1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * fs/dcache.c 4 * 5 * Complete reimplementation 6 * (C) 1997 Thomas Schoebel-Theuer, 7 * with heavy changes by Linus Torvalds 8 */ 9 10 /* 11 * Notes on the allocation strategy: 12 * 13 * The dcache is a master of the icache - whenever a dcache entry 14 * exists, the inode will always exist. "iput()" is done either when 15 * the dcache entry is deleted or garbage collected. 16 */ 17 18 #include <linux/ratelimit.h> 19 #include <linux/string.h> 20 #include <linux/mm.h> 21 #include <linux/fs.h> 22 #include <linux/fscrypt.h> 23 #include <linux/fsnotify.h> 24 #include <linux/slab.h> 25 #include <linux/init.h> 26 #include <linux/hash.h> 27 #include <linux/cache.h> 28 #include <linux/export.h> 29 #include <linux/security.h> 30 #include <linux/seqlock.h> 31 #include <linux/memblock.h> 32 #include <linux/bit_spinlock.h> 33 #include <linux/rculist_bl.h> 34 #include <linux/list_lru.h> 35 #include "internal.h" 36 #include "mount.h" 37 38 /* 39 * Usage: 40 * dcache->d_inode->i_lock protects: 41 * - i_dentry, d_u.d_alias, d_inode of aliases 42 * dcache_hash_bucket lock protects: 43 * - the dcache hash table 44 * s_roots bl list spinlock protects: 45 * - the s_roots list (see __d_drop) 46 * dentry->d_sb->s_dentry_lru_lock protects: 47 * - the dcache lru lists and counters 48 * d_lock protects: 49 * - d_flags 50 * - d_name 51 * - d_lru 52 * - d_count 53 * - d_unhashed() 54 * - d_parent and d_subdirs 55 * - childrens' d_child and d_parent 56 * - d_u.d_alias, d_inode 57 * 58 * Ordering: 59 * dentry->d_inode->i_lock 60 * dentry->d_lock 61 * dentry->d_sb->s_dentry_lru_lock 62 * dcache_hash_bucket lock 63 * s_roots lock 64 * 65 * If there is an ancestor relationship: 66 * dentry->d_parent->...->d_parent->d_lock 67 * ... 68 * dentry->d_parent->d_lock 69 * dentry->d_lock 70 * 71 * If no ancestor relationship: 72 * arbitrary, since it's serialized on rename_lock 73 */ 74 int sysctl_vfs_cache_pressure __read_mostly = 100; 75 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure); 76 77 __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock); 78 79 EXPORT_SYMBOL(rename_lock); 80 81 static struct kmem_cache *dentry_cache __read_mostly; 82 83 const struct qstr empty_name = QSTR_INIT("", 0); 84 EXPORT_SYMBOL(empty_name); 85 const struct qstr slash_name = QSTR_INIT("/", 1); 86 EXPORT_SYMBOL(slash_name); 87 88 /* 89 * This is the single most critical data structure when it comes 90 * to the dcache: the hashtable for lookups. Somebody should try 91 * to make this good - I've just made it work. 92 * 93 * This hash-function tries to avoid losing too many bits of hash 94 * information, yet avoid using a prime hash-size or similar. 95 */ 96 97 static unsigned int d_hash_shift __read_mostly; 98 99 static struct hlist_bl_head *dentry_hashtable __read_mostly; 100 101 static inline struct hlist_bl_head *d_hash(unsigned int hash) 102 { 103 return dentry_hashtable + (hash >> d_hash_shift); 104 } 105 106 #define IN_LOOKUP_SHIFT 10 107 static struct hlist_bl_head in_lookup_hashtable[1 << IN_LOOKUP_SHIFT]; 108 109 static inline struct hlist_bl_head *in_lookup_hash(const struct dentry *parent, 110 unsigned int hash) 111 { 112 hash += (unsigned long) parent / L1_CACHE_BYTES; 113 return in_lookup_hashtable + hash_32(hash, IN_LOOKUP_SHIFT); 114 } 115 116 117 /* Statistics gathering. */ 118 struct dentry_stat_t dentry_stat = { 119 .age_limit = 45, 120 }; 121 122 static DEFINE_PER_CPU(long, nr_dentry); 123 static DEFINE_PER_CPU(long, nr_dentry_unused); 124 static DEFINE_PER_CPU(long, nr_dentry_negative); 125 126 #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS) 127 128 /* 129 * Here we resort to our own counters instead of using generic per-cpu counters 130 * for consistency with what the vfs inode code does. We are expected to harvest 131 * better code and performance by having our own specialized counters. 132 * 133 * Please note that the loop is done over all possible CPUs, not over all online 134 * CPUs. The reason for this is that we don't want to play games with CPUs going 135 * on and off. If one of them goes off, we will just keep their counters. 136 * 137 * glommer: See cffbc8a for details, and if you ever intend to change this, 138 * please update all vfs counters to match. 139 */ 140 static long get_nr_dentry(void) 141 { 142 int i; 143 long sum = 0; 144 for_each_possible_cpu(i) 145 sum += per_cpu(nr_dentry, i); 146 return sum < 0 ? 0 : sum; 147 } 148 149 static long get_nr_dentry_unused(void) 150 { 151 int i; 152 long sum = 0; 153 for_each_possible_cpu(i) 154 sum += per_cpu(nr_dentry_unused, i); 155 return sum < 0 ? 0 : sum; 156 } 157 158 static long get_nr_dentry_negative(void) 159 { 160 int i; 161 long sum = 0; 162 163 for_each_possible_cpu(i) 164 sum += per_cpu(nr_dentry_negative, i); 165 return sum < 0 ? 0 : sum; 166 } 167 168 int proc_nr_dentry(struct ctl_table *table, int write, void __user *buffer, 169 size_t *lenp, loff_t *ppos) 170 { 171 dentry_stat.nr_dentry = get_nr_dentry(); 172 dentry_stat.nr_unused = get_nr_dentry_unused(); 173 dentry_stat.nr_negative = get_nr_dentry_negative(); 174 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos); 175 } 176 #endif 177 178 /* 179 * Compare 2 name strings, return 0 if they match, otherwise non-zero. 180 * The strings are both count bytes long, and count is non-zero. 181 */ 182 #ifdef CONFIG_DCACHE_WORD_ACCESS 183 184 #include <asm/word-at-a-time.h> 185 /* 186 * NOTE! 'cs' and 'scount' come from a dentry, so it has a 187 * aligned allocation for this particular component. We don't 188 * strictly need the load_unaligned_zeropad() safety, but it 189 * doesn't hurt either. 190 * 191 * In contrast, 'ct' and 'tcount' can be from a pathname, and do 192 * need the careful unaligned handling. 193 */ 194 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount) 195 { 196 unsigned long a,b,mask; 197 198 for (;;) { 199 a = read_word_at_a_time(cs); 200 b = load_unaligned_zeropad(ct); 201 if (tcount < sizeof(unsigned long)) 202 break; 203 if (unlikely(a != b)) 204 return 1; 205 cs += sizeof(unsigned long); 206 ct += sizeof(unsigned long); 207 tcount -= sizeof(unsigned long); 208 if (!tcount) 209 return 0; 210 } 211 mask = bytemask_from_count(tcount); 212 return unlikely(!!((a ^ b) & mask)); 213 } 214 215 #else 216 217 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount) 218 { 219 do { 220 if (*cs != *ct) 221 return 1; 222 cs++; 223 ct++; 224 tcount--; 225 } while (tcount); 226 return 0; 227 } 228 229 #endif 230 231 static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount) 232 { 233 /* 234 * Be careful about RCU walk racing with rename: 235 * use 'READ_ONCE' to fetch the name pointer. 236 * 237 * NOTE! Even if a rename will mean that the length 238 * was not loaded atomically, we don't care. The 239 * RCU walk will check the sequence count eventually, 240 * and catch it. And we won't overrun the buffer, 241 * because we're reading the name pointer atomically, 242 * and a dentry name is guaranteed to be properly 243 * terminated with a NUL byte. 244 * 245 * End result: even if 'len' is wrong, we'll exit 246 * early because the data cannot match (there can 247 * be no NUL in the ct/tcount data) 248 */ 249 const unsigned char *cs = READ_ONCE(dentry->d_name.name); 250 251 return dentry_string_cmp(cs, ct, tcount); 252 } 253 254 struct external_name { 255 union { 256 atomic_t count; 257 struct rcu_head head; 258 } u; 259 unsigned char name[]; 260 }; 261 262 static inline struct external_name *external_name(struct dentry *dentry) 263 { 264 return container_of(dentry->d_name.name, struct external_name, name[0]); 265 } 266 267 static void __d_free(struct rcu_head *head) 268 { 269 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu); 270 271 kmem_cache_free(dentry_cache, dentry); 272 } 273 274 static void __d_free_external(struct rcu_head *head) 275 { 276 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu); 277 kfree(external_name(dentry)); 278 kmem_cache_free(dentry_cache, dentry); 279 } 280 281 static inline int dname_external(const struct dentry *dentry) 282 { 283 return dentry->d_name.name != dentry->d_iname; 284 } 285 286 void take_dentry_name_snapshot(struct name_snapshot *name, struct dentry *dentry) 287 { 288 spin_lock(&dentry->d_lock); 289 name->name = dentry->d_name; 290 if (unlikely(dname_external(dentry))) { 291 atomic_inc(&external_name(dentry)->u.count); 292 } else { 293 memcpy(name->inline_name, dentry->d_iname, 294 dentry->d_name.len + 1); 295 name->name.name = name->inline_name; 296 } 297 spin_unlock(&dentry->d_lock); 298 } 299 EXPORT_SYMBOL(take_dentry_name_snapshot); 300 301 void release_dentry_name_snapshot(struct name_snapshot *name) 302 { 303 if (unlikely(name->name.name != name->inline_name)) { 304 struct external_name *p; 305 p = container_of(name->name.name, struct external_name, name[0]); 306 if (unlikely(atomic_dec_and_test(&p->u.count))) 307 kfree_rcu(p, u.head); 308 } 309 } 310 EXPORT_SYMBOL(release_dentry_name_snapshot); 311 312 static inline void __d_set_inode_and_type(struct dentry *dentry, 313 struct inode *inode, 314 unsigned type_flags) 315 { 316 unsigned flags; 317 318 dentry->d_inode = inode; 319 flags = READ_ONCE(dentry->d_flags); 320 flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU); 321 flags |= type_flags; 322 smp_store_release(&dentry->d_flags, flags); 323 } 324 325 static inline void __d_clear_type_and_inode(struct dentry *dentry) 326 { 327 unsigned flags = READ_ONCE(dentry->d_flags); 328 329 flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU); 330 WRITE_ONCE(dentry->d_flags, flags); 331 dentry->d_inode = NULL; 332 if (dentry->d_flags & DCACHE_LRU_LIST) 333 this_cpu_inc(nr_dentry_negative); 334 } 335 336 static void dentry_free(struct dentry *dentry) 337 { 338 WARN_ON(!hlist_unhashed(&dentry->d_u.d_alias)); 339 if (unlikely(dname_external(dentry))) { 340 struct external_name *p = external_name(dentry); 341 if (likely(atomic_dec_and_test(&p->u.count))) { 342 call_rcu(&dentry->d_u.d_rcu, __d_free_external); 343 return; 344 } 345 } 346 /* if dentry was never visible to RCU, immediate free is OK */ 347 if (dentry->d_flags & DCACHE_NORCU) 348 __d_free(&dentry->d_u.d_rcu); 349 else 350 call_rcu(&dentry->d_u.d_rcu, __d_free); 351 } 352 353 /* 354 * Release the dentry's inode, using the filesystem 355 * d_iput() operation if defined. 356 */ 357 static void dentry_unlink_inode(struct dentry * dentry) 358 __releases(dentry->d_lock) 359 __releases(dentry->d_inode->i_lock) 360 { 361 struct inode *inode = dentry->d_inode; 362 363 raw_write_seqcount_begin(&dentry->d_seq); 364 __d_clear_type_and_inode(dentry); 365 hlist_del_init(&dentry->d_u.d_alias); 366 raw_write_seqcount_end(&dentry->d_seq); 367 spin_unlock(&dentry->d_lock); 368 spin_unlock(&inode->i_lock); 369 if (!inode->i_nlink) 370 fsnotify_inoderemove(inode); 371 if (dentry->d_op && dentry->d_op->d_iput) 372 dentry->d_op->d_iput(dentry, inode); 373 else 374 iput(inode); 375 } 376 377 /* 378 * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry 379 * is in use - which includes both the "real" per-superblock 380 * LRU list _and_ the DCACHE_SHRINK_LIST use. 381 * 382 * The DCACHE_SHRINK_LIST bit is set whenever the dentry is 383 * on the shrink list (ie not on the superblock LRU list). 384 * 385 * The per-cpu "nr_dentry_unused" counters are updated with 386 * the DCACHE_LRU_LIST bit. 387 * 388 * The per-cpu "nr_dentry_negative" counters are only updated 389 * when deleted from or added to the per-superblock LRU list, not 390 * from/to the shrink list. That is to avoid an unneeded dec/inc 391 * pair when moving from LRU to shrink list in select_collect(). 392 * 393 * These helper functions make sure we always follow the 394 * rules. d_lock must be held by the caller. 