xref: /openbmc/linux/fs/dcache.c (revision f15cbe6f1a4b4d9df59142fc8e4abb973302cf44)
1 /*
2  * fs/dcache.c
3  *
4  * Complete reimplementation
5  * (C) 1997 Thomas Schoebel-Theuer,
6  * with heavy changes by Linus Torvalds
7  */
8 
9 /*
10  * Notes on the allocation strategy:
11  *
12  * The dcache is a master of the icache - whenever a dcache entry
13  * exists, the inode will always exist. "iput()" is done either when
14  * the dcache entry is deleted or garbage collected.
15  */
16 
17 #include <linux/syscalls.h>
18 #include <linux/string.h>
19 #include <linux/mm.h>
20 #include <linux/fdtable.h>
21 #include <linux/fs.h>
22 #include <linux/fsnotify.h>
23 #include <linux/slab.h>
24 #include <linux/init.h>
25 #include <linux/hash.h>
26 #include <linux/cache.h>
27 #include <linux/module.h>
28 #include <linux/mount.h>
29 #include <linux/file.h>
30 #include <asm/uaccess.h>
31 #include <linux/security.h>
32 #include <linux/seqlock.h>
33 #include <linux/swap.h>
34 #include <linux/bootmem.h>
35 #include "internal.h"
36 
37 
38 int sysctl_vfs_cache_pressure __read_mostly = 100;
39 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
40 
41  __cacheline_aligned_in_smp DEFINE_SPINLOCK(dcache_lock);
42 __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
43 
44 EXPORT_SYMBOL(dcache_lock);
45 
46 static struct kmem_cache *dentry_cache __read_mostly;
47 
48 #define DNAME_INLINE_LEN (sizeof(struct dentry)-offsetof(struct dentry,d_iname))
49 
50 /*
51  * This is the single most critical data structure when it comes
52  * to the dcache: the hashtable for lookups. Somebody should try
53  * to make this good - I've just made it work.
54  *
55  * This hash-function tries to avoid losing too many bits of hash
56  * information, yet avoid using a prime hash-size or similar.
57  */
58 #define D_HASHBITS     d_hash_shift
59 #define D_HASHMASK     d_hash_mask
60 
61 static unsigned int d_hash_mask __read_mostly;
62 static unsigned int d_hash_shift __read_mostly;
63 static struct hlist_head *dentry_hashtable __read_mostly;
64 
65 /* Statistics gathering. */
66 struct dentry_stat_t dentry_stat = {
67 	.age_limit = 45,
68 };
69 
70 static void __d_free(struct dentry *dentry)
71 {
72 	if (dname_external(dentry))
73 		kfree(dentry->d_name.name);
74 	kmem_cache_free(dentry_cache, dentry);
75 }
76 
77 static void d_callback(struct rcu_head *head)
78 {
79 	struct dentry * dentry = container_of(head, struct dentry, d_u.d_rcu);
80 	__d_free(dentry);
81 }
82 
83 /*
84  * no dcache_lock, please.  The caller must decrement dentry_stat.nr_dentry
85  * inside dcache_lock.
86  */
87 static void d_free(struct dentry *dentry)
88 {
89 	if (dentry->d_op && dentry->d_op->d_release)
90 		dentry->d_op->d_release(dentry);
91 	/* if dentry was never inserted into hash, immediate free is OK */
92 	if (hlist_unhashed(&dentry->d_hash))
93 		__d_free(dentry);
94 	else
95 		call_rcu(&dentry->d_u.d_rcu, d_callback);
96 }
97 
98 /*
99  * Release the dentry's inode, using the filesystem
100  * d_iput() operation if defined.
101  */
102 static void dentry_iput(struct dentry * dentry)
103 	__releases(dentry->d_lock)
104 	__releases(dcache_lock)
105 {
106 	struct inode *inode = dentry->d_inode;
107 	if (inode) {
108 		dentry->d_inode = NULL;
109 		list_del_init(&dentry->d_alias);
110 		spin_unlock(&dentry->d_lock);
111 		spin_unlock(&dcache_lock);
112 		if (!inode->i_nlink)
113 			fsnotify_inoderemove(inode);
114 		if (dentry->d_op && dentry->d_op->d_iput)
115 			dentry->d_op->d_iput(dentry, inode);
116 		else
117 			iput(inode);
118 	} else {
119 		spin_unlock(&dentry->d_lock);
120 		spin_unlock(&dcache_lock);
121 	}
122 }
123 
124 /*
125  * dentry_lru_(add|add_tail|del|del_init) must be called with dcache_lock held.
126  */
127 static void dentry_lru_add(struct dentry *dentry)
128 {
129 	list_add(&dentry->d_lru, &dentry->d_sb->s_dentry_lru);
130 	dentry->d_sb->s_nr_dentry_unused++;
131 	dentry_stat.nr_unused++;
132 }
133 
134 static void dentry_lru_add_tail(struct dentry *dentry)
135 {
136 	list_add_tail(&dentry->d_lru, &dentry->d_sb->s_dentry_lru);
137 	dentry->d_sb->s_nr_dentry_unused++;
138 	dentry_stat.nr_unused++;
139 }
140 
141 static void dentry_lru_del(struct dentry *dentry)
142 {
143 	if (!list_empty(&dentry->d_lru)) {
144 		list_del(&dentry->d_lru);
145 		dentry->d_sb->s_nr_dentry_unused--;
146 		dentry_stat.nr_unused--;
147 	}
148 }
149 
150 static void dentry_lru_del_init(struct dentry *dentry)
151 {
152 	if (likely(!list_empty(&dentry->d_lru))) {
153 		list_del_init(&dentry->d_lru);
154 		dentry->d_sb->s_nr_dentry_unused--;
155 		dentry_stat.nr_unused--;
156 	}
157 }
158 
159 /**
160  * d_kill - kill dentry and return parent
161  * @dentry: dentry to kill
162  *
163  * The dentry must already be unhashed and removed from the LRU.
164  *
165  * If this is the root of the dentry tree, return NULL.
166  */
167 static struct dentry *d_kill(struct dentry *dentry)
168 	__releases(dentry->d_lock)
169 	__releases(dcache_lock)
170 {
171 	struct dentry *parent;
172 
173 	list_del(&dentry->d_u.d_child);
174 	dentry_stat.nr_dentry--;	/* For d_free, below */
175 	/*drops the locks, at that point nobody can reach this dentry */
176 	dentry_iput(dentry);
177 	parent = dentry->d_parent;
178 	d_free(dentry);
179 	return dentry == parent ? NULL : parent;
180 }
181 
182 /*
183  * This is dput
184  *
185  * This is complicated by the fact that we do not want to put
186  * dentries that are no longer on any hash chain on the unused
187  * list: we'd much rather just get rid of them immediately.
188  *
189  * However, that implies that we have to traverse the dentry
190  * tree upwards to the parents which might _also_ now be
191  * scheduled for deletion (it may have been only waiting for
192  * its last child to go away).
193  *
194  * This tail recursion is done by hand as we don't want to depend
195  * on the compiler to always get this right (gcc generally doesn't).
196  * Real recursion would eat up our stack space.
197  */
198 
199 /*
200  * dput - release a dentry
201  * @dentry: dentry to release
202  *
203  * Release a dentry. This will drop the usage count and if appropriate
204  * call the dentry unlink method as well as removing it from the queues and
205  * releasing its resources. If the parent dentries were scheduled for release
206  * they too may now get deleted.
207  *
208  * no dcache lock, please.
209  */
210 
211 void dput(struct dentry *dentry)
212 {
213 	if (!dentry)
214 		return;
215 
216 repeat:
217 	if (atomic_read(&dentry->d_count) == 1)
218 		might_sleep();
219 	if (!atomic_dec_and_lock(&dentry->d_count, &dcache_lock))
220 		return;
221 
222 	spin_lock(&dentry->d_lock);
223 	if (atomic_read(&dentry->d_count)) {
224 		spin_unlock(&dentry->d_lock);
225 		spin_unlock(&dcache_lock);
226 		return;
227 	}
228 
229 	/*
230 	 * AV: ->d_delete() is _NOT_ allowed to block now.
231 	 */
232 	if (dentry->d_op && dentry->d_op->d_delete) {
233 		if (dentry->d_op->d_delete(dentry))
234 			goto unhash_it;
235 	}
236 	/* Unreachable? Get rid of it */
237  	if (d_unhashed(dentry))
238 		goto kill_it;
239   	if (list_empty(&dentry->d_lru)) {
240   		dentry->d_flags |= DCACHE_REFERENCED;
241 		dentry_lru_add(dentry);
242   	}
243  	spin_unlock(&dentry->d_lock);
244 	spin_unlock(&dcache_lock);
245 	return;
246 
247 unhash_it:
248 	__d_drop(dentry);
249 kill_it:
250 	/* if dentry was on the d_lru list delete it from there */
251 	dentry_lru_del(dentry);
252 	dentry = d_kill(dentry);
253 	if (dentry)
254 		goto repeat;
255 }
256 
257 /**
258  * d_invalidate - invalidate a dentry
259  * @dentry: dentry to invalidate
260  *
261  * Try to invalidate the dentry if it turns out to be
262  * possible. If there are other dentries that can be
263  * reached through this one we can't delete it and we
264  * return -EBUSY. On success we return 0.
265  *
266  * no dcache lock.
267  */
268 
269 int d_invalidate(struct dentry * dentry)
270 {
271 	/*
272 	 * If it's already been dropped, return OK.
273 	 */
274 	spin_lock(&dcache_lock);
275 	if (d_unhashed(dentry)) {
276 		spin_unlock(&dcache_lock);
277 		return 0;
278 	}
279 	/*
280 	 * Check whether to do a partial shrink_dcache
281 	 * to get rid of unused child entries.
282 	 */
283 	if (!list_empty(&dentry->d_subdirs)) {
284 		spin_unlock(&dcache_lock);
285 		shrink_dcache_parent(dentry);
286 		spin_lock(&dcache_lock);
287 	}
288 
289 	/*
290 	 * Somebody else still using it?
