xref: /openbmc/linux/fs/dcache.c (revision efe4a1ac)
1 /*
2  * fs/dcache.c
3  *
4  * Complete reimplementation
5  * (C) 1997 Thomas Schoebel-Theuer,
6  * with heavy changes by Linus Torvalds
7  */
8 
9 /*
10  * Notes on the allocation strategy:
11  *
12  * The dcache is a master of the icache - whenever a dcache entry
13  * exists, the inode will always exist. "iput()" is done either when
14  * the dcache entry is deleted or garbage collected.
15  */
16 
17 #include <linux/syscalls.h>
18 #include <linux/string.h>
19 #include <linux/mm.h>
20 #include <linux/fs.h>
21 #include <linux/fsnotify.h>
22 #include <linux/slab.h>
23 #include <linux/init.h>
24 #include <linux/hash.h>
25 #include <linux/cache.h>
26 #include <linux/export.h>
27 #include <linux/mount.h>
28 #include <linux/file.h>
29 #include <linux/uaccess.h>
30 #include <linux/security.h>
31 #include <linux/seqlock.h>
32 #include <linux/swap.h>
33 #include <linux/bootmem.h>
34 #include <linux/fs_struct.h>
35 #include <linux/hardirq.h>
36 #include <linux/bit_spinlock.h>
37 #include <linux/rculist_bl.h>
38 #include <linux/prefetch.h>
39 #include <linux/ratelimit.h>
40 #include <linux/list_lru.h>
41 #include <linux/kasan.h>
42 
43 #include "internal.h"
44 #include "mount.h"
45 
46 /*
47  * Usage:
48  * dcache->d_inode->i_lock protects:
49  *   - i_dentry, d_u.d_alias, d_inode of aliases
50  * dcache_hash_bucket lock protects:
51  *   - the dcache hash table
52  * s_anon bl list spinlock protects:
53  *   - the s_anon list (see __d_drop)
54  * dentry->d_sb->s_dentry_lru_lock protects:
55  *   - the dcache lru lists and counters
56  * d_lock protects:
57  *   - d_flags
58  *   - d_name
59  *   - d_lru
60  *   - d_count
61  *   - d_unhashed()
62  *   - d_parent and d_subdirs
63  *   - childrens' d_child and d_parent
64  *   - d_u.d_alias, d_inode
65  *
66  * Ordering:
67  * dentry->d_inode->i_lock
68  *   dentry->d_lock
69  *     dentry->d_sb->s_dentry_lru_lock
70  *     dcache_hash_bucket lock
71  *     s_anon lock
72  *
73  * If there is an ancestor relationship:
74  * dentry->d_parent->...->d_parent->d_lock
75  *   ...
76  *     dentry->d_parent->d_lock
77  *       dentry->d_lock
78  *
79  * If no ancestor relationship:
80  * if (dentry1 < dentry2)
81  *   dentry1->d_lock
82  *     dentry2->d_lock
83  */
84 int sysctl_vfs_cache_pressure __read_mostly = 100;
85 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
86 
87 __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
88 
89 EXPORT_SYMBOL(rename_lock);
90 
91 static struct kmem_cache *dentry_cache __read_mostly;
92 
93 /*
94  * This is the single most critical data structure when it comes
95  * to the dcache: the hashtable for lookups. Somebody should try
96  * to make this good - I've just made it work.
97  *
98  * This hash-function tries to avoid losing too many bits of hash
99  * information, yet avoid using a prime hash-size or similar.
100  */
101 
102 static unsigned int d_hash_mask __read_mostly;
103 static unsigned int d_hash_shift __read_mostly;
104 
105 static struct hlist_bl_head *dentry_hashtable __read_mostly;
106 
107 static inline struct hlist_bl_head *d_hash(unsigned int hash)
108 {
109 	return dentry_hashtable + (hash >> (32 - d_hash_shift));
110 }
111 
112 #define IN_LOOKUP_SHIFT 10
113 static struct hlist_bl_head in_lookup_hashtable[1 << IN_LOOKUP_SHIFT];
114 
115 static inline struct hlist_bl_head *in_lookup_hash(const struct dentry *parent,
116 					unsigned int hash)
117 {
118 	hash += (unsigned long) parent / L1_CACHE_BYTES;
119 	return in_lookup_hashtable + hash_32(hash, IN_LOOKUP_SHIFT);
120 }
121 
122 
123 /* Statistics gathering. */
124 struct dentry_stat_t dentry_stat = {
125 	.age_limit = 45,
126 };
127 
128 static DEFINE_PER_CPU(long, nr_dentry);
129 static DEFINE_PER_CPU(long, nr_dentry_unused);
130 
131 #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
132 
133 /*
134  * Here we resort to our own counters instead of using generic per-cpu counters
135  * for consistency with what the vfs inode code does. We are expected to harvest
136  * better code and performance by having our own specialized counters.
137  *
138  * Please note that the loop is done over all possible CPUs, not over all online
139  * CPUs. The reason for this is that we don't want to play games with CPUs going
140  * on and off. If one of them goes off, we will just keep their counters.
141  *
142  * glommer: See cffbc8a for details, and if you ever intend to change this,
143  * please update all vfs counters to match.
144  */
145 static long get_nr_dentry(void)
146 {
147 	int i;
148 	long sum = 0;
149 	for_each_possible_cpu(i)
150 		sum += per_cpu(nr_dentry, i);
151 	return sum < 0 ? 0 : sum;
152 }
153 
154 static long get_nr_dentry_unused(void)
155 {
156 	int i;
157 	long sum = 0;
158 	for_each_possible_cpu(i)
159 		sum += per_cpu(nr_dentry_unused, i);
160 	return sum < 0 ? 0 : sum;
161 }
162 
163 int proc_nr_dentry(struct ctl_table *table, int write, void __user *buffer,
164 		   size_t *lenp, loff_t *ppos)
165 {
166 	dentry_stat.nr_dentry = get_nr_dentry();
167 	dentry_stat.nr_unused = get_nr_dentry_unused();
168 	return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
169 }
170 #endif
171 
172 /*
173  * Compare 2 name strings, return 0 if they match, otherwise non-zero.
174  * The strings are both count bytes long, and count is non-zero.
175  */
176 #ifdef CONFIG_DCACHE_WORD_ACCESS
177 
178 #include <asm/word-at-a-time.h>
179 /*
180  * NOTE! 'cs' and 'scount' come from a dentry, so it has a
181  * aligned allocation for this particular component. We don't
182  * strictly need the load_unaligned_zeropad() safety, but it
183  * doesn't hurt either.
184  *
185  * In contrast, 'ct' and 'tcount' can be from a pathname, and do
186  * need the careful unaligned handling.
187  */
188 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
189 {
190 	unsigned long a,b,mask;
191 
192 	for (;;) {
193 		a = *(unsigned long *)cs;
194 		b = load_unaligned_zeropad(ct);
195 		if (tcount < sizeof(unsigned long))
196 			break;
197 		if (unlikely(a != b))
198 			return 1;
199 		cs += sizeof(unsigned long);
200 		ct += sizeof(unsigned long);
201 		tcount -= sizeof(unsigned long);
202 		if (!tcount)
203 			return 0;
204 	}
205 	mask = bytemask_from_count(tcount);
206 	return unlikely(!!((a ^ b) & mask));
207 }
208 
209 #else
210 
211 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
212 {
213 	do {
214 		if (*cs != *ct)
215 			return 1;
216 		cs++;
217 		ct++;
218 		tcount--;
219 	} while (tcount);
220 	return 0;
221 }
222 
223 #endif
224 
225 static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount)
226 {
227 	/*
228 	 * Be careful about RCU walk racing with rename:
229 	 * use 'lockless_dereference' to fetch the name pointer.
230 	 *
231 	 * NOTE! Even if a rename will mean that the length
232 	 * was not loaded atomically, we don't care. The
233 	 * RCU walk will check the sequence count eventually,
234 	 * and catch it. And we won't overrun the buffer,
235 	 * because we're reading the name pointer atomically,
236 	 * and a dentry name is guaranteed to be properly
237 	 * terminated with a NUL byte.
238 	 *
239 	 * End result: even if 'len' is wrong, we'll exit
240 	 * early because the data cannot match (there can
241 	 * be no NUL in the ct/tcount data)
242 	 */
243 	const unsigned char *cs = lockless_dereference(dentry->d_name.name);
244 
245 	return dentry_string_cmp(cs, ct, tcount);
246 }
247 
248 struct external_name {
249 	union {
250 		atomic_t count;
251 		struct rcu_head head;
252 	} u;
253 	unsigned char name[];
254 };
255 
256 static inline struct external_name *external_name(struct dentry *dentry)
257 {
258 	return container_of(dentry->d_name.name, struct external_name, name[0]);
259 }
260 
261 static void __d_free(struct rcu_head *head)
262 {
263 	struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
264 
265 	kmem_cache_free(dentry_cache, dentry);
266 }
267 
268 static void __d_free_external(struct rcu_head *head)
269 {
270 	struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
271 	kfree(external_name(dentry));
272 	kmem_cache_free(dentry_cache, dentry);
273 }
274 
275 static inline int dname_external(const struct dentry *dentry)
276 {
277 	return dentry->d_name.name != dentry->d_iname;
278 }
279 
280 static inline void __d_set_inode_and_type(struct dentry *dentry,
281 					  struct inode *inode,
282 					  unsigned type_flags)
283 {
284 	unsigned flags;
285 
286 	dentry->d_inode = inode;
287 	flags = READ_ONCE(dentry->d_flags);
288 	flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU);
289 	flags |= type_flags;
290 	WRITE_ONCE(dentry->d_flags, flags);
291 }
292 
293 static inline void __d_clear_type_and_inode(struct dentry *dentry)
294 {
295 	unsigned flags = READ_ONCE(dentry->d_flags);
296 
297 	flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU);
298 	WRITE_ONCE(dentry->d_flags, flags);
299 	dentry->d_inode = NULL;
300 }
301 
302 static void dentry_free(struct dentry *dentry)
303 {
304 	WARN_ON(!hlist_unhashed(&dentry->d_u.d_alias));
305 	if (unlikely(dname_external(dentry))) {
306 		struct external_name *p = external_name(dentry);
307 		if (likely(atomic_dec_and_test(&p->u.count))) {
308 			call_rcu(&dentry->d_u.d_rcu, __d_free_external);
309 			return;
310 		}
311 	}
312 	/* if dentry was never visible to RCU, immediate free is OK */
313 	if (!(dentry->d_flags & DCACHE_RCUACCESS))
314 		__d_free(&dentry->d_u.d_rcu);
315 	else
316 		call_rcu(&dentry->d_u.d_rcu, __d_free);
317 }
318 
319 /*
320  * Release the dentry's inode, using the filesystem
321  * d_iput() operation if defined.
322  */
323 static void dentry_unlink_inode(struct dentry * dentry)
324 	__releases(dentry->d_lock)
325 	__releases(dentry->d_inode->i_lock)
326 {
327 	struct inode *inode = dentry->d_inode;
328 	bool hashed = !d_unhashed(dentry);
329 
330 	if (hashed)
331 		raw_write_seqcount_begin(&dentry->d_seq);
332 	__d_clear_type_and_inode(dentry);
333 	hlist_del_init(&dentry->d_u.d_alias);
334 	if (hashed)
335 		raw_write_seqcount_end(&dentry->d_seq);
336 	spin_unlock(&dentry->d_lock);
337 	spin_unlock(&inode->i_lock);
338 	if (!inode->i_nlink)
339 		fsnotify_inoderemove(inode);
340 	if (dentry->d_op && dentry->d_op->d_iput)
341 		dentry->d_op->d_iput(dentry, inode);
342 	else
343 		iput(inode);
344 }
345 
346 /*
347  * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry
348  * is in use - which includes both the "real" per-superblock
349  * LRU list _and_ the DCACHE_SHRINK_LIST use.