395 */ 396 #define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x)) 397 static void d_lru_add(struct dentry *dentry) 398 { 399 D_FLAG_VERIFY(dentry, 0); 400 dentry->d_flags |= DCACHE_LRU_LIST; 401 this_cpu_inc(nr_dentry_unused); 402 if (d_is_negative(dentry)) 403 this_cpu_inc(nr_dentry_negative); 404 WARN_ON_ONCE(!list_lru_add(&dentry->d_sb->s_dentry_lru, &dentry->d_lru)); 405 } 406 407 static void d_lru_del(struct dentry *dentry) 408 { 409 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST); 410 dentry->d_flags &= ~DCACHE_LRU_LIST; 411 this_cpu_dec(nr_dentry_unused); 412 if (d_is_negative(dentry)) 413 this_cpu_dec(nr_dentry_negative); 414 WARN_ON_ONCE(!list_lru_del(&dentry->d_sb->s_dentry_lru, &dentry->d_lru)); 415 } 416 417 static void d_shrink_del(struct dentry *dentry) 418 { 419 D_FLAG_VERIFY(dentry, DCACHE_SHRINK_LIST | DCACHE_LRU_LIST); 420 list_del_init(&dentry->d_lru); 421 dentry->d_flags &= ~(DCACHE_SHRINK_LIST | DCACHE_LRU_LIST); 422 this_cpu_dec(nr_dentry_unused); 423 } 424 425 static void d_shrink_add(struct dentry *dentry, struct list_head *list) 426 { 427 D_FLAG_VERIFY(dentry, 0); 428 list_add(&dentry->d_lru, list); 429 dentry->d_flags |= DCACHE_SHRINK_LIST | DCACHE_LRU_LIST; 430 this_cpu_inc(nr_dentry_unused); 431 } 432 433 /* 434 * These can only be called under the global LRU lock, ie during the 435 * callback for freeing the LRU list. "isolate" removes it from the 436 * LRU lists entirely, while shrink_move moves it to the indicated 437 * private list. 438 */ 439 static void d_lru_isolate(struct list_lru_one *lru, struct dentry *dentry) 440 { 441 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST); 442 dentry->d_flags &= ~DCACHE_LRU_LIST; 443 this_cpu_dec(nr_dentry_unused); 444 if (d_is_negative(dentry)) 445 this_cpu_dec(nr_dentry_negative); 446 list_lru_isolate(lru, &dentry->d_lru); 447 } 448 449 static void d_lru_shrink_move(struct list_lru_one *lru, struct dentry *dentry, 450 struct list_head *list) 451 { 452 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST); 453 dentry->d_flags |= DCACHE_SHRINK_LIST; 454 if (d_is_negative(dentry)) 455 this_cpu_dec(nr_dentry_negative); 456 list_lru_isolate_move(lru, &dentry->d_lru, list); 457 } 458 459 /** 460 * d_drop - drop a dentry 461 * @dentry: dentry to drop 462 * 463 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't 464 * be found through a VFS lookup any more. Note that this is different from 465 * deleting the dentry - d_delete will try to mark the dentry negative if 466 * possible, giving a successful _negative_ lookup, while d_drop will 467 * just make the cache lookup fail. 468 * 469 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some 470 * reason (NFS timeouts or autofs deletes). 471 * 472 * __d_drop requires dentry->d_lock 473 * ___d_drop doesn't mark dentry as "unhashed" 474 * (dentry->d_hash.pprev will be LIST_POISON2, not NULL). 475 */ 476 static void ___d_drop(struct dentry *dentry) 477 { 478 struct hlist_bl_head *b; 479 /* 480 * Hashed dentries are normally on the dentry hashtable, 481 * with the exception of those newly allocated by 482 * d_obtain_root, which are always IS_ROOT: 483 */ 484 if (unlikely(IS_ROOT(dentry))) 485 b = &dentry->d_sb->s_roots; 486 else 487 b = d_hash(dentry->d_name.hash); 488 489 hlist_bl_lock(b); 490 __hlist_bl_del(&dentry->d_hash); 491 hlist_bl_unlock(b); 492 } 493 494 void __d_drop(struct dentry *dentry) 495 { 496 if (!d_unhashed(dentry)) { 497 ___d_drop(dentry); 498 dentry->d_hash.pprev = NULL; 499 write_seqcount_invalidate(&dentry->d_seq); 500 } 501 } 502 EXPORT_SYMBOL(__d_drop); 503 504 void d_drop(struct dentry *dentry) 505 { 506 spin_lock(&dentry->d_lock); 507 __d_drop(dentry); 508 spin_unlock(&dentry->d_lock); 509 } 510 EXPORT_SYMBOL(d_drop); 511 512 static inline void dentry_unlist(struct dentry *dentry, struct dentry *parent) 513 { 514 struct dentry *next; 515 /* 516 * Inform d_walk() and shrink_dentry_list() that we are no longer 517 * attached to the dentry tree 518 */ 519 dentry->d_flags |= DCACHE_DENTRY_KILLED; 520 if (unlikely(list_empty(&dentry->d_child))) 521 return; 522 __list_del_entry(&dentry->d_child); 523 /* 524 * Cursors can move around the list of children. While we'd been 525 * a normal list member, it didn't matter - ->d_child.next would've 526 * been updated. However, from now on it won't be and for the 527 * things like d_walk() it might end up with a nasty surprise. 528 * Normally d_walk() doesn't care about cursors moving around - 529 * ->d_lock on parent prevents that and since a cursor has no children 530 * of its own, we get through it without ever unlocking the parent. 531 * There is one exception, though - if we ascend from a child that 532 * gets killed as soon as we unlock it, the next sibling is found 533 * using the value left in its ->d_child.next. And if _that_ 534 * pointed to a cursor, and cursor got moved (e.g. by lseek()) 535 * before d_walk() regains parent->d_lock, we'll end up skipping 536 * everything the cursor had been moved past. 537 * 538 * Solution: make sure that the pointer left behind in ->d_child.next 539 * points to something that won't be moving around. I.e. skip the 540 * cursors. 541 */ 542 while (dentry->d_child.next != &parent->d_subdirs) { 543 next = list_entry(dentry->d_child.next, struct dentry, d_child); 544 if (likely(!(next->d_flags & DCACHE_DENTRY_CURSOR))) 545 break; 546 dentry->d_child.next = next->d_child.next; 547 } 548 } 549 550 static void __dentry_kill(struct dentry *dentry) 551 { 552 struct dentry *parent = NULL; 553 bool can_free = true; 554 if (!IS_ROOT(dentry)) 555 parent = dentry->d_parent; 556 557 /* 558 * The dentry is now unrecoverably dead to the world. 559 */ 560 lockref_mark_dead(&dentry->d_lockref); 561 562 /* 563 * inform the fs via d_prune that this dentry is about to be 564 * unhashed and destroyed. 565 */ 566 if (dentry->d_flags & DCACHE_OP_PRUNE) 567 dentry->d_op->d_prune(dentry); 568 569 if (dentry->d_flags & DCACHE_LRU_LIST) { 570 if (!(dentry->d_flags & DCACHE_SHRINK_LIST)) 571 d_lru_del(dentry); 572 } 573 /* if it was on the hash then remove it */ 574 __d_drop(dentry); 575 dentry_unlist(dentry, parent); 576 if (parent) 577 spin_unlock(&parent->d_lock); 578 if (dentry->d_inode) 579 dentry_unlink_inode(dentry); 580 else 581 spin_unlock(&dentry->d_lock); 582 this_cpu_dec(nr_dentry); 583 if (dentry->d_op && dentry->d_op->d_release) 584 dentry->d_op->d_release(dentry); 585 586 spin_lock(&dentry->d_lock); 587 if (dentry->d_flags & DCACHE_SHRINK_LIST) { 588 dentry->d_flags |= DCACHE_MAY_FREE; 589 can_free = false; 590 } 591 spin_unlock(&dentry->d_lock); 592 if (likely(can_free)) 593 dentry_free(dentry); 594 cond_resched(); 595 } 596 597 static struct dentry *__lock_parent(struct dentry *dentry) 598 { 599 struct dentry *parent; 600 rcu_read_lock(); 601 spin_unlock(&dentry->d_lock); 602 again: 603 parent = READ_ONCE(dentry->d_parent); 604 spin_lock(&parent->d_lock); 605 /* 606 * We can't blindly lock dentry until we are sure 607 * that we won't violate the locking order. 608 * Any changes of dentry->d_parent must have 609 * been done with parent->d_lock held, so 610 * spin_lock() above is enough of a barrier 611 * for checking if it's still our child. 612 */ 613 if (unlikely(parent != dentry->d_parent)) { 614 spin_unlock(&parent->d_lock); 615 goto again; 616 } 617 rcu_read_unlock(); 618 if (parent != dentry) 619 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED); 620 else 621 parent = NULL; 622 return parent; 623 } 624 625 static inline struct dentry *lock_parent(struct dentry *dentry) 626 { 627 struct dentry *parent = dentry->d_parent; 628 if (IS_ROOT(dentry)) 629 return NULL; 630 if (likely(spin_trylock(&parent->d_lock))) 631 return parent; 632 return __lock_parent(dentry); 633 } 634 635 static inline bool retain_dentry(struct dentry *dentry) 636 { 637 WARN_ON(d_in_lookup(dentry)); 638 639 /* Unreachable? Get rid of it */ 640 if (unlikely(d_unhashed(dentry))) 641 return false; 642 643 if (unlikely(dentry->d_flags & DCACHE_DISCONNECTED)) 644 return false; 645 646 if (unlikely(dentry->d_flags & DCACHE_OP_DELETE)) { 647 if (dentry->d_op->d_delete(dentry)) 648 return false; 649 } 650 /* retain; LRU fodder */ 651 dentry->d_lockref.count--; 652 if (unlikely(!(dentry->d_flags & DCACHE_LRU_LIST))) 653 d_lru_add(dentry); 654 else if (unlikely(!(dentry->d_flags & DCACHE_REFERENCED))) 655 dentry->d_flags |= DCACHE_REFERENCED; 656 return true; 657 } 658 659 /* 660 * Finish off a dentry we've decided to kill. 661 * dentry->d_lock must be held, returns with it unlocked. 662 * Returns dentry requiring refcount drop, or NULL if we're done. 663 */ 664 static struct dentry *dentry_kill(struct dentry *dentry) 665 __releases(dentry->d_lock) 666 { 667 struct inode *inode = dentry->d_inode; 668 struct dentry *parent = NULL; 669 670 if (inode && unlikely(!spin_trylock(&inode->i_lock))) 671 goto slow_positive; 672 673 if (!IS_ROOT(dentry)) { 674 parent = dentry->d_parent; 675 if (unlikely(!spin_trylock(&parent->d_lock))) { 676 parent = __lock_parent(dentry); 677 if (likely(inode || !dentry->d_inode)) 678 goto got_locks; 679 /* negative that became positive */ 680 if (parent) 681 spin_unlock(&parent->d_lock); 682 inode = dentry->d_inode; 683 goto slow_positive; 684 } 685 } 686 __dentry_kill(dentry); 687 return parent; 688 689 slow_positive: 690 spin_unlock(&dentry->d_lock); 691 spin_lock(&inode->i_lock); 692 spin_lock(&dentry->d_lock); 693 parent = lock_parent(dentry); 694 got_locks: 695 if (unlikely(dentry->d_lockref.count != 1)) { 696 dentry->d_lockref.count--; 697 } else if (likely(!retain_dentry(dentry))) { 698 __dentry_kill(dentry); 699 return parent; 700 } 701 /* we are keeping it, after all */ 702 if (inode) 703 spin_unlock(&inode->i_lock); 704 if (parent) 705 spin_unlock(&parent->d_lock); 706 spin_unlock(&dentry->d_lock); 707 return NULL; 708 } 709 710 /* 711 * Try to do a lockless dput(), and return whether that was successful. 712 * 713 * If unsuccessful, we return false, having already taken the dentry lock. 714 * 715 * The caller needs to hold the RCU read lock, so that the dentry is 716 * guaranteed to stay around even if the refcount goes down to zero! 717 */ 718 static inline bool fast_dput(struct dentry *dentry) 719 { 720 int ret; 721 unsigned int d_flags; 722 723 /* 724 * If we have a d_op->d_delete() operation, we sould not 725 * let the dentry count go to zero, so use "put_or_lock". 726 */ 727 if (unlikely(dentry->d_flags & DCACHE_OP_DELETE)) 728 return lockref_put_or_lock(&dentry->d_lockref); 729 730 /* 731 * .. otherwise, we can try to just decrement the 732 * lockref optimistically. 733 */ 734 ret = lockref_put_return(&dentry->d_lockref); 735 736 /* 737 * If the lockref_put_return() failed due to the lock being held 738 * by somebody else, the fast path has failed. We will need to 739 * get the lock, and then check the count again. 740 */ 741 if (unlikely(ret < 0)) { 742 spin_lock(&dentry->d_lock); 743 if (dentry->d_lockref.count > 1) { 744 dentry->d_lockref.count--; 745 spin_unlock(&dentry->d_lock); 746 return true; 747 } 748 return false; 749 } 750 751 /* 752 * If we weren't the last ref, we're done. 753 */ 754 if (ret) 755 return true; 756 757 /* 758 * Careful, careful. The reference count went down 759 * to zero, but we don't hold the dentry lock, so 760 * somebody else could get it again, and do another 761 * dput(), and we need to not race with that. 762 * 763 * However, there is a very special and common case 764 * where we don't care, because there is nothing to 765 * do: the dentry is still hashed, it does not have 766 * a 'delete' op, and it's referenced and already on 767 * the LRU list. 768 * 769 * NOTE! Since we aren't locked, these values are 770 * not "stable". However, it is sufficient that at 771 * some point after we dropped the reference the 772 * dentry was hashed and the flags had the proper 773 * value. Other dentry users may have re-gotten 774 * a reference to the dentry and change that, but 775 * our work is done - we can leave the dentry 776 * around with a zero refcount. 