that the loop is done over all possible CPUs, not over all online 134 * CPUs. The reason for this is that we don't want to play games with CPUs going 135 * on and off. If one of them goes off, we will just keep their counters. 136 * 137 * glommer: See cffbc8a for details, and if you ever intend to change this, 138 * please update all vfs counters to match. 139 */ 140 static long get_nr_dentry(void) 141 { 142 int i; 143 long sum = 0; 144 for_each_possible_cpu(i) 145 sum += per_cpu(nr_dentry, i); 146 return sum < 0 ? 0 : sum; 147 } 148 149 static long get_nr_dentry_unused(void) 150 { 151 int i; 152 long sum = 0; 153 for_each_possible_cpu(i) 154 sum += per_cpu(nr_dentry_unused, i); 155 return sum < 0 ? 0 : sum; 156 } 157 158 static long get_nr_dentry_negative(void) 159 { 160 int i; 161 long sum = 0; 162 163 for_each_possible_cpu(i) 164 sum += per_cpu(nr_dentry_negative, i); 165 return sum < 0 ? 0 : sum; 166 } 167 168 int proc_nr_dentry(struct ctl_table *table, int write, void __user *buffer, 169 size_t *lenp, loff_t *ppos) 170 { 171 dentry_stat.nr_dentry = get_nr_dentry(); 172 dentry_stat.nr_unused = get_nr_dentry_unused(); 173 dentry_stat.nr_negative = get_nr_dentry_negative(); 174 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos); 175 } 176 #endif 177 178 /* 179 * Compare 2 name strings, return 0 if they match, otherwise non-zero. 180 * The strings are both count bytes long, and count is non-zero. 181 */ 182 #ifdef CONFIG_DCACHE_WORD_ACCESS 183 184 #include <asm/word-at-a-time.h> 185 /* 186 * NOTE! 'cs' and 'scount' come from a dentry, so it has a 187 * aligned allocation for this particular component. We don't 188 * strictly need the load_unaligned_zeropad() safety, but it 189 * doesn't hurt either. 190 * 191 * In contrast, 'ct' and 'tcount' can be from a pathname, and do 192 * need the careful unaligned handling. 193 */ 194 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount) 195 { 196 unsigned long a,b,mask; 197 198 for (;;) { 199 a = read_word_at_a_time(cs); 200 b = load_unaligned_zeropad(ct); 201 if (tcount < sizeof(unsigned long)) 202 break; 203 if (unlikely(a != b)) 204 return 1; 205 cs += sizeof(unsigned long); 206 ct += sizeof(unsigned long); 207 tcount -= sizeof(unsigned long); 208 if (!tcount) 209 return 0; 210 } 211 mask = bytemask_from_count(tcount); 212 return unlikely(!!((a ^ b) & mask)); 213 } 214 215 #else 216 217 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount) 218 { 219 do { 220 if (*cs != *ct) 221 return 1; 222 cs++; 223 ct++; 224 tcount--; 225 } while (tcount); 226 return 0; 227 } 228 229 #endif 230 231 static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount) 232 { 233 /* 234 * Be careful about RCU walk racing with rename: 235 * use 'READ_ONCE' to fetch the name pointer. 236 * 237 * NOTE! Even if a rename will mean that the length 238 * was not loaded atomically, we don't care. The 239 * RCU walk will check the sequence count eventually, 240 * and catch it. And we won't overrun the buffer, 241 * because we're reading the name pointer atomically, 242 * and a dentry name is guaranteed to be properly 243 * terminated with a NUL byte. 244 * 245 * End result: even if 'len' is wrong, we'll exit 246 * early because the data cannot match (there can 247 * be no NUL in the ct/tcount data) 248 */ 249 const unsigned char *cs = READ_ONCE(dentry->d_name.name); 250 251 return dentry_string_cmp(cs, ct, tcount); 252 } 253 254 struct external_name { 255 union { 256 atomic_t count; 257 struct rcu_head head; 258 } u; 259 unsigned char name[]; 260 }; 261 262 static inline struct external_name *external_name(struct dentry *dentry) 263 { 264 return container_of(dentry->d_name.name, struct external_name, name[0]); 265 } 266 267 static void __d_free(struct rcu_head *head) 268 { 269 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu); 270 271 kmem_cache_free(dentry_cache, dentry); 272 } 273 274 static void __d_free_external(struct rcu_head *head) 275 { 276 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu); 277 kfree(external_name(dentry)); 278 kmem_cache_free(dentry_cache, dentry); 279 } 280 281 static inline int dname_external(const struct dentry *dentry) 282 { 283 return dentry->d_name.name != dentry->d_iname; 284 } 285 286 void take_dentry_name_snapshot(struct name_snapshot *name, struct dentry *dentry) 287 { 288 spin_lock(&dentry->d_lock); 289 name->name = dentry->d_name; 290 if (unlikely(dname_external(dentry))) { 291 atomic_inc(&external_name(dentry)->u.count); 292 } else { 293 memcpy(name->inline_name, dentry->d_iname, 294 dentry->d_name.len + 1); 295 name->name.name = name->inline_name; 296 } 297 spin_unlock(&dentry->d_lock); 298 } 299 EXPORT_SYMBOL(take_dentry_name_snapshot); 300 301 void release_dentry_name_snapshot(struct name_snapshot *name) 302 { 303 if (unlikely(name->name.name != name->inline_name)) { 304 struct external_name *p; 305 p = container_of(name->name.name, struct external_name, name[0]); 306 if (unlikely(atomic_dec_and_test(&p->u.count))) 307 kfree_rcu(p, u.head); 308 } 309 } 310 EXPORT_SYMBOL(release_dentry_name_snapshot); 311 312 static inline void __d_set_inode_and_type(struct dentry *dentry, 313 struct inode *inode, 314 unsigned type_flags) 315 { 316 unsigned flags; 317 318 dentry->d_inode = inode; 319 flags = READ_ONCE(dentry->d_flags); 320 flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU); 321 flags |= type_flags; 322 WRITE_ONCE(dentry->d_flags, flags); 323 } 324 325 static inline void __d_clear_type_and_inode(struct dentry *dentry) 326 { 327 unsigned flags = READ_ONCE(dentry->d_flags); 328 329 flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU); 330 WRITE_ONCE(dentry->d_flags, flags); 331 dentry->d_inode = NULL; 332 if (dentry->d_flags & DCACHE_LRU_LIST) 333 this_cpu_inc(nr_dentry_negative); 334 } 335 336 static void dentry_free(struct dentry *dentry) 337 { 338 WARN_ON(!hlist_unhashed(&dentry->d_u.d_alias)); 339 if (unlikely(dname_external(dentry))) { 340 struct external_name *p = external_name(dentry); 341 if (likely(atomic_dec_and_test(&p->u.count))) { 342 call_rcu(&dentry->d_u.d_rcu, __d_free_external); 343 return; 344 } 345 } 346 /* if dentry was never visible to RCU, immediate free is OK */ 347 if (dentry->d_flags & DCACHE_NORCU) 348 __d_free(&dentry->d_u.d_rcu); 349 else 350 call_rcu(&dentry->d_u.d_rcu, __d_free); 351 } 352 353 /* 354 * Release the dentry's inode, using the filesystem 355 * d_iput() operation if defined. 356 */ 357 static void dentry_unlink_inode(struct dentry * dentry) 358 __releases(dentry->d_lock) 359 __releases(dentry->d_inode->i_lock) 360 { 361 struct inode *inode = dentry->d_inode; 362 363 raw_write_seqcount_begin(&dentry->d_seq); 364 __d_clear_type_and_inode(dentry); 365 hlist_del_init(&dentry->d_u.d_alias); 366 raw_write_seqcount_end(&dentry->d_seq); 367 spin_unlock(&dentry->d_lock); 368 spin_unlock(&inode->i_lock); 369 if (!inode->i_nlink) 370 fsnotify_inoderemove(inode); 371 if (dentry->d_op && dentry->d_op->d_iput) 372 dentry->d_op->d_iput(dentry, inode); 373 else 374 iput(inode); 375 } 376 377 /* 378 * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry 379 * is in use - which includes both the "real" per-superblock 380 * LRU list _and_ the DCACHE_SHRINK_LIST use. 381 * 382 * The DCACHE_SHRINK_LIST bit is set whenever the dentry is 383 * on the shrink list (ie not on the superblock LRU list). 384 * 385 * The per-cpu "nr_dentry_unused" counters are updated with 386 * the DCACHE_LRU_LIST bit. 387 * 388 * The per-cpu "nr_dentry_negative" counters are only updated 389 * when deleted from or added to the per-superblock LRU list, not 390 * from/to the shrink list. That is to avoid an unneeded dec/inc 391 * pair when moving from LRU to shrink list in select_collect(). 392 * 393 * These helper functions make sure we always follow the 394 * rules. d_lock must be held by the caller. 395 */ 396 #define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x)) 397 static void d_lru_add(struct dentry *dentry) 398 { 399 D_FLAG_VERIFY(dentry, 0); 400 dentry->d_flags |= DCACHE_LRU_LIST; 401 this_cpu_inc(nr_dentry_unused); 402 if (d_is_negative(dentry)) 403 this_cpu_inc(nr_dentry_negative); 404 WARN_ON_ONCE(!list_lru_add(&dentry->d_sb->s_dentry_lru, &dentry->d_lru)); 405 } 406 407 static void d_lru_del(struct dentry *dentry) 408 { 409 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST); 410 dentry->d_flags &= ~DCACHE_LRU_LIST; 411 this_cpu_dec(nr_dentry_unused); 412 if (d_is_negative(dentry)) 413 this_cpu_dec(nr_dentry_negative); 414 WARN_ON_ONCE(!list_lru_del(&dentry->d_sb->s_dentry_lru, &dentry->d_lru)); 415 } 416 417 static void d_shrink_del(struct dentry *dentry) 418 { 419 D_FLAG_VERIFY(dentry, DCACHE_SHRINK_LIST | DCACHE_LRU_LIST); 420 list_del_init(&dentry->d_lru); 421 dentry->d_flags &= ~(DCACHE_SHRINK_LIST | DCACHE_LRU_LIST); 422 this_cpu_dec(nr_dentry_unused); 423 } 424 425 static void d_shrink_add(struct dentry *dentry, struct list_head *list) 426 { 427 D_FLAG_VERIFY(dentry, 0); 428 list_add(&dentry->d_lru, list); 429 dentry->d_flags |= DCACHE_SHRINK_LIST | DCACHE_LRU_LIST; 430 this_cpu_inc(nr_dentry_unused); 431 } 432 433 /* 434 * These can only be called under the global LRU lock, ie during the 435 * callback for freeing the LRU list. "isolate" removes it from the 436 * LRU lists entirely, while shrink_move moves it to the indicated 437 * private list. 438 */ 439 static void d_lru_isolate(struct list_lru_one *lru, struct dentry *dentry) 440 { 441 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST); 442 dentry->d_flags &= ~DCACHE_LRU_LIST; 443 this_cpu_dec(nr_dentry_unused); 444 if (d_is_negative(dentry)) 445 this_cpu_dec(nr_dentry_negative); 446 list_lru_isolate(lru, &dentry->d_lru); 447 } 448 449 static void d_lru_shrink_move(struct list_lru_one *lru, struct dentry *dentry, 450 struct list_head *list) 451 { 452 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST); 453 dentry->d_flags |= DCACHE_SHRINK_LIST; 454 if (d_is_negative(dentry)) 455 this_cpu_dec(nr_dentry_negative); 456 list_lru_isolate_move(lru, &dentry->d_lru, list); 457 } 458 459 /** 460 * d_drop - drop a dentry 461 * @dentry: dentry to drop 462 * 463 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't 464 * be found through a VFS lookup any more. Note that this is different from 465 * deleting the dentry - d_delete will try to mark the dentry negative if 466 * possible, giving a successful _negative_ lookup, while d_drop will 467 * just make the cache lookup fail. 468 * 469 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some 470 * reason (NFS timeouts or autofs deletes). 471 * 472 * __d_drop requires dentry->d_lock 473 * ___d_drop doesn't mark dentry as "unhashed" 474 * (dentry->d_hash.pprev will be LIST_POISON2, not NULL). 475 */ 476 static void ___d_drop(struct dentry *dentry) 477 { 478 struct hlist_bl_head *b; 479 /* 480 * Hashed dentries are normally on the dentry hashtable, 481 * with the exception of those newly allocated by 482 * d_obtain_root, which are always IS_ROOT: 483 */ 484 if (unlikely(IS_ROOT(dentry))) 485 b = &dentry->d_sb->s_roots; 486 else 487 b = d_hash(dentry->d_name.hash); 488 489 hlist_bl_lock(b); 490 __hlist_bl_del(&dentry->d_hash); 491 hlist_bl_unlock(b); 492 } 493 494 void __d_drop(struct dentry *dentry) 495 { 496 if (!d_unhashed(dentry)) { 497 ___d_drop(dentry); 498 dentry->d_hash.pprev = NULL; 499 write_seqcount_invalidate(&dentry->d_seq); 500 } 501 } 502 EXPORT_SYMBOL(__d_drop); 503 504 void d_drop(struct dentry *dentry) 505 { 506 spin_lock(&dentry->d_lock); 507 __d_drop(dentry); 508 spin_unlock(&dentry->d_lock); 509 } 510 EXPORT_SYMBOL(d_drop); 511 512 static inline void dentry_unlist(struct dentry *dentry, struct dentry *parent) 513 { 514 struct dentry *next; 515 /* 516 * Inform d_walk() and shrink_dentry_list() that we are no longer 517 * attached to the dentry tree 518 */ 519 dentry->d_flags |= DCACHE_DENTRY_KILLED; 520 if (unlikely(list_empty(&dentry->d_child))) 521 return; 522 __list_del_entry(&dentry->d_child); 523 /* 524 * Cursors can move around the list of children. While we'd been 525 * a normal list member, it didn't matter - ->d_child.next would've 526 * been updated. However, from now on it won't be and for the 527 * things like d_walk() it might end up with a nasty surprise. 