291 	 *
292 	 * If it's a directory, we can't drop it
293 	 * for fear of somebody re-populating it
294 	 * with children (even though dropping it
295 	 * would make it unreachable from the root,
296 	 * we might still populate it if it was a
297 	 * working directory or similar).
298 	 */
299 	spin_lock(&dentry->d_lock);
300 	if (atomic_read(&dentry->d_count) > 1) {
301 		if (dentry->d_inode && S_ISDIR(dentry->d_inode->i_mode)) {
302 			spin_unlock(&dentry->d_lock);
303 			spin_unlock(&dcache_lock);
304 			return -EBUSY;
305 		}
306 	}
307 
308 	__d_drop(dentry);
309 	spin_unlock(&dentry->d_lock);
310 	spin_unlock(&dcache_lock);
311 	return 0;
312 }
313 
314 /* This should be called _only_ with dcache_lock held */
315 
316 static inline struct dentry * __dget_locked(struct dentry *dentry)
317 {
318 	atomic_inc(&dentry->d_count);
319 	dentry_lru_del_init(dentry);
320 	return dentry;
321 }
322 
323 struct dentry * dget_locked(struct dentry *dentry)
324 {
325 	return __dget_locked(dentry);
326 }
327 
328 /**
329  * d_find_alias - grab a hashed alias of inode
330  * @inode: inode in question
331  * @want_discon:  flag, used by d_splice_alias, to request
332  *          that only a DISCONNECTED alias be returned.
333  *
334  * If inode has a hashed alias, or is a directory and has any alias,
335  * acquire the reference to alias and return it. Otherwise return NULL.
336  * Notice that if inode is a directory there can be only one alias and
337  * it can be unhashed only if it has no children, or if it is the root
338  * of a filesystem.
339  *
340  * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
341  * any other hashed alias over that one unless @want_discon is set,
342  * in which case only return an IS_ROOT, DCACHE_DISCONNECTED alias.
343  */
344 
345 static struct dentry * __d_find_alias(struct inode *inode, int want_discon)
346 {
347 	struct list_head *head, *next, *tmp;
348 	struct dentry *alias, *discon_alias=NULL;
349 
350 	head = &inode->i_dentry;
351 	next = inode->i_dentry.next;
352 	while (next != head) {
353 		tmp = next;
354 		next = tmp->next;
355 		prefetch(next);
356 		alias = list_entry(tmp, struct dentry, d_alias);
357  		if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
358 			if (IS_ROOT(alias) &&
359 			    (alias->d_flags & DCACHE_DISCONNECTED))
360 				discon_alias = alias;
361 			else if (!want_discon) {
362 				__dget_locked(alias);
363 				return alias;
364 			}
365 		}
366 	}
367 	if (discon_alias)
368 		__dget_locked(discon_alias);
369 	return discon_alias;
370 }
371 
372 struct dentry * d_find_alias(struct inode *inode)
373 {
374 	struct dentry *de = NULL;
375 
376 	if (!list_empty(&inode->i_dentry)) {
377 		spin_lock(&dcache_lock);
378 		de = __d_find_alias(inode, 0);
379 		spin_unlock(&dcache_lock);
380 	}
381 	return de;
382 }
383 
384 /*
385  *	Try to kill dentries associated with this inode.
386  * WARNING: you must own a reference to inode.
387  */
388 void d_prune_aliases(struct inode *inode)
389 {
390 	struct dentry *dentry;
391 restart:
392 	spin_lock(&dcache_lock);
393 	list_for_each_entry(dentry, &inode->i_dentry, d_alias) {
394 		spin_lock(&dentry->d_lock);
395 		if (!atomic_read(&dentry->d_count)) {
396 			__dget_locked(dentry);
397 			__d_drop(dentry);
398 			spin_unlock(&dentry->d_lock);
399 			spin_unlock(&dcache_lock);
400 			dput(dentry);
401 			goto restart;
402 		}
403 		spin_unlock(&dentry->d_lock);
404 	}
405 	spin_unlock(&dcache_lock);
406 }
407 
408 /*
409  * Throw away a dentry - free the inode, dput the parent.  This requires that
410  * the LRU list has already been removed.
411  *
412  * Try to prune ancestors as well.  This is necessary to prevent
413  * quadratic behavior of shrink_dcache_parent(), but is also expected
414  * to be beneficial in reducing dentry cache fragmentation.
415  */
416 static void prune_one_dentry(struct dentry * dentry)
417 	__releases(dentry->d_lock)
418 	__releases(dcache_lock)
419 	__acquires(dcache_lock)
420 {
421 	__d_drop(dentry);
422 	dentry = d_kill(dentry);
423 
424 	/*
425 	 * Prune ancestors.  Locking is simpler than in dput(),
426 	 * because dcache_lock needs to be taken anyway.
427 	 */
428 	spin_lock(&dcache_lock);
429 	while (dentry) {
430 		if (!atomic_dec_and_lock(&dentry->d_count, &dentry->d_lock))
431 			return;
432 
433 		if (dentry->d_op && dentry->d_op->d_delete)
434 			dentry->d_op->d_delete(dentry);
435 		dentry_lru_del_init(dentry);
436 		__d_drop(dentry);
437 		dentry = d_kill(dentry);
438 		spin_lock(&dcache_lock);
439 	}
440 }
441 
442 /*
443  * Shrink the dentry LRU on a given superblock.
444  * @sb   : superblock to shrink dentry LRU.
445  * @count: If count is NULL, we prune all dentries on superblock.
446  * @flags: If flags is non-zero, we need to do special processing based on
447  * which flags are set. This means we don't need to maintain multiple
448  * similar copies of this loop.
449  */
450 static void __shrink_dcache_sb(struct super_block *sb, int *count, int flags)
451 {
452 	LIST_HEAD(referenced);
453 	LIST_HEAD(tmp);
454 	struct dentry *dentry;
455 	int cnt = 0;
456 
457 	BUG_ON(!sb);
458 	BUG_ON((flags & DCACHE_REFERENCED) && count == NULL);
459 	spin_lock(&dcache_lock);
460 	if (count != NULL)
461 		/* called from prune_dcache() and shrink_dcache_parent() */
462 		cnt = *count;
463 restart:
464 	if (count == NULL)
465 		list_splice_init(&sb->s_dentry_lru, &tmp);
466 	else {
467 		while (!list_empty(&sb->s_dentry_lru)) {
468 			dentry = list_entry(sb->s_dentry_lru.prev,
469 					struct dentry, d_lru);
470 			BUG_ON(dentry->d_sb != sb);
471 
472 			spin_lock(&dentry->d_lock);
473 			/*
474 			 * If we are honouring the DCACHE_REFERENCED flag and
475 			 * the dentry has this flag set, don't free it. Clear
476 			 * the flag and put it back on the LRU.
477 			 */
478 			if ((flags & DCACHE_REFERENCED)
479 				&& (dentry->d_flags & DCACHE_REFERENCED)) {
480 				dentry->d_flags &= ~DCACHE_REFERENCED;
481 				list_move_tail(&dentry->d_lru, &referenced);
482 				spin_unlock(&dentry->d_lock);
483 			} else {
484 				list_move_tail(&dentry->d_lru, &tmp);
485 				spin_unlock(&dentry->d_lock);
486 				cnt--;
487 				if (!cnt)
488 					break;
489 			}
490 			cond_resched_lock(&dcache_lock);
491 		}
492 	}
493 	while (!list_empty(&tmp)) {
494 		dentry = list_entry(tmp.prev, struct dentry, d_lru);
495 		dentry_lru_del_init(dentry);
496 		spin_lock(&dentry->d_lock);
497 		/*
498 		 * We found an inuse dentry which was not removed from
499 		 * the LRU because of laziness during lookup.  Do not free
500 		 * it - just keep it off the LRU list.
501 		 */
502 		if (atomic_read(&dentry->d_count)) {
503 			spin_unlock(&dentry->d_lock);
504 			continue;
505 		}
506 		prune_one_dentry(dentry);
507 		/* dentry->d_lock was dropped in prune_one_dentry() */
508 		cond_resched_lock(&dcache_lock);
509 	}
510 	if (count == NULL && !list_empty(&sb->s_dentry_lru))
511 		goto restart;
512 	if (count != NULL)
513 		*count = cnt;
514 	if (!list_empty(&referenced))
515 		list_splice(&referenced, &sb->s_dentry_lru);
516 	spin_unlock(&dcache_lock);
517 }
518 
519 /**
520  * prune_dcache - shrink the dcache
521  * @count: number of entries to try to free
522  *
523  * Shrink the dcache. This is done when we need more memory, or simply when we
524  * need to unmount something (at which point we need to unuse all dentries).
525  *
526  * This function may fail to free any resources if all the dentries are in use.
527  */
528 static void prune_dcache(int count)
529 {
530 	struct super_block *sb;
531 	int w_count;
532 	int unused = dentry_stat.nr_unused;
533 	int prune_ratio;
534 	int pruned;
535 
536 	if (unused == 0 || count == 0)
537 		return;
538 	spin_lock(&dcache_lock);
539 restart:
540 	if (count >= unused)
541 		prune_ratio = 1;
542 	else
543 		prune_ratio = unused / count;
544 	spin_lock(&sb_lock);
545 	list_for_each_entry(sb, &super_blocks, s_list) {
546 		if (sb->s_nr_dentry_unused == 0)
547 			continue;
548 		sb->s_count++;
549 		/* Now, we reclaim unused dentrins with fairness.
550 		 * We reclaim them same percentage from each superblock.
551 		 * We calculate number of dentries to scan on this sb
552 		 * as follows, but the implementation is arranged to avoid
553 		 * overflows:
554 		 * number of dentries to scan on this sb =
555 		 * count * (number of dentries on this sb /
556 		 * number of dentries in the machine)
557 		 */
558 		spin_unlock(&sb_lock);
559 		if (prune_ratio != 1)
560 			w_count = (sb->s_nr_dentry_unused / prune_ratio) + 1;
561 		else
562 			w_count = sb->s_nr_dentry_unused;
563 		pruned = w_count;
564 		/*
565 		 * We need to be sure this filesystem isn't being unmounted,
566 		 * otherwise we could race with generic_shutdown_super(), and
567 		 * end up holding a reference to an inode while the filesystem
568 		 * is unmounted.  So we try to get s_umount, and make sure
569 		 * s_root isn't NULL.