777 */ 778 smp_rmb(); 779 d_flags = READ_ONCE(dentry->d_flags); 780 d_flags &= DCACHE_REFERENCED | DCACHE_LRU_LIST | DCACHE_DISCONNECTED; 781 782 /* Nothing to do? Dropping the reference was all we needed? */ 783 if (d_flags == (DCACHE_REFERENCED | DCACHE_LRU_LIST) && !d_unhashed(dentry)) 784 return true; 785 786 /* 787 * Not the fast normal case? Get the lock. We've already decremented 788 * the refcount, but we'll need to re-check the situation after 789 * getting the lock. 790 */ 791 spin_lock(&dentry->d_lock); 792 793 /* 794 * Did somebody else grab a reference to it in the meantime, and 795 * we're no longer the last user after all? Alternatively, somebody 796 * else could have killed it and marked it dead. Either way, we 797 * don't need to do anything else. 798 */ 799 if (dentry->d_lockref.count) { 800 spin_unlock(&dentry->d_lock); 801 return true; 802 } 803 804 /* 805 * Re-get the reference we optimistically dropped. We hold the 806 * lock, and we just tested that it was zero, so we can just 807 * set it to 1. 808 */ 809 dentry->d_lockref.count = 1; 810 return false; 811 } 812 813 814 /* 815 * This is dput 816 * 817 * This is complicated by the fact that we do not want to put 818 * dentries that are no longer on any hash chain on the unused 819 * list: we'd much rather just get rid of them immediately. 820 * 821 * However, that implies that we have to traverse the dentry 822 * tree upwards to the parents which might _also_ now be 823 * scheduled for deletion (it may have been only waiting for 824 * its last child to go away). 825 * 826 * This tail recursion is done by hand as we don't want to depend 827 * on the compiler to always get this right (gcc generally doesn't). 828 * Real recursion would eat up our stack space. 829 */ 830 831 /* 832 * dput - release a dentry 833 * @dentry: dentry to release 834 * 835 * Release a dentry. This will drop the usage count and if appropriate 836 * call the dentry unlink method as well as removing it from the queues and 837 * releasing its resources. If the parent dentries were scheduled for release 838 * they too may now get deleted. 839 */ 840 void dput(struct dentry *dentry) 841 { 842 while (dentry) { 843 might_sleep(); 844 845 rcu_read_lock(); 846 if (likely(fast_dput(dentry))) { 847 rcu_read_unlock(); 848 return; 849 } 850 851 /* Slow case: now with the dentry lock held */ 852 rcu_read_unlock(); 853 854 if (likely(retain_dentry(dentry))) { 855 spin_unlock(&dentry->d_lock); 856 return; 857 } 858 859 dentry = dentry_kill(dentry); 860 } 861 } 862 EXPORT_SYMBOL(dput); 863 864 static void __dput_to_list(struct dentry *dentry, struct list_head *list) 865 __must_hold(&dentry->d_lock) 866 { 867 if (dentry->d_flags & DCACHE_SHRINK_LIST) { 868 /* let the owner of the list it's on deal with it */ 869 --dentry->d_lockref.count; 870 } else { 871 if (dentry->d_flags & DCACHE_LRU_LIST) 872 d_lru_del(dentry); 873 if (!--dentry->d_lockref.count) 874 d_shrink_add(dentry, list); 875 } 876 } 877 878 void dput_to_list(struct dentry *dentry, struct list_head *list) 879 { 880 rcu_read_lock(); 881 if (likely(fast_dput(dentry))) { 882 rcu_read_unlock(); 883 return; 884 } 885 rcu_read_unlock(); 886 if (!retain_dentry(dentry)) 887 __dput_to_list(dentry, list); 888 spin_unlock(&dentry->d_lock); 889 } 890 891 /* This must be called with d_lock held */ 892 static inline void __dget_dlock(struct dentry *dentry) 893 { 894 dentry->d_lockref.count++; 895 } 896 897 static inline void __dget(struct dentry *dentry) 898 { 899 lockref_get(&dentry->d_lockref); 900 } 901 902 struct dentry *dget_parent(struct dentry *dentry) 903 { 904 int gotref; 905 struct dentry *ret; 906 unsigned seq; 907 908 /* 909 * Do optimistic parent lookup without any 910 * locking. 911 */ 912 rcu_read_lock(); 913 seq = raw_seqcount_begin(&dentry->d_seq); 914 ret = READ_ONCE(dentry->d_parent); 915 gotref = lockref_get_not_zero(&ret->d_lockref); 916 rcu_read_unlock(); 917 if (likely(gotref)) { 918 if (!read_seqcount_retry(&dentry->d_seq, seq)) 919 return ret; 920 dput(ret); 921 } 922 923 repeat: 924 /* 925 * Don't need rcu_dereference because we re-check it was correct under 926 * the lock. 927 */ 928 rcu_read_lock(); 929 ret = dentry->d_parent; 930 spin_lock(&ret->d_lock); 931 if (unlikely(ret != dentry->d_parent)) { 932 spin_unlock(&ret->d_lock); 933 rcu_read_unlock(); 934 goto repeat; 935 } 936 rcu_read_unlock(); 937 BUG_ON(!ret->d_lockref.count); 938 ret->d_lockref.count++; 939 spin_unlock(&ret->d_lock); 940 return ret; 941 } 942 EXPORT_SYMBOL(dget_parent); 943 944 static struct dentry * __d_find_any_alias(struct inode *inode) 945 { 946 struct dentry *alias; 947 948 if (hlist_empty(&inode->i_dentry)) 949 return NULL; 950 alias = hlist_entry(inode->i_dentry.first, struct dentry, d_u.d_alias); 951 __dget(alias); 952 return alias; 953 } 954 955 /** 956 * d_find_any_alias - find any alias for a given inode 957 * @inode: inode to find an alias for 958 * 959 * If any aliases exist for the given inode, take and return a 960 * reference for one of them. If no aliases exist, return %NULL. 961 */ 962 struct dentry *d_find_any_alias(struct inode *inode) 963 { 964 struct dentry *de; 965 966 spin_lock(&inode->i_lock); 967 de = __d_find_any_alias(inode); 968 spin_unlock(&inode->i_lock); 969 return de; 970 } 971 EXPORT_SYMBOL(d_find_any_alias); 972 973 /** 974 * d_find_alias - grab a hashed alias of inode 975 * @inode: inode in question 976 * 977 * If inode has a hashed alias, or is a directory and has any alias, 978 * acquire the reference to alias and return it. Otherwise return NULL. 979 * Notice that if inode is a directory there can be only one alias and 980 * it can be unhashed only if it has no children, or if it is the root 981 * of a filesystem, or if the directory was renamed and d_revalidate 982 * was the first vfs operation to notice. 983 * 984 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer 985 * any other hashed alias over that one. 986 */ 987 static struct dentry *__d_find_alias(struct inode *inode) 988 { 989 struct dentry *alias; 990 991 if (S_ISDIR(inode->i_mode)) 992 return __d_find_any_alias(inode); 993 994 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) { 995 spin_lock(&alias->d_lock); 996 if (!d_unhashed(alias)) { 997 __dget_dlock(alias); 998 spin_unlock(&alias->d_lock); 999 return alias; 1000 } 1001 spin_unlock(&alias->d_lock); 1002 } 1003 return NULL; 1004 } 1005 1006 struct dentry *d_find_alias(struct inode *inode) 1007 { 1008 struct dentry *de = NULL; 1009 1010 if (!hlist_empty(&inode->i_dentry)) { 1011 spin_lock(&inode->i_lock); 1012 de = __d_find_alias(inode); 1013 spin_unlock(&inode->i_lock); 1014 } 1015 return de; 1016 } 1017 EXPORT_SYMBOL(d_find_alias); 1018 1019 /* 1020 * Try to kill dentries associated with this inode. 1021 * WARNING: you must own a reference to inode. 1022 */ 1023 void d_prune_aliases(struct inode *inode) 1024 { 1025 struct dentry *dentry; 1026 restart: 1027 spin_lock(&inode->i_lock); 1028 hlist_for_each_entry(dentry, &inode->i_dentry, d_u.d_alias) { 1029 spin_lock(&dentry->d_lock); 1030 if (!dentry->d_lockref.count) { 1031 struct dentry *parent = lock_parent(dentry); 1032 if (likely(!dentry->d_lockref.count)) { 1033 __dentry_kill(dentry); 1034 dput(parent); 1035 goto restart; 1036 } 1037 if (parent) 1038 spin_unlock(&parent->d_lock); 1039 } 1040 spin_unlock(&dentry->d_lock); 1041 } 1042 spin_unlock(&inode->i_lock); 1043 } 1044 EXPORT_SYMBOL(d_prune_aliases); 1045 1046 /* 1047 * Lock a dentry from shrink list. 1048 * Called under rcu_read_lock() and dentry->d_lock; the former 1049 * guarantees that nothing we access will be freed under us. 1050 * Note that dentry is *not* protected from concurrent dentry_kill(), 1051 * d_delete(), etc. 1052 * 1053 * Return false if dentry has been disrupted or grabbed, leaving 1054 * the caller to kick it off-list. Otherwise, return true and have 1055 * that dentry's inode and parent both locked. 1056 */ 1057 static bool shrink_lock_dentry(struct dentry *dentry) 1058 { 1059 struct inode *inode; 1060 struct dentry *parent; 1061 1062 if (dentry->d_lockref.count) 1063 return false; 1064 1065 inode = dentry->d_inode; 1066 if (inode && unlikely(!spin_trylock(&inode->i_lock))) { 1067 spin_unlock(&dentry->d_lock); 1068 spin_lock(&inode->i_lock); 1069 spin_lock(&dentry->d_lock); 1070 if (unlikely(dentry->d_lockref.count)) 1071 goto out; 1072 /* changed inode means that somebody had grabbed it */ 1073 if (unlikely(inode != dentry->d_inode)) 1074 goto out; 1075 } 1076 1077 parent = dentry->d_parent; 1078 if (IS_ROOT(dentry) || likely(spin_trylock(&parent->d_lock))) 1079 return true; 1080 1081 spin_unlock(&dentry->d_lock); 1082 spin_lock(&parent->d_lock); 1083 if (unlikely(parent != dentry->d_parent)) { 1084 spin_unlock(&parent->d_lock); 1085 spin_lock(&dentry->d_lock); 1086 goto out; 1087 } 1088 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED); 1089 if (likely(!dentry->d_lockref.count)) 1090 return true; 1091 spin_unlock(&parent->d_lock); 1092 out: 1093 if (inode) 1094 spin_unlock(&inode->i_lock); 1095 return false; 1096 } 1097 1098 void shrink_dentry_list(struct list_head *list) 1099 { 1100 while (!list_empty(list)) { 1101 struct dentry *dentry, *parent; 1102 1103 dentry = list_entry(list->prev, struct dentry, d_lru); 1104 spin_lock(&dentry->d_lock); 1105 rcu_read_lock(); 1106 if (!shrink_lock_dentry(dentry)) { 1107 bool can_free = false; 1108 rcu_read_unlock(); 1109 d_shrink_del(dentry); 1110 if (dentry->d_lockref.count < 0) 1111 can_free = dentry->d_flags & DCACHE_MAY_FREE; 1112 spin_unlock(&dentry->d_lock); 1113 if (can_free) 1114 dentry_free(dentry); 1115 continue; 1116 } 1117 rcu_read_unlock(); 1118 d_shrink_del(dentry); 1119 parent = dentry->d_parent; 1120 if (parent != dentry) 1121 __dput_to_list(parent, list); 1122 __dentry_kill(dentry); 1123 } 1124 } 1125 1126 static enum lru_status dentry_lru_isolate(struct list_head *item, 1127 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg) 1128 { 1129 struct list_head *freeable = arg; 1130 struct dentry *dentry = container_of(item, struct dentry, d_lru); 1131 1132 1133 /* 1134 * we are inverting the lru lock/dentry->d_lock here, 1135 * so use a trylock. If we fail to get the lock, just skip 1136 * it 1137 */ 1138 if (!spin_trylock(&dentry->d_lock)) 1139 return LRU_SKIP; 1140 1141 /* 1142 * Referenced dentries are still in use. If they have active 1143 * counts, just remove them from the LRU. Otherwise give them 1144 * another pass through the LRU. 1145 */ 1146 if (dentry->d_lockref.count) { 1147 d_lru_isolate(lru, dentry); 1148 spin_unlock(&dentry->d_lock); 1149 return LRU_REMOVED; 1150 } 1151 1152 if (dentry->d_flags & DCACHE_REFERENCED) { 1153 dentry->d_flags &= ~DCACHE_REFERENCED; 1154 spin_unlock(&dentry->d_lock); 1155 1156 /* 1157 * The list move itself will be made by the common LRU code. At 1158 * this point, we've dropped the dentry->d_lock but keep the 1159 * lru lock. This is safe to do, since every list movement is 1160 * protected by the lru lock even if both locks are held. 1161 * 1162 * This is guaranteed by the fact that all LRU management 1163 * functions are intermediated by the LRU API calls like 1164 * list_lru_add and list_lru_del. List movement in this file 1165 * only ever occur through this functions or through callbacks 1166 * like this one, that are called from the LRU API. 1167 * 1168 * The only exceptions to this are functions like 1169 * shrink_dentry_list, and code that first checks for the 1170 * DCACHE_SHRINK_LIST flag. Those are guaranteed to be 1171 * operating only with stack provided lists after they are 1172 * properly isolated from the main list. It is thus, always a 1173 * local access. 1174 */ 1175 return LRU_ROTATE; 1176 } 1177 1178 d_lru_shrink_move(lru, dentry, freeable); 1179 spin_unlock(&dentry->d_lock); 1180 1181 return LRU_REMOVED; 1182 } 1183 1184 /** 1185 * prune_dcache_sb - shrink the dcache 1186 * @sb: superblock 1187 * @sc: shrink control, passed to list_lru_shrink_walk() 1188 * 1189 * Attempt to shrink the superblock dcache LRU by @sc->nr_to_scan entries. This 1190 * is done when we need more memory and called from the superblock shrinker 1191 * function. 