528 * Normally d_walk() doesn't care about cursors moving around - 529 * ->d_lock on parent prevents that and since a cursor has no children 530 * of its own, we get through it without ever unlocking the parent. 531 * There is one exception, though - if we ascend from a child that 532 * gets killed as soon as we unlock it, the next sibling is found 533 * using the value left in its ->d_child.next. And if _that_ 534 * pointed to a cursor, and cursor got moved (e.g. by lseek()) 535 * before d_walk() regains parent->d_lock, we'll end up skipping 536 * everything the cursor had been moved past. 537 * 538 * Solution: make sure that the pointer left behind in ->d_child.next 539 * points to something that won't be moving around. I.e. skip the 540 * cursors. 541 */ 542 while (dentry->d_child.next != &parent->d_subdirs) { 543 next = list_entry(dentry->d_child.next, struct dentry, d_child); 544 if (likely(!(next->d_flags & DCACHE_DENTRY_CURSOR))) 545 break; 546 dentry->d_child.next = next->d_child.next; 547 } 548 } 549 550 static void __dentry_kill(struct dentry *dentry) 551 { 552 struct dentry *parent = NULL; 553 bool can_free = true; 554 if (!IS_ROOT(dentry)) 555 parent = dentry->d_parent; 556 557 /* 558 * The dentry is now unrecoverably dead to the world. 559 */ 560 lockref_mark_dead(&dentry->d_lockref); 561 562 /* 563 * inform the fs via d_prune that this dentry is about to be 564 * unhashed and destroyed. 565 */ 566 if (dentry->d_flags & DCACHE_OP_PRUNE) 567 dentry->d_op->d_prune(dentry); 568 569 if (dentry->d_flags & DCACHE_LRU_LIST) { 570 if (!(dentry->d_flags & DCACHE_SHRINK_LIST)) 571 d_lru_del(dentry); 572 } 573 /* if it was on the hash then remove it */ 574 __d_drop(dentry); 575 dentry_unlist(dentry, parent); 576 if (parent) 577 spin_unlock(&parent->d_lock); 578 if (dentry->d_inode) 579 dentry_unlink_inode(dentry); 580 else 581 spin_unlock(&dentry->d_lock); 582 this_cpu_dec(nr_dentry); 583 if (dentry->d_op && dentry->d_op->d_release) 584 dentry->d_op->d_release(dentry); 585 586 spin_lock(&dentry->d_lock); 587 if (dentry->d_flags & DCACHE_SHRINK_LIST) { 588 dentry->d_flags |= DCACHE_MAY_FREE; 589 can_free = false; 590 } 591 spin_unlock(&dentry->d_lock); 592 if (likely(can_free)) 593 dentry_free(dentry); 594 cond_resched(); 595 } 596 597 static struct dentry *__lock_parent(struct dentry *dentry) 598 { 599 struct dentry *parent; 600 rcu_read_lock(); 601 spin_unlock(&dentry->d_lock); 602 again: 603 parent = READ_ONCE(dentry->d_parent); 604 spin_lock(&parent->d_lock); 605 /* 606 * We can't blindly lock dentry until we are sure 607 * that we won't violate the locking order. 608 * Any changes of dentry->d_parent must have 609 * been done with parent->d_lock held, so 610 * spin_lock() above is enough of a barrier 611 * for checking if it's still our child. 612 */ 613 if (unlikely(parent != dentry->d_parent)) { 614 spin_unlock(&parent->d_lock); 615 goto again; 616 } 617 rcu_read_unlock(); 618 if (parent != dentry) 619 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED); 620 else 621 parent = NULL; 622 return parent; 623 } 624 625 static inline struct dentry *lock_parent(struct dentry *dentry) 626 { 627 struct dentry *parent = dentry->d_parent; 628 if (IS_ROOT(dentry)) 629 return NULL; 630 if (likely(spin_trylock(&parent->d_lock))) 631 return parent; 632 return __lock_parent(dentry); 633 } 634 635 static inline bool retain_dentry(struct dentry *dentry) 636 { 637 WARN_ON(d_in_lookup(dentry)); 638 639 /* Unreachable? Get rid of it */ 640 if (unlikely(d_unhashed(dentry))) 641 return false; 642 643 if (unlikely(dentry->d_flags & DCACHE_DISCONNECTED)) 644 return false; 645 646 if (unlikely(dentry->d_flags & DCACHE_OP_DELETE)) { 647 if (dentry->d_op->d_delete(dentry)) 648 return false; 649 } 650 /* retain; LRU fodder */ 651 dentry->d_lockref.count--; 652 if (unlikely(!(dentry->d_flags & DCACHE_LRU_LIST))) 653 d_lru_add(dentry); 654 else if (unlikely(!(dentry->d_flags & DCACHE_REFERENCED))) 655 dentry->d_flags |= DCACHE_REFERENCED; 656 return true; 657 } 658 659 /* 660 * Finish off a dentry we've decided to kill. 661 * dentry->d_lock must be held, returns with it unlocked. 662 * Returns dentry requiring refcount drop, or NULL if we're done. 663 */ 664 static struct dentry *dentry_kill(struct dentry *dentry) 665 __releases(dentry->d_lock) 666 { 667 struct inode *inode = dentry->d_inode; 668 struct dentry *parent = NULL; 669 670 if (inode && unlikely(!spin_trylock(&inode->i_lock))) 671 goto slow_positive; 672 673 if (!IS_ROOT(dentry)) { 674 parent = dentry->d_parent; 675 if (unlikely(!spin_trylock(&parent->d_lock))) { 676 parent = __lock_parent(dentry); 677 if (likely(inode || !dentry->d_inode)) 678 goto got_locks; 679 /* negative that became positive */ 680 if (parent) 681 spin_unlock(&parent->d_lock); 682 inode = dentry->d_inode; 683 goto slow_positive; 684 } 685 } 686 __dentry_kill(dentry); 687 return parent; 688 689 slow_positive: 690 spin_unlock(&dentry->d_lock); 691 spin_lock(&inode->i_lock); 692 spin_lock(&dentry->d_lock); 693 parent = lock_parent(dentry); 694 got_locks: 695 if (unlikely(dentry->d_lockref.count != 1)) { 696 dentry->d_lockref.count--; 697 } else if (likely(!retain_dentry(dentry))) { 698 __dentry_kill(dentry); 699 return parent; 700 } 701 /* we are keeping it, after all */ 702 if (inode) 703 spin_unlock(&inode->i_lock); 704 if (parent) 705 spin_unlock(&parent->d_lock); 706 spin_unlock(&dentry->d_lock); 707 return NULL; 708 } 709 710 /* 711 * Try to do a lockless dput(), and return whether that was successful. 712 * 713 * If unsuccessful, we return false, having already taken the dentry lock. 714 * 715 * The caller needs to hold the RCU read lock, so that the dentry is 716 * guaranteed to stay around even if the refcount goes down to zero! 717 */ 718 static inline bool fast_dput(struct dentry *dentry) 719 { 720 int ret; 721 unsigned int d_flags; 722 723 /* 724 * If we have a d_op->d_delete() operation, we sould not 725 * let the dentry count go to zero, so use "put_or_lock". 726 */ 727 if (unlikely(dentry->d_flags & DCACHE_OP_DELETE)) 728 return lockref_put_or_lock(&dentry->d_lockref); 729 730 /* 731 * .. otherwise, we can try to just decrement the 732 * lockref optimistically. 733 */ 734 ret = lockref_put_return(&dentry->d_lockref); 735 736 /* 737 * If the lockref_put_return() failed due to the lock being held 738 * by somebody else, the fast path has failed. We will need to 739 * get the lock, and then check the count again. 740 */ 741 if (unlikely(ret < 0)) { 742 spin_lock(&dentry->d_lock); 743 if (dentry->d_lockref.count > 1) { 744 dentry->d_lockref.count--; 745 spin_unlock(&dentry->d_lock); 746 return true; 747 } 748 return false; 749 } 750 751 /* 752 * If we weren't the last ref, we're done. 753 */ 754 if (ret) 755 return true; 756 757 /* 758 * Careful, careful. The reference count went down 759 * to zero, but we don't hold the dentry lock, so 760 * somebody else could get it again, and do another 761 * dput(), and we need to not race with that. 762 * 763 * However, there is a very special and common case 764 * where we don't care, because there is nothing to 765 * do: the dentry is still hashed, it does not have 766 * a 'delete' op, and it's referenced and already on 767 * the LRU list. 768 * 769 * NOTE! Since we aren't locked, these values are 770 * not "stable". However, it is sufficient that at 771 * some point after we dropped the reference the 772 * dentry was hashed and the flags had the proper 773 * value. Other dentry users may have re-gotten 774 * a reference to the dentry and change that, but 775 * our work is done - we can leave the dentry 776 * around with a zero refcount. 777 */ 778 smp_rmb(); 779 d_flags = READ_ONCE(dentry->d_flags); 780 d_flags &= DCACHE_REFERENCED | DCACHE_LRU_LIST | DCACHE_DISCONNECTED; 781 782 /* Nothing to do? Dropping the reference was all we needed? */ 783 if (d_flags == (DCACHE_REFERENCED | DCACHE_LRU_LIST) && !d_unhashed(dentry)) 784 return true; 785 786 /* 787 * Not the fast normal case? Get the lock. We've already decremented 788 * the refcount, but we'll need to re-check the situation after 789 * getting the lock. 790 */ 791 spin_lock(&dentry->d_lock); 792 793 /* 794 * Did somebody else grab a reference to it in the meantime, and 795 * we're no longer the last user after all? Alternatively, somebody 796 * else could have killed it and marked it dead. Either way, we 797 * don't need to do anything else. 798 */ 799 if (dentry->d_lockref.count) { 800 spin_unlock(&dentry->d_lock); 801 return true; 802 } 803 804 /* 805 * Re-get the reference we optimistically dropped. We hold the 806 * lock, and we just tested that it was zero, so we can just 807 * set it to 1. 808 */ 809 dentry->d_lockref.count = 1; 810 return false; 811 } 812 813 814 /* 815 * This is dput 816 * 817 * This is complicated by the fact that we do not want to put 818 * dentries that are no longer on any hash chain on the unused 819 * list: we'd much rather just get rid of them immediately. 820 * 821 * However, that implies that we have to traverse the dentry 822 * tree upwards to the parents which might _also_ now be 823 * scheduled for deletion (it may have been only waiting for 824 * its last child to go away). 825 * 826 * This tail recursion is done by hand as we don't want to depend 827 * on the compiler to always get this right (gcc generally doesn't). 828 * Real recursion would eat up our stack space. 829 */ 830 831 /* 832 * dput - release a dentry 833 * @dentry: dentry to release 834 * 835 * Release a dentry. This will drop the usage count and if appropriate 836 * call the dentry unlink method as well as removing it from the queues and 837 * releasing its resources. If the parent dentries were scheduled for release 838 * they too may now get deleted. 839 */ 840 void dput(struct dentry *dentry) 841 { 842 while (dentry) { 843 might_sleep(); 844 845 rcu_read_lock(); 846 if (likely(fast_dput(dentry))) { 847 rcu_read_unlock(); 848 return; 849 } 850 851 /* Slow case: now with the dentry lock held */ 852 rcu_read_unlock(); 853 854 if (likely(retain_dentry(dentry))) { 855 spin_unlock(&dentry->d_lock); 856 return; 857 } 858 859 dentry = dentry_kill(dentry); 860 } 861 } 862 EXPORT_SYMBOL(dput); 863 864 static void __dput_to_list(struct dentry *dentry, struct list_head *list) 865 __must_hold(&dentry->d_lock) 866 { 867 if (dentry->d_flags & DCACHE_SHRINK_LIST) { 868 /* let the owner of the list it's on deal with it */ 869 --dentry->d_lockref.count; 870 } else { 871 if (dentry->d_flags & DCACHE_LRU_LIST) 872 d_lru_del(dentry); 873 if (!