1 /* 2 * fs/dcache.c 3 * 4 * Complete reimplementation 5 * (C) 1997 Thomas Schoebel-Theuer, 6 * with heavy changes by Linus Torvalds 7 */ 8 9 /* 10 * Notes on the allocation strategy: 11 * 12 * The dcache is a master of the icache - whenever a dcache entry 13 * exists, the inode will always exist. "iput()" is done either when 14 * the dcache entry is deleted or garbage collected. 15 */ 16 17 #include <linux/syscalls.h> 18 #include <linux/string.h> 19 #include <linux/mm.h> 20 #include <linux/fs.h> 21 #include <linux/fsnotify.h> 22 #include <linux/slab.h> 23 #include <linux/init.h> 24 #include <linux/hash.h> 25 #include <linux/cache.h> 26 #include <linux/export.h> 27 #include <linux/mount.h> 28 #include <linux/file.h> 29 #include <asm/uaccess.h> 30 #include <linux/security.h> 31 #include <linux/seqlock.h> 32 #include <linux/swap.h> 33 #include <linux/bootmem.h> 34 #include <linux/fs_struct.h> 35 #include <linux/hardirq.h> 36 #include <linux/bit_spinlock.h> 37 #include <linux/rculist_bl.h> 38 #include <linux/prefetch.h> 39 #include <linux/ratelimit.h> 40 #include <linux/list_lru.h> 41 #include "internal.h" 42 #include "mount.h" 43 44 /* 45 * Usage: 46 * dcache->d_inode->i_lock protects: 47 * - i_dentry, d_alias, d_inode of aliases 48 * dcache_hash_bucket lock protects: 49 * - the dcache hash table 50 * s_anon bl list spinlock protects: 51 * - the s_anon list (see __d_drop) 52 * dentry->d_sb->s_dentry_lru_lock protects: 53 * - the dcache lru lists and counters 54 * d_lock protects: 55 * - d_flags 56 * - d_name 57 * - d_lru 58 * - d_count 59 * - d_unhashed() 60 * - d_parent and d_subdirs 61 * - childrens' d_child and d_parent 62 * - d_alias, d_inode 63 * 64 * Ordering: 65 * dentry->d_inode->i_lock 66 * dentry->d_lock 67 * dentry->d_sb->s_dentry_lru_lock 68 * dcache_hash_bucket lock 69 * s_anon lock 70 * 71 * If there is an ancestor relationship: 72 * dentry->d_parent->...->d_parent->d_lock 73 * ... 74 * dentry->d_parent->d_lock 75 * dentry->d_lock 76 * 77 * If no ancestor relationship: 78 * if (dentry1 < dentry2) 79 * dentry1->d_lock 80 * dentry2->d_lock 81 */ 82 int sysctl_vfs_cache_pressure __read_mostly = 100; 83 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure); 84 85 __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock); 86 87 EXPORT_SYMBOL(rename_lock); 88 89 static struct kmem_cache *dentry_cache __read_mostly; 90 91 /** 92 * read_seqbegin_or_lock - begin a sequence number check or locking block 93 * @lock: sequence lock 94 * @seq : sequence number to be checked 95 * 96 * First try it once optimistically without taking the lock. If that fails, 97 * take the lock. The sequence number is also used as a marker for deciding 98 * whether to be a reader (even) or writer (odd). 99 * N.B. seq must be initialized to an even number to begin with. 100 */ 101 static inline void read_seqbegin_or_lock(seqlock_t *lock, int *seq) 102 { 103 if (!(*seq & 1)) /* Even */ 104 *seq = read_seqbegin(lock); 105 else /* Odd */ 106 read_seqlock_excl(lock); 107 } 108 109 static inline int need_seqretry(seqlock_t *lock, int seq) 110 { 111 return !(seq & 1) && read_seqretry(lock, seq); 112 } 113 114 static inline void done_seqretry(seqlock_t *lock, int seq) 115 { 116 if (seq & 1) 117 read_sequnlock_excl(lock); 118 } 119 120 /* 121 * This is the single most critical data structure when it comes 122 * to the dcache: the hashtable for lookups. Somebody should try 123 * to make this good - I've just made it work. 124 * 125 * This hash-function tries to avoid losing too many bits of hash 126 * information, yet avoid using a prime hash-size or similar. 127 */ 128 #define D_HASHBITS d_hash_shift 129 #define D_HASHMASK d_hash_mask 130 131 static unsigned int d_hash_mask __read_mostly; 132 static unsigned int d_hash_shift __read_mostly; 133 134 static struct hlist_bl_head *dentry_hashtable __read_mostly; 135 136 static inline struct hlist_bl_head *d_hash(const struct dentry *parent, 137 unsigned int hash) 138 { 139 hash += (unsigned long) parent / L1_CACHE_BYTES; 140 hash = hash + (hash >> D_HASHBITS); 141 return dentry_hashtable + (hash & D_HASHMASK); 142 } 143 144 /* Statistics gathering. */ 145 struct dentry_stat_t dentry_stat = { 146 .age_limit = 45, 147 }; 148 149 static DEFINE_PER_CPU(long, nr_dentry); 150 static DEFINE_PER_CPU(long, nr_dentry_unused); 151 152 #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS) 153 154 /* 155 * Here we resort to our own counters instead of using generic per-cpu counters 156 * for consistency with what the vfs inode code does. We are expected to harvest 157 * better code and performance by having our own specialized counters. 158 * 159 * Please note that the loop is done over all possible CPUs, not over all online 160 * CPUs. The reason for this is that we don't want to play games with CPUs going 161 * on and off. If one of them goes off, we will just keep their counters. 162 * 163 * glommer: See cffbc8a for details, and if you ever intend to change this, 164 * please update all vfs counters to match. 165 */ 166 static long get_nr_dentry(void) 167 { 168 int i; 169 long sum = 0; 170 for_each_possible_cpu(i) 171 sum += per_cpu(nr_dentry, i); 172 return sum < 0 ? 0 : sum; 173 } 174 175 static long get_nr_dentry_unused(void) 176 { 177 int i; 178 long sum = 0; 179 for_each_possible_cpu(i) 180 sum += per_cpu(nr_dentry_unused, i); 181 return sum < 0 ? 0 : sum; 182 } 183 184 int proc_nr_dentry(ctl_table *table, int write, void __user *buffer, 185 size_t *lenp, loff_t *ppos) 186 { 187 dentry_stat.nr_dentry = get_nr_dentry(); 188 dentry_stat.nr_unused = get_nr_dentry_unused(); 189 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos); 190 } 191 #endif 192 193 /* 194 * Compare 2 name strings, return 0 if they match, otherwise non-zero. 195 * The strings are both count bytes long, and count is non-zero. 196 */ 197 #ifdef CONFIG_DCACHE_WORD_ACCESS 198 199 #include <asm/word-at-a-time.h> 200 /* 201 * NOTE! 'cs' and 'scount' come from a dentry, so it has a 202 * aligned allocation for this particular component. We don't 203 * strictly need the load_unaligned_zeropad() safety, but it 204 * doesn't hurt either. 205 * 206 * In contrast, 'ct' and 'tcount' can be from a pathname, and do 207 * need the careful unaligned handling. 208 */ 209 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount) 210 { 211 unsigned long a,b,mask; 212 213 for (;;) { 214 a = *(unsigned long *)cs; 215 b = load_unaligned_zeropad(ct); 216 if (tcount < sizeof(unsigned long)) 217 break; 218 if (unlikely(a != b)) 219 return 1; 220 cs += sizeof(unsigned long); 221 ct += sizeof(unsigned long); 222 tcount -= sizeof(unsigned long); 223 if (!tcount) 224 return 0; 225 } 226 mask = ~(~0ul << tcount*8); 227 return unlikely(!!((a ^ b) & mask)); 228 } 229 230 #else 231 232 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount) 233 { 234 do { 235 if (*cs != *ct) 236 return 1; 237 cs++; 238 ct++; 239 tcount--; 240 } while (tcount); 241 return 0; 242 } 243 244 #endif 245 246 static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount) 247 { 248 const unsigned char *cs; 249 /* 250 * Be careful about RCU walk racing with rename: 251 * use ACCESS_ONCE to fetch the name pointer. 252 * 253 * NOTE! Even if a rename will mean that the length 254 * was not loaded atomically, we don't care. The 255 * RCU walk will check the sequence count eventually, 256 * and catch it. And we won't overrun the buffer, 257 * because we're reading the name pointer atomically, 258 * and a dentry name is guaranteed to be properly 259 * terminated with a NUL byte. 260 * 261 * End result: even if 'len' is wrong, we'll exit 262 * early because the data cannot match (there can 263 * be no NUL in the ct/tcount data) 264 */ 265 cs = ACCESS_ONCE(dentry->d_name.name); 266 smp_read_barrier_depends(); 267 return dentry_string_cmp(cs, ct, tcount); 268 } 269 270 static void __d_free(struct rcu_head *head) 271 { 272 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu); 273 274 WARN_ON(!hlist_unhashed(&dentry->d_alias)); 275 if (dname_external(dentry)) 276 kfree(dentry->d_name.name); 277 kmem_cache_free(dentry_cache, dentry); 278 } 279 280 /* 281 * no locks, please. 282 */ 283 static void d_free(struct dentry *dentry) 284 { 285 BUG_ON((int)dentry->d_lockref.count > 0); 286 this_cpu_dec(nr_dentry); 287 if (dentry->d_op && dentry->d_op->d_release) 288 dentry->d_op->d_release(dentry); 289 290 /* if dentry was never visible to RCU, immediate free is OK */ 291 if (!(dentry->d_flags & DCACHE_RCUACCESS)) 292 __d_free(&dentry->d_u.d_rcu); 293 else 294 call_rcu(&dentry->d_u.d_rcu, __d_free); 295 } 296 297 /** 298 * dentry_rcuwalk_barrier - invalidate in-progress rcu-walk lookups 299 * @dentry: the target dentry 300 * After this call, in-progress rcu-walk path lookup will fail. This 301 * should be called after unhashing, and after changing d_inode (if 302 * the dentry has not already been unhashed). 303 */ 304 static inline void dentry_rcuwalk_barrier(struct dentry *dentry) 305 { 306 assert_spin_locked(&dentry->d_lock); 307 /* Go through a barrier */ 308 write_seqcount_barrier(&dentry->d_seq); 309 } 310 311 /* 312 * Release the dentry's inode, using the filesystem 313 * d_iput() operation if defined. Dentry has no refcount 314 * and is unhashed. 315 */ 316 static void dentry_iput(struct dentry * dentry) 317 __releases(dentry->d_lock) 318 __releases(dentry->d_inode->i_lock) 319 { 320 struct inode *inode = dentry->d_inode; 321 if (inode) { 322 dentry->d_inode = NULL; 323 hlist_del_init(&dentry->d_alias); 324 spin_unlock(&dentry->d_lock); 325 spin_unlock(&inode->i_lock); 326 if (!inode->i_nlink) 327 fsnotify_inoderemove(inode); 328 if (dentry->d_op && dentry->d_op->d_iput) 329 dentry->d_op->d_iput(dentry, inode); 330 else 331 iput(inode); 332 } else { 333 spin_unlock(&dentry->d_lock); 334 } 335 } 336 337 /* 338 * Release the dentry's inode, using the filesystem 339 * d_iput() operation if defined. dentry remains in-use. 340 */ 341 static void dentry_unlink_inode(struct dentry * dentry) 342 __releases(dentry->d_lock) 343 __releases(dentry->d_inode->i_lock) 344 { 345 struct inode *inode = dentry->d_inode; 346 dentry->d_inode = NULL; 347 hlist_del_init(&dentry->d_alias); 348 dentry_rcuwalk_barrier(dentry); 349 spin_unlock(&dentry->d_lock); 350 spin_unlock(&inode->i_lock); 351 if (!inode->i_nlink) 352 fsnotify_inoderemove(inode); 353 if (dentry->d_op && dentry->d_op->d_iput) 354 dentry->d_op->d_iput(dentry, inode); 355 else 356 iput(inode); 357 } 358 359 /* 360 * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry 361 * is in use - which includes both the "real" per-superblock 362 * LRU list _and_ the DCACHE_SHRINK_LIST use. 363 * 364 * The DCACHE_SHRINK_LIST bit is set whenever the dentry is 365 * on the shrink list (ie not on the superblock LRU list). 366 * 367 * The per-cpu "nr_dentry_unused" counters are updated with 368 * the DCACHE_LRU_LIST bit. 369 * 370 * These helper functions make sure we always follow the 371 * rules. d_lock must be held by the caller. 372 */ 373 #define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x)) 374 static void d_lru_add(struct dentry *dentry) 375 { 376 D_FLAG_VERIFY(dentry, 0); 377 dentry->d_flags |= DCACHE_LRU_LIST; 378 this_cpu_inc(nr_dentry_unused); 379 WARN_ON_ONCE(!list_lru_add(&dentry->d_sb->s_dentry_lru, &dentry->d_lru)); 380 } 381 382 static void d_lru_del(struct dentry *dentry) 383 { 384 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST); 385 dentry->d_flags &= ~DCACHE_LRU_LIST; 386 this_cpu_dec(nr_dentry_unused); 387 WARN_ON_ONCE(!list_lru_del(&dentry->d_sb->s_dentry_lru, &dentry->d_lru)); 388 } 389 390 static void d_shrink_del(struct dentry *dentry) 391 { 392 D_FLAG_VERIFY(dentry, DCACHE_SHRINK_LIST | DCACHE_LRU_LIST); 393 list_del_init(&dentry->d_lru); 394 dentry->d_flags &= ~(DCACHE_SHRINK_LIST | DCACHE_LRU_LIST); 395 this_cpu_dec(nr_dentry_unused); 396 } 397 398 static void d_shrink_add(struct dentry *dentry, struct list_head *list) 399 { 400 D_FLAG_VERIFY(dentry, 0); 401 list_add(&dentry->d_lru, list); 402 dentry->d_flags |= DCACHE_SHRINK_LIST | DCACHE_LRU_LIST; 403 this_cpu_inc(nr_dentry_unused); 404 } 405 406 /* 407 * These can only be called under the global LRU lock, ie during the 408 * callback for freeing the LRU list. "isolate" removes it from the 409 * LRU lists entirely, while shrink_move moves it to the indicated 410 * private list. 411 */ 412 static void d_lru_isolate(struct dentry *dentry) 413 { 414 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST); 415 dentry->d_flags &= ~DCACHE_LRU_LIST; 416 this_cpu_dec(nr_dentry_unused); 417 list_del_init(&dentry->d_lru); 418 } 419 420 static void d_lru_shrink_move(struct dentry *dentry, struct list_head *list) 421 { 422 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST); 423 dentry->d_flags |= DCACHE_SHRINK_LIST; 424 list_move_tail(&dentry->d_lru, list); 425 } 426 427 /* 428 * dentry_lru_(add|del)_list) must be called with d_lock held. 429 */ 430 static void dentry_lru_add(struct dentry *dentry) 431 { 432 if (unlikely(!