1192 * 1193 * This function may fail to free any resources if all the dentries are in 1194 * use. 1195 */ 1196 long prune_dcache_sb(struct super_block *sb, struct shrink_control *sc) 1197 { 1198 LIST_HEAD(dispose); 1199 long freed; 1200 1201 freed = list_lru_shrink_walk(&sb->s_dentry_lru, sc, 1202 dentry_lru_isolate, &dispose); 1203 shrink_dentry_list(&dispose); 1204 return freed; 1205 } 1206 1207 static enum lru_status dentry_lru_isolate_shrink(struct list_head *item, 1208 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg) 1209 { 1210 struct list_head *freeable = arg; 1211 struct dentry *dentry = container_of(item, struct dentry, d_lru); 1212 1213 /* 1214 * we are inverting the lru lock/dentry->d_lock here, 1215 * so use a trylock. If we fail to get the lock, just skip 1216 * it 1217 */ 1218 if (!spin_trylock(&dentry->d_lock)) 1219 return LRU_SKIP; 1220 1221 d_lru_shrink_move(lru, dentry, freeable); 1222 spin_unlock(&dentry->d_lock); 1223 1224 return LRU_REMOVED; 1225 } 1226 1227 1228 /** 1229 * shrink_dcache_sb - shrink dcache for a superblock 1230 * @sb: superblock 1231 * 1232 * Shrink the dcache for the specified super block. This is used to free 1233 * the dcache before unmounting a file system. 1234 */ 1235 void shrink_dcache_sb(struct super_block *sb) 1236 { 1237 do { 1238 LIST_HEAD(dispose); 1239 1240 list_lru_walk(&sb->s_dentry_lru, 1241 dentry_lru_isolate_shrink, &dispose, 1024); 1242 shrink_dentry_list(&dispose); 1243 } while (list_lru_count(&sb->s_dentry_lru) > 0); 1244 } 1245 EXPORT_SYMBOL(shrink_dcache_sb); 1246 1247 /** 1248 * enum d_walk_ret - action to talke during tree walk 1249 * @D_WALK_CONTINUE: contrinue walk 1250 * @D_WALK_QUIT: quit walk 1251 * @D_WALK_NORETRY: quit when retry is needed 1252 * @D_WALK_SKIP: skip this dentry and its children 1253 */ 1254 enum d_walk_ret { 1255 D_WALK_CONTINUE, 1256 D_WALK_QUIT, 1257 D_WALK_NORETRY, 1258 D_WALK_SKIP, 1259 }; 1260 1261 /** 1262 * d_walk - walk the dentry tree 1263 * @parent: start of walk 1264 * @data: data passed to @enter() and @finish() 1265 * @enter: callback when first entering the dentry 1266 * 1267 * The @enter() callbacks are called with d_lock held. 1268 */ 1269 static void d_walk(struct dentry *parent, void *data, 1270 enum d_walk_ret (*enter)(void *, struct dentry *)) 1271 { 1272 struct dentry *this_parent; 1273 struct list_head *next; 1274 unsigned seq = 0; 1275 enum d_walk_ret ret; 1276 bool retry = true; 1277 1278 again: 1279 read_seqbegin_or_lock(&rename_lock, &seq); 1280 this_parent = parent; 1281 spin_lock(&this_parent->d_lock); 1282 1283 ret = enter(data, this_parent); 1284 switch (ret) { 1285 case D_WALK_CONTINUE: 1286 break; 1287 case D_WALK_QUIT: 1288 case D_WALK_SKIP: 1289 goto out_unlock; 1290 case D_WALK_NORETRY: 1291 retry = false; 1292 break; 1293 } 1294 repeat: 1295 next = this_parent->d_subdirs.next; 1296 resume: 1297 while (next != &this_parent->d_subdirs) { 1298 struct list_head *tmp = next; 1299 struct dentry *dentry = list_entry(tmp, struct dentry, d_child); 1300 next = tmp->next; 1301 1302 if (unlikely(dentry->d_flags & DCACHE_DENTRY_CURSOR)) 1303 continue; 1304 1305 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED); 1306 1307 ret = enter(data, dentry); 1308 switch (ret) { 1309 case D_WALK_CONTINUE: 1310 break; 1311 case D_WALK_QUIT: 1312 spin_unlock(&dentry->d_lock); 1313 goto out_unlock; 1314 case D_WALK_NORETRY: 1315 retry = false; 1316 break; 1317 case D_WALK_SKIP: 1318 spin_unlock(&dentry->d_lock); 1319 continue; 1320 } 1321 1322 if (!list_empty(&dentry->d_subdirs)) { 1323 spin_unlock(&this_parent->d_lock); 1324 spin_release(&dentry->d_lock.dep_map, _RET_IP_); 1325 this_parent = dentry; 1326 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_); 1327 goto repeat; 1328 } 1329 spin_unlock(&dentry->d_lock); 1330 } 1331 /* 1332 * All done at this level ... ascend and resume the search. 1333 */ 1334 rcu_read_lock(); 1335 ascend: 1336 if (this_parent != parent) { 1337 struct dentry *child = this_parent; 1338 this_parent = child->d_parent; 1339 1340 spin_unlock(&child->d_lock); 1341 spin_lock(&this_parent->d_lock); 1342 1343 /* might go back up the wrong parent if we have had a rename. */ 1344 if (need_seqretry(&rename_lock, seq)) 1345 goto rename_retry; 1346 /* go into the first sibling still alive */ 1347 do { 1348 next = child->d_child.next; 1349 if (next == &this_parent->d_subdirs) 1350 goto ascend; 1351 child = list_entry(next, struct dentry, d_child); 1352 } while (unlikely(child->d_flags & DCACHE_DENTRY_KILLED)); 1353 rcu_read_unlock(); 1354 goto resume; 1355 } 1356 if (need_seqretry(&rename_lock, seq)) 1357 goto rename_retry; 1358 rcu_read_unlock(); 1359 1360 out_unlock: 1361 spin_unlock(&this_parent->d_lock); 1362 done_seqretry(&rename_lock, seq); 1363 return; 1364 1365 rename_retry: 1366 spin_unlock(&this_parent->d_lock); 1367 rcu_read_unlock(); 1368 BUG_ON(seq & 1); 1369 if (!retry) 1370 return; 1371 seq = 1; 1372 goto again; 1373 } 1374 1375 struct check_mount { 1376 struct vfsmount *mnt; 1377 unsigned int mounted; 1378 }; 1379 1380 static enum d_walk_ret path_check_mount(void *data, struct dentry *dentry) 1381 { 1382 struct check_mount *info = data; 1383 struct path path = { .mnt = info->mnt, .dentry = dentry }; 1384 1385 if (likely(!d_mountpoint(dentry))) 1386 return D_WALK_CONTINUE; 1387 if (__path_is_mountpoint(&path)) { 1388 info->mounted = 1; 1389 return D_WALK_QUIT; 1390 } 1391 return D_WALK_CONTINUE; 1392 } 1393 1394 /** 1395 * path_has_submounts - check for mounts over a dentry in the 1396 * current namespace. 1397 * @parent: path to check. 1398 * 1399 * Return true if the parent or its subdirectories contain 1400 * a mount point in the current namespace. 1401 */ 1402 int path_has_submounts(const struct path *parent) 1403 { 1404 struct check_mount data = { .mnt = parent->mnt, .mounted = 0 }; 1405 1406 read_seqlock_excl(&mount_lock); 1407 d_walk(parent->dentry, &data, path_check_mount); 1408 read_sequnlock_excl(&mount_lock); 1409 1410 return data.mounted; 1411 } 1412 EXPORT_SYMBOL(path_has_submounts); 1413 1414 /* 1415 * Called by mount code to set a mountpoint and check if the mountpoint is 1416 * reachable (e.g. NFS can unhash a directory dentry and then the complete 1417 * subtree can become unreachable). 1418 * 1419 * Only one of d_invalidate() and d_set_mounted() must succeed. For 1420 * this reason take rename_lock and d_lock on dentry and ancestors. 1421 */ 1422 int d_set_mounted(struct dentry *dentry) 1423 { 1424 struct dentry *p; 1425 int ret = -ENOENT; 1426 write_seqlock(&rename_lock); 1427 for (p = dentry->d_parent; !IS_ROOT(p); p = p->d_parent) { 1428 /* Need exclusion wrt. d_invalidate() */ 1429 spin_lock(&p->d_lock); 1430 if (unlikely(d_unhashed(p))) { 1431 spin_unlock(&p->d_lock); 1432 goto out; 1433 } 1434 spin_unlock(&p->d_lock); 1435 } 1436 spin_lock(&dentry->d_lock); 1437 if (!d_unlinked(dentry)) { 1438 ret = -EBUSY; 1439 if (!d_mountpoint(dentry)) { 1440 dentry->d_flags |= DCACHE_MOUNTED; 1441 ret = 0; 1442 } 1443 } 1444 spin_unlock(&dentry->d_lock); 1445 out: 1446 write_sequnlock(&rename_lock); 1447 return ret; 1448 } 1449 1450 /* 1451 * Search the dentry child list of the specified parent, 1452 * and move any unused dentries to the end of the unused 1453 * list for prune_dcache(). We descend to the next level 1454 * whenever the d_subdirs list is non-empty and continue 1455 * searching. 1456 * 1457 * It returns zero iff there are no unused children, 1458 * otherwise it returns the number of children moved to 1459 * the end of the unused list. This may not be the total 1460 * number of unused children, because select_parent can 1461 * drop the lock and return early due to latency 1462 * constraints. 1463 */ 1464 1465 struct select_data { 1466 struct dentry *start; 1467 union { 1468 long found; 1469 struct dentry *victim; 1470 }; 1471 struct list_head dispose; 1472 }; 1473 1474 static enum d_walk_ret select_collect(void *_data, struct dentry *dentry) 1475 { 1476 struct select_data *data = _data; 1477 enum d_walk_ret ret = D_WALK_CONTINUE; 1478 1479 if (data->start == dentry) 1480 goto out; 1481 1482 if (dentry->d_flags & DCACHE_SHRINK_LIST) { 1483 data->found++; 1484 } else { 1485 if (dentry->d_flags & DCACHE_LRU_LIST) 1486 d_lru_del(dentry); 1487 if (!dentry->d_lockref.count) { 1488 d_shrink_add(dentry, &data->dispose); 1489 data->found++; 1490 } 1491 } 1492 /* 1493 * We can return to the caller if we have found some (this 1494 * ensures forward progress). We'll be coming back to find 1495 * the rest. 1496 */ 1497 if (!list_empty(&data->dispose)) 1498 ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY; 1499 out: 1500 return ret; 1501 } 1502 1503 static enum d_walk_ret select_collect2(void *_data, struct dentry *dentry) 1504 { 1505 struct select_data *data = _data; 1506 enum d_walk_ret ret = D_WALK_CONTINUE; 1507 1508 if (data->start == dentry) 1509 goto out; 1510 1511 if (dentry->d_flags & DCACHE_SHRINK_LIST) { 1512 if (!dentry->d_lockref.count) { 1513 rcu_read_lock(); 1514 data->victim = dentry; 1515 return D_WALK_QUIT; 1516 } 1517 } else { 1518 if (dentry->d_flags & DCACHE_LRU_LIST) 1519 d_lru_del(dentry); 1520 if (!dentry->d_lockref.count) 1521 d_shrink_add(dentry, &data->dispose); 1522 } 1523 /* 1524 * We can return to the caller if we have found some (this 1525 * ensures forward progress). We'll be coming back to find 1526 * the rest. 1527 */ 1528 if (!list_empty(&data->dispose)) 1529 ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY; 1530 out: 1531 return ret; 1532 } 1533 1534 /** 1535 * shrink_dcache_parent - prune dcache 1536 * @parent: parent of entries to prune 1537 * 1538 * Prune the dcache to remove unused children of the parent dentry. 1539 */ 1540 void shrink_dcache_parent(struct dentry *parent) 1541 { 1542 for (;;) { 1543 struct select_data data = {.start = parent}; 1544 1545 INIT_LIST_HEAD(&data.dispose); 1546 d_walk(parent, &data, select_collect); 1547 1548 if (!list_empty(&data.dispose)) { 1549 shrink_dentry_list(&data.dispose); 1550 continue; 1551 } 1552 1553 cond_resched(); 1554 if (!data.found) 1555 break; 1556 data.victim = NULL; 1557 d_walk(parent, &data, select_collect2); 1558 if (data.victim) { 1559 struct dentry *parent; 1560 spin_lock(&data.victim->d_lock); 1561 if (!shrink_lock_dentry(data.victim)) { 1562 spin_unlock(&data.victim->d_lock); 1563 rcu_read_unlock(); 1564 } else { 1565 rcu_read_unlock(); 1566 parent = data.victim->d_parent; 1567 if (parent != data.victim) 1568 __dput_to_list(parent, &data.dispose); 1569 __dentry_kill(data.victim); 1570 } 1571 } 1572 if (!list_empty(&data.dispose)) 1573 shrink_dentry_list(&data.dispose); 1574 } 1575 } 1576 EXPORT_SYMBOL(shrink_dcache_parent); 1577 1578 static enum d_walk_ret umount_check(void *_data, struct dentry *dentry) 1579 { 1580 /* it has busy descendents; complain about those instead */ 1581 if (!list_empty(&dentry->d_subdirs)) 1582 return D_WALK_CONTINUE; 1583 1584 /* root with refcount 1 is fine */ 1585 if (dentry == _data && dentry->d_lockref.count == 1) 1586 return D_WALK_CONTINUE; 1587 1588 printk(KERN_ERR "BUG: Dentry %p{i=%lx,n=%pd} " 1589 " still in use (%d) [unmount of %s %s]\n", 1590 dentry, 1591 dentry->d_inode ? 