--dentry->d_lockref.count) 874 d_shrink_add(dentry, list); 875 } 876 } 877 878 void dput_to_list(struct dentry *dentry, struct list_head *list) 879 { 880 rcu_read_lock(); 881 if (likely(fast_dput(dentry))) { 882 rcu_read_unlock(); 883 return; 884 } 885 rcu_read_unlock(); 886 if (!retain_dentry(dentry)) 887 __dput_to_list(dentry, list); 888 spin_unlock(&dentry->d_lock); 889 } 890 891 /* This must be called with d_lock held */ 892 static inline void __dget_dlock(struct dentry *dentry) 893 { 894 dentry->d_lockref.count++; 895 } 896 897 static inline void __dget(struct dentry *dentry) 898 { 899 lockref_get(&dentry->d_lockref); 900 } 901 902 struct dentry *dget_parent(struct dentry *dentry) 903 { 904 int gotref; 905 struct dentry *ret; 906 907 /* 908 * Do optimistic parent lookup without any 909 * locking. 910 */ 911 rcu_read_lock(); 912 ret = READ_ONCE(dentry->d_parent); 913 gotref = lockref_get_not_zero(&ret->d_lockref); 914 rcu_read_unlock(); 915 if (likely(gotref)) { 916 if (likely(ret == READ_ONCE(dentry->d_parent))) 917 return ret; 918 dput(ret); 919 } 920 921 repeat: 922 /* 923 * Don't need rcu_dereference because we re-check it was correct under 924 * the lock. 925 */ 926 rcu_read_lock(); 927 ret = dentry->d_parent; 928 spin_lock(&ret->d_lock); 929 if (unlikely(ret != dentry->d_parent)) { 930 spin_unlock(&ret->d_lock); 931 rcu_read_unlock(); 932 goto repeat; 933 } 934 rcu_read_unlock(); 935 BUG_ON(!ret->d_lockref.count); 936 ret->d_lockref.count++; 937 spin_unlock(&ret->d_lock); 938 return ret; 939 } 940 EXPORT_SYMBOL(dget_parent); 941 942 static struct dentry * __d_find_any_alias(struct inode *inode) 943 { 944 struct dentry *alias; 945 946 if (hlist_empty(&inode->i_dentry)) 947 return NULL; 948 alias = hlist_entry(inode->i_dentry.first, struct dentry, d_u.d_alias); 949 __dget(alias); 950 return alias; 951 } 952 953 /** 954 * d_find_any_alias - find any alias for a given inode 955 * @inode: inode to find an alias for 956 * 957 * If any aliases exist for the given inode, take and return a 958 * reference for one of them. If no aliases exist, return %NULL. 959 */ 960 struct dentry *d_find_any_alias(struct inode *inode) 961 { 962 struct dentry *de; 963 964 spin_lock(&inode->i_lock); 965 de = __d_find_any_alias(inode); 966 spin_unlock(&inode->i_lock); 967 return de; 968 } 969 EXPORT_SYMBOL(d_find_any_alias); 970 971 /** 972 * d_find_alias - grab a hashed alias of inode 973 * @inode: inode in question 974 * 975 * If inode has a hashed alias, or is a directory and has any alias, 976 * acquire the reference to alias and return it. Otherwise return NULL. 977 * Notice that if inode is a directory there can be only one alias and 978 * it can be unhashed only if it has no children, or if it is the root 979 * of a filesystem, or if the directory was renamed and d_revalidate 980 * was the first vfs operation to notice. 981 * 982 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer 983 * any other hashed alias over that one. 984 */ 985 static struct dentry *__d_find_alias(struct inode *inode) 986 { 987 struct dentry *alias; 988 989 if (S_ISDIR(inode->i_mode)) 990 return __d_find_any_alias(inode); 991 992 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) { 993 spin_lock(&alias->d_lock); 994 if (!d_unhashed(alias)) { 995 __dget_dlock(alias); 996 spin_unlock(&alias->d_lock); 997 return alias; 998 } 999 spin_unlock(&alias->d_lock); 1000 } 1001 return NULL; 1002 } 1003 1004 struct dentry *d_find_alias(struct inode *inode) 1005 { 1006 struct dentry *de = NULL; 1007 1008 if (!hlist_empty(&inode->i_dentry)) { 1009 spin_lock(&inode->i_lock); 1010 de = __d_find_alias(inode); 1011 spin_unlock(&inode->i_lock); 1012 } 1013 return de; 1014 } 1015 EXPORT_SYMBOL(d_find_alias); 1016 1017 /* 1018 * Try to kill dentries associated with this inode. 1019 * WARNING: you must own a reference to inode. 1020 */ 1021 void d_prune_aliases(struct inode *inode) 1022 { 1023 struct dentry *dentry; 1024 restart: 1025 spin_lock(&inode->i_lock); 1026 hlist_for_each_entry(dentry, &inode->i_dentry, d_u.d_alias) { 1027 spin_lock(&dentry->d_lock); 1028 if (!dentry->d_lockref.count) { 1029 struct dentry *parent = lock_parent(dentry); 1030 if (likely(!dentry->d_lockref.count)) { 1031 __dentry_kill(dentry); 1032 dput(parent); 1033 goto restart; 1034 } 1035 if (parent) 1036 spin_unlock(&parent->d_lock); 1037 } 1038 spin_unlock(&dentry->d_lock); 1039 } 1040 spin_unlock(&inode->i_lock); 1041 } 1042 EXPORT_SYMBOL(d_prune_aliases); 1043 1044 /* 1045 * Lock a dentry from shrink list. 1046 * Called under rcu_read_lock() and dentry->d_lock; the former 1047 * guarantees that nothing we access will be freed under us. 1048 * Note that dentry is *not* protected from concurrent dentry_kill(), 1049 * d_delete(), etc. 1050 * 1051 * Return false if dentry has been disrupted or grabbed, leaving 1052 * the caller to kick it off-list. Otherwise, return true and have 1053 * that dentry's inode and parent both locked. 1054 */ 1055 static bool shrink_lock_dentry(struct dentry *dentry) 1056 { 1057 struct inode *inode; 1058 struct dentry *parent; 1059 1060 if (dentry->d_lockref.count) 1061 return false; 1062 1063 inode = dentry->d_inode; 1064 if (inode && unlikely(!spin_trylock(&inode->i_lock))) { 1065 spin_unlock(&dentry->d_lock); 1066 spin_lock(&inode->i_lock); 1067 spin_lock(&dentry->d_lock); 1068 if (unlikely(dentry->d_lockref.count)) 1069 goto out; 1070 /* changed inode means that somebody had grabbed it */ 1071 if (unlikely(inode != dentry->d_inode)) 1072 goto out; 1073 } 1074 1075 parent = dentry->d_parent; 1076 if (IS_ROOT(dentry) || likely(spin_trylock(&parent->d_lock))) 1077 return true; 1078 1079 spin_unlock(&dentry->d_lock); 1080 spin_lock(&parent->d_lock); 1081 if (unlikely(parent != dentry->d_parent)) { 1082 spin_unlock(&parent->d_lock); 1083 spin_lock(&dentry->d_lock); 1084 goto out; 1085 } 1086 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED); 1087 if (likely(!dentry->d_lockref.count)) 1088 return true; 1089 spin_unlock(&parent->d_lock); 1090 out: 1091 if (inode) 1092 spin_unlock(&inode->i_lock); 1093 return false; 1094 } 1095 1096 void shrink_dentry_list(struct list_head *list) 1097 { 1098 while (!list_empty(list)) { 1099 struct dentry *dentry, *parent; 1100 1101 dentry = list_entry(list->prev, struct dentry, d_lru); 1102 spin_lock(&dentry->d_lock); 1103 rcu_read_lock(); 1104 if (!shrink_lock_dentry(dentry)) { 1105 bool can_free = false; 1106 rcu_read_unlock(); 1107 d_shrink_del(dentry); 1108 if (dentry->d_lockref.count < 0) 1109 can_free = dentry->d_flags & DCACHE_MAY_FREE; 1110 spin_unlock(&dentry->d_lock); 1111 if (can_free) 1112 dentry_free(dentry); 1113 continue; 1114 } 1115 rcu_read_unlock(); 1116 d_shrink_del(dentry); 1117 parent = dentry->d_parent; 1118 if (parent != dentry) 1119 __dput_to_list(parent, list); 1120 __dentry_kill(dentry); 1121 } 1122 } 1123 1124 static enum lru_status dentry_lru_isolate(struct list_head *item, 1125 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg) 1126 { 1127 struct list_head *freeable = arg; 1128 struct dentry *dentry = container_of(item, struct dentry, d_lru); 1129 1130 1131 /* 1132 * we are inverting the lru lock/dentry->d_lock here, 1133 * so use a trylock. If we fail to get the lock, just skip 1134 * it 1135 */ 1136 if (!spin_trylock(&dentry->d_lock)) 1137 return LRU_SKIP; 1138 1139 /* 1140 * Referenced dentries are still in use. If they have active 1141 * counts, just remove them from the LRU. Otherwise give them 1142 * another pass through the LRU. 1143 */ 1144 if (dentry->d_lockref.count) { 1145 d_lru_isolate(lru, dentry); 1146 spin_unlock(&dentry->d_lock); 1147 return LRU_REMOVED; 1148 } 1149 1150 if (dentry->d_flags & DCACHE_REFERENCED) { 1151 dentry->d_flags &= ~DCACHE_REFERENCED; 1152 spin_unlock(&dentry->d_lock); 1153 1154 /* 1155 * The list move itself will be made by the common LRU code. At 1156 * this point, we've dropped the dentry->d_lock but keep the 1157 * lru lock. This is safe to do, since every list movement is 1158 * protected by the lru lock even if both locks are held. 1159 * 1160 * This is guaranteed by the fact that all LRU management 1161 * functions are intermediated by the LRU API calls like 1162 * list_lru_add and list_lru_del. List movement in this file 1163 * only ever occur through this functions or through callbacks 1164 * like this one, that are called from the LRU API. 1165 * 1166 * The only exceptions to this are functions like 1167 * shrink_dentry_list, and code that first checks for the 1168 * DCACHE_SHRINK_LIST flag. Those are guaranteed to be 1169 * operating only with stack provided lists after they are 1170 * properly isolated from the main list. It is thus, always a 1171 * local access. 1172 */ 1173 return LRU_ROTATE; 1174 } 1175 1176 d_lru_shrink_move(lru, dentry, freeable); 1177 spin_unlock(&dentry->d_lock); 1178 1179 return LRU_REMOVED; 1180 } 1181 1182 /** 1183 * prune_dcache_sb - shrink the dcache 1184 * @sb: superblock 1185 * @sc: shrink control, passed to list_lru_shrink_walk() 1186 * 1187 * Attempt to shrink the superblock dcache LRU by @sc->nr_to_scan entries. This 1188 * is done when we need more memory and called from the superblock shrinker 1189 * function. 1190 * 1191 * This function may fail to free any resources if all the dentries are in 1192 * use. 1193 */ 1194 long prune_dcache_sb(struct super_block *sb, struct shrink_control *sc) 1195 { 1196 LIST_HEAD(dispose); 1197 long freed; 1198 1199 freed = list_lru_shrink_walk(&sb->s_dentry_lru, sc, 1200 dentry_lru_isolate, &dispose); 1201 shrink_dentry_list(&dispose); 1202 return freed; 1203 } 1204 1205 static enum lru_status dentry_lru_isolate_shrink(struct list_head *item, 1206 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg) 1207 { 1208 struct list_head *freeable = arg; 1209 struct dentry *dentry = container_of(item, struct dentry, d_lru); 1210 1211 /* 1212 * we are inverting the lru lock/dentry->d_lock here, 1213 * so use a trylock. If we fail to get the lock, just skip 1214 * it 1215 */ 1216 if (!spin_trylock(&dentry->d_lock)) 1217 return LRU_SKIP; 1218 1219 d_lru_shrink_move(lru, dentry, freeable); 1220 spin_unlock(&dentry->d_lock); 1221 1222 return LRU_REMOVED; 1223 } 1224 1225 1226 /** 1227 * shrink_dcache_sb - shrink dcache for a superblock 1228 * @sb: superblock 1229 * 1230 * Shrink the dcache for the specified super block. This is used to free 1231 * the dcache before unmounting a file system. 1232 */ 1233 void shrink_dcache_sb(struct super_block *sb) 1234 { 1235 do { 1236 LIST_HEAD(dispose); 1237 1238 list_lru_walk(&sb->s_dentry_lru, 1239 dentry_lru_isolate_shrink, &dispose, 1024); 1240 shrink_dentry_list(&dispose); 1241 } while (list_lru_count(&sb->s_dentry_lru) > 0); 1242 } 1243 EXPORT_SYMBOL(shrink_dcache_sb); 1244 1245 /** 1246 * enum d_walk_ret - action to talke during tree walk 1247 * @D_WALK_CONTINUE: contrinue walk 1248 * @D_WALK_QUIT: quit walk 1249 * @D_WALK_NORETRY: quit when retry is needed 1250 * @D_WALK_SKIP: skip this dentry and its children 1251 */ 1252 enum d_walk_ret { 1253 D_WALK_CONTINUE, 1254 D_WALK_QUIT, 1255 D_WALK_NORETRY, 1256 D_WALK_SKIP, 1257 }; 1258 1259 /** 1260 * d_walk - walk the dentry tree 1261 * @parent: start of walk 1262 * @data: data passed to @enter() and @finish() 1263 * @enter: callback when first entering the dentry 1264 * 1265 * The @enter() callbacks are called with d_lock held. 1266 */ 1267 static void d_walk(struct dentry *parent, void *data, 1268 enum d_walk_ret (*enter)(void *, struct dentry *)) 1269 { 1270 struct dentry *this_parent; 1271 struct list_head *next; 1272 unsigned seq = 0; 1273 enum d_walk_ret ret; 1274 bool retry = true; 1275 1276 again: 1277 read_seqbegin_or_lock(&rename_lock, &seq); 1278 this_parent = parent; 1279 spin_lock(&this_parent->d_lock); 1280 1281 ret = enter(data, this_parent); 1282 switch (ret) { 1283 case D_WALK_CONTINUE: 1284 break; 1285 case D_WALK_QUIT: 1286 case D_WALK_SKIP: 1287 goto out_unlock; 1288 case D_WALK_NORETRY: 1289 retry = false; 1290 break; 1291 } 1292 repeat: 1293 next = this_parent->d_subdirs.next; 1294 resume: 1295 while (next != &this_parent->d_subdirs) { 1296 struct list_head *tmp = next; 1297 struct dentry *dentry = list_entry(tmp, struct dentry, d_child); 1298 next = tmp->next; 1299 1300 if (unlikely(dentry->d_flags & DCACHE_DENTRY_CURSOR)) 1301 continue; 1302 1303 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED); 1304 1305 ret = enter(data, dentry); 1306 switch (ret) { 1307 case D_WALK_CONTINUE: 1308 break; 1309 case D_WALK_QUIT: 1310 spin_unlock(&dentry->d_lock); 1311 goto out_unlock; 1312 case D_WALK_NORETRY: 1313 retry = false; 1314 break; 1315 case D_WALK_SKIP: 1316 spin_unlock(&dentry->d_lock); 1317 continue; 1318 } 1319 1320 if (!list_empty(&dentry->d_subdirs)) { 1321 spin_unlock(&this_parent->d_lock); 1322 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_); 1323 this_parent = dentry; 1324 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_); 1325 goto repeat; 1326 } 1327 spin_unlock(&dentry->d_lock); 1328 } 1329 /* 1330 * All done at this level ... ascend and resume the search. 