350  *
351  * The DCACHE_SHRINK_LIST bit is set whenever the dentry is
352  * on the shrink list (ie not on the superblock LRU list).
353  *
354  * The per-cpu "nr_dentry_unused" counters are updated with
355  * the DCACHE_LRU_LIST bit.
356  *
357  * These helper functions make sure we always follow the
358  * rules. d_lock must be held by the caller.
359  */
360 #define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x))
361 static void d_lru_add(struct dentry *dentry)
362 {
363 	D_FLAG_VERIFY(dentry, 0);
364 	dentry->d_flags |= DCACHE_LRU_LIST;
365 	this_cpu_inc(nr_dentry_unused);
366 	WARN_ON_ONCE(!list_lru_add(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
367 }
368 
369 static void d_lru_del(struct dentry *dentry)
370 {
371 	D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
372 	dentry->d_flags &= ~DCACHE_LRU_LIST;
373 	this_cpu_dec(nr_dentry_unused);
374 	WARN_ON_ONCE(!list_lru_del(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
375 }
376 
377 static void d_shrink_del(struct dentry *dentry)
378 {
379 	D_FLAG_VERIFY(dentry, DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
380 	list_del_init(&dentry->d_lru);
381 	dentry->d_flags &= ~(DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
382 	this_cpu_dec(nr_dentry_unused);
383 }
384 
385 static void d_shrink_add(struct dentry *dentry, struct list_head *list)
386 {
387 	D_FLAG_VERIFY(dentry, 0);
388 	list_add(&dentry->d_lru, list);
389 	dentry->d_flags |= DCACHE_SHRINK_LIST | DCACHE_LRU_LIST;
390 	this_cpu_inc(nr_dentry_unused);
391 }
392 
393 /*
394  * These can only be called under the global LRU lock, ie during the
395  * callback for freeing the LRU list. "isolate" removes it from the
396  * LRU lists entirely, while shrink_move moves it to the indicated
397  * private list.
398  */
399 static void d_lru_isolate(struct list_lru_one *lru, struct dentry *dentry)
400 {
401 	D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
402 	dentry->d_flags &= ~DCACHE_LRU_LIST;
403 	this_cpu_dec(nr_dentry_unused);
404 	list_lru_isolate(lru, &dentry->d_lru);
405 }
406 
407 static void d_lru_shrink_move(struct list_lru_one *lru, struct dentry *dentry,
408 			      struct list_head *list)
409 {
410 	D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
411 	dentry->d_flags |= DCACHE_SHRINK_LIST;
412 	list_lru_isolate_move(lru, &dentry->d_lru, list);
413 }
414 
415 /*
416  * dentry_lru_(add|del)_list) must be called with d_lock held.
417  */
418 static void dentry_lru_add(struct dentry *dentry)
419 {
420 	if (unlikely(!(dentry->d_flags & DCACHE_LRU_LIST)))
421 		d_lru_add(dentry);
422 	else if (unlikely(!(dentry->d_flags & DCACHE_REFERENCED)))
423 		dentry->d_flags |= DCACHE_REFERENCED;
424 }
425 
426 /**
427  * d_drop - drop a dentry
428  * @dentry: dentry to drop
429  *
430  * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
431  * be found through a VFS lookup any more. Note that this is different from
432  * deleting the dentry - d_delete will try to mark the dentry negative if
433  * possible, giving a successful _negative_ lookup, while d_drop will
434  * just make the cache lookup fail.
435  *
436  * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
437  * reason (NFS timeouts or autofs deletes).
438  *
439  * __d_drop requires dentry->d_lock.
440  */
441 void __d_drop(struct dentry *dentry)
442 {
443 	if (!d_unhashed(dentry)) {
444 		struct hlist_bl_head *b;
445 		/*
446 		 * Hashed dentries are normally on the dentry hashtable,
447 		 * with the exception of those newly allocated by
448 		 * d_obtain_alias, which are always IS_ROOT:
449 		 */
450 		if (unlikely(IS_ROOT(dentry)))
451 			b = &dentry->d_sb->s_anon;
452 		else
453 			b = d_hash(dentry->d_name.hash);
454 
455 		hlist_bl_lock(b);
456 		__hlist_bl_del(&dentry->d_hash);
457 		dentry->d_hash.pprev = NULL;
458 		hlist_bl_unlock(b);
459 		/* After this call, in-progress rcu-walk path lookup will fail. */
460 		write_seqcount_invalidate(&dentry->d_seq);
461 	}
462 }
463 EXPORT_SYMBOL(__d_drop);
464 
465 void d_drop(struct dentry *dentry)
466 {
467 	spin_lock(&dentry->d_lock);
468 	__d_drop(dentry);
469 	spin_unlock(&dentry->d_lock);
470 }
471 EXPORT_SYMBOL(d_drop);
472 
473 static inline void dentry_unlist(struct dentry *dentry, struct dentry *parent)
474 {
475 	struct dentry *next;
476 	/*
477 	 * Inform d_walk() and shrink_dentry_list() that we are no longer
478 	 * attached to the dentry tree
479 	 */
480 	dentry->d_flags |= DCACHE_DENTRY_KILLED;
481 	if (unlikely(list_empty(&dentry->d_child)))
482 		return;
483 	__list_del_entry(&dentry->d_child);
484 	/*
485 	 * Cursors can move around the list of children.  While we'd been
486 	 * a normal list member, it didn't matter - ->d_child.next would've
487 	 * been updated.  However, from now on it won't be and for the
488 	 * things like d_walk() it might end up with a nasty surprise.
489 	 * Normally d_walk() doesn't care about cursors moving around -
490 	 * ->d_lock on parent prevents that and since a cursor has no children
491 	 * of its own, we get through it without ever unlocking the parent.
492 	 * There is one exception, though - if we ascend from a child that
493 	 * gets killed as soon as we unlock it, the next sibling is found
494 	 * using the value left in its ->d_child.next.  And if _that_
495 	 * pointed to a cursor, and cursor got moved (e.g. by lseek())
496 	 * before d_walk() regains parent->d_lock, we'll end up skipping
497 	 * everything the cursor had been moved past.
498 	 *
499 	 * Solution: make sure that the pointer left behind in ->d_child.next
500 	 * points to something that won't be moving around.  I.e. skip the
501 	 * cursors.
502 	 */
503 	while (dentry->d_child.next != &parent->d_subdirs) {
504 		next = list_entry(dentry->d_child.next, struct dentry, d_child);
505 		if (likely(!(next->d_flags & DCACHE_DENTRY_CURSOR)))
506 			break;
507 		dentry->d_child.next = next->d_child.next;
508 	}
509 }
510 
511 static void __dentry_kill(struct dentry *dentry)
512 {
513 	struct dentry *parent = NULL;
514 	bool can_free = true;
515 	if (!IS_ROOT(dentry))
516 		parent = dentry->d_parent;
517 
518 	/*
519 	 * The dentry is now unrecoverably dead to the world.
520 	 */
521 	lockref_mark_dead(&dentry->d_lockref);
522 
523 	/*
524 	 * inform the fs via d_prune that this dentry is about to be
525 	 * unhashed and destroyed.
526 	 */
527 	if (dentry->d_flags & DCACHE_OP_PRUNE)
528 		dentry->d_op->d_prune(dentry);
529 
530 	if (dentry->d_flags & DCACHE_LRU_LIST) {
531 		if (!(dentry->d_flags & DCACHE_SHRINK_LIST))
532 			d_lru_del(dentry);
533 	}
534 	/* if it was on the hash then remove it */
535 	__d_drop(dentry);
536 	dentry_unlist(dentry, parent);
537 	if (parent)
538 		spin_unlock(&parent->d_lock);
539 	if (dentry->d_inode)
540 		dentry_unlink_inode(dentry);
541 	else
542 		spin_unlock(&dentry->d_lock);
543 	this_cpu_dec(nr_dentry);
544 	if (dentry->d_op && dentry->d_op->d_release)
545 		dentry->d_op->d_release(dentry);
546 
547 	spin_lock(&dentry->d_lock);
548 	if (dentry->d_flags & DCACHE_SHRINK_LIST) {
549 		dentry->d_flags |= DCACHE_MAY_FREE;
550 		can_free = false;
551 	}
552 	spin_unlock(&dentry->d_lock);
553 	if (likely(can_free))
554 		dentry_free(dentry);
555 }
556 
557 /*
558  * Finish off a dentry we've decided to kill.
559  * dentry->d_lock must be held, returns with it unlocked.
560  * If ref is non-zero, then decrement the refcount too.
561  * Returns dentry requiring refcount drop, or NULL if we're done.
562  */
563 static struct dentry *dentry_kill(struct dentry *dentry)
564 	__releases(dentry->d_lock)
565 {
566 	struct inode *inode = dentry->d_inode;
567 	struct dentry *parent = NULL;
568 
569 	if (inode && unlikely(!spin_trylock(&inode->i_lock)))
570 		goto failed;
571 
572 	if (!IS_ROOT(dentry)) {
573 		parent = dentry->d_parent;
574 		if (unlikely(!spin_trylock(&parent->d_lock))) {
575 			if (inode)
576 				spin_unlock(&inode->i_lock);
577 			goto failed;
578 		}
579 	}
580 
581 	__dentry_kill(dentry);
582 	return parent;
583 
584 failed:
585 	spin_unlock(&dentry->d_lock);
586 	return dentry; /* try again with same dentry */
587 }
588 
589 static inline struct dentry *lock_parent(struct dentry *dentry)
590 {
591 	struct dentry *parent = dentry->d_parent;
592 	if (IS_ROOT(dentry))
593 		return NULL;
594 	if (unlikely(dentry->d_lockref.count < 0))
595 		return NULL;
596 	if (likely(spin_trylock(&parent->d_lock)))
597 		return parent;
598 	rcu_read_lock();
599 	spin_unlock(&dentry->d_lock);
600 again:
601 	parent = ACCESS_ONCE(dentry->d_parent);
602 	spin_lock(&parent->d_lock);
603 	/*
604 	 * We can't blindly lock dentry until we are sure
605 	 * that we won't violate the locking order.
606 	 * Any changes of dentry->d_parent must have
607 	 * been done with parent->d_lock held, so
608 	 * spin_lock() above is enough of a barrier
609 	 * for checking if it's still our child.
610 	 */
611 	if (unlikely(parent != dentry->d_parent)) {
612 		spin_unlock(&parent->d_lock);
613 		goto again;
614 	}
615 	rcu_read_unlock();
616 	if (parent != dentry)
617 		spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
618 	else
619 		parent = NULL;
620 	return parent;
621 }
622 
623 /*
624  * Try to do a lockless dput(), and return whether that was successful.
625  *
626  * If unsuccessful, we return false, having already taken the dentry lock.
627  *
628  * The caller needs to hold the RCU read lock, so that the dentry is
629  * guaranteed to stay around even if the refcount goes down to zero!
630  */
631 static inline bool fast_dput(struct dentry *dentry)
632 {
633 	int ret;
634 	unsigned int d_flags;
635 
636 	/*
637 	 * If we have a d_op->d_delete() operation, we sould not
638 	 * let the dentry count go to zero, so use "put_or_lock".