1592 dentry->d_inode->i_ino : 0UL, 1593 dentry, 1594 dentry->d_lockref.count, 1595 dentry->d_sb->s_type->name, 1596 dentry->d_sb->s_id); 1597 WARN_ON(1); 1598 return D_WALK_CONTINUE; 1599 } 1600 1601 static void do_one_tree(struct dentry *dentry) 1602 { 1603 shrink_dcache_parent(dentry); 1604 d_walk(dentry, dentry, umount_check); 1605 d_drop(dentry); 1606 dput(dentry); 1607 } 1608 1609 /* 1610 * destroy the dentries attached to a superblock on unmounting 1611 */ 1612 void shrink_dcache_for_umount(struct super_block *sb) 1613 { 1614 struct dentry *dentry; 1615 1616 WARN(down_read_trylock(&sb->s_umount), "s_umount should've been locked"); 1617 1618 dentry = sb->s_root; 1619 sb->s_root = NULL; 1620 do_one_tree(dentry); 1621 1622 while (!hlist_bl_empty(&sb->s_roots)) { 1623 dentry = dget(hlist_bl_entry(hlist_bl_first(&sb->s_roots), struct dentry, d_hash)); 1624 do_one_tree(dentry); 1625 } 1626 } 1627 1628 static enum d_walk_ret find_submount(void *_data, struct dentry *dentry) 1629 { 1630 struct dentry **victim = _data; 1631 if (d_mountpoint(dentry)) { 1632 __dget_dlock(dentry); 1633 *victim = dentry; 1634 return D_WALK_QUIT; 1635 } 1636 return D_WALK_CONTINUE; 1637 } 1638 1639 /** 1640 * d_invalidate - detach submounts, prune dcache, and drop 1641 * @dentry: dentry to invalidate (aka detach, prune and drop) 1642 */ 1643 void d_invalidate(struct dentry *dentry) 1644 { 1645 bool had_submounts = false; 1646 spin_lock(&dentry->d_lock); 1647 if (d_unhashed(dentry)) { 1648 spin_unlock(&dentry->d_lock); 1649 return; 1650 } 1651 __d_drop(dentry); 1652 spin_unlock(&dentry->d_lock); 1653 1654 /* Negative dentries can be dropped without further checks */ 1655 if (!dentry->d_inode) 1656 return; 1657 1658 shrink_dcache_parent(dentry); 1659 for (;;) { 1660 struct dentry *victim = NULL; 1661 d_walk(dentry, &victim, find_submount); 1662 if (!victim) { 1663 if (had_submounts) 1664 shrink_dcache_parent(dentry); 1665 return; 1666 } 1667 had_submounts = true; 1668 detach_mounts(victim); 1669 dput(victim); 1670 } 1671 } 1672 EXPORT_SYMBOL(d_invalidate); 1673 1674 /** 1675 * __d_alloc - allocate a dcache entry 1676 * @sb: filesystem it will belong to 1677 * @name: qstr of the name 1678 * 1679 * Allocates a dentry. It returns %NULL if there is insufficient memory 1680 * available. On a success the dentry is returned. The name passed in is 1681 * copied and the copy passed in may be reused after this call. 1682 */ 1683 1684 static struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name) 1685 { 1686 struct dentry *dentry; 1687 char *dname; 1688 int err; 1689 1690 dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL); 1691 if (!dentry) 1692 return NULL; 1693 1694 /* 1695 * We guarantee that the inline name is always NUL-terminated. 1696 * This way the memcpy() done by the name switching in rename 1697 * will still always have a NUL at the end, even if we might 1698 * be overwriting an internal NUL character 1699 */ 1700 dentry->d_iname[DNAME_INLINE_LEN-1] = 0; 1701 if (unlikely(!name)) { 1702 name = &slash_name; 1703 dname = dentry->d_iname; 1704 } else if (name->len > DNAME_INLINE_LEN-1) { 1705 size_t size = offsetof(struct external_name, name[1]); 1706 struct external_name *p = kmalloc(size + name->len, 1707 GFP_KERNEL_ACCOUNT | 1708 __GFP_RECLAIMABLE); 1709 if (!p) { 1710 kmem_cache_free(dentry_cache, dentry); 1711 return NULL; 1712 } 1713 atomic_set(&p->u.count, 1); 1714 dname = p->name; 1715 } else { 1716 dname = dentry->d_iname; 1717 } 1718 1719 dentry->d_name.len = name->len; 1720 dentry->d_name.hash = name->hash; 1721 memcpy(dname, name->name, name->len); 1722 dname[name->len] = 0; 1723 1724 /* Make sure we always see the terminating NUL character */ 1725 smp_store_release(&dentry->d_name.name, dname); /* ^^^ */ 1726 1727 dentry->d_lockref.count = 1; 1728 dentry->d_flags = 0; 1729 spin_lock_init(&dentry->d_lock); 1730 seqcount_init(&dentry->d_seq); 1731 dentry->d_inode = NULL; 1732 dentry->d_parent = dentry; 1733 dentry->d_sb = sb; 1734 dentry->d_op = NULL; 1735 dentry->d_fsdata = NULL; 1736 INIT_HLIST_BL_NODE(&dentry->d_hash); 1737 INIT_LIST_HEAD(&dentry->d_lru); 1738 INIT_LIST_HEAD(&dentry->d_subdirs); 1739 INIT_HLIST_NODE(&dentry->d_u.d_alias); 1740 INIT_LIST_HEAD(&dentry->d_child); 1741 d_set_d_op(dentry, dentry->d_sb->s_d_op); 1742 1743 if (dentry->d_op && dentry->d_op->d_init) { 1744 err = dentry->d_op->d_init(dentry); 1745 if (err) { 1746 if (dname_external(dentry)) 1747 kfree(external_name(dentry)); 1748 kmem_cache_free(dentry_cache, dentry); 1749 return NULL; 1750 } 1751 } 1752 1753 this_cpu_inc(nr_dentry); 1754 1755 return dentry; 1756 } 1757 1758 /** 1759 * d_alloc - allocate a dcache entry 1760 * @parent: parent of entry to allocate 1761 * @name: qstr of the name 1762 * 1763 * Allocates a dentry. It returns %NULL if there is insufficient memory 1764 * available. On a success the dentry is returned. The name passed in is 1765 * copied and the copy passed in may be reused after this call. 1766 */ 1767 struct dentry *d_alloc(struct dentry * parent, const struct qstr *name) 1768 { 1769 struct dentry *dentry = __d_alloc(parent->d_sb, name); 1770 if (!dentry) 1771 return NULL; 1772 spin_lock(&parent->d_lock); 1773 /* 1774 * don't need child lock because it is not subject 1775 * to concurrency here 1776 */ 1777 __dget_dlock(parent); 1778 dentry->d_parent = parent; 1779 list_add(&dentry->d_child, &parent->d_subdirs); 1780 spin_unlock(&parent->d_lock); 1781 1782 return dentry; 1783 } 1784 EXPORT_SYMBOL(d_alloc); 1785 1786 struct dentry *d_alloc_anon(struct super_block *sb) 1787 { 1788 return __d_alloc(sb, NULL); 1789 } 1790 EXPORT_SYMBOL(d_alloc_anon); 1791 1792 struct dentry *d_alloc_cursor(struct dentry * parent) 1793 { 1794 struct dentry *dentry = d_alloc_anon(parent->d_sb); 1795 if (dentry) { 1796 dentry->d_flags |= DCACHE_DENTRY_CURSOR; 1797 dentry->d_parent = dget(parent); 1798 } 1799 return dentry; 1800 } 1801 1802 /** 1803 * d_alloc_pseudo - allocate a dentry (for lookup-less filesystems) 1804 * @sb: the superblock 1805 * @name: qstr of the name 1806 * 1807 * For a filesystem that just pins its dentries in memory and never 1808 * performs lookups at all, return an unhashed IS_ROOT dentry. 1809 * This is used for pipes, sockets et.al. - the stuff that should 1810 * never be anyone's children or parents. Unlike all other 1811 * dentries, these will not have RCU delay between dropping the 1812 * last reference and freeing them. 1813 * 1814 * The only user is alloc_file_pseudo() and that's what should 1815 * be considered a public interface. Don't use directly. 1816 */ 1817 struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name) 1818 { 1819 struct dentry *dentry = __d_alloc(sb, name); 1820 if (likely(dentry)) 1821 dentry->d_flags |= DCACHE_NORCU; 1822 return dentry; 1823 } 1824 1825 struct dentry *d_alloc_name(struct dentry *parent, const char *name) 1826 { 1827 struct qstr q; 1828 1829 q.name = name; 1830 q.hash_len = hashlen_string(parent, name); 1831 return d_alloc(parent, &q); 1832 } 1833 EXPORT_SYMBOL(d_alloc_name); 1834 1835 void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op) 1836 { 1837 WARN_ON_ONCE(dentry->d_op); 1838 WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH | 1839 DCACHE_OP_COMPARE | 1840 DCACHE_OP_REVALIDATE | 1841 DCACHE_OP_WEAK_REVALIDATE | 1842 DCACHE_OP_DELETE | 1843 DCACHE_OP_REAL)); 1844 dentry->d_op = op; 1845 if (!op) 1846 return; 1847 if (op->d_hash) 1848 dentry->d_flags |= DCACHE_OP_HASH; 1849 if (op->d_compare) 1850 dentry->d_flags |= DCACHE_OP_COMPARE; 1851 if (op->d_revalidate) 1852 dentry->d_flags |= DCACHE_OP_REVALIDATE; 1853 if (op->d_weak_revalidate) 1854 dentry->d_flags |= DCACHE_OP_WEAK_REVALIDATE; 1855 if (op->d_delete) 1856 dentry->d_flags |= DCACHE_OP_DELETE; 1857 if (op->d_prune) 1858 dentry->d_flags |= DCACHE_OP_PRUNE; 1859 if (op->d_real) 1860 dentry->d_flags |= DCACHE_OP_REAL; 1861 1862 } 1863 EXPORT_SYMBOL(d_set_d_op); 1864 1865 1866 /* 1867 * d_set_fallthru - Mark a dentry as falling through to a lower layer 1868 * @dentry - The dentry to mark 1869 * 1870 * Mark a dentry as falling through to the lower layer (as set with 1871 * d_pin_lower()). This flag may be recorded on the medium. 1872 */ 1873 void d_set_fallthru(struct dentry *dentry) 1874 { 1875 spin_lock(&dentry->d_lock); 1876 dentry->d_flags |= DCACHE_FALLTHRU; 1877 spin_unlock(&dentry->d_lock); 1878 } 1879 EXPORT_SYMBOL(d_set_fallthru); 1880 1881 static unsigned d_flags_for_inode(struct inode *inode) 1882 { 1883 unsigned add_flags = DCACHE_REGULAR_TYPE; 1884 1885 if (!inode) 1886 return DCACHE_MISS_TYPE; 1887 1888 if (S_ISDIR(inode->i_mode)) { 1889 add_flags = DCACHE_DIRECTORY_TYPE; 1890 if (unlikely(!(inode->i_opflags & IOP_LOOKUP))) { 1891 if (unlikely(!inode->i_op->lookup)) 1892 add_flags = DCACHE_AUTODIR_TYPE; 1893 else 1894 inode->i_opflags |= IOP_LOOKUP; 1895 } 1896 goto type_determined; 1897 } 1898 1899 if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) { 1900 if (unlikely(inode->i_op->get_link)) { 1901 add_flags = DCACHE_SYMLINK_TYPE; 1902 goto type_determined; 1903 } 1904 inode->i_opflags |= IOP_NOFOLLOW; 1905 } 1906 1907 if (unlikely(!S_ISREG(inode->i_mode))) 1908 add_flags = DCACHE_SPECIAL_TYPE; 1909 1910 type_determined: 1911 if (unlikely(IS_AUTOMOUNT(inode))) 1912 add_flags |= DCACHE_NEED_AUTOMOUNT; 1913 return add_flags; 1914 } 1915 1916 static void __d_instantiate(struct dentry *dentry, struct inode *inode) 1917 { 1918 unsigned add_flags = d_flags_for_inode(inode); 1919 WARN_ON(d_in_lookup(dentry)); 1920 1921 spin_lock(&dentry->d_lock); 1922 /* 1923 * Decrement negative dentry count if it was in the LRU list. 1924 */ 1925 if (dentry->d_flags & DCACHE_LRU_LIST) 1926 this_cpu_dec(nr_dentry_negative); 1927 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry); 1928 raw_write_seqcount_begin(&dentry->d_seq); 1929 __d_set_inode_and_type(dentry, inode, add_flags); 1930 raw_write_seqcount_end(&dentry->d_seq); 1931 fsnotify_update_flags(dentry); 1932 spin_unlock(&dentry->d_lock); 1933 } 1934 1935 /** 1936 * d_instantiate - fill in inode information for a dentry 1937 * @entry: dentry to complete 1938 * @inode: inode to attach to this dentry 1939 * 1940 * Fill in inode information in the entry. 1941 * 1942 * This turns negative dentries into productive full members 1943 * of society. 1944 * 1945 * NOTE! This assumes that the inode count has been incremented 1946 * (or otherwise set) by the caller to indicate that it is now 1947 * in use by the dcache. 1948 */ 1949 1950 void d_instantiate(struct dentry *entry, struct inode * inode) 1951 { 1952 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias)); 1953 if (inode) { 1954 security_d_instantiate(entry, inode); 1955 spin_lock(&inode->i_lock); 1956 __d_instantiate(entry, inode); 1957 spin_unlock(&inode->i_lock); 1958 } 1959 } 1960 EXPORT_SYMBOL(d_instantiate); 1961 1962 /* 1963 * This should be equivalent to d_instantiate() + unlock_new_inode(), 1964 * with lockdep-related part of unlock_new_inode() done before 1965 * anything else. Use that instead of open-coding d_instantiate()/ 1966 * unlock_new_inode() combinations. 1967 */ 1968 void d_instantiate_new(struct dentry *entry, struct inode *inode) 1969 { 1970 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias)); 1971 BUG_ON(!inode); 1972 lockdep_annotate_inode_mutex_key(inode); 1973 security_d_instantiate(entry, inode); 1974 spin_lock(&inode->i_lock); 1975 __d_instantiate(entry, inode); 1976 WARN_ON(!(inode->i_state & I_NEW)); 1977 inode->i_state &= ~I_NEW & ~I_CREATING; 1978 smp_mb(); 1979 wake_up_bit(&inode->i_state, __I_NEW); 1980 spin_unlock(&inode->i_lock); 1981 } 1982 EXPORT_SYMBOL(d_instantiate_new); 1983 1984 struct dentry *d_make_root(struct inode *root_inode) 1985 { 1986 struct dentry *res = NULL; 1987 1988 if (root_inode) { 1989 res = d_alloc_anon(root_inode->i_sb); 1990 if (res) 1991 d_instantiate(res, root_inode); 1992 else 1993 iput(root_inode); 1994 } 1995 return res; 1996 } 1997 EXPORT_SYMBOL(d_make_root); 1998 1999 static struct dentry *__d_instantiate_anon(struct dentry *dentry, 2000 struct inode *inode, 2001 bool disconnected) 2002 { 2003 struct dentry *res; 2004 unsigned add_flags; 2005 2006 security_d_instantiate(dentry, inode); 2007 spin_lock(&inode->i_lock); 2008 res = __d_find_any_alias(inode); 2009 if (res) { 2010 spin_unlock(&inode->i_lock); 2011 dput(dentry); 2012 goto out_iput; 2013 } 2014 2015 /* attach a disconnected dentry */ 2016 add_flags = d_flags_for_inode(inode); 2017 2018 if (disconnected) 2019 add_flags |= DCACHE_DISCONNECTED; 2020 2021 spin_lock(&dentry->d_lock); 2022 __d_set_inode_and_type(dentry, inode, add_flags); 2023 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry); 2024 if (!disconnected) { 2025 hlist_bl_lock(&dentry->d_sb->s_roots); 2026 hlist_bl_add_head(&dentry->d_hash, &dentry->d_sb->s_roots); 2027 hlist_bl_unlock(&dentry->d_sb->s_roots); 2028 } 2029 spin_unlock(&dentry->d_lock); 2030 spin_unlock(&inode->i_lock); 2031 2032 return dentry; 2033 2034 out_iput: 2035 iput(inode); 2036 return res; 2037 } 2038 2039 struct dentry *d_instantiate_anon(struct dentry *dentry, struct inode *inode) 2040 { 2041 return __d_instantiate_anon(dentry, inode, true); 2042 } 2043 EXPORT_SYMBOL(d_instantiate_anon); 2044 2045 static struct dentry *__d_obtain_alias(struct inode *inode, bool disconnected) 2046 { 2047 struct dentry *tmp; 2048 struct dentry *res; 2049 2050 if (!inode) 2051 return ERR_PTR(-ESTALE); 2052 if (IS_ERR(inode)) 2053 return ERR_CAST(inode); 2054 2055 res = d_find_any_alias(inode); 2056 if (res) 2057 goto out_iput; 2058 2059 tmp = d_alloc_anon(inode->i_sb); 2060 if (!tmp) { 2061 res = ERR_PTR(-ENOMEM); 2062 goto out_iput; 2063 } 2064 2065 return __d_instantiate_anon(tmp, inode, disconnected); 2066 2067 out_iput: 2068 iput(inode); 2069 return res; 2070 } 2071 2072 /** 2073 * d_obtain_alias - find or allocate a DISCONNECTED dentry for a given inode 2074 * @inode: inode to allocate the dentry for 2075 * 2076 * Obtain a dentry for an inode resulting from NFS filehandle conversion or 2077 * similar open by handle operations. The returned dentry may be anonymous, 2078 * or may have a full name (if the inode was already in the cache). 