1 /* 2 * fs/dcache.c 3 * 4 * Complete reimplementation 5 * (C) 1997 Thomas Schoebel-Theuer, 6 * with heavy changes by Linus Torvalds 7 */ 8 9 /* 10 * Notes on the allocation strategy: 11 * 12 * The dcache is a master of the icache - whenever a dcache entry 13 * exists, the inode will always exist. "iput()" is done either when 14 * the dcache entry is deleted or garbage collected. 15 */ 16 17 #include <linux/syscalls.h> 18 #include <linux/string.h> 19 #include <linux/mm.h> 20 #include <linux/fs.h> 21 #include <linux/fsnotify.h> 22 #include <linux/slab.h> 23 #include <linux/init.h> 24 #include <linux/hash.h> 25 #include <linux/cache.h> 26 #include <linux/export.h> 27 #include <linux/mount.h> 28 #include <linux/file.h> 29 #include <linux/uaccess.h> 30 #include <linux/security.h> 31 #include <linux/seqlock.h> 32 #include <linux/swap.h> 33 #include <linux/bootmem.h> 34 #include <linux/fs_struct.h> 35 #include <linux/hardirq.h> 36 #include <linux/bit_spinlock.h> 37 #include <linux/rculist_bl.h> 38 #include <linux/prefetch.h> 39 #include <linux/ratelimit.h> 40 #include <linux/list_lru.h> 41 #include <linux/kasan.h> 42 43 #include "internal.h" 44 #include "mount.h" 45 46 /* 47 * Usage: 48 * dcache->d_inode->i_lock protects: 49 * - i_dentry, d_u.d_alias, d_inode of aliases 50 * dcache_hash_bucket lock protects: 51 * - the dcache hash table 52 * s_anon bl list spinlock protects: 53 * - the s_anon list (see __d_drop) 54 * dentry->d_sb->s_dentry_lru_lock protects: 55 * - the dcache lru lists and counters 56 * d_lock protects: 57 * - d_flags 58 * - d_name 59 * - d_lru 60 * - d_count 61 * - d_unhashed() 62 * - d_parent and d_subdirs 63 * - childrens' d_child and d_parent 64 * - d_u.d_alias, d_inode 65 * 66 * Ordering: 67 * dentry->d_inode->i_lock 68 * dentry->d_lock 69 * dentry->d_sb->s_dentry_lru_lock 70 * dcache_hash_bucket lock 71 * s_anon lock 72 * 73 * If there is an ancestor relationship: 74 * dentry->d_parent->...->d_parent->d_lock 75 * ... 76 * dentry->d_parent->d_lock 77 * dentry->d_lock 78 * 79 * If no ancestor relationship: 80 * if (dentry1 < dentry2) 81 * dentry1->d_lock 82 * dentry2->d_lock 83 */ 84 int sysctl_vfs_cache_pressure __read_mostly = 100; 85 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure); 86 87 __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock); 88 89 EXPORT_SYMBOL(rename_lock); 90 91 static struct kmem_cache *dentry_cache __read_mostly; 92 93 /* 94 * This is the single most critical data structure when it comes 95 * to the dcache: the hashtable for lookups. Somebody should try 96 * to make this good - I've just made it work. 97 * 98 * This hash-function tries to avoid losing too many bits of hash 99 * information, yet avoid using a prime hash-size or similar. 100 */ 101 102 static unsigned int d_hash_mask __read_mostly; 103 static unsigned int d_hash_shift __read_mostly; 104 105 static struct hlist_bl_head *dentry_hashtable __read_mostly; 106 107 static inline struct hlist_bl_head *d_hash(unsigned int hash) 108 { 109 return dentry_hashtable + (hash >> (32 - d_hash_shift)); 110 } 111 112 #define IN_LOOKUP_SHIFT 10 113 static struct hlist_bl_head in_lookup_hashtable[1 << IN_LOOKUP_SHIFT]; 114 115 static inline struct hlist_bl_head *in_lookup_hash(const struct dentry *parent, 116 unsigned int hash) 117 { 118 hash += (unsigned long) parent / L1_CACHE_BYTES; 119 return in_lookup_hashtable + hash_32(hash, IN_LOOKUP_SHIFT); 120 } 121 122 123 /* Statistics gathering. */ 124 struct dentry_stat_t dentry_stat = { 125 .age_limit = 45, 126 }; 127 128 static DEFINE_PER_CPU(long, nr_dentry); 129 static DEFINE_PER_CPU(long, nr_dentry_unused); 130 131 #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS) 132 133 /* 134 * Here we resort to our own counters instead of using generic per-cpu counters 135 * for consistency with what the vfs inode code does. We are expected to harvest 136 * better code and performance by having our own specialized counters. 137 * 138 * Please note that the loop is done over all possible CPUs, not over all online 139 * CPUs. The reason for this is that we don't want to play games with CPUs going 140 * on and off. If one of them goes off, we will just keep their counters. 141 * 142 * glommer: See cffbc8a for details, and if you ever intend to change this, 143 * please update all vfs counters to match. 144 */ 145 static long get_nr_dentry(void) 146 { 147 int i; 148 long sum = 0; 149 for_each_possible_cpu(i) 150 sum += per_cpu(nr_dentry, i); 151 return sum < 0 ? 0 : sum; 152 } 153 154 static long get_nr_dentry_unused(void) 155 { 156 int i; 157 long sum = 0; 158 for_each_possible_cpu(i) 159 sum += per_cpu(nr_dentry_unused, i); 160 return sum < 0 ? 0 : sum; 161 } 162 163 int proc_nr_dentry(struct ctl_table *table, int write, void __user *buffer, 164 size_t *lenp, loff_t *ppos) 165 { 166 dentry_stat.nr_dentry = get_nr_dentry(); 167 dentry_stat.nr_unused = get_nr_dentry_unused(); 168 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos); 169 } 170 #endif 171 172 /* 173 * Compare 2 name strings, return 0 if they match, otherwise non-zero. 174 * The strings are both count bytes long, and count is non-zero. 175 */ 176 #ifdef CONFIG_DCACHE_WORD_ACCESS 177 178 #include <asm/word-at-a-time.h> 179 /* 180 * NOTE! 'cs' and 'scount' come from a dentry, so it has a 181 * aligned allocation for this particular component. We don't 182 * strictly need the load_unaligned_zeropad() safety, but it 183 * doesn't hurt either. 184 * 185 * In contrast, 'ct' and 'tcount' can be from a pathname, and do 186 * need the careful unaligned handling. 187 */ 188 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount) 189 { 190 unsigned long a,b,mask; 191 192 for (;;) { 193 a = *(unsigned long *)cs; 194 b = load_unaligned_zeropad(ct); 195 if (tcount < sizeof(unsigned long)) 196 break; 197 if (unlikely(a != b)) 198 return 1; 199 cs += sizeof(unsigned long); 200 ct += sizeof(unsigned long); 201 tcount -= sizeof(unsigned long); 202 if (!tcount) 203 return 0; 204 } 205 mask = bytemask_from_count(tcount); 206 return unlikely(!!((a ^ b) & mask)); 207 } 208 209 #else 210 211 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount) 212 { 213 do { 214 if (*cs != *ct) 215 return 1; 216 cs++; 217 ct++; 218 tcount--; 219 } while (tcount); 220 return 0; 221 } 222 223 #endif 224 225 static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount) 226 { 227 /* 228 * Be careful about RCU walk racing with rename: 229 * use 'lockless_dereference' to fetch the name pointer. 230 * 231 * NOTE! Even if a rename will mean that the length 232 * was not loaded atomically, we don't care. The 233 * RCU walk will check the sequence count eventually, 234 * and catch it. And we won't overrun the buffer, 235 * because we're reading the name pointer atomically, 236 * and a dentry name is guaranteed to be properly 237 * terminated with a NUL byte. 238 * 239 * End result: even if 'len' is wrong, we'll exit 240 * early because the data cannot match (there can 241 * be no NUL in the ct/tcount data) 242 */ 243 const unsigned char *cs = lockless_dereference(dentry->d_name.name); 244 245 return dentry_string_cmp(cs, ct, tcount); 246 } 247 248 struct external_name { 249 union { 250 atomic_t count; 251 struct rcu_head head; 252 } u; 253 unsigned char name[]; 254 }; 255 256 static inline struct external_name *external_name(struct dentry *dentry) 257 { 258 return container_of(dentry->d_name.name, struct external_name, name[0]); 259 } 260 261 static void __d_free(struct rcu_head *head) 262 { 263 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu); 264 265 kmem_cache_free(dentry_cache, dentry); 266 } 267 268 static void __d_free_external(struct rcu_head *head) 269 { 270 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu); 271 kfree(external_name(dentry)); 272 kmem_cache_free(dentry_cache, dentry); 273 } 274 275 static inline int dname_external(const struct dentry *dentry) 276 { 277 return dentry->d_name.name != dentry->d_iname; 278 } 279 280 static inline void __d_set_inode_and_type(struct dentry *dentry, 281 struct inode *inode, 282 unsigned type_flags) 283 { 284 unsigned flags; 285 286 dentry->d_inode = inode; 287 flags = READ_ONCE(dentry->d_flags); 288 flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU); 289 flags |= type_flags; 290 WRITE_ONCE(dentry->d_flags, flags); 291 } 292 293 static inline void __d_clear_type_and_inode(struct dentry *dentry) 294 { 295 unsigned flags = READ_ONCE(dentry->d_flags); 296 297 flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU); 298 WRITE_ONCE(dentry->d_flags, flags); 299 dentry->d_inode = NULL; 300 } 301 302 static void dentry_free(struct dentry *dentry) 303 { 304 WARN_ON(!hlist_unhashed(&dentry->d_u.d_alias)); 305 if (unlikely(dname_external(dentry))) { 306 struct external_name *p = external_name(dentry); 307 if (likely(atomic_dec_and_test(&p->u.count))) { 308 call_rcu(&dentry->d_u.d_rcu, __d_free_external); 309 return; 310 } 311 } 312 /* if dentry was never visible to RCU, immediate free is OK */ 313 if (!(dentry->d_flags & DCACHE_RCUACCESS)) 314 __d_free(&dentry->d_u.d_rcu); 315 else 316 call_rcu(&dentry->d_u.d_rcu, __d_free); 317 } 318 319 /* 320 * Release the dentry's inode, using the filesystem 321 * d_iput() operation if defined. 322 */ 323 static void dentry_unlink_inode(struct dentry * dentry) 324 __releases(dentry->d_lock) 325 __releases(dentry->d_inode->i_lock) 326 { 327 struct inode *inode = dentry->d_inode; 328 bool hashed = !d_unhashed(dentry); 329 330 if (hashed) 331 raw_write_seqcount_begin(&dentry->d_seq); 332 __d_clear_type_and_inode(dentry); 333 hlist_del_init(&dentry->d_u.d_alias); 334 if (hashed) 335 raw_write_seqcount_end(&dentry->d_seq); 336 spin_unlock(&dentry->d_lock); 337 spin_unlock(&inode->i_lock); 338 if (!inode->i_nlink) 339 fsnotify_inoderemove(inode); 340 if (dentry->d_op && dentry->d_op->d_iput) 341 dentry->d_op->d_iput(dentry, inode); 342 else 343 iput(inode); 344 } 345 346 /* 347 * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry 348 * is in use - which includes both the "real" per-superblock 349 * LRU list _and_ the DCACHE_SHRINK_LIST use. 350 * 351 * The DCACHE_SHRINK_LIST bit is set whenever the dentry is 352 * on the shrink list (ie not on the superblock LRU list). 353 * 354 * The per-cpu "nr_dentry_unused" counters are updated with 355 * the DCACHE_LRU_LIST bit. 356 * 357 * These helper functions make sure we always follow the 358 * rules. d_lock must be held by the caller. 359 */ 360 #define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x)) 361 static void d_lru_add(struct dentry *dentry) 362 { 363 D_FLAG_VERIFY(dentry, 0); 364 dentry->d_flags |= DCACHE_LRU_LIST; 365 this_cpu_inc(nr_dentry_unused); 366 WARN_ON_ONCE(!list_lru_add(&dentry->d_sb->s_dentry_lru, &dentry->d_lru)); 367 } 368 369 static void d_lru_del(struct dentry *dentry) 370 { 371 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST); 372 dentry->d_flags &= ~DCACHE_LRU_LIST; 373 this_cpu_dec(nr_dentry_unused); 374 WARN_ON_ONCE(!list_lru_del(&dentry->d_sb->s_dentry_lru, &dentry->d_lru)); 375 } 376 377 static void d_shrink_del(struct dentry *dentry) 378 { 379 D_FLAG_VERIFY(dentry, DCACHE_SHRINK_LIST | DCACHE_LRU_LIST); 380 list_del_init(&dentry->d_lru); 381 dentry->d_flags &= ~(DCACHE_SHRINK_LIST | DCACHE_LRU_LIST); 382 this_cpu_dec(nr_dentry_unused); 383 } 384 385 static void d_shrink_add(struct dentry *dentry, struct list_head *list) 386 { 387 D_FLAG_VERIFY(dentry, 0); 388 list_add(&dentry->d_lru, list); 389 dentry->d_flags |= DCACHE_SHRINK_LIST | DCACHE_LRU_LIST; 390 this_cpu_inc(nr_dentry_unused); 391 } 392 393 /* 394 * These can only be called under the global LRU lock, ie during the 395 * callback for freeing the LRU list. "isolate" removes it from the 396 * LRU lists entirely, while shrink_move moves it to the indicated 397 * private list. 398 */ 399 static void d_lru_isolate(struct list_lru_one *lru, struct dentry *dentry) 400 { 401 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST); 402 dentry->d_flags &= ~DCACHE_LRU_LIST; 403 this_cpu_dec(nr_dentry_unused); 404 list_lru_isolate(lru, &dentry->d_lru); 405 } 406 407 static void d_lru_shrink_move(struct list_lru_one *lru, struct dentry *dentry, 408 struct list_head *list) 409 { 410 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST); 411 dentry->d_flags |= DCACHE_SHRINK_LIST; 412 list_lru_isolate_move(lru, &dentry->d_lru, list); 413 } 414 415 /* 416 * dentry_lru_(add|del)_list) must be called with d_lock held. 417 */ 418 static void dentry_lru_add(struct dentry *dentry) 419 { 420 if (unlikely(!(dentry->d_flags & DCACHE_LRU_LIST))) 421 d_lru_add(dentry); 422 else if (unlikely(!(dentry->d_flags & DCACHE_REFERENCED))) 423 dentry->d_flags |= DCACHE_REFERENCED; 424 } 425 426 /** 427 * d_drop - drop a dentry 428 * @dentry: dentry to drop 429 * 430 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't 431 * be found through a VFS lookup any more. Note that this is different from 432 * deleting the dentry - d_delete will try to mark the dentry negative if 433 * possible, giving a successful _negative_ lookup, while d_drop will 434 * just make the cache lookup fail. 435 * 436 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some 437 * reason (NFS timeouts or autofs deletes). 