1331 */ 1332 rcu_read_lock(); 1333 ascend: 1334 if (this_parent != parent) { 1335 struct dentry *child = this_parent; 1336 this_parent = child->d_parent; 1337 1338 spin_unlock(&child->d_lock); 1339 spin_lock(&this_parent->d_lock); 1340 1341 /* might go back up the wrong parent if we have had a rename. */ 1342 if (need_seqretry(&rename_lock, seq)) 1343 goto rename_retry; 1344 /* go into the first sibling still alive */ 1345 do { 1346 next = child->d_child.next; 1347 if (next == &this_parent->d_subdirs) 1348 goto ascend; 1349 child = list_entry(next, struct dentry, d_child); 1350 } while (unlikely(child->d_flags & DCACHE_DENTRY_KILLED)); 1351 rcu_read_unlock(); 1352 goto resume; 1353 } 1354 if (need_seqretry(&rename_lock, seq)) 1355 goto rename_retry; 1356 rcu_read_unlock(); 1357 1358 out_unlock: 1359 spin_unlock(&this_parent->d_lock); 1360 done_seqretry(&rename_lock, seq); 1361 return; 1362 1363 rename_retry: 1364 spin_unlock(&this_parent->d_lock); 1365 rcu_read_unlock(); 1366 BUG_ON(seq & 1); 1367 if (!retry) 1368 return; 1369 seq = 1; 1370 goto again; 1371 } 1372 1373 struct check_mount { 1374 struct vfsmount *mnt; 1375 unsigned int mounted; 1376 }; 1377 1378 static enum d_walk_ret path_check_mount(void *data, struct dentry *dentry) 1379 { 1380 struct check_mount *info = data; 1381 struct path path = { .mnt = info->mnt, .dentry = dentry }; 1382 1383 if (likely(!d_mountpoint(dentry))) 1384 return D_WALK_CONTINUE; 1385 if (__path_is_mountpoint(&path)) { 1386 info->mounted = 1; 1387 return D_WALK_QUIT; 1388 } 1389 return D_WALK_CONTINUE; 1390 } 1391 1392 /** 1393 * path_has_submounts - check for mounts over a dentry in the 1394 * current namespace. 1395 * @parent: path to check. 1396 * 1397 * Return true if the parent or its subdirectories contain 1398 * a mount point in the current namespace. 1399 */ 1400 int path_has_submounts(const struct path *parent) 1401 { 1402 struct check_mount data = { .mnt = parent->mnt, .mounted = 0 }; 1403 1404 read_seqlock_excl(&mount_lock); 1405 d_walk(parent->dentry, &data, path_check_mount); 1406 read_sequnlock_excl(&mount_lock); 1407 1408 return data.mounted; 1409 } 1410 EXPORT_SYMBOL(path_has_submounts); 1411 1412 /* 1413 * Called by mount code to set a mountpoint and check if the mountpoint is 1414 * reachable (e.g. NFS can unhash a directory dentry and then the complete 1415 * subtree can become unreachable). 1416 * 1417 * Only one of d_invalidate() and d_set_mounted() must succeed. For 1418 * this reason take rename_lock and d_lock on dentry and ancestors. 1419 */ 1420 int d_set_mounted(struct dentry *dentry) 1421 { 1422 struct dentry *p; 1423 int ret = -ENOENT; 1424 write_seqlock(&rename_lock); 1425 for (p = dentry->d_parent; !IS_ROOT(p); p = p->d_parent) { 1426 /* Need exclusion wrt. d_invalidate() */ 1427 spin_lock(&p->d_lock); 1428 if (unlikely(d_unhashed(p))) { 1429 spin_unlock(&p->d_lock); 1430 goto out; 1431 } 1432 spin_unlock(&p->d_lock); 1433 } 1434 spin_lock(&dentry->d_lock); 1435 if (!d_unlinked(dentry)) { 1436 ret = -EBUSY; 1437 if (!d_mountpoint(dentry)) { 1438 dentry->d_flags |= DCACHE_MOUNTED; 1439 ret = 0; 1440 } 1441 } 1442 spin_unlock(&dentry->d_lock); 1443 out: 1444 write_sequnlock(&rename_lock); 1445 return ret; 1446 } 1447 1448 /* 1449 * Search the dentry child list of the specified parent, 1450 * and move any unused dentries to the end of the unused 1451 * list for prune_dcache(). We descend to the next level 1452 * whenever the d_subdirs list is non-empty and continue 1453 * searching. 1454 * 1455 * It returns zero iff there are no unused children, 1456 * otherwise it returns the number of children moved to 1457 * the end of the unused list. This may not be the total 1458 * number of unused children, because select_parent can 1459 * drop the lock and return early due to latency 1460 * constraints. 1461 */ 1462 1463 struct select_data { 1464 struct dentry *start; 1465 union { 1466 long found; 1467 struct dentry *victim; 1468 }; 1469 struct list_head dispose; 1470 }; 1471 1472 static enum d_walk_ret select_collect(void *_data, struct dentry *dentry) 1473 { 1474 struct select_data *data = _data; 1475 enum d_walk_ret ret = D_WALK_CONTINUE; 1476 1477 if (data->start == dentry) 1478 goto out; 1479 1480 if (dentry->d_flags & DCACHE_SHRINK_LIST) { 1481 data->found++; 1482 } else { 1483 if (dentry->d_flags & DCACHE_LRU_LIST) 1484 d_lru_del(dentry); 1485 if (!dentry->d_lockref.count) { 1486 d_shrink_add(dentry, &data->dispose); 1487 data->found++; 1488 } 1489 } 1490 /* 1491 * We can return to the caller if we have found some (this 1492 * ensures forward progress). We'll be coming back to find 1493 * the rest. 1494 */ 1495 if (!list_empty(&data->dispose)) 1496 ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY; 1497 out: 1498 return ret; 1499 } 1500 1501 static enum d_walk_ret select_collect2(void *_data, struct dentry *dentry) 1502 { 1503 struct select_data *data = _data; 1504 enum d_walk_ret ret = D_WALK_CONTINUE; 1505 1506 if (data->start == dentry) 1507 goto out; 1508 1509 if (dentry->d_flags & DCACHE_SHRINK_LIST) { 1510 if (!dentry->d_lockref.count) { 1511 rcu_read_lock(); 1512 data->victim = dentry; 1513 return D_WALK_QUIT; 1514 } 1515 } else { 1516 if (dentry->d_flags & DCACHE_LRU_LIST) 1517 d_lru_del(dentry); 1518 if (!dentry->d_lockref.count) 1519 d_shrink_add(dentry, &data->dispose); 1520 } 1521 /* 1522 * We can return to the caller if we have found some (this 1523 * ensures forward progress). We'll be coming back to find 1524 * the rest. 1525 */ 1526 if (!list_empty(&data->dispose)) 1527 ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY; 1528 out: 1529 return ret; 1530 } 1531 1532 /** 1533 * shrink_dcache_parent - prune dcache 1534 * @parent: parent of entries to prune 1535 * 1536 * Prune the dcache to remove unused children of the parent dentry. 1537 */ 1538 void shrink_dcache_parent(struct dentry *parent) 1539 { 1540 for (;;) { 1541 struct select_data data = {.start = parent}; 1542 1543 INIT_LIST_HEAD(&data.dispose); 1544 d_walk(parent, &data, select_collect); 1545 1546 if (!list_empty(&data.dispose)) { 1547 shrink_dentry_list(&data.dispose); 1548 continue; 1549 } 1550 1551 cond_resched(); 1552 if (!data.found) 1553 break; 1554 data.victim = NULL; 1555 d_walk(parent, &data, select_collect2); 1556 if (data.victim) { 1557 struct dentry *parent; 1558 spin_lock(&data.victim->d_lock); 1559 if (!shrink_lock_dentry(data.victim)) { 1560 spin_unlock(&data.victim->d_lock); 1561 rcu_read_unlock(); 1562 } else { 1563 rcu_read_unlock(); 1564 parent = data.victim->d_parent; 1565 if (parent != data.victim) 1566 __dput_to_list(parent, &data.dispose); 1567 __dentry_kill(data.victim); 1568 } 1569 } 1570 if (!list_empty(&data.dispose)) 1571 shrink_dentry_list(&data.dispose); 1572 } 1573 } 1574 EXPORT_SYMBOL(shrink_dcache_parent); 1575 1576 static enum d_walk_ret umount_check(void *_data, struct dentry *dentry) 1577 { 1578 /* it has busy descendents; complain about those instead */ 1579 if (!list_empty(&dentry->d_subdirs)) 1580 return D_WALK_CONTINUE; 1581 1582 /* root with refcount 1 is fine */ 1583 if (dentry == _data && dentry->d_lockref.count == 1) 1584 return D_WALK_CONTINUE; 1585 1586 printk(KERN_ERR "BUG: Dentry %p{i=%lx,n=%pd} " 1587 " still in use (%d) [unmount of %s %s]\n", 1588 dentry, 1589 dentry->d_inode ? 1590 dentry->d_inode->i_ino : 0UL, 1591 dentry, 1592 dentry->d_lockref.count, 1593 dentry->d_sb->s_type->name, 1594 dentry->d_sb->s_id); 1595 WARN_ON(1); 1596 return D_WALK_CONTINUE; 1597 } 1598 1599 static void do_one_tree(struct dentry *dentry) 1600 { 1601 shrink_dcache_parent(dentry); 1602 d_walk(dentry, dentry, umount_check); 1603 d_drop(dentry); 1604 dput(dentry); 1605 } 1606 1607 /* 1608 * destroy the dentries attached to a superblock on unmounting 1609 */ 1610 void shrink_dcache_for_umount(struct super_block *sb) 1611 { 1612 struct dentry *dentry; 1613 1614 WARN(down_read_trylock(&sb->s_umount), "s_umount should've been locked"); 1615 1616 dentry = sb->s_root; 1617 sb->s_root = NULL; 1618 do_one_tree(dentry); 1619 1620 while (!hlist_bl_empty(&sb->s_roots)) { 1621 dentry = dget(hlist_bl_entry(hlist_bl_first(&sb->s_roots), struct dentry, d_hash)); 1622 do_one_tree(dentry); 1623 } 1624 } 1625 1626 static enum d_walk_ret find_submount(void *_data, struct dentry *dentry) 1627 { 1628 struct dentry **victim = _data; 1629 if (d_mountpoint(dentry)) { 1630 __dget_dlock(dentry); 1631 *victim = dentry; 1632 return D_WALK_QUIT; 1633 } 1634 return D_WALK_CONTINUE; 1635 } 1636 1637 /** 1638 * d_invalidate - detach submounts, prune dcache, and drop 1639 * @dentry: dentry to invalidate (aka detach, prune and drop) 1640 */ 1641 void d_invalidate(struct dentry *dentry) 1642 { 1643 bool had_submounts = false; 1644 spin_lock(&dentry->d_lock); 1645 if (d_unhashed(dentry)) { 1646 spin_unlock(&dentry->d_lock); 1647 return; 1648 } 1649 __d_drop(dentry); 1650 spin_unlock(&dentry->d_lock); 1651 1652 /* Negative dentries can be dropped without further checks */ 1653 if (!dentry->d_inode) 1654 return; 1655 1656 shrink_dcache_parent(dentry); 1657 for (;;) { 1658 struct dentry *victim = NULL; 1659 d_walk(dentry, &victim, find_submount); 1660 if (!victim) { 1661 if (had_submounts) 1662 shrink_dcache_parent(dentry); 1663 return; 1664 } 1665 had_submounts = true; 1666 detach_mounts(victim); 1667 dput(victim); 1668 } 1669 } 1670 EXPORT_SYMBOL(d_invalidate); 1671 1672 /** 1673 * __d_alloc - allocate a dcache entry 1674 * @sb: filesystem it will belong to 1675 * @name: qstr of the name 1676 * 1677 * Allocates a dentry. It returns %NULL if there is insufficient memory 1678 * available. On a success the dentry is returned. The name passed in is 1679 * copied and the copy passed in may be reused after this call. 1680 */ 1681 1682 struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name) 1683 { 1684 struct dentry *dentry; 1685 char *dname; 1686 int err; 1687 1688 dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL); 1689 if (!dentry) 1690 return NULL; 1691 1692 /* 1693 * We guarantee that the inline name is always NUL-terminated. 