2079 * 2080 * When called on a directory inode, we must ensure that the inode only ever 2081 * has one dentry. If a dentry is found, that is returned instead of 2082 * allocating a new one. 2083 * 2084 * On successful return, the reference to the inode has been transferred 2085 * to the dentry. In case of an error the reference on the inode is released. 2086 * To make it easier to use in export operations a %NULL or IS_ERR inode may 2087 * be passed in and the error will be propagated to the return value, 2088 * with a %NULL @inode replaced by ERR_PTR(-ESTALE). 2089 */ 2090 struct dentry *d_obtain_alias(struct inode *inode) 2091 { 2092 return __d_obtain_alias(inode, true); 2093 } 2094 EXPORT_SYMBOL(d_obtain_alias); 2095 2096 /** 2097 * d_obtain_root - find or allocate a dentry for a given inode 2098 * @inode: inode to allocate the dentry for 2099 * 2100 * Obtain an IS_ROOT dentry for the root of a filesystem. 2101 * 2102 * We must ensure that directory inodes only ever have one dentry. If a 2103 * dentry is found, that is returned instead of allocating a new one. 2104 * 2105 * On successful return, the reference to the inode has been transferred 2106 * to the dentry. In case of an error the reference on the inode is 2107 * released. A %NULL or IS_ERR inode may be passed in and will be the 2108 * error will be propagate to the return value, with a %NULL @inode 2109 * replaced by ERR_PTR(-ESTALE). 2110 */ 2111 struct dentry *d_obtain_root(struct inode *inode) 2112 { 2113 return __d_obtain_alias(inode, false); 2114 } 2115 EXPORT_SYMBOL(d_obtain_root); 2116 2117 /** 2118 * d_add_ci - lookup or allocate new dentry with case-exact name 2119 * @inode: the inode case-insensitive lookup has found 2120 * @dentry: the negative dentry that was passed to the parent's lookup func 2121 * @name: the case-exact name to be associated with the returned dentry 2122 * 2123 * This is to avoid filling the dcache with case-insensitive names to the 2124 * same inode, only the actual correct case is stored in the dcache for 2125 * case-insensitive filesystems. 2126 * 2127 * For a case-insensitive lookup match and if the the case-exact dentry 2128 * already exists in in the dcache, use it and return it. 2129 * 2130 * If no entry exists with the exact case name, allocate new dentry with 2131 * the exact case, and return the spliced entry. 2132 */ 2133 struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode, 2134 struct qstr *name) 2135 { 2136 struct dentry *found, *res; 2137 2138 /* 2139 * First check if a dentry matching the name already exists, 2140 * if not go ahead and create it now. 2141 */ 2142 found = d_hash_and_lookup(dentry->d_parent, name); 2143 if (found) { 2144 iput(inode); 2145 return found; 2146 } 2147 if (d_in_lookup(dentry)) { 2148 found = d_alloc_parallel(dentry->d_parent, name, 2149 dentry->d_wait); 2150 if (IS_ERR(found) || !d_in_lookup(found)) { 2151 iput(inode); 2152 return found; 2153 } 2154 } else { 2155 found = d_alloc(dentry->d_parent, name); 2156 if (!found) { 2157 iput(inode); 2158 return ERR_PTR(-ENOMEM); 2159 } 2160 } 2161 res = d_splice_alias(inode, found); 2162 if (res) { 2163 dput(found); 2164 return res; 2165 } 2166 return found; 2167 } 2168 EXPORT_SYMBOL(d_add_ci); 2169 2170 2171 static inline bool d_same_name(const struct dentry *dentry, 2172 const struct dentry *parent, 2173 const struct qstr *name) 2174 { 2175 if (likely(!(parent->d_flags & DCACHE_OP_COMPARE))) { 2176 if (dentry->d_name.len != name->len) 2177 return false; 2178 return dentry_cmp(dentry, name->name, name->len) == 0; 2179 } 2180 return parent->d_op->d_compare(dentry, 2181 dentry->d_name.len, dentry->d_name.name, 2182 name) == 0; 2183 } 2184 2185 /** 2186 * __d_lookup_rcu - search for a dentry (racy, store-free) 2187 * @parent: parent dentry 2188 * @name: qstr of name we wish to find 2189 * @seqp: returns d_seq value at the point where the dentry was found 2190 * Returns: dentry, or NULL 2191 * 2192 * __d_lookup_rcu is the dcache lookup function for rcu-walk name 2193 * resolution (store-free path walking) design described in 2194 * Documentation/filesystems/path-lookup.txt. 2195 * 2196 * This is not to be used outside core vfs. 2197 * 2198 * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock 2199 * held, and rcu_read_lock held. The returned dentry must not be stored into 2200 * without taking d_lock and checking d_seq sequence count against @seq 2201 * returned here. 2202 * 2203 * A refcount may be taken on the found dentry with the d_rcu_to_refcount 2204 * function. 2205 * 2206 * Alternatively, __d_lookup_rcu may be called again to look up the child of 2207 * the returned dentry, so long as its parent's seqlock is checked after the 2208 * child is looked up. Thus, an interlocking stepping of sequence lock checks 2209 * is formed, giving integrity down the path walk. 2210 * 2211 * NOTE! The caller *has* to check the resulting dentry against the sequence 2212 * number we've returned before using any of the resulting dentry state! 2213 */ 2214 struct dentry *__d_lookup_rcu(const struct dentry *parent, 2215 const struct qstr *name, 2216 unsigned *seqp) 2217 { 2218 u64 hashlen = name->hash_len; 2219 const unsigned char *str = name->name; 2220 struct hlist_bl_head *b = d_hash(hashlen_hash(hashlen)); 2221 struct hlist_bl_node *node; 2222 struct dentry *dentry; 2223 2224 /* 2225 * Note: There is significant duplication with __d_lookup_rcu which is 2226 * required to prevent single threaded performance regressions 2227 * especially on architectures where smp_rmb (in seqcounts) are costly. 2228 * Keep the two functions in sync. 2229 */ 2230 2231 /* 2232 * The hash list is protected using RCU. 2233 * 2234 * Carefully use d_seq when comparing a candidate dentry, to avoid 2235 * races with d_move(). 2236 * 2237 * It is possible that concurrent renames can mess up our list 2238 * walk here and result in missing our dentry, resulting in the 2239 * false-negative result. d_lookup() protects against concurrent 2240 * renames using rename_lock seqlock. 2241 * 2242 * See Documentation/filesystems/path-lookup.txt for more details. 2243 */ 2244 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) { 2245 unsigned seq; 2246 2247 seqretry: 2248 /* 2249 * The dentry sequence count protects us from concurrent 2250 * renames, and thus protects parent and name fields. 2251 * 2252 * The caller must perform a seqcount check in order 2253 * to do anything useful with the returned dentry. 2254 * 2255 * NOTE! We do a "raw" seqcount_begin here. That means that 2256 * we don't wait for the sequence count to stabilize if it 2257 * is in the middle of a sequence change. If we do the slow 2258 * dentry compare, we will do seqretries until it is stable, 2259 * and if we end up with a successful lookup, we actually 2260 * want to exit RCU lookup anyway. 2261 * 2262 * Note that raw_seqcount_begin still *does* smp_rmb(), so 2263 * we are still guaranteed NUL-termination of ->d_name.name. 2264 */ 2265 seq = raw_seqcount_begin(&dentry->d_seq); 2266 if (dentry->d_parent != parent) 2267 continue; 2268 if (d_unhashed(dentry)) 2269 continue; 2270 2271 if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) { 2272 int tlen; 2273 const char *tname; 2274 if (dentry->d_name.hash != hashlen_hash(hashlen)) 2275 continue; 2276 tlen = dentry->d_name.len; 2277 tname = dentry->d_name.name; 2278 /* we want a consistent (name,len) pair */ 2279 if (read_seqcount_retry(&dentry->d_seq, seq)) { 2280 cpu_relax(); 2281 goto seqretry; 2282 } 2283 if (parent->d_op->d_compare(dentry, 2284 tlen, tname, name) != 0) 2285 continue; 2286 } else { 2287 if (dentry->d_name.hash_len != hashlen) 2288 continue; 2289 if (dentry_cmp(dentry, str, hashlen_len(hashlen)) != 0) 2290 continue; 2291 } 2292 *seqp = seq; 2293 return dentry; 2294 } 2295 return NULL; 2296 } 2297 2298 /** 2299 * d_lookup - search for a dentry 2300 * @parent: parent dentry 2301 * @name: qstr of name we wish to find 2302 * Returns: dentry, or NULL 2303 * 2304 * d_lookup searches the children of the parent dentry for the name in 2305 * question. If the dentry is found its reference count is incremented and the 2306 * dentry is returned. The caller must use dput to free the entry when it has 2307 * finished using it. %NULL is returned if the dentry does not exist. 2308 */ 2309 struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name) 2310 { 2311 struct dentry *dentry; 2312 unsigned seq; 2313 2314 do { 2315 seq = read_seqbegin(&rename_lock); 2316 dentry = __d_lookup(parent, name); 2317 if (dentry) 2318 break; 2319 } while (read_seqretry(&rename_lock, seq)); 2320 return dentry; 2321 } 2322 EXPORT_SYMBOL(d_lookup); 2323 2324 /** 2325 * __d_lookup - search for a dentry (racy) 2326 * @parent: parent dentry 2327 * @name: qstr of name we wish to find 2328 * Returns: dentry, or NULL 2329 * 2330 * __d_lookup is like d_lookup, however it may (rarely) return a 2331 * false-negative result due to unrelated rename activity. 2332 * 2333 * __d_lookup is slightly faster by avoiding rename_lock read seqlock, 2334 * however it must be used carefully, eg. with a following d_lookup in 2335 * the case of failure. 2336 * 2337 * __d_lookup callers must be commented. 2338 */ 2339 struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name) 2340 { 2341 unsigned int hash = name->hash; 2342 struct hlist_bl_head *b = d_hash(hash); 2343 struct hlist_bl_node *node; 2344 struct dentry *found = NULL; 2345 struct dentry *dentry; 2346 2347 /* 2348 * Note: There is significant duplication with __d_lookup_rcu which is 2349 * required to prevent single threaded performance regressions 2350 * especially on architectures where smp_rmb (in seqcounts) are costly. 2351 * Keep the two functions in sync. 2352 */ 2353 2354 /* 2355 * The hash list is protected using RCU. 2356 * 2357 * Take d_lock when comparing a candidate dentry, to avoid races 2358 * with d_move(). 2359 * 2360 * It is possible that concurrent renames can mess up our list 2361 * walk here and result in missing our dentry, resulting in the 2362 * false-negative result. d_lookup() protects against concurrent 2363 * renames using rename_lock seqlock. 2364 * 2365 * See Documentation/filesystems/path-lookup.txt for more details. 2366 */ 2367 rcu_read_lock(); 2368 2369 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) { 2370 2371 if (dentry->d_name.hash != hash) 2372 continue; 2373 2374 spin_lock(&dentry->d_lock); 2375 if (dentry->d_parent != parent) 2376 goto next; 2377 if (d_unhashed(dentry)) 2378 goto next; 2379 2380 if (!d_same_name(dentry, parent, name)) 2381 goto next; 2382 2383 dentry->d_lockref.count++; 2384 found = dentry; 2385 spin_unlock(&dentry->d_lock); 2386 break; 2387 next: 2388 spin_unlock(&dentry->d_lock); 2389 } 2390 rcu_read_unlock(); 2391 2392 return found; 2393 } 2394 2395 /** 2396 * d_hash_and_lookup - hash the qstr then search for a dentry 2397 * @dir: Directory to search in 2398 * @name: qstr of name we wish to find 2399 * 2400 * On lookup failure NULL is returned; on bad name - ERR_PTR(-error) 2401 */ 2402 struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name) 2403 { 2404 /* 2405 * Check for a fs-specific hash function. Note that we must 2406 * calculate the standard hash first, as the d_op->d_hash() 2407 * routine may choose to leave the hash value unchanged. 