(dentry->d_flags & DCACHE_LRU_LIST))) 433 d_lru_add(dentry); 434 } 435 436 /* 437 * Remove a dentry with references from the LRU. 438 * 439 * If we are on the shrink list, then we can get to try_prune_one_dentry() and 440 * lose our last reference through the parent walk. In this case, we need to 441 * remove ourselves from the shrink list, not the LRU. 442 */ 443 static void dentry_lru_del(struct dentry *dentry) 444 { 445 if (dentry->d_flags & DCACHE_LRU_LIST) { 446 if (dentry->d_flags & DCACHE_SHRINK_LIST) 447 return d_shrink_del(dentry); 448 d_lru_del(dentry); 449 } 450 } 451 452 /** 453 * d_kill - kill dentry and return parent 454 * @dentry: dentry to kill 455 * @parent: parent dentry 456 * 457 * The dentry must already be unhashed and removed from the LRU. 458 * 459 * If this is the root of the dentry tree, return NULL. 460 * 461 * dentry->d_lock and parent->d_lock must be held by caller, and are dropped by 462 * d_kill. 463 */ 464 static struct dentry *d_kill(struct dentry *dentry, struct dentry *parent) 465 __releases(dentry->d_lock) 466 __releases(parent->d_lock) 467 __releases(dentry->d_inode->i_lock) 468 { 469 list_del(&dentry->d_u.d_child); 470 /* 471 * Inform try_to_ascend() that we are no longer attached to the 472 * dentry tree 473 */ 474 dentry->d_flags |= DCACHE_DENTRY_KILLED; 475 if (parent) 476 spin_unlock(&parent->d_lock); 477 dentry_iput(dentry); 478 /* 479 * dentry_iput drops the locks, at which point nobody (except 480 * transient RCU lookups) can reach this dentry. 481 */ 482 d_free(dentry); 483 return parent; 484 } 485 486 /* 487 * Unhash a dentry without inserting an RCU walk barrier or checking that 488 * dentry->d_lock is locked. The caller must take care of that, if 489 * appropriate. 490 */ 491 static void __d_shrink(struct dentry *dentry) 492 { 493 if (!d_unhashed(dentry)) { 494 struct hlist_bl_head *b; 495 if (unlikely(dentry->d_flags & DCACHE_DISCONNECTED)) 496 b = &dentry->d_sb->s_anon; 497 else 498 b = d_hash(dentry->d_parent, dentry->d_name.hash); 499 500 hlist_bl_lock(b); 501 __hlist_bl_del(&dentry->d_hash); 502 dentry->d_hash.pprev = NULL; 503 hlist_bl_unlock(b); 504 } 505 } 506 507 /** 508 * d_drop - drop a dentry 509 * @dentry: dentry to drop 510 * 511 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't 512 * be found through a VFS lookup any more. Note that this is different from 513 * deleting the dentry - d_delete will try to mark the dentry negative if 514 * possible, giving a successful _negative_ lookup, while d_drop will 515 * just make the cache lookup fail. 516 * 517 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some 518 * reason (NFS timeouts or autofs deletes). 519 * 520 * __d_drop requires dentry->d_lock. 521 */ 522 void __d_drop(struct dentry *dentry) 523 { 524 if (!d_unhashed(dentry)) { 525 __d_shrink(dentry); 526 dentry_rcuwalk_barrier(dentry); 527 } 528 } 529 EXPORT_SYMBOL(__d_drop); 530 531 void d_drop(struct dentry *dentry) 532 { 533 spin_lock(&dentry->d_lock); 534 __d_drop(dentry); 535 spin_unlock(&dentry->d_lock); 536 } 537 EXPORT_SYMBOL(d_drop); 538 539 /* 540 * Finish off a dentry we've decided to kill. 541 * dentry->d_lock must be held, returns with it unlocked. 542 * If ref is non-zero, then decrement the refcount too. 543 * Returns dentry requiring refcount drop, or NULL if we're done. 544 */ 545 static inline struct dentry * 546 dentry_kill(struct dentry *dentry, int unlock_on_failure) 547 __releases(dentry->d_lock) 548 { 549 struct inode *inode; 550 struct dentry *parent; 551 552 inode = dentry->d_inode; 553 if (inode && !spin_trylock(&inode->i_lock)) { 554 relock: 555 if (unlock_on_failure) { 556 spin_unlock(&dentry->d_lock); 557 cpu_relax(); 558 } 559 return dentry; /* try again with same dentry */ 560 } 561 if (IS_ROOT(dentry)) 562 parent = NULL; 563 else 564 parent = dentry->d_parent; 565 if (parent && !spin_trylock(&parent->d_lock)) { 566 if (inode) 567 spin_unlock(&inode->i_lock); 568 goto relock; 569 } 570 571 /* 572 * The dentry is now unrecoverably dead to the world. 573 */ 574 lockref_mark_dead(&dentry->d_lockref); 575 576 /* 577 * inform the fs via d_prune that this dentry is about to be 578 * unhashed and destroyed. 579 */ 580 if ((dentry->d_flags & DCACHE_OP_PRUNE) && !d_unhashed(dentry)) 581 dentry->d_op->d_prune(dentry); 582 583 dentry_lru_del(dentry); 584 /* if it was on the hash then remove it */ 585 __d_drop(dentry); 586 return d_kill(dentry, parent); 587 } 588 589 /* 590 * This is dput 591 * 592 * This is complicated by the fact that we do not want to put 593 * dentries that are no longer on any hash chain on the unused 594 * list: we'd much rather just get rid of them immediately. 595 * 596 * However, that implies that we have to traverse the dentry 597 * tree upwards to the parents which might _also_ now be 598 * scheduled for deletion (it may have been only waiting for 599 * its last child to go away). 600 * 601 * This tail recursion is done by hand as we don't want to depend 602 * on the compiler to always get this right (gcc generally doesn't). 603 * Real recursion would eat up our stack space. 604 */ 605 606 /* 607 * dput - release a dentry 608 * @dentry: dentry to release 609 * 610 * Release a dentry. This will drop the usage count and if appropriate 611 * call the dentry unlink method as well as removing it from the queues and 612 * releasing its resources. If the parent dentries were scheduled for release 613 * they too may now get deleted. 614 */ 615 void dput(struct dentry *dentry) 616 { 617 if (unlikely(!dentry)) 618 return; 619 620 repeat: 621 if (lockref_put_or_lock(&dentry->d_lockref)) 622 return; 623 624 /* Unreachable? Get rid of it */ 625 if (unlikely(d_unhashed(dentry))) 626 goto kill_it; 627 628 if (unlikely(dentry->d_flags & DCACHE_OP_DELETE)) { 629 if (dentry->d_op->d_delete(dentry)) 630 goto kill_it; 631 } 632 633 dentry->d_flags |= DCACHE_REFERENCED; 634 dentry_lru_add(dentry); 635 636 dentry->d_lockref.count--; 637 spin_unlock(&dentry->d_lock); 638 return; 639 640 kill_it: 641 dentry = dentry_kill(dentry, 1); 642 if (dentry) 643 goto repeat; 644 } 645 EXPORT_SYMBOL(dput); 646 647 /** 648 * d_invalidate - invalidate a dentry 649 * @dentry: dentry to invalidate 650 * 651 * Try to invalidate the dentry if it turns out to be 652 * possible. If there are other dentries that can be 653 * reached through this one we can't delete it and we 654 * return -EBUSY. On success we return 0. 655 * 656 * no dcache lock. 657 */ 658 659 int d_invalidate(struct dentry * dentry) 660 { 661 /* 662 * If it's already been dropped, return OK. 663 */ 664 spin_lock(&dentry->d_lock); 665 if (d_unhashed(dentry)) { 666 spin_unlock(&dentry->d_lock); 667 return 0; 668 } 669 /* 670 * Check whether to do a partial shrink_dcache 671 * to get rid of unused child entries. 672 */ 673 if (!list_empty(&dentry->d_subdirs)) { 674 spin_unlock(&dentry->d_lock); 675 shrink_dcache_parent(dentry); 676 spin_lock(&dentry->d_lock); 677 } 678 679 /* 680 * Somebody else still using it? 681 * 682 * If it's a directory, we can't drop it 683 * for fear of somebody re-populating it 684 * with children (even though dropping it 685 * would make it unreachable from the root, 686 * we might still populate it if it was a 687 * working directory or similar). 688 * We also need to leave mountpoints alone, 689 * directory or not. 690 */ 691 if (dentry->d_lockref.count > 1 && dentry->d_inode) { 692 if (S_ISDIR(dentry->d_inode->i_mode) || d_mountpoint(dentry)) { 693 spin_unlock(&dentry->d_lock); 694 return -EBUSY; 695 } 696 } 697 698 __d_drop(dentry); 699 spin_unlock(&dentry->d_lock); 700 return 0; 701 } 702 EXPORT_SYMBOL(d_invalidate); 703 704 /* This must be called with d_lock held */ 705 static inline void __dget_dlock(struct dentry *dentry) 706 { 707 dentry->d_lockref.count++; 708 } 709 710 static inline void __dget(struct dentry *dentry) 711 { 712 lockref_get(&dentry->d_lockref); 713 } 714 715 struct dentry *dget_parent(struct dentry *dentry) 716 { 717 int gotref; 718 struct dentry *ret; 719 720 /* 721 * Do optimistic parent lookup without any 722 * locking. 723 */ 724 rcu_read_lock(); 725 ret = ACCESS_ONCE(dentry->d_parent); 726 gotref = lockref_get_not_zero(&ret->d_lockref); 727 rcu_read_unlock(); 728 if (likely(gotref)) { 729 if (likely(ret == ACCESS_ONCE(dentry->d_parent))) 730 return ret; 731 dput(ret); 732 } 733 734 repeat: 735 /* 736 * Don't need rcu_dereference because we re-check it was correct under 737 * the lock. 738 */ 739 rcu_read_lock(); 740 ret = dentry->d_parent; 741 spin_lock(&ret->d_lock); 742 if (unlikely(ret != dentry->d_parent)) { 743 spin_unlock(&ret->d_lock); 744 rcu_read_unlock(); 745 goto repeat; 746 } 747 rcu_read_unlock(); 748 BUG_ON(!ret->d_lockref.count); 749 ret->d_lockref.count++; 750 spin_unlock(&ret->d_lock); 751 return ret; 752 } 753 EXPORT_SYMBOL(dget_parent); 754 755 /** 756 * d_find_alias - grab a hashed alias of inode 757 * @inode: inode in question 758 * @want_discon: flag, used by d_splice_alias, to request 759 * that only a DISCONNECTED alias be returned. 760 * 761 * If inode has a hashed alias, or is a directory and has any alias, 762 * acquire the reference to alias and return it. Otherwise return NULL. 763 * Notice that if inode is a directory there can be only one alias and 764 * it can be unhashed only if it has no children, or if it is the root 765 * of a filesystem. 766 * 767 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer 768 * any other hashed alias over that one unless @want_discon is set, 769 * in which case only return an IS_ROOT, DCACHE_DISCONNECTED alias. 770 */ 771 static struct dentry *__d_find_alias(struct inode *inode, int want_discon) 772 { 773 struct dentry *alias, *discon_alias; 774 775 again: 776 discon_alias = NULL; 777 hlist_for_each_entry(alias, &inode->i_dentry, d_alias) { 778 spin_lock(&alias->d_lock); 779 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) { 780 if (IS_ROOT(alias) && 781 (alias->d_flags & DCACHE_DISCONNECTED)) { 782 discon_alias = alias; 783 } else if (!want_discon) { 784 __dget_dlock(alias); 785 spin_unlock(&alias->d_lock); 786 return alias; 787 } 788 } 789 spin_unlock(&alias->d_lock); 790 } 791 if (discon_alias) { 792 alias = discon_alias; 793 spin_lock(&alias->d_lock); 794 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) { 795 if (IS_ROOT(alias) && 796 (alias->d_flags & DCACHE_DISCONNECTED)) { 797 __dget_dlock(alias); 798 spin_unlock(&alias->d_lock); 799 return alias; 800 } 801 } 802 spin_unlock(&alias->d_lock); 803 goto again; 804 } 805 return NULL; 806 } 807 808 struct dentry *d_find_alias(struct inode *inode) 809 { 810 struct dentry *de = NULL; 811 812 if (!hlist_empty(&inode->i_dentry)) { 813 spin_lock(&inode->i_lock); 814 de = __d_find_alias(inode, 0); 815 spin_unlock(&inode->i_lock); 816 } 817 return de; 818 } 819 EXPORT_SYMBOL(d_find_alias); 820 821 /* 822 * Try to kill dentries associated with this inode. 823 * WARNING: you must own a reference to inode. 824 */ 825 void d_prune_aliases(struct inode *inode) 826 { 827 struct dentry *dentry; 828 restart: 829 spin_lock(&inode->i_lock); 830 hlist_for_each_entry(dentry, &inode->i_dentry, d_alias) { 831 spin_lock(&dentry->d_lock); 832 if (!dentry->d_lockref.count) { 833 /* 834 * inform the fs via d_prune that this dentry 835 * is about to be unhashed and destroyed. 836 */ 837 if ((dentry->d_flags & DCACHE_OP_PRUNE) && 838 !d_unhashed(dentry)) 839 dentry->d_op->d_prune(dentry); 840 841 __dget_dlock(dentry); 842 __d_drop(dentry); 843 spin_unlock(&dentry->d_lock); 844 spin_unlock(&inode->i_lock); 845 dput(dentry); 846 goto restart; 847 } 848 spin_unlock(&dentry->d_lock); 849 } 850 spin_unlock(&inode->i_lock); 851 } 852 EXPORT_SYMBOL(d_prune_aliases); 853 854 /* 855 * Try to throw away a dentry - free the inode, dput the parent. 856 * Requires dentry->d_lock is held, and dentry->d_count == 0. 857 * Releases dentry->d_lock. 858 * 859 * This may fail if locks cannot be acquired no problem, just try again. 860 */ 861 static struct dentry * try_prune_one_dentry(struct dentry *dentry) 862 __releases(dentry->d_lock) 863 { 864 struct dentry *parent; 865 866 parent = dentry_kill(dentry, 0); 867 /* 868 * If dentry_kill returns NULL, we have nothing more to do. 869 * if it returns the same dentry, trylocks failed. In either 870 * case, just loop again. 