1694 * This way the memcpy() done by the name switching in rename 1695 * will still always have a NUL at the end, even if we might 1696 * be overwriting an internal NUL character 1697 */ 1698 dentry->d_iname[DNAME_INLINE_LEN-1] = 0; 1699 if (unlikely(!name)) { 1700 name = &slash_name; 1701 dname = dentry->d_iname; 1702 } else if (name->len > DNAME_INLINE_LEN-1) { 1703 size_t size = offsetof(struct external_name, name[1]); 1704 struct external_name *p = kmalloc(size + name->len, 1705 GFP_KERNEL_ACCOUNT | 1706 __GFP_RECLAIMABLE); 1707 if (!p) { 1708 kmem_cache_free(dentry_cache, dentry); 1709 return NULL; 1710 } 1711 atomic_set(&p->u.count, 1); 1712 dname = p->name; 1713 } else { 1714 dname = dentry->d_iname; 1715 } 1716 1717 dentry->d_name.len = name->len; 1718 dentry->d_name.hash = name->hash; 1719 memcpy(dname, name->name, name->len); 1720 dname[name->len] = 0; 1721 1722 /* Make sure we always see the terminating NUL character */ 1723 smp_store_release(&dentry->d_name.name, dname); /* ^^^ */ 1724 1725 dentry->d_lockref.count = 1; 1726 dentry->d_flags = 0; 1727 spin_lock_init(&dentry->d_lock); 1728 seqcount_init(&dentry->d_seq); 1729 dentry->d_inode = NULL; 1730 dentry->d_parent = dentry; 1731 dentry->d_sb = sb; 1732 dentry->d_op = NULL; 1733 dentry->d_fsdata = NULL; 1734 INIT_HLIST_BL_NODE(&dentry->d_hash); 1735 INIT_LIST_HEAD(&dentry->d_lru); 1736 INIT_LIST_HEAD(&dentry->d_subdirs); 1737 INIT_HLIST_NODE(&dentry->d_u.d_alias); 1738 INIT_LIST_HEAD(&dentry->d_child); 1739 d_set_d_op(dentry, dentry->d_sb->s_d_op); 1740 1741 if (dentry->d_op && dentry->d_op->d_init) { 1742 err = dentry->d_op->d_init(dentry); 1743 if (err) { 1744 if (dname_external(dentry)) 1745 kfree(external_name(dentry)); 1746 kmem_cache_free(dentry_cache, dentry); 1747 return NULL; 1748 } 1749 } 1750 1751 this_cpu_inc(nr_dentry); 1752 1753 return dentry; 1754 } 1755 1756 /** 1757 * d_alloc - allocate a dcache entry 1758 * @parent: parent of entry to allocate 1759 * @name: qstr of the name 1760 * 1761 * Allocates a dentry. It returns %NULL if there is insufficient memory 1762 * available. On a success the dentry is returned. The name passed in is 1763 * copied and the copy passed in may be reused after this call. 1764 */ 1765 struct dentry *d_alloc(struct dentry * parent, const struct qstr *name) 1766 { 1767 struct dentry *dentry = __d_alloc(parent->d_sb, name); 1768 if (!dentry) 1769 return NULL; 1770 spin_lock(&parent->d_lock); 1771 /* 1772 * don't need child lock because it is not subject 1773 * to concurrency here 1774 */ 1775 __dget_dlock(parent); 1776 dentry->d_parent = parent; 1777 list_add(&dentry->d_child, &parent->d_subdirs); 1778 spin_unlock(&parent->d_lock); 1779 1780 return dentry; 1781 } 1782 EXPORT_SYMBOL(d_alloc); 1783 1784 struct dentry *d_alloc_anon(struct super_block *sb) 1785 { 1786 return __d_alloc(sb, NULL); 1787 } 1788 EXPORT_SYMBOL(d_alloc_anon); 1789 1790 struct dentry *d_alloc_cursor(struct dentry * parent) 1791 { 1792 struct dentry *dentry = d_alloc_anon(parent->d_sb); 1793 if (dentry) { 1794 dentry->d_flags |= DCACHE_DENTRY_CURSOR; 1795 dentry->d_parent = dget(parent); 1796 } 1797 return dentry; 1798 } 1799 1800 /** 1801 * d_alloc_pseudo - allocate a dentry (for lookup-less filesystems) 1802 * @sb: the superblock 1803 * @name: qstr of the name 1804 * 1805 * For a filesystem that just pins its dentries in memory and never 1806 * performs lookups at all, return an unhashed IS_ROOT dentry. 1807 * This is used for pipes, sockets et.al. - the stuff that should 1808 * never be anyone's children or parents. Unlike all other 1809 * dentries, these will not have RCU delay between dropping the 1810 * last reference and freeing them. 1811 * 1812 * The only user is alloc_file_pseudo() and that's what should 1813 * be considered a public interface. Don't use directly. 1814 */ 1815 struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name) 1816 { 1817 struct dentry *dentry = __d_alloc(sb, name); 1818 if (likely(dentry)) 1819 dentry->d_flags |= DCACHE_NORCU; 1820 return dentry; 1821 } 1822 1823 struct dentry *d_alloc_name(struct dentry *parent, const char *name) 1824 { 1825 struct qstr q; 1826 1827 q.name = name; 1828 q.hash_len = hashlen_string(parent, name); 1829 return d_alloc(parent, &q); 1830 } 1831 EXPORT_SYMBOL(d_alloc_name); 1832 1833 void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op) 1834 { 1835 WARN_ON_ONCE(dentry->d_op); 1836 WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH | 1837 DCACHE_OP_COMPARE | 1838 DCACHE_OP_REVALIDATE | 1839 DCACHE_OP_WEAK_REVALIDATE | 1840 DCACHE_OP_DELETE | 1841 DCACHE_OP_REAL)); 1842 dentry->d_op = op; 1843 if (!op) 1844 return; 1845 if (op->d_hash) 1846 dentry->d_flags |= DCACHE_OP_HASH; 1847 if (op->d_compare) 1848 dentry->d_flags |= DCACHE_OP_COMPARE; 1849 if (op->d_revalidate) 1850 dentry->d_flags |= DCACHE_OP_REVALIDATE; 1851 if (op->d_weak_revalidate) 1852 dentry->d_flags |= DCACHE_OP_WEAK_REVALIDATE; 1853 if (op->d_delete) 1854 dentry->d_flags |= DCACHE_OP_DELETE; 1855 if (op->d_prune) 1856 dentry->d_flags |= DCACHE_OP_PRUNE; 1857 if (op->d_real) 1858 dentry->d_flags |= DCACHE_OP_REAL; 1859 1860 } 1861 EXPORT_SYMBOL(d_set_d_op); 1862 1863 1864 /* 1865 * d_set_fallthru - Mark a dentry as falling through to a lower layer 1866 * @dentry - The dentry to mark 1867 * 1868 * Mark a dentry as falling through to the lower layer (as set with 1869 * d_pin_lower()). This flag may be recorded on the medium. 1870 */ 1871 void d_set_fallthru(struct dentry *dentry) 1872 { 1873 spin_lock(&dentry->d_lock); 1874 dentry->d_flags |= DCACHE_FALLTHRU; 1875 spin_unlock(&dentry->d_lock); 1876 } 1877 EXPORT_SYMBOL(d_set_fallthru); 1878 1879 static unsigned d_flags_for_inode(struct inode *inode) 1880 { 1881 unsigned add_flags = DCACHE_REGULAR_TYPE; 1882 1883 if (!inode) 1884 return DCACHE_MISS_TYPE; 1885 1886 if (S_ISDIR(inode->i_mode)) { 1887 add_flags = DCACHE_DIRECTORY_TYPE; 1888 if (unlikely(!(inode->i_opflags & IOP_LOOKUP))) { 1889 if (unlikely(!inode->i_op->lookup)) 1890 add_flags = DCACHE_AUTODIR_TYPE; 1891 else 1892 inode->i_opflags |= IOP_LOOKUP; 1893 } 1894 goto type_determined; 1895 } 1896 1897 if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) { 1898 if (unlikely(inode->i_op->get_link)) { 1899 add_flags = DCACHE_SYMLINK_TYPE; 1900 goto type_determined; 1901 } 1902 inode->i_opflags |= IOP_NOFOLLOW; 1903 } 1904 1905 if (unlikely(!S_ISREG(inode->i_mode))) 1906 add_flags = DCACHE_SPECIAL_TYPE; 1907 1908 type_determined: 1909 if (unlikely(IS_AUTOMOUNT(inode))) 1910 add_flags |= DCACHE_NEED_AUTOMOUNT; 1911 return add_flags; 1912 } 1913 1914 static void __d_instantiate(struct dentry *dentry, struct inode *inode) 1915 { 1916 unsigned add_flags = d_flags_for_inode(inode); 1917 WARN_ON(d_in_lookup(dentry)); 1918 1919 spin_lock(&dentry->d_lock); 1920 /* 1921 * Decrement negative dentry count if it was in the LRU list. 1922 */ 1923 if (dentry->d_flags & DCACHE_LRU_LIST) 1924 this_cpu_dec(nr_dentry_negative); 1925 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry); 1926 raw_write_seqcount_begin(&dentry->d_seq); 1927 __d_set_inode_and_type(dentry, inode, add_flags); 1928 raw_write_seqcount_end(&dentry->d_seq); 1929 fsnotify_update_flags(dentry); 1930 spin_unlock(&dentry->d_lock); 1931 } 1932 1933 /** 1934 * d_instantiate - fill in inode information for a dentry 1935 * @entry: dentry to complete 1936 * @inode: inode to attach to this dentry 1937 * 1938 * Fill in inode information in the entry. 1939 * 1940 * This turns negative dentries into productive full members 1941 * of society. 1942 * 1943 * NOTE! This assumes that the inode count has been incremented 1944 * (or otherwise set) by the caller to indicate that it is now 1945 * in use by the dcache. 1946 */ 1947 1948 void d_instantiate(struct dentry *entry, struct inode * inode) 1949 { 1950 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias)); 1951 if (inode) { 1952 security_d_instantiate(entry, inode); 1953 spin_lock(&inode->i_lock); 1954 __d_instantiate(entry, inode); 1955 spin_unlock(&inode->i_lock); 1956 } 1957 } 1958 EXPORT_SYMBOL(d_instantiate); 1959 1960 /* 1961 * This should be equivalent to d_instantiate() + unlock_new_inode(), 1962 * with lockdep-related part of unlock_new_inode() done before 1963 * anything else. Use that instead of open-coding d_instantiate()/ 1964 * unlock_new_inode() combinations. 1965 */ 1966 void d_instantiate_new(struct dentry *entry, struct inode *inode) 1967 { 1968 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias)); 1969 BUG_ON(!inode); 1970 lockdep_annotate_inode_mutex_key(inode); 1971 security_d_instantiate(entry, inode); 1972 spin_lock(&inode->i_lock); 1973 __d_instantiate(entry, inode); 1974 WARN_ON(!(inode->i_state & I_NEW)); 1975 inode->i_state &= ~I_NEW & ~I_CREATING; 1976 smp_mb(); 1977 wake_up_bit(&inode->i_state, __I_NEW); 1978 spin_unlock(&inode->i_lock); 1979 } 1980 EXPORT_SYMBOL(d_instantiate_new); 1981 1982 struct dentry *d_make_root(struct inode *root_inode) 1983 { 1984 struct dentry *res = NULL; 1985 1986 if (root_inode) { 1987 res = d_alloc_anon(root_inode->i_sb); 1988 if (res) 1989 d_instantiate(res, root_inode); 1990 else 1991 iput(root_inode); 1992 } 1993 return res; 1994 } 1995 EXPORT_SYMBOL(d_make_root); 1996 1997 static struct dentry *__d_instantiate_anon(struct dentry *dentry, 1998 struct inode *inode, 1999 bool disconnected) 2000 { 2001 struct dentry *res; 2002 unsigned add_flags; 2003 2004 security_d_instantiate(dentry, inode); 2005 spin_lock(&inode->i_lock); 2006 res = __d_find_any_alias(inode); 2007 if (res) { 2008 spin_unlock(&inode->i_lock); 2009 dput(dentry); 2010 goto out_iput; 2011 } 2012 2013 /* attach a disconnected dentry */ 2014 add_flags = d_flags_for_inode(inode); 2015 2016 if (disconnected) 2017 add_flags |= DCACHE_DISCONNECTED; 2018 2019 spin_lock(&dentry->d_lock); 2020 __d_set_inode_and_type(dentry, inode, add_flags); 2021 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry); 2022 if (!disconnected) { 2023 hlist_bl_lock(&dentry->d_sb->s_roots); 2024 hlist_bl_add_head(&dentry->d_hash, &dentry->d_sb->s_roots); 2025 hlist_bl_unlock(&dentry->d_sb->s_roots); 2026 } 2027 spin_unlock(&dentry->d_lock); 2028 spin_unlock(&inode->i_lock); 2029 2030 return dentry; 2031 2032 out_iput: 2033 iput(inode); 2034 return res; 2035 } 2036 2037 struct dentry *d_instantiate_anon(struct dentry *dentry, struct inode *inode) 2038 { 2039 return __d_instantiate_anon(dentry, inode, true); 2040 } 2041 EXPORT_SYMBOL(d_instantiate_anon); 2042 2043 static struct dentry *__d_obtain_alias(struct inode *inode, bool disconnected) 2044 { 2045 struct dentry *tmp; 2046 struct dentry *res; 2047 2048 if (!inode) 2049 return ERR_PTR(-ESTALE); 2050 if (IS_ERR(inode)) 2051 return ERR_CAST(inode); 2052 2053 res = d_find_any_alias(inode); 2054 if (res) 2055 goto out_iput; 2056 2057 tmp = d_alloc_anon(inode->i_sb); 2058 if (!tmp) { 2059 res = ERR_PTR(-ENOMEM); 2060 goto out_iput; 2061 } 2062 2063 return __d_instantiate_anon(tmp, inode, disconnected); 2064 2065 out_iput: 2066 iput(inode); 2067 return res; 2068 } 2069 2070 /** 2071 * d_obtain_alias - find or allocate a DISCONNECTED dentry for a given inode 2072 * @inode: inode to allocate the dentry for 2073 * 2074 * Obtain a dentry for an inode resulting from NFS filehandle conversion or 2075 * similar open by handle operations. The returned dentry may be anonymous, 2076 * or may have a full name (if the inode was already in the cache). 2077 * 2078 * When called on a directory inode, we must ensure that the inode only ever 2079 * has one dentry. If a dentry is found, that is returned instead of 2080 * allocating a new one. 2081 * 2082 * On successful return, the reference to the inode has been transferred 2083 * to the dentry. In case of an error the reference on the inode is released. 