438 * 439 * __d_drop requires dentry->d_lock. 440 */ 441 void __d_drop(struct dentry *dentry) 442 { 443 if (!d_unhashed(dentry)) { 444 struct hlist_bl_head *b; 445 /* 446 * Hashed dentries are normally on the dentry hashtable, 447 * with the exception of those newly allocated by 448 * d_obtain_alias, which are always IS_ROOT: 449 */ 450 if (unlikely(IS_ROOT(dentry))) 451 b = &dentry->d_sb->s_anon; 452 else 453 b = d_hash(dentry->d_name.hash); 454 455 hlist_bl_lock(b); 456 __hlist_bl_del(&dentry->d_hash); 457 dentry->d_hash.pprev = NULL; 458 hlist_bl_unlock(b); 459 /* After this call, in-progress rcu-walk path lookup will fail. */ 460 write_seqcount_invalidate(&dentry->d_seq); 461 } 462 } 463 EXPORT_SYMBOL(__d_drop); 464 465 void d_drop(struct dentry *dentry) 466 { 467 spin_lock(&dentry->d_lock); 468 __d_drop(dentry); 469 spin_unlock(&dentry->d_lock); 470 } 471 EXPORT_SYMBOL(d_drop); 472 473 static inline void dentry_unlist(struct dentry *dentry, struct dentry *parent) 474 { 475 struct dentry *next; 476 /* 477 * Inform d_walk() and shrink_dentry_list() that we are no longer 478 * attached to the dentry tree 479 */ 480 dentry->d_flags |= DCACHE_DENTRY_KILLED; 481 if (unlikely(list_empty(&dentry->d_child))) 482 return; 483 __list_del_entry(&dentry->d_child); 484 /* 485 * Cursors can move around the list of children. While we'd been 486 * a normal list member, it didn't matter - ->d_child.next would've 487 * been updated. However, from now on it won't be and for the 488 * things like d_walk() it might end up with a nasty surprise. 489 * Normally d_walk() doesn't care about cursors moving around - 490 * ->d_lock on parent prevents that and since a cursor has no children 491 * of its own, we get through it without ever unlocking the parent. 492 * There is one exception, though - if we ascend from a child that 493 * gets killed as soon as we unlock it, the next sibling is found 494 * using the value left in its ->d_child.next. And if _that_ 495 * pointed to a cursor, and cursor got moved (e.g. by lseek()) 496 * before d_walk() regains parent->d_lock, we'll end up skipping 497 * everything the cursor had been moved past. 498 * 499 * Solution: make sure that the pointer left behind in ->d_child.next 500 * points to something that won't be moving around. I.e. skip the 501 * cursors. 502 */ 503 while (dentry->d_child.next != &parent->d_subdirs) { 504 next = list_entry(dentry->d_child.next, struct dentry, d_child); 505 if (likely(!(next->d_flags & DCACHE_DENTRY_CURSOR))) 506 break; 507 dentry->d_child.next = next->d_child.next; 508 } 509 } 510 511 static void __dentry_kill(struct dentry *dentry) 512 { 513 struct dentry *parent = NULL; 514 bool can_free = true; 515 if (!IS_ROOT(dentry)) 516 parent = dentry->d_parent; 517 518 /* 519 * The dentry is now unrecoverably dead to the world. 520 */ 521 lockref_mark_dead(&dentry->d_lockref); 522 523 /* 524 * inform the fs via d_prune that this dentry is about to be 525 * unhashed and destroyed. 526 */ 527 if (dentry->d_flags & DCACHE_OP_PRUNE) 528 dentry->d_op->d_prune(dentry); 529 530 if (dentry->d_flags & DCACHE_LRU_LIST) { 531 if (!(dentry->d_flags & DCACHE_SHRINK_LIST)) 532 d_lru_del(dentry); 533 } 534 /* if it was on the hash then remove it */ 535 __d_drop(dentry); 536 dentry_unlist(dentry, parent); 537 if (parent) 538 spin_unlock(&parent->d_lock); 539 if (dentry->d_inode) 540 dentry_unlink_inode(dentry); 541 else 542 spin_unlock(&dentry->d_lock); 543 this_cpu_dec(nr_dentry); 544 if (dentry->d_op && dentry->d_op->d_release) 545 dentry->d_op->d_release(dentry); 546 547 spin_lock(&dentry->d_lock); 548 if (dentry->d_flags & DCACHE_SHRINK_LIST) { 549 dentry->d_flags |= DCACHE_MAY_FREE; 550 can_free = false; 551 } 552 spin_unlock(&dentry->d_lock); 553 if (likely(can_free)) 554 dentry_free(dentry); 555 } 556 557 /* 558 * Finish off a dentry we've decided to kill. 559 * dentry->d_lock must be held, returns with it unlocked. 560 * If ref is non-zero, then decrement the refcount too. 561 * Returns dentry requiring refcount drop, or NULL if we're done. 562 */ 563 static struct dentry *dentry_kill(struct dentry *dentry) 564 __releases(dentry->d_lock) 565 { 566 struct inode *inode = dentry->d_inode; 567 struct dentry *parent = NULL; 568 569 if (inode && unlikely(!spin_trylock(&inode->i_lock))) 570 goto failed; 571 572 if (!IS_ROOT(dentry)) { 573 parent = dentry->d_parent; 574 if (unlikely(!spin_trylock(&parent->d_lock))) { 575 if (inode) 576 spin_unlock(&inode->i_lock); 577 goto failed; 578 } 579 } 580 581 __dentry_kill(dentry); 582 return parent; 583 584 failed: 585 spin_unlock(&dentry->d_lock); 586 return dentry; /* try again with same dentry */ 587 } 588 589 static inline struct dentry *lock_parent(struct dentry *dentry) 590 { 591 struct dentry *parent = dentry->d_parent; 592 if (IS_ROOT(dentry)) 593 return NULL; 594 if (unlikely(dentry->d_lockref.count < 0)) 595 return NULL; 596 if (likely(spin_trylock(&parent->d_lock))) 597 return parent; 598 rcu_read_lock(); 599 spin_unlock(&dentry->d_lock); 600 again: 601 parent = ACCESS_ONCE(dentry->d_parent); 602 spin_lock(&parent->d_lock); 603 /* 604 * We can't blindly lock dentry until we are sure 605 * that we won't violate the locking order. 606 * Any changes of dentry->d_parent must have 607 * been done with parent->d_lock held, so 608 * spin_lock() above is enough of a barrier 609 * for checking if it's still our child. 610 */ 611 if (unlikely(parent != dentry->d_parent)) { 612 spin_unlock(&parent->d_lock); 613 goto again; 614 } 615 rcu_read_unlock(); 616 if (parent != dentry) 617 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED); 618 else 619 parent = NULL; 620 return parent; 621 } 622 623 /* 624 * Try to do a lockless dput(), and return whether that was successful. 625 * 626 * If unsuccessful, we return false, having already taken the dentry lock. 627 * 628 * The caller needs to hold the RCU read lock, so that the dentry is 629 * guaranteed to stay around even if the refcount goes down to zero! 630 */ 631 static inline bool fast_dput(struct dentry *dentry) 632 { 633 int ret; 634 unsigned int d_flags; 635 636 /* 637 * If we have a d_op->d_delete() operation, we sould not 638 * let the dentry count go to zero, so use "put_or_lock". 639 */ 640 if (unlikely(dentry->d_flags & DCACHE_OP_DELETE)) 641 return lockref_put_or_lock(&dentry->d_lockref); 642 643 /* 644 * .. otherwise, we can try to just decrement the 645 * lockref optimistically. 646 */ 647 ret = lockref_put_return(&dentry->d_lockref); 648 649 /* 650 * If the lockref_put_return() failed due to the lock being held 651 * by somebody else, the fast path has failed. We will need to 652 * get the lock, and then check the count again. 653 */ 654 if (unlikely(ret < 0)) { 655 spin_lock(&dentry->d_lock); 656 if (dentry->d_lockref.count > 1) { 657 dentry->d_lockref.count--; 658 spin_unlock(&dentry->d_lock); 659 return 1; 660 } 661 return 0; 662 } 663 664 /* 665 * If we weren't the last ref, we're done. 666 */ 667 if (ret) 668 return 1; 669 670 /* 671 * Careful, careful. The reference count went down 672 * to zero, but we don't hold the dentry lock, so 673 * somebody else could get it again, and do another 674 * dput(), and we need to not race with that. 675 * 676 * However, there is a very special and common case 677 * where we don't care, because there is nothing to 678 * do: the dentry is still hashed, it does not have 679 * a 'delete' op, and it's referenced and already on 680 * the LRU list. 681 * 682 * NOTE! Since we aren't locked, these values are 683 * not "stable". However, it is sufficient that at 684 * some point after we dropped the reference the 685 * dentry was hashed and the flags had the proper 686 * value. Other dentry users may have re-gotten 687 * a reference to the dentry and change that, but 688 * our work is done - we can leave the dentry 689 * around with a zero refcount. 690 */ 691 smp_rmb(); 692 d_flags = ACCESS_ONCE(dentry->d_flags); 693 d_flags &= DCACHE_REFERENCED | DCACHE_LRU_LIST | DCACHE_DISCONNECTED; 694 695 /* Nothing to do? Dropping the reference was all we needed? */ 696 if (d_flags == (DCACHE_REFERENCED | DCACHE_LRU_LIST) && !d_unhashed(dentry)) 697 return 1; 698 699 /* 700 * Not the fast normal case? Get the lock. We've already decremented 701 * the refcount, but we'll need to re-check the situation after 702 * getting the lock. 703 */ 704 spin_lock(&dentry->d_lock); 705 706 /* 707 * Did somebody else grab a reference to it in the meantime, and 708 * we're no longer the last user after all? Alternatively, somebody 709 * else could have killed it and marked it dead. Either way, we 710 * don't need to do anything else. 711 */ 712 if (dentry->d_lockref.count) { 713 spin_unlock(&dentry->d_lock); 714 return 1; 715 } 716 717 /* 718 * Re-get the reference we optimistically dropped. We hold the 719 * lock, and we just tested that it was zero, so we can just 720 * set it to 1. 721 */ 722 dentry->d_lockref.count = 1; 723 return 0; 724 } 725 726 727 /* 728 * This is dput 729 * 730 * This is complicated by the fact that we do not want to put 731 * dentries that are no longer on any hash chain on the unused 732 * list: we'd much rather just get rid of them immediately. 733 * 734 * However, that implies that we have to traverse the dentry 735 * tree upwards to the parents which might _also_ now be 736 * scheduled for deletion (it may have been only waiting for 737 * its last child to go away). 738 * 739 * This tail recursion is done by hand as we don't want to depend 740 * on the compiler to always get this right (gcc generally doesn't). 741 * Real recursion would eat up our stack space. 742 */ 743 744 /* 745 * dput - release a dentry 746 * @dentry: dentry to release 747 * 748 * Release a dentry. This will drop the usage count and if appropriate 749 * call the dentry unlink method as well as removing it from the queues and 750 * releasing its resources. If the parent dentries were scheduled for release 751 * they too may now get deleted. 752 */ 753 void dput(struct dentry *dentry) 754 { 755 if (unlikely(!dentry)) 756 return; 757 758 repeat: 759 might_sleep(); 760 761 rcu_read_lock(); 762 if (likely(fast_dput(dentry))) { 763 rcu_read_unlock(); 764 return; 765 } 766 767 /* Slow case: now with the dentry lock held */ 768 rcu_read_unlock(); 769 770 WARN_ON(d_in_lookup(dentry)); 771 772 /* Unreachable? Get rid of it */ 773 if (unlikely(d_unhashed(dentry))) 774 goto kill_it; 775 776 if (unlikely(dentry->d_flags & DCACHE_DISCONNECTED)) 777 goto kill_it; 778 779 if (unlikely(dentry->d_flags & DCACHE_OP_DELETE)) { 780 if (dentry->d_op->d_delete(dentry)) 781 goto kill_it; 782 } 783 784 dentry_lru_add(dentry); 785 786 dentry->d_lockref.count--; 787 spin_unlock(&dentry->d_lock); 788 return; 789 790 kill_it: 791 dentry = dentry_kill(dentry); 792 if (dentry) { 793 cond_resched(); 794 goto repeat; 795 } 796 } 797 EXPORT_SYMBOL(dput); 798 799 800 /* This must be called with d_lock held */ 801 static inline void __dget_dlock(struct dentry *dentry) 802 { 803 dentry->d_lockref.count++; 804 } 805 806 static inline void __dget(struct dentry *dentry) 807 { 808 lockref_get(&dentry->d_lockref); 809 } 810 811 struct dentry *dget_parent(struct dentry *dentry) 812 { 813 int gotref; 814 struct dentry *ret; 815 816 /* 817 * Do optimistic parent lookup without any 818 * locking. 819 */ 820 rcu_read_lock(); 821 ret = ACCESS_ONCE(dentry->d_parent); 822 gotref = lockref_get_not_zero(&ret->d_lockref); 823 rcu_read_unlock(); 824 if (likely(gotref)) { 825 if (likely(ret == ACCESS_ONCE(dentry->d_parent))) 826 return ret; 827 dput(ret); 828 } 829 830 repeat: 831 /* 832 * Don't need rcu_dereference because we re-check it was correct under 833 * the lock. 834 */ 835 rcu_read_lock(); 836 ret = dentry->d_parent; 837 spin_lock(&ret->d_lock); 838 if (unlikely(ret != dentry->d_parent)) { 839 spin_unlock(&ret->d_lock); 840 rcu_read_unlock(); 841 goto repeat; 842 } 843 rcu_read_unlock(); 844 BUG_ON(!ret->d_lockref.count); 845 ret->d_lockref.count++; 846 spin_unlock(&ret->d_lock); 847 return ret; 848 } 849 EXPORT_SYMBOL(dget_parent); 850 851 /** 852 * d_find_alias - grab a hashed alias of inode 853 * @inode: inode in question 854 * 855 * If inode has a hashed alias, or is a directory and has any alias, 856 * acquire the reference to alias and return it. Otherwise return NULL. 857 * Notice that if inode is a directory there can be only one alias and 858 * it can be unhashed only if it has no children, or if it is the root 859 * of a filesystem, or if the directory was renamed and d_revalidate 860 * was the first vfs operation to notice. 861 * 862 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer 863 * any other hashed alias over that one. 864 */ 865 static struct dentry *__d_find_alias(struct inode *inode) 866 { 867 struct dentry *alias, *discon_alias; 868 869 again: 870 discon_alias = NULL; 871 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) { 872 spin_lock(&alias->d_lock); 873 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) { 874 if (IS_ROOT(alias) && 875 (alias->d_flags & DCACHE_DISCONNECTED)) { 876 discon_alias = alias; 877 } else { 878 __dget_dlock(alias); 879 spin_unlock(&alias->d_lock); 880 return alias; 881 } 882 } 883 spin_unlock(&alias->d_lock); 884 } 885 if (discon_alias) { 886 alias = discon_alias; 887 spin_lock(&alias->d_lock); 888 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) { 889 __dget_dlock(alias); 890 spin_unlock(&alias->d_lock); 891 return alias; 892 } 893 spin_unlock(&alias->d_lock); 894 goto again; 895 } 896 return NULL; 897 } 898 899 struct dentry *d_find_alias(struct inode *inode) 900 { 901 struct dentry *de = NULL; 902 903 if (!hlist_empty(&inode->i_dentry)) { 904 spin_lock(&inode->i_lock); 905 de = __d_find_alias(inode); 906 spin_unlock(&inode->i_lock); 907 } 908 return de; 909 } 910 EXPORT_SYMBOL(d_find_alias); 911 912 /* 913 * Try to kill dentries associated with this inode. 