570 		 */
571 		if (down_read_trylock(&sb->s_umount)) {
572 			if ((sb->s_root != NULL) &&
573 			    (!list_empty(&sb->s_dentry_lru))) {
574 				spin_unlock(&dcache_lock);
575 				__shrink_dcache_sb(sb, &w_count,
576 						DCACHE_REFERENCED);
577 				pruned -= w_count;
578 				spin_lock(&dcache_lock);
579 			}
580 			up_read(&sb->s_umount);
581 		}
582 		spin_lock(&sb_lock);
583 		count -= pruned;
584 		/*
585 		 * restart only when sb is no longer on the list and
586 		 * we have more work to do.
587 		 */
588 		if (__put_super_and_need_restart(sb) && count > 0) {
589 			spin_unlock(&sb_lock);
590 			goto restart;
591 		}
592 	}
593 	spin_unlock(&sb_lock);
594 	spin_unlock(&dcache_lock);
595 }
596 
597 /**
598  * shrink_dcache_sb - shrink dcache for a superblock
599  * @sb: superblock
600  *
601  * Shrink the dcache for the specified super block. This
602  * is used to free the dcache before unmounting a file
603  * system
604  */
605 void shrink_dcache_sb(struct super_block * sb)
606 {
607 	__shrink_dcache_sb(sb, NULL, 0);
608 }
609 
610 /*
611  * destroy a single subtree of dentries for unmount
612  * - see the comments on shrink_dcache_for_umount() for a description of the
613  *   locking
614  */
615 static void shrink_dcache_for_umount_subtree(struct dentry *dentry)
616 {
617 	struct dentry *parent;
618 	unsigned detached = 0;
619 
620 	BUG_ON(!IS_ROOT(dentry));
621 
622 	/* detach this root from the system */
623 	spin_lock(&dcache_lock);
624 	dentry_lru_del_init(dentry);
625 	__d_drop(dentry);
626 	spin_unlock(&dcache_lock);
627 
628 	for (;;) {
629 		/* descend to the first leaf in the current subtree */
630 		while (!list_empty(&dentry->d_subdirs)) {
631 			struct dentry *loop;
632 
633 			/* this is a branch with children - detach all of them
634 			 * from the system in one go */
635 			spin_lock(&dcache_lock);
636 			list_for_each_entry(loop, &dentry->d_subdirs,
637 					    d_u.d_child) {
638 				dentry_lru_del_init(loop);
639 				__d_drop(loop);
640 				cond_resched_lock(&dcache_lock);
641 			}
642 			spin_unlock(&dcache_lock);
643 
644 			/* move to the first child */
645 			dentry = list_entry(dentry->d_subdirs.next,
646 					    struct dentry, d_u.d_child);
647 		}
648 
649 		/* consume the dentries from this leaf up through its parents
650 		 * until we find one with children or run out altogether */
651 		do {
652 			struct inode *inode;
653 
654 			if (atomic_read(&dentry->d_count) != 0) {
655 				printk(KERN_ERR
656 				       "BUG: Dentry %p{i=%lx,n=%s}"
657 				       " still in use (%d)"
658 				       " [unmount of %s %s]\n",
659 				       dentry,
660 				       dentry->d_inode ?
661 				       dentry->d_inode->i_ino : 0UL,
662 				       dentry->d_name.name,
663 				       atomic_read(&dentry->d_count),
664 				       dentry->d_sb->s_type->name,
665 				       dentry->d_sb->s_id);
666 				BUG();
667 			}
668 
669 			parent = dentry->d_parent;
670 			if (parent == dentry)
671 				parent = NULL;
672 			else
673 				atomic_dec(&parent->d_count);
674 
675 			list_del(&dentry->d_u.d_child);
676 			detached++;
677 
678 			inode = dentry->d_inode;
679 			if (inode) {
680 				dentry->d_inode = NULL;
681 				list_del_init(&dentry->d_alias);
682 				if (dentry->d_op && dentry->d_op->d_iput)
683 					dentry->d_op->d_iput(dentry, inode);
684 				else
685 					iput(inode);
686 			}
687 
688 			d_free(dentry);
689 
690 			/* finished when we fall off the top of the tree,
691 			 * otherwise we ascend to the parent and move to the
692 			 * next sibling if there is one */
693 			if (!parent)
694 				goto out;
695 
696 			dentry = parent;
697 
698 		} while (list_empty(&dentry->d_subdirs));
699 
700 		dentry = list_entry(dentry->d_subdirs.next,
701 				    struct dentry, d_u.d_child);
702 	}
703 out:
704 	/* several dentries were freed, need to correct nr_dentry */
705 	spin_lock(&dcache_lock);
706 	dentry_stat.nr_dentry -= detached;
707 	spin_unlock(&dcache_lock);
708 }
709 
710 /*
711  * destroy the dentries attached to a superblock on unmounting
712  * - we don't need to use dentry->d_lock, and only need dcache_lock when
713  *   removing the dentry from the system lists and hashes because:
714  *   - the superblock is detached from all mountings and open files, so the
715  *     dentry trees will not be rearranged by the VFS
716  *   - s_umount is write-locked, so the memory pressure shrinker will ignore
717  *     any dentries belonging to this superblock that it comes across
718  *   - the filesystem itself is no longer permitted to rearrange the dentries
719  *     in this superblock
720  */
721 void shrink_dcache_for_umount(struct super_block *sb)
722 {
723 	struct dentry *dentry;
724 
725 	if (down_read_trylock(&sb->s_umount))
726 		BUG();
727 
728 	dentry = sb->s_root;
729 	sb->s_root = NULL;
730 	atomic_dec(&dentry->d_count);
731 	shrink_dcache_for_umount_subtree(dentry);
732 
733 	while (!hlist_empty(&sb->s_anon)) {
734 		dentry = hlist_entry(sb->s_anon.first, struct dentry, d_hash);
735 		shrink_dcache_for_umount_subtree(dentry);
736 	}
737 }
738 
739 /*
740  * Search for at least 1 mount point in the dentry's subdirs.
741  * We descend to the next level whenever the d_subdirs
742  * list is non-empty and continue searching.
743  */
744 
745 /**
746  * have_submounts - check for mounts over a dentry
747  * @parent: dentry to check.
748  *
749  * Return true if the parent or its subdirectories contain
750  * a mount point
751  */
752 
753 int have_submounts(struct dentry *parent)
754 {
755 	struct dentry *this_parent = parent;
756 	struct list_head *next;
757 
758 	spin_lock(&dcache_lock);
759 	if (d_mountpoint(parent))
760 		goto positive;
761 repeat:
762 	next = this_parent->d_subdirs.next;
763 resume:
764 	while (next != &this_parent->d_subdirs) {
765 		struct list_head *tmp = next;
766 		struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
767 		next = tmp->next;
768 		/* Have we found a mount point ? */
769 		if (d_mountpoint(dentry))
770 			goto positive;
771 		if (!list_empty(&dentry->d_subdirs)) {
772 			this_parent = dentry;
773 			goto repeat;
774 		}
775 	}
776 	/*
777 	 * All done at this level ... ascend and resume the search.
778 	 */
779 	if (this_parent != parent) {
780 		next = this_parent->d_u.d_child.next;
781 		this_parent = this_parent->d_parent;
782 		goto resume;
783 	}
784 	spin_unlock(&dcache_lock);
785 	return 0; /* No mount points found in tree */
786 positive:
787 	spin_unlock(&dcache_lock);
788 	return 1;
789 }
790 
791 /*
792  * Search the dentry child list for the specified parent,
793  * and move any unused dentries to the end of the unused
794  * list for prune_dcache(). We descend to the next level
795  * whenever the d_subdirs list is non-empty and continue
796  * searching.
797  *
798  * It returns zero iff there are no unused children,
799  * otherwise  it returns the number of children moved to
800  * the end of the unused list. This may not be the total
801  * number of unused children, because select_parent can
802  * drop the lock and return early due to latency
803  * constraints.
804  */
805 static int select_parent(struct dentry * parent)
806 {
807 	struct dentry *this_parent = parent;
808 	struct list_head *next;
809 	int found = 0;
810 
811 	spin_lock(&dcache_lock);
812 repeat:
813 	next = this_parent->d_subdirs.next;
814 resume:
815 	while (next != &this_parent->d_subdirs) {
816 		struct list_head *tmp = next;
817 		struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
818 		next = tmp->next;
819 
820 		dentry_lru_del_init(dentry);
821 		/*
822 		 * move only zero ref count dentries to the end
823 		 * of the unused list for prune_dcache
824 		 */
825 		if (!atomic_read(&dentry->d_count)) {
826 			dentry_lru_add_tail(dentry);
827 			found++;
828 		}
829 
830 		/*
831 		 * We can return to the caller if we have found some (this
832 		 * ensures forward progress). We'll be coming back to find
833 		 * the rest.
834 		 */
835 		if (found && need_resched())
836 			goto out;
837 
838 		/*
839 		 * Descend a level if the d_subdirs list is non-empty.
840 		 */
841 		if (!list_empty(&dentry->d_subdirs)) {
842 			this_parent = dentry;
843 			goto repeat;
844 		}
845 	}
846 	/*
847 	 * All done at this level ... ascend and resume the search.
848 	 */
849 	if (this_parent != parent) {
850 		next = this_parent->d_u.d_child.next;
851 		this_parent = this_parent->d_parent;
852 		goto resume;
853 	}
854 out:
855 	spin_unlock(&dcache_lock);
856 	return found;
857 }
858 
859 /**
860  * shrink_dcache_parent - prune dcache
861  * @parent: parent of entries to prune
862  *
863  * Prune the dcache to remove unused children of the parent dentry.
864  */
865 
866 void shrink_dcache_parent(struct dentry * parent)
867 {
868 	struct super_block *sb = parent->d_sb;
869 	int found;
870 
871 	while ((found = select_parent(parent)) != 0)
872 		__shrink_dcache_sb(sb, &found, 0);
873 }
874 
875 /*
876  * Scan `nr' dentries and return the number which remain.