2084 * To make it easier to use in export operations a %NULL or IS_ERR inode may 2085 * be passed in and the error will be propagated to the return value, 2086 * with a %NULL @inode replaced by ERR_PTR(-ESTALE). 2087 */ 2088 struct dentry *d_obtain_alias(struct inode *inode) 2089 { 2090 return __d_obtain_alias(inode, true); 2091 } 2092 EXPORT_SYMBOL(d_obtain_alias); 2093 2094 /** 2095 * d_obtain_root - find or allocate a dentry for a given inode 2096 * @inode: inode to allocate the dentry for 2097 * 2098 * Obtain an IS_ROOT dentry for the root of a filesystem. 2099 * 2100 * We must ensure that directory inodes only ever have one dentry. If a 2101 * dentry is found, that is returned instead of allocating a new one. 2102 * 2103 * On successful return, the reference to the inode has been transferred 2104 * to the dentry. In case of an error the reference on the inode is 2105 * released. A %NULL or IS_ERR inode may be passed in and will be the 2106 * error will be propagate to the return value, with a %NULL @inode 2107 * replaced by ERR_PTR(-ESTALE). 2108 */ 2109 struct dentry *d_obtain_root(struct inode *inode) 2110 { 2111 return __d_obtain_alias(inode, false); 2112 } 2113 EXPORT_SYMBOL(d_obtain_root); 2114 2115 /** 2116 * d_add_ci - lookup or allocate new dentry with case-exact name 2117 * @inode: the inode case-insensitive lookup has found 2118 * @dentry: the negative dentry that was passed to the parent's lookup func 2119 * @name: the case-exact name to be associated with the returned dentry 2120 * 2121 * This is to avoid filling the dcache with case-insensitive names to the 2122 * same inode, only the actual correct case is stored in the dcache for 2123 * case-insensitive filesystems. 2124 * 2125 * For a case-insensitive lookup match and if the the case-exact dentry 2126 * already exists in in the dcache, use it and return it. 2127 * 2128 * If no entry exists with the exact case name, allocate new dentry with 2129 * the exact case, and return the spliced entry. 2130 */ 2131 struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode, 2132 struct qstr *name) 2133 { 2134 struct dentry *found, *res; 2135 2136 /* 2137 * First check if a dentry matching the name already exists, 2138 * if not go ahead and create it now. 2139 */ 2140 found = d_hash_and_lookup(dentry->d_parent, name); 2141 if (found) { 2142 iput(inode); 2143 return found; 2144 } 2145 if (d_in_lookup(dentry)) { 2146 found = d_alloc_parallel(dentry->d_parent, name, 2147 dentry->d_wait); 2148 if (IS_ERR(found) || !d_in_lookup(found)) { 2149 iput(inode); 2150 return found; 2151 } 2152 } else { 2153 found = d_alloc(dentry->d_parent, name); 2154 if (!found) { 2155 iput(inode); 2156 return ERR_PTR(-ENOMEM); 2157 } 2158 } 2159 res = d_splice_alias(inode, found); 2160 if (res) { 2161 dput(found); 2162 return res; 2163 } 2164 return found; 2165 } 2166 EXPORT_SYMBOL(d_add_ci); 2167 2168 2169 static inline bool d_same_name(const struct dentry *dentry, 2170 const struct dentry *parent, 2171 const struct qstr *name) 2172 { 2173 if (likely(!(parent->d_flags & DCACHE_OP_COMPARE))) { 2174 if (dentry->d_name.len != name->len) 2175 return false; 2176 return dentry_cmp(dentry, name->name, name->len) == 0; 2177 } 2178 return parent->d_op->d_compare(dentry, 2179 dentry->d_name.len, dentry->d_name.name, 2180 name) == 0; 2181 } 2182 2183 /** 2184 * __d_lookup_rcu - search for a dentry (racy, store-free) 2185 * @parent: parent dentry 2186 * @name: qstr of name we wish to find 2187 * @seqp: returns d_seq value at the point where the dentry was found 2188 * Returns: dentry, or NULL 2189 * 2190 * __d_lookup_rcu is the dcache lookup function for rcu-walk name 2191 * resolution (store-free path walking) design described in 2192 * Documentation/filesystems/path-lookup.txt. 2193 * 2194 * This is not to be used outside core vfs. 2195 * 2196 * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock 2197 * held, and rcu_read_lock held. The returned dentry must not be stored into 2198 * without taking d_lock and checking d_seq sequence count against @seq 2199 * returned here. 2200 * 2201 * A refcount may be taken on the found dentry with the d_rcu_to_refcount 2202 * function. 2203 * 2204 * Alternatively, __d_lookup_rcu may be called again to look up the child of 2205 * the returned dentry, so long as its parent's seqlock is checked after the 2206 * child is looked up. Thus, an interlocking stepping of sequence lock checks 2207 * is formed, giving integrity down the path walk. 2208 * 2209 * NOTE! The caller *has* to check the resulting dentry against the sequence 2210 * number we've returned before using any of the resulting dentry state! 2211 */ 2212 struct dentry *__d_lookup_rcu(const struct dentry *parent, 2213 const struct qstr *name, 2214 unsigned *seqp) 2215 { 2216 u64 hashlen = name->hash_len; 2217 const unsigned char *str = name->name; 2218 struct hlist_bl_head *b = d_hash(hashlen_hash(hashlen)); 2219 struct hlist_bl_node *node; 2220 struct dentry *dentry; 2221 2222 /* 2223 * Note: There is significant duplication with __d_lookup_rcu which is 2224 * required to prevent single threaded performance regressions 2225 * especially on architectures where smp_rmb (in seqcounts) are costly. 2226 * Keep the two functions in sync. 2227 */ 2228 2229 /* 2230 * The hash list is protected using RCU. 2231 * 2232 * Carefully use d_seq when comparing a candidate dentry, to avoid 2233 * races with d_move(). 2234 * 2235 * It is possible that concurrent renames can mess up our list 2236 * walk here and result in missing our dentry, resulting in the 2237 * false-negative result. d_lookup() protects against concurrent 2238 * renames using rename_lock seqlock. 2239 * 2240 * See Documentation/filesystems/path-lookup.txt for more details. 2241 */ 2242 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) { 2243 unsigned seq; 2244 2245 seqretry: 2246 /* 2247 * The dentry sequence count protects us from concurrent 2248 * renames, and thus protects parent and name fields. 2249 * 2250 * The caller must perform a seqcount check in order 2251 * to do anything useful with the returned dentry. 2252 * 2253 * NOTE! We do a "raw" seqcount_begin here. That means that 2254 * we don't wait for the sequence count to stabilize if it 2255 * is in the middle of a sequence change. If we do the slow 2256 * dentry compare, we will do seqretries until it is stable, 2257 * and if we end up with a successful lookup, we actually 2258 * want to exit RCU lookup anyway. 2259 * 2260 * Note that raw_seqcount_begin still *does* smp_rmb(), so 2261 * we are still guaranteed NUL-termination of ->d_name.name. 2262 */ 2263 seq = raw_seqcount_begin(&dentry->d_seq); 2264 if (dentry->d_parent != parent) 2265 continue; 2266 if (d_unhashed(dentry)) 2267 continue; 2268 2269 if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) { 2270 int tlen; 2271 const char *tname; 2272 if (dentry->d_name.hash != hashlen_hash(hashlen)) 2273 continue; 2274 tlen = dentry->d_name.len; 2275 tname = dentry->d_name.name; 2276 /* we want a consistent (name,len) pair */ 2277 if (read_seqcount_retry(&dentry->d_seq, seq)) { 2278 cpu_relax(); 2279 goto seqretry; 2280 } 2281 if (parent->d_op->d_compare(dentry, 2282 tlen, tname, name) != 0) 2283 continue; 2284 } else { 2285 if (dentry->d_name.hash_len != hashlen) 2286 continue; 2287 if (dentry_cmp(dentry, str, hashlen_len(hashlen)) != 0) 2288 continue; 2289 } 2290 *seqp = seq; 2291 return dentry; 2292 } 2293 return NULL; 2294 } 2295 2296 /** 2297 * d_lookup - search for a dentry 2298 * @parent: parent dentry 2299 * @name: qstr of name we wish to find 2300 * Returns: dentry, or NULL 2301 * 2302 * d_lookup searches the children of the parent dentry for the name in 2303 * question. If the dentry is found its reference count is incremented and the 2304 * dentry is returned. The caller must use dput to free the entry when it has 2305 * finished using it. %NULL is returned if the dentry does not exist. 2306 */ 2307 struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name) 2308 { 2309 struct dentry *dentry; 2310 unsigned seq; 2311 2312 do { 2313 seq = read_seqbegin(&rename_lock); 2314 dentry = __d_lookup(parent, name); 2315 if (dentry) 2316 break; 2317 } while (read_seqretry(&rename_lock, seq)); 2318 return dentry; 2319 } 2320 EXPORT_SYMBOL(d_lookup); 2321 2322 /** 2323 * __d_lookup - search for a dentry (racy) 2324 * @parent: parent dentry 2325 * @name: qstr of name we wish to find 2326 * Returns: dentry, or NULL 2327 * 2328 * __d_lookup is like d_lookup, however it may (rarely) return a 2329 * false-negative result due to unrelated rename activity. 2330 * 2331 * __d_lookup is slightly faster by avoiding rename_lock read seqlock, 2332 * however it must be used carefully, eg. with a following d_lookup in 2333 * the case of failure. 2334 * 2335 * __d_lookup callers must be commented. 2336 */ 2337 struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name) 2338 { 2339 unsigned int hash = name->hash; 2340 struct hlist_bl_head *b = d_hash(hash); 2341 struct hlist_bl_node *node; 2342 struct dentry *found = NULL; 2343 struct dentry *dentry; 2344 2345 /* 2346 * Note: There is significant duplication with __d_lookup_rcu which is 2347 * required to prevent single threaded performance regressions 2348 * especially on architectures where smp_rmb (in seqcounts) are costly. 2349 * Keep the two functions in sync. 2350 */ 2351 2352 /* 2353 * The hash list is protected using RCU. 2354 * 2355 * Take d_lock when comparing a candidate dentry, to avoid races 2356 * with d_move(). 2357 * 2358 * It is possible that concurrent renames can mess up our list 2359 * walk here and result in missing our dentry, resulting in the 2360 * false-negative result. d_lookup() protects against concurrent 2361 * renames using rename_lock seqlock. 2362 * 2363 * See Documentation/filesystems/path-lookup.txt for more details. 2364 */ 2365 rcu_read_lock(); 2366 2367 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) { 2368 2369 if (dentry->d_name.hash != hash) 2370 continue; 2371 2372 spin_lock(&dentry->d_lock); 2373 if (dentry->d_parent != parent) 2374 goto next; 2375 if (d_unhashed(dentry)) 2376 goto next; 2377 2378 if (!d_same_name(dentry, parent, name)) 2379 goto next; 2380 2381 dentry->d_lockref.count++; 2382 found = dentry; 2383 spin_unlock(&dentry->d_lock); 2384 break; 2385 next: 2386 spin_unlock(&dentry->d_lock); 2387 } 2388 rcu_read_unlock(); 2389 2390 return found; 2391 } 2392 2393 /** 2394 * d_hash_and_lookup - hash the qstr then search for a dentry 2395 * @dir: Directory to search in 2396 * @name: qstr of name we wish to find 2397 * 2398 * On lookup failure NULL is returned; on bad name - ERR_PTR(-error) 2399 */ 2400 struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name) 2401 { 2402 /* 2403 * Check for a fs-specific hash function. Note that we must 2404 * calculate the standard hash first, as the d_op->d_hash() 2405 * routine may choose to leave the hash value unchanged. 