871 * 872 * Otherwise, we need to prune ancestors too. This is necessary 873 * to prevent quadratic behavior of shrink_dcache_parent(), but 874 * is also expected to be beneficial in reducing dentry cache 875 * fragmentation. 876 */ 877 if (!parent) 878 return NULL; 879 if (parent == dentry) 880 return dentry; 881 882 /* Prune ancestors. */ 883 dentry = parent; 884 while (dentry) { 885 if (lockref_put_or_lock(&dentry->d_lockref)) 886 return NULL; 887 dentry = dentry_kill(dentry, 1); 888 } 889 return NULL; 890 } 891 892 static void shrink_dentry_list(struct list_head *list) 893 { 894 struct dentry *dentry; 895 896 rcu_read_lock(); 897 for (;;) { 898 dentry = list_entry_rcu(list->prev, struct dentry, d_lru); 899 if (&dentry->d_lru == list) 900 break; /* empty */ 901 902 /* 903 * Get the dentry lock, and re-verify that the dentry is 904 * this on the shrinking list. If it is, we know that 905 * DCACHE_SHRINK_LIST and DCACHE_LRU_LIST are set. 906 */ 907 spin_lock(&dentry->d_lock); 908 if (dentry != list_entry(list->prev, struct dentry, d_lru)) { 909 spin_unlock(&dentry->d_lock); 910 continue; 911 } 912 913 /* 914 * The dispose list is isolated and dentries are not accounted 915 * to the LRU here, so we can simply remove it from the list 916 * here regardless of whether it is referenced or not. 917 */ 918 d_shrink_del(dentry); 919 920 /* 921 * We found an inuse dentry which was not removed from 922 * the LRU because of laziness during lookup. Do not free it. 923 */ 924 if (dentry->d_lockref.count) { 925 spin_unlock(&dentry->d_lock); 926 continue; 927 } 928 rcu_read_unlock(); 929 930 /* 931 * If 'try_to_prune()' returns a dentry, it will 932 * be the same one we passed in, and d_lock will 933 * have been held the whole time, so it will not 934 * have been added to any other lists. We failed 935 * to get the inode lock. 936 * 937 * We just add it back to the shrink list. 938 */ 939 dentry = try_prune_one_dentry(dentry); 940 941 rcu_read_lock(); 942 if (dentry) { 943 d_shrink_add(dentry, list); 944 spin_unlock(&dentry->d_lock); 945 } 946 } 947 rcu_read_unlock(); 948 } 949 950 static enum lru_status 951 dentry_lru_isolate(struct list_head *item, spinlock_t *lru_lock, void *arg) 952 { 953 struct list_head *freeable = arg; 954 struct dentry *dentry = container_of(item, struct dentry, d_lru); 955 956 957 /* 958 * we are inverting the lru lock/dentry->d_lock here, 959 * so use a trylock. If we fail to get the lock, just skip 960 * it 961 */ 962 if (!spin_trylock(&dentry->d_lock)) 963 return LRU_SKIP; 964 965 /* 966 * Referenced dentries are still in use. If they have active 967 * counts, just remove them from the LRU. Otherwise give them 968 * another pass through the LRU. 969 */ 970 if (dentry->d_lockref.count) { 971 d_lru_isolate(dentry); 972 spin_unlock(&dentry->d_lock); 973 return LRU_REMOVED; 974 } 975 976 if (dentry->d_flags & DCACHE_REFERENCED) { 977 dentry->d_flags &= ~DCACHE_REFERENCED; 978 spin_unlock(&dentry->d_lock); 979 980 /* 981 * The list move itself will be made by the common LRU code. At 982 * this point, we've dropped the dentry->d_lock but keep the 983 * lru lock. This is safe to do, since every list movement is 984 * protected by the lru lock even if both locks are held. 985 * 986 * This is guaranteed by the fact that all LRU management 987 * functions are intermediated by the LRU API calls like 988 * list_lru_add and list_lru_del. List movement in this file 989 * only ever occur through this functions or through callbacks 990 * like this one, that are called from the LRU API. 991 * 992 * The only exceptions to this are functions like 993 * shrink_dentry_list, and code that first checks for the 994 * DCACHE_SHRINK_LIST flag. Those are guaranteed to be 995 * operating only with stack provided lists after they are 996 * properly isolated from the main list. It is thus, always a 997 * local access. 998 */ 999 return LRU_ROTATE; 1000 } 1001 1002 d_lru_shrink_move(dentry, freeable); 1003 spin_unlock(&dentry->d_lock); 1004 1005 return LRU_REMOVED; 1006 } 1007 1008 /** 1009 * prune_dcache_sb - shrink the dcache 1010 * @sb: superblock 1011 * @nr_to_scan : number of entries to try to free 1012 * @nid: which node to scan for freeable entities 1013 * 1014 * Attempt to shrink the superblock dcache LRU by @nr_to_scan entries. This is 1015 * done when we need more memory an called from the superblock shrinker 1016 * function. 1017 * 1018 * This function may fail to free any resources if all the dentries are in 1019 * use. 1020 */ 1021 long prune_dcache_sb(struct super_block *sb, unsigned long nr_to_scan, 1022 int nid) 1023 { 1024 LIST_HEAD(dispose); 1025 long freed; 1026 1027 freed = list_lru_walk_node(&sb->s_dentry_lru, nid, dentry_lru_isolate, 1028 &dispose, &nr_to_scan); 1029 shrink_dentry_list(&dispose); 1030 return freed; 1031 } 1032 1033 static enum lru_status dentry_lru_isolate_shrink(struct list_head *item, 1034 spinlock_t *lru_lock, void *arg) 1035 { 1036 struct list_head *freeable = arg; 1037 struct dentry *dentry = container_of(item, struct dentry, d_lru); 1038 1039 /* 1040 * we are inverting the lru lock/dentry->d_lock here, 1041 * so use a trylock. If we fail to get the lock, just skip 1042 * it 1043 */ 1044 if (!spin_trylock(&dentry->d_lock)) 1045 return LRU_SKIP; 1046 1047 d_lru_shrink_move(dentry, freeable); 1048 spin_unlock(&dentry->d_lock); 1049 1050 return LRU_REMOVED; 1051 } 1052 1053 1054 /** 1055 * shrink_dcache_sb - shrink dcache for a superblock 1056 * @sb: superblock 1057 * 1058 * Shrink the dcache for the specified super block. This is used to free 1059 * the dcache before unmounting a file system. 1060 */ 1061 void shrink_dcache_sb(struct super_block *sb) 1062 { 1063 long freed; 1064 1065 do { 1066 LIST_HEAD(dispose); 1067 1068 freed = list_lru_walk(&sb->s_dentry_lru, 1069 dentry_lru_isolate_shrink, &dispose, UINT_MAX); 1070 1071 this_cpu_sub(nr_dentry_unused, freed); 1072 shrink_dentry_list(&dispose); 1073 } while (freed > 0); 1074 } 1075 EXPORT_SYMBOL(shrink_dcache_sb); 1076 1077 /* 1078 * destroy a single subtree of dentries for unmount 1079 * - see the comments on shrink_dcache_for_umount() for a description of the 1080 * locking 1081 */ 1082 static void shrink_dcache_for_umount_subtree(struct dentry *dentry) 1083 { 1084 struct dentry *parent; 1085 1086 BUG_ON(!IS_ROOT(dentry)); 1087 1088 for (;;) { 1089 /* descend to the first leaf in the current subtree */ 1090 while (!list_empty(&dentry->d_subdirs)) 1091 dentry = list_entry(dentry->d_subdirs.next, 1092 struct dentry, d_u.d_child); 1093 1094 /* consume the dentries from this leaf up through its parents 1095 * until we find one with children or run out altogether */ 1096 do { 1097 struct inode *inode; 1098 1099 /* 1100 * inform the fs that this dentry is about to be 1101 * unhashed and destroyed. 1102 */ 1103 if ((dentry->d_flags & DCACHE_OP_PRUNE) && 1104 !d_unhashed(dentry)) 1105 dentry->d_op->d_prune(dentry); 1106 1107 dentry_lru_del(dentry); 1108 __d_shrink(dentry); 1109 1110 if (dentry->d_lockref.count != 0) { 1111 printk(KERN_ERR 1112 "BUG: Dentry %p{i=%lx,n=%s}" 1113 " still in use (%d)" 1114 " [unmount of %s %s]\n", 1115 dentry, 1116 dentry->d_inode ? 1117 dentry->d_inode->i_ino : 0UL, 1118 dentry->d_name.name, 1119 dentry->d_lockref.count, 1120 dentry->d_sb->s_type->name, 1121 dentry->d_sb->s_id); 1122 BUG(); 1123 } 1124 1125 if (IS_ROOT(dentry)) { 1126 parent = NULL; 1127 list_del(&dentry->d_u.d_child); 1128 } else { 1129 parent = dentry->d_parent; 1130 parent->d_lockref.count--; 1131 list_del(&dentry->d_u.d_child); 1132 } 1133 1134 inode = dentry->d_inode; 1135 if (inode) { 1136 dentry->d_inode = NULL; 1137 hlist_del_init(&dentry->d_alias); 1138 if (dentry->d_op && dentry->d_op->d_iput) 1139 dentry->d_op->d_iput(dentry, inode); 1140 else 1141 iput(inode); 1142 } 1143 1144 d_free(dentry); 1145 1146 /* finished when we fall off the top of the tree, 1147 * otherwise we ascend to the parent and move to the 1148 * next sibling if there is one */ 1149 if (!parent) 1150 return; 1151 dentry = parent; 1152 } while (list_empty(&dentry->d_subdirs)); 1153 1154 dentry = list_entry(dentry->d_subdirs.next, 1155 struct dentry, d_u.d_child); 1156 } 1157 } 1158 1159 /* 1160 * destroy the dentries attached to a superblock on unmounting 1161 * - we don't need to use dentry->d_lock because: 1162 * - the superblock is detached from all mountings and open files, so the 1163 * dentry trees will not be rearranged by the VFS 1164 * - s_umount is write-locked, so the memory pressure shrinker will ignore 1165 * any dentries belonging to this superblock that it comes across 1166 * - the filesystem itself is no longer permitted to rearrange the dentries 1167 * in this superblock 1168 */ 1169 void shrink_dcache_for_umount(struct super_block *sb) 1170 { 1171 struct dentry *dentry; 1172 1173 if (down_read_trylock(&sb->s_umount)) 1174 BUG(); 1175 1176 dentry = sb->s_root; 1177 sb->s_root = NULL; 1178 dentry->d_lockref.count--; 1179 shrink_dcache_for_umount_subtree(dentry); 1180 1181 while (!hlist_bl_empty(&sb->s_anon)) { 1182 dentry = hlist_bl_entry(hlist_bl_first(&sb->s_anon), struct dentry, d_hash); 1183 shrink_dcache_for_umount_subtree(dentry); 1184 } 1185 } 1186 1187 /* 1188 * This tries to ascend one level of parenthood, but 1189 * we can race with renaming, so we need to re-check 1190 * the parenthood after dropping the lock and check 1191 * that the sequence number still matches. 1192 */ 1193 static struct dentry *try_to_ascend(struct dentry *old, unsigned seq) 1194 { 1195 struct dentry *new = old->d_parent; 1196 1197 rcu_read_lock(); 1198 spin_unlock(&old->d_lock); 1199 spin_lock(&new->d_lock); 1200 1201 /* 1202 * might go back up the wrong parent if we have had a rename 1203 * or deletion 1204 */ 1205 if (new != old->d_parent || 1206 (old->d_flags & DCACHE_DENTRY_KILLED) || 1207 need_seqretry(&rename_lock, seq)) { 1208 spin_unlock(&new->d_lock); 1209 new = NULL; 1210 } 1211 rcu_read_unlock(); 1212 return new; 1213 } 1214 1215 /** 1216 * enum d_walk_ret - action to talke during tree walk 1217 * @D_WALK_CONTINUE: contrinue walk 1218 * @D_WALK_QUIT: quit walk 1219 * @D_WALK_NORETRY: quit when retry is needed 1220 * @D_WALK_SKIP: skip this dentry and its children 1221 */ 1222 enum d_walk_ret { 1223 D_WALK_CONTINUE, 1224 D_WALK_QUIT, 1225 D_WALK_NORETRY, 1226 D_WALK_SKIP, 1227 }; 1228 1229 /** 1230 * d_walk - walk the dentry tree 1231 * @parent: start of walk 1232 * @data: data passed to @enter() and @finish() 1233 * @enter: callback when first entering the dentry 1234 * @finish: callback when successfully finished the walk 1235 * 1236 * The @enter() and @finish() callbacks are called with d_lock held. 1237 */ 1238 static void d_walk(struct dentry *parent, void *data, 1239 enum d_walk_ret (*enter)(void *, struct dentry *), 1240 void (*finish)(void *)) 1241 { 1242 struct dentry *this_parent; 1243 struct list_head *next; 1244 unsigned seq = 0; 1245 enum d_walk_ret ret; 1246 bool retry = true; 1247 1248 again: 1249 read_seqbegin_or_lock(&rename_lock, &seq); 1250 this_parent = parent; 1251 spin_lock(&this_parent->d_lock); 1252 1253 ret = enter(data, this_parent); 1254 switch (ret) { 1255 case D_WALK_CONTINUE: 1256 break; 1257 case D_WALK_QUIT: 1258 case D_WALK_SKIP: 1259 goto out_unlock; 1260 case D_WALK_NORETRY: 1261 retry = false; 1262 break; 1263 } 1264 repeat: 1265 next = this_parent->d_subdirs.next; 1266 resume: 1267 while (next != &this_parent->d_subdirs) { 1268 struct list_head *tmp = next; 1269 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child); 1270 next = tmp->next; 1271 1272 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED); 1273 1274 ret = enter(data, dentry); 1275 switch (ret) { 1276 case D_WALK_CONTINUE: 1277 break; 1278 case D_WALK_QUIT: 1279 spin_unlock(&dentry->d_lock); 1280 goto out_unlock; 1281 case D_WALK_NORETRY: 1282 retry = false; 1283 break; 1284 case D_WALK_SKIP: 1285 spin_unlock(&dentry->d_lock); 1286 continue; 1287 } 1288 1289 if (!list_empty(&dentry->d_subdirs)) { 1290 spin_unlock(&this_parent->d_lock); 1291 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_); 1292 this_parent = dentry; 1293 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_); 1294 goto repeat; 1295 } 1296 spin_unlock(&dentry->d_lock); 1297 } 1298 /* 1299 * All done at this level ... ascend and resume the search. 