877  *
878  * We need to avoid reentering the filesystem if the caller is performing a
879  * GFP_NOFS allocation attempt.  One example deadlock is:
880  *
881  * ext2_new_block->getblk->GFP->shrink_dcache_memory->prune_dcache->
882  * prune_one_dentry->dput->dentry_iput->iput->inode->i_sb->s_op->put_inode->
883  * ext2_discard_prealloc->ext2_free_blocks->lock_super->DEADLOCK.
884  *
885  * In this case we return -1 to tell the caller that we baled.
886  */
887 static int shrink_dcache_memory(int nr, gfp_t gfp_mask)
888 {
889 	if (nr) {
890 		if (!(gfp_mask & __GFP_FS))
891 			return -1;
892 		prune_dcache(nr);
893 	}
894 	return (dentry_stat.nr_unused / 100) * sysctl_vfs_cache_pressure;
895 }
896 
897 static struct shrinker dcache_shrinker = {
898 	.shrink = shrink_dcache_memory,
899 	.seeks = DEFAULT_SEEKS,
900 };
901 
902 /**
903  * d_alloc	-	allocate a dcache entry
904  * @parent: parent of entry to allocate
905  * @name: qstr of the name
906  *
907  * Allocates a dentry. It returns %NULL if there is insufficient memory
908  * available. On a success the dentry is returned. The name passed in is
909  * copied and the copy passed in may be reused after this call.
910  */
911 
912 struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
913 {
914 	struct dentry *dentry;
915 	char *dname;
916 
917 	dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
918 	if (!dentry)
919 		return NULL;
920 
921 	if (name->len > DNAME_INLINE_LEN-1) {
922 		dname = kmalloc(name->len + 1, GFP_KERNEL);
923 		if (!dname) {
924 			kmem_cache_free(dentry_cache, dentry);
925 			return NULL;
926 		}
927 	} else  {
928 		dname = dentry->d_iname;
929 	}
930 	dentry->d_name.name = dname;
931 
932 	dentry->d_name.len = name->len;
933 	dentry->d_name.hash = name->hash;
934 	memcpy(dname, name->name, name->len);
935 	dname[name->len] = 0;
936 
937 	atomic_set(&dentry->d_count, 1);
938 	dentry->d_flags = DCACHE_UNHASHED;
939 	spin_lock_init(&dentry->d_lock);
940 	dentry->d_inode = NULL;
941 	dentry->d_parent = NULL;
942 	dentry->d_sb = NULL;
943 	dentry->d_op = NULL;
944 	dentry->d_fsdata = NULL;
945 	dentry->d_mounted = 0;
946 #ifdef CONFIG_PROFILING
947 	dentry->d_cookie = NULL;
948 #endif
949 	INIT_HLIST_NODE(&dentry->d_hash);
950 	INIT_LIST_HEAD(&dentry->d_lru);
951 	INIT_LIST_HEAD(&dentry->d_subdirs);
952 	INIT_LIST_HEAD(&dentry->d_alias);
953 
954 	if (parent) {
955 		dentry->d_parent = dget(parent);
956 		dentry->d_sb = parent->d_sb;
957 	} else {
958 		INIT_LIST_HEAD(&dentry->d_u.d_child);
959 	}
960 
961 	spin_lock(&dcache_lock);
962 	if (parent)
963 		list_add(&dentry->d_u.d_child, &parent->d_subdirs);
964 	dentry_stat.nr_dentry++;
965 	spin_unlock(&dcache_lock);
966 
967 	return dentry;
968 }
969 
970 struct dentry *d_alloc_name(struct dentry *parent, const char *name)
971 {
972 	struct qstr q;
973 
974 	q.name = name;
975 	q.len = strlen(name);
976 	q.hash = full_name_hash(q.name, q.len);
977 	return d_alloc(parent, &q);
978 }
979 
980 /**
981  * d_instantiate - fill in inode information for a dentry
982  * @entry: dentry to complete
983  * @inode: inode to attach to this dentry
984  *
985  * Fill in inode information in the entry.
986  *
987  * This turns negative dentries into productive full members
988  * of society.
989  *
990  * NOTE! This assumes that the inode count has been incremented
991  * (or otherwise set) by the caller to indicate that it is now
992  * in use by the dcache.
993  */
994 
995 void d_instantiate(struct dentry *entry, struct inode * inode)
996 {
997 	BUG_ON(!list_empty(&entry->d_alias));
998 	spin_lock(&dcache_lock);
999 	if (inode)
1000 		list_add(&entry->d_alias, &inode->i_dentry);
1001 	entry->d_inode = inode;
1002 	fsnotify_d_instantiate(entry, inode);
1003 	spin_unlock(&dcache_lock);
1004 	security_d_instantiate(entry, inode);
1005 }
1006 
1007 /**
1008  * d_instantiate_unique - instantiate a non-aliased dentry
1009  * @entry: dentry to instantiate
1010  * @inode: inode to attach to this dentry
1011  *
1012  * Fill in inode information in the entry. On success, it returns NULL.
1013  * If an unhashed alias of "entry" already exists, then we return the
1014  * aliased dentry instead and drop one reference to inode.
1015  *
1016  * Note that in order to avoid conflicts with rename() etc, the caller
1017  * had better be holding the parent directory semaphore.
1018  *
1019  * This also assumes that the inode count has been incremented
1020  * (or otherwise set) by the caller to indicate that it is now
1021  * in use by the dcache.
1022  */
1023 static struct dentry *__d_instantiate_unique(struct dentry *entry,
1024 					     struct inode *inode)
1025 {
1026 	struct dentry *alias;
1027 	int len = entry->d_name.len;
1028 	const char *name = entry->d_name.name;
1029 	unsigned int hash = entry->d_name.hash;
1030 
1031 	if (!inode) {
1032 		entry->d_inode = NULL;
1033 		return NULL;
1034 	}
1035 
1036 	list_for_each_entry(alias, &inode->i_dentry, d_alias) {
1037 		struct qstr *qstr = &alias->d_name;
1038 
1039 		if (qstr->hash != hash)
1040 			continue;
1041 		if (alias->d_parent != entry->d_parent)
1042 			continue;
1043 		if (qstr->len != len)
1044 			continue;
1045 		if (memcmp(qstr->name, name, len))
1046 			continue;
1047 		dget_locked(alias);
1048 		return alias;
1049 	}
1050 
1051 	list_add(&entry->d_alias, &inode->i_dentry);
1052 	entry->d_inode = inode;
1053 	fsnotify_d_instantiate(entry, inode);
1054 	return NULL;
1055 }
1056 
1057 struct dentry *d_instantiate_unique(struct dentry *entry, struct inode *inode)
1058 {
1059 	struct dentry *result;
1060 
1061 	BUG_ON(!list_empty(&entry->d_alias));
1062 
1063 	spin_lock(&dcache_lock);
1064 	result = __d_instantiate_unique(entry, inode);
1065 	spin_unlock(&dcache_lock);
1066 
1067 	if (!result) {
1068 		security_d_instantiate(entry, inode);
1069 		return NULL;
1070 	}
1071 
1072 	BUG_ON(!d_unhashed(result));
1073 	iput(inode);
1074 	return result;
1075 }
1076 
1077 EXPORT_SYMBOL(d_instantiate_unique);
1078 
1079 /**
1080  * d_alloc_root - allocate root dentry
1081  * @root_inode: inode to allocate the root for
1082  *
1083  * Allocate a root ("/") dentry for the inode given. The inode is
1084  * instantiated and returned. %NULL is returned if there is insufficient
1085  * memory or the inode passed is %NULL.
1086  */
1087 
1088 struct dentry * d_alloc_root(struct inode * root_inode)
1089 {
1090 	struct dentry *res = NULL;
1091 
1092 	if (root_inode) {
1093 		static const struct qstr name = { .name = "/", .len = 1 };
1094 
1095 		res = d_alloc(NULL, &name);
1096 		if (res) {
1097 			res->d_sb = root_inode->i_sb;
1098 			res->d_parent = res;
1099 			d_instantiate(res, root_inode);
1100 		}
1101 	}
1102 	return res;
1103 }
1104 
1105 static inline struct hlist_head *d_hash(struct dentry *parent,
1106 					unsigned long hash)
1107 {
1108 	hash += ((unsigned long) parent ^ GOLDEN_RATIO_PRIME) / L1_CACHE_BYTES;
1109 	hash = hash ^ ((hash ^ GOLDEN_RATIO_PRIME) >> D_HASHBITS);
1110 	return dentry_hashtable + (hash & D_HASHMASK);
1111 }
1112 
1113 /**
1114  * d_alloc_anon - allocate an anonymous dentry
1115  * @inode: inode to allocate the dentry for
1116  *
1117  * This is similar to d_alloc_root.  It is used by filesystems when
1118  * creating a dentry for a given inode, often in the process of
1119  * mapping a filehandle to a dentry.  The returned dentry may be
1120  * anonymous, or may have a full name (if the inode was already
1121  * in the cache).  The file system may need to make further
1122  * efforts to connect this dentry into the dcache properly.
1123  *
1124  * When called on a directory inode, we must ensure that
1125  * the inode only ever has one dentry.  If a dentry is
1126  * found, that is returned instead of allocating a new one.
1127  *
1128  * On successful return, the reference to the inode has been transferred
1129  * to the dentry.  If %NULL is returned (indicating kmalloc failure),
1130  * the reference on the inode has not been released.