2406 */ 2407 name->hash = full_name_hash(dir, name->name, name->len); 2408 if (dir->d_flags & DCACHE_OP_HASH) { 2409 int err = dir->d_op->d_hash(dir, name); 2410 if (unlikely(err < 0)) 2411 return ERR_PTR(err); 2412 } 2413 return d_lookup(dir, name); 2414 } 2415 EXPORT_SYMBOL(d_hash_and_lookup); 2416 2417 /* 2418 * When a file is deleted, we have two options: 2419 * - turn this dentry into a negative dentry 2420 * - unhash this dentry and free it. 2421 * 2422 * Usually, we want to just turn this into 2423 * a negative dentry, but if anybody else is 2424 * currently using the dentry or the inode 2425 * we can't do that and we fall back on removing 2426 * it from the hash queues and waiting for 2427 * it to be deleted later when it has no users 2428 */ 2429 2430 /** 2431 * d_delete - delete a dentry 2432 * @dentry: The dentry to delete 2433 * 2434 * Turn the dentry into a negative dentry if possible, otherwise 2435 * remove it from the hash queues so it can be deleted later 2436 */ 2437 2438 void d_delete(struct dentry * dentry) 2439 { 2440 struct inode *inode = dentry->d_inode; 2441 2442 spin_lock(&inode->i_lock); 2443 spin_lock(&dentry->d_lock); 2444 /* 2445 * Are we the only user? 2446 */ 2447 if (dentry->d_lockref.count == 1) { 2448 dentry->d_flags &= ~DCACHE_CANT_MOUNT; 2449 dentry_unlink_inode(dentry); 2450 } else { 2451 __d_drop(dentry); 2452 spin_unlock(&dentry->d_lock); 2453 spin_unlock(&inode->i_lock); 2454 } 2455 } 2456 EXPORT_SYMBOL(d_delete); 2457 2458 static void __d_rehash(struct dentry *entry) 2459 { 2460 struct hlist_bl_head *b = d_hash(entry->d_name.hash); 2461 2462 hlist_bl_lock(b); 2463 hlist_bl_add_head_rcu(&entry->d_hash, b); 2464 hlist_bl_unlock(b); 2465 } 2466 2467 /** 2468 * d_rehash - add an entry back to the hash 2469 * @entry: dentry to add to the hash 2470 * 2471 * Adds a dentry to the hash according to its name. 2472 */ 2473 2474 void d_rehash(struct dentry * entry) 2475 { 2476 spin_lock(&entry->d_lock); 2477 __d_rehash(entry); 2478 spin_unlock(&entry->d_lock); 2479 } 2480 EXPORT_SYMBOL(d_rehash); 2481 2482 static inline unsigned start_dir_add(struct inode *dir) 2483 { 2484 2485 for (;;) { 2486 unsigned n = dir->i_dir_seq; 2487 if (!(n & 1) && cmpxchg(&dir->i_dir_seq, n, n + 1) == n) 2488 return n; 2489 cpu_relax(); 2490 } 2491 } 2492 2493 static inline void end_dir_add(struct inode *dir, unsigned n) 2494 { 2495 smp_store_release(&dir->i_dir_seq, n + 2); 2496 } 2497 2498 static void d_wait_lookup(struct dentry *dentry) 2499 { 2500 if (d_in_lookup(dentry)) { 2501 DECLARE_WAITQUEUE(wait, current); 2502 add_wait_queue(dentry->d_wait, &wait); 2503 do { 2504 set_current_state(TASK_UNINTERRUPTIBLE); 2505 spin_unlock(&dentry->d_lock); 2506 schedule(); 2507 spin_lock(&dentry->d_lock); 2508 } while (d_in_lookup(dentry)); 2509 } 2510 } 2511 2512 struct dentry *d_alloc_parallel(struct dentry *parent, 2513 const struct qstr *name, 2514 wait_queue_head_t *wq) 2515 { 2516 unsigned int hash = name->hash; 2517 struct hlist_bl_head *b = in_lookup_hash(parent, hash); 2518 struct hlist_bl_node *node; 2519 struct dentry *new = d_alloc(parent, name); 2520 struct dentry *dentry; 2521 unsigned seq, r_seq, d_seq; 2522 2523 if (unlikely(!new)) 2524 return ERR_PTR(-ENOMEM); 2525 2526 retry: 2527 rcu_read_lock(); 2528 seq = smp_load_acquire(&parent->d_inode->i_dir_seq); 2529 r_seq = read_seqbegin(&rename_lock); 2530 dentry = __d_lookup_rcu(parent, name, &d_seq); 2531 if (unlikely(dentry)) { 2532 if (!lockref_get_not_dead(&dentry->d_lockref)) { 2533 rcu_read_unlock(); 2534 goto retry; 2535 } 2536 if (read_seqcount_retry(&dentry->d_seq, d_seq)) { 2537 rcu_read_unlock(); 2538 dput(dentry); 2539 goto retry; 2540 } 2541 rcu_read_unlock(); 2542 dput(new); 2543 return dentry; 2544 } 2545 if (unlikely(read_seqretry(&rename_lock, r_seq))) { 2546 rcu_read_unlock(); 2547 goto retry; 2548 } 2549 2550 if (unlikely(seq & 1)) { 2551 rcu_read_unlock(); 2552 goto retry; 2553 } 2554 2555 hlist_bl_lock(b); 2556 if (unlikely(READ_ONCE(parent->d_inode->i_dir_seq) != seq)) { 2557 hlist_bl_unlock(b); 2558 rcu_read_unlock(); 2559 goto retry; 2560 } 2561 /* 2562 * No changes for the parent since the beginning of d_lookup(). 2563 * Since all removals from the chain happen with hlist_bl_lock(), 2564 * any potential in-lookup matches are going to stay here until 2565 * we unlock the chain. All fields are stable in everything 2566 * we encounter. 2567 */ 2568 hlist_bl_for_each_entry(dentry, node, b, d_u.d_in_lookup_hash) { 2569 if (dentry->d_name.hash != hash) 2570 continue; 2571 if (dentry->d_parent != parent) 2572 continue; 2573 if (!d_same_name(dentry, parent, name)) 2574 continue; 2575 hlist_bl_unlock(b); 2576 /* now we can try to grab a reference */ 2577 if (!lockref_get_not_dead(&dentry->d_lockref)) { 2578 rcu_read_unlock(); 2579 goto retry; 2580 } 2581 2582 rcu_read_unlock(); 2583 /* 2584 * somebody is likely to be still doing lookup for it; 2585 * wait for them to finish 2586 */ 2587 spin_lock(&dentry->d_lock); 2588 d_wait_lookup(dentry); 2589 /* 2590 * it's not in-lookup anymore; in principle we should repeat 2591 * everything from dcache lookup, but it's likely to be what 2592 * d_lookup() would've found anyway. If it is, just return it; 2593 * otherwise we really have to repeat the whole thing. 2594 */ 2595 if (unlikely(dentry->d_name.hash != hash)) 2596 goto mismatch; 2597 if (unlikely(dentry->d_parent != parent)) 2598 goto mismatch; 2599 if (unlikely(d_unhashed(dentry))) 2600 goto mismatch; 2601 if (unlikely(!d_same_name(dentry, parent, name))) 2602 goto mismatch; 2603 /* OK, it *is* a hashed match; return it */ 2604 spin_unlock(&dentry->d_lock); 2605 dput(new); 2606 return dentry; 2607 } 2608 rcu_read_unlock(); 2609 /* we can't take ->d_lock here; it's OK, though. */ 2610 new->d_flags |= DCACHE_PAR_LOOKUP; 2611 new->d_wait = wq; 2612 hlist_bl_add_head_rcu(&new->d_u.d_in_lookup_hash, b); 2613 hlist_bl_unlock(b); 2614 return new; 2615 mismatch: 2616 spin_unlock(&dentry->d_lock); 2617 dput(dentry); 2618 goto retry; 2619 } 2620 EXPORT_SYMBOL(d_alloc_parallel); 2621 2622 void __d_lookup_done(struct dentry *dentry) 2623 { 2624 struct hlist_bl_head *b = in_lookup_hash(dentry->d_parent, 2625 dentry->d_name.hash); 2626 hlist_bl_lock(b); 2627 dentry->d_flags &= ~DCACHE_PAR_LOOKUP; 2628 __hlist_bl_del(&dentry->d_u.d_in_lookup_hash); 2629 wake_up_all(dentry->d_wait); 2630 dentry->d_wait = NULL; 2631 hlist_bl_unlock(b); 2632 INIT_HLIST_NODE(&dentry->d_u.d_alias); 2633 INIT_LIST_HEAD(&dentry->d_lru); 2634 } 2635 EXPORT_SYMBOL(__d_lookup_done); 2636 2637 /* inode->i_lock held if inode is non-NULL */ 2638 2639 static inline void __d_add(struct dentry *dentry, struct inode *inode) 2640 { 2641 struct inode *dir = NULL; 2642 unsigned n; 2643 spin_lock(&dentry->d_lock); 2644 if (unlikely(d_in_lookup(dentry))) { 2645 dir = dentry->d_parent->d_inode; 2646 n = start_dir_add(dir); 2647 __d_lookup_done(dentry); 2648 } 2649 if (inode) { 2650 unsigned add_flags = d_flags_for_inode(inode); 2651 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry); 2652 raw_write_seqcount_begin(&dentry->d_seq); 2653 __d_set_inode_and_type(dentry, inode, add_flags); 2654 raw_write_seqcount_end(&dentry->d_seq); 2655 fsnotify_update_flags(dentry); 2656 } 2657 __d_rehash(dentry); 2658 if (dir) 2659 end_dir_add(dir, n); 2660 spin_unlock(&dentry->d_lock); 2661 if (inode) 2662 spin_unlock(&inode->i_lock); 2663 } 2664 2665 /** 2666 * d_add - add dentry to hash queues 2667 * @entry: dentry to add 2668 * @inode: The inode to attach to this dentry 2669 * 2670 * This adds the entry to the hash queues and initializes @inode. 2671 * The entry was actually filled in earlier during d_alloc(). 2672 */ 2673 2674 void d_add(struct dentry *entry, struct inode *inode) 2675 { 2676 if (inode) { 2677 security_d_instantiate(entry, inode); 2678 spin_lock(&inode->i_lock); 2679 } 2680 __d_add(entry, inode); 2681 } 2682 EXPORT_SYMBOL(d_add); 2683 2684 /** 2685 * d_exact_alias - find and hash an exact unhashed alias 2686 * @entry: dentry to add 2687 * @inode: The inode to go with this dentry 2688 * 2689 * If an unhashed dentry with the same name/parent and desired 2690 * inode already exists, hash and return it. Otherwise, return 2691 * NULL. 2692 * 2693 * Parent directory should be locked. 2694 */ 2695 struct dentry *d_exact_alias(struct dentry *entry, struct inode *inode) 2696 { 2697 struct dentry *alias; 2698 unsigned int hash = entry->d_name.hash; 2699 2700 spin_lock(&inode->i_lock); 2701 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) { 2702 /* 2703 * Don't need alias->d_lock here, because aliases with 2704 * d_parent == entry->d_parent are not subject to name or 2705 * parent changes, because the parent inode i_mutex is held. 2706 */ 2707 if (alias->d_name.hash != hash) 2708 continue; 2709 if (alias->d_parent != entry->d_parent) 2710 continue; 2711 if (!d_same_name(alias, entry->d_parent, &entry->d_name)) 2712 continue; 2713 spin_lock(&alias->d_lock); 2714 if (!d_unhashed(alias)) { 2715 spin_unlock(&alias->d_lock); 2716 alias = NULL; 2717 } else { 2718 __dget_dlock(alias); 2719 __d_rehash(alias); 2720 spin_unlock(&alias->d_lock); 2721 } 2722 spin_unlock(&inode->i_lock); 2723 return alias; 2724 } 2725 spin_unlock(&inode->i_lock); 2726 return NULL; 2727 } 2728 EXPORT_SYMBOL(d_exact_alias); 2729 2730 static void swap_names(struct dentry *dentry, struct dentry *target) 2731 { 2732 if (unlikely(dname_external(target))) { 2733 if (unlikely(dname_external(dentry))) { 2734 /* 2735 * Both external: swap the pointers 2736 */ 2737 swap(target->d_name.name, dentry->d_name.name); 2738 } else { 2739 /* 2740 * dentry:internal, target:external. Steal target's 2741 * storage and make target internal. 2742 */ 2743 memcpy(target->d_iname, dentry->d_name.name, 2744 dentry->d_name.len + 1); 2745 dentry->d_name.name = target->d_name.name; 2746 target->d_name.name = target->d_iname; 2747 } 2748 } else { 2749 if (unlikely(dname_external(dentry))) { 2750 /* 2751 * dentry:external, target:internal. Give dentry's 2752 * storage to target and make dentry internal 2753 */ 2754 memcpy(dentry->d_iname, target->d_name.name, 2755 target->d_name.len + 1); 2756 target->d_name.name = dentry->d_name.name; 2757 dentry->d_name.name = dentry->d_iname; 2758 } else { 2759 /* 2760 * Both are internal. 2761 */ 2762 unsigned int i; 2763 BUILD_BUG_ON(!IS_ALIGNED(DNAME_INLINE_LEN, sizeof(long))); 2764 for (i = 0; i < DNAME_INLINE_LEN / sizeof(long); i++) { 2765 swap(((long *) &dentry->d_iname)[i], 2766 ((long *) &target->d_iname)[i]); 2767 } 2768 } 2769 } 2770 swap(dentry->d_name.hash_len, target->d_name.hash_len); 2771 } 2772 2773 static void copy_name(struct dentry *dentry, struct dentry *target) 2774 { 2775 struct external_name *old_name = NULL; 2776 if (unlikely(dname_external(dentry))) 2777 old_name = external_name(dentry); 2778 if (unlikely(dname_external(target))) { 2779 atomic_inc(&external_name(target)->u.count); 2780 dentry->d_name = target->d_name; 2781 } else { 2782 memcpy(dentry->d_iname, target->d_name.name, 2783 target->d_name.len + 1); 2784 dentry->d_name.name = dentry->d_iname; 2785 dentry->d_name.hash_len = target->d_name.hash_len; 2786 } 2787 if (old_name && likely(atomic_dec_and_test(&old_name->u.count))) 2788 kfree_rcu(old_name, u.head); 2789 } 2790 2791 /* 2792 * __d_move - move a dentry 2793 * @dentry: entry to move 2794 * @target: new dentry 2795 * @exchange: exchange the two dentries 2796 * 2797 * Update the dcache to reflect the move of a file name. Negative 2798 * dcache entries should not be moved in this way. Caller must hold 2799 * rename_lock, the i_mutex of the source and target directories, 2800 * and the sb->s_vfs_rename_mutex if they differ. See lock_rename(). 