914 * WARNING: you must own a reference to inode. 915 */ 916 void d_prune_aliases(struct inode *inode) 917 { 918 struct dentry *dentry; 919 restart: 920 spin_lock(&inode->i_lock); 921 hlist_for_each_entry(dentry, &inode->i_dentry, d_u.d_alias) { 922 spin_lock(&dentry->d_lock); 923 if (!dentry->d_lockref.count) { 924 struct dentry *parent = lock_parent(dentry); 925 if (likely(!dentry->d_lockref.count)) { 926 __dentry_kill(dentry); 927 dput(parent); 928 goto restart; 929 } 930 if (parent) 931 spin_unlock(&parent->d_lock); 932 } 933 spin_unlock(&dentry->d_lock); 934 } 935 spin_unlock(&inode->i_lock); 936 } 937 EXPORT_SYMBOL(d_prune_aliases); 938 939 static void shrink_dentry_list(struct list_head *list) 940 { 941 struct dentry *dentry, *parent; 942 943 while (!list_empty(list)) { 944 struct inode *inode; 945 dentry = list_entry(list->prev, struct dentry, d_lru); 946 spin_lock(&dentry->d_lock); 947 parent = lock_parent(dentry); 948 949 /* 950 * The dispose list is isolated and dentries are not accounted 951 * to the LRU here, so we can simply remove it from the list 952 * here regardless of whether it is referenced or not. 953 */ 954 d_shrink_del(dentry); 955 956 /* 957 * We found an inuse dentry which was not removed from 958 * the LRU because of laziness during lookup. Do not free it. 959 */ 960 if (dentry->d_lockref.count > 0) { 961 spin_unlock(&dentry->d_lock); 962 if (parent) 963 spin_unlock(&parent->d_lock); 964 continue; 965 } 966 967 968 if (unlikely(dentry->d_flags & DCACHE_DENTRY_KILLED)) { 969 bool can_free = dentry->d_flags & DCACHE_MAY_FREE; 970 spin_unlock(&dentry->d_lock); 971 if (parent) 972 spin_unlock(&parent->d_lock); 973 if (can_free) 974 dentry_free(dentry); 975 continue; 976 } 977 978 inode = dentry->d_inode; 979 if (inode && unlikely(!spin_trylock(&inode->i_lock))) { 980 d_shrink_add(dentry, list); 981 spin_unlock(&dentry->d_lock); 982 if (parent) 983 spin_unlock(&parent->d_lock); 984 continue; 985 } 986 987 __dentry_kill(dentry); 988 989 /* 990 * We need to prune ancestors too. This is necessary to prevent 991 * quadratic behavior of shrink_dcache_parent(), but is also 992 * expected to be beneficial in reducing dentry cache 993 * fragmentation. 994 */ 995 dentry = parent; 996 while (dentry && !lockref_put_or_lock(&dentry->d_lockref)) { 997 parent = lock_parent(dentry); 998 if (dentry->d_lockref.count != 1) { 999 dentry->d_lockref.count--; 1000 spin_unlock(&dentry->d_lock); 1001 if (parent) 1002 spin_unlock(&parent->d_lock); 1003 break; 1004 } 1005 inode = dentry->d_inode; /* can't be NULL */ 1006 if (unlikely(!spin_trylock(&inode->i_lock))) { 1007 spin_unlock(&dentry->d_lock); 1008 if (parent) 1009 spin_unlock(&parent->d_lock); 1010 cpu_relax(); 1011 continue; 1012 } 1013 __dentry_kill(dentry); 1014 dentry = parent; 1015 } 1016 } 1017 } 1018 1019 static enum lru_status dentry_lru_isolate(struct list_head *item, 1020 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg) 1021 { 1022 struct list_head *freeable = arg; 1023 struct dentry *dentry = container_of(item, struct dentry, d_lru); 1024 1025 1026 /* 1027 * we are inverting the lru lock/dentry->d_lock here, 1028 * so use a trylock. If we fail to get the lock, just skip 1029 * it 1030 */ 1031 if (!spin_trylock(&dentry->d_lock)) 1032 return LRU_SKIP; 1033 1034 /* 1035 * Referenced dentries are still in use. If they have active 1036 * counts, just remove them from the LRU. Otherwise give them 1037 * another pass through the LRU. 1038 */ 1039 if (dentry->d_lockref.count) { 1040 d_lru_isolate(lru, dentry); 1041 spin_unlock(&dentry->d_lock); 1042 return LRU_REMOVED; 1043 } 1044 1045 if (dentry->d_flags & DCACHE_REFERENCED) { 1046 dentry->d_flags &= ~DCACHE_REFERENCED; 1047 spin_unlock(&dentry->d_lock); 1048 1049 /* 1050 * The list move itself will be made by the common LRU code. At 1051 * this point, we've dropped the dentry->d_lock but keep the 1052 * lru lock. This is safe to do, since every list movement is 1053 * protected by the lru lock even if both locks are held. 1054 * 1055 * This is guaranteed by the fact that all LRU management 1056 * functions are intermediated by the LRU API calls like 1057 * list_lru_add and list_lru_del. List movement in this file 1058 * only ever occur through this functions or through callbacks 1059 * like this one, that are called from the LRU API. 1060 * 1061 * The only exceptions to this are functions like 1062 * shrink_dentry_list, and code that first checks for the 1063 * DCACHE_SHRINK_LIST flag. Those are guaranteed to be 1064 * operating only with stack provided lists after they are 1065 * properly isolated from the main list. It is thus, always a 1066 * local access. 1067 */ 1068 return LRU_ROTATE; 1069 } 1070 1071 d_lru_shrink_move(lru, dentry, freeable); 1072 spin_unlock(&dentry->d_lock); 1073 1074 return LRU_REMOVED; 1075 } 1076 1077 /** 1078 * prune_dcache_sb - shrink the dcache 1079 * @sb: superblock 1080 * @sc: shrink control, passed to list_lru_shrink_walk() 1081 * 1082 * Attempt to shrink the superblock dcache LRU by @sc->nr_to_scan entries. This 1083 * is done when we need more memory and called from the superblock shrinker 1084 * function. 1085 * 1086 * This function may fail to free any resources if all the dentries are in 1087 * use. 1088 */ 1089 long prune_dcache_sb(struct super_block *sb, struct shrink_control *sc) 1090 { 1091 LIST_HEAD(dispose); 1092 long freed; 1093 1094 freed = list_lru_shrink_walk(&sb->s_dentry_lru, sc, 1095 dentry_lru_isolate, &dispose); 1096 shrink_dentry_list(&dispose); 1097 return freed; 1098 } 1099 1100 static enum lru_status dentry_lru_isolate_shrink(struct list_head *item, 1101 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg) 1102 { 1103 struct list_head *freeable = arg; 1104 struct dentry *dentry = container_of(item, struct dentry, d_lru); 1105 1106 /* 1107 * we are inverting the lru lock/dentry->d_lock here, 1108 * so use a trylock. If we fail to get the lock, just skip 1109 * it 1110 */ 1111 if (!spin_trylock(&dentry->d_lock)) 1112 return LRU_SKIP; 1113 1114 d_lru_shrink_move(lru, dentry, freeable); 1115 spin_unlock(&dentry->d_lock); 1116 1117 return LRU_REMOVED; 1118 } 1119 1120 1121 /** 1122 * shrink_dcache_sb - shrink dcache for a superblock 1123 * @sb: superblock 1124 * 1125 * Shrink the dcache for the specified super block. This is used to free 1126 * the dcache before unmounting a file system. 1127 */ 1128 void shrink_dcache_sb(struct super_block *sb) 1129 { 1130 long freed; 1131 1132 do { 1133 LIST_HEAD(dispose); 1134 1135 freed = list_lru_walk(&sb->s_dentry_lru, 1136 dentry_lru_isolate_shrink, &dispose, UINT_MAX); 1137 1138 this_cpu_sub(nr_dentry_unused, freed); 1139 shrink_dentry_list(&dispose); 1140 } while (freed > 0); 1141 } 1142 EXPORT_SYMBOL(shrink_dcache_sb); 1143 1144 /** 1145 * enum d_walk_ret - action to talke during tree walk 1146 * @D_WALK_CONTINUE: contrinue walk 1147 * @D_WALK_QUIT: quit walk 1148 * @D_WALK_NORETRY: quit when retry is needed 1149 * @D_WALK_SKIP: skip this dentry and its children 1150 */ 1151 enum d_walk_ret { 1152 D_WALK_CONTINUE, 1153 D_WALK_QUIT, 1154 D_WALK_NORETRY, 1155 D_WALK_SKIP, 1156 }; 1157 1158 /** 1159 * d_walk - walk the dentry tree 1160 * @parent: start of walk 1161 * @data: data passed to @enter() and @finish() 1162 * @enter: callback when first entering the dentry 1163 * @finish: callback when successfully finished the walk 1164 * 1165 * The @enter() and @finish() callbacks are called with d_lock held. 1166 */ 1167 static void d_walk(struct dentry *parent, void *data, 1168 enum d_walk_ret (*enter)(void *, struct dentry *), 1169 void (*finish)(void *)) 1170 { 1171 struct dentry *this_parent; 1172 struct list_head *next; 1173 unsigned seq = 0; 1174 enum d_walk_ret ret; 1175 bool retry = true; 1176 1177 again: 1178 read_seqbegin_or_lock(&rename_lock, &seq); 1179 this_parent = parent; 1180 spin_lock(&this_parent->d_lock); 1181 1182 ret = enter(data, this_parent); 1183 switch (ret) { 1184 case D_WALK_CONTINUE: 1185 break; 1186 case D_WALK_QUIT: 1187 case D_WALK_SKIP: 1188 goto out_unlock; 1189 case D_WALK_NORETRY: 1190 retry = false; 1191 break; 1192 } 1193 repeat: 1194 next = this_parent->d_subdirs.next; 1195 resume: 1196 while (next != &this_parent->d_subdirs) { 1197 struct list_head *tmp = next; 1198 struct dentry *dentry = list_entry(tmp, struct dentry, d_child); 1199 next = tmp->next; 1200 1201 if (unlikely(dentry->d_flags & DCACHE_DENTRY_CURSOR)) 1202 continue; 1203 1204 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED); 1205 1206 ret = enter(data, dentry); 1207 switch (ret) { 1208 case D_WALK_CONTINUE: 1209 break; 1210 case D_WALK_QUIT: 1211 spin_unlock(&dentry->d_lock); 1212 goto out_unlock; 1213 case D_WALK_NORETRY: 1214 retry = false; 1215 break; 1216 case D_WALK_SKIP: 1217 spin_unlock(&dentry->d_lock); 1218 continue; 1219 } 1220 1221 if (!list_empty(&dentry->d_subdirs)) { 1222 spin_unlock(&this_parent->d_lock); 1223 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_); 1224 this_parent = dentry; 1225 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_); 1226 goto repeat; 1227 } 1228 spin_unlock(&dentry->d_lock); 1229 } 1230 /* 1231 * All done at this level ... ascend and resume the search. 1232 */ 1233 rcu_read_lock(); 1234 ascend: 1235 if (this_parent != parent) { 1236 struct dentry *child = this_parent; 1237 this_parent = child->d_parent; 1238 1239 spin_unlock(&child->d_lock); 1240 spin_lock(&this_parent->d_lock); 1241 1242 /* might go back up the wrong parent if we have had a rename. */ 1243 if (need_seqretry(&rename_lock, seq)) 1244 goto rename_retry; 1245 /* go into the first sibling still alive */ 1246 do { 1247 next = child->d_child.next; 1248 if (next == &this_parent->d_subdirs) 1249 goto ascend; 1250 child = list_entry(next, struct dentry, d_child); 1251 } while (unlikely(child->d_flags & DCACHE_DENTRY_KILLED)); 1252 rcu_read_unlock(); 1253 goto resume; 1254 } 1255 if (need_seqretry(&rename_lock, seq)) 1256 goto rename_retry; 1257 rcu_read_unlock(); 1258 if (finish) 1259 finish(data); 1260 1261 out_unlock: 1262 spin_unlock(&this_parent->d_lock); 1263 done_seqretry(&rename_lock, seq); 1264 return; 1265 1266 rename_retry: 1267 spin_unlock(&this_parent->d_lock); 1268 rcu_read_unlock(); 1269 BUG_ON(seq & 1); 1270 if (!retry) 1271 return; 1272 seq = 1; 1273 goto again; 1274 } 1275 1276 struct check_mount { 1277 struct vfsmount *mnt; 1278 unsigned int mounted; 1279 }; 1280 1281 static enum d_walk_ret path_check_mount(void *data, struct dentry *dentry) 1282 { 1283 struct check_mount *info = data; 1284 struct path path = { .mnt = info->mnt, .dentry = dentry }; 1285 1286 if (likely(!d_mountpoint(dentry))) 1287 return D_WALK_CONTINUE; 1288 if (__path_is_mountpoint(&path)) { 1289 info->mounted = 1; 1290 return D_WALK_QUIT; 1291 } 1292 return D_WALK_CONTINUE; 1293 } 1294 1295 /** 1296 * path_has_submounts - check for mounts over a dentry in the 1297 * current namespace. 1298 * @parent: path to check. 1299 * 1300 * Return true if the parent or its subdirectories contain 1301 * a mount point in the current namespace. 1302 */ 1303 int path_has_submounts(const struct path *parent) 1304 { 1305 struct check_mount data = { .mnt = parent->mnt, .mounted = 0 }; 1306 1307 read_seqlock_excl(&mount_lock); 1308 d_walk(parent->dentry, &data, path_check_mount, NULL); 1309 read_sequnlock_excl(&mount_lock); 1310 1311 return data.mounted; 1312 } 1313 EXPORT_SYMBOL(path_has_submounts); 1314 1315 /* 1316 * Called by mount code to set a mountpoint and check if the mountpoint is 1317 * reachable (e.g. NFS can unhash a directory dentry and then the complete 1318 * subtree can become unreachable). 1319 * 1320 * Only one of d_invalidate() and d_set_mounted() must succeed. For 1321 * this reason take rename_lock and d_lock on dentry and ancestors. 1322 */ 1323 int d_set_mounted(struct dentry *dentry) 1324 { 1325 struct dentry *p; 1326 int ret = -ENOENT; 1327 write_seqlock(&rename_lock); 1328 for (p = dentry->d_parent; !IS_ROOT(p); p = p->d_parent) { 1329 /* Need exclusion wrt. d_invalidate() */ 1330 spin_lock(&p->d_lock); 1331 if (unlikely(d_unhashed(p))) { 1332 spin_unlock(&p->d_lock); 1333 goto out; 1334 } 1335 spin_unlock(&p->d_lock); 1336 } 1337 spin_lock(&dentry->d_lock); 1338 if (!d_unlinked(dentry)) { 1339 ret = -EBUSY; 1340 if (!d_mountpoint(dentry)) { 1341 dentry->d_flags |= DCACHE_MOUNTED; 1342 ret = 0; 1343 } 1344 } 1345 spin_unlock(&dentry->d_lock); 1346 out: 1347 write_sequnlock(&rename_lock); 1348 return ret; 1349 } 1350 1351 /* 1352 * Search the dentry child list of the specified parent, 1353 * and move any unused dentries to the end of the unused 1354 * list for prune_dcache(). We descend to the next level 1355 * whenever the d_subdirs list is non-empty and continue 1356 * searching. 1357 * 1358 * It returns zero iff there are no unused children, 1359 * otherwise it returns the number of children moved to 1360 * the end of the unused list. This may not be the total 1361 * number of unused children, because select_parent can 1362 * drop the lock and return early due to latency 1363 * constraints. 