1131  */
1132 
1133 struct dentry * d_alloc_anon(struct inode *inode)
1134 {
1135 	static const struct qstr anonstring = { .name = "" };
1136 	struct dentry *tmp;
1137 	struct dentry *res;
1138 
1139 	if ((res = d_find_alias(inode))) {
1140 		iput(inode);
1141 		return res;
1142 	}
1143 
1144 	tmp = d_alloc(NULL, &anonstring);
1145 	if (!tmp)
1146 		return NULL;
1147 
1148 	tmp->d_parent = tmp; /* make sure dput doesn't croak */
1149 
1150 	spin_lock(&dcache_lock);
1151 	res = __d_find_alias(inode, 0);
1152 	if (!res) {
1153 		/* attach a disconnected dentry */
1154 		res = tmp;
1155 		tmp = NULL;
1156 		spin_lock(&res->d_lock);
1157 		res->d_sb = inode->i_sb;
1158 		res->d_parent = res;
1159 		res->d_inode = inode;
1160 		res->d_flags |= DCACHE_DISCONNECTED;
1161 		res->d_flags &= ~DCACHE_UNHASHED;
1162 		list_add(&res->d_alias, &inode->i_dentry);
1163 		hlist_add_head(&res->d_hash, &inode->i_sb->s_anon);
1164 		spin_unlock(&res->d_lock);
1165 
1166 		inode = NULL; /* don't drop reference */
1167 	}
1168 	spin_unlock(&dcache_lock);
1169 
1170 	if (inode)
1171 		iput(inode);
1172 	if (tmp)
1173 		dput(tmp);
1174 	return res;
1175 }
1176 
1177 
1178 /**
1179  * d_splice_alias - splice a disconnected dentry into the tree if one exists
1180  * @inode:  the inode which may have a disconnected dentry
1181  * @dentry: a negative dentry which we want to point to the inode.
1182  *
1183  * If inode is a directory and has a 'disconnected' dentry (i.e. IS_ROOT and
1184  * DCACHE_DISCONNECTED), then d_move that in place of the given dentry
1185  * and return it, else simply d_add the inode to the dentry and return NULL.
1186  *
1187  * This is needed in the lookup routine of any filesystem that is exportable
1188  * (via knfsd) so that we can build dcache paths to directories effectively.
1189  *
1190  * If a dentry was found and moved, then it is returned.  Otherwise NULL
1191  * is returned.  This matches the expected return value of ->lookup.
1192  *
1193  */
1194 struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
1195 {
1196 	struct dentry *new = NULL;
1197 
1198 	if (inode && S_ISDIR(inode->i_mode)) {
1199 		spin_lock(&dcache_lock);
1200 		new = __d_find_alias(inode, 1);
1201 		if (new) {
1202 			BUG_ON(!(new->d_flags & DCACHE_DISCONNECTED));
1203 			fsnotify_d_instantiate(new, inode);
1204 			spin_unlock(&dcache_lock);
1205 			security_d_instantiate(new, inode);
1206 			d_rehash(dentry);
1207 			d_move(new, dentry);
1208 			iput(inode);
1209 		} else {
1210 			/* d_instantiate takes dcache_lock, so we do it by hand */
1211 			list_add(&dentry->d_alias, &inode->i_dentry);
1212 			dentry->d_inode = inode;
1213 			fsnotify_d_instantiate(dentry, inode);
1214 			spin_unlock(&dcache_lock);
1215 			security_d_instantiate(dentry, inode);
1216 			d_rehash(dentry);
1217 		}
1218 	} else
1219 		d_add(dentry, inode);
1220 	return new;
1221 }
1222 
1223 
1224 /**
1225  * d_lookup - search for a dentry
1226  * @parent: parent dentry
1227  * @name: qstr of name we wish to find
1228  *
1229  * Searches the children of the parent dentry for the name in question. If
1230  * the dentry is found its reference count is incremented and the dentry
1231  * is returned. The caller must use d_put to free the entry when it has
1232  * finished using it. %NULL is returned on failure.
1233  *
1234  * __d_lookup is dcache_lock free. The hash list is protected using RCU.
1235  * Memory barriers are used while updating and doing lockless traversal.
1236  * To avoid races with d_move while rename is happening, d_lock is used.
1237  *
1238  * Overflows in memcmp(), while d_move, are avoided by keeping the length
1239  * and name pointer in one structure pointed by d_qstr.
1240  *
1241  * rcu_read_lock() and rcu_read_unlock() are used to disable preemption while
1242  * lookup is going on.
1243  *
1244  * The dentry unused LRU is not updated even if lookup finds the required dentry
1245  * in there. It is updated in places such as prune_dcache, shrink_dcache_sb,
1246  * select_parent and __dget_locked. This laziness saves lookup from dcache_lock
1247  * acquisition.
1248  *
1249  * d_lookup() is protected against the concurrent renames in some unrelated
1250  * directory using the seqlockt_t rename_lock.
1251  */
1252 
1253 struct dentry * d_lookup(struct dentry * parent, struct qstr * name)
1254 {
1255 	struct dentry * dentry = NULL;
1256 	unsigned long seq;
1257 
1258         do {
1259                 seq = read_seqbegin(&rename_lock);
1260                 dentry = __d_lookup(parent, name);
1261                 if (dentry)
1262 			break;
1263 	} while (read_seqretry(&rename_lock, seq));
1264 	return dentry;
1265 }
1266 
1267 struct dentry * __d_lookup(struct dentry * parent, struct qstr * name)
1268 {
1269 	unsigned int len = name->len;
1270 	unsigned int hash = name->hash;
1271 	const unsigned char *str = name->name;
1272 	struct hlist_head *head = d_hash(parent,hash);
1273 	struct dentry *found = NULL;
1274 	struct hlist_node *node;
1275 	struct dentry *dentry;
1276 
1277 	rcu_read_lock();
1278 
1279 	hlist_for_each_entry_rcu(dentry, node, head, d_hash) {
1280 		struct qstr *qstr;
1281 
1282 		if (dentry->d_name.hash != hash)
1283 			continue;
1284 		if (dentry->d_parent != parent)
1285 			continue;
1286 
1287 		spin_lock(&dentry->d_lock);
1288 
1289 		/*
1290 		 * Recheck the dentry after taking the lock - d_move may have
1291 		 * changed things.  Don't bother checking the hash because we're
1292 		 * about to compare the whole name anyway.
1293 		 */
1294 		if (dentry->d_parent != parent)
1295 			goto next;
1296 
1297 		/*
1298 		 * It is safe to compare names since d_move() cannot
1299 		 * change the qstr (protected by d_lock).
1300 		 */
1301 		qstr = &dentry->d_name;
1302 		if (parent->d_op && parent->d_op->d_compare) {
1303 			if (parent->d_op->d_compare(parent, qstr, name))
1304 				goto next;
1305 		} else {
1306 			if (qstr->len != len)
1307 				goto next;
1308 			if (memcmp(qstr->name, str, len))
1309 				goto next;
1310 		}
1311 
1312 		if (!d_unhashed(dentry)) {
1313 			atomic_inc(&dentry->d_count);
1314 			found = dentry;
1315 		}
1316 		spin_unlock(&dentry->d_lock);
1317 		break;
1318 next:
1319 		spin_unlock(&dentry->d_lock);
1320  	}
1321  	rcu_read_unlock();
1322 
1323  	return found;
1324 }
1325 
1326 /**
1327  * d_hash_and_lookup - hash the qstr then search for a dentry
1328  * @dir: Directory to search in
1329  * @name: qstr of name we wish to find
1330  *
1331  * On hash failure or on lookup failure NULL is returned.
1332  */
1333 struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
1334 {
1335 	struct dentry *dentry = NULL;
1336 
1337 	/*
1338 	 * Check for a fs-specific hash function. Note that we must
1339 	 * calculate the standard hash first, as the d_op->d_hash()
1340 	 * routine may choose to leave the hash value unchanged.
1341 	 */
1342 	name->hash = full_name_hash(name->name, name->len);
1343 	if (dir->d_op && dir->d_op->d_hash) {
1344 		if (dir->d_op->d_hash(dir, name) < 0)
1345 			goto out;
1346 	}
1347 	dentry = d_lookup(dir, name);
1348 out:
1349 	return dentry;
1350 }
1351 
1352 /**
1353  * d_validate - verify dentry provided from insecure source
1354  * @dentry: The dentry alleged to be valid child of @dparent
1355  * @dparent: The parent dentry (known to be valid)
1356  * @hash: Hash of the dentry
1357  * @len: Length of the name
1358  *
1359  * An insecure source has sent us a dentry, here we verify it and dget() it.
1360  * This is used by ncpfs in its readdir implementation.
1361  * Zero is returned in the dentry is invalid.
1362  */
1363 
1364 int d_validate(struct dentry *dentry, struct dentry *dparent)
1365 {
1366 	struct hlist_head *base;
1367 	struct hlist_node *lhp;
1368 
1369 	/* Check whether the ptr might be valid at all.. */
1370 	if (!kmem_ptr_validate(dentry_cache, dentry))
1371 		goto out;
1372 
1373 	if (dentry->d_parent != dparent)
1374 		goto out;
1375 
1376 	spin_lock(&dcache_lock);
1377 	base = d_hash(dparent, dentry->d_name.hash);
1378 	hlist_for_each(lhp,base) {
1379 		/* hlist_for_each_entry_rcu() not required for d_hash list
1380 		 * as it is parsed under dcache_lock
1381 		 */
1382 		if (dentry == hlist_entry(lhp, struct dentry, d_hash)) {
1383 			__dget_locked(dentry);
1384 			spin_unlock(&dcache_lock);
1385 			return 1;
1386 		}
1387 	}
1388 	spin_unlock(&dcache_lock);
1389 out:
1390 	return 0;
1391 }
1392 
1393 /*
1394  * When a file is deleted, we have two options:
1395  * - turn this dentry into a negative dentry
1396  * - unhash this dentry and free it.
1397  *
1398  * Usually, we want to just turn this into
1399  * a negative dentry, but if anybody else is
1400  * currently using the dentry or the inode
1401  * we can't do that and we fall back on removing
1402  * it from the hash queues and waiting for
1403  * it to be deleted later when it has no users
1404  */
1405 
1406 /**
1407  * d_delete - delete a dentry
1408  * @dentry: The dentry to delete
1409  *
1410  * Turn the dentry into a negative dentry if possible, otherwise
1411  * remove it from the hash queues so it can be deleted later
1412  */
1413 
1414 void d_delete(struct dentry * dentry)
1415 {
1416 	int isdir = 0;
1417 	/*
1418 	 * Are we the only user?