2801 */ 2802 static void __d_move(struct dentry *dentry, struct dentry *target, 2803 bool exchange) 2804 { 2805 struct dentry *old_parent, *p; 2806 struct inode *dir = NULL; 2807 unsigned n; 2808 2809 WARN_ON(!dentry->d_inode); 2810 if (WARN_ON(dentry == target)) 2811 return; 2812 2813 BUG_ON(d_ancestor(target, dentry)); 2814 old_parent = dentry->d_parent; 2815 p = d_ancestor(old_parent, target); 2816 if (IS_ROOT(dentry)) { 2817 BUG_ON(p); 2818 spin_lock(&target->d_parent->d_lock); 2819 } else if (!p) { 2820 /* target is not a descendent of dentry->d_parent */ 2821 spin_lock(&target->d_parent->d_lock); 2822 spin_lock_nested(&old_parent->d_lock, DENTRY_D_LOCK_NESTED); 2823 } else { 2824 BUG_ON(p == dentry); 2825 spin_lock(&old_parent->d_lock); 2826 if (p != target) 2827 spin_lock_nested(&target->d_parent->d_lock, 2828 DENTRY_D_LOCK_NESTED); 2829 } 2830 spin_lock_nested(&dentry->d_lock, 2); 2831 spin_lock_nested(&target->d_lock, 3); 2832 2833 if (unlikely(d_in_lookup(target))) { 2834 dir = target->d_parent->d_inode; 2835 n = start_dir_add(dir); 2836 __d_lookup_done(target); 2837 } 2838 2839 write_seqcount_begin(&dentry->d_seq); 2840 write_seqcount_begin_nested(&target->d_seq, DENTRY_D_LOCK_NESTED); 2841 2842 /* unhash both */ 2843 if (!d_unhashed(dentry)) 2844 ___d_drop(dentry); 2845 if (!d_unhashed(target)) 2846 ___d_drop(target); 2847 2848 /* ... and switch them in the tree */ 2849 dentry->d_parent = target->d_parent; 2850 if (!exchange) { 2851 copy_name(dentry, target); 2852 target->d_hash.pprev = NULL; 2853 dentry->d_parent->d_lockref.count++; 2854 if (dentry != old_parent) /* wasn't IS_ROOT */ 2855 WARN_ON(!--old_parent->d_lockref.count); 2856 } else { 2857 target->d_parent = old_parent; 2858 swap_names(dentry, target); 2859 list_move(&target->d_child, &target->d_parent->d_subdirs); 2860 __d_rehash(target); 2861 fsnotify_update_flags(target); 2862 } 2863 list_move(&dentry->d_child, &dentry->d_parent->d_subdirs); 2864 __d_rehash(dentry); 2865 fsnotify_update_flags(dentry); 2866 fscrypt_handle_d_move(dentry); 2867 2868 write_seqcount_end(&target->d_seq); 2869 write_seqcount_end(&dentry->d_seq); 2870 2871 if (dir) 2872 end_dir_add(dir, n); 2873 2874 if (dentry->d_parent != old_parent) 2875 spin_unlock(&dentry->d_parent->d_lock); 2876 if (dentry != old_parent) 2877 spin_unlock(&old_parent->d_lock); 2878 spin_unlock(&target->d_lock); 2879 spin_unlock(&dentry->d_lock); 2880 } 2881 2882 /* 2883 * d_move - move a dentry 2884 * @dentry: entry to move 2885 * @target: new dentry 2886 * 2887 * Update the dcache to reflect the move of a file name. Negative 2888 * dcache entries should not be moved in this way. See the locking 2889 * requirements for __d_move. 2890 */ 2891 void d_move(struct dentry *dentry, struct dentry *target) 2892 { 2893 write_seqlock(&rename_lock); 2894 __d_move(dentry, target, false); 2895 write_sequnlock(&rename_lock); 2896 } 2897 EXPORT_SYMBOL(d_move); 2898 2899 /* 2900 * d_exchange - exchange two dentries 2901 * @dentry1: first dentry 2902 * @dentry2: second dentry 2903 */ 2904 void d_exchange(struct dentry *dentry1, struct dentry *dentry2) 2905 { 2906 write_seqlock(&rename_lock); 2907 2908 WARN_ON(!dentry1->d_inode); 2909 WARN_ON(!dentry2->d_inode); 2910 WARN_ON(IS_ROOT(dentry1)); 2911 WARN_ON(IS_ROOT(dentry2)); 2912 2913 __d_move(dentry1, dentry2, true); 2914 2915 write_sequnlock(&rename_lock); 2916 } 2917 2918 /** 2919 * d_ancestor - search for an ancestor 2920 * @p1: ancestor dentry 2921 * @p2: child dentry 2922 * 2923 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is 2924 * an ancestor of p2, else NULL. 2925 */ 2926 struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2) 2927 { 2928 struct dentry *p; 2929 2930 for (p = p2; !IS_ROOT(p); p = p->d_parent) { 2931 if (p->d_parent == p1) 2932 return p; 2933 } 2934 return NULL; 2935 } 2936 2937 /* 2938 * This helper attempts to cope with remotely renamed directories 2939 * 2940 * It assumes that the caller is already holding 2941 * dentry->d_parent->d_inode->i_mutex, and rename_lock 2942 * 2943 * Note: If ever the locking in lock_rename() changes, then please 2944 * remember to update this too... 2945 */ 2946 static int __d_unalias(struct inode *inode, 2947 struct dentry *dentry, struct dentry *alias) 2948 { 2949 struct mutex *m1 = NULL; 2950 struct rw_semaphore *m2 = NULL; 2951 int ret = -ESTALE; 2952 2953 /* If alias and dentry share a parent, then no extra locks required */ 2954 if (alias->d_parent == dentry->d_parent) 2955 goto out_unalias; 2956 2957 /* See lock_rename() */ 2958 if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex)) 2959 goto out_err; 2960 m1 = &dentry->d_sb->s_vfs_rename_mutex; 2961 if (!inode_trylock_shared(alias->d_parent->d_inode)) 2962 goto out_err; 2963 m2 = &alias->d_parent->d_inode->i_rwsem; 2964 out_unalias: 2965 __d_move(alias, dentry, false); 2966 ret = 0; 2967 out_err: 2968 if (m2) 2969 up_read(m2); 2970 if (m1) 2971 mutex_unlock(m1); 2972 return ret; 2973 } 2974 2975 /** 2976 * d_splice_alias - splice a disconnected dentry into the tree if one exists 2977 * @inode: the inode which may have a disconnected dentry 2978 * @dentry: a negative dentry which we want to point to the inode. 2979 * 2980 * If inode is a directory and has an IS_ROOT alias, then d_move that in 2981 * place of the given dentry and return it, else simply d_add the inode 2982 * to the dentry and return NULL. 2983 * 2984 * If a non-IS_ROOT directory is found, the filesystem is corrupt, and 2985 * we should error out: directories can't have multiple aliases. 2986 * 2987 * This is needed in the lookup routine of any filesystem that is exportable 2988 * (via knfsd) so that we can build dcache paths to directories effectively. 2989 * 2990 * If a dentry was found and moved, then it is returned. Otherwise NULL 2991 * is returned. This matches the expected return value of ->lookup. 2992 * 2993 * Cluster filesystems may call this function with a negative, hashed dentry. 2994 * In that case, we know that the inode will be a regular file, and also this 2995 * will only occur during atomic_open. So we need to check for the dentry 2996 * being already hashed only in the final case. 2997 */ 2998 struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry) 2999 { 3000 if (IS_ERR(inode)) 3001 return ERR_CAST(inode); 3002 3003 BUG_ON(!d_unhashed(dentry)); 3004 3005 if (!inode) 3006 goto out; 3007 3008 security_d_instantiate(dentry, inode); 3009 spin_lock(&inode->i_lock); 3010 if (S_ISDIR(inode->i_mode)) { 3011 struct dentry *new = __d_find_any_alias(inode); 3012 if (unlikely(new)) { 3013 /* The reference to new ensures it remains an alias */ 3014 spin_unlock(&inode->i_lock); 3015 write_seqlock(&rename_lock); 3016 if (unlikely(d_ancestor(new, dentry))) { 3017 write_sequnlock(&rename_lock); 3018 dput(new); 3019 new = ERR_PTR(-ELOOP); 3020 pr_warn_ratelimited( 3021 "VFS: Lookup of '%s' in %s %s" 3022 " would have caused loop\n", 3023 dentry->d_name.name, 3024 inode->i_sb->s_type->name, 3025 inode->i_sb->s_id); 3026 } else if (!IS_ROOT(new)) { 3027 struct dentry *old_parent = dget(new->d_parent); 3028 int err = __d_unalias(inode, dentry, new); 3029 write_sequnlock(&rename_lock); 3030 if (err) { 3031 dput(new); 3032 new = ERR_PTR(err); 3033 } 3034 dput(old_parent); 3035 } else { 3036 __d_move(new, dentry, false); 3037 write_sequnlock(&rename_lock); 3038 } 3039 iput(inode); 3040 return new; 3041 } 3042 } 3043 out: 3044 __d_add(dentry, inode); 3045 return NULL; 3046 } 3047 EXPORT_SYMBOL(d_splice_alias); 3048 3049 /* 3050 * Test whether new_dentry is a subdirectory of old_dentry. 3051 * 3052 * Trivially implemented using the dcache structure 3053 */ 3054 3055 /** 3056 * is_subdir - is new dentry a subdirectory of old_dentry 3057 * @new_dentry: new dentry 3058 * @old_dentry: old dentry 3059 * 3060 * Returns true if new_dentry is a subdirectory of the parent (at any depth). 3061 * Returns false otherwise. 3062 * Caller must ensure that "new_dentry" is pinned before calling is_subdir() 3063 */ 3064 3065 bool is_subdir(struct dentry *new_dentry, struct dentry *old_dentry) 3066 { 3067 bool result; 3068 unsigned seq; 3069 3070 if (new_dentry == old_dentry) 3071 return true; 3072 3073 do { 3074 /* for restarting inner loop in case of seq retry */ 3075 seq = read_seqbegin(&rename_lock); 3076 /* 3077 * Need rcu_readlock to protect against the d_parent trashing 3078 * due to d_move 3079 */ 3080 rcu_read_lock(); 3081 if (d_ancestor(old_dentry, new_dentry)) 3082 result = true; 3083 else 3084 result = false; 3085 rcu_read_unlock(); 3086 } while (read_seqretry(&rename_lock, seq)); 3087 3088 return result; 3089 } 3090 EXPORT_SYMBOL(is_subdir); 3091 3092 static enum d_walk_ret d_genocide_kill(void *data, struct dentry *dentry) 3093 { 3094 struct dentry *root = data; 3095 if (dentry != root) { 3096 if (d_unhashed(dentry) || !dentry->d_inode) 3097 return D_WALK_SKIP; 3098 3099 if (!(dentry->d_flags & DCACHE_GENOCIDE)) { 3100 dentry->d_flags |= DCACHE_GENOCIDE; 3101 dentry->d_lockref.count--; 3102 } 3103 } 3104 return D_WALK_CONTINUE; 3105 } 3106 3107 void d_genocide(struct dentry *parent) 3108 { 3109 d_walk(parent, parent, d_genocide_kill); 3110 } 3111 3112 EXPORT_SYMBOL(d_genocide); 3113 3114 void d_tmpfile(struct dentry *dentry, struct inode *inode) 3115 { 3116 inode_dec_link_count(inode); 3117 BUG_ON(dentry->d_name.name != dentry->d_iname || 3118 !hlist_unhashed(&dentry->d_u.d_alias) || 3119 !d_unlinked(dentry)); 3120 spin_lock(&dentry->d_parent->d_lock); 3121 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED); 3122 dentry->d_name.len = sprintf(dentry->d_iname, "#%llu", 3123 (unsigned long long)inode->i_ino); 3124 spin_unlock(&dentry->d_lock); 3125 spin_unlock(&dentry->d_parent->d_lock); 3126 d_instantiate(dentry, inode); 3127 } 3128 EXPORT_SYMBOL(d_tmpfile); 3129 3130 static __initdata unsigned long dhash_entries; 3131 static int __init set_dhash_entries(char *str) 3132 { 3133 if (!str) 3134 return 0; 3135 dhash_entries = simple_strtoul(str, &str, 0); 3136 return 1; 3137 } 3138 __setup("dhash_entries=", set_dhash_entries); 3139 3140 static void __init dcache_init_early(void) 3141 { 3142 /* If hashes are distributed across NUMA nodes, defer 3143 * hash allocation until vmalloc space is available. 3144 */ 3145 if (hashdist) 3146 return; 3147 3148 dentry_hashtable = 3149 alloc_large_system_hash("Dentry cache", 3150 sizeof(struct hlist_bl_head), 3151 dhash_entries, 3152 13, 3153 HASH_EARLY | HASH_ZERO, 3154 &d_hash_shift, 3155 NULL, 3156 0, 3157 0); 3158 d_hash_shift = 32 - d_hash_shift; 3159 } 3160 3161 static void __init dcache_init(void) 3162 { 3163 /* 3164 * A constructor could be added for stable state like the lists, 3165 * but it is probably not worth it because of the cache nature 3166 * of the dcache. 3167 */ 3168 dentry_cache = KMEM_CACHE_USERCOPY(dentry, 3169 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD|SLAB_ACCOUNT, 3170 d_iname); 3171 3172 /* Hash may have been set up in dcache_init_early */ 3173 if (!hashdist) 3174 return; 3175 3176 dentry_hashtable = 3177 alloc_large_system_hash("Dentry cache", 3178 sizeof(struct hlist_bl_head), 3179 dhash_entries, 3180 13, 3181 HASH_ZERO, 3182 &d_hash_shift, 3183 NULL, 3184 0, 3185 0); 3186 d_hash_shift = 32 - d_hash_shift; 3187 } 3188 3189 /* SLAB cache for __getname() consumers */ 3190 struct kmem_cache *names_cachep __read_mostly; 3191 EXPORT_SYMBOL(names_cachep); 3192 3193 void __init vfs_caches_init_early(void) 3194 { 3195 int i; 3196 3197 for (i = 0; i < ARRAY_SIZE(in_lookup_hashtable); i++) 3198 INIT_HLIST_BL_HEAD(&in_lookup_hashtable[i]); 3199 3200 dcache_init_early(); 3201 inode_init_early(); 3202 } 3203 3204 void __init vfs_caches_init(void) 3205 { 3206 names_cachep = kmem_cache_create_usercopy("names_cache", PATH_MAX, 0, 3207 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 0, PATH_MAX, NULL); 3208 3209 dcache_init(); 3210 inode_init(); 3211 files_init(); 3212 files_maxfiles_init(); 3213 mnt_init(); 3214 bdev_cache_init(); 3215 chrdev_init(); 3216 } 3217