1364 */ 1365 1366 struct select_data { 1367 struct dentry *start; 1368 struct list_head dispose; 1369 int found; 1370 }; 1371 1372 static enum d_walk_ret select_collect(void *_data, struct dentry *dentry) 1373 { 1374 struct select_data *data = _data; 1375 enum d_walk_ret ret = D_WALK_CONTINUE; 1376 1377 if (data->start == dentry) 1378 goto out; 1379 1380 if (dentry->d_flags & DCACHE_SHRINK_LIST) { 1381 data->found++; 1382 } else { 1383 if (dentry->d_flags & DCACHE_LRU_LIST) 1384 d_lru_del(dentry); 1385 if (!dentry->d_lockref.count) { 1386 d_shrink_add(dentry, &data->dispose); 1387 data->found++; 1388 } 1389 } 1390 /* 1391 * We can return to the caller if we have found some (this 1392 * ensures forward progress). We'll be coming back to find 1393 * the rest. 1394 */ 1395 if (!list_empty(&data->dispose)) 1396 ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY; 1397 out: 1398 return ret; 1399 } 1400 1401 /** 1402 * shrink_dcache_parent - prune dcache 1403 * @parent: parent of entries to prune 1404 * 1405 * Prune the dcache to remove unused children of the parent dentry. 1406 */ 1407 void shrink_dcache_parent(struct dentry *parent) 1408 { 1409 for (;;) { 1410 struct select_data data; 1411 1412 INIT_LIST_HEAD(&data.dispose); 1413 data.start = parent; 1414 data.found = 0; 1415 1416 d_walk(parent, &data, select_collect, NULL); 1417 if (!data.found) 1418 break; 1419 1420 shrink_dentry_list(&data.dispose); 1421 cond_resched(); 1422 } 1423 } 1424 EXPORT_SYMBOL(shrink_dcache_parent); 1425 1426 static enum d_walk_ret umount_check(void *_data, struct dentry *dentry) 1427 { 1428 /* it has busy descendents; complain about those instead */ 1429 if (!list_empty(&dentry->d_subdirs)) 1430 return D_WALK_CONTINUE; 1431 1432 /* root with refcount 1 is fine */ 1433 if (dentry == _data && dentry->d_lockref.count == 1) 1434 return D_WALK_CONTINUE; 1435 1436 printk(KERN_ERR "BUG: Dentry %p{i=%lx,n=%pd} " 1437 " still in use (%d) [unmount of %s %s]\n", 1438 dentry, 1439 dentry->d_inode ? 1440 dentry->d_inode->i_ino : 0UL, 1441 dentry, 1442 dentry->d_lockref.count, 1443 dentry->d_sb->s_type->name, 1444 dentry->d_sb->s_id); 1445 WARN_ON(1); 1446 return D_WALK_CONTINUE; 1447 } 1448 1449 static void do_one_tree(struct dentry *dentry) 1450 { 1451 shrink_dcache_parent(dentry); 1452 d_walk(dentry, dentry, umount_check, NULL); 1453 d_drop(dentry); 1454 dput(dentry); 1455 } 1456 1457 /* 1458 * destroy the dentries attached to a superblock on unmounting 1459 */ 1460 void shrink_dcache_for_umount(struct super_block *sb) 1461 { 1462 struct dentry *dentry; 1463 1464 WARN(down_read_trylock(&sb->s_umount), "s_umount should've been locked"); 1465 1466 dentry = sb->s_root; 1467 sb->s_root = NULL; 1468 do_one_tree(dentry); 1469 1470 while (!hlist_bl_empty(&sb->s_anon)) { 1471 dentry = dget(hlist_bl_entry(hlist_bl_first(&sb->s_anon), struct dentry, d_hash)); 1472 do_one_tree(dentry); 1473 } 1474 } 1475 1476 struct detach_data { 1477 struct select_data select; 1478 struct dentry *mountpoint; 1479 }; 1480 static enum d_walk_ret detach_and_collect(void *_data, struct dentry *dentry) 1481 { 1482 struct detach_data *data = _data; 1483 1484 if (d_mountpoint(dentry)) { 1485 __dget_dlock(dentry); 1486 data->mountpoint = dentry; 1487 return D_WALK_QUIT; 1488 } 1489 1490 return select_collect(&data->select, dentry); 1491 } 1492 1493 static void check_and_drop(void *_data) 1494 { 1495 struct detach_data *data = _data; 1496 1497 if (!data->mountpoint && list_empty(&data->select.dispose)) 1498 __d_drop(data->select.start); 1499 } 1500 1501 /** 1502 * d_invalidate - detach submounts, prune dcache, and drop 1503 * @dentry: dentry to invalidate (aka detach, prune and drop) 1504 * 1505 * no dcache lock. 1506 * 1507 * The final d_drop is done as an atomic operation relative to 1508 * rename_lock ensuring there are no races with d_set_mounted. This 1509 * ensures there are no unhashed dentries on the path to a mountpoint. 1510 */ 1511 void d_invalidate(struct dentry *dentry) 1512 { 1513 /* 1514 * If it's already been dropped, return OK. 1515 */ 1516 spin_lock(&dentry->d_lock); 1517 if (d_unhashed(dentry)) { 1518 spin_unlock(&dentry->d_lock); 1519 return; 1520 } 1521 spin_unlock(&dentry->d_lock); 1522 1523 /* Negative dentries can be dropped without further checks */ 1524 if (!dentry->d_inode) { 1525 d_drop(dentry); 1526 return; 1527 } 1528 1529 for (;;) { 1530 struct detach_data data; 1531 1532 data.mountpoint = NULL; 1533 INIT_LIST_HEAD(&data.select.dispose); 1534 data.select.start = dentry; 1535 data.select.found = 0; 1536 1537 d_walk(dentry, &data, detach_and_collect, check_and_drop); 1538 1539 if (!list_empty(&data.select.dispose)) 1540 shrink_dentry_list(&data.select.dispose); 1541 else if (!data.mountpoint) 1542 return; 1543 1544 if (data.mountpoint) { 1545 detach_mounts(data.mountpoint); 1546 dput(data.mountpoint); 1547 } 1548 cond_resched(); 1549 } 1550 } 1551 EXPORT_SYMBOL(d_invalidate); 1552 1553 /** 1554 * __d_alloc - allocate a dcache entry 1555 * @sb: filesystem it will belong to 1556 * @name: qstr of the name 1557 * 1558 * Allocates a dentry. It returns %NULL if there is insufficient memory 1559 * available. On a success the dentry is returned. The name passed in is 1560 * copied and the copy passed in may be reused after this call. 1561 */ 1562 1563 struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name) 1564 { 1565 struct dentry *dentry; 1566 char *dname; 1567 int err; 1568 1569 dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL); 1570 if (!dentry) 1571 return NULL; 1572 1573 /* 1574 * We guarantee that the inline name is always NUL-terminated. 1575 * This way the memcpy() done by the name switching in rename 1576 * will still always have a NUL at the end, even if we might 1577 * be overwriting an internal NUL character 1578 */ 1579 dentry->d_iname[DNAME_INLINE_LEN-1] = 0; 1580 if (unlikely(!name)) { 1581 static const struct qstr anon = QSTR_INIT("/", 1); 1582 name = &anon; 1583 dname = dentry->d_iname; 1584 } else if (name->len > DNAME_INLINE_LEN-1) { 1585 size_t size = offsetof(struct external_name, name[1]); 1586 struct external_name *p = kmalloc(size + name->len, 1587 GFP_KERNEL_ACCOUNT); 1588 if (!p) { 1589 kmem_cache_free(dentry_cache, dentry); 1590 return NULL; 1591 } 1592 atomic_set(&p->u.count, 1); 1593 dname = p->name; 1594 if (IS_ENABLED(CONFIG_DCACHE_WORD_ACCESS)) 1595 kasan_unpoison_shadow(dname, 1596 round_up(name->len + 1, sizeof(unsigned long))); 1597 } else { 1598 dname = dentry->d_iname; 1599 } 1600 1601 dentry->d_name.len = name->len; 1602 dentry->d_name.hash = name->hash; 1603 memcpy(dname, name->name, name->len); 1604 dname[name->len] = 0; 1605 1606 /* Make sure we always see the terminating NUL character */ 1607 smp_wmb(); 1608 dentry->d_name.name = dname; 1609 1610 dentry->d_lockref.count = 1; 1611 dentry->d_flags = 0; 1612 spin_lock_init(&dentry->d_lock); 1613 seqcount_init(&dentry->d_seq); 1614 dentry->d_inode = NULL; 1615 dentry->d_parent = dentry; 1616 dentry->d_sb = sb; 1617 dentry->d_op = NULL; 1618 dentry->d_fsdata = NULL; 1619 INIT_HLIST_BL_NODE(&dentry->d_hash); 1620 INIT_LIST_HEAD(&dentry->d_lru); 1621 INIT_LIST_HEAD(&dentry->d_subdirs); 1622 INIT_HLIST_NODE(&dentry->d_u.d_alias); 1623 INIT_LIST_HEAD(&dentry->d_child); 1624 d_set_d_op(dentry, dentry->d_sb->s_d_op); 1625 1626 if (dentry->d_op && dentry->d_op->d_init) { 1627 err = dentry->d_op->d_init(dentry); 1628 if (err) { 1629 if (dname_external(dentry)) 1630 kfree(external_name(dentry)); 1631 kmem_cache_free(dentry_cache, dentry); 1632 return NULL; 1633 } 1634 } 1635 1636 this_cpu_inc(nr_dentry); 1637 1638 return dentry; 1639 } 1640 1641 /** 1642 * d_alloc - allocate a dcache entry 1643 * @parent: parent of entry to allocate 1644 * @name: qstr of the name 1645 * 1646 * Allocates a dentry. It returns %NULL if there is insufficient memory 1647 * available. On a success the dentry is returned. The name passed in is 1648 * copied and the copy passed in may be reused after this call. 1649 */ 1650 struct dentry *d_alloc(struct dentry * parent, const struct qstr *name) 1651 { 1652 struct dentry *dentry = __d_alloc(parent->d_sb, name); 1653 if (!dentry) 1654 return NULL; 1655 dentry->d_flags |= DCACHE_RCUACCESS; 1656 spin_lock(&parent->d_lock); 1657 /* 1658 * don't need child lock because it is not subject 1659 * to concurrency here 1660 */ 1661 __dget_dlock(parent); 1662 dentry->d_parent = parent; 1663 list_add(&dentry->d_child, &parent->d_subdirs); 1664 spin_unlock(&parent->d_lock); 1665 1666 return dentry; 1667 } 1668 EXPORT_SYMBOL(d_alloc); 1669 1670 struct dentry *d_alloc_cursor(struct dentry * parent) 1671 { 1672 struct dentry *dentry = __d_alloc(parent->d_sb, NULL); 1673 if (dentry) { 1674 dentry->d_flags |= DCACHE_RCUACCESS | DCACHE_DENTRY_CURSOR; 1675 dentry->d_parent = dget(parent); 1676 } 1677 return dentry; 1678 } 1679 1680 /** 1681 * d_alloc_pseudo - allocate a dentry (for lookup-less filesystems) 1682 * @sb: the superblock 1683 * @name: qstr of the name 1684 * 1685 * For a filesystem that just pins its dentries in memory and never 1686 * performs lookups at all, return an unhashed IS_ROOT dentry. 1687 */ 1688 struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name) 1689 { 1690 return __d_alloc(sb, name); 1691 } 1692 EXPORT_SYMBOL(d_alloc_pseudo); 1693 1694 struct dentry *d_alloc_name(struct dentry *parent, const char *name) 1695 { 1696 struct qstr q; 1697 1698 q.name = name; 1699 q.hash_len = hashlen_string(parent, name); 1700 return d_alloc(parent, &q); 1701 } 1702 EXPORT_SYMBOL(d_alloc_name); 1703 1704 void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op) 1705 { 1706 WARN_ON_ONCE(dentry->d_op); 1707 WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH | 1708 DCACHE_OP_COMPARE | 1709 DCACHE_OP_REVALIDATE | 1710 DCACHE_OP_WEAK_REVALIDATE | 1711 DCACHE_OP_DELETE | 1712 DCACHE_OP_REAL)); 1713 dentry->d_op = op; 1714 if (!op) 1715 return; 1716 if (op->d_hash) 1717 dentry->d_flags |= DCACHE_OP_HASH; 1718 if (op->d_compare) 1719 dentry->d_flags |= DCACHE_OP_COMPARE; 1720 if (op->d_revalidate) 1721 dentry->d_flags |= DCACHE_OP_REVALIDATE; 1722 if (op->d_weak_revalidate) 1723 dentry->d_flags |= DCACHE_OP_WEAK_REVALIDATE; 1724 if (op->d_delete) 1725 dentry->d_flags |= DCACHE_OP_DELETE; 1726 if (op->d_prune) 1727 dentry->d_flags |= DCACHE_OP_PRUNE; 1728 if (op->d_real) 1729 dentry->d_flags |= DCACHE_OP_REAL; 1730 1731 } 1732 EXPORT_SYMBOL(d_set_d_op); 1733 1734 1735 /* 1736 * d_set_fallthru - Mark a dentry as falling through to a lower layer 1737 * @dentry - The dentry to mark 1738 * 1739 * Mark a dentry as falling through to the lower layer (as set with 1740 * d_pin_lower()). This flag may be recorded on the medium. 1741 */ 1742 void d_set_fallthru(struct dentry *dentry) 1743 { 1744 spin_lock(&dentry->d_lock); 1745 dentry->d_flags |= DCACHE_FALLTHRU; 1746 spin_unlock(&dentry->d_lock); 1747 } 1748 EXPORT_SYMBOL(d_set_fallthru); 1749 1750 static unsigned d_flags_for_inode(struct inode *inode) 1751 { 1752 unsigned add_flags = DCACHE_REGULAR_TYPE; 1753 1754 if (!inode) 1755 return DCACHE_MISS_TYPE; 1756 1757 if (S_ISDIR(inode->i_mode)) { 1758 add_flags = DCACHE_DIRECTORY_TYPE; 1759 if (unlikely(!(inode->i_opflags & IOP_LOOKUP))) { 1760 if (unlikely(!inode->i_op->lookup)) 1761 add_flags = DCACHE_AUTODIR_TYPE; 1762 else 1763 inode->i_opflags |= IOP_LOOKUP; 1764 } 1765 goto type_determined; 1766 } 1767 1768 if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) { 1769 if (unlikely(inode->i_op->get_link)) { 1770 add_flags = DCACHE_SYMLINK_TYPE; 1771 goto type_determined; 1772 } 1773 inode->i_opflags |= IOP_NOFOLLOW; 1774 } 1775 1776 if (unlikely(!S_ISREG(inode->i_mode))) 1777 add_flags = DCACHE_SPECIAL_TYPE; 1778 1779 type_determined: 1780 if (unlikely(IS_AUTOMOUNT(inode))) 1781 add_flags |= DCACHE_NEED_AUTOMOUNT; 1782 return add_flags; 1783 } 1784 1785 static void __d_instantiate(struct dentry *dentry, struct inode *inode) 1786 { 1787 unsigned add_flags = d_flags_for_inode(inode); 1788 WARN_ON(d_in_lookup(dentry)); 1789 1790 spin_lock(&dentry->d_lock); 1791 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry); 1792 raw_write_seqcount_begin(&dentry->d_seq); 1793 __d_set_inode_and_type(dentry, inode, add_flags); 1794 raw_write_seqcount_end(&dentry->d_seq); 1795 fsnotify_update_flags(dentry); 1796 spin_unlock(&dentry->d_lock); 1797 } 1798 1799 /** 1800 * d_instantiate - fill in inode information for a dentry 1801 * @entry: dentry to complete 1802 * @inode: inode to attach to this dentry 1803 * 1804 * Fill in inode information in the entry. 1805 * 1806 * This turns negative dentries into productive full members 1807 * of society. 1808 * 1809 * NOTE! This assumes that the inode count has been incremented 1810 * (or otherwise set) by the caller to indicate that it is now 1811 * in use by the dcache. 1812 */ 1813 1814 void d_instantiate(struct dentry *entry, struct inode * inode) 1815 { 1816 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias)); 1817 if (inode) { 1818 security_d_instantiate(entry, inode); 1819 spin_lock(&inode->i_lock); 1820 __d_instantiate(entry, inode); 1821 spin_unlock(&inode->i_lock); 1822 } 1823 } 1824 EXPORT_SYMBOL(d_instantiate); 1825 1826 /** 1827 * d_instantiate_no_diralias - instantiate a non-aliased dentry 1828 * @entry: dentry to complete 1829 * @inode: inode to attach to this dentry 1830 * 1831 * Fill in inode information in the entry. If a directory alias is found, then 1832 * return an error (and drop inode). Together with d_materialise_unique() this 1833 * guarantees that a directory inode may never have more than one alias. 