1419 	 */
1420 	spin_lock(&dcache_lock);
1421 	spin_lock(&dentry->d_lock);
1422 	isdir = S_ISDIR(dentry->d_inode->i_mode);
1423 	if (atomic_read(&dentry->d_count) == 1) {
1424 		dentry_iput(dentry);
1425 		fsnotify_nameremove(dentry, isdir);
1426 		return;
1427 	}
1428 
1429 	if (!d_unhashed(dentry))
1430 		__d_drop(dentry);
1431 
1432 	spin_unlock(&dentry->d_lock);
1433 	spin_unlock(&dcache_lock);
1434 
1435 	fsnotify_nameremove(dentry, isdir);
1436 }
1437 
1438 static void __d_rehash(struct dentry * entry, struct hlist_head *list)
1439 {
1440 
1441  	entry->d_flags &= ~DCACHE_UNHASHED;
1442  	hlist_add_head_rcu(&entry->d_hash, list);
1443 }
1444 
1445 static void _d_rehash(struct dentry * entry)
1446 {
1447 	__d_rehash(entry, d_hash(entry->d_parent, entry->d_name.hash));
1448 }
1449 
1450 /**
1451  * d_rehash	- add an entry back to the hash
1452  * @entry: dentry to add to the hash
1453  *
1454  * Adds a dentry to the hash according to its name.
1455  */
1456 
1457 void d_rehash(struct dentry * entry)
1458 {
1459 	spin_lock(&dcache_lock);
1460 	spin_lock(&entry->d_lock);
1461 	_d_rehash(entry);
1462 	spin_unlock(&entry->d_lock);
1463 	spin_unlock(&dcache_lock);
1464 }
1465 
1466 #define do_switch(x,y) do { \
1467 	__typeof__ (x) __tmp = x; \
1468 	x = y; y = __tmp; } while (0)
1469 
1470 /*
1471  * When switching names, the actual string doesn't strictly have to
1472  * be preserved in the target - because we're dropping the target
1473  * anyway. As such, we can just do a simple memcpy() to copy over
1474  * the new name before we switch.
1475  *
1476  * Note that we have to be a lot more careful about getting the hash
1477  * switched - we have to switch the hash value properly even if it
1478  * then no longer matches the actual (corrupted) string of the target.
1479  * The hash value has to match the hash queue that the dentry is on..
1480  */
1481 static void switch_names(struct dentry *dentry, struct dentry *target)
1482 {
1483 	if (dname_external(target)) {
1484 		if (dname_external(dentry)) {
1485 			/*
1486 			 * Both external: swap the pointers
1487 			 */
1488 			do_switch(target->d_name.name, dentry->d_name.name);
1489 		} else {
1490 			/*
1491 			 * dentry:internal, target:external.  Steal target's
1492 			 * storage and make target internal.
1493 			 */
1494 			memcpy(target->d_iname, dentry->d_name.name,
1495 					dentry->d_name.len + 1);
1496 			dentry->d_name.name = target->d_name.name;
1497 			target->d_name.name = target->d_iname;
1498 		}
1499 	} else {
1500 		if (dname_external(dentry)) {
1501 			/*
1502 			 * dentry:external, target:internal.  Give dentry's
1503 			 * storage to target and make dentry internal
1504 			 */
1505 			memcpy(dentry->d_iname, target->d_name.name,
1506 					target->d_name.len + 1);
1507 			target->d_name.name = dentry->d_name.name;
1508 			dentry->d_name.name = dentry->d_iname;
1509 		} else {
1510 			/*
1511 			 * Both are internal.  Just copy target to dentry
1512 			 */
1513 			memcpy(dentry->d_iname, target->d_name.name,
1514 					target->d_name.len + 1);
1515 		}
1516 	}
1517 }
1518 
1519 /*
1520  * We cannibalize "target" when moving dentry on top of it,
1521  * because it's going to be thrown away anyway. We could be more
1522  * polite about it, though.
1523  *
1524  * This forceful removal will result in ugly /proc output if
1525  * somebody holds a file open that got deleted due to a rename.
1526  * We could be nicer about the deleted file, and let it show
1527  * up under the name it had before it was deleted rather than
1528  * under the original name of the file that was moved on top of it.
1529  */
1530 
1531 /*
1532  * d_move_locked - move a dentry
1533  * @dentry: entry to move
1534  * @target: new dentry
1535  *
1536  * Update the dcache to reflect the move of a file name. Negative
1537  * dcache entries should not be moved in this way.
1538  */
1539 static void d_move_locked(struct dentry * dentry, struct dentry * target)
1540 {
1541 	struct hlist_head *list;
1542 
1543 	if (!dentry->d_inode)
1544 		printk(KERN_WARNING "VFS: moving negative dcache entry\n");
1545 
1546 	write_seqlock(&rename_lock);
1547 	/*
1548 	 * XXXX: do we really need to take target->d_lock?
1549 	 */
1550 	if (target < dentry) {
1551 		spin_lock(&target->d_lock);
1552 		spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1553 	} else {
1554 		spin_lock(&dentry->d_lock);
1555 		spin_lock_nested(&target->d_lock, DENTRY_D_LOCK_NESTED);
1556 	}
1557 
1558 	/* Move the dentry to the target hash queue, if on different bucket */
1559 	if (d_unhashed(dentry))
1560 		goto already_unhashed;
1561 
1562 	hlist_del_rcu(&dentry->d_hash);
1563 
1564 already_unhashed:
1565 	list = d_hash(target->d_parent, target->d_name.hash);
1566 	__d_rehash(dentry, list);
1567 
1568 	/* Unhash the target: dput() will then get rid of it */
1569 	__d_drop(target);
1570 
1571 	list_del(&dentry->d_u.d_child);
1572 	list_del(&target->d_u.d_child);
1573 
1574 	/* Switch the names.. */
1575 	switch_names(dentry, target);
1576 	do_switch(dentry->d_name.len, target->d_name.len);
1577 	do_switch(dentry->d_name.hash, target->d_name.hash);
1578 
1579 	/* ... and switch the parents */
1580 	if (IS_ROOT(dentry)) {
1581 		dentry->d_parent = target->d_parent;
1582 		target->d_parent = target;
1583 		INIT_LIST_HEAD(&target->d_u.d_child);
1584 	} else {
1585 		do_switch(dentry->d_parent, target->d_parent);
1586 
1587 		/* And add them back to the (new) parent lists */
1588 		list_add(&target->d_u.d_child, &target->d_parent->d_subdirs);
1589 	}
1590 
1591 	list_add(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs);
1592 	spin_unlock(&target->d_lock);
1593 	fsnotify_d_move(dentry);
1594 	spin_unlock(&dentry->d_lock);
1595 	write_sequnlock(&rename_lock);
1596 }
1597 
1598 /**
1599  * d_move - move a dentry
1600  * @dentry: entry to move
1601  * @target: new dentry
1602  *
1603  * Update the dcache to reflect the move of a file name. Negative
1604  * dcache entries should not be moved in this way.
1605  */
1606 
1607 void d_move(struct dentry * dentry, struct dentry * target)
1608 {
1609 	spin_lock(&dcache_lock);
1610 	d_move_locked(dentry, target);
1611 	spin_unlock(&dcache_lock);
1612 }
1613 
1614 /*
1615  * Helper that returns 1 if p1 is a parent of p2, else 0
1616  */
1617 static int d_isparent(struct dentry *p1, struct dentry *p2)
1618 {
1619 	struct dentry *p;
1620 
1621 	for (p = p2; p->d_parent != p; p = p->d_parent) {
1622 		if (p->d_parent == p1)
1623 			return 1;
1624 	}
1625 	return 0;
1626 }
1627 
1628 /*
1629  * This helper attempts to cope with remotely renamed directories
1630  *
1631  * It assumes that the caller is already holding
1632  * dentry->d_parent->d_inode->i_mutex and the dcache_lock
1633  *
1634  * Note: If ever the locking in lock_rename() changes, then please
1635  * remember to update this too...
1636  */
1637 static struct dentry *__d_unalias(struct dentry *dentry, struct dentry *alias)
1638 	__releases(dcache_lock)
1639 {
1640 	struct mutex *m1 = NULL, *m2 = NULL;
1641 	struct dentry *ret;
1642 
1643 	/* If alias and dentry share a parent, then no extra locks required */
1644 	if (alias->d_parent == dentry->d_parent)
1645 		goto out_unalias;
1646 
1647 	/* Check for loops */
1648 	ret = ERR_PTR(-ELOOP);
1649 	if (d_isparent(alias, dentry))
1650 		goto out_err;
1651 
1652 	/* See lock_rename() */
1653 	ret = ERR_PTR(-EBUSY);
1654 	if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
1655 		goto out_err;
1656 	m1 = &dentry->d_sb->s_vfs_rename_mutex;
1657 	if (!mutex_trylock(&alias->d_parent->d_inode->i_mutex))
1658 		goto out_err;
1659 	m2 = &alias->d_parent->d_inode->i_mutex;
1660 out_unalias:
1661 	d_move_locked(alias, dentry);
1662 	ret = alias;
1663 out_err:
1664 	spin_unlock(&dcache_lock);
1665 	if (m2)
1666 		mutex_unlock(m2);
1667 	if (m1)
1668 		mutex_unlock(m1);
1669 	return ret;
1670 }
1671 
1672 /*
1673  * Prepare an anonymous dentry for life in the superblock's dentry tree as a
1674  * named dentry in place of the dentry to be replaced.