1300 */ 1301 if (this_parent != parent) { 1302 struct dentry *child = this_parent; 1303 this_parent = try_to_ascend(this_parent, seq); 1304 if (!this_parent) 1305 goto rename_retry; 1306 next = child->d_u.d_child.next; 1307 goto resume; 1308 } 1309 if (need_seqretry(&rename_lock, seq)) { 1310 spin_unlock(&this_parent->d_lock); 1311 goto rename_retry; 1312 } 1313 if (finish) 1314 finish(data); 1315 1316 out_unlock: 1317 spin_unlock(&this_parent->d_lock); 1318 done_seqretry(&rename_lock, seq); 1319 return; 1320 1321 rename_retry: 1322 if (!retry) 1323 return; 1324 seq = 1; 1325 goto again; 1326 } 1327 1328 /* 1329 * Search for at least 1 mount point in the dentry's subdirs. 1330 * We descend to the next level whenever the d_subdirs 1331 * list is non-empty and continue searching. 1332 */ 1333 1334 static enum d_walk_ret check_mount(void *data, struct dentry *dentry) 1335 { 1336 int *ret = data; 1337 if (d_mountpoint(dentry)) { 1338 *ret = 1; 1339 return D_WALK_QUIT; 1340 } 1341 return D_WALK_CONTINUE; 1342 } 1343 1344 /** 1345 * have_submounts - check for mounts over a dentry 1346 * @parent: dentry to check. 1347 * 1348 * Return true if the parent or its subdirectories contain 1349 * a mount point 1350 */ 1351 int have_submounts(struct dentry *parent) 1352 { 1353 int ret = 0; 1354 1355 d_walk(parent, &ret, check_mount, NULL); 1356 1357 return ret; 1358 } 1359 EXPORT_SYMBOL(have_submounts); 1360 1361 /* 1362 * Called by mount code to set a mountpoint and check if the mountpoint is 1363 * reachable (e.g. NFS can unhash a directory dentry and then the complete 1364 * subtree can become unreachable). 1365 * 1366 * Only one of check_submounts_and_drop() and d_set_mounted() must succeed. For 1367 * this reason take rename_lock and d_lock on dentry and ancestors. 1368 */ 1369 int d_set_mounted(struct dentry *dentry) 1370 { 1371 struct dentry *p; 1372 int ret = -ENOENT; 1373 write_seqlock(&rename_lock); 1374 for (p = dentry->d_parent; !IS_ROOT(p); p = p->d_parent) { 1375 /* Need exclusion wrt. check_submounts_and_drop() */ 1376 spin_lock(&p->d_lock); 1377 if (unlikely(d_unhashed(p))) { 1378 spin_unlock(&p->d_lock); 1379 goto out; 1380 } 1381 spin_unlock(&p->d_lock); 1382 } 1383 spin_lock(&dentry->d_lock); 1384 if (!d_unlinked(dentry)) { 1385 dentry->d_flags |= DCACHE_MOUNTED; 1386 ret = 0; 1387 } 1388 spin_unlock(&dentry->d_lock); 1389 out: 1390 write_sequnlock(&rename_lock); 1391 return ret; 1392 } 1393 1394 /* 1395 * Search the dentry child list of the specified parent, 1396 * and move any unused dentries to the end of the unused 1397 * list for prune_dcache(). We descend to the next level 1398 * whenever the d_subdirs list is non-empty and continue 1399 * searching. 1400 * 1401 * It returns zero iff there are no unused children, 1402 * otherwise it returns the number of children moved to 1403 * the end of the unused list. This may not be the total 1404 * number of unused children, because select_parent can 1405 * drop the lock and return early due to latency 1406 * constraints. 1407 */ 1408 1409 struct select_data { 1410 struct dentry *start; 1411 struct list_head dispose; 1412 int found; 1413 }; 1414 1415 static enum d_walk_ret select_collect(void *_data, struct dentry *dentry) 1416 { 1417 struct select_data *data = _data; 1418 enum d_walk_ret ret = D_WALK_CONTINUE; 1419 1420 if (data->start == dentry) 1421 goto out; 1422 1423 /* 1424 * move only zero ref count dentries to the dispose list. 1425 * 1426 * Those which are presently on the shrink list, being processed 1427 * by shrink_dentry_list(), shouldn't be moved. Otherwise the 1428 * loop in shrink_dcache_parent() might not make any progress 1429 * and loop forever. 1430 */ 1431 if (dentry->d_lockref.count) { 1432 dentry_lru_del(dentry); 1433 } else if (!(dentry->d_flags & DCACHE_SHRINK_LIST)) { 1434 /* 1435 * We can't use d_lru_shrink_move() because we 1436 * need to get the global LRU lock and do the 1437 * LRU accounting. 1438 */ 1439 d_lru_del(dentry); 1440 d_shrink_add(dentry, &data->dispose); 1441 data->found++; 1442 ret = D_WALK_NORETRY; 1443 } 1444 /* 1445 * We can return to the caller if we have found some (this 1446 * ensures forward progress). We'll be coming back to find 1447 * the rest. 1448 */ 1449 if (data->found && need_resched()) 1450 ret = D_WALK_QUIT; 1451 out: 1452 return ret; 1453 } 1454 1455 /** 1456 * shrink_dcache_parent - prune dcache 1457 * @parent: parent of entries to prune 1458 * 1459 * Prune the dcache to remove unused children of the parent dentry. 1460 */ 1461 void shrink_dcache_parent(struct dentry *parent) 1462 { 1463 for (;;) { 1464 struct select_data data; 1465 1466 INIT_LIST_HEAD(&data.dispose); 1467 data.start = parent; 1468 data.found = 0; 1469 1470 d_walk(parent, &data, select_collect, NULL); 1471 if (!data.found) 1472 break; 1473 1474 shrink_dentry_list(&data.dispose); 1475 cond_resched(); 1476 } 1477 } 1478 EXPORT_SYMBOL(shrink_dcache_parent); 1479 1480 static enum d_walk_ret check_and_collect(void *_data, struct dentry *dentry) 1481 { 1482 struct select_data *data = _data; 1483 1484 if (d_mountpoint(dentry)) { 1485 data->found = -EBUSY; 1486 return D_WALK_QUIT; 1487 } 1488 1489 return select_collect(_data, dentry); 1490 } 1491 1492 static void check_and_drop(void *_data) 1493 { 1494 struct select_data *data = _data; 1495 1496 if (d_mountpoint(data->start)) 1497 data->found = -EBUSY; 1498 if (!data->found) 1499 __d_drop(data->start); 1500 } 1501 1502 /** 1503 * check_submounts_and_drop - prune dcache, check for submounts and drop 1504 * 1505 * All done as a single atomic operation relative to has_unlinked_ancestor(). 1506 * Returns 0 if successfully unhashed @parent. If there were submounts then 1507 * return -EBUSY. 1508 * 1509 * @dentry: dentry to prune and drop 1510 */ 1511 int check_submounts_and_drop(struct dentry *dentry) 1512 { 1513 int ret = 0; 1514 1515 /* Negative dentries can be dropped without further checks */ 1516 if (!dentry->d_inode) { 1517 d_drop(dentry); 1518 goto out; 1519 } 1520 1521 for (;;) { 1522 struct select_data data; 1523 1524 INIT_LIST_HEAD(&data.dispose); 1525 data.start = dentry; 1526 data.found = 0; 1527 1528 d_walk(dentry, &data, check_and_collect, check_and_drop); 1529 ret = data.found; 1530 1531 if (!list_empty(&data.dispose)) 1532 shrink_dentry_list(&data.dispose); 1533 1534 if (ret <= 0) 1535 break; 1536 1537 cond_resched(); 1538 } 1539 1540 out: 1541 return ret; 1542 } 1543 EXPORT_SYMBOL(check_submounts_and_drop); 1544 1545 /** 1546 * __d_alloc - allocate a dcache entry 1547 * @sb: filesystem it will belong to 1548 * @name: qstr of the name 1549 * 1550 * Allocates a dentry. It returns %NULL if there is insufficient memory 1551 * available. On a success the dentry is returned. The name passed in is 1552 * copied and the copy passed in may be reused after this call. 1553 */ 1554 1555 struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name) 1556 { 1557 struct dentry *dentry; 1558 char *dname; 1559 1560 dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL); 1561 if (!dentry) 1562 return NULL; 1563 1564 /* 1565 * We guarantee that the inline name is always NUL-terminated. 1566 * This way the memcpy() done by the name switching in rename 1567 * will still always have a NUL at the end, even if we might 1568 * be overwriting an internal NUL character 1569 */ 1570 dentry->d_iname[DNAME_INLINE_LEN-1] = 0; 1571 if (name->len > DNAME_INLINE_LEN-1) { 1572 dname = kmalloc(name->len + 1, GFP_KERNEL); 1573 if (!dname) { 1574 kmem_cache_free(dentry_cache, dentry); 1575 return NULL; 1576 } 1577 } else { 1578 dname = dentry->d_iname; 1579 } 1580 1581 dentry->d_name.len = name->len; 1582 dentry->d_name.hash = name->hash; 1583 memcpy(dname, name->name, name->len); 1584 dname[name->len] = 0; 1585 1586 /* Make sure we always see the terminating NUL character */ 1587 smp_wmb(); 1588 dentry->d_name.name = dname; 1589 1590 dentry->d_lockref.count = 1; 1591 dentry->d_flags = 0; 1592 spin_lock_init(&dentry->d_lock); 1593 seqcount_init(&dentry->d_seq); 1594 dentry->d_inode = NULL; 1595 dentry->d_parent = dentry; 1596 dentry->d_sb = sb; 1597 dentry->d_op = NULL; 1598 dentry->d_fsdata = NULL; 1599 INIT_HLIST_BL_NODE(&dentry->d_hash); 1600 INIT_LIST_HEAD(&dentry->d_lru); 1601 INIT_LIST_HEAD(&dentry->d_subdirs); 1602 INIT_HLIST_NODE(&dentry->d_alias); 1603 INIT_LIST_HEAD(&dentry->d_u.d_child); 1604 d_set_d_op(dentry, dentry->d_sb->s_d_op); 1605 1606 this_cpu_inc(nr_dentry); 1607 1608 return dentry; 1609 } 1610 1611 /** 1612 * d_alloc - allocate a dcache entry 1613 * @parent: parent of entry to allocate 1614 * @name: qstr of the name 1615 * 1616 * Allocates a dentry. It returns %NULL if there is insufficient memory 1617 * available. On a success the dentry is returned. The name passed in is 1618 * copied and the copy passed in may be reused after this call. 1619 */ 1620 struct dentry *d_alloc(struct dentry * parent, const struct qstr *name) 1621 { 1622 struct dentry *dentry = __d_alloc(parent->d_sb, name); 1623 if (!dentry) 1624 return NULL; 1625 1626 spin_lock(&parent->d_lock); 1627 /* 1628 * don't need child lock because it is not subject 1629 * to concurrency here 1630 */ 1631 __dget_dlock(parent); 1632 dentry->d_parent = parent; 1633 list_add(&dentry->d_u.d_child, &parent->d_subdirs); 1634 spin_unlock(&parent->d_lock); 1635 1636 return dentry; 1637 } 1638 EXPORT_SYMBOL(d_alloc); 1639 1640 struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name) 1641 { 1642 struct dentry *dentry = __d_alloc(sb, name); 1643 if (dentry) 1644 dentry->d_flags |= DCACHE_DISCONNECTED; 1645 return dentry; 1646 } 1647 EXPORT_SYMBOL(d_alloc_pseudo); 1648 1649 struct dentry *d_alloc_name(struct dentry *parent, const char *name) 1650 { 1651 struct qstr q; 1652 1653 q.name = name; 1654 q.len = strlen(name); 1655 q.hash = full_name_hash(q.name, q.len); 1656 return d_alloc(parent, &q); 1657 } 1658 EXPORT_SYMBOL(d_alloc_name); 1659 1660 void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op) 1661 { 1662 WARN_ON_ONCE(dentry->d_op); 1663 WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH | 1664 DCACHE_OP_COMPARE | 1665 DCACHE_OP_REVALIDATE | 1666 DCACHE_OP_WEAK_REVALIDATE | 1667 DCACHE_OP_DELETE )); 1668 dentry->d_op = op; 1669 if (!op) 1670 return; 1671 if (op->d_hash) 1672 dentry->d_flags |= DCACHE_OP_HASH; 1673 if (op->d_compare) 1674 dentry->d_flags |= DCACHE_OP_COMPARE; 1675 if (op->d_revalidate) 1676 dentry->d_flags |= DCACHE_OP_REVALIDATE; 1677 if (op->d_weak_revalidate) 1678 dentry->d_flags |= DCACHE_OP_WEAK_REVALIDATE; 1679 if (op->d_delete) 1680 dentry->d_flags |= DCACHE_OP_DELETE; 1681 if (op->d_prune) 1682 dentry->d_flags |= DCACHE_OP_PRUNE; 1683 1684 } 1685 EXPORT_SYMBOL(d_set_d_op); 1686 1687 static void __d_instantiate(struct dentry *dentry, struct inode *inode) 1688 { 1689 spin_lock(&dentry->d_lock); 1690 if (inode) { 1691 if (unlikely(IS_AUTOMOUNT(inode))) 1692 dentry->d_flags |= DCACHE_NEED_AUTOMOUNT; 1693 hlist_add_head(&dentry->d_alias, &inode->i_dentry); 1694 } 1695 dentry->d_inode = inode; 1696 dentry_rcuwalk_barrier(dentry); 1697 spin_unlock(&dentry->d_lock); 1698 fsnotify_d_instantiate(dentry, inode); 1699 } 1700 1701 /** 1702 * d_instantiate - fill in inode information for a dentry 1703 * @entry: dentry to complete 1704 * @inode: inode to attach to this dentry 1705 * 1706 * Fill in inode information in the entry. 1707 * 1708 * This turns negative dentries into productive full members 1709 * of society. 1710 * 1711 * NOTE! This assumes that the inode count has been incremented 1712 * (or otherwise set) by the caller to indicate that it is now 1713 * in use by the dcache. 1714 */ 1715 1716 void d_instantiate(struct dentry *entry, struct inode * inode) 1717 { 1718 BUG_ON(!hlist_unhashed(&entry->d_alias)); 1719 if (inode) 1720 spin_lock(&inode->i_lock); 1721 __d_instantiate(entry, inode); 1722 if (inode) 1723 spin_unlock(&inode->i_lock); 1724 security_d_instantiate(entry, inode); 1725 } 1726 EXPORT_SYMBOL(d_instantiate); 1727 1728 /** 1729 * d_instantiate_unique - instantiate a non-aliased dentry 1730 * @entry: dentry to instantiate 1731 * @inode: inode to attach to this dentry 1732 * 1733 * Fill in inode information in the entry. On success, it returns NULL. 1734 * If an unhashed alias of "entry" already exists, then we return the 1735 * aliased dentry instead and drop one reference to inode. 1736 * 1737 * Note that in order to avoid conflicts with rename() etc, the caller 1738 * had better be holding the parent directory semaphore. 1739 * 1740 * This also assumes that the inode count has been incremented 1741 * (or otherwise set) by the caller to indicate that it is now 1742 * in use by the dcache. 