1834 */ 1835 int d_instantiate_no_diralias(struct dentry *entry, struct inode *inode) 1836 { 1837 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias)); 1838 1839 security_d_instantiate(entry, inode); 1840 spin_lock(&inode->i_lock); 1841 if (S_ISDIR(inode->i_mode) && !hlist_empty(&inode->i_dentry)) { 1842 spin_unlock(&inode->i_lock); 1843 iput(inode); 1844 return -EBUSY; 1845 } 1846 __d_instantiate(entry, inode); 1847 spin_unlock(&inode->i_lock); 1848 1849 return 0; 1850 } 1851 EXPORT_SYMBOL(d_instantiate_no_diralias); 1852 1853 struct dentry *d_make_root(struct inode *root_inode) 1854 { 1855 struct dentry *res = NULL; 1856 1857 if (root_inode) { 1858 res = __d_alloc(root_inode->i_sb, NULL); 1859 if (res) 1860 d_instantiate(res, root_inode); 1861 else 1862 iput(root_inode); 1863 } 1864 return res; 1865 } 1866 EXPORT_SYMBOL(d_make_root); 1867 1868 static struct dentry * __d_find_any_alias(struct inode *inode) 1869 { 1870 struct dentry *alias; 1871 1872 if (hlist_empty(&inode->i_dentry)) 1873 return NULL; 1874 alias = hlist_entry(inode->i_dentry.first, struct dentry, d_u.d_alias); 1875 __dget(alias); 1876 return alias; 1877 } 1878 1879 /** 1880 * d_find_any_alias - find any alias for a given inode 1881 * @inode: inode to find an alias for 1882 * 1883 * If any aliases exist for the given inode, take and return a 1884 * reference for one of them. If no aliases exist, return %NULL. 1885 */ 1886 struct dentry *d_find_any_alias(struct inode *inode) 1887 { 1888 struct dentry *de; 1889 1890 spin_lock(&inode->i_lock); 1891 de = __d_find_any_alias(inode); 1892 spin_unlock(&inode->i_lock); 1893 return de; 1894 } 1895 EXPORT_SYMBOL(d_find_any_alias); 1896 1897 static struct dentry *__d_obtain_alias(struct inode *inode, int disconnected) 1898 { 1899 struct dentry *tmp; 1900 struct dentry *res; 1901 unsigned add_flags; 1902 1903 if (!inode) 1904 return ERR_PTR(-ESTALE); 1905 if (IS_ERR(inode)) 1906 return ERR_CAST(inode); 1907 1908 res = d_find_any_alias(inode); 1909 if (res) 1910 goto out_iput; 1911 1912 tmp = __d_alloc(inode->i_sb, NULL); 1913 if (!tmp) { 1914 res = ERR_PTR(-ENOMEM); 1915 goto out_iput; 1916 } 1917 1918 security_d_instantiate(tmp, inode); 1919 spin_lock(&inode->i_lock); 1920 res = __d_find_any_alias(inode); 1921 if (res) { 1922 spin_unlock(&inode->i_lock); 1923 dput(tmp); 1924 goto out_iput; 1925 } 1926 1927 /* attach a disconnected dentry */ 1928 add_flags = d_flags_for_inode(inode); 1929 1930 if (disconnected) 1931 add_flags |= DCACHE_DISCONNECTED; 1932 1933 spin_lock(&tmp->d_lock); 1934 __d_set_inode_and_type(tmp, inode, add_flags); 1935 hlist_add_head(&tmp->d_u.d_alias, &inode->i_dentry); 1936 hlist_bl_lock(&tmp->d_sb->s_anon); 1937 hlist_bl_add_head(&tmp->d_hash, &tmp->d_sb->s_anon); 1938 hlist_bl_unlock(&tmp->d_sb->s_anon); 1939 spin_unlock(&tmp->d_lock); 1940 spin_unlock(&inode->i_lock); 1941 1942 return tmp; 1943 1944 out_iput: 1945 iput(inode); 1946 return res; 1947 } 1948 1949 /** 1950 * d_obtain_alias - find or allocate a DISCONNECTED dentry for a given inode 1951 * @inode: inode to allocate the dentry for 1952 * 1953 * Obtain a dentry for an inode resulting from NFS filehandle conversion or 1954 * similar open by handle operations. The returned dentry may be anonymous, 1955 * or may have a full name (if the inode was already in the cache). 1956 * 1957 * When called on a directory inode, we must ensure that the inode only ever 1958 * has one dentry. If a dentry is found, that is returned instead of 1959 * allocating a new one. 1960 * 1961 * On successful return, the reference to the inode has been transferred 1962 * to the dentry. In case of an error the reference on the inode is released. 1963 * To make it easier to use in export operations a %NULL or IS_ERR inode may 1964 * be passed in and the error will be propagated to the return value, 1965 * with a %NULL @inode replaced by ERR_PTR(-ESTALE). 1966 */ 1967 struct dentry *d_obtain_alias(struct inode *inode) 1968 { 1969 return __d_obtain_alias(inode, 1); 1970 } 1971 EXPORT_SYMBOL(d_obtain_alias); 1972 1973 /** 1974 * d_obtain_root - find or allocate a dentry for a given inode 1975 * @inode: inode to allocate the dentry for 1976 * 1977 * Obtain an IS_ROOT dentry for the root of a filesystem. 1978 * 1979 * We must ensure that directory inodes only ever have one dentry. If a 1980 * dentry is found, that is returned instead of allocating a new one. 1981 * 1982 * On successful return, the reference to the inode has been transferred 1983 * to the dentry. In case of an error the reference on the inode is 1984 * released. A %NULL or IS_ERR inode may be passed in and will be the 1985 * error will be propagate to the return value, with a %NULL @inode 1986 * replaced by ERR_PTR(-ESTALE). 1987 */ 1988 struct dentry *d_obtain_root(struct inode *inode) 1989 { 1990 return __d_obtain_alias(inode, 0); 1991 } 1992 EXPORT_SYMBOL(d_obtain_root); 1993 1994 /** 1995 * d_add_ci - lookup or allocate new dentry with case-exact name 1996 * @inode: the inode case-insensitive lookup has found 1997 * @dentry: the negative dentry that was passed to the parent's lookup func 1998 * @name: the case-exact name to be associated with the returned dentry 1999 * 2000 * This is to avoid filling the dcache with case-insensitive names to the 2001 * same inode, only the actual correct case is stored in the dcache for 2002 * case-insensitive filesystems. 2003 * 2004 * For a case-insensitive lookup match and if the the case-exact dentry 2005 * already exists in in the dcache, use it and return it. 2006 * 2007 * If no entry exists with the exact case name, allocate new dentry with 2008 * the exact case, and return the spliced entry. 2009 */ 2010 struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode, 2011 struct qstr *name) 2012 { 2013 struct dentry *found, *res; 2014 2015 /* 2016 * First check if a dentry matching the name already exists, 2017 * if not go ahead and create it now. 2018 */ 2019 found = d_hash_and_lookup(dentry->d_parent, name); 2020 if (found) { 2021 iput(inode); 2022 return found; 2023 } 2024 if (d_in_lookup(dentry)) { 2025 found = d_alloc_parallel(dentry->d_parent, name, 2026 dentry->d_wait); 2027 if (IS_ERR(found) || !d_in_lookup(found)) { 2028 iput(inode); 2029 return found; 2030 } 2031 } else { 2032 found = d_alloc(dentry->d_parent, name); 2033 if (!found) { 2034 iput(inode); 2035 return ERR_PTR(-ENOMEM); 2036 } 2037 } 2038 res = d_splice_alias(inode, found); 2039 if (res) { 2040 dput(found); 2041 return res; 2042 } 2043 return found; 2044 } 2045 EXPORT_SYMBOL(d_add_ci); 2046 2047 2048 static inline bool d_same_name(const struct dentry *dentry, 2049 const struct dentry *parent, 2050 const struct qstr *name) 2051 { 2052 if (likely(!(parent->d_flags & DCACHE_OP_COMPARE))) { 2053 if (dentry->d_name.len != name->len) 2054 return false; 2055 return dentry_cmp(dentry, name->name, name->len) == 0; 2056 } 2057 return parent->d_op->d_compare(dentry, 2058 dentry->d_name.len, dentry->d_name.name, 2059 name) == 0; 2060 } 2061 2062 /** 2063 * __d_lookup_rcu - search for a dentry (racy, store-free) 2064 * @parent: parent dentry 2065 * @name: qstr of name we wish to find 2066 * @seqp: returns d_seq value at the point where the dentry was found 2067 * Returns: dentry, or NULL 2068 * 2069 * __d_lookup_rcu is the dcache lookup function for rcu-walk name 2070 * resolution (store-free path walking) design described in 2071 * Documentation/filesystems/path-lookup.txt. 2072 * 2073 * This is not to be used outside core vfs. 2074 * 2075 * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock 2076 * held, and rcu_read_lock held. The returned dentry must not be stored into 2077 * without taking d_lock and checking d_seq sequence count against @seq 2078 * returned here. 2079 * 2080 * A refcount may be taken on the found dentry with the d_rcu_to_refcount 2081 * function. 2082 * 2083 * Alternatively, __d_lookup_rcu may be called again to look up the child of 2084 * the returned dentry, so long as its parent's seqlock is checked after the 2085 * child is looked up. Thus, an interlocking stepping of sequence lock checks 2086 * is formed, giving integrity down the path walk. 2087 * 2088 * NOTE! The caller *has* to check the resulting dentry against the sequence 2089 * number we've returned before using any of the resulting dentry state! 2090 */ 2091 struct dentry *__d_lookup_rcu(const struct dentry *parent, 2092 const struct qstr *name, 2093 unsigned *seqp) 2094 { 2095 u64 hashlen = name->hash_len; 2096 const unsigned char *str = name->name; 2097 struct hlist_bl_head *b = d_hash(hashlen_hash(hashlen)); 2098 struct hlist_bl_node *node; 2099 struct dentry *dentry; 2100 2101 /* 2102 * Note: There is significant duplication with __d_lookup_rcu which is 2103 * required to prevent single threaded performance regressions 2104 * especially on architectures where smp_rmb (in seqcounts) are costly. 2105 * Keep the two functions in sync. 2106 */ 2107 2108 /* 2109 * The hash list is protected using RCU. 2110 * 2111 * Carefully use d_seq when comparing a candidate dentry, to avoid 2112 * races with d_move(). 2113 * 2114 * It is possible that concurrent renames can mess up our list 2115 * walk here and result in missing our dentry, resulting in the 2116 * false-negative result. d_lookup() protects against concurrent 2117 * renames using rename_lock seqlock. 2118 * 2119 * See Documentation/filesystems/path-lookup.txt for more details. 2120 */ 2121 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) { 2122 unsigned seq; 2123 2124 seqretry: 2125 /* 2126 * The dentry sequence count protects us from concurrent 2127 * renames, and thus protects parent and name fields. 2128 * 2129 * The caller must perform a seqcount check in order 2130 * to do anything useful with the returned dentry. 2131 * 2132 * NOTE! We do a "raw" seqcount_begin here. That means that 2133 * we don't wait for the sequence count to stabilize if it 2134 * is in the middle of a sequence change. If we do the slow 2135 * dentry compare, we will do seqretries until it is stable, 2136 * and if we end up with a successful lookup, we actually 2137 * want to exit RCU lookup anyway. 2138 * 2139 * Note that raw_seqcount_begin still *does* smp_rmb(), so 2140 * we are still guaranteed NUL-termination of ->d_name.name. 2141 */ 2142 seq = raw_seqcount_begin(&dentry->d_seq); 2143 if (dentry->d_parent != parent) 2144 continue; 2145 if (d_unhashed(dentry)) 2146 continue; 2147 2148 if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) { 2149 int tlen; 2150 const char *tname; 2151 if (dentry->d_name.hash != hashlen_hash(hashlen)) 2152 continue; 2153 tlen = dentry->d_name.len; 2154 tname = dentry->d_name.name; 2155 /* we want a consistent (name,len) pair */ 2156 if (read_seqcount_retry(&dentry->d_seq, seq)) { 2157 cpu_relax(); 2158 goto seqretry; 2159 } 2160 if (parent->d_op->d_compare(dentry, 2161 tlen, tname, name) != 0) 2162 continue; 2163 } else { 2164 if (dentry->d_name.hash_len != hashlen) 2165 continue; 2166 if (dentry_cmp(dentry, str, hashlen_len(hashlen)) != 0) 2167 continue; 2168 } 2169 *seqp = seq; 2170 return dentry; 2171 } 2172 return NULL; 2173 } 2174 2175 /** 2176 * d_lookup - search for a dentry 2177 * @parent: parent dentry 2178 * @name: qstr of name we wish to find 2179 * Returns: dentry, or NULL 2180 * 2181 * d_lookup searches the children of the parent dentry for the name in 2182 * question. If the dentry is found its reference count is incremented and the 2183 * dentry is returned. The caller must use dput to free the entry when it has 2184 * finished using it. %NULL is returned if the dentry does not exist. 2185 */ 2186 struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name) 2187 { 2188 struct dentry *dentry; 2189 unsigned seq; 2190 2191 do { 2192 seq = read_seqbegin(&rename_lock); 2193 dentry = __d_lookup(parent, name); 2194 if (dentry) 2195 break; 2196 } while (read_seqretry(&rename_lock, seq)); 2197 return dentry; 2198 } 2199 EXPORT_SYMBOL(d_lookup); 2200 2201 /** 2202 * __d_lookup - search for a dentry (racy) 2203 * @parent: parent dentry 2204 * @name: qstr of name we wish to find 2205 * Returns: dentry, or NULL 2206 * 2207 * __d_lookup is like d_lookup, however it may (rarely) return a 2208 * false-negative result due to unrelated rename activity. 2209 * 2210 * __d_lookup is slightly faster by avoiding rename_lock read seqlock, 2211 * however it must be used carefully, eg. with a following d_lookup in 2212 * the case of failure. 2213 * 2214 * __d_lookup callers must be commented. 2215 */ 2216 struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name) 2217 { 2218 unsigned int hash = name->hash; 2219 struct hlist_bl_head *b = d_hash(hash); 2220 struct hlist_bl_node *node; 2221 struct dentry *found = NULL; 2222 struct dentry *dentry; 2223 2224 /* 2225 * Note: There is significant duplication with __d_lookup_rcu which is 2226 * required to prevent single threaded performance regressions 2227 * especially on architectures where smp_rmb (in seqcounts) are costly. 2228 * Keep the two functions in sync. 2229 */ 2230 2231 /* 2232 * The hash list is protected using RCU. 2233 * 2234 * Take d_lock when comparing a candidate dentry, to avoid races 2235 * with d_move(). 2236 * 2237 * It is possible that concurrent renames can mess up our list 2238 * walk here and result in missing our dentry, resulting in the 2239 * false-negative result. d_lookup() protects against concurrent 2240 * renames using rename_lock seqlock. 2241 * 2242 * See Documentation/filesystems/path-lookup.txt for more details. 