1675  */
1676 static void __d_materialise_dentry(struct dentry *dentry, struct dentry *anon)
1677 {
1678 	struct dentry *dparent, *aparent;
1679 
1680 	switch_names(dentry, anon);
1681 	do_switch(dentry->d_name.len, anon->d_name.len);
1682 	do_switch(dentry->d_name.hash, anon->d_name.hash);
1683 
1684 	dparent = dentry->d_parent;
1685 	aparent = anon->d_parent;
1686 
1687 	dentry->d_parent = (aparent == anon) ? dentry : aparent;
1688 	list_del(&dentry->d_u.d_child);
1689 	if (!IS_ROOT(dentry))
1690 		list_add(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs);
1691 	else
1692 		INIT_LIST_HEAD(&dentry->d_u.d_child);
1693 
1694 	anon->d_parent = (dparent == dentry) ? anon : dparent;
1695 	list_del(&anon->d_u.d_child);
1696 	if (!IS_ROOT(anon))
1697 		list_add(&anon->d_u.d_child, &anon->d_parent->d_subdirs);
1698 	else
1699 		INIT_LIST_HEAD(&anon->d_u.d_child);
1700 
1701 	anon->d_flags &= ~DCACHE_DISCONNECTED;
1702 }
1703 
1704 /**
1705  * d_materialise_unique - introduce an inode into the tree
1706  * @dentry: candidate dentry
1707  * @inode: inode to bind to the dentry, to which aliases may be attached
1708  *
1709  * Introduces an dentry into the tree, substituting an extant disconnected
1710  * root directory alias in its place if there is one
1711  */
1712 struct dentry *d_materialise_unique(struct dentry *dentry, struct inode *inode)
1713 {
1714 	struct dentry *actual;
1715 
1716 	BUG_ON(!d_unhashed(dentry));
1717 
1718 	spin_lock(&dcache_lock);
1719 
1720 	if (!inode) {
1721 		actual = dentry;
1722 		dentry->d_inode = NULL;
1723 		goto found_lock;
1724 	}
1725 
1726 	if (S_ISDIR(inode->i_mode)) {
1727 		struct dentry *alias;
1728 
1729 		/* Does an aliased dentry already exist? */
1730 		alias = __d_find_alias(inode, 0);
1731 		if (alias) {
1732 			actual = alias;
1733 			/* Is this an anonymous mountpoint that we could splice
1734 			 * into our tree? */
1735 			if (IS_ROOT(alias)) {
1736 				spin_lock(&alias->d_lock);
1737 				__d_materialise_dentry(dentry, alias);
1738 				__d_drop(alias);
1739 				goto found;
1740 			}
1741 			/* Nope, but we must(!) avoid directory aliasing */
1742 			actual = __d_unalias(dentry, alias);
1743 			if (IS_ERR(actual))
1744 				dput(alias);
1745 			goto out_nolock;
1746 		}
1747 	}
1748 
1749 	/* Add a unique reference */
1750 	actual = __d_instantiate_unique(dentry, inode);
1751 	if (!actual)
1752 		actual = dentry;
1753 	else if (unlikely(!d_unhashed(actual)))
1754 		goto shouldnt_be_hashed;
1755 
1756 found_lock:
1757 	spin_lock(&actual->d_lock);
1758 found:
1759 	_d_rehash(actual);
1760 	spin_unlock(&actual->d_lock);
1761 	spin_unlock(&dcache_lock);
1762 out_nolock:
1763 	if (actual == dentry) {
1764 		security_d_instantiate(dentry, inode);
1765 		return NULL;
1766 	}
1767 
1768 	iput(inode);
1769 	return actual;
1770 
1771 shouldnt_be_hashed:
1772 	spin_unlock(&dcache_lock);
1773 	BUG();
1774 }
1775 
1776 static int prepend(char **buffer, int *buflen, const char *str, int namelen)
1777 {
1778 	*buflen -= namelen;
1779 	if (*buflen < 0)
1780 		return -ENAMETOOLONG;
1781 	*buffer -= namelen;
1782 	memcpy(*buffer, str, namelen);
1783 	return 0;
1784 }
1785 
1786 static int prepend_name(char **buffer, int *buflen, struct qstr *name)
1787 {
1788 	return prepend(buffer, buflen, name->name, name->len);
1789 }
1790 
1791 /**
1792  * __d_path - return the path of a dentry
1793  * @path: the dentry/vfsmount to report
1794  * @root: root vfsmnt/dentry (may be modified by this function)
1795  * @buffer: buffer to return value in
1796  * @buflen: buffer length
1797  *
1798  * Convert a dentry into an ASCII path name. If the entry has been deleted
1799  * the string " (deleted)" is appended. Note that this is ambiguous.
1800  *
1801  * Returns the buffer or an error code if the path was too long.
1802  *
1803  * "buflen" should be positive. Caller holds the dcache_lock.
1804  *
1805  * If path is not reachable from the supplied root, then the value of
1806  * root is changed (without modifying refcounts).
1807  */
1808 char *__d_path(const struct path *path, struct path *root,
1809 	       char *buffer, int buflen)
1810 {
1811 	struct dentry *dentry = path->dentry;
1812 	struct vfsmount *vfsmnt = path->mnt;
1813 	char *end = buffer + buflen;
1814 	char *retval;
1815 
1816 	spin_lock(&vfsmount_lock);
1817 	prepend(&end, &buflen, "\0", 1);
1818 	if (!IS_ROOT(dentry) && d_unhashed(dentry) &&
1819 		(prepend(&end, &buflen, " (deleted)", 10) != 0))
1820 			goto Elong;
1821 
1822 	if (buflen < 1)
1823 		goto Elong;
1824 	/* Get '/' right */
1825 	retval = end-1;
1826 	*retval = '/';
1827 
1828 	for (;;) {
1829 		struct dentry * parent;
1830 
1831 		if (dentry == root->dentry && vfsmnt == root->mnt)
1832 			break;
1833 		if (dentry == vfsmnt->mnt_root || IS_ROOT(dentry)) {
1834 			/* Global root? */
1835 			if (vfsmnt->mnt_parent == vfsmnt) {
1836 				goto global_root;
1837 			}
1838 			dentry = vfsmnt->mnt_mountpoint;
1839 			vfsmnt = vfsmnt->mnt_parent;
1840 			continue;
1841 		}
1842 		parent = dentry->d_parent;
1843 		prefetch(parent);
1844 		if ((prepend_name(&end, &buflen, &dentry->d_name) != 0) ||
1845 		    (prepend(&end, &buflen, "/", 1) != 0))
1846 			goto Elong;
1847 		retval = end;
1848 		dentry = parent;
1849 	}
1850 
1851 out:
1852 	spin_unlock(&vfsmount_lock);
1853 	return retval;
1854 
1855 global_root:
1856 	retval += 1;	/* hit the slash */
1857 	if (prepend_name(&retval, &buflen, &dentry->d_name) != 0)
1858 		goto Elong;
1859 	root->mnt = vfsmnt;
1860 	root->dentry = dentry;
1861 	goto out;
1862 
1863 Elong:
1864 	retval = ERR_PTR(-ENAMETOOLONG);
1865 	goto out;
1866 }
1867 
1868 /**
1869  * d_path - return the path of a dentry
1870  * @path: path to report
1871  * @buf: buffer to return value in
1872  * @buflen: buffer length
1873  *
1874  * Convert a dentry into an ASCII path name. If the entry has been deleted
1875  * the string " (deleted)" is appended. Note that this is ambiguous.
1876  *
1877  * Returns the buffer or an error code if the path was too long.
1878  *
1879  * "buflen" should be positive.
1880  */
1881 char *d_path(const struct path *path, char *buf, int buflen)
1882 {
1883 	char *res;
1884 	struct path root;
1885 	struct path tmp;
1886 
1887 	/*
1888 	 * We have various synthetic filesystems that never get mounted.  On
1889 	 * these filesystems dentries are never used for lookup purposes, and
1890 	 * thus don't need to be hashed.  They also don't need a name until a
1891 	 * user wants to identify the object in /proc/pid/fd/.  The little hack
1892 	 * below allows us to generate a name for these objects on demand:
1893 	 */
1894 	if (path->dentry->d_op && path->dentry->d_op->d_dname)
1895 		return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
1896 
1897 	read_lock(&current->fs->lock);
1898 	root = current->fs->root;
1899 	path_get(&root);
1900 	read_unlock(&current->fs->lock);
1901 	spin_lock(&dcache_lock);
1902 	tmp = root;
1903 	res = __d_path(path, &tmp, buf, buflen);
1904 	spin_unlock(&dcache_lock);
1905 	path_put(&root);
1906 	return res;
1907 }
1908 
1909 /*
1910  * Helper function for dentry_operations.d_dname() members
1911  */
1912 char *dynamic_dname(struct dentry *dentry, char *buffer, int buflen,
1913 			const char *fmt, ...)
1914 {
1915 	va_list args;
1916 	char temp[64];
1917 	int sz;
1918 
1919 	va_start(args, fmt);
1920 	sz = vsnprintf(temp, sizeof(temp), fmt, args) + 1;
1921 	va_end(args);
1922 
1923 	if (sz > sizeof(temp) || sz > buflen)
1924 		return ERR_PTR(-ENAMETOOLONG);
1925 
1926 	buffer += buflen - sz;
1927 	return memcpy(buffer, temp, sz);
1928 }
1929 
1930 /*
1931  * Write full pathname from the root of the filesystem into the buffer.