2408 */ 2409 name->hash = full_name_hash(dir, name->name, name->len); 2410 if (dir->d_flags & DCACHE_OP_HASH) { 2411 int err = dir->d_op->d_hash(dir, name); 2412 if (unlikely(err < 0)) 2413 return ERR_PTR(err); 2414 } 2415 return d_lookup(dir, name); 2416 } 2417 EXPORT_SYMBOL(d_hash_and_lookup); 2418 2419 /* 2420 * When a file is deleted, we have two options: 2421 * - turn this dentry into a negative dentry 2422 * - unhash this dentry and free it. 2423 * 2424 * Usually, we want to just turn this into 2425 * a negative dentry, but if anybody else is 2426 * currently using the dentry or the inode 2427 * we can't do that and we fall back on removing 2428 * it from the hash queues and waiting for 2429 * it to be deleted later when it has no users 2430 */ 2431 2432 /** 2433 * d_delete - delete a dentry 2434 * @dentry: The dentry to delete 2435 * 2436 * Turn the dentry into a negative dentry if possible, otherwise 2437 * remove it from the hash queues so it can be deleted later 2438 */ 2439 2440 void d_delete(struct dentry * dentry) 2441 { 2442 struct inode *inode = dentry->d_inode; 2443 2444 spin_lock(&inode->i_lock); 2445 spin_lock(&dentry->d_lock); 2446 /* 2447 * Are we the only user? 2448 */ 2449 if (dentry->d_lockref.count == 1) { 2450 dentry->d_flags &= ~DCACHE_CANT_MOUNT; 2451 dentry_unlink_inode(dentry); 2452 } else { 2453 __d_drop(dentry); 2454 spin_unlock(&dentry->d_lock); 2455 spin_unlock(&inode->i_lock); 2456 } 2457 } 2458 EXPORT_SYMBOL(d_delete); 2459 2460 static void __d_rehash(struct dentry *entry) 2461 { 2462 struct hlist_bl_head *b = d_hash(entry->d_name.hash); 2463 2464 hlist_bl_lock(b); 2465 hlist_bl_add_head_rcu(&entry->d_hash, b); 2466 hlist_bl_unlock(b); 2467 } 2468 2469 /** 2470 * d_rehash - add an entry back to the hash 2471 * @entry: dentry to add to the hash 2472 * 2473 * Adds a dentry to the hash according to its name. 2474 */ 2475 2476 void d_rehash(struct dentry * entry) 2477 { 2478 spin_lock(&entry->d_lock); 2479 __d_rehash(entry); 2480 spin_unlock(&entry->d_lock); 2481 } 2482 EXPORT_SYMBOL(d_rehash); 2483 2484 static inline unsigned start_dir_add(struct inode *dir) 2485 { 2486 2487 for (;;) { 2488 unsigned n = dir->i_dir_seq; 2489 if (!(n & 1) && cmpxchg(&dir->i_dir_seq, n, n + 1) == n) 2490 return n; 2491 cpu_relax(); 2492 } 2493 } 2494 2495 static inline void end_dir_add(struct inode *dir, unsigned n) 2496 { 2497 smp_store_release(&dir->i_dir_seq, n + 2); 2498 } 2499 2500 static void d_wait_lookup(struct dentry *dentry) 2501 { 2502 if (d_in_lookup(dentry)) { 2503 DECLARE_WAITQUEUE(wait, current); 2504 add_wait_queue(dentry->d_wait, &wait); 2505 do { 2506 set_current_state(TASK_UNINTERRUPTIBLE); 2507 spin_unlock(&dentry->d_lock); 2508 schedule(); 2509 spin_lock(&dentry->d_lock); 2510 } while (d_in_lookup(dentry)); 2511 } 2512 } 2513 2514 struct dentry *d_alloc_parallel(struct dentry *parent, 2515 const struct qstr *name, 2516 wait_queue_head_t *wq) 2517 { 2518 unsigned int hash = name->hash; 2519 struct hlist_bl_head *b = in_lookup_hash(parent, hash); 2520 struct hlist_bl_node *node; 2521 struct dentry *new = d_alloc(parent, name); 2522 struct dentry *dentry; 2523 unsigned seq, r_seq, d_seq; 2524 2525 if (unlikely(!new)) 2526 return ERR_PTR(-ENOMEM); 2527 2528 retry: 2529 rcu_read_lock(); 2530 seq = smp_load_acquire(&parent->d_inode->i_dir_seq); 2531 r_seq = read_seqbegin(&rename_lock); 2532 dentry = __d_lookup_rcu(parent, name, &d_seq); 2533 if (unlikely(dentry)) { 2534 if (!lockref_get_not_dead(&dentry->d_lockref)) { 2535 rcu_read_unlock(); 2536 goto retry; 2537 } 2538 if (read_seqcount_retry(&dentry->d_seq, d_seq)) { 2539 rcu_read_unlock(); 2540 dput(dentry); 2541 goto retry; 2542 } 2543 rcu_read_unlock(); 2544 dput(new); 2545 return dentry; 2546 } 2547 if (unlikely(read_seqretry(&rename_lock, r_seq))) { 2548 rcu_read_unlock(); 2549 goto retry; 2550 } 2551 2552 if (unlikely(seq & 1)) { 2553 rcu_read_unlock(); 2554 goto retry; 2555 } 2556 2557 hlist_bl_lock(b); 2558 if (unlikely(READ_ONCE(parent->d_inode->i_dir_seq) != seq)) { 2559 hlist_bl_unlock(b); 2560 rcu_read_unlock(); 2561 goto retry; 2562 } 2563 /* 2564 * No changes for the parent since the beginning of d_lookup(). 2565 * Since all removals from the chain happen with hlist_bl_lock(), 2566 * any potential in-lookup matches are going to stay here until 2567 * we unlock the chain. All fields are stable in everything 2568 * we encounter. 2569 */ 2570 hlist_bl_for_each_entry(dentry, node, b, d_u.d_in_lookup_hash) { 2571 if (dentry->d_name.hash != hash) 2572 continue; 2573 if (dentry->d_parent != parent) 2574 continue; 2575 if (!d_same_name(dentry, parent, name)) 2576 continue; 2577 hlist_bl_unlock(b); 2578 /* now we can try to grab a reference */ 2579 if (!lockref_get_not_dead(&dentry->d_lockref)) { 2580 rcu_read_unlock(); 2581 goto retry; 2582 } 2583 2584 rcu_read_unlock(); 2585 /* 2586 * somebody is likely to be still doing lookup for it; 2587 * wait for them to finish 2588 */ 2589 spin_lock(&dentry->d_lock); 2590 d_wait_lookup(dentry); 2591 /* 2592 * it's not in-lookup anymore; in principle we should repeat 2593 * everything from dcache lookup, but it's likely to be what 2594 * d_lookup() would've found anyway. If it is, just return it; 2595 * otherwise we really have to repeat the whole thing. 2596 */ 2597 if (unlikely(dentry->d_name.hash != hash)) 2598 goto mismatch; 2599 if (unlikely(dentry->d_parent != parent)) 2600 goto mismatch; 2601 if (unlikely(d_unhashed(dentry))) 2602 goto mismatch; 2603 if (unlikely(!d_same_name(dentry, parent, name))) 2604 goto mismatch; 2605 /* OK, it *is* a hashed match; return it */ 2606 spin_unlock(&dentry->d_lock); 2607 dput(new); 2608 return dentry; 2609 } 2610 rcu_read_unlock(); 2611 /* we can't take ->d_lock here; it's OK, though. */ 2612 new->d_flags |= DCACHE_PAR_LOOKUP; 2613 new->d_wait = wq; 2614 hlist_bl_add_head_rcu(&new->d_u.d_in_lookup_hash, b); 2615 hlist_bl_unlock(b); 2616 return new; 2617 mismatch: 2618 spin_unlock(&dentry->d_lock); 2619 dput(dentry); 2620 goto retry; 2621 } 2622 EXPORT_SYMBOL(d_alloc_parallel); 2623 2624 void __d_lookup_done(struct dentry *dentry) 2625 { 2626 struct hlist_bl_head *b = in_lookup_hash(dentry->d_parent, 2627 dentry->d_name.hash); 2628 hlist_bl_lock(b); 2629 dentry->d_flags &= ~DCACHE_PAR_LOOKUP; 2630 __hlist_bl_del(&dentry->d_u.d_in_lookup_hash); 2631 wake_up_all(dentry->d_wait); 2632 dentry->d_wait = NULL; 2633 hlist_bl_unlock(b); 2634 INIT_HLIST_NODE(&dentry->d_u.d_alias); 2635 INIT_LIST_HEAD(&dentry->d_lru); 2636 } 2637 EXPORT_SYMBOL(__d_lookup_done); 2638 2639 /* inode->i_lock held if inode is non-NULL */ 2640 2641 static inline void __d_add(struct dentry *dentry, struct inode *inode) 2642 { 2643 struct inode *dir = NULL; 2644 unsigned n; 2645 spin_lock(&dentry->d_lock); 2646 if (unlikely(d_in_lookup(dentry))) { 2647 dir = dentry->d_parent->d_inode; 2648 n = start_dir_add(dir); 2649 __d_lookup_done(dentry); 2650 } 2651 if (inode) { 2652 unsigned add_flags = d_flags_for_inode(inode); 2653 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry); 2654 raw_write_seqcount_begin(&dentry->d_seq); 2655 __d_set_inode_and_type(dentry, inode, add_flags); 2656 raw_write_seqcount_end(&dentry->d_seq); 2657 fsnotify_update_flags(dentry); 2658 } 2659 __d_rehash(dentry); 2660 if (dir) 2661 end_dir_add(dir, n); 2662 spin_unlock(&dentry->d_lock); 2663 if (inode) 2664 spin_unlock(&inode->i_lock); 2665 } 2666 2667 /** 2668 * d_add - add dentry to hash queues 2669 * @entry: dentry to add 2670 * @inode: The inode to attach to this dentry 2671 * 2672 * This adds the entry to the hash queues and initializes @inode. 2673 * The entry was actually filled in earlier during d_alloc(). 2674 */ 2675 2676 void d_add(struct dentry *entry, struct inode *inode) 2677 { 2678 if (inode) { 2679 security_d_instantiate(entry, inode); 2680 spin_lock(&inode->i_lock); 2681 } 2682 __d_add(entry, inode); 2683 } 2684 EXPORT_SYMBOL(d_add); 2685 2686 /** 2687 * d_exact_alias - find and hash an exact unhashed alias 2688 * @entry: dentry to add 2689 * @inode: The inode to go with this dentry 2690 * 2691 * If an unhashed dentry with the same name/parent and desired 2692 * inode already exists, hash and return it. Otherwise, return 2693 * NULL. 2694 * 2695 * Parent directory should be locked. 2696 */ 2697 struct dentry *d_exact_alias(struct dentry *entry, struct inode *inode) 2698 { 2699 struct dentry *alias; 2700 unsigned int hash = entry->d_name.hash; 2701 2702 spin_lock(&inode->i_lock); 2703 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) { 2704 /* 2705 * Don't need alias->d_lock here, because aliases with 2706 * d_parent == entry->d_parent are not subject to name or 2707 * parent changes, because the parent inode i_mutex is held. 2708 */ 2709 if (alias->d_name.hash != hash) 2710 continue; 2711 if (alias->d_parent != entry->d_parent) 2712 continue; 2713 if (!d_same_name(alias, entry->d_parent, &entry->d_name)) 2714 continue; 2715 spin_lock(&alias->d_lock); 2716 if (!d_unhashed(alias)) { 2717 spin_unlock(&alias->d_lock); 2718 alias = NULL; 2719 } else { 2720 __dget_dlock(alias); 2721 __d_rehash(alias); 2722 spin_unlock(&alias->d_lock); 2723 } 2724 spin_unlock(&inode->i_lock); 2725 return alias; 2726 } 2727 spin_unlock(&inode->i_lock); 2728 return NULL; 2729 } 2730 EXPORT_SYMBOL(d_exact_alias); 2731 2732 static void swap_names(struct dentry *dentry, struct dentry *target) 2733 { 2734 if (unlikely(dname_external(target))) { 2735 if (unlikely(dname_external(dentry))) { 2736 /* 2737 * Both external: swap the pointers 2738 */ 2739 swap(target->d_name.name, dentry->d_name.name); 2740 } else { 2741 /* 2742 * dentry:internal, target:external. Steal target's 2743 * storage and make target internal. 2744 */ 2745 memcpy(target->d_iname, dentry->d_name.name, 2746 dentry->d_name.len + 1); 2747 dentry->d_name.name = target->d_name.name; 2748 target->d_name.name = target->d_iname; 2749 } 2750 } else { 2751 if (unlikely(dname_external(dentry))) { 2752 /* 2753 * dentry:external, target:internal. Give dentry's 2754 * storage to target and make dentry internal 2755 */ 2756 memcpy(dentry->d_iname, target->d_name.name, 2757 target->d_name.len + 1); 2758 target->d_name.name = dentry->d_name.name; 2759 dentry->d_name.name = dentry->d_iname; 2760 } else { 2761 /* 2762 * Both are internal. 2763 */ 2764 unsigned int i; 2765 BUILD_BUG_ON(!IS_ALIGNED(DNAME_INLINE_LEN, sizeof(long))); 2766 for (i = 0; i < DNAME_INLINE_LEN / sizeof(long); i++) { 2767 swap(((long *) &dentry->d_iname)[i], 2768 ((long *) &target->d_iname)[i]); 2769 } 2770 } 2771 } 2772 swap(dentry->d_name.hash_len, target->d_name.hash_len); 2773 } 2774 2775 static void copy_name(struct dentry *dentry, struct dentry *target) 2776 { 2777 struct external_name *old_name = NULL; 2778 if (unlikely(dname_external(dentry))) 2779 old_name = external_name(dentry); 2780 if (unlikely(dname_external(target))) { 2781 atomic_inc(&external_name(target)->u.count); 2782 dentry->d_name = target->d_name; 2783 } else { 2784 memcpy(dentry->d_iname, target->d_name.name, 2785 target->d_name.len + 1); 2786 dentry->d_name.name = dentry->d_iname; 2787 dentry->d_name.hash_len = target->d_name.hash_len; 2788 } 2789 if (old_name && likely(atomic_dec_and_test(&old_name->u.count))) 2790 kfree_rcu(old_name, u.head); 2791 } 2792 2793 /* 2794 * __d_move - move a dentry 2795 * @dentry: entry to move 2796 * @target: new dentry 2797 * @exchange: exchange the two dentries 2798 * 2799 * Update the dcache to reflect the move of a file name. Negative 2800 * dcache entries should not be moved in this way. Caller must hold 2801 * rename_lock, the i_mutex of the source and target directories, 2802 * and the sb->s_vfs_rename_mutex if they differ. See lock_rename(). 