2243 */ 2244 rcu_read_lock(); 2245 2246 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) { 2247 2248 if (dentry->d_name.hash != hash) 2249 continue; 2250 2251 spin_lock(&dentry->d_lock); 2252 if (dentry->d_parent != parent) 2253 goto next; 2254 if (d_unhashed(dentry)) 2255 goto next; 2256 2257 if (!d_same_name(dentry, parent, name)) 2258 goto next; 2259 2260 dentry->d_lockref.count++; 2261 found = dentry; 2262 spin_unlock(&dentry->d_lock); 2263 break; 2264 next: 2265 spin_unlock(&dentry->d_lock); 2266 } 2267 rcu_read_unlock(); 2268 2269 return found; 2270 } 2271 2272 /** 2273 * d_hash_and_lookup - hash the qstr then search for a dentry 2274 * @dir: Directory to search in 2275 * @name: qstr of name we wish to find 2276 * 2277 * On lookup failure NULL is returned; on bad name - ERR_PTR(-error) 2278 */ 2279 struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name) 2280 { 2281 /* 2282 * Check for a fs-specific hash function. Note that we must 2283 * calculate the standard hash first, as the d_op->d_hash() 2284 * routine may choose to leave the hash value unchanged. 2285 */ 2286 name->hash = full_name_hash(dir, name->name, name->len); 2287 if (dir->d_flags & DCACHE_OP_HASH) { 2288 int err = dir->d_op->d_hash(dir, name); 2289 if (unlikely(err < 0)) 2290 return ERR_PTR(err); 2291 } 2292 return d_lookup(dir, name); 2293 } 2294 EXPORT_SYMBOL(d_hash_and_lookup); 2295 2296 /* 2297 * When a file is deleted, we have two options: 2298 * - turn this dentry into a negative dentry 2299 * - unhash this dentry and free it. 2300 * 2301 * Usually, we want to just turn this into 2302 * a negative dentry, but if anybody else is 2303 * currently using the dentry or the inode 2304 * we can't do that and we fall back on removing 2305 * it from the hash queues and waiting for 2306 * it to be deleted later when it has no users 2307 */ 2308 2309 /** 2310 * d_delete - delete a dentry 2311 * @dentry: The dentry to delete 2312 * 2313 * Turn the dentry into a negative dentry if possible, otherwise 2314 * remove it from the hash queues so it can be deleted later 2315 */ 2316 2317 void d_delete(struct dentry * dentry) 2318 { 2319 struct inode *inode; 2320 int isdir = 0; 2321 /* 2322 * Are we the only user? 2323 */ 2324 again: 2325 spin_lock(&dentry->d_lock); 2326 inode = dentry->d_inode; 2327 isdir = S_ISDIR(inode->i_mode); 2328 if (dentry->d_lockref.count == 1) { 2329 if (!spin_trylock(&inode->i_lock)) { 2330 spin_unlock(&dentry->d_lock); 2331 cpu_relax(); 2332 goto again; 2333 } 2334 dentry->d_flags &= ~DCACHE_CANT_MOUNT; 2335 dentry_unlink_inode(dentry); 2336 fsnotify_nameremove(dentry, isdir); 2337 return; 2338 } 2339 2340 if (!d_unhashed(dentry)) 2341 __d_drop(dentry); 2342 2343 spin_unlock(&dentry->d_lock); 2344 2345 fsnotify_nameremove(dentry, isdir); 2346 } 2347 EXPORT_SYMBOL(d_delete); 2348 2349 static void __d_rehash(struct dentry *entry) 2350 { 2351 struct hlist_bl_head *b = d_hash(entry->d_name.hash); 2352 BUG_ON(!d_unhashed(entry)); 2353 hlist_bl_lock(b); 2354 hlist_bl_add_head_rcu(&entry->d_hash, b); 2355 hlist_bl_unlock(b); 2356 } 2357 2358 /** 2359 * d_rehash - add an entry back to the hash 2360 * @entry: dentry to add to the hash 2361 * 2362 * Adds a dentry to the hash according to its name. 2363 */ 2364 2365 void d_rehash(struct dentry * entry) 2366 { 2367 spin_lock(&entry->d_lock); 2368 __d_rehash(entry); 2369 spin_unlock(&entry->d_lock); 2370 } 2371 EXPORT_SYMBOL(d_rehash); 2372 2373 static inline unsigned start_dir_add(struct inode *dir) 2374 { 2375 2376 for (;;) { 2377 unsigned n = dir->i_dir_seq; 2378 if (!(n & 1) && cmpxchg(&dir->i_dir_seq, n, n + 1) == n) 2379 return n; 2380 cpu_relax(); 2381 } 2382 } 2383 2384 static inline void end_dir_add(struct inode *dir, unsigned n) 2385 { 2386 smp_store_release(&dir->i_dir_seq, n + 2); 2387 } 2388 2389 static void d_wait_lookup(struct dentry *dentry) 2390 { 2391 if (d_in_lookup(dentry)) { 2392 DECLARE_WAITQUEUE(wait, current); 2393 add_wait_queue(dentry->d_wait, &wait); 2394 do { 2395 set_current_state(TASK_UNINTERRUPTIBLE); 2396 spin_unlock(&dentry->d_lock); 2397 schedule(); 2398 spin_lock(&dentry->d_lock); 2399 } while (d_in_lookup(dentry)); 2400 } 2401 } 2402 2403 struct dentry *d_alloc_parallel(struct dentry *parent, 2404 const struct qstr *name, 2405 wait_queue_head_t *wq) 2406 { 2407 unsigned int hash = name->hash; 2408 struct hlist_bl_head *b = in_lookup_hash(parent, hash); 2409 struct hlist_bl_node *node; 2410 struct dentry *new = d_alloc(parent, name); 2411 struct dentry *dentry; 2412 unsigned seq, r_seq, d_seq; 2413 2414 if (unlikely(!new)) 2415 return ERR_PTR(-ENOMEM); 2416 2417 retry: 2418 rcu_read_lock(); 2419 seq = smp_load_acquire(&parent->d_inode->i_dir_seq) & ~1; 2420 r_seq = read_seqbegin(&rename_lock); 2421 dentry = __d_lookup_rcu(parent, name, &d_seq); 2422 if (unlikely(dentry)) { 2423 if (!lockref_get_not_dead(&dentry->d_lockref)) { 2424 rcu_read_unlock(); 2425 goto retry; 2426 } 2427 if (read_seqcount_retry(&dentry->d_seq, d_seq)) { 2428 rcu_read_unlock(); 2429 dput(dentry); 2430 goto retry; 2431 } 2432 rcu_read_unlock(); 2433 dput(new); 2434 return dentry; 2435 } 2436 if (unlikely(read_seqretry(&rename_lock, r_seq))) { 2437 rcu_read_unlock(); 2438 goto retry; 2439 } 2440 hlist_bl_lock(b); 2441 if (unlikely(parent->d_inode->i_dir_seq != seq)) { 2442 hlist_bl_unlock(b); 2443 rcu_read_unlock(); 2444 goto retry; 2445 } 2446 /* 2447 * No changes for the parent since the beginning of d_lookup(). 2448 * Since all removals from the chain happen with hlist_bl_lock(), 2449 * any potential in-lookup matches are going to stay here until 2450 * we unlock the chain. All fields are stable in everything 2451 * we encounter. 2452 */ 2453 hlist_bl_for_each_entry(dentry, node, b, d_u.d_in_lookup_hash) { 2454 if (dentry->d_name.hash != hash) 2455 continue; 2456 if (dentry->d_parent != parent) 2457 continue; 2458 if (!d_same_name(dentry, parent, name)) 2459 continue; 2460 hlist_bl_unlock(b); 2461 /* now we can try to grab a reference */ 2462 if (!lockref_get_not_dead(&dentry->d_lockref)) { 2463 rcu_read_unlock(); 2464 goto retry; 2465 } 2466 2467 rcu_read_unlock(); 2468 /* 2469 * somebody is likely to be still doing lookup for it; 2470 * wait for them to finish 2471 */ 2472 spin_lock(&dentry->d_lock); 2473 d_wait_lookup(dentry); 2474 /* 2475 * it's not in-lookup anymore; in principle we should repeat 2476 * everything from dcache lookup, but it's likely to be what 2477 * d_lookup() would've found anyway. If it is, just return it; 2478 * otherwise we really have to repeat the whole thing. 2479 */ 2480 if (unlikely(dentry->d_name.hash != hash)) 2481 goto mismatch; 2482 if (unlikely(dentry->d_parent != parent)) 2483 goto mismatch; 2484 if (unlikely(d_unhashed(dentry))) 2485 goto mismatch; 2486 if (unlikely(!d_same_name(dentry, parent, name))) 2487 goto mismatch; 2488 /* OK, it *is* a hashed match; return it */ 2489 spin_unlock(&dentry->d_lock); 2490 dput(new); 2491 return dentry; 2492 } 2493 rcu_read_unlock(); 2494 /* we can't take ->d_lock here; it's OK, though. */ 2495 new->d_flags |= DCACHE_PAR_LOOKUP; 2496 new->d_wait = wq; 2497 hlist_bl_add_head_rcu(&new->d_u.d_in_lookup_hash, b); 2498 hlist_bl_unlock(b); 2499 return new; 2500 mismatch: 2501 spin_unlock(&dentry->d_lock); 2502 dput(dentry); 2503 goto retry; 2504 } 2505 EXPORT_SYMBOL(d_alloc_parallel); 2506 2507 void __d_lookup_done(struct dentry *dentry) 2508 { 2509 struct hlist_bl_head *b = in_lookup_hash(dentry->d_parent, 2510 dentry->d_name.hash); 2511 hlist_bl_lock(b); 2512 dentry->d_flags &= ~DCACHE_PAR_LOOKUP; 2513 __hlist_bl_del(&dentry->d_u.d_in_lookup_hash); 2514 wake_up_all(dentry->d_wait); 2515 dentry->d_wait = NULL; 2516 hlist_bl_unlock(b); 2517 INIT_HLIST_NODE(&dentry->d_u.d_alias); 2518 INIT_LIST_HEAD(&dentry->d_lru); 2519 } 2520 EXPORT_SYMBOL(__d_lookup_done); 2521 2522 /* inode->i_lock held if inode is non-NULL */ 2523 2524 static inline void __d_add(struct dentry *dentry, struct inode *inode) 2525 { 2526 struct inode *dir = NULL; 2527 unsigned n; 2528 spin_lock(&dentry->d_lock); 2529 if (unlikely(d_in_lookup(dentry))) { 2530 dir = dentry->d_parent->d_inode; 2531 n = start_dir_add(dir); 2532 __d_lookup_done(dentry); 2533 } 2534 if (inode) { 2535 unsigned add_flags = d_flags_for_inode(inode); 2536 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry); 2537 raw_write_seqcount_begin(&dentry->d_seq); 2538 __d_set_inode_and_type(dentry, inode, add_flags); 2539 raw_write_seqcount_end(&dentry->d_seq); 2540 fsnotify_update_flags(dentry); 2541 } 2542 __d_rehash(dentry); 2543 if (dir) 2544 end_dir_add(dir, n); 2545 spin_unlock(&dentry->d_lock); 2546 if (inode) 2547 spin_unlock(&inode->i_lock); 2548 } 2549 2550 /** 2551 * d_add - add dentry to hash queues 2552 * @entry: dentry to add 2553 * @inode: The inode to attach to this dentry 2554 * 2555 * This adds the entry to the hash queues and initializes @inode. 2556 * The entry was actually filled in earlier during d_alloc(). 2557 */ 2558 2559 void d_add(struct dentry *entry, struct inode *inode) 2560 { 2561 if (inode) { 2562 security_d_instantiate(entry, inode); 2563 spin_lock(&inode->i_lock); 2564 } 2565 __d_add(entry, inode); 2566 } 2567 EXPORT_SYMBOL(d_add); 2568 2569 /** 2570 * d_exact_alias - find and hash an exact unhashed alias 2571 * @entry: dentry to add 2572 * @inode: The inode to go with this dentry 2573 * 2574 * If an unhashed dentry with the same name/parent and desired 2575 * inode already exists, hash and return it. Otherwise, return 2576 * NULL. 2577 * 2578 * Parent directory should be locked. 2579 */ 2580 struct dentry *d_exact_alias(struct dentry *entry, struct inode *inode) 2581 { 2582 struct dentry *alias; 2583 unsigned int hash = entry->d_name.hash; 2584 2585 spin_lock(&inode->i_lock); 2586 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) { 2587 /* 2588 * Don't need alias->d_lock here, because aliases with 2589 * d_parent == entry->d_parent are not subject to name or 2590 * parent changes, because the parent inode i_mutex is held. 2591 */ 2592 if (alias->d_name.hash != hash) 2593 continue; 2594 if (alias->d_parent != entry->d_parent) 2595 continue; 2596 if (!d_same_name(alias, entry->d_parent, &entry->d_name)) 2597 continue; 2598 spin_lock(&alias->d_lock); 2599 if (!d_unhashed(alias)) { 2600 spin_unlock(&alias->d_lock); 2601 alias = NULL; 2602 } else { 2603 __dget_dlock(alias); 2604 __d_rehash(alias); 2605 spin_unlock(&alias->d_lock); 2606 } 2607 spin_unlock(&inode->i_lock); 2608 return alias; 2609 } 2610 spin_unlock(&inode->i_lock); 2611 return NULL; 2612 } 2613 EXPORT_SYMBOL(d_exact_alias); 2614 2615 /** 2616 * dentry_update_name_case - update case insensitive dentry with a new name 2617 * @dentry: dentry to be updated 2618 * @name: new name 2619 * 2620 * Update a case insensitive dentry with new case of name. 2621 * 2622 * dentry must have been returned by d_lookup with name @name. Old and new 2623 * name lengths must match (ie. no d_compare which allows mismatched name 2624 * lengths). 2625 * 2626 * Parent inode i_mutex must be held over d_lookup and into this call (to 2627 * keep renames and concurrent inserts, and readdir(2) away). 2628 */ 2629 void dentry_update_name_case(struct dentry *dentry, const struct qstr *name) 2630 { 2631 BUG_ON(!inode_is_locked(dentry->d_parent->d_inode)); 2632 BUG_ON(dentry->d_name.len != name->len); /* d_lookup gives this */ 2633 2634 spin_lock(&dentry->d_lock); 2635 write_seqcount_begin(&dentry->d_seq); 2636 memcpy((unsigned char *)dentry->d_name.name, name->name, name->len); 2637 write_seqcount_end(&dentry->d_seq); 2638 spin_unlock(&dentry->d_lock); 2639 } 2640 EXPORT_SYMBOL(dentry_update_name_case); 2641 2642 static void swap_names(struct dentry *dentry, struct dentry *target) 2643 { 2644 if (unlikely(dname_external(target))) { 2645 if (unlikely(dname_external(dentry))) { 2646 /* 2647 * Both external: swap the pointers 2648 */ 2649 swap(target->d_name.name, dentry->d_name.name); 2650 } else { 2651 /* 2652 * dentry:internal, target:external. Steal target's 2653 * storage and make target internal. 2654 */ 2655 memcpy(target->d_iname, dentry->d_name.name, 2656 dentry->d_name.len + 1); 2657 dentry->d_name.name = target->d_name.name; 2658 target->d_name.name = target->d_iname; 2659 } 2660 } else { 2661 if (unlikely(dname_external(dentry))) { 2662 /* 2663 * dentry:external, target:internal. Give dentry's 2664 * storage to target and make dentry internal 2665 */ 2666 memcpy(dentry->d_iname, target->d_name.name, 2667 target->d_name.len + 1); 2668 target->d_name.name = dentry->d_name.name; 2669 dentry->d_name.name = dentry->d_iname; 2670 } else { 2671 /* 2672 * Both are internal. 