639 	 */
640 	if (unlikely(dentry->d_flags & DCACHE_OP_DELETE))
641 		return lockref_put_or_lock(&dentry->d_lockref);
642 
643 	/*
644 	 * .. otherwise, we can try to just decrement the
645 	 * lockref optimistically.
646 	 */
647 	ret = lockref_put_return(&dentry->d_lockref);
648 
649 	/*
650 	 * If the lockref_put_return() failed due to the lock being held
651 	 * by somebody else, the fast path has failed. We will need to
652 	 * get the lock, and then check the count again.
653 	 */
654 	if (unlikely(ret < 0)) {
655 		spin_lock(&dentry->d_lock);
656 		if (dentry->d_lockref.count > 1) {
657 			dentry->d_lockref.count--;
658 			spin_unlock(&dentry->d_lock);
659 			return 1;
660 		}
661 		return 0;
662 	}
663 
664 	/*
665 	 * If we weren't the last ref, we're done.
666 	 */
667 	if (ret)
668 		return 1;
669 
670 	/*
671 	 * Careful, careful. The reference count went down
672 	 * to zero, but we don't hold the dentry lock, so
673 	 * somebody else could get it again, and do another
674 	 * dput(), and we need to not race with that.
675 	 *
676 	 * However, there is a very special and common case
677 	 * where we don't care, because there is nothing to
678 	 * do: the dentry is still hashed, it does not have
679 	 * a 'delete' op, and it's referenced and already on
680 	 * the LRU list.
681 	 *
682 	 * NOTE! Since we aren't locked, these values are
683 	 * not "stable". However, it is sufficient that at
684 	 * some point after we dropped the reference the
685 	 * dentry was hashed and the flags had the proper
686 	 * value. Other dentry users may have re-gotten
687 	 * a reference to the dentry and change that, but
688 	 * our work is done - we can leave the dentry
689 	 * around with a zero refcount.
690 	 */
691 	smp_rmb();
692 	d_flags = ACCESS_ONCE(dentry->d_flags);
693 	d_flags &= DCACHE_REFERENCED | DCACHE_LRU_LIST | DCACHE_DISCONNECTED;
694 
695 	/* Nothing to do? Dropping the reference was all we needed? */
696 	if (d_flags == (DCACHE_REFERENCED | DCACHE_LRU_LIST) && !d_unhashed(dentry))
697 		return 1;
698 
699 	/*
700 	 * Not the fast normal case? Get the lock. We've already decremented
701 	 * the refcount, but we'll need to re-check the situation after
702 	 * getting the lock.
703 	 */
704 	spin_lock(&dentry->d_lock);
705 
706 	/*
707 	 * Did somebody else grab a reference to it in the meantime, and
708 	 * we're no longer the last user after all? Alternatively, somebody
709 	 * else could have killed it and marked it dead. Either way, we
710 	 * don't need to do anything else.
711 	 */
712 	if (dentry->d_lockref.count) {
713 		spin_unlock(&dentry->d_lock);
714 		return 1;
715 	}
716 
717 	/*
718 	 * Re-get the reference we optimistically dropped. We hold the
719 	 * lock, and we just tested that it was zero, so we can just
720 	 * set it to 1.
721 	 */
722 	dentry->d_lockref.count = 1;
723 	return 0;
724 }
725 
726 
727 /*
728  * This is dput
729  *
730  * This is complicated by the fact that we do not want to put
731  * dentries that are no longer on any hash chain on the unused
732  * list: we'd much rather just get rid of them immediately.
733  *
734  * However, that implies that we have to traverse the dentry
735  * tree upwards to the parents which might _also_ now be
736  * scheduled for deletion (it may have been only waiting for
737  * its last child to go away).
738  *
739  * This tail recursion is done by hand as we don't want to depend
740  * on the compiler to always get this right (gcc generally doesn't).
741  * Real recursion would eat up our stack space.
742  */
743 
744 /*
745  * dput - release a dentry
746  * @dentry: dentry to release
747  *
748  * Release a dentry. This will drop the usage count and if appropriate
749  * call the dentry unlink method as well as removing it from the queues and
750  * releasing its resources. If the parent dentries were scheduled for release
751  * they too may now get deleted.
752  */
753 void dput(struct dentry *dentry)
754 {
755 	if (unlikely(!dentry))
756 		return;
757 
758 repeat:
759 	might_sleep();
760 
761 	rcu_read_lock();
762 	if (likely(fast_dput(dentry))) {
763 		rcu_read_unlock();
764 		return;
765 	}
766 
767 	/* Slow case: now with the dentry lock held */
768 	rcu_read_unlock();
769 
770 	WARN_ON(d_in_lookup(dentry));
771 
772 	/* Unreachable? Get rid of it */
773 	if (unlikely(d_unhashed(dentry)))
774 		goto kill_it;
775 
776 	if (unlikely(dentry->d_flags & DCACHE_DISCONNECTED))
777 		goto kill_it;
778 
779 	if (unlikely(dentry->d_flags & DCACHE_OP_DELETE)) {
780 		if (dentry->d_op->d_delete(dentry))
781 			goto kill_it;
782 	}
783 
784 	dentry_lru_add(dentry);
785 
786 	dentry->d_lockref.count--;
787 	spin_unlock(&dentry->d_lock);
788 	return;
789 
790 kill_it:
791 	dentry = dentry_kill(dentry);
792 	if (dentry) {
793 		cond_resched();
794 		goto repeat;
795 	}
796 }
797 EXPORT_SYMBOL(dput);
798 
799 
800 /* This must be called with d_lock held */
801 static inline void __dget_dlock(struct dentry *dentry)
802 {
803 	dentry->d_lockref.count++;
804 }
805 
806 static inline void __dget(struct dentry *dentry)
807 {
808 	lockref_get(&dentry->d_lockref);
809 }
810 
811 struct dentry *dget_parent(struct dentry *dentry)
812 {
813 	int gotref;
814 	struct dentry *ret;
815 
816 	/*
817 	 * Do optimistic parent lookup without any
818 	 * locking.
819 	 */
820 	rcu_read_lock();
821 	ret = ACCESS_ONCE(dentry->d_parent);
822 	gotref = lockref_get_not_zero(&ret->d_lockref);
823 	rcu_read_unlock();
824 	if (likely(gotref)) {
825 		if (likely(ret == ACCESS_ONCE(dentry->d_parent)))
826 			return ret;
827 		dput(ret);
828 	}
829 
830 repeat:
831 	/*
832 	 * Don't need rcu_dereference because we re-check it was correct under
833 	 * the lock.
834 	 */
835 	rcu_read_lock();
836 	ret = dentry->d_parent;
837 	spin_lock(&ret->d_lock);
838 	if (unlikely(ret != dentry->d_parent)) {
839 		spin_unlock(&ret->d_lock);
840 		rcu_read_unlock();
841 		goto repeat;
842 	}
843 	rcu_read_unlock();
844 	BUG_ON(!ret->d_lockref.count);
845 	ret->d_lockref.count++;
846 	spin_unlock(&ret->d_lock);
847 	return ret;
848 }
849 EXPORT_SYMBOL(dget_parent);
850 
851 /**
852  * d_find_alias - grab a hashed alias of inode
853  * @inode: inode in question
854  *
855  * If inode has a hashed alias, or is a directory and has any alias,
856  * acquire the reference to alias and return it. Otherwise return NULL.
857  * Notice that if inode is a directory there can be only one alias and
858  * it can be unhashed only if it has no children, or if it is the root
859  * of a filesystem, or if the directory was renamed and d_revalidate
860  * was the first vfs operation to notice.
861  *
862  * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
863  * any other hashed alias over that one.
864  */
865 static struct dentry *__d_find_alias(struct inode *inode)
866 {
867 	struct dentry *alias, *discon_alias;
868 
869 again:
870 	discon_alias = NULL;
871 	hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
872 		spin_lock(&alias->d_lock);
873  		if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
874 			if (IS_ROOT(alias) &&
875 			    (alias->d_flags & DCACHE_DISCONNECTED)) {
876 				discon_alias = alias;
877 			} else {
878 				__dget_dlock(alias);
879 				spin_unlock(&alias->d_lock);
880 				return alias;
881 			}
882 		}
883 		spin_unlock(&alias->d_lock);
884 	}
885 	if (discon_alias) {
886 		alias = discon_alias;
887 		spin_lock(&alias->d_lock);
888 		if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
889 			__dget_dlock(alias);
890 			spin_unlock(&alias->d_lock);
891 			return alias;
892 		}
893 		spin_unlock(&alias->d_lock);
894 		goto again;
895 	}
896 	return NULL;
897 }
898 
899 struct dentry *d_find_alias(struct inode *inode)
900 {
901 	struct dentry *de = NULL;
902 
903 	if (!hlist_empty(&inode->i_dentry)) {
904 		spin_lock(&inode->i_lock);
905 		de = __d_find_alias(inode);
906 		spin_unlock(&inode->i_lock);
907 	}
908 	return de;
909 }
910 EXPORT_SYMBOL(d_find_alias);
911 
912 /*
913  *	Try to kill dentries associated with this inode.
914  * WARNING: you must own a reference to inode.
915  */
916 void d_prune_aliases(struct inode *inode)
917 {
918 	struct dentry *dentry;
919 restart:
920 	spin_lock(&inode->i_lock);
921 	hlist_for_each_entry(dentry, &inode->i_dentry, d_u.d_alias) {
922 		spin_lock(&dentry->d_lock);
923 		if (!dentry->d_lockref.count) {
924 			struct dentry *parent = lock_parent(dentry);
925 			if (likely(!dentry->d_lockref.count)) {
926 				__dentry_kill(dentry);
927 				dput(parent);
928 				goto restart;
929 			}
930 			if (parent)
931 				spin_unlock(&parent->d_lock);
932 		}
933 		spin_unlock(&dentry->d_lock);
934 	}
935 	spin_unlock(&inode->i_lock);
936 }
937 EXPORT_SYMBOL(d_prune_aliases);
938 
939 static void shrink_dentry_list(struct list_head *list)
940 {
941 	struct dentry *dentry, *parent;
942 
943 	while (!list_empty(list)) {
944 		struct inode *inode;
945 		dentry = list_entry(list->prev, struct dentry, d_lru);
946 		spin_lock(&dentry->d_lock);
947 		parent = lock_parent(dentry);
948 
949 		/*
950 		 * The dispose list is isolated and dentries are not accounted
951 		 * to the LRU here, so we can simply remove it from the list
952 		 * here regardless of whether it is referenced or not.
953 		 */
954 		d_shrink_del(dentry);
955 
956 		/*
957 		 * We found an inuse dentry which was not removed from
958 		 * the LRU because of laziness during lookup. Do not free it.
959 		 */
960 		if (dentry->d_lockref.count > 0) {
961 			spin_unlock(&dentry->d_lock);
962 			if (parent)
963 				spin_unlock(&parent->d_lock);
964 			continue;
965 		}
966 
967 
968 		if (unlikely(dentry->d_flags & DCACHE_DENTRY_KILLED)) {
969 			bool can_free = dentry->d_flags & DCACHE_MAY_FREE;
970 			spin_unlock(&dentry->d_lock);
971 			if (parent)
972 				spin_unlock(&parent->d_lock);
973 			if (can_free)
974 				dentry_free(dentry);
975 			continue;
976 		}
977 
978 		inode = dentry->d_inode;
979 		if (inode && unlikely(!spin_trylock(&inode->i_lock))) {
980 			d_shrink_add(dentry, list);
981 			spin_unlock(&dentry->d_lock);
982 			if (parent)
983 				spin_unlock(&parent->d_lock);
984 			continue;
985 		}
986 
987 		__dentry_kill(dentry);
988 
989 		/*
990 		 * We need to prune ancestors too. This is necessary to prevent
991 		 * quadratic behavior of shrink_dcache_parent(), but is also
992 		 * expected to be beneficial in reducing dentry cache
993 		 * fragmentation.