2803 */ 2804 static void __d_move(struct dentry *dentry, struct dentry *target, 2805 bool exchange) 2806 { 2807 struct dentry *old_parent, *p; 2808 struct inode *dir = NULL; 2809 unsigned n; 2810 2811 WARN_ON(!dentry->d_inode); 2812 if (WARN_ON(dentry == target)) 2813 return; 2814 2815 BUG_ON(d_ancestor(target, dentry)); 2816 old_parent = dentry->d_parent; 2817 p = d_ancestor(old_parent, target); 2818 if (IS_ROOT(dentry)) { 2819 BUG_ON(p); 2820 spin_lock(&target->d_parent->d_lock); 2821 } else if (!p) { 2822 /* target is not a descendent of dentry->d_parent */ 2823 spin_lock(&target->d_parent->d_lock); 2824 spin_lock_nested(&old_parent->d_lock, DENTRY_D_LOCK_NESTED); 2825 } else { 2826 BUG_ON(p == dentry); 2827 spin_lock(&old_parent->d_lock); 2828 if (p != target) 2829 spin_lock_nested(&target->d_parent->d_lock, 2830 DENTRY_D_LOCK_NESTED); 2831 } 2832 spin_lock_nested(&dentry->d_lock, 2); 2833 spin_lock_nested(&target->d_lock, 3); 2834 2835 if (unlikely(d_in_lookup(target))) { 2836 dir = target->d_parent->d_inode; 2837 n = start_dir_add(dir); 2838 __d_lookup_done(target); 2839 } 2840 2841 write_seqcount_begin(&dentry->d_seq); 2842 write_seqcount_begin_nested(&target->d_seq, DENTRY_D_LOCK_NESTED); 2843 2844 /* unhash both */ 2845 if (!d_unhashed(dentry)) 2846 ___d_drop(dentry); 2847 if (!d_unhashed(target)) 2848 ___d_drop(target); 2849 2850 /* ... and switch them in the tree */ 2851 dentry->d_parent = target->d_parent; 2852 if (!exchange) { 2853 copy_name(dentry, target); 2854 target->d_hash.pprev = NULL; 2855 dentry->d_parent->d_lockref.count++; 2856 if (dentry != old_parent) /* wasn't IS_ROOT */ 2857 WARN_ON(!--old_parent->d_lockref.count); 2858 } else { 2859 target->d_parent = old_parent; 2860 swap_names(dentry, target); 2861 list_move(&target->d_child, &target->d_parent->d_subdirs); 2862 __d_rehash(target); 2863 fsnotify_update_flags(target); 2864 } 2865 list_move(&dentry->d_child, &dentry->d_parent->d_subdirs); 2866 __d_rehash(dentry); 2867 fsnotify_update_flags(dentry); 2868 fscrypt_handle_d_move(dentry); 2869 2870 write_seqcount_end(&target->d_seq); 2871 write_seqcount_end(&dentry->d_seq); 2872 2873 if (dir) 2874 end_dir_add(dir, n); 2875 2876 if (dentry->d_parent != old_parent) 2877 spin_unlock(&dentry->d_parent->d_lock); 2878 if (dentry != old_parent) 2879 spin_unlock(&old_parent->d_lock); 2880 spin_unlock(&target->d_lock); 2881 spin_unlock(&dentry->d_lock); 2882 } 2883 2884 /* 2885 * d_move - move a dentry 2886 * @dentry: entry to move 2887 * @target: new dentry 2888 * 2889 * Update the dcache to reflect the move of a file name. Negative 2890 * dcache entries should not be moved in this way. See the locking 2891 * requirements for __d_move. 2892 */ 2893 void d_move(struct dentry *dentry, struct dentry *target) 2894 { 2895 write_seqlock(&rename_lock); 2896 __d_move(dentry, target, false); 2897 write_sequnlock(&rename_lock); 2898 } 2899 EXPORT_SYMBOL(d_move); 2900 2901 /* 2902 * d_exchange - exchange two dentries 2903 * @dentry1: first dentry 2904 * @dentry2: second dentry 2905 */ 2906 void d_exchange(struct dentry *dentry1, struct dentry *dentry2) 2907 { 2908 write_seqlock(&rename_lock); 2909 2910 WARN_ON(!dentry1->d_inode); 2911 WARN_ON(!dentry2->d_inode); 2912 WARN_ON(IS_ROOT(dentry1)); 2913 WARN_ON(IS_ROOT(dentry2)); 2914 2915 __d_move(dentry1, dentry2, true); 2916 2917 write_sequnlock(&rename_lock); 2918 } 2919 2920 /** 2921 * d_ancestor - search for an ancestor 2922 * @p1: ancestor dentry 2923 * @p2: child dentry 2924 * 2925 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is 2926 * an ancestor of p2, else NULL. 2927 */ 2928 struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2) 2929 { 2930 struct dentry *p; 2931 2932 for (p = p2; !IS_ROOT(p); p = p->d_parent) { 2933 if (p->d_parent == p1) 2934 return p; 2935 } 2936 return NULL; 2937 } 2938 2939 /* 2940 * This helper attempts to cope with remotely renamed directories 2941 * 2942 * It assumes that the caller is already holding 2943 * dentry->d_parent->d_inode->i_mutex, and rename_lock 2944 * 2945 * Note: If ever the locking in lock_rename() changes, then please 2946 * remember to update this too... 2947 */ 2948 static int __d_unalias(struct inode *inode, 2949 struct dentry *dentry, struct dentry *alias) 2950 { 2951 struct mutex *m1 = NULL; 2952 struct rw_semaphore *m2 = NULL; 2953 int ret = -ESTALE; 2954 2955 /* If alias and dentry share a parent, then no extra locks required */ 2956 if (alias->d_parent == dentry->d_parent) 2957 goto out_unalias; 2958 2959 /* See lock_rename() */ 2960 if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex)) 2961 goto out_err; 2962 m1 = &dentry->d_sb->s_vfs_rename_mutex; 2963 if (!inode_trylock_shared(alias->d_parent->d_inode)) 2964 goto out_err; 2965 m2 = &alias->d_parent->d_inode->i_rwsem; 2966 out_unalias: 2967 __d_move(alias, dentry, false); 2968 ret = 0; 2969 out_err: 2970 if (m2) 2971 up_read(m2); 2972 if (m1) 2973 mutex_unlock(m1); 2974 return ret; 2975 } 2976 2977 /** 2978 * d_splice_alias - splice a disconnected dentry into the tree if one exists 2979 * @inode: the inode which may have a disconnected dentry 2980 * @dentry: a negative dentry which we want to point to the inode. 2981 * 2982 * If inode is a directory and has an IS_ROOT alias, then d_move that in 2983 * place of the given dentry and return it, else simply d_add the inode 2984 * to the dentry and return NULL. 2985 * 2986 * If a non-IS_ROOT directory is found, the filesystem is corrupt, and 2987 * we should error out: directories can't have multiple aliases. 2988 * 2989 * This is needed in the lookup routine of any filesystem that is exportable 2990 * (via knfsd) so that we can build dcache paths to directories effectively. 2991 * 2992 * If a dentry was found and moved, then it is returned. Otherwise NULL 2993 * is returned. This matches the expected return value of ->lookup. 2994 * 2995 * Cluster filesystems may call this function with a negative, hashed dentry. 2996 * In that case, we know that the inode will be a regular file, and also this 2997 * will only occur during atomic_open. So we need to check for the dentry 2998 * being already hashed only in the final case. 2999 */ 3000 struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry) 3001 { 3002 if (IS_ERR(inode)) 3003 return ERR_CAST(inode); 3004 3005 BUG_ON(!d_unhashed(dentry)); 3006 3007 if (!inode) 3008 goto out; 3009 3010 security_d_instantiate(dentry, inode); 3011 spin_lock(&inode->i_lock); 3012 if (S_ISDIR(inode->i_mode)) { 3013 struct dentry *new = __d_find_any_alias(inode); 3014 if (unlikely(new)) { 3015 /* The reference to new ensures it remains an alias */ 3016 spin_unlock(&inode->i_lock); 3017 write_seqlock(&rename_lock); 3018 if (unlikely(d_ancestor(new, dentry))) { 3019 write_sequnlock(&rename_lock); 3020 dput(new); 3021 new = ERR_PTR(-ELOOP); 3022 pr_warn_ratelimited( 3023 "VFS: Lookup of '%s' in %s %s" 3024 " would have caused loop\n", 3025 dentry->d_name.name, 3026 inode->i_sb->s_type->name, 3027 inode->i_sb->s_id); 3028 } else if (!IS_ROOT(new)) { 3029 struct dentry *old_parent = dget(new->d_parent); 3030 int err = __d_unalias(inode, dentry, new); 3031 write_sequnlock(&rename_lock); 3032 if (err) { 3033 dput(new); 3034 new = ERR_PTR(err); 3035 } 3036 dput(old_parent); 3037 } else { 3038 __d_move(new, dentry, false); 3039 write_sequnlock(&rename_lock); 3040 } 3041 iput(inode); 3042 return new; 3043 } 3044 } 3045 out: 3046 __d_add(dentry, inode); 3047 return NULL; 3048 } 3049 EXPORT_SYMBOL(d_splice_alias); 3050 3051 /* 3052 * Test whether new_dentry is a subdirectory of old_dentry. 3053 * 3054 * Trivially implemented using the dcache structure 3055 */ 3056 3057 /** 3058 * is_subdir - is new dentry a subdirectory of old_dentry 3059 * @new_dentry: new dentry 3060 * @old_dentry: old dentry 3061 * 3062 * Returns true if new_dentry is a subdirectory of the parent (at any depth). 3063 * Returns false otherwise. 3064 * Caller must ensure that "new_dentry" is pinned before calling is_subdir() 3065 */ 3066 3067 bool is_subdir(struct dentry *new_dentry, struct dentry *old_dentry) 3068 { 3069 bool result; 3070 unsigned seq; 3071 3072 if (new_dentry == old_dentry) 3073 return true; 3074 3075 do { 3076 /* for restarting inner loop in case of seq retry */ 3077 seq = read_seqbegin(&rename_lock); 3078 /* 3079 * Need rcu_readlock to protect against the d_parent trashing 3080 * due to d_move 3081 */ 3082 rcu_read_lock(); 3083 if (d_ancestor(old_dentry, new_dentry)) 3084 result = true; 3085 else 3086 result = false; 3087 rcu_read_unlock(); 3088 } while (read_seqretry(&rename_lock, seq)); 3089 3090 return result; 3091 } 3092 EXPORT_SYMBOL(is_subdir); 3093 3094 static enum d_walk_ret d_genocide_kill(void *data, struct dentry *dentry) 3095 { 3096 struct dentry *root = data; 3097 if (dentry != root) { 3098 if (d_unhashed(dentry) || !dentry->d_inode) 3099 return D_WALK_SKIP; 3100 3101 if (!(dentry->d_flags & DCACHE_GENOCIDE)) { 3102 dentry->d_flags |= DCACHE_GENOCIDE; 3103 dentry->d_lockref.count--; 3104 } 3105 } 3106 return D_WALK_CONTINUE; 3107 } 3108 3109 void d_genocide(struct dentry *parent) 3110 { 3111 d_walk(parent, parent, d_genocide_kill); 3112 } 3113 3114 EXPORT_SYMBOL(d_genocide); 3115 3116 void d_tmpfile(struct dentry *dentry, struct inode *inode) 3117 { 3118 inode_dec_link_count(inode); 3119 BUG_ON(dentry->d_name.name != dentry->d_iname || 3120 !hlist_unhashed(&dentry->d_u.d_alias) || 3121 !d_unlinked(dentry)); 3122 spin_lock(&dentry->d_parent->d_lock); 3123 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED); 3124 dentry->d_name.len = sprintf(dentry->d_iname, "#%llu", 3125 (unsigned long long)inode->i_ino); 3126 spin_unlock(&dentry->d_lock); 3127 spin_unlock(&dentry->d_parent->d_lock); 3128 d_instantiate(dentry, inode); 3129 } 3130 EXPORT_SYMBOL(d_tmpfile); 3131 3132 static __initdata unsigned long dhash_entries; 3133 static int __init set_dhash_entries(char *str) 3134 { 3135 if (!str) 3136 return 0; 3137 dhash_entries = simple_strtoul(str, &str, 0); 3138 return 1; 3139 } 3140 __setup("dhash_entries=", set_dhash_entries); 3141 3142 static void __init dcache_init_early(void) 3143 { 3144 /* If hashes are distributed across NUMA nodes, defer 3145 * hash allocation until vmalloc space is available. 3146 */ 3147 if (hashdist) 3148 return; 3149 3150 dentry_hashtable = 3151 alloc_large_system_hash("Dentry cache", 3152 sizeof(struct hlist_bl_head), 3153 dhash_entries, 3154 13, 3155 HASH_EARLY | HASH_ZERO, 3156 &d_hash_shift, 3157 NULL, 3158 0, 3159 0); 3160 d_hash_shift = 32 - d_hash_shift; 3161 } 3162 3163 static void __init dcache_init(void) 3164 { 3165 /* 3166 * A constructor could be added for stable state like the lists, 3167 * but it is probably not worth it because of the cache nature 3168 * of the dcache. 3169 */ 3170 dentry_cache = KMEM_CACHE_USERCOPY(dentry, 3171 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD|SLAB_ACCOUNT, 3172 d_iname); 3173 3174 /* Hash may have been set up in dcache_init_early */ 3175 if (!hashdist) 3176 return; 3177 3178 dentry_hashtable = 3179 alloc_large_system_hash("Dentry cache", 3180 sizeof(struct hlist_bl_head), 3181 dhash_entries, 3182 13, 3183 HASH_ZERO, 3184 &d_hash_shift, 3185 NULL, 3186 0, 3187 0); 3188 d_hash_shift = 32 - d_hash_shift; 3189 } 3190 3191 /* SLAB cache for __getname() consumers */ 3192 struct kmem_cache *names_cachep __read_mostly; 3193 EXPORT_SYMBOL(names_cachep); 3194 3195 void __init vfs_caches_init_early(void) 3196 { 3197 int i; 3198 3199 for (i = 0; i < ARRAY_SIZE(in_lookup_hashtable); i++) 3200 INIT_HLIST_BL_HEAD(&in_lookup_hashtable[i]); 3201 3202 dcache_init_early(); 3203 inode_init_early(); 3204 } 3205 3206 void __init vfs_caches_init(void) 3207 { 3208 names_cachep = kmem_cache_create_usercopy("names_cache", PATH_MAX, 0, 3209 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 0, PATH_MAX, NULL); 3210 3211 dcache_init(); 3212 inode_init(); 3213 files_init(); 3214 files_maxfiles_init(); 3215 mnt_init(); 3216 bdev_cache_init(); 3217 chrdev_init(); 3218 } 3219