2673 */ 2674 unsigned int i; 2675 BUILD_BUG_ON(!IS_ALIGNED(DNAME_INLINE_LEN, sizeof(long))); 2676 kmemcheck_mark_initialized(dentry->d_iname, DNAME_INLINE_LEN); 2677 kmemcheck_mark_initialized(target->d_iname, DNAME_INLINE_LEN); 2678 for (i = 0; i < DNAME_INLINE_LEN / sizeof(long); i++) { 2679 swap(((long *) &dentry->d_iname)[i], 2680 ((long *) &target->d_iname)[i]); 2681 } 2682 } 2683 } 2684 swap(dentry->d_name.hash_len, target->d_name.hash_len); 2685 } 2686 2687 static void copy_name(struct dentry *dentry, struct dentry *target) 2688 { 2689 struct external_name *old_name = NULL; 2690 if (unlikely(dname_external(dentry))) 2691 old_name = external_name(dentry); 2692 if (unlikely(dname_external(target))) { 2693 atomic_inc(&external_name(target)->u.count); 2694 dentry->d_name = target->d_name; 2695 } else { 2696 memcpy(dentry->d_iname, target->d_name.name, 2697 target->d_name.len + 1); 2698 dentry->d_name.name = dentry->d_iname; 2699 dentry->d_name.hash_len = target->d_name.hash_len; 2700 } 2701 if (old_name && likely(atomic_dec_and_test(&old_name->u.count))) 2702 kfree_rcu(old_name, u.head); 2703 } 2704 2705 static void dentry_lock_for_move(struct dentry *dentry, struct dentry *target) 2706 { 2707 /* 2708 * XXXX: do we really need to take target->d_lock? 2709 */ 2710 if (IS_ROOT(dentry) || dentry->d_parent == target->d_parent) 2711 spin_lock(&target->d_parent->d_lock); 2712 else { 2713 if (d_ancestor(dentry->d_parent, target->d_parent)) { 2714 spin_lock(&dentry->d_parent->d_lock); 2715 spin_lock_nested(&target->d_parent->d_lock, 2716 DENTRY_D_LOCK_NESTED); 2717 } else { 2718 spin_lock(&target->d_parent->d_lock); 2719 spin_lock_nested(&dentry->d_parent->d_lock, 2720 DENTRY_D_LOCK_NESTED); 2721 } 2722 } 2723 if (target < dentry) { 2724 spin_lock_nested(&target->d_lock, 2); 2725 spin_lock_nested(&dentry->d_lock, 3); 2726 } else { 2727 spin_lock_nested(&dentry->d_lock, 2); 2728 spin_lock_nested(&target->d_lock, 3); 2729 } 2730 } 2731 2732 static void dentry_unlock_for_move(struct dentry *dentry, struct dentry *target) 2733 { 2734 if (target->d_parent != dentry->d_parent) 2735 spin_unlock(&dentry->d_parent->d_lock); 2736 if (target->d_parent != target) 2737 spin_unlock(&target->d_parent->d_lock); 2738 spin_unlock(&target->d_lock); 2739 spin_unlock(&dentry->d_lock); 2740 } 2741 2742 /* 2743 * When switching names, the actual string doesn't strictly have to 2744 * be preserved in the target - because we're dropping the target 2745 * anyway. As such, we can just do a simple memcpy() to copy over 2746 * the new name before we switch, unless we are going to rehash 2747 * it. Note that if we *do* unhash the target, we are not allowed 2748 * to rehash it without giving it a new name/hash key - whether 2749 * we swap or overwrite the names here, resulting name won't match 2750 * the reality in filesystem; it's only there for d_path() purposes. 2751 * Note that all of this is happening under rename_lock, so the 2752 * any hash lookup seeing it in the middle of manipulations will 2753 * be discarded anyway. So we do not care what happens to the hash 2754 * key in that case. 2755 */ 2756 /* 2757 * __d_move - move a dentry 2758 * @dentry: entry to move 2759 * @target: new dentry 2760 * @exchange: exchange the two dentries 2761 * 2762 * Update the dcache to reflect the move of a file name. Negative 2763 * dcache entries should not be moved in this way. Caller must hold 2764 * rename_lock, the i_mutex of the source and target directories, 2765 * and the sb->s_vfs_rename_mutex if they differ. See lock_rename(). 2766 */ 2767 static void __d_move(struct dentry *dentry, struct dentry *target, 2768 bool exchange) 2769 { 2770 struct inode *dir = NULL; 2771 unsigned n; 2772 if (!dentry->d_inode) 2773 printk(KERN_WARNING "VFS: moving negative dcache entry\n"); 2774 2775 BUG_ON(d_ancestor(dentry, target)); 2776 BUG_ON(d_ancestor(target, dentry)); 2777 2778 dentry_lock_for_move(dentry, target); 2779 if (unlikely(d_in_lookup(target))) { 2780 dir = target->d_parent->d_inode; 2781 n = start_dir_add(dir); 2782 __d_lookup_done(target); 2783 } 2784 2785 write_seqcount_begin(&dentry->d_seq); 2786 write_seqcount_begin_nested(&target->d_seq, DENTRY_D_LOCK_NESTED); 2787 2788 /* unhash both */ 2789 /* __d_drop does write_seqcount_barrier, but they're OK to nest. */ 2790 __d_drop(dentry); 2791 __d_drop(target); 2792 2793 /* Switch the names.. */ 2794 if (exchange) 2795 swap_names(dentry, target); 2796 else 2797 copy_name(dentry, target); 2798 2799 /* rehash in new place(s) */ 2800 __d_rehash(dentry); 2801 if (exchange) 2802 __d_rehash(target); 2803 2804 /* ... and switch them in the tree */ 2805 if (IS_ROOT(dentry)) { 2806 /* splicing a tree */ 2807 dentry->d_flags |= DCACHE_RCUACCESS; 2808 dentry->d_parent = target->d_parent; 2809 target->d_parent = target; 2810 list_del_init(&target->d_child); 2811 list_move(&dentry->d_child, &dentry->d_parent->d_subdirs); 2812 } else { 2813 /* swapping two dentries */ 2814 swap(dentry->d_parent, target->d_parent); 2815 list_move(&target->d_child, &target->d_parent->d_subdirs); 2816 list_move(&dentry->d_child, &dentry->d_parent->d_subdirs); 2817 if (exchange) 2818 fsnotify_update_flags(target); 2819 fsnotify_update_flags(dentry); 2820 } 2821 2822 write_seqcount_end(&target->d_seq); 2823 write_seqcount_end(&dentry->d_seq); 2824 2825 if (dir) 2826 end_dir_add(dir, n); 2827 dentry_unlock_for_move(dentry, target); 2828 } 2829 2830 /* 2831 * d_move - move a dentry 2832 * @dentry: entry to move 2833 * @target: new dentry 2834 * 2835 * Update the dcache to reflect the move of a file name. Negative 2836 * dcache entries should not be moved in this way. See the locking 2837 * requirements for __d_move. 2838 */ 2839 void d_move(struct dentry *dentry, struct dentry *target) 2840 { 2841 write_seqlock(&rename_lock); 2842 __d_move(dentry, target, false); 2843 write_sequnlock(&rename_lock); 2844 } 2845 EXPORT_SYMBOL(d_move); 2846 2847 /* 2848 * d_exchange - exchange two dentries 2849 * @dentry1: first dentry 2850 * @dentry2: second dentry 2851 */ 2852 void d_exchange(struct dentry *dentry1, struct dentry *dentry2) 2853 { 2854 write_seqlock(&rename_lock); 2855 2856 WARN_ON(!dentry1->d_inode); 2857 WARN_ON(!dentry2->d_inode); 2858 WARN_ON(IS_ROOT(dentry1)); 2859 WARN_ON(IS_ROOT(dentry2)); 2860 2861 __d_move(dentry1, dentry2, true); 2862 2863 write_sequnlock(&rename_lock); 2864 } 2865 2866 /** 2867 * d_ancestor - search for an ancestor 2868 * @p1: ancestor dentry 2869 * @p2: child dentry 2870 * 2871 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is 2872 * an ancestor of p2, else NULL. 2873 */ 2874 struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2) 2875 { 2876 struct dentry *p; 2877 2878 for (p = p2; !IS_ROOT(p); p = p->d_parent) { 2879 if (p->d_parent == p1) 2880 return p; 2881 } 2882 return NULL; 2883 } 2884 2885 /* 2886 * This helper attempts to cope with remotely renamed directories 2887 * 2888 * It assumes that the caller is already holding 2889 * dentry->d_parent->d_inode->i_mutex, and rename_lock 2890 * 2891 * Note: If ever the locking in lock_rename() changes, then please 2892 * remember to update this too... 2893 */ 2894 static int __d_unalias(struct inode *inode, 2895 struct dentry *dentry, struct dentry *alias) 2896 { 2897 struct mutex *m1 = NULL; 2898 struct rw_semaphore *m2 = NULL; 2899 int ret = -ESTALE; 2900 2901 /* If alias and dentry share a parent, then no extra locks required */ 2902 if (alias->d_parent == dentry->d_parent) 2903 goto out_unalias; 2904 2905 /* See lock_rename() */ 2906 if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex)) 2907 goto out_err; 2908 m1 = &dentry->d_sb->s_vfs_rename_mutex; 2909 if (!inode_trylock_shared(alias->d_parent->d_inode)) 2910 goto out_err; 2911 m2 = &alias->d_parent->d_inode->i_rwsem; 2912 out_unalias: 2913 __d_move(alias, dentry, false); 2914 ret = 0; 2915 out_err: 2916 if (m2) 2917 up_read(m2); 2918 if (m1) 2919 mutex_unlock(m1); 2920 return ret; 2921 } 2922 2923 /** 2924 * d_splice_alias - splice a disconnected dentry into the tree if one exists 2925 * @inode: the inode which may have a disconnected dentry 2926 * @dentry: a negative dentry which we want to point to the inode. 2927 * 2928 * If inode is a directory and has an IS_ROOT alias, then d_move that in 2929 * place of the given dentry and return it, else simply d_add the inode 2930 * to the dentry and return NULL. 2931 * 2932 * If a non-IS_ROOT directory is found, the filesystem is corrupt, and 2933 * we should error out: directories can't have multiple aliases. 2934 * 2935 * This is needed in the lookup routine of any filesystem that is exportable 2936 * (via knfsd) so that we can build dcache paths to directories effectively. 2937 * 2938 * If a dentry was found and moved, then it is returned. Otherwise NULL 2939 * is returned. This matches the expected return value of ->lookup. 2940 * 2941 * Cluster filesystems may call this function with a negative, hashed dentry. 2942 * In that case, we know that the inode will be a regular file, and also this 2943 * will only occur during atomic_open. So we need to check for the dentry 2944 * being already hashed only in the final case. 2945 */ 2946 struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry) 2947 { 2948 if (IS_ERR(inode)) 2949 return ERR_CAST(inode); 2950 2951 BUG_ON(!d_unhashed(dentry)); 2952 2953 if (!inode) 2954 goto out; 2955 2956 security_d_instantiate(dentry, inode); 2957 spin_lock(&inode->i_lock); 2958 if (S_ISDIR(inode->i_mode)) { 2959 struct dentry *new = __d_find_any_alias(inode); 2960 if (unlikely(new)) { 2961 /* The reference to new ensures it remains an alias */ 2962 spin_unlock(&inode->i_lock); 2963 write_seqlock(&rename_lock); 2964 if (unlikely(d_ancestor(new, dentry))) { 2965 write_sequnlock(&rename_lock); 2966 dput(new); 2967 new = ERR_PTR(-ELOOP); 2968 pr_warn_ratelimited( 2969 "VFS: Lookup of '%s' in %s %s" 2970 " would have caused loop\n", 2971 dentry->d_name.name, 2972 inode->i_sb->s_type->name, 2973 inode->i_sb->s_id); 2974 } else if (!IS_ROOT(new)) { 2975 int err = __d_unalias(inode, dentry, new); 2976 write_sequnlock(&rename_lock); 2977 if (err) { 2978 dput(new); 2979 new = ERR_PTR(err); 2980 } 2981 } else { 2982 __d_move(new, dentry, false); 2983 write_sequnlock(&rename_lock); 2984 } 2985 iput(inode); 2986 return new; 2987 } 2988 } 2989 out: 2990 __d_add(dentry, inode); 2991 return NULL; 2992 } 2993 EXPORT_SYMBOL(d_splice_alias); 2994 2995 static int prepend(char **buffer, int *buflen, const char *str, int namelen) 2996 { 2997 *buflen -= namelen; 2998 if (*buflen < 0) 2999 return -ENAMETOOLONG; 3000 *buffer -= namelen; 3001 memcpy(*buffer, str, namelen); 3002 return 0; 3003 } 3004 3005 /** 3006 * prepend_name - prepend a pathname in front of current buffer pointer 3007 * @buffer: buffer pointer 3008 * @buflen: allocated length of the buffer 3009 * @name: name string and length qstr structure 3010 * 3011 * With RCU path tracing, it may race with d_move(). Use ACCESS_ONCE() to 3012 * make sure that either the old or the new name pointer and length are 3013 * fetched. However, there may be mismatch between length and pointer. 3014 * The length cannot be trusted, we need to copy it byte-by-byte until 3015 * the length is reached or a null byte is found. It also prepends "/" at 3016 * the beginning of the name. The sequence number check at the caller will 3017 * retry it again when a d_move() does happen. So any garbage in the buffer 3018 * due to mismatched pointer and length will be discarded. 3019 * 3020 * Data dependency barrier is needed to make sure that we see that terminating 3021 * NUL. Alpha strikes again, film at 11... 3022 */ 3023 static int prepend_name(char **buffer, int *buflen, const struct qstr *name) 3024 { 3025 const char *dname = ACCESS_ONCE(name->name); 3026 u32 dlen = ACCESS_ONCE(name->len); 3027 char *p; 3028 3029 smp_read_barrier_depends(); 3030 3031 *buflen -= dlen + 1; 3032 if (*buflen < 0) 3033 return -ENAMETOOLONG; 3034 p = *buffer -= dlen + 1; 3035 *p++ = '/'; 3036 while (dlen--) { 3037 char c = *dname++; 3038 if (!c) 3039 break; 3040 *p++ = c; 3041 } 3042 return 0; 3043 } 3044 3045 /** 3046 * prepend_path - Prepend path string to a buffer 3047 * @path: the dentry/vfsmount to report 3048 * @root: root vfsmnt/dentry 3049 * @buffer: pointer to the end of the buffer 3050 * @buflen: pointer to buffer length 3051 * 3052 * The function will first try to write out the pathname without taking any 3053 * lock other than the RCU read lock to make sure that dentries won't go away. 3054 * It only checks the sequence number of the global rename_lock as any change 3055 * in the dentry's d_seq will be preceded by changes in the rename_lock 3056 * sequence number. If the sequence number had been changed, it will restart 3057 * the whole pathname back-tracing sequence again by taking the rename_lock. 3058 * In this case, there is no need to take the RCU read lock as the recursive 3059 * parent pointer references will keep the dentry chain alive as long as no 3060 * rename operation is performed. 3061 */ 3062 static int prepend_path(const struct path *path, 3063 const struct path *root, 3064 char **buffer, int *buflen) 3065 { 3066 struct dentry *dentry; 3067 struct vfsmount *vfsmnt; 3068 struct mount *mnt; 3069 int error = 0; 3070 unsigned seq, m_seq = 0; 3071 char *bptr; 3072 int blen; 3073 3074 rcu_read_lock(); 3075 restart_mnt: 3076 read_seqbegin_or_lock(&mount_lock, &m_seq); 3077 seq = 0; 3078 rcu_read_lock(); 3079 restart: 3080 bptr = *buffer; 3081 blen = *buflen; 3082 error = 0; 3083 dentry = path->dentry; 3084 vfsmnt = path->mnt; 3085 mnt = real_mount(vfsmnt); 3086 read_seqbegin_or_lock(&rename_lock, &seq); 3087 while (dentry != root->dentry || vfsmnt != root->mnt) { 3088 struct dentry * parent; 3089 3090 if (dentry == vfsmnt->mnt_root || IS_ROOT(dentry)) { 3091 struct mount *parent = ACCESS_ONCE(mnt->mnt_parent); 3092 /* Escaped? */ 3093 if (dentry != vfsmnt->mnt_root) { 3094 bptr = *buffer; 3095 blen = *buflen; 3096 error = 3; 3097 break; 3098 } 3099 /* Global root? */ 3100 if (mnt != parent) { 3101 dentry = ACCESS_ONCE(mnt->mnt_mountpoint); 3102 mnt = parent; 3103 vfsmnt = &mnt->mnt; 3104 continue; 3105 } 3106 if (!error) 3107 error = is_mounted(vfsmnt) ? 1 : 2; 3108 break; 3109 } 3110 parent = dentry->d_parent; 3111 prefetch(parent); 3112 error = prepend_name(&bptr, &blen, &dentry->d_name); 3113 if (error) 3114 break; 3115 3116 dentry = parent; 3117 } 3118 if (!(seq & 1)) 3119 rcu_read_unlock(); 3120 if (need_seqretry(&rename_lock, seq)) { 3121 seq = 1; 3122 goto restart; 3123 } 3124 done_seqretry(&rename_lock, seq); 3125 3126 if (!(m_seq & 1)) 3127 rcu_read_unlock(); 3128 if (need_seqretry(&mount_lock, m_seq)) { 3129 m_seq = 1; 3130 goto restart_mnt; 3131 } 3132 done_seqretry(&mount_lock, m_seq); 3133 3134 if (error >= 0 && bptr == *buffer) { 3135 if (--blen < 0) 3136 error = -ENAMETOOLONG; 3137 else 3138 *--bptr = '/'; 3139 } 3140 *buffer = bptr; 3141 *buflen = blen; 3142 return error; 3143 } 3144 3145 /** 3146 * __d_path - return the path of a dentry 3147 * @path: the dentry/vfsmount to report 3148 * @root: root vfsmnt/dentry 3149 * @buf: buffer to return value in 3150 * @buflen: buffer length 3151 * 3152 * Convert a dentry into an ASCII path name. 3153 * 3154 * Returns a pointer into the buffer or an error code if the 3155 * path was too long. 3156 * 3157 * "buflen" should be positive. 3158 * 3159 * If the path is not reachable from the supplied root, return %NULL. 3160 */ 3161 char *__d_path(const struct path *path, 3162 const struct path *root, 3163 char *buf, int buflen) 3164 { 3165 char *res = buf + buflen; 3166 int error; 3167 3168 prepend(&res, &buflen, "\0", 1); 3169 error = prepend_path(path, root, &res, &buflen); 3170 3171 if (error < 0) 3172 return ERR_PTR(error); 3173 if (error > 0) 3174 return NULL; 3175 return res; 3176 } 3177 3178 char *d_absolute_path(const struct path *path, 3179 char *buf, int buflen) 3180 { 3181 struct path root = {}; 3182 char *res = buf + buflen; 3183 int error; 3184 3185 prepend(&res, &buflen, "\0", 1); 3186 error = prepend_path(path, &root, &res, &buflen); 3187 3188 if (error > 1) 3189 error = -EINVAL; 3190 if (error < 0) 3191 return ERR_PTR(error); 3192 return res; 3193 } 3194 3195 /* 3196 * same as __d_path but appends "(deleted)" for unlinked files. 3197 */ 3198 static int path_with_deleted(const struct path *path, 3199 const struct path *root, 3200 char **buf, int *buflen) 3201 { 3202 prepend(buf, buflen, "\0", 1); 3203 if (d_unlinked(path->dentry)) { 3204 int error = prepend(buf, buflen, " (deleted)", 10); 3205 if (error) 3206 return error; 3207 } 3208 3209 return prepend_path(path, root, buf, buflen); 3210 } 3211 3212 static int prepend_unreachable(char **buffer, int *buflen) 3213 { 3214 return prepend(buffer, buflen, "(unreachable)", 13); 3215 } 3216 3217 static void get_fs_root_rcu(struct fs_struct *fs, struct path *root) 3218 { 3219 unsigned seq; 3220 3221 do { 3222 seq = read_seqcount_begin(&fs->seq); 3223 *root = fs->root; 3224 } while (read_seqcount_retry(&fs->seq, seq)); 3225 } 3226 3227 /** 3228 * d_path - return the path of a dentry 3229 * @path: path to report 3230 * @buf: buffer to return value in 3231 * @buflen: buffer length 3232 * 3233 * Convert a dentry into an ASCII path name. If the entry has been deleted 3234 * the string " (deleted)" is appended. Note that this is ambiguous. 3235 * 3236 * Returns a pointer into the buffer or an error code if the path was 3237 * too long. Note: Callers should use the returned pointer, not the passed 3238 * in buffer, to use the name! The implementation often starts at an offset 3239 * into the buffer, and may leave 0 bytes at the start. 3240 * 3241 * "buflen" should be positive. 3242 */ 3243 char *d_path(const struct path *path, char *buf, int buflen) 3244 { 3245 char *res = buf + buflen; 3246 struct path root; 3247 int error; 3248 3249 /* 3250 * We have various synthetic filesystems that never get mounted. On 3251 * these filesystems dentries are never used for lookup purposes, and 3252 * thus don't need to be hashed. They also don't need a name until a 3253 * user wants to identify the object in /proc/pid/fd/. The little hack 3254 * below allows us to generate a name for these objects on demand: 3255 * 3256 * Some pseudo inodes are mountable. When they are mounted 3257 * path->dentry == path->mnt->mnt_root. In that case don't call d_dname 3258 * and instead have d_path return the mounted path. 3259 */ 3260 if (path->dentry->d_op && path->dentry->d_op->d_dname && 3261 (!IS_ROOT(path->dentry) || path->dentry != path->mnt->mnt_root)) 3262 return path->dentry->d_op->d_dname(path->dentry, buf, buflen); 3263 3264 rcu_read_lock(); 3265 get_fs_root_rcu(current->fs, &root); 3266 error = path_with_deleted(path, &root, &res, &buflen); 3267 rcu_read_unlock(); 3268 3269 if (error < 0) 3270 res = ERR_PTR(error); 3271 return res; 3272 } 3273 EXPORT_SYMBOL(d_path); 3274 3275 /* 3276 * Helper function for dentry_operations.d_dname() members 3277 */ 3278 char *dynamic_dname(struct dentry *dentry, char *buffer, int buflen, 3279 const char *fmt, ...) 3280 { 3281 va_list args; 3282 char temp[64]; 3283 int sz; 3284 3285 va_start(args, fmt); 3286 sz = vsnprintf(temp, sizeof(temp), fmt, args) + 1; 3287 va_end(args); 3288 3289 if (sz > sizeof(temp) || sz > buflen) 3290 return ERR_PTR(-ENAMETOOLONG); 3291 3292 buffer += buflen - sz; 3293 return memcpy(buffer, temp, sz); 3294 } 3295 3296 char *simple_dname(struct dentry *dentry, char *buffer, int buflen) 3297 { 3298 char *end = buffer + buflen; 3299 /* these dentries are never renamed, so d_lock is not needed */ 3300 if (prepend(&end, &buflen, " (deleted)", 11) || 3301 prepend(&end, &buflen, dentry->d_name.name, dentry->d_name.len) || 3302 prepend(&end, &buflen, "/", 1)) 3303 end = ERR_PTR(-ENAMETOOLONG); 3304 return end; 3305 } 3306 EXPORT_SYMBOL(simple_dname); 3307 3308 /* 3309 * Write full pathname from the root of the filesystem into the buffer. 3310 */ 3311 static char *__dentry_path(struct dentry *d, char *buf, int buflen) 3312 { 3313 struct dentry *dentry; 3314 char *end, *retval; 3315 int len, seq = 0; 3316 int error = 0; 3317 3318 if (buflen < 2) 3319 goto Elong; 3320 3321 rcu_read_lock(); 3322 restart: 3323 dentry = d; 3324 end = buf + buflen; 3325 len = buflen; 3326 prepend(&end, &len, "\0", 1); 3327 /* Get '/' right */ 3328 retval = end-1; 3329 *retval = '/'; 3330 read_seqbegin_or_lock(&rename_lock, &seq); 3331 while (!IS_ROOT(dentry)) { 3332 struct dentry *parent = dentry->d_parent; 3333 3334 prefetch(parent); 3335 error = prepend_name(&end, &len, &dentry->d_name); 3336 if (error) 3337 break; 3338 3339 retval = end; 3340 dentry = parent; 3341 } 3342 if (!(seq & 1)) 3343 rcu_read_unlock(); 3344 if (need_seqretry(&rename_lock, seq)) { 3345 seq = 1; 3346 goto restart; 3347 } 3348 done_seqretry(&rename_lock, seq); 3349 if (error) 3350 goto Elong; 3351 return retval; 3352 Elong: 3353 return ERR_PTR(-ENAMETOOLONG); 3354 } 3355 3356 char *dentry_path_raw(struct dentry *dentry, char *buf, int buflen) 3357 { 3358 return __dentry_path(dentry, buf, buflen); 3359 } 3360 EXPORT_SYMBOL(dentry_path_raw); 3361 3362 char *dentry_path(struct dentry *dentry, char *buf, int buflen) 3363 { 3364 char *p = NULL; 3365 char *retval; 3366 3367 if (d_unlinked(dentry)) { 3368 p = buf + buflen; 3369 if (prepend(&p, &buflen, "//deleted", 10) != 0) 3370 goto Elong; 3371 buflen++; 3372 } 3373 retval = __dentry_path(dentry, buf, buflen); 3374 if (!IS_ERR(retval) && p) 3375 *p = '/'; /* restore '/' overriden with '\0' */ 3376 return retval; 3377 Elong: 3378 return ERR_PTR(-ENAMETOOLONG); 3379 } 3380 3381 static void get_fs_root_and_pwd_rcu(struct fs_struct *fs, struct path *root, 3382 struct path *pwd) 3383 { 3384 unsigned seq; 3385 3386 do { 3387 seq = read_seqcount_begin(&fs->seq); 3388 *root = fs->root; 3389 *pwd = fs->pwd; 3390 } while (read_seqcount_retry(&fs->seq, seq)); 3391 } 3392 3393 /* 3394 * NOTE! The user-level library version returns a 3395 * character pointer. The kernel system call just 3396 * returns the length of the buffer filled (which 3397 * includes the ending '\0' character), or a negative 3398 * error value. So libc would do something like 3399 * 3400 * char *getcwd(char * buf, size_t size) 3401 * { 3402 * int retval; 3403 * 3404 * retval = sys_getcwd(buf, size); 3405 * if (retval >= 0) 3406 * return buf; 3407 * errno = -retval; 3408 * return NULL; 3409 * } 3410 */ 3411 SYSCALL_DEFINE2(getcwd, char __user *, buf, unsigned long, size) 3412 { 3413 int error; 3414 struct path pwd, root; 3415 char *page = __getname(); 3416 3417 if (!page) 3418 return -ENOMEM; 3419 3420 rcu_read_lock(); 3421 get_fs_root_and_pwd_rcu(current->fs, &root, &pwd); 3422 3423 error = -ENOENT; 3424 if (!d_unlinked(pwd.dentry)) { 3425 unsigned long len; 3426 char *cwd = page + PATH_MAX; 3427 int buflen = PATH_MAX; 3428 3429 prepend(&cwd, &buflen, "\0", 1); 3430 error = prepend_path(&pwd, &root, &cwd, &buflen); 3431 rcu_read_unlock(); 3432 3433 if (error < 0) 3434 goto out; 3435 3436 /* Unreachable from current root */ 3437 if (error > 0) { 3438 error = prepend_unreachable(&cwd, &buflen); 3439 if (error) 3440 goto out; 3441 } 3442 3443 error = -ERANGE; 3444 len = PATH_MAX + page - cwd; 3445 if (len <= size) { 3446 error = len; 3447 if (copy_to_user(buf, cwd, len)) 3448 error = -EFAULT; 3449 } 3450 } else { 3451 rcu_read_unlock(); 3452 } 3453 3454 out: 3455 __putname(page); 3456 return error; 3457 } 3458 3459 /* 3460 * Test whether new_dentry is a subdirectory of old_dentry. 3461 * 3462 * Trivially implemented using the dcache structure 3463 */ 3464 3465 /** 3466 * is_subdir - is new dentry a subdirectory of old_dentry 3467 * @new_dentry: new dentry 3468 * @old_dentry: old dentry 3469 * 3470 * Returns true if new_dentry is a subdirectory of the parent (at any depth). 3471 * Returns false otherwise. 3472 * Caller must ensure that "new_dentry" is pinned before calling is_subdir() 3473 */ 3474 3475 bool is_subdir(struct dentry *new_dentry, struct dentry *old_dentry) 3476 { 3477 bool result; 3478 unsigned seq; 3479 3480 if (new_dentry == old_dentry) 3481 return true; 3482 3483 do { 3484 /* for restarting inner loop in case of seq retry */ 3485 seq = read_seqbegin(&rename_lock); 3486 /* 3487 * Need rcu_readlock to protect against the d_parent trashing 3488 * due to d_move 3489 */ 3490 rcu_read_lock(); 3491 if (d_ancestor(old_dentry, new_dentry)) 3492 result = true; 3493 else 3494 result = false; 3495 rcu_read_unlock(); 3496 } while (read_seqretry(&rename_lock, seq)); 3497 3498 return result; 3499 } 3500 3501 static enum d_walk_ret d_genocide_kill(void *data, struct dentry *dentry) 3502 { 3503 struct dentry *root = data; 3504 if (dentry != root) { 3505 if (d_unhashed(dentry) || !dentry->d_inode) 3506 return D_WALK_SKIP; 3507 3508 if (!(dentry->d_flags & DCACHE_GENOCIDE)) { 3509 dentry->d_flags |= DCACHE_GENOCIDE; 3510 dentry->d_lockref.count--; 3511 } 3512 } 3513 return D_WALK_CONTINUE; 3514 } 3515 3516 void d_genocide(struct dentry *parent) 3517 { 3518 d_walk(parent, parent, d_genocide_kill, NULL); 3519 } 3520 3521 void d_tmpfile(struct dentry *dentry, struct inode *inode) 3522 { 3523 inode_dec_link_count(inode); 3524 BUG_ON(dentry->d_name.name != dentry->d_iname || 3525 !hlist_unhashed(&dentry->d_u.d_alias) || 3526 !d_unlinked(dentry)); 3527 spin_lock(&dentry->d_parent->d_lock); 3528 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED); 3529 dentry->d_name.len = sprintf(dentry->d_iname, "#%llu", 3530 (unsigned long long)inode->i_ino); 3531 spin_unlock(&dentry->d_lock); 3532 spin_unlock(&dentry->d_parent->d_lock); 3533 d_instantiate(dentry, inode); 3534 } 3535 EXPORT_SYMBOL(d_tmpfile); 3536 3537 static __initdata unsigned long dhash_entries; 3538 static int __init set_dhash_entries(char *str) 3539 { 3540 if (!str) 3541 return 0; 3542 dhash_entries = simple_strtoul(str, &str, 0); 3543 return 1; 3544 } 3545 __setup("dhash_entries=", set_dhash_entries); 3546 3547 static void __init dcache_init_early(void) 3548 { 3549 unsigned int loop; 3550 3551 /* If hashes are distributed across NUMA nodes, defer 3552 * hash allocation until vmalloc space is available. 3553 */ 3554 if (hashdist) 3555 return; 3556 3557 dentry_hashtable = 3558 alloc_large_system_hash("Dentry cache", 3559 sizeof(struct hlist_bl_head), 3560 dhash_entries, 3561 13, 3562 HASH_EARLY, 3563 &d_hash_shift, 3564 &d_hash_mask, 3565 0, 3566 0); 3567 3568 for (loop = 0; loop < (1U << d_hash_shift); loop++) 3569 INIT_HLIST_BL_HEAD(dentry_hashtable + loop); 3570 } 3571 3572 static void __init dcache_init(void) 3573 { 3574 unsigned int loop; 3575 3576 /* 3577 * A constructor could be added for stable state like the lists, 3578 * but it is probably not worth it because of the cache nature 3579 * of the dcache. 3580 */ 3581 dentry_cache = KMEM_CACHE(dentry, 3582 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD|SLAB_ACCOUNT); 3583 3584 /* Hash may have been set up in dcache_init_early */ 3585 if (!hashdist) 3586 return; 3587 3588 dentry_hashtable = 3589 alloc_large_system_hash("Dentry cache", 3590 sizeof(struct hlist_bl_head), 3591 dhash_entries, 3592 13, 3593 0, 3594 &d_hash_shift, 3595 &d_hash_mask, 3596 0, 3597 0); 3598 3599 for (loop = 0; loop < (1U << d_hash_shift); loop++) 3600 INIT_HLIST_BL_HEAD(dentry_hashtable + loop); 3601 } 3602 3603 /* SLAB cache for __getname() consumers */ 3604 struct kmem_cache *names_cachep __read_mostly; 3605 EXPORT_SYMBOL(names_cachep); 3606 3607 EXPORT_SYMBOL(d_genocide); 3608 3609 void __init vfs_caches_init_early(void) 3610 { 3611 dcache_init_early(); 3612 inode_init_early(); 3613 } 3614 3615 void __init vfs_caches_init(void) 3616 { 3617 names_cachep = kmem_cache_create("names_cache", PATH_MAX, 0, 3618 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL); 3619 3620 dcache_init(); 3621 inode_init(); 3622 files_init(); 3623 files_maxfiles_init(); 3624 mnt_init(); 3625 bdev_cache_init(); 3626 chrdev_init(); 3627 } 3628