994 		 */
995 		dentry = parent;
996 		while (dentry && !lockref_put_or_lock(&dentry->d_lockref)) {
997 			parent = lock_parent(dentry);
998 			if (dentry->d_lockref.count != 1) {
999 				dentry->d_lockref.count--;
1000 				spin_unlock(&dentry->d_lock);
1001 				if (parent)
1002 					spin_unlock(&parent->d_lock);
1003 				break;
1004 			}
1005 			inode = dentry->d_inode;	/* can't be NULL */
1006 			if (unlikely(!spin_trylock(&inode->i_lock))) {
1007 				spin_unlock(&dentry->d_lock);
1008 				if (parent)
1009 					spin_unlock(&parent->d_lock);
1010 				cpu_relax();
1011 				continue;
1012 			}
1013 			__dentry_kill(dentry);
1014 			dentry = parent;
1015 		}
1016 	}
1017 }
1018 
1019 static enum lru_status dentry_lru_isolate(struct list_head *item,
1020 		struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
1021 {
1022 	struct list_head *freeable = arg;
1023 	struct dentry	*dentry = container_of(item, struct dentry, d_lru);
1024 
1025 
1026 	/*
1027 	 * we are inverting the lru lock/dentry->d_lock here,
1028 	 * so use a trylock. If we fail to get the lock, just skip
1029 	 * it
1030 	 */
1031 	if (!spin_trylock(&dentry->d_lock))
1032 		return LRU_SKIP;
1033 
1034 	/*
1035 	 * Referenced dentries are still in use. If they have active
1036 	 * counts, just remove them from the LRU. Otherwise give them
1037 	 * another pass through the LRU.
1038 	 */
1039 	if (dentry->d_lockref.count) {
1040 		d_lru_isolate(lru, dentry);
1041 		spin_unlock(&dentry->d_lock);
1042 		return LRU_REMOVED;
1043 	}
1044 
1045 	if (dentry->d_flags & DCACHE_REFERENCED) {
1046 		dentry->d_flags &= ~DCACHE_REFERENCED;
1047 		spin_unlock(&dentry->d_lock);
1048 
1049 		/*
1050 		 * The list move itself will be made by the common LRU code. At
1051 		 * this point, we've dropped the dentry->d_lock but keep the
1052 		 * lru lock. This is safe to do, since every list movement is
1053 		 * protected by the lru lock even if both locks are held.
1054 		 *
1055 		 * This is guaranteed by the fact that all LRU management
1056 		 * functions are intermediated by the LRU API calls like
1057 		 * list_lru_add and list_lru_del. List movement in this file
1058 		 * only ever occur through this functions or through callbacks
1059 		 * like this one, that are called from the LRU API.
1060 		 *
1061 		 * The only exceptions to this are functions like
1062 		 * shrink_dentry_list, and code that first checks for the
1063 		 * DCACHE_SHRINK_LIST flag.  Those are guaranteed to be
1064 		 * operating only with stack provided lists after they are
1065 		 * properly isolated from the main list.  It is thus, always a
1066 		 * local access.
1067 		 */
1068 		return LRU_ROTATE;
1069 	}
1070 
1071 	d_lru_shrink_move(lru, dentry, freeable);
1072 	spin_unlock(&dentry->d_lock);
1073 
1074 	return LRU_REMOVED;
1075 }
1076 
1077 /**
1078  * prune_dcache_sb - shrink the dcache
1079  * @sb: superblock
1080  * @sc: shrink control, passed to list_lru_shrink_walk()
1081  *
1082  * Attempt to shrink the superblock dcache LRU by @sc->nr_to_scan entries. This
1083  * is done when we need more memory and called from the superblock shrinker
1084  * function.
1085  *
1086  * This function may fail to free any resources if all the dentries are in
1087  * use.
1088  */
1089 long prune_dcache_sb(struct super_block *sb, struct shrink_control *sc)
1090 {
1091 	LIST_HEAD(dispose);
1092 	long freed;
1093 
1094 	freed = list_lru_shrink_walk(&sb->s_dentry_lru, sc,
1095 				     dentry_lru_isolate, &dispose);
1096 	shrink_dentry_list(&dispose);
1097 	return freed;
1098 }
1099 
1100 static enum lru_status dentry_lru_isolate_shrink(struct list_head *item,
1101 		struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
1102 {
1103 	struct list_head *freeable = arg;
1104 	struct dentry	*dentry = container_of(item, struct dentry, d_lru);
1105 
1106 	/*
1107 	 * we are inverting the lru lock/dentry->d_lock here,
1108 	 * so use a trylock. If we fail to get the lock, just skip
1109 	 * it
1110 	 */
1111 	if (!spin_trylock(&dentry->d_lock))
1112 		return LRU_SKIP;
1113 
1114 	d_lru_shrink_move(lru, dentry, freeable);
1115 	spin_unlock(&dentry->d_lock);
1116 
1117 	return LRU_REMOVED;
1118 }
1119 
1120 
1121 /**
1122  * shrink_dcache_sb - shrink dcache for a superblock
1123  * @sb: superblock
1124  *
1125  * Shrink the dcache for the specified super block. This is used to free
1126  * the dcache before unmounting a file system.
1127  */
1128 void shrink_dcache_sb(struct super_block *sb)
1129 {
1130 	long freed;
1131 
1132 	do {
1133 		LIST_HEAD(dispose);
1134 
1135 		freed = list_lru_walk(&sb->s_dentry_lru,
1136 			dentry_lru_isolate_shrink, &dispose, UINT_MAX);
1137 
1138 		this_cpu_sub(nr_dentry_unused, freed);
1139 		shrink_dentry_list(&dispose);
1140 	} while (freed > 0);
1141 }
1142 EXPORT_SYMBOL(shrink_dcache_sb);
1143 
1144 /**
1145  * enum d_walk_ret - action to talke during tree walk
1146  * @D_WALK_CONTINUE:	contrinue walk
1147  * @D_WALK_QUIT:	quit walk
1148  * @D_WALK_NORETRY:	quit when retry is needed
1149  * @D_WALK_SKIP:	skip this dentry and its children
1150  */
1151 enum d_walk_ret {
1152 	D_WALK_CONTINUE,
1153 	D_WALK_QUIT,
1154 	D_WALK_NORETRY,
1155 	D_WALK_SKIP,
1156 };
1157 
1158 /**
1159  * d_walk - walk the dentry tree
1160  * @parent:	start of walk
1161  * @data:	data passed to @enter() and @finish()
1162  * @enter:	callback when first entering the dentry
1163  * @finish:	callback when successfully finished the walk
1164  *
1165  * The @enter() and @finish() callbacks are called with d_lock held.
1166  */
1167 static void d_walk(struct dentry *parent, void *data,
1168 		   enum d_walk_ret (*enter)(void *, struct dentry *),
1169 		   void (*finish)(void *))
1170 {
1171 	struct dentry *this_parent;
1172 	struct list_head *next;
1173 	unsigned seq = 0;
1174 	enum d_walk_ret ret;
1175 	bool retry = true;
1176 
1177 again:
1178 	read_seqbegin_or_lock(&rename_lock, &seq);
1179 	this_parent = parent;
1180 	spin_lock(&this_parent->d_lock);
1181 
1182 	ret = enter(data, this_parent);
1183 	switch (ret) {
1184 	case D_WALK_CONTINUE:
1185 		break;
1186 	case D_WALK_QUIT:
1187 	case D_WALK_SKIP:
1188 		goto out_unlock;
1189 	case D_WALK_NORETRY:
1190 		retry = false;
1191 		break;
1192 	}
1193 repeat:
1194 	next = this_parent->d_subdirs.next;
1195 resume:
1196 	while (next != &this_parent->d_subdirs) {
1197 		struct list_head *tmp = next;
1198 		struct dentry *dentry = list_entry(tmp, struct dentry, d_child);
1199 		next = tmp->next;
1200 
1201 		if (unlikely(dentry->d_flags & DCACHE_DENTRY_CURSOR))
1202 			continue;
1203 
1204 		spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1205 
1206 		ret = enter(data, dentry);
1207 		switch (ret) {
1208 		case D_WALK_CONTINUE:
1209 			break;
1210 		case D_WALK_QUIT:
1211 			spin_unlock(&dentry->d_lock);
1212 			goto out_unlock;
1213 		case D_WALK_NORETRY:
1214 			retry = false;
1215 			break;
1216 		case D_WALK_SKIP:
1217 			spin_unlock(&dentry->d_lock);
1218 			continue;
1219 		}
1220 
1221 		if (!list_empty(&dentry->d_subdirs)) {
1222 			spin_unlock(&this_parent->d_lock);
1223 			spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1224 			this_parent = dentry;
1225 			spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1226 			goto repeat;
1227 		}
1228 		spin_unlock(&dentry->d_lock);
1229 	}
1230 	/*
1231 	 * All done at this level ... ascend and resume the search.
1232 	 */
1233 	rcu_read_lock();
1234 ascend:
1235 	if (this_parent != parent) {
1236 		struct dentry *child = this_parent;
1237 		this_parent = child->d_parent;
1238 
1239 		spin_unlock(&child->d_lock);
1240 		spin_lock(&this_parent->d_lock);
1241 
1242 		/* might go back up the wrong parent if we have had a rename. */
1243 		if (need_seqretry(&rename_lock, seq))
1244 			goto rename_retry;
1245 		/* go into the first sibling still alive */
1246 		do {
1247 			next = child->d_child.next;
1248 			if (next == &this_parent->d_subdirs)
1249 				goto ascend;
1250 			child = list_entry(next, struct dentry, d_child);
1251 		} while (unlikely(child->d_flags & DCACHE_DENTRY_KILLED));
1252 		rcu_read_unlock();
1253 		goto resume;
1254 	}
1255 	if (need_seqretry(&rename_lock, seq))
1256 		goto rename_retry;
1257 	rcu_read_unlock();
1258 	if (finish)
1259 		finish(data);
1260 
1261 out_unlock:
1262 	spin_unlock(&this_parent->d_lock);
1263 	done_seqretry(&rename_lock, seq);
1264 	return;
1265 
1266 rename_retry:
1267 	spin_unlock(&this_parent->d_lock);
1268 	rcu_read_unlock();
1269 	BUG_ON(seq & 1);
1270 	if (!retry)
1271 		return;
1272 	seq = 1;
1273 	goto again;
1274 }
1275 
1276 struct check_mount {
1277 	struct vfsmount *mnt;
1278 	unsigned int mounted;
1279 };
1280 
1281 static enum d_walk_ret path_check_mount(void *data, struct dentry *dentry)
1282 {
1283 	struct check_mount *info = data;
1284 	struct path path = { .mnt = info->mnt, .dentry = dentry };
1285 
1286 	if (likely(!d_mountpoint(dentry)))
1287 		return D_WALK_CONTINUE;
1288 	if (__path_is_mountpoint(&path)) {
1289 		info->mounted = 1;
1290 		return D_WALK_QUIT;
1291 	}
1292 	return D_WALK_CONTINUE;
1293 }
1294 
1295 /**
1296  * path_has_submounts - check for mounts over a dentry in the
1297  *                      current namespace.
1298  * @parent: path to check.