1932  */
1933 char *dentry_path(struct dentry *dentry, char *buf, int buflen)
1934 {
1935 	char *end = buf + buflen;
1936 	char *retval;
1937 
1938 	spin_lock(&dcache_lock);
1939 	prepend(&end, &buflen, "\0", 1);
1940 	if (!IS_ROOT(dentry) && d_unhashed(dentry) &&
1941 		(prepend(&end, &buflen, "//deleted", 9) != 0))
1942 			goto Elong;
1943 	if (buflen < 1)
1944 		goto Elong;
1945 	/* Get '/' right */
1946 	retval = end-1;
1947 	*retval = '/';
1948 
1949 	while (!IS_ROOT(dentry)) {
1950 		struct dentry *parent = dentry->d_parent;
1951 
1952 		prefetch(parent);
1953 		if ((prepend_name(&end, &buflen, &dentry->d_name) != 0) ||
1954 		    (prepend(&end, &buflen, "/", 1) != 0))
1955 			goto Elong;
1956 
1957 		retval = end;
1958 		dentry = parent;
1959 	}
1960 	spin_unlock(&dcache_lock);
1961 	return retval;
1962 Elong:
1963 	spin_unlock(&dcache_lock);
1964 	return ERR_PTR(-ENAMETOOLONG);
1965 }
1966 
1967 /*
1968  * NOTE! The user-level library version returns a
1969  * character pointer. The kernel system call just
1970  * returns the length of the buffer filled (which
1971  * includes the ending '\0' character), or a negative
1972  * error value. So libc would do something like
1973  *
1974  *	char *getcwd(char * buf, size_t size)
1975  *	{
1976  *		int retval;
1977  *
1978  *		retval = sys_getcwd(buf, size);
1979  *		if (retval >= 0)
1980  *			return buf;
1981  *		errno = -retval;
1982  *		return NULL;
1983  *	}
1984  */
1985 asmlinkage long sys_getcwd(char __user *buf, unsigned long size)
1986 {
1987 	int error;
1988 	struct path pwd, root;
1989 	char *page = (char *) __get_free_page(GFP_USER);
1990 
1991 	if (!page)
1992 		return -ENOMEM;
1993 
1994 	read_lock(&current->fs->lock);
1995 	pwd = current->fs->pwd;
1996 	path_get(&pwd);
1997 	root = current->fs->root;
1998 	path_get(&root);
1999 	read_unlock(&current->fs->lock);
2000 
2001 	error = -ENOENT;
2002 	/* Has the current directory has been unlinked? */
2003 	spin_lock(&dcache_lock);
2004 	if (IS_ROOT(pwd.dentry) || !d_unhashed(pwd.dentry)) {
2005 		unsigned long len;
2006 		struct path tmp = root;
2007 		char * cwd;
2008 
2009 		cwd = __d_path(&pwd, &tmp, page, PAGE_SIZE);
2010 		spin_unlock(&dcache_lock);
2011 
2012 		error = PTR_ERR(cwd);
2013 		if (IS_ERR(cwd))
2014 			goto out;
2015 
2016 		error = -ERANGE;
2017 		len = PAGE_SIZE + page - cwd;
2018 		if (len <= size) {
2019 			error = len;
2020 			if (copy_to_user(buf, cwd, len))
2021 				error = -EFAULT;
2022 		}
2023 	} else
2024 		spin_unlock(&dcache_lock);
2025 
2026 out:
2027 	path_put(&pwd);
2028 	path_put(&root);
2029 	free_page((unsigned long) page);
2030 	return error;
2031 }
2032 
2033 /*
2034  * Test whether new_dentry is a subdirectory of old_dentry.
2035  *
2036  * Trivially implemented using the dcache structure
2037  */
2038 
2039 /**
2040  * is_subdir - is new dentry a subdirectory of old_dentry
2041  * @new_dentry: new dentry
2042  * @old_dentry: old dentry
2043  *
2044  * Returns 1 if new_dentry is a subdirectory of the parent (at any depth).
2045  * Returns 0 otherwise.
2046  * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
2047  */
2048 
2049 int is_subdir(struct dentry * new_dentry, struct dentry * old_dentry)
2050 {
2051 	int result;
2052 	struct dentry * saved = new_dentry;
2053 	unsigned long seq;
2054 
2055 	/* need rcu_readlock to protect against the d_parent trashing due to
2056 	 * d_move
2057 	 */
2058 	rcu_read_lock();
2059         do {
2060 		/* for restarting inner loop in case of seq retry */
2061 		new_dentry = saved;
2062 		result = 0;
2063 		seq = read_seqbegin(&rename_lock);
2064 		for (;;) {
2065 			if (new_dentry != old_dentry) {
2066 				struct dentry * parent = new_dentry->d_parent;
2067 				if (parent == new_dentry)
2068 					break;
2069 				new_dentry = parent;
2070 				continue;
2071 			}
2072 			result = 1;
2073 			break;
2074 		}
2075 	} while (read_seqretry(&rename_lock, seq));
2076 	rcu_read_unlock();
2077 
2078 	return result;
2079 }
2080 
2081 void d_genocide(struct dentry *root)
2082 {
2083 	struct dentry *this_parent = root;
2084 	struct list_head *next;
2085 
2086 	spin_lock(&dcache_lock);
2087 repeat:
2088 	next = this_parent->d_subdirs.next;
2089 resume:
2090 	while (next != &this_parent->d_subdirs) {
2091 		struct list_head *tmp = next;
2092 		struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
2093 		next = tmp->next;
2094 		if (d_unhashed(dentry)||!dentry->d_inode)
2095 			continue;
2096 		if (!list_empty(&dentry->d_subdirs)) {
2097 			this_parent = dentry;
2098 			goto repeat;
2099 		}
2100 		atomic_dec(&dentry->d_count);
2101 	}
2102 	if (this_parent != root) {
2103 		next = this_parent->d_u.d_child.next;
2104 		atomic_dec(&this_parent->d_count);
2105 		this_parent = this_parent->d_parent;
2106 		goto resume;
2107 	}
2108 	spin_unlock(&dcache_lock);
2109 }
2110 
2111 /**
2112  * find_inode_number - check for dentry with name
2113  * @dir: directory to check
2114  * @name: Name to find.
2115  *
2116  * Check whether a dentry already exists for the given name,
2117  * and return the inode number if it has an inode. Otherwise
2118  * 0 is returned.
2119  *
2120  * This routine is used to post-process directory listings for
2121  * filesystems using synthetic inode numbers, and is necessary
2122  * to keep getcwd() working.
2123  */
2124 
2125 ino_t find_inode_number(struct dentry *dir, struct qstr *name)
2126 {
2127 	struct dentry * dentry;
2128 	ino_t ino = 0;
2129 
2130 	dentry = d_hash_and_lookup(dir, name);
2131 	if (dentry) {
2132 		if (dentry->d_inode)
2133 			ino = dentry->d_inode->i_ino;
2134 		dput(dentry);
2135 	}
2136 	return ino;
2137 }
2138 
2139 static __initdata unsigned long dhash_entries;
2140 static int __init set_dhash_entries(char *str)
2141 {
2142 	if (!str)
2143 		return 0;
2144 	dhash_entries = simple_strtoul(str, &str, 0);
2145 	return 1;
2146 }
2147 __setup("dhash_entries=", set_dhash_entries);
2148 
2149 static void __init dcache_init_early(void)
2150 {
2151 	int loop;
2152 
2153 	/* If hashes are distributed across NUMA nodes, defer
2154 	 * hash allocation until vmalloc space is available.
2155 	 */
2156 	if (hashdist)
2157 		return;
2158 
2159 	dentry_hashtable =
2160 		alloc_large_system_hash("Dentry cache",
2161 					sizeof(struct hlist_head),
2162 					dhash_entries,
2163 					13,
2164 					HASH_EARLY,
2165 					&d_hash_shift,
2166 					&d_hash_mask,
2167 					0);
2168 
2169 	for (loop = 0; loop < (1 << d_hash_shift); loop++)
2170 		INIT_HLIST_HEAD(&dentry_hashtable[loop]);
2171 }
2172 
2173 static void __init dcache_init(void)
2174 {
2175 	int loop;
2176 
2177 	/*
2178 	 * A constructor could be added for stable state like the lists,
2179 	 * but it is probably not worth it because of the cache nature
2180 	 * of the dcache.
2181 	 */
2182 	dentry_cache = KMEM_CACHE(dentry,
2183 		SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD);
2184 
2185 	register_shrinker(&dcache_shrinker);
2186 
2187 	/* Hash may have been set up in dcache_init_early */
2188 	if (!hashdist)
2189 		return;
2190 
2191 	dentry_hashtable =
2192 		alloc_large_system_hash("Dentry cache",
2193 					sizeof(struct hlist_head),
2194 					dhash_entries,
2195 					13,
2196 					0,
2197 					&d_hash_shift,
2198 					&d_hash_mask,
2199 					0);
2200 
2201 	for (loop = 0; loop < (1 << d_hash_shift); loop++)
2202 		INIT_HLIST_HEAD(&dentry_hashtable[loop]);
2203 }
2204 
2205 /* SLAB cache for __getname() consumers */
2206 struct kmem_cache *names_cachep __read_mostly;
2207 
2208 /* SLAB cache for file structures */
2209 struct kmem_cache *filp_cachep __read_mostly;
2210 
2211 EXPORT_SYMBOL(d_genocide);
2212 
2213 void __init vfs_caches_init_early(void)
2214 {
2215 	dcache_init_early();
2216 	inode_init_early();
2217 }
2218 
2219 void __init vfs_caches_init(unsigned long mempages)
2220 {
2221 	unsigned long reserve;
2222 
2223 	/* Base hash sizes on available memory, with a reserve equal to
2224            150% of current kernel size */
2225 
2226 	reserve = min((mempages - nr_free_pages()) * 3/2, mempages - 1);
2227 	mempages -= reserve;
2228 
2229 	names_cachep = kmem_cache_create("names_cache", PATH_MAX, 0,
2230 			SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
2231 
2232 	filp_cachep = kmem_cache_create("filp", sizeof(struct file), 0,
2233 			SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
2234 
2235 	dcache_init();
2236 	inode_init();
2237 	files_init(mempages);
2238 	mnt_init();
2239 	bdev_cache_init();
2240 	chrdev_init();
2241 }
2242 
2243 EXPORT_SYMBOL(d_alloc);
2244 EXPORT_SYMBOL(d_alloc_anon);
2245 EXPORT_SYMBOL(d_alloc_root);
2246 EXPORT_SYMBOL(d_delete);
2247 EXPORT_SYMBOL(d_find_alias);
2248 EXPORT_SYMBOL(d_instantiate);
2249 EXPORT_SYMBOL(d_invalidate);
2250 EXPORT_SYMBOL(d_lookup);
2251 EXPORT_SYMBOL(d_move);
2252 EXPORT_SYMBOL_GPL(d_materialise_unique);
2253 EXPORT_SYMBOL(d_path);
2254 EXPORT_SYMBOL(d_prune_aliases);
2255 EXPORT_SYMBOL(d_rehash);
2256 EXPORT_SYMBOL(d_splice_alias);
2257 EXPORT_SYMBOL(d_validate);
2258 EXPORT_SYMBOL(dget_locked);
2259 EXPORT_SYMBOL(dput);
2260 EXPORT_SYMBOL(find_inode_number);
2261 EXPORT_SYMBOL(have_submounts);
2262 EXPORT_SYMBOL(names_cachep);
2263 EXPORT_SYMBOL(shrink_dcache_parent);
2264 EXPORT_SYMBOL(shrink_dcache_sb);
2265