1743 */ 1744 static struct dentry *__d_instantiate_unique(struct dentry *entry, 1745 struct inode *inode) 1746 { 1747 struct dentry *alias; 1748 int len = entry->d_name.len; 1749 const char *name = entry->d_name.name; 1750 unsigned int hash = entry->d_name.hash; 1751 1752 if (!inode) { 1753 __d_instantiate(entry, NULL); 1754 return NULL; 1755 } 1756 1757 hlist_for_each_entry(alias, &inode->i_dentry, d_alias) { 1758 /* 1759 * Don't need alias->d_lock here, because aliases with 1760 * d_parent == entry->d_parent are not subject to name or 1761 * parent changes, because the parent inode i_mutex is held. 1762 */ 1763 if (alias->d_name.hash != hash) 1764 continue; 1765 if (alias->d_parent != entry->d_parent) 1766 continue; 1767 if (alias->d_name.len != len) 1768 continue; 1769 if (dentry_cmp(alias, name, len)) 1770 continue; 1771 __dget(alias); 1772 return alias; 1773 } 1774 1775 __d_instantiate(entry, inode); 1776 return NULL; 1777 } 1778 1779 struct dentry *d_instantiate_unique(struct dentry *entry, struct inode *inode) 1780 { 1781 struct dentry *result; 1782 1783 BUG_ON(!hlist_unhashed(&entry->d_alias)); 1784 1785 if (inode) 1786 spin_lock(&inode->i_lock); 1787 result = __d_instantiate_unique(entry, inode); 1788 if (inode) 1789 spin_unlock(&inode->i_lock); 1790 1791 if (!result) { 1792 security_d_instantiate(entry, inode); 1793 return NULL; 1794 } 1795 1796 BUG_ON(!d_unhashed(result)); 1797 iput(inode); 1798 return result; 1799 } 1800 1801 EXPORT_SYMBOL(d_instantiate_unique); 1802 1803 struct dentry *d_make_root(struct inode *root_inode) 1804 { 1805 struct dentry *res = NULL; 1806 1807 if (root_inode) { 1808 static const struct qstr name = QSTR_INIT("/", 1); 1809 1810 res = __d_alloc(root_inode->i_sb, &name); 1811 if (res) 1812 d_instantiate(res, root_inode); 1813 else 1814 iput(root_inode); 1815 } 1816 return res; 1817 } 1818 EXPORT_SYMBOL(d_make_root); 1819 1820 static struct dentry * __d_find_any_alias(struct inode *inode) 1821 { 1822 struct dentry *alias; 1823 1824 if (hlist_empty(&inode->i_dentry)) 1825 return NULL; 1826 alias = hlist_entry(inode->i_dentry.first, struct dentry, d_alias); 1827 __dget(alias); 1828 return alias; 1829 } 1830 1831 /** 1832 * d_find_any_alias - find any alias for a given inode 1833 * @inode: inode to find an alias for 1834 * 1835 * If any aliases exist for the given inode, take and return a 1836 * reference for one of them. If no aliases exist, return %NULL. 1837 */ 1838 struct dentry *d_find_any_alias(struct inode *inode) 1839 { 1840 struct dentry *de; 1841 1842 spin_lock(&inode->i_lock); 1843 de = __d_find_any_alias(inode); 1844 spin_unlock(&inode->i_lock); 1845 return de; 1846 } 1847 EXPORT_SYMBOL(d_find_any_alias); 1848 1849 /** 1850 * d_obtain_alias - find or allocate a dentry for a given inode 1851 * @inode: inode to allocate the dentry for 1852 * 1853 * Obtain a dentry for an inode resulting from NFS filehandle conversion or 1854 * similar open by handle operations. The returned dentry may be anonymous, 1855 * or may have a full name (if the inode was already in the cache). 1856 * 1857 * When called on a directory inode, we must ensure that the inode only ever 1858 * has one dentry. If a dentry is found, that is returned instead of 1859 * allocating a new one. 1860 * 1861 * On successful return, the reference to the inode has been transferred 1862 * to the dentry. In case of an error the reference on the inode is released. 1863 * To make it easier to use in export operations a %NULL or IS_ERR inode may 1864 * be passed in and will be the error will be propagate to the return value, 1865 * with a %NULL @inode replaced by ERR_PTR(-ESTALE). 1866 */ 1867 struct dentry *d_obtain_alias(struct inode *inode) 1868 { 1869 static const struct qstr anonstring = QSTR_INIT("/", 1); 1870 struct dentry *tmp; 1871 struct dentry *res; 1872 1873 if (!inode) 1874 return ERR_PTR(-ESTALE); 1875 if (IS_ERR(inode)) 1876 return ERR_CAST(inode); 1877 1878 res = d_find_any_alias(inode); 1879 if (res) 1880 goto out_iput; 1881 1882 tmp = __d_alloc(inode->i_sb, &anonstring); 1883 if (!tmp) { 1884 res = ERR_PTR(-ENOMEM); 1885 goto out_iput; 1886 } 1887 1888 spin_lock(&inode->i_lock); 1889 res = __d_find_any_alias(inode); 1890 if (res) { 1891 spin_unlock(&inode->i_lock); 1892 dput(tmp); 1893 goto out_iput; 1894 } 1895 1896 /* attach a disconnected dentry */ 1897 spin_lock(&tmp->d_lock); 1898 tmp->d_inode = inode; 1899 tmp->d_flags |= DCACHE_DISCONNECTED; 1900 hlist_add_head(&tmp->d_alias, &inode->i_dentry); 1901 hlist_bl_lock(&tmp->d_sb->s_anon); 1902 hlist_bl_add_head(&tmp->d_hash, &tmp->d_sb->s_anon); 1903 hlist_bl_unlock(&tmp->d_sb->s_anon); 1904 spin_unlock(&tmp->d_lock); 1905 spin_unlock(&inode->i_lock); 1906 security_d_instantiate(tmp, inode); 1907 1908 return tmp; 1909 1910 out_iput: 1911 if (res && !IS_ERR(res)) 1912 security_d_instantiate(res, inode); 1913 iput(inode); 1914 return res; 1915 } 1916 EXPORT_SYMBOL(d_obtain_alias); 1917 1918 /** 1919 * d_splice_alias - splice a disconnected dentry into the tree if one exists 1920 * @inode: the inode which may have a disconnected dentry 1921 * @dentry: a negative dentry which we want to point to the inode. 1922 * 1923 * If inode is a directory and has a 'disconnected' dentry (i.e. IS_ROOT and 1924 * DCACHE_DISCONNECTED), then d_move that in place of the given dentry 1925 * and return it, else simply d_add the inode to the dentry and return NULL. 1926 * 1927 * This is needed in the lookup routine of any filesystem that is exportable 1928 * (via knfsd) so that we can build dcache paths to directories effectively. 1929 * 1930 * If a dentry was found and moved, then it is returned. Otherwise NULL 1931 * is returned. This matches the expected return value of ->lookup. 1932 * 1933 * Cluster filesystems may call this function with a negative, hashed dentry. 1934 * In that case, we know that the inode will be a regular file, and also this 1935 * will only occur during atomic_open. So we need to check for the dentry 1936 * being already hashed only in the final case. 1937 */ 1938 struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry) 1939 { 1940 struct dentry *new = NULL; 1941 1942 if (IS_ERR(inode)) 1943 return ERR_CAST(inode); 1944 1945 if (inode && S_ISDIR(inode->i_mode)) { 1946 spin_lock(&inode->i_lock); 1947 new = __d_find_alias(inode, 1); 1948 if (new) { 1949 BUG_ON(!(new->d_flags & DCACHE_DISCONNECTED)); 1950 spin_unlock(&inode->i_lock); 1951 security_d_instantiate(new, inode); 1952 d_move(new, dentry); 1953 iput(inode); 1954 } else { 1955 /* already taking inode->i_lock, so d_add() by hand */ 1956 __d_instantiate(dentry, inode); 1957 spin_unlock(&inode->i_lock); 1958 security_d_instantiate(dentry, inode); 1959 d_rehash(dentry); 1960 } 1961 } else { 1962 d_instantiate(dentry, inode); 1963 if (d_unhashed(dentry)) 1964 d_rehash(dentry); 1965 } 1966 return new; 1967 } 1968 EXPORT_SYMBOL(d_splice_alias); 1969 1970 /** 1971 * d_add_ci - lookup or allocate new dentry with case-exact name 1972 * @inode: the inode case-insensitive lookup has found 1973 * @dentry: the negative dentry that was passed to the parent's lookup func 1974 * @name: the case-exact name to be associated with the returned dentry 1975 * 1976 * This is to avoid filling the dcache with case-insensitive names to the 1977 * same inode, only the actual correct case is stored in the dcache for 1978 * case-insensitive filesystems. 1979 * 1980 * For a case-insensitive lookup match and if the the case-exact dentry 1981 * already exists in in the dcache, use it and return it. 1982 * 1983 * If no entry exists with the exact case name, allocate new dentry with 1984 * the exact case, and return the spliced entry. 1985 */ 1986 struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode, 1987 struct qstr *name) 1988 { 1989 struct dentry *found; 1990 struct dentry *new; 1991 1992 /* 1993 * First check if a dentry matching the name already exists, 1994 * if not go ahead and create it now. 1995 */ 1996 found = d_hash_and_lookup(dentry->d_parent, name); 1997 if (unlikely(IS_ERR(found))) 1998 goto err_out; 1999 if (!found) { 2000 new = d_alloc(dentry->d_parent, name); 2001 if (!new) { 2002 found = ERR_PTR(-ENOMEM); 2003 goto err_out; 2004 } 2005 2006 found = d_splice_alias(inode, new); 2007 if (found) { 2008 dput(new); 2009 return found; 2010 } 2011 return new; 2012 } 2013 2014 /* 2015 * If a matching dentry exists, and it's not negative use it. 2016 * 2017 * Decrement the reference count to balance the iget() done 2018 * earlier on. 2019 */ 2020 if (found->d_inode) { 2021 if (unlikely(found->d_inode != inode)) { 2022 /* This can't happen because bad inodes are unhashed. */ 2023 BUG_ON(!is_bad_inode(inode)); 2024 BUG_ON(!is_bad_inode(found->d_inode)); 2025 } 2026 iput(inode); 2027 return found; 2028 } 2029 2030 /* 2031 * Negative dentry: instantiate it unless the inode is a directory and 2032 * already has a dentry. 2033 */ 2034 new = d_splice_alias(inode, found); 2035 if (new) { 2036 dput(found); 2037 found = new; 2038 } 2039 return found; 2040 2041 err_out: 2042 iput(inode); 2043 return found; 2044 } 2045 EXPORT_SYMBOL(d_add_ci); 2046 2047 /* 2048 * Do the slow-case of the dentry name compare. 2049 * 2050 * Unlike the dentry_cmp() function, we need to atomically 2051 * load the name and length information, so that the 2052 * filesystem can rely on them, and can use the 'name' and 2053 * 'len' information without worrying about walking off the 2054 * end of memory etc. 2055 * 2056 * Thus the read_seqcount_retry() and the "duplicate" info 2057 * in arguments (the low-level filesystem should not look 2058 * at the dentry inode or name contents directly, since 2059 * rename can change them while we're in RCU mode). 2060 */ 2061 enum slow_d_compare { 2062 D_COMP_OK, 2063 D_COMP_NOMATCH, 2064 D_COMP_SEQRETRY, 2065 }; 2066 2067 static noinline enum slow_d_compare slow_dentry_cmp( 2068 const struct dentry *parent, 2069 struct dentry *dentry, 2070 unsigned int seq, 2071 const struct qstr *name) 2072 { 2073 int tlen = dentry->d_name.len; 2074 const char *tname = dentry->d_name.name; 2075 2076 if (read_seqcount_retry(&dentry->d_seq, seq)) { 2077 cpu_relax(); 2078 return D_COMP_SEQRETRY; 2079 } 2080 if (parent->d_op->d_compare(parent, dentry, tlen, tname, name)) 2081 return D_COMP_NOMATCH; 2082 return D_COMP_OK; 2083 } 2084 2085 /** 2086 * __d_lookup_rcu - search for a dentry (racy, store-free) 2087 * @parent: parent dentry 2088 * @name: qstr of name we wish to find 2089 * @seqp: returns d_seq value at the point where the dentry was found 2090 * Returns: dentry, or NULL 2091 * 2092 * __d_lookup_rcu is the dcache lookup function for rcu-walk name 2093 * resolution (store-free path walking) design described in 2094 * Documentation/filesystems/path-lookup.txt. 2095 * 2096 * This is not to be used outside core vfs. 2097 * 2098 * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock 2099 * held, and rcu_read_lock held. The returned dentry must not be stored into 2100 * without taking d_lock and checking d_seq sequence count against @seq 2101 * returned here. 2102 * 2103 * A refcount may be taken on the found dentry with the d_rcu_to_refcount 2104 * function. 2105 * 2106 * Alternatively, __d_lookup_rcu may be called again to look up the child of 2107 * the returned dentry, so long as its parent's seqlock is checked after the 2108 * child is looked up. Thus, an interlocking stepping of sequence lock checks 2109 * is formed, giving integrity down the path walk. 2110 * 2111 * NOTE! The caller *has* to check the resulting dentry against the sequence 2112 * number we've returned before using any of the resulting dentry state! 2113 */ 2114 struct dentry *__d_lookup_rcu(const struct dentry *parent, 2115 const struct qstr *name, 2116 unsigned *seqp) 2117 { 2118 u64 hashlen = name->hash_len; 2119 const unsigned char *str = name->name; 2120 struct hlist_bl_head *b = d_hash(parent, hashlen_hash(hashlen)); 2121 struct hlist_bl_node *node; 2122 struct dentry *dentry; 2123 2124 /* 2125 * Note: There is significant duplication with __d_lookup_rcu which is 2126 * required to prevent single threaded performance regressions 2127 * especially on architectures where smp_rmb (in seqcounts) are costly. 2128 * Keep the two functions in sync. 2129 */ 2130 2131 /* 2132 * The hash list is protected using RCU. 2133 * 2134 * Carefully use d_seq when comparing a candidate dentry, to avoid 2135 * races with d_move(). 2136 * 2137 * It is possible that concurrent renames can mess up our list 2138 * walk here and result in missing our dentry, resulting in the 2139 * false-negative result. d_lookup() protects against concurrent 2140 * renames using rename_lock seqlock. 2141 * 2142 * See Documentation/filesystems/path-lookup.txt for more details. 2143 */ 2144 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) { 2145 unsigned seq; 2146 2147 seqretry: 2148 /* 2149 * The dentry sequence count protects us from concurrent 2150 * renames, and thus protects parent and name fields. 2151 * 2152 * The caller must perform a seqcount check in order 2153 * to do anything useful with the returned dentry. 2154 * 2155 * NOTE! We do a "raw" seqcount_begin here. That means that 2156 * we don't wait for the sequence count to stabilize if it 2157 * is in the middle of a sequence change. If we do the slow 2158 * dentry compare, we will do seqretries until it is stable, 2159 * and if we end up with a successful lookup, we actually 2160 * want to exit RCU lookup anyway. 2161 */ 2162 seq = raw_seqcount_begin(&dentry->d_seq); 2163 if (dentry->d_parent != parent) 2164 continue; 2165 if (d_unhashed(dentry)) 2166 continue; 2167 2168 if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) { 2169 if (dentry->d_name.hash != hashlen_hash(hashlen)) 2170 continue; 2171 *seqp = seq; 2172 switch (slow_dentry_cmp(parent, dentry, seq, name)) { 2173 case D_COMP_OK: 2174 return dentry; 2175 case D_COMP_NOMATCH: 2176 continue; 2177 default: 2178 goto seqretry; 2179 } 2180 } 2181 2182 if (dentry->d_name.hash_len != hashlen) 2183 continue; 2184 *seqp = seq; 2185 if (!dentry_cmp(dentry, str, hashlen_len(hashlen))) 2186 return dentry; 2187 } 2188 return NULL; 2189 } 2190 2191 /** 2192 * d_lookup - search for a dentry 2193 * @parent: parent dentry 2194 * @name: qstr of name we wish to find 2195 * Returns: dentry, or NULL 2196 * 2197 * d_lookup searches the children of the parent dentry for the name in 2198 * question. If the dentry is found its reference count is incremented and the 2199 * dentry is returned. The caller must use dput to free the entry when it has 2200 * finished using it. %NULL is returned if the dentry does not exist. 2201 */ 2202 struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name) 2203 { 2204 struct dentry *dentry; 2205 unsigned seq; 2206 2207 do { 2208 seq = read_seqbegin(&rename_lock); 2209 dentry = __d_lookup(parent, name); 2210 if (dentry) 2211 break; 2212 } while (read_seqretry(&rename_lock, seq)); 2213 return dentry; 2214 } 2215 EXPORT_SYMBOL(d_lookup); 2216 2217 /** 2218 * __d_lookup - search for a dentry (racy) 2219 * @parent: parent dentry 2220 * @name: qstr of name we wish to find 2221 * Returns: dentry, or NULL 2222 * 2223 * __d_lookup is like d_lookup, however it may (rarely) return a 2224 * false-negative result due to unrelated rename activity. 2225 * 2226 * __d_lookup is slightly faster by avoiding rename_lock read seqlock, 2227 * however it must be used carefully, eg. with a following d_lookup in 2228 * the case of failure. 2229 * 2230 * __d_lookup callers must be commented. 2231 */ 2232 struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name) 2233 { 2234 unsigned int len = name->len; 2235 unsigned int hash = name->hash; 2236 const unsigned char *str = name->name; 2237 struct hlist_bl_head *b = d_hash(parent, hash); 2238 struct hlist_bl_node *node; 2239 struct dentry *found = NULL; 2240 struct dentry *dentry; 2241 2242 /* 2243 * Note: There is significant duplication with __d_lookup_rcu which is 2244 * required to prevent single threaded performance regressions 2245 * especially on architectures where smp_rmb (in seqcounts) are costly. 2246 * Keep the two functions in sync. 2247 */ 2248 2249 /* 2250 * The hash list is protected using RCU. 2251 * 2252 * Take d_lock when comparing a candidate dentry, to avoid races 2253 * with d_move(). 2254 * 2255 * It is possible that concurrent renames can mess up our list 2256 * walk here and result in missing our dentry, resulting in the 2257 * false-negative result. d_lookup() protects against concurrent 2258 * renames using rename_lock seqlock. 2259 * 2260 * See Documentation/filesystems/path-lookup.txt for more details. 2261 */ 2262 rcu_read_lock(); 2263 2264 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) { 2265 2266 if (dentry->d_name.hash != hash) 2267 continue; 2268 2269 spin_lock(&dentry->d_lock); 2270 if (dentry->d_parent != parent) 2271 goto next; 2272 if (d_unhashed(dentry)) 2273 goto next; 2274 2275 /* 2276 * It is safe to compare names since d_move() cannot 2277 * change the qstr (protected by d_lock). 2278 */ 2279 if (parent->d_flags & DCACHE_OP_COMPARE) { 2280 int tlen = dentry->d_name.len; 2281 const char *tname = dentry->d_name.name; 2282 if (parent->d_op->d_compare(parent, dentry, tlen, tname, name)) 2283 goto next; 2284 } else { 2285 if (dentry->d_name.len != len) 2286 goto next; 2287 if (dentry_cmp(dentry, str, len)) 2288 goto next; 2289 } 2290 2291 dentry->d_lockref.count++; 2292 found = dentry; 2293 spin_unlock(&dentry->d_lock); 2294 break; 2295 next: 2296 spin_unlock(&dentry->d_lock); 2297 } 2298 rcu_read_unlock(); 2299 2300 return found; 2301 } 2302 2303 /** 2304 * d_hash_and_lookup - hash the qstr then search for a dentry 2305 * @dir: Directory to search in 2306 * @name: qstr of name we wish to find 2307 * 2308 * On lookup failure NULL is returned; on bad name - ERR_PTR(-error) 2309 */ 2310 struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name) 2311 { 2312 /* 2313 * Check for a fs-specific hash function. Note that we must 2314 * calculate the standard hash first, as the d_op->d_hash() 2315 * routine may choose to leave the hash value unchanged. 2316 */ 2317 name->hash = full_name_hash(name->name, name->len); 2318 if (dir->d_flags & DCACHE_OP_HASH) { 2319 int err = dir->d_op->d_hash(dir, name); 2320 if (unlikely(err < 0)) 2321 return ERR_PTR(err); 2322 } 2323 return d_lookup(dir, name); 2324 } 2325 EXPORT_SYMBOL(d_hash_and_lookup); 2326 2327 /** 2328 * d_validate - verify dentry provided from insecure source (deprecated) 2329 * @dentry: The dentry alleged to be valid child of @dparent 2330 * @dparent: The parent dentry (known to be valid) 2331 * 2332 * An insecure source has sent us a dentry, here we verify it and dget() it. 2333 * This is used by ncpfs in its readdir implementation. 2334 * Zero is returned in the dentry is invalid. 2335 * 2336 * This function is slow for big directories, and deprecated, do not use it. 2337 */ 2338 int d_validate(struct dentry *dentry, struct dentry *dparent) 2339 { 2340 struct dentry *child; 2341 2342 spin_lock(&dparent->d_lock); 2343 list_for_each_entry(child, &dparent->d_subdirs, d_u.d_child) { 2344 if (dentry == child) { 2345 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED); 2346 __dget_dlock(dentry); 2347 spin_unlock(&dentry->d_lock); 2348 spin_unlock(&dparent->d_lock); 2349 return 1; 2350 } 2351 } 2352 spin_unlock(&dparent->d_lock); 2353 2354 return 0; 2355 } 2356 EXPORT_SYMBOL(d_validate); 2357 2358 /* 2359 * When a file is deleted, we have two options: 2360 * - turn this dentry into a negative dentry 2361 * - unhash this dentry and free it. 2362 * 2363 * Usually, we want to just turn this into 2364 * a negative dentry, but if anybody else is 2365 * currently using the dentry or the inode 2366 * we can't do that and we fall back on removing 2367 * it from the hash queues and waiting for 2368 * it to be deleted later when it has no users 2369 */ 2370 2371 /** 2372 * d_delete - delete a dentry 2373 * @dentry: The dentry to delete 2374 * 2375 * Turn the dentry into a negative dentry if possible, otherwise 2376 * remove it from the hash queues so it can be deleted later 2377 */ 2378 2379 void d_delete(struct dentry * dentry) 2380 { 2381 struct inode *inode; 2382 int isdir = 0; 2383 /* 2384 * Are we the only user? 2385 */ 2386 again: 2387 spin_lock(&dentry->d_lock); 2388 inode = dentry->d_inode; 2389 isdir = S_ISDIR(inode->i_mode); 2390 if (dentry->d_lockref.count == 1) { 2391 if (!spin_trylock(&inode->i_lock)) { 2392 spin_unlock(&dentry->d_lock); 2393 cpu_relax(); 2394 goto again; 2395 } 2396 dentry->d_flags &= ~DCACHE_CANT_MOUNT; 2397 dentry_unlink_inode(dentry); 2398 fsnotify_nameremove(dentry, isdir); 2399 return; 2400 } 2401 2402 if (!d_unhashed(dentry)) 2403 __d_drop(dentry); 2404 2405 spin_unlock(&dentry->d_lock); 2406 2407 fsnotify_nameremove(dentry, isdir); 2408 } 2409 EXPORT_SYMBOL(d_delete); 2410 2411 static void __d_rehash(struct dentry * entry, struct hlist_bl_head *b) 2412 { 2413 BUG_ON(!d_unhashed(entry)); 2414 hlist_bl_lock(b); 2415 entry->d_flags |= DCACHE_RCUACCESS; 2416 hlist_bl_add_head_rcu(&entry->d_hash, b); 2417 hlist_bl_unlock(b); 2418 } 2419 2420 static void _d_rehash(struct dentry * entry) 2421 { 2422 __d_rehash(entry, d_hash(entry->d_parent, entry->d_name.hash)); 2423 } 2424 2425 /** 2426 * d_rehash - add an entry back to the hash 2427 * @entry: dentry to add to the hash 2428 * 2429 * Adds a dentry to the hash according to its name. 2430 */ 2431 2432 void d_rehash(struct dentry * entry) 2433 { 2434 spin_lock(&entry->d_lock); 2435 _d_rehash(entry); 2436 spin_unlock(&entry->d_lock); 2437 } 2438 EXPORT_SYMBOL(d_rehash); 2439 2440 /** 2441 * dentry_update_name_case - update case insensitive dentry with a new name 2442 * @dentry: dentry to be updated 2443 * @name: new name 2444 * 2445 * Update a case insensitive dentry with new case of name. 2446 * 2447 * dentry must have been returned by d_lookup with name @name. Old and new 2448 * name lengths must match (ie. no d_compare which allows mismatched name 2449 * lengths). 2450 * 2451 * Parent inode i_mutex must be held over d_lookup and into this call (to 2452 * keep renames and concurrent inserts, and readdir(2) away). 2453 */ 2454 void dentry_update_name_case(struct dentry *dentry, struct qstr *name) 2455 { 2456 BUG_ON(!mutex_is_locked(&dentry->d_parent->d_inode->i_mutex)); 2457 BUG_ON(dentry->d_name.len != name->len); /* d_lookup gives this */ 2458 2459 spin_lock(&dentry->d_lock); 2460 write_seqcount_begin(&dentry->d_seq); 2461 memcpy((unsigned char *)dentry->d_name.name, name->name, name->len); 2462 write_seqcount_end(&dentry->d_seq); 2463 spin_unlock(&dentry->d_lock); 2464 } 2465 EXPORT_SYMBOL(dentry_update_name_case); 2466 2467 static void switch_names(struct dentry *dentry, struct dentry *target) 2468 { 2469 if (dname_external(target)) { 2470 if (dname_external(dentry)) { 2471 /* 2472 * Both external: swap the pointers 2473 */ 2474 swap(target->d_name.name, dentry->d_name.name); 2475 } else { 2476 /* 2477 * dentry:internal, target:external. Steal target's 2478 * storage and make target internal. 2479 */ 2480 memcpy(target->d_iname, dentry->d_name.name, 2481 dentry->d_name.len + 1); 2482 dentry->d_name.name = target->d_name.name; 2483 target->d_name.name = target->d_iname; 2484 } 2485 } else { 2486 if (dname_external(dentry)) { 2487 /* 2488 * dentry:external, target:internal. Give dentry's 2489 * storage to target and make dentry internal 2490 */ 2491 memcpy(dentry->d_iname, target->d_name.name, 2492 target->d_name.len + 1); 2493 target->d_name.name = dentry->d_name.name; 2494 dentry->d_name.name = dentry->d_iname; 2495 } else { 2496 /* 2497 * Both are internal. Just copy target to dentry 2498 */ 2499 memcpy(dentry->d_iname, target->d_name.name, 2500 target->d_name.len + 1); 2501 dentry->d_name.len = target->d_name.len; 2502 return; 2503 } 2504 } 2505 swap(dentry->d_name.len, target->d_name.len); 2506 } 2507 2508 static void dentry_lock_for_move(struct dentry *dentry, struct dentry *target) 2509 { 2510 /* 2511 * XXXX: do we really need to take target->d_lock? 2512 */ 2513 if (IS_ROOT(dentry) || dentry->d_parent == target->d_parent) 2514 spin_lock(&target->d_parent->d_lock); 2515 else { 2516 if (d_ancestor(dentry->d_parent, target->d_parent)) { 2517 spin_lock(&dentry->d_parent->d_lock); 2518 spin_lock_nested(&target->d_parent->d_lock, 2519 DENTRY_D_LOCK_NESTED); 2520 } else { 2521 spin_lock(&target->d_parent->d_lock); 2522 spin_lock_nested(&dentry->d_parent->d_lock, 2523 DENTRY_D_LOCK_NESTED); 2524 } 2525 } 2526 if (target < dentry) { 2527 spin_lock_nested(&target->d_lock, 2); 2528 spin_lock_nested(&dentry->d_lock, 3); 2529 } else { 2530 spin_lock_nested(&dentry->d_lock, 2); 2531 spin_lock_nested(&target->d_lock, 3); 2532 } 2533 } 2534 2535 static void dentry_unlock_parents_for_move(struct dentry *dentry, 2536 struct dentry *target) 2537 { 2538 if (target->d_parent != dentry->d_parent) 2539 spin_unlock(&dentry->d_parent->d_lock); 2540 if (target->d_parent != target) 2541 spin_unlock(&target->d_parent->d_lock); 2542 } 2543 2544 /* 2545 * When switching names, the actual string doesn't strictly have to 2546 * be preserved in the target - because we're dropping the target 2547 * anyway. As such, we can just do a simple memcpy() to copy over 2548 * the new name before we switch. 2549 * 2550 * Note that we have to be a lot more careful about getting the hash 2551 * switched - we have to switch the hash value properly even if it 2552 * then no longer matches the actual (corrupted) string of the target. 2553 * The hash value has to match the hash queue that the dentry is on.. 2554 */ 2555 /* 2556 * __d_move - move a dentry 2557 * @dentry: entry to move 2558 * @target: new dentry 2559 * 2560 * Update the dcache to reflect the move of a file name. Negative 2561 * dcache entries should not be moved in this way. Caller must hold 2562 * rename_lock, the i_mutex of the source and target directories, 2563 * and the sb->s_vfs_rename_mutex if they differ. See lock_rename(). 2564 */ 2565 static void __d_move(struct dentry * dentry, struct dentry * target) 2566 { 2567 if (!dentry->d_inode) 2568 printk(KERN_WARNING "VFS: moving negative dcache entry\n"); 2569 2570 BUG_ON(d_ancestor(dentry, target)); 2571 BUG_ON(d_ancestor(target, dentry)); 2572 2573 dentry_lock_for_move(dentry, target); 2574 2575 write_seqcount_begin(&dentry->d_seq); 2576 write_seqcount_begin(&target->d_seq); 2577 2578 /* __d_drop does write_seqcount_barrier, but they're OK to nest. */ 2579 2580 /* 2581 * Move the dentry to the target hash queue. Don't bother checking 2582 * for the same hash queue because of how unlikely it is. 2583 */ 2584 __d_drop(dentry); 2585 __d_rehash(dentry, d_hash(target->d_parent, target->d_name.hash)); 2586 2587 /* Unhash the target: dput() will then get rid of it */ 2588 __d_drop(target); 2589 2590 list_del(&dentry->d_u.d_child); 2591 list_del(&target->d_u.d_child); 2592 2593 /* Switch the names.. */ 2594 switch_names(dentry, target); 2595 swap(dentry->d_name.hash, target->d_name.hash); 2596 2597 /* ... and switch the parents */ 2598 if (IS_ROOT(dentry)) { 2599 dentry->d_parent = target->d_parent; 2600 target->d_parent = target; 2601 INIT_LIST_HEAD(&target->d_u.d_child); 2602 } else { 2603 swap(dentry->d_parent, target->d_parent); 2604 2605 /* And add them back to the (new) parent lists */ 2606 list_add(&target->d_u.d_child, &target->d_parent->d_subdirs); 2607 } 2608 2609 list_add(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs); 2610 2611 write_seqcount_end(&target->d_seq); 2612 write_seqcount_end(&dentry->d_seq); 2613 2614 dentry_unlock_parents_for_move(dentry, target); 2615 spin_unlock(&target->d_lock); 2616 fsnotify_d_move(dentry); 2617 spin_unlock(&dentry->d_lock); 2618 } 2619 2620 /* 2621 * d_move - move a dentry 2622 * @dentry: entry to move 2623 * @target: new dentry 2624 * 2625 * Update the dcache to reflect the move of a file name. Negative 2626 * dcache entries should not be moved in this way. See the locking 2627 * requirements for __d_move. 2628 */ 2629 void d_move(struct dentry *dentry, struct dentry *target) 2630 { 2631 write_seqlock(&rename_lock); 2632 __d_move(dentry, target); 2633 write_sequnlock(&rename_lock); 2634 } 2635 EXPORT_SYMBOL(d_move); 2636 2637 /** 2638 * d_ancestor - search for an ancestor 2639 * @p1: ancestor dentry 2640 * @p2: child dentry 2641 * 2642 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is 2643 * an ancestor of p2, else NULL. 2644 */ 2645 struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2) 2646 { 2647 struct dentry *p; 2648 2649 for (p = p2; !IS_ROOT(p); p = p->d_parent) { 2650 if (p->d_parent == p1) 2651 return p; 2652 } 2653 return NULL; 2654 } 2655 2656 /* 2657 * This helper attempts to cope with remotely renamed directories 2658 * 2659 * It assumes that the caller is already holding 2660 * dentry->d_parent->d_inode->i_mutex, inode->i_lock and rename_lock 2661 * 2662 * Note: If ever the locking in lock_rename() changes, then please 2663 * remember to update this too... 2664 */ 2665 static struct dentry *__d_unalias(struct inode *inode, 2666 struct dentry *dentry, struct dentry *alias) 2667 { 2668 struct mutex *m1 = NULL, *m2 = NULL; 2669 struct dentry *ret = ERR_PTR(-EBUSY); 2670 2671 /* If alias and dentry share a parent, then no extra locks required */ 2672 if (alias->d_parent == dentry->d_parent) 2673 goto out_unalias; 2674 2675 /* See lock_rename() */ 2676 if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex)) 2677 goto out_err; 2678 m1 = &dentry->d_sb->s_vfs_rename_mutex; 2679 if (!mutex_trylock(&alias->d_parent->d_inode->i_mutex)) 2680 goto out_err; 2681 m2 = &alias->d_parent->d_inode->i_mutex; 2682 out_unalias: 2683 if (likely(!d_mountpoint(alias))) { 2684 __d_move(alias, dentry); 2685 ret = alias; 2686 } 2687 out_err: 2688 spin_unlock(&inode->i_lock); 2689 if (m2) 2690 mutex_unlock(m2); 2691 if (m1) 2692 mutex_unlock(m1); 2693 return ret; 2694 } 2695 2696 /* 2697 * Prepare an anonymous dentry for life in the superblock's dentry tree as a 2698 * named dentry in place of the dentry to be replaced. 2699 * returns with anon->d_lock held! 2700 */ 2701 static void __d_materialise_dentry(struct dentry *dentry, struct dentry *anon) 2702 { 2703 struct dentry *dparent; 2704 2705 dentry_lock_for_move(anon, dentry); 2706 2707 write_seqcount_begin(&dentry->d_seq); 2708 write_seqcount_begin(&anon->d_seq); 2709 2710 dparent = dentry->d_parent; 2711 2712 switch_names(dentry, anon); 2713 swap(dentry->d_name.hash, anon->d_name.hash); 2714 2715 dentry->d_parent = dentry; 2716 list_del_init(&dentry->d_u.d_child); 2717 anon->d_parent = dparent; 2718 list_move(&anon->d_u.d_child, &dparent->d_subdirs); 2719 2720 write_seqcount_end(&dentry->d_seq); 2721 write_seqcount_end(&anon->d_seq); 2722 2723 dentry_unlock_parents_for_move(anon, dentry); 2724 spin_unlock(&dentry->d_lock); 2725 2726 /* anon->d_lock still locked, returns locked */ 2727 anon->d_flags &= ~DCACHE_DISCONNECTED; 2728 } 2729 2730 /** 2731 * d_materialise_unique - introduce an inode into the tree 2732 * @dentry: candidate dentry 2733 * @inode: inode to bind to the dentry, to which aliases may be attached 2734 * 2735 * Introduces an dentry into the tree, substituting an extant disconnected 2736 * root directory alias in its place if there is one. Caller must hold the 2737 * i_mutex of the parent directory. 2738 */ 2739 struct dentry *d_materialise_unique(struct dentry *dentry, struct inode *inode) 2740 { 2741 struct dentry *actual; 2742 2743 BUG_ON(!d_unhashed(dentry)); 2744 2745 if (!inode) { 2746 actual = dentry; 2747 __d_instantiate(dentry, NULL); 2748 d_rehash(actual); 2749 goto out_nolock; 2750 } 2751 2752 spin_lock(&inode->i_lock); 2753 2754 if (S_ISDIR(inode->i_mode)) { 2755 struct dentry *alias; 2756 2757 /* Does an aliased dentry already exist? */ 2758 alias = __d_find_alias(inode, 0); 2759 if (alias) { 2760 actual = alias; 2761 write_seqlock(&rename_lock); 2762 2763 if (d_ancestor(alias, dentry)) { 2764 /* Check for loops */ 2765 actual = ERR_PTR(-ELOOP); 2766 spin_unlock(&inode->i_lock); 2767 } else if (IS_ROOT(alias)) { 2768 /* Is this an anonymous mountpoint that we 2769 * could splice into our tree? */ 2770 __d_materialise_dentry(dentry, alias); 2771 write_sequnlock(&rename_lock); 2772 __d_drop(alias); 2773 goto found; 2774 } else { 2775 /* Nope, but we must(!) avoid directory 2776 * aliasing. This drops inode->i_lock */ 2777 actual = __d_unalias(inode, dentry, alias); 2778 } 2779 write_sequnlock(&rename_lock); 2780 if (IS_ERR(actual)) { 2781 if (PTR_ERR(actual) == -ELOOP) 2782 pr_warn_ratelimited( 2783 "VFS: Lookup of '%s' in %s %s" 2784 " would have caused loop\n", 2785 dentry->d_name.name, 2786 inode->i_sb->s_type->name, 2787 inode->i_sb->s_id); 2788 dput(alias); 2789 } 2790 goto out_nolock; 2791 } 2792 } 2793 2794 /* Add a unique reference */ 2795 actual = __d_instantiate_unique(dentry, inode); 2796 if (!actual) 2797 actual = dentry; 2798 else 2799 BUG_ON(!d_unhashed(actual)); 2800 2801 spin_lock(&actual->d_lock); 2802 found: 2803 _d_rehash(actual); 2804 spin_unlock(&actual->d_lock); 2805 spin_unlock(&inode->i_lock); 2806 out_nolock: 2807 if (actual == dentry) { 2808 security_d_instantiate(dentry, inode); 2809 return NULL; 2810 } 2811 2812 iput(inode); 2813 return actual; 2814 } 2815 EXPORT_SYMBOL_GPL(d_materialise_unique); 2816 2817 static int prepend(char **buffer, int *buflen, const char *str, int namelen) 2818 { 2819 *buflen -= namelen; 2820 if (*buflen < 0) 2821 return -ENAMETOOLONG; 2822 *buffer -= namelen; 2823 memcpy(*buffer, str, namelen); 2824 return 0; 2825 } 2826 2827 /** 2828 * prepend_name - prepend a pathname in front of current buffer pointer 2829 * @buffer: buffer pointer 2830 * @buflen: allocated length of the buffer 2831 * @name: name string and length qstr structure 2832 * 2833 * With RCU path tracing, it may race with d_move(). Use ACCESS_ONCE() to 2834 * make sure that either the old or the new name pointer and length are 2835 * fetched. However, there may be mismatch between length and pointer. 2836 * The length cannot be trusted, we need to copy it byte-by-byte until 2837 * the length is reached or a null byte is found. It also prepends "/" at 2838 * the beginning of the name. The sequence number check at the caller will 2839 * retry it again when a d_move() does happen. So any garbage in the buffer 2840 * due to mismatched pointer and length will be discarded. 2841 */ 2842 static int prepend_name(char **buffer, int *buflen, struct qstr *name) 2843 { 2844 const char *dname = ACCESS_ONCE(name->name); 2845 u32 dlen = ACCESS_ONCE(name->len); 2846 char *p; 2847 2848 if (*buflen < dlen + 1) 2849 return -ENAMETOOLONG; 2850 *buflen -= dlen + 1; 2851 p = *buffer -= dlen + 1; 2852 *p++ = '/'; 2853 while (dlen--) { 2854 char c = *dname++; 2855 if (!c) 2856 break; 2857 *p++ = c; 2858 } 2859 return 0; 2860 } 2861 2862 /** 2863 * prepend_path - Prepend path string to a buffer 2864 * @path: the dentry/vfsmount to report 2865 * @root: root vfsmnt/dentry 2866 * @buffer: pointer to the end of the buffer 2867 * @buflen: pointer to buffer length 2868 * 2869 * The function will first try to write out the pathname without taking any 2870 * lock other than the RCU read lock to make sure that dentries won't go away. 2871 * It only checks the sequence number of the global rename_lock as any change 2872 * in the dentry's d_seq will be preceded by changes in the rename_lock 2873 * sequence number. If the sequence number had been changed, it will restart 2874 * the whole pathname back-tracing sequence again by taking the rename_lock. 2875 * In this case, there is no need to take the RCU read lock as the recursive 2876 * parent pointer references will keep the dentry chain alive as long as no 2877 * rename operation is performed. 2878 */ 2879 static int prepend_path(const struct path *path, 2880 const struct path *root, 2881 char **buffer, int *buflen) 2882 { 2883 struct dentry *dentry = path->dentry; 2884 struct vfsmount *vfsmnt = path->mnt; 2885 struct mount *mnt = real_mount(vfsmnt); 2886 int error = 0; 2887 unsigned seq = 0; 2888 char *bptr; 2889 int blen; 2890 2891 rcu_read_lock(); 2892 restart: 2893 bptr = *buffer; 2894 blen = *buflen; 2895 read_seqbegin_or_lock(&rename_lock, &seq); 2896 while (dentry != root->dentry || vfsmnt != root->mnt) { 2897 struct dentry * parent; 2898 2899 if (dentry == vfsmnt->mnt_root || IS_ROOT(dentry)) { 2900 /* Global root? */ 2901 if (mnt_has_parent(mnt)) { 2902 dentry = mnt->mnt_mountpoint; 2903 mnt = mnt->mnt_parent; 2904 vfsmnt = &mnt->mnt; 2905 continue; 2906 } 2907 /* 2908 * Filesystems needing to implement special "root names" 2909 * should do so with ->d_dname() 2910 */ 2911 if (IS_ROOT(dentry) && 2912 (dentry->d_name.len != 1 || 2913 dentry->d_name.name[0] != '/')) { 2914 WARN(1, "Root dentry has weird name <%.*s>\n", 2915 (int) dentry->d_name.len, 2916 dentry->d_name.name); 2917 } 2918 if (!error) 2919 error = is_mounted(vfsmnt) ? 1 : 2; 2920 break; 2921 } 2922 parent = dentry->d_parent; 2923 prefetch(parent); 2924 error = prepend_name(&bptr, &blen, &dentry->d_name); 2925 if (error) 2926 break; 2927 2928 dentry = parent; 2929 } 2930 if (!(seq & 1)) 2931 rcu_read_unlock(); 2932 if (need_seqretry(&rename_lock, seq)) { 2933 seq = 1; 2934 goto restart; 2935 } 2936 done_seqretry(&rename_lock, seq); 2937 2938 if (error >= 0 && bptr == *buffer) { 2939 if (--blen < 0) 2940 error = -ENAMETOOLONG; 2941 else 2942 *--bptr = '/'; 2943 } 2944 *buffer = bptr; 2945 *buflen = blen; 2946 return error; 2947 } 2948 2949 /** 2950 * __d_path - return the path of a dentry 2951 * @path: the dentry/vfsmount to report 2952 * @root: root vfsmnt/dentry 2953 * @buf: buffer to return value in 2954 * @buflen: buffer length 2955 * 2956 * Convert a dentry into an ASCII path name. 2957 * 2958 * Returns a pointer into the buffer or an error code if the 2959 * path was too long. 2960 * 2961 * "buflen" should be positive. 2962 * 2963 * If the path is not reachable from the supplied root, return %NULL. 2964 */ 2965 char *__d_path(const struct path *path, 2966 const struct path *root, 2967 char *buf, int buflen) 2968 { 2969 char *res = buf + buflen; 2970 int error; 2971 2972 prepend(&res, &buflen, "\0", 1); 2973 br_read_lock(&vfsmount_lock); 2974 error = prepend_path(path, root, &res, &buflen); 2975 br_read_unlock(&vfsmount_lock); 2976 2977 if (error < 0) 2978 return ERR_PTR(error); 2979 if (error > 0) 2980 return NULL; 2981 return res; 2982 } 2983 2984 char *d_absolute_path(const struct path *path, 2985 char *buf, int buflen) 2986 { 2987 struct path root = {}; 2988 char *res = buf + buflen; 2989 int error; 2990 2991 prepend(&res, &buflen, "\0", 1); 2992 br_read_lock(&vfsmount_lock); 2993 error = prepend_path(path, &root, &res, &buflen); 2994 br_read_unlock(&vfsmount_lock); 2995 2996 if (error > 1) 2997 error = -EINVAL; 2998 if (error < 0) 2999 return ERR_PTR(error); 3000 return res; 3001 } 3002 3003 /* 3004 * same as __d_path but appends "(deleted)" for unlinked files. 3005 */ 3006 static int path_with_deleted(const struct path *path, 3007 const struct path *root, 3008 char **buf, int *buflen) 3009 { 3010 prepend(buf, buflen, "\0", 1); 3011 if (d_unlinked(path->dentry)) { 3012 int error = prepend(buf, buflen, " (deleted)", 10); 3013 if (error) 3014 return error; 3015 } 3016 3017 return prepend_path(path, root, buf, buflen); 3018 } 3019 3020 static int prepend_unreachable(char **buffer, int *buflen) 3021 { 3022 return prepend(buffer, buflen, "(unreachable)", 13); 3023 } 3024 3025 static void get_fs_root_rcu(struct fs_struct *fs, struct path *root) 3026 { 3027 unsigned seq; 3028 3029 do { 3030 seq = read_seqcount_begin(&fs->seq); 3031 *root = fs->root; 3032 } while (read_seqcount_retry(&fs->seq, seq)); 3033 } 3034 3035 /** 3036 * d_path - return the path of a dentry 3037 * @path: path to report 3038 * @buf: buffer to return value in 3039 * @buflen: buffer length 3040 * 3041 * Convert a dentry into an ASCII path name. If the entry has been deleted 3042 * the string " (deleted)" is appended. Note that this is ambiguous. 3043 * 3044 * Returns a pointer into the buffer or an error code if the path was 3045 * too long. Note: Callers should use the returned pointer, not the passed 3046 * in buffer, to use the name! The implementation often starts at an offset 3047 * into the buffer, and may leave 0 bytes at the start. 3048 * 3049 * "buflen" should be positive. 3050 */ 3051 char *d_path(const struct path *path, char *buf, int buflen) 3052 { 3053 char *res = buf + buflen; 3054 struct path root; 3055 int error; 3056 3057 /* 3058 * We have various synthetic filesystems that never get mounted. On 3059 * these filesystems dentries are never used for lookup purposes, and 3060 * thus don't need to be hashed. They also don't need a name until a 3061 * user wants to identify the object in /proc/pid/fd/. The little hack 3062 * below allows us to generate a name for these objects on demand: 3063 */ 3064 if (path->dentry->d_op && path->dentry->d_op->d_dname) 3065 return path->dentry->d_op->d_dname(path->dentry, buf, buflen); 3066 3067 rcu_read_lock(); 3068 get_fs_root_rcu(current->fs, &root); 3069 br_read_lock(&vfsmount_lock); 3070 error = path_with_deleted(path, &root, &res, &buflen); 3071 br_read_unlock(&vfsmount_lock); 3072 rcu_read_unlock(); 3073 3074 if (error < 0) 3075 res = ERR_PTR(error); 3076 return res; 3077 } 3078 EXPORT_SYMBOL(d_path); 3079 3080 /* 3081 * Helper function for dentry_operations.d_dname() members 3082 */ 3083 char *dynamic_dname(struct dentry *dentry, char *buffer, int buflen, 3084 const char *fmt, ...) 3085 { 3086 va_list args; 3087 char temp[64]; 3088 int sz; 3089 3090 va_start(args, fmt); 3091 sz = vsnprintf(temp, sizeof(temp), fmt, args) + 1; 3092 va_end(args); 3093 3094 if (sz > sizeof(temp) || sz > buflen) 3095 return ERR_PTR(-ENAMETOOLONG); 3096 3097 buffer += buflen - sz; 3098 return memcpy(buffer, temp, sz); 3099 } 3100 3101 char *simple_dname(struct dentry *dentry, char *buffer, int buflen) 3102 { 3103 char *end = buffer + buflen; 3104 /* these dentries are never renamed, so d_lock is not needed */ 3105 if (prepend(&end, &buflen, " (deleted)", 11) || 3106 prepend(&end, &buflen, dentry->d_name.name, dentry->d_name.len) || 3107 prepend(&end, &buflen, "/", 1)) 3108 end = ERR_PTR(-ENAMETOOLONG); 3109 return end; 3110 } 3111 3112 /* 3113 * Write full pathname from the root of the filesystem into the buffer. 3114 */ 3115 static char *__dentry_path(struct dentry *dentry, char *buf, int buflen) 3116 { 3117 char *end, *retval; 3118 int len, seq = 0; 3119 int error = 0; 3120 3121 rcu_read_lock(); 3122 restart: 3123 end = buf + buflen; 3124 len = buflen; 3125 prepend(&end, &len, "\0", 1); 3126 if (buflen < 1) 3127 goto Elong; 3128 /* Get '/' right */ 3129 retval = end-1; 3130 *retval = '/'; 3131 read_seqbegin_or_lock(&rename_lock, &seq); 3132 while (!IS_ROOT(dentry)) { 3133 struct dentry *parent = dentry->d_parent; 3134 int error; 3135 3136 prefetch(parent); 3137 error = prepend_name(&end, &len, &dentry->d_name); 3138 if (error) 3139 break; 3140 3141 retval = end; 3142 dentry = parent; 3143 } 3144 if (!(seq & 1)) 3145 rcu_read_unlock(); 3146 if (need_seqretry(&rename_lock, seq)) { 3147 seq = 1; 3148 goto restart; 3149 } 3150 done_seqretry(&rename_lock, seq); 3151 if (error) 3152 goto Elong; 3153 return retval; 3154 Elong: 3155 return ERR_PTR(-ENAMETOOLONG); 3156 } 3157 3158 char *dentry_path_raw(struct dentry *dentry, char *buf, int buflen) 3159 { 3160 return __dentry_path(dentry, buf, buflen); 3161 } 3162 EXPORT_SYMBOL(dentry_path_raw); 3163 3164 char *dentry_path(struct dentry *dentry, char *buf, int buflen) 3165 { 3166 char *p = NULL; 3167 char *retval; 3168 3169 if (d_unlinked(dentry)) { 3170 p = buf + buflen; 3171 if (prepend(&p, &buflen, "//deleted", 10) != 0) 3172 goto Elong; 3173 buflen++; 3174 } 3175 retval = __dentry_path(dentry, buf, buflen); 3176 if (!IS_ERR(retval) && p) 3177 *p = '/'; /* restore '/' overriden with '\0' */ 3178 return retval; 3179 Elong: 3180 return ERR_PTR(-ENAMETOOLONG); 3181 } 3182 3183 static void get_fs_root_and_pwd_rcu(struct fs_struct *fs, struct path *root, 3184 struct path *pwd) 3185 { 3186 unsigned seq; 3187 3188 do { 3189 seq = read_seqcount_begin(&fs->seq); 3190 *root = fs->root; 3191 *pwd = fs->pwd; 3192 } while (read_seqcount_retry(&fs->seq, seq)); 3193 } 3194 3195 /* 3196 * NOTE! The user-level library version returns a 3197 * character pointer. The kernel system call just 3198 * returns the length of the buffer filled (which 3199 * includes the ending '\0' character), or a negative 3200 * error value. So libc would do something like 3201 * 3202 * char *getcwd(char * buf, size_t size) 3203 * { 3204 * int retval; 3205 * 3206 * retval = sys_getcwd(buf, size); 3207 * if (retval >= 0) 3208 * return buf; 3209 * errno = -retval; 3210 * return NULL; 3211 * } 3212 */ 3213 SYSCALL_DEFINE2(getcwd, char __user *, buf, unsigned long, size) 3214 { 3215 int error; 3216 struct path pwd, root; 3217 char *page = __getname(); 3218 3219 if (!page) 3220 return -ENOMEM; 3221 3222 rcu_read_lock(); 3223 get_fs_root_and_pwd_rcu(current->fs, &root, &pwd); 3224 3225 error = -ENOENT; 3226 br_read_lock(&vfsmount_lock); 3227 if (!d_unlinked(pwd.dentry)) { 3228 unsigned long len; 3229 char *cwd = page + PATH_MAX; 3230 int buflen = PATH_MAX; 3231 3232 prepend(&cwd, &buflen, "\0", 1); 3233 error = prepend_path(&pwd, &root, &cwd, &buflen); 3234 br_read_unlock(&vfsmount_lock); 3235 rcu_read_unlock(); 3236 3237 if (error < 0) 3238 goto out; 3239 3240 /* Unreachable from current root */ 3241 if (error > 0) { 3242 error = prepend_unreachable(&cwd, &buflen); 3243 if (error) 3244 goto out; 3245 } 3246 3247 error = -ERANGE; 3248 len = PATH_MAX + page - cwd; 3249 if (len <= size) { 3250 error = len; 3251 if (copy_to_user(buf, cwd, len)) 3252 error = -EFAULT; 3253 } 3254 } else { 3255 br_read_unlock(&vfsmount_lock); 3256 rcu_read_unlock(); 3257 } 3258 3259 out: 3260 __putname(page); 3261 return error; 3262 } 3263 3264 /* 3265 * Test whether new_dentry is a subdirectory of old_dentry. 3266 * 3267 * Trivially implemented using the dcache structure 3268 */ 3269 3270 /** 3271 * is_subdir - is new dentry a subdirectory of old_dentry 3272 * @new_dentry: new dentry 3273 * @old_dentry: old dentry 3274 * 3275 * Returns 1 if new_dentry is a subdirectory of the parent (at any depth). 3276 * Returns 0 otherwise. 3277 * Caller must ensure that "new_dentry" is pinned before calling is_subdir() 3278 */ 3279 3280 int is_subdir(struct dentry *new_dentry, struct dentry *old_dentry) 3281 { 3282 int result; 3283 unsigned seq; 3284 3285 if (new_dentry == old_dentry) 3286 return 1; 3287 3288 do { 3289 /* for restarting inner loop in case of seq retry */ 3290 seq = read_seqbegin(&rename_lock); 3291 /* 3292 * Need rcu_readlock to protect against the d_parent trashing 3293 * due to d_move 3294 */ 3295 rcu_read_lock(); 3296 if (d_ancestor(old_dentry, new_dentry)) 3297 result = 1; 3298 else 3299 result = 0; 3300 rcu_read_unlock(); 3301 } while (read_seqretry(&rename_lock, seq)); 3302 3303 return result; 3304 } 3305 3306 static enum d_walk_ret d_genocide_kill(void *data, struct dentry *dentry) 3307 { 3308 struct dentry *root = data; 3309 if (dentry != root) { 3310 if (d_unhashed(dentry) || !dentry->d_inode) 3311 return D_WALK_SKIP; 3312 3313 if (!(dentry->d_flags & DCACHE_GENOCIDE)) { 3314 dentry->d_flags |= DCACHE_GENOCIDE; 3315 dentry->d_lockref.count--; 3316 } 3317 } 3318 return D_WALK_CONTINUE; 3319 } 3320 3321 void d_genocide(struct dentry *parent) 3322 { 3323 d_walk(parent, parent, d_genocide_kill, NULL); 3324 } 3325 3326 void d_tmpfile(struct dentry *dentry, struct inode *inode) 3327 { 3328 inode_dec_link_count(inode); 3329 BUG_ON(dentry->d_name.name != dentry->d_iname || 3330 !hlist_unhashed(&dentry->d_alias) || 3331 !d_unlinked(dentry)); 3332 spin_lock(&dentry->d_parent->d_lock); 3333 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED); 3334 dentry->d_name.len = sprintf(dentry->d_iname, "#%llu", 3335 (unsigned long long)inode->i_ino); 3336 spin_unlock(&dentry->d_lock); 3337 spin_unlock(&dentry->d_parent->d_lock); 3338 d_instantiate(dentry, inode); 3339 } 3340 EXPORT_SYMBOL(d_tmpfile); 3341 3342 static __initdata unsigned long dhash_entries; 3343 static int __init set_dhash_entries(char *str) 3344 { 3345 if (!str) 3346 return 0; 3347 dhash_entries = simple_strtoul(str, &str, 0); 3348 return 1; 3349 } 3350 __setup("dhash_entries=", set_dhash_entries); 3351 3352 static void __init dcache_init_early(void) 3353 { 3354 unsigned int loop; 3355 3356 /* If hashes are distributed across NUMA nodes, defer 3357 * hash allocation until vmalloc space is available. 3358 */ 3359 if (hashdist) 3360 return; 3361 3362 dentry_hashtable = 3363 alloc_large_system_hash("Dentry cache", 3364 sizeof(struct hlist_bl_head), 3365 dhash_entries, 3366 13, 3367 HASH_EARLY, 3368 &d_hash_shift, 3369 &d_hash_mask, 3370 0, 3371 0); 3372 3373 for (loop = 0; loop < (1U << d_hash_shift); loop++) 3374 INIT_HLIST_BL_HEAD(dentry_hashtable + loop); 3375 } 3376 3377 static void __init dcache_init(void) 3378 { 3379 unsigned int loop; 3380 3381 /* 3382 * A constructor could be added for stable state like the lists, 3383 * but it is probably not worth it because of the cache nature 3384 * of the dcache. 3385 */ 3386 dentry_cache = KMEM_CACHE(dentry, 3387 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD); 3388 3389 /* Hash may have been set up in dcache_init_early */ 3390 if (!hashdist) 3391 return; 3392 3393 dentry_hashtable = 3394 alloc_large_system_hash("Dentry cache", 3395 sizeof(struct hlist_bl_head), 3396 dhash_entries, 3397 13, 3398 0, 3399 &d_hash_shift, 3400 &d_hash_mask, 3401 0, 3402 0); 3403 3404 for (loop = 0; loop < (1U << d_hash_shift); loop++) 3405 INIT_HLIST_BL_HEAD(dentry_hashtable + loop); 3406 } 3407 3408 /* SLAB cache for __getname() consumers */ 3409 struct kmem_cache *names_cachep __read_mostly; 3410 EXPORT_SYMBOL(names_cachep); 3411 3412 EXPORT_SYMBOL(d_genocide); 3413 3414 void __init vfs_caches_init_early(void) 3415 { 3416 dcache_init_early(); 3417 inode_init_early(); 3418 } 3419 3420 void __init vfs_caches_init(unsigned long mempages) 3421 { 3422 unsigned long reserve; 3423 3424 /* Base hash sizes on available memory, with a reserve equal to 3425 150% of current kernel size */ 3426 3427 reserve = min((mempages - nr_free_pages()) * 3/2, mempages - 1); 3428 mempages -= reserve; 3429 3430 names_cachep = kmem_cache_create("names_cache", PATH_MAX, 0, 3431 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL); 3432 3433 dcache_init(); 3434 inode_init(); 3435 files_init(mempages); 3436 mnt_init(); 3437 bdev_cache_init(); 3438 chrdev_init(); 3439 } 3440