1299  *
1300  * Return true if the parent or its subdirectories contain
1301  * a mount point in the current namespace.
1302  */
1303 int path_has_submounts(const struct path *parent)
1304 {
1305 	struct check_mount data = { .mnt = parent->mnt, .mounted = 0 };
1306 
1307 	read_seqlock_excl(&mount_lock);
1308 	d_walk(parent->dentry, &data, path_check_mount, NULL);
1309 	read_sequnlock_excl(&mount_lock);
1310 
1311 	return data.mounted;
1312 }
1313 EXPORT_SYMBOL(path_has_submounts);
1314 
1315 /*
1316  * Called by mount code to set a mountpoint and check if the mountpoint is
1317  * reachable (e.g. NFS can unhash a directory dentry and then the complete
1318  * subtree can become unreachable).
1319  *
1320  * Only one of d_invalidate() and d_set_mounted() must succeed.  For
1321  * this reason take rename_lock and d_lock on dentry and ancestors.
1322  */
1323 int d_set_mounted(struct dentry *dentry)
1324 {
1325 	struct dentry *p;
1326 	int ret = -ENOENT;
1327 	write_seqlock(&rename_lock);
1328 	for (p = dentry->d_parent; !IS_ROOT(p); p = p->d_parent) {
1329 		/* Need exclusion wrt. d_invalidate() */
1330 		spin_lock(&p->d_lock);
1331 		if (unlikely(d_unhashed(p))) {
1332 			spin_unlock(&p->d_lock);
1333 			goto out;
1334 		}
1335 		spin_unlock(&p->d_lock);
1336 	}
1337 	spin_lock(&dentry->d_lock);
1338 	if (!d_unlinked(dentry)) {
1339 		ret = -EBUSY;
1340 		if (!d_mountpoint(dentry)) {
1341 			dentry->d_flags |= DCACHE_MOUNTED;
1342 			ret = 0;
1343 		}
1344 	}
1345  	spin_unlock(&dentry->d_lock);
1346 out:
1347 	write_sequnlock(&rename_lock);
1348 	return ret;
1349 }
1350 
1351 /*
1352  * Search the dentry child list of the specified parent,
1353  * and move any unused dentries to the end of the unused
1354  * list for prune_dcache(). We descend to the next level
1355  * whenever the d_subdirs list is non-empty and continue
1356  * searching.
1357  *
1358  * It returns zero iff there are no unused children,
1359  * otherwise  it returns the number of children moved to
1360  * the end of the unused list. This may not be the total
1361  * number of unused children, because select_parent can
1362  * drop the lock and return early due to latency
1363  * constraints.
1364  */
1365 
1366 struct select_data {
1367 	struct dentry *start;
1368 	struct list_head dispose;
1369 	int found;
1370 };
1371 
1372 static enum d_walk_ret select_collect(void *_data, struct dentry *dentry)
1373 {
1374 	struct select_data *data = _data;
1375 	enum d_walk_ret ret = D_WALK_CONTINUE;
1376 
1377 	if (data->start == dentry)
1378 		goto out;
1379 
1380 	if (dentry->d_flags & DCACHE_SHRINK_LIST) {
1381 		data->found++;
1382 	} else {
1383 		if (dentry->d_flags & DCACHE_LRU_LIST)
1384 			d_lru_del(dentry);
1385 		if (!dentry->d_lockref.count) {
1386 			d_shrink_add(dentry, &data->dispose);
1387 			data->found++;
1388 		}
1389 	}
1390 	/*
1391 	 * We can return to the caller if we have found some (this
1392 	 * ensures forward progress). We'll be coming back to find
1393 	 * the rest.
1394 	 */
1395 	if (!list_empty(&data->dispose))
1396 		ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY;
1397 out:
1398 	return ret;
1399 }
1400 
1401 /**
1402  * shrink_dcache_parent - prune dcache
1403  * @parent: parent of entries to prune
1404  *
1405  * Prune the dcache to remove unused children of the parent dentry.
1406  */
1407 void shrink_dcache_parent(struct dentry *parent)
1408 {
1409 	for (;;) {
1410 		struct select_data data;
1411 
1412 		INIT_LIST_HEAD(&data.dispose);
1413 		data.start = parent;
1414 		data.found = 0;
1415 
1416 		d_walk(parent, &data, select_collect, NULL);
1417 		if (!data.found)
1418 			break;
1419 
1420 		shrink_dentry_list(&data.dispose);
1421 		cond_resched();
1422 	}
1423 }
1424 EXPORT_SYMBOL(shrink_dcache_parent);
1425 
1426 static enum d_walk_ret umount_check(void *_data, struct dentry *dentry)
1427 {
1428 	/* it has busy descendents; complain about those instead */
1429 	if (!list_empty(&dentry->d_subdirs))
1430 		return D_WALK_CONTINUE;
1431 
1432 	/* root with refcount 1 is fine */
1433 	if (dentry == _data && dentry->d_lockref.count == 1)
1434 		return D_WALK_CONTINUE;
1435 
1436 	printk(KERN_ERR "BUG: Dentry %p{i=%lx,n=%pd} "
1437 			" still in use (%d) [unmount of %s %s]\n",
1438 		       dentry,
1439 		       dentry->d_inode ?
1440 		       dentry->d_inode->i_ino : 0UL,
1441 		       dentry,
1442 		       dentry->d_lockref.count,
1443 		       dentry->d_sb->s_type->name,
1444 		       dentry->d_sb->s_id);
1445 	WARN_ON(1);
1446 	return D_WALK_CONTINUE;
1447 }
1448 
1449 static void do_one_tree(struct dentry *dentry)
1450 {
1451 	shrink_dcache_parent(dentry);
1452 	d_walk(dentry, dentry, umount_check, NULL);
1453 	d_drop(dentry);
1454 	dput(dentry);
1455 }
1456 
1457 /*
1458  * destroy the dentries attached to a superblock on unmounting
1459  */
1460 void shrink_dcache_for_umount(struct super_block *sb)
1461 {
1462 	struct dentry *dentry;
1463 
1464 	WARN(down_read_trylock(&sb->s_umount), "s_umount should've been locked");
1465 
1466 	dentry = sb->s_root;
1467 	sb->s_root = NULL;
1468 	do_one_tree(dentry);
1469 
1470 	while (!hlist_bl_empty(&sb->s_anon)) {
1471 		dentry = dget(hlist_bl_entry(hlist_bl_first(&sb->s_anon), struct dentry, d_hash));
1472 		do_one_tree(dentry);
1473 	}
1474 }
1475 
1476 struct detach_data {
1477 	struct select_data select;
1478 	struct dentry *mountpoint;
1479 };
1480 static enum d_walk_ret detach_and_collect(void *_data, struct dentry *dentry)
1481 {
1482 	struct detach_data *data = _data;
1483 
1484 	if (d_mountpoint(dentry)) {
1485 		__dget_dlock(dentry);
1486 		data->mountpoint = dentry;
1487 		return D_WALK_QUIT;
1488 	}
1489 
1490 	return select_collect(&data->select, dentry);
1491 }
1492 
1493 static void check_and_drop(void *_data)
1494 {
1495 	struct detach_data *data = _data;
1496 
1497 	if (!data->mountpoint && list_empty(&data->select.dispose))
1498 		__d_drop(data->select.start);
1499 }
1500 
1501 /**
1502  * d_invalidate - detach submounts, prune dcache, and drop
1503  * @dentry: dentry to invalidate (aka detach, prune and drop)
1504  *
1505  * no dcache lock.
1506  *
1507  * The final d_drop is done as an atomic operation relative to
1508  * rename_lock ensuring there are no races with d_set_mounted.  This
1509  * ensures there are no unhashed dentries on the path to a mountpoint.
1510  */
1511 void d_invalidate(struct dentry *dentry)
1512 {
1513 	/*
1514 	 * If it's already been dropped, return OK.
1515 	 */
1516 	spin_lock(&dentry->d_lock);
1517 	if (d_unhashed(dentry)) {
1518 		spin_unlock(&dentry->d_lock);
1519 		return;
1520 	}
1521 	spin_unlock(&dentry->d_lock);
1522 
1523 	/* Negative dentries can be dropped without further checks */
1524 	if (!dentry->d_inode) {
1525 		d_drop(dentry);
1526 		return;
1527 	}
1528 
1529 	for (;;) {
1530 		struct detach_data data;
1531 
1532 		data.mountpoint = NULL;
1533 		INIT_LIST_HEAD(&data.select.dispose);
1534 		data.select.start = dentry;
1535 		data.select.found = 0;
1536 
1537 		d_walk(dentry, &data, detach_and_collect, check_and_drop);
1538 
1539 		if (!list_empty(&data.select.dispose))
1540 			shrink_dentry_list(&data.select.dispose);
1541 		else if (!data.mountpoint)
1542 			return;
1543 
1544 		if (data.mountpoint) {
1545 			detach_mounts(data.mountpoint);
1546 			dput(data.mountpoint);
1547 		}
1548 		cond_resched();
1549 	}
1550 }
1551 EXPORT_SYMBOL(d_invalidate);
1552 
1553 /**
1554  * __d_alloc	-	allocate a dcache entry
1555  * @sb: filesystem it will belong to
1556  * @name: qstr of the name
1557  *
1558  * Allocates a dentry. It returns %NULL if there is insufficient memory
1559  * available. On a success the dentry is returned. The name passed in is
1560  * copied and the copy passed in may be reused after this call.
1561  */
1562 
1563 struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name)
1564 {
1565 	struct dentry *dentry;
1566 	char *dname;
1567 	int err;
1568 
1569 	dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
1570 	if (!dentry)
1571 		return NULL;
1572 
1573 	/*
1574 	 * We guarantee that the inline name is always NUL-terminated.
1575 	 * This way the memcpy() done by the name switching in rename
1576 	 * will still always have a NUL at the end, even if we might
1577 	 * be overwriting an internal NUL character
1578 	 */
1579 	dentry->d_iname[DNAME_INLINE_LEN-1] = 0;
1580 	if (unlikely(!name)) {
1581 		static const struct qstr anon = QSTR_INIT("/", 1);
1582 		name = &anon;
1583 		dname = dentry->d_iname;
1584 	} else if (name->len > DNAME_INLINE_LEN-1) {
1585 		size_t size = offsetof(struct external_name, name[1]);
1586 		struct external_name *p = kmalloc(size + name->len,
1587 						  GFP_KERNEL_ACCOUNT);
1588 		if (!p) {
1589 			kmem_cache_free(dentry_cache, dentry);
1590 			return NULL;
1591 		}
1592 		atomic_set(&p->u.count, 1);
1593 		dname = p->name;
1594 		if (IS_ENABLED(CONFIG_DCACHE_WORD_ACCESS))
1595 			kasan_unpoison_shadow(dname,
1596 				round_up(name->len + 1,	sizeof(unsigned long)));
1597 	} else  {
1598 		dname = dentry->d_iname;
1599 	}
1600 
1601 	dentry->d_name.len = name->len;
1602 	dentry->d_name.hash = name->hash;
1603 	memcpy(dname, name->name, name->len);
1604 	dname[name->len] = 0;
1605 
1606 	/* Make sure we always see the terminating NUL character */
1607 	smp_wmb();
1608 	dentry->d_name.name = dname;
1609 
1610 	dentry->d_lockref.count = 1;
1611 	dentry->d_flags = 0;
1612 	spin_lock_init(&dentry->d_lock);
1613 	seqcount_init(&dentry->d_seq);
1614 	dentry->d_inode = NULL;
1615 	dentry->d_parent = dentry;
1616 	dentry->d_sb = sb;
1617 	dentry->d_op = NULL;
1618 	dentry->d_fsdata = NULL;
1619 	INIT_HLIST_BL_NODE(&dentry->d_hash);
1620 	INIT_LIST_HEAD(&dentry->d_lru);
1621 	INIT_LIST_HEAD(&dentry->d_subdirs);
1622 	INIT_HLIST_NODE(&dentry->d_u.d_alias);
1623 	INIT_LIST_HEAD(&dentry->d_child);
1624 	d_set_d_op(dentry, dentry->d_sb->s_d_op);
1625 
1626 	if (dentry->d_op && dentry->d_op->d_init) {
1627 		err = dentry->d_op->d_init(dentry);
1628 		if (err) {
1629 			if (dname_external(dentry))
1630 				kfree(external_name(dentry));
1631 			kmem_cache_free(dentry_cache, dentry);
1632 			return NULL;
1633 		}
1634 	}
1635 
1636 	this_cpu_inc(nr_dentry);
1637 
1638 	return dentry;
1639 }
1640 
1641 /**
1642  * d_alloc	-	allocate a dcache entry
1643  * @parent: parent of entry to allocate
1644  * @name: qstr of the name
1645  *
1646  * Allocates a dentry. It returns %NULL if there is insufficient memory
1647  * available. On a success the dentry is returned. The name passed in is
1648  * copied and the copy passed in may be reused after this call.
1649  */
1650 struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1651 {
1652 	struct dentry *dentry = __d_alloc(parent->d_sb, name);
1653 	if (!dentry)
1654 		return NULL;
1655 	dentry->d_flags |= DCACHE_RCUACCESS;
1656 	spin_lock(&parent->d_lock);
1657 	/*
1658 	 * don't need child lock because it is not subject
1659 	 * to concurrency here
1660 	 */
1661 	__dget_dlock(parent);
1662 	dentry->d_parent = parent;
1663 	list_add(&dentry->d_child, &parent->d_subdirs);
1664 	spin_unlock(&parent->d_lock);
1665 
1666 	return dentry;
1667 }
1668 EXPORT_SYMBOL(d_alloc);
1669 
1670 struct dentry *d_alloc_cursor(struct dentry * parent)
1671 {
1672 	struct dentry *dentry = __d_alloc(parent->d_sb, NULL);
1673 	if (dentry) {
1674 		dentry->d_flags |= DCACHE_RCUACCESS | DCACHE_DENTRY_CURSOR;
1675 		dentry->d_parent = dget(parent);
1676 	}
1677 	return dentry;
1678 }
1679 
1680 /**
1681  * d_alloc_pseudo - allocate a dentry (for lookup-less filesystems)
1682  * @sb: the superblock
1683  * @name: qstr of the name
1684  *
1685  * For a filesystem that just pins its dentries in memory and never
1686  * performs lookups at all, return an unhashed IS_ROOT dentry.
1687  */
1688 struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
1689 {
1690 	return __d_alloc(sb, name);
1691 }
1692 EXPORT_SYMBOL(d_alloc_pseudo);
1693 
1694 struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1695 {
1696 	struct qstr q;
1697 
1698 	q.name = name;
1699 	q.hash_len = hashlen_string(parent, name);
1700 	return d_alloc(parent, &q);
1701 }
1702 EXPORT_SYMBOL(d_alloc_name);
1703 
1704 void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1705 {
1706 	WARN_ON_ONCE(dentry->d_op);
1707 	WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH	|
1708 				DCACHE_OP_COMPARE	|
1709 				DCACHE_OP_REVALIDATE	|
1710 				DCACHE_OP_WEAK_REVALIDATE	|
1711 				DCACHE_OP_DELETE	|
1712 				DCACHE_OP_REAL));
1713 	dentry->d_op = op;
1714 	if (!op)
1715 		return;
1716 	if (op->d_hash)
1717 		dentry->d_flags |= DCACHE_OP_HASH;
1718 	if (op->d_compare)
1719 		dentry->d_flags |= DCACHE_OP_COMPARE;
1720 	if (op->d_revalidate)
1721 		dentry->d_flags |= DCACHE_OP_REVALIDATE;
1722 	if (op->d_weak_revalidate)
1723 		dentry->d_flags |= DCACHE_OP_WEAK_REVALIDATE;
1724 	if (op->d_delete)
1725 		dentry->d_flags |= DCACHE_OP_DELETE;
1726 	if (op->d_prune)
1727 		dentry->d_flags |= DCACHE_OP_PRUNE;
1728 	if (op->d_real)
1729 		dentry->d_flags |= DCACHE_OP_REAL;
1730 
1731 }
1732 EXPORT_SYMBOL(d_set_d_op);
1733 
1734 
1735 /*
1736  * d_set_fallthru - Mark a dentry as falling through to a lower layer
1737  * @dentry - The dentry to mark
1738  *
1739  * Mark a dentry as falling through to the lower layer (as set with
1740  * d_pin_lower()).  This flag may be recorded on the medium.
1741  */
1742 void d_set_fallthru(struct dentry *dentry)
1743 {
1744 	spin_lock(&dentry->d_lock);
1745 	dentry->d_flags |= DCACHE_FALLTHRU;
1746 	spin_unlock(&dentry->d_lock);
1747 }
1748 EXPORT_SYMBOL(d_set_fallthru);
1749 
1750 static unsigned d_flags_for_inode(struct inode *inode)
1751 {
1752 	unsigned add_flags = DCACHE_REGULAR_TYPE;
1753 
1754 	if (!inode)
1755 		return DCACHE_MISS_TYPE;
1756 
1757 	if (S_ISDIR(inode->i_mode)) {
1758 		add_flags = DCACHE_DIRECTORY_TYPE;
1759 		if (unlikely(!(inode->i_opflags & IOP_LOOKUP))) {
1760 			if (unlikely(!inode->i_op->lookup))
1761 				add_flags = DCACHE_AUTODIR_TYPE;
1762 			else
1763 				inode->i_opflags |= IOP_LOOKUP;
1764 		}
1765 		goto type_determined;
1766 	}
1767 
1768 	if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) {
1769 		if (unlikely(inode->i_op->get_link)) {
1770 			add_flags = DCACHE_SYMLINK_TYPE;
1771 			goto type_determined;
1772 		}
1773 		inode->i_opflags |= IOP_NOFOLLOW;
1774 	}
1775 
1776 	if (unlikely(!S_ISREG(inode->i_mode)))
1777 		add_flags = DCACHE_SPECIAL_TYPE;
1778 
1779 type_determined:
1780 	if (unlikely(IS_AUTOMOUNT(inode)))
1781 		add_flags |= DCACHE_NEED_AUTOMOUNT;
1782 	return add_flags;
1783 }
1784 
1785 static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1786 {
1787 	unsigned add_flags = d_flags_for_inode(inode);
1788 	WARN_ON(d_in_lookup(dentry));
1789 
1790 	spin_lock(&dentry->d_lock);
1791 	hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
1792 	raw_write_seqcount_begin(&dentry->d_seq);
1793 	__d_set_inode_and_type(dentry, inode, add_flags);
1794 	raw_write_seqcount_end(&dentry->d_seq);
1795 	fsnotify_update_flags(dentry);
1796 	spin_unlock(&dentry->d_lock);
1797 }
1798 
1799 /**
1800  * d_instantiate - fill in inode information for a dentry
1801  * @entry: dentry to complete
1802  * @inode: inode to attach to this dentry
1803  *
1804  * Fill in inode information in the entry.
1805  *
1806  * This turns negative dentries into productive full members
1807  * of society.
1808  *
1809  * NOTE! This assumes that the inode count has been incremented
1810  * (or otherwise set) by the caller to indicate that it is now
1811  * in use by the dcache.
1812  */
1813 
1814 void d_instantiate(struct dentry *entry, struct inode * inode)
1815 {
1816 	BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
1817 	if (inode) {
1818 		security_d_instantiate(entry, inode);
1819 		spin_lock(&inode->i_lock);
1820 		__d_instantiate(entry, inode);
1821 		spin_unlock(&inode->i_lock);
1822 	}
1823 }
1824 EXPORT_SYMBOL(d_instantiate);
1825 
1826 /**
1827  * d_instantiate_no_diralias - instantiate a non-aliased dentry
1828  * @entry: dentry to complete
1829  * @inode: inode to attach to this dentry
1830  *
1831  * Fill in inode information in the entry.  If a directory alias is found, then
1832  * return an error (and drop inode).  Together with d_materialise_unique() this
1833  * guarantees that a directory inode may never have more than one alias.
1834  */
1835 int d_instantiate_no_diralias(struct dentry *entry, struct inode *inode)
1836 {
1837 	BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
1838 
1839 	security_d_instantiate(entry, inode);
1840 	spin_lock(&inode->i_lock);
1841 	if (S_ISDIR(inode->i_mode) && !hlist_empty(&inode->i_dentry)) {
1842 		spin_unlock(&inode->i_lock);
1843 		iput(inode);
1844 		return -EBUSY;
1845 	}
1846 	__d_instantiate(entry, inode);
1847 	spin_unlock(&inode->i_lock);
1848 
1849 	return 0;
1850 }
1851 EXPORT_SYMBOL(d_instantiate_no_diralias);
1852 
1853 struct dentry *d_make_root(struct inode *root_inode)
1854 {
1855 	struct dentry *res = NULL;
1856 
1857 	if (root_inode) {
1858 		res = __d_alloc(root_inode->i_sb, NULL);
1859 		if (res)
1860 			d_instantiate(res, root_inode);
1861 		else
1862 			iput(root_inode);
1863 	}
1864 	return res;
1865 }
1866 EXPORT_SYMBOL(d_make_root);
1867 
1868 static struct dentry * __d_find_any_alias(struct inode *inode)
1869 {
1870 	struct dentry *alias;
1871 
1872 	if (hlist_empty(&inode->i_dentry))
1873 		return NULL;
1874 	alias = hlist_entry(inode->i_dentry.first, struct dentry, d_u.d_alias);
1875 	__dget(alias);
1876 	return alias;
1877 }
1878 
1879 /**
1880  * d_find_any_alias - find any alias for a given inode
1881  * @inode: inode to find an alias for
1882  *
1883  * If any aliases exist for the given inode, take and return a
1884  * reference for one of them.  If no aliases exist, return %NULL.
1885  */
1886 struct dentry *d_find_any_alias(struct inode *inode)
1887 {
1888 	struct dentry *de;
1889 
1890 	spin_lock(&inode->i_lock);
1891 	de = __d_find_any_alias(inode);
1892 	spin_unlock(&inode->i_lock);
1893 	return de;
1894 }
1895 EXPORT_SYMBOL(d_find_any_alias);
1896 
1897 static struct dentry *__d_obtain_alias(struct inode *inode, int disconnected)
1898 {
1899 	struct dentry *tmp;
1900 	struct dentry *res;
1901 	unsigned add_flags;
1902 
1903 	if (!inode)
1904 		return ERR_PTR(-ESTALE);
1905 	if (IS_ERR(inode))
1906 		return ERR_CAST(inode);
1907 
1908 	res = d_find_any_alias(inode);
1909 	if (res)
1910 		goto out_iput;
1911 
1912 	tmp = __d_alloc(inode->i_sb, NULL);
1913 	if (!tmp) {
1914 		res = ERR_PTR(-ENOMEM);
1915 		goto out_iput;
1916 	}
1917 
1918 	security_d_instantiate(tmp, inode);
1919 	spin_lock(&inode->i_lock);
1920 	res = __d_find_any_alias(inode);
1921 	if (res) {
1922 		spin_unlock(&inode->i_lock);
1923 		dput(tmp);
1924 		goto out_iput;
1925 	}
1926 
1927 	/* attach a disconnected dentry */
1928 	add_flags = d_flags_for_inode(inode);
1929 
1930 	if (disconnected)
1931 		add_flags |= DCACHE_DISCONNECTED;
1932 
1933 	spin_lock(&tmp->d_lock);
1934 	__d_set_inode_and_type(tmp, inode, add_flags);
1935 	hlist_add_head(&tmp->d_u.d_alias, &inode->i_dentry);
1936 	hlist_bl_lock(&tmp->d_sb->s_anon);
1937 	hlist_bl_add_head(&tmp->d_hash, &tmp->d_sb->s_anon);
1938 	hlist_bl_unlock(&tmp->d_sb->s_anon);
1939 	spin_unlock(&tmp->d_lock);
1940 	spin_unlock(&inode->i_lock);
1941 
1942 	return tmp;
1943 
1944  out_iput:
1945 	iput(inode);
1946 	return res;
1947 }
1948 
1949 /**
1950  * d_obtain_alias - find or allocate a DISCONNECTED dentry for a given inode
1951  * @inode: inode to allocate the dentry for
1952  *
1953  * Obtain a dentry for an inode resulting from NFS filehandle conversion or
1954  * similar open by handle operations.  The returned dentry may be anonymous,
1955  * or may have a full name (if the inode was already in the cache).
1956  *
1957  * When called on a directory inode, we must ensure that the inode only ever
1958  * has one dentry.  If a dentry is found, that is returned instead of
1959  * allocating a new one.
1960  *
1961  * On successful return, the reference to the inode has been transferred
1962  * to the dentry.  In case of an error the reference on the inode is released.
1963  * To make it easier to use in export operations a %NULL or IS_ERR inode may
1964  * be passed in and the error will be propagated to the return value,
1965  * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
1966  */
1967 struct dentry *d_obtain_alias(struct inode *inode)
1968 {
1969 	return __d_obtain_alias(inode, 1);
1970 }
1971 EXPORT_SYMBOL(d_obtain_alias);
1972 
1973 /**
1974  * d_obtain_root - find or allocate a dentry for a given inode
1975  * @inode: inode to allocate the dentry for
1976  *
1977  * Obtain an IS_ROOT dentry for the root of a filesystem.
1978  *
1979  * We must ensure that directory inodes only ever have one dentry.  If a
1980  * dentry is found, that is returned instead of allocating a new one.
1981  *
1982  * On successful return, the reference to the inode has been transferred
1983  * to the dentry.  In case of an error the reference on the inode is
1984  * released.  A %NULL or IS_ERR inode may be passed in and will be the
1985  * error will be propagate to the return value, with a %NULL @inode
1986  * replaced by ERR_PTR(-ESTALE).
1987  */
1988 struct dentry *d_obtain_root(struct inode *inode)
1989 {
1990 	return __d_obtain_alias(inode, 0);
1991 }
1992 EXPORT_SYMBOL(d_obtain_root);
1993 
1994 /**
1995  * d_add_ci - lookup or allocate new dentry with case-exact name
1996  * @inode:  the inode case-insensitive lookup has found
1997  * @dentry: the negative dentry that was passed to the parent's lookup func
1998  * @name:   the case-exact name to be associated with the returned dentry
1999  *
2000  * This is to avoid filling the dcache with case-insensitive names to the
2001  * same inode, only the actual correct case is stored in the dcache for
2002  * case-insensitive filesystems.
2003  *
2004  * For a case-insensitive lookup match and if the the case-exact dentry
2005  * already exists in in the dcache, use it and return it.
2006  *
2007  * If no entry exists with the exact case name, allocate new dentry with
2008  * the exact case, and return the spliced entry.
2009  */
2010 struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
2011 			struct qstr *name)
2012 {
2013 	struct dentry *found, *res;
2014 
2015 	/*
2016 	 * First check if a dentry matching the name already exists,
2017 	 * if not go ahead and create it now.
2018 	 */
2019 	found = d_hash_and_lookup(dentry->d_parent, name);
2020 	if (found) {
2021 		iput(inode);
2022 		return found;
2023 	}
2024 	if (d_in_lookup(dentry)) {
2025 		found = d_alloc_parallel(dentry->d_parent, name,
2026 					dentry->d_wait);
2027 		if (IS_ERR(found) || !d_in_lookup(found)) {
2028 			iput(inode);
2029 			return found;
2030 		}
2031 	} else {
2032 		found = d_alloc(dentry->d_parent, name);
2033 		if (!found) {
2034 			iput(inode);
2035 			return ERR_PTR(-ENOMEM);
2036 		}
2037 	}
2038 	res = d_splice_alias(inode, found);
2039 	if (res) {
2040 		dput(found);
2041 		return res;
2042 	}
2043 	return found;
2044 }
2045 EXPORT_SYMBOL(d_add_ci);
2046 
2047 
2048 static inline bool d_same_name(const struct dentry *dentry,
2049 				const struct dentry *parent,
2050 				const struct qstr *name)
2051 {
2052 	if (likely(!(parent->d_flags & DCACHE_OP_COMPARE))) {
2053 		if (dentry->d_name.len != name->len)
2054 			return false;
2055 		return dentry_cmp(dentry, name->name, name->len) == 0;
2056 	}
2057 	return parent->d_op->d_compare(dentry,
2058 				       dentry->d_name.len, dentry->d_name.name,
2059 				       name) == 0;
2060 }
2061 
2062 /**
2063  * __d_lookup_rcu - search for a dentry (racy, store-free)
2064  * @parent: parent dentry
2065  * @name: qstr of name we wish to find
2066  * @seqp: returns d_seq value at the point where the dentry was found
2067  * Returns: dentry, or NULL
2068  *
2069  * __d_lookup_rcu is the dcache lookup function for rcu-walk name
2070  * resolution (store-free path walking) design described in
2071  * Documentation/filesystems/path-lookup.txt.
2072  *
2073  * This is not to be used outside core vfs.
2074  *
2075  * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
2076  * held, and rcu_read_lock held. The returned dentry must not be stored into
2077  * without taking d_lock and checking d_seq sequence count against @seq
2078  * returned here.
2079  *
2080  * A refcount may be taken on the found dentry with the d_rcu_to_refcount
2081  * function.
2082  *
2083  * Alternatively, __d_lookup_rcu may be called again to look up the child of
2084  * the returned dentry, so long as its parent's seqlock is checked after the
2085  * child is looked up. Thus, an interlocking stepping of sequence lock checks
2086  * is formed, giving integrity down the path walk.
2087  *
2088  * NOTE! The caller *has* to check the resulting dentry against the sequence
2089  * number we've returned before using any of the resulting dentry state!
2090  */
2091 struct dentry *__d_lookup_rcu(const struct dentry *parent,
2092 				const struct qstr *name,
2093 				unsigned *seqp)
2094 {
2095 	u64 hashlen = name->hash_len;
2096 	const unsigned char *str = name->name;
2097 	struct hlist_bl_head *b = d_hash(hashlen_hash(hashlen));
2098 	struct hlist_bl_node *node;
2099 	struct dentry *dentry;
2100 
2101 	/*
2102 	 * Note: There is significant duplication with __d_lookup_rcu which is
2103 	 * required to prevent single threaded performance regressions
2104 	 * especially on architectures where smp_rmb (in seqcounts) are costly.
2105 	 * Keep the two functions in sync.
2106 	 */
2107 
2108 	/*
2109 	 * The hash list is protected using RCU.
2110 	 *
2111 	 * Carefully use d_seq when comparing a candidate dentry, to avoid
2112 	 * races with d_move().
2113 	 *
2114 	 * It is possible that concurrent renames can mess up our list
2115 	 * walk here and result in missing our dentry, resulting in the
2116 	 * false-negative result. d_lookup() protects against concurrent
2117 	 * renames using rename_lock seqlock.
2118 	 *
2119 	 * See Documentation/filesystems/path-lookup.txt for more details.
2120 	 */
2121 	hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2122 		unsigned seq;
2123 
2124 seqretry:
2125 		/*
2126 		 * The dentry sequence count protects us from concurrent
2127 		 * renames, and thus protects parent and name fields.
2128 		 *
2129 		 * The caller must perform a seqcount check in order
2130 		 * to do anything useful with the returned dentry.
2131 		 *
2132 		 * NOTE! We do a "raw" seqcount_begin here. That means that
2133 		 * we don't wait for the sequence count to stabilize if it
2134 		 * is in the middle of a sequence change. If we do the slow
2135 		 * dentry compare, we will do seqretries until it is stable,
2136 		 * and if we end up with a successful lookup, we actually
2137 		 * want to exit RCU lookup anyway.
2138 		 *
2139 		 * Note that raw_seqcount_begin still *does* smp_rmb(), so
2140 		 * we are still guaranteed NUL-termination of ->d_name.name.
2141 		 */
2142 		seq = raw_seqcount_begin(&dentry->d_seq);
2143 		if (dentry->d_parent != parent)
2144 			continue;
2145 		if (d_unhashed(dentry))
2146 			continue;
2147 
2148 		if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) {
2149 			int tlen;
2150 			const char *tname;
2151 			if (dentry->d_name.hash != hashlen_hash(hashlen))
2152 				continue;
2153 			tlen = dentry->d_name.len;
2154 			tname = dentry->d_name.name;
2155 			/* we want a consistent (name,len) pair */
2156 			if (read_seqcount_retry(&dentry->d_seq, seq)) {
2157 				cpu_relax();
2158 				goto seqretry;
2159 			}
2160 			if (parent->d_op->d_compare(dentry,
2161 						    tlen, tname, name) != 0)
2162 				continue;
2163 		} else {
2164 			if (dentry->d_name.hash_len != hashlen)
2165 				continue;
2166 			if (dentry_cmp(dentry, str, hashlen_len(hashlen)) != 0)
2167 				continue;
2168 		}
2169 		*seqp = seq;
2170 		return dentry;
2171 	}
2172 	return NULL;
2173 }
2174 
2175 /**
2176  * d_lookup - search for a dentry
2177  * @parent: parent dentry
2178  * @name: qstr of name we wish to find
2179  * Returns: dentry, or NULL
2180  *
2181  * d_lookup searches the children of the parent dentry for the name in
2182  * question. If the dentry is found its reference count is incremented and the
2183  * dentry is returned. The caller must use dput to free the entry when it has
2184  * finished using it. %NULL is returned if the dentry does not exist.
2185  */
2186 struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name)
2187 {
2188 	struct dentry *dentry;
2189 	unsigned seq;
2190 
2191 	do {
2192 		seq = read_seqbegin(&rename_lock);
2193 		dentry = __d_lookup(parent, name);
2194 		if (dentry)
2195 			break;
2196 	} while (read_seqretry(&rename_lock, seq));
2197 	return dentry;
2198 }
2199 EXPORT_SYMBOL(d_lookup);
2200 
2201 /**
2202  * __d_lookup - search for a dentry (racy)
2203  * @parent: parent dentry
2204  * @name: qstr of name we wish to find
2205  * Returns: dentry, or NULL
2206  *
2207  * __d_lookup is like d_lookup, however it may (rarely) return a
2208  * false-negative result due to unrelated rename activity.
2209  *
2210  * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
2211  * however it must be used carefully, eg. with a following d_lookup in
2212  * the case of failure.
2213  *
2214  * __d_lookup callers must be commented.
2215  */
2216 struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name)
2217 {
2218 	unsigned int hash = name->hash;
2219 	struct hlist_bl_head *b = d_hash(hash);
2220 	struct hlist_bl_node *node;
2221 	struct dentry *found = NULL;
2222 	struct dentry *dentry;
2223 
2224 	/*
2225 	 * Note: There is significant duplication with __d_lookup_rcu which is
2226 	 * required to prevent single threaded performance regressions
2227 	 * especially on architectures where smp_rmb (in seqcounts) are costly.
2228 	 * Keep the two functions in sync.
2229 	 */
2230 
2231 	/*
2232 	 * The hash list is protected using RCU.
2233 	 *
2234 	 * Take d_lock when comparing a candidate dentry, to avoid races
2235 	 * with d_move().
2236 	 *
2237 	 * It is possible that concurrent renames can mess up our list
2238 	 * walk here and result in missing our dentry, resulting in the
2239 	 * false-negative result. d_lookup() protects against concurrent
2240 	 * renames using rename_lock seqlock.
2241 	 *
2242 	 * See Documentation/filesystems/path-lookup.txt for more details.
2243 	 */
2244 	rcu_read_lock();
2245 
2246 	hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2247 
2248 		if (dentry->d_name.hash != hash)
2249 			continue;
2250 
2251 		spin_lock(&dentry->d_lock);
2252 		if (dentry->d_parent != parent)
2253 			goto next;
2254 		if (d_unhashed(dentry))
2255 			goto next;
2256 
2257 		if (!d_same_name(dentry, parent, name))
2258 			goto next;
2259 
2260 		dentry->d_lockref.count++;
2261 		found = dentry;
2262 		spin_unlock(&dentry->d_lock);
2263 		break;
2264 next:
2265 		spin_unlock(&dentry->d_lock);
2266  	}
2267  	rcu_read_unlock();
2268 
2269  	return found;
2270 }
2271 
2272 /**
2273  * d_hash_and_lookup - hash the qstr then search for a dentry
2274  * @dir: Directory to search in
2275  * @name: qstr of name we wish to find
2276  *
2277  * On lookup failure NULL is returned; on bad name - ERR_PTR(-error)
2278  */
2279 struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
2280 {
2281 	/*
2282 	 * Check for a fs-specific hash function. Note that we must
2283 	 * calculate the standard hash first, as the d_op->d_hash()
2284 	 * routine may choose to leave the hash value unchanged.
2285 	 */
2286 	name->hash = full_name_hash(dir, name->name, name->len);
2287 	if (dir->d_flags & DCACHE_OP_HASH) {
2288 		int err = dir->d_op->d_hash(dir, name);
2289 		if (unlikely(err < 0))
2290 			return ERR_PTR(err);
2291 	}
2292 	return d_lookup(dir, name);
2293 }
2294 EXPORT_SYMBOL(d_hash_and_lookup);
2295 
2296 /*
2297  * When a file is deleted, we have two options:
2298  * - turn this dentry into a negative dentry
2299  * - unhash this dentry and free it.
2300  *
2301  * Usually, we want to just turn this into
2302  * a negative dentry, but if anybody else is
2303  * currently using the dentry or the inode
2304  * we can't do that and we fall back on removing
2305  * it from the hash queues and waiting for
2306  * it to be deleted later when it has no users
2307  */
2308 
2309 /**
2310  * d_delete - delete a dentry
2311  * @dentry: The dentry to delete
2312  *
2313  * Turn the dentry into a negative dentry if possible, otherwise
2314  * remove it from the hash queues so it can be deleted later
2315  */
2316 
2317 void d_delete(struct dentry * dentry)
2318 {
2319 	struct inode *inode;
2320 	int isdir = 0;
2321 	/*
2322 	 * Are we the only user?
2323 	 */
2324 again:
2325 	spin_lock(&dentry->d_lock);
2326 	inode = dentry->d_inode;
2327 	isdir = S_ISDIR(inode->i_mode);
2328 	if (dentry->d_lockref.count == 1) {
2329 		if (!spin_trylock(&inode->i_lock)) {
2330 			spin_unlock(&dentry->d_lock);
2331 			cpu_relax();
2332 			goto again;
2333 		}
2334 		dentry->d_flags &= ~DCACHE_CANT_MOUNT;
2335 		dentry_unlink_inode(dentry);
2336 		fsnotify_nameremove(dentry, isdir);
2337 		return;
2338 	}
2339 
2340 	if (!d_unhashed(dentry))
2341 		__d_drop(dentry);
2342 
2343 	spin_unlock(&dentry->d_lock);
2344 
2345 	fsnotify_nameremove(dentry, isdir);
2346 }
2347 EXPORT_SYMBOL(d_delete);
2348 
2349 static void __d_rehash(struct dentry *entry)
2350 {
2351 	struct hlist_bl_head *b = d_hash(entry->d_name.hash);
2352 	BUG_ON(!d_unhashed(entry));
2353 	hlist_bl_lock(b);
2354 	hlist_bl_add_head_rcu(&entry->d_hash, b);
2355 	hlist_bl_unlock(b);
2356 }
2357 
2358 /**
2359  * d_rehash	- add an entry back to the hash
2360  * @entry: dentry to add to the hash
2361  *
2362  * Adds a dentry to the hash according to its name.
2363  */
2364 
2365 void d_rehash(struct dentry * entry)
2366 {
2367 	spin_lock(&entry->d_lock);
2368 	__d_rehash(entry);
2369 	spin_unlock(&entry->d_lock);
2370 }
2371 EXPORT_SYMBOL(d_rehash);
2372 
2373 static inline unsigned start_dir_add(struct inode *dir)
2374 {
2375 
2376 	for (;;) {
2377 		unsigned n = dir->i_dir_seq;
2378 		if (!(n & 1) && cmpxchg(&dir->i_dir_seq, n, n + 1) == n)
2379 			return n;
2380 		cpu_relax();
2381 	}
2382 }
2383 
2384 static inline void end_dir_add(struct inode *dir, unsigned n)
2385 {
2386 	smp_store_release(&dir->i_dir_seq, n + 2);
2387 }
2388 
2389 static void d_wait_lookup(struct dentry *dentry)
2390 {
2391 	if (d_in_lookup(dentry)) {
2392 		DECLARE_WAITQUEUE(wait, current);
2393 		add_wait_queue(dentry->d_wait, &wait);
2394 		do {
2395 			set_current_state(TASK_UNINTERRUPTIBLE);
2396 			spin_unlock(&dentry->d_lock);
2397 			schedule();
2398 			spin_lock(&dentry->d_lock);
2399 		} while (d_in_lookup(dentry));
2400 	}
2401 }
2402 
2403 struct dentry *d_alloc_parallel(struct dentry *parent,
2404 				const struct qstr *name,
2405 				wait_queue_head_t *wq)
2406 {
2407 	unsigned int hash = name->hash;
2408 	struct hlist_bl_head *b = in_lookup_hash(parent, hash);
2409 	struct hlist_bl_node *node;
2410 	struct dentry *new = d_alloc(parent, name);
2411 	struct dentry *dentry;
2412 	unsigned seq, r_seq, d_seq;
2413 
2414 	if (unlikely(!new))
2415 		return ERR_PTR(-ENOMEM);
2416 
2417 retry:
2418 	rcu_read_lock();
2419 	seq = smp_load_acquire(&parent->d_inode->i_dir_seq) & ~1;
2420 	r_seq = read_seqbegin(&rename_lock);
2421 	dentry = __d_lookup_rcu(parent, name, &d_seq);
2422 	if (unlikely(dentry)) {
2423 		if (!lockref_get_not_dead(&dentry->d_lockref)) {
2424 			rcu_read_unlock();
2425 			goto retry;
2426 		}
2427 		if (read_seqcount_retry(&dentry->d_seq, d_seq)) {
2428 			rcu_read_unlock();
2429 			dput(dentry);
2430 			goto retry;
2431 		}
2432 		rcu_read_unlock();
2433 		dput(new);
2434 		return dentry;
2435 	}
2436 	if (unlikely(read_seqretry(&rename_lock, r_seq))) {
2437 		rcu_read_unlock();
2438 		goto retry;
2439 	}
2440 	hlist_bl_lock(b);
2441 	if (unlikely(parent->d_inode->i_dir_seq != seq)) {
2442 		hlist_bl_unlock(b);
2443 		rcu_read_unlock();
2444 		goto retry;
2445 	}
2446 	/*
2447 	 * No changes for the parent since the beginning of d_lookup().
2448 	 * Since all removals from the chain happen with hlist_bl_lock(),
2449 	 * any potential in-lookup matches are going to stay here until
2450 	 * we unlock the chain.  All fields are stable in everything
2451 	 * we encounter.
2452 	 */
2453 	hlist_bl_for_each_entry(dentry, node, b, d_u.d_in_lookup_hash) {
2454 		if (dentry->d_name.hash != hash)
2455 			continue;
2456 		if (dentry->d_parent != parent)
2457 			continue;
2458 		if (!d_same_name(dentry, parent, name))
2459 			continue;
2460 		hlist_bl_unlock(b);
2461 		/* now we can try to grab a reference */
2462 		if (!lockref_get_not_dead(&dentry->d_lockref)) {
2463 			rcu_read_unlock();
2464 			goto retry;
2465 		}
2466 
2467 		rcu_read_unlock();
2468 		/*
2469 		 * somebody is likely to be still doing lookup for it;
2470 		 * wait for them to finish
2471 		 */
2472 		spin_lock(&dentry->d_lock);
2473 		d_wait_lookup(dentry);
2474 		/*
2475 		 * it's not in-lookup anymore; in principle we should repeat
2476 		 * everything from dcache lookup, but it's likely to be what
2477 		 * d_lookup() would've found anyway.  If it is, just return it;
2478 		 * otherwise we really have to repeat the whole thing.
2479 		 */
2480 		if (unlikely(dentry->d_name.hash != hash))
2481 			goto mismatch;
2482 		if (unlikely(dentry->d_parent != parent))
2483 			goto mismatch;
2484 		if (unlikely(d_unhashed(dentry)))
2485 			goto mismatch;
2486 		if (unlikely(!d_same_name(dentry, parent, name)))
2487 			goto mismatch;
2488 		/* OK, it *is* a hashed match; return it */
2489 		spin_unlock(&dentry->d_lock);
2490 		dput(new);
2491 		return dentry;
2492 	}
2493 	rcu_read_unlock();
2494 	/* we can't take ->d_lock here; it's OK, though. */
2495 	new->d_flags |= DCACHE_PAR_LOOKUP;
2496 	new->d_wait = wq;
2497 	hlist_bl_add_head_rcu(&new->d_u.d_in_lookup_hash, b);
2498 	hlist_bl_unlock(b);
2499 	return new;
2500 mismatch:
2501 	spin_unlock(&dentry->d_lock);
2502 	dput(dentry);
2503 	goto retry;
2504 }
2505 EXPORT_SYMBOL(d_alloc_parallel);
2506 
2507 void __d_lookup_done(struct dentry *dentry)
2508 {
2509 	struct hlist_bl_head *b = in_lookup_hash(dentry->d_parent,
2510 						 dentry->d_name.hash);
2511 	hlist_bl_lock(b);
2512 	dentry->d_flags &= ~DCACHE_PAR_LOOKUP;
2513 	__hlist_bl_del(&dentry->d_u.d_in_lookup_hash);
2514 	wake_up_all(dentry->d_wait);
2515 	dentry->d_wait = NULL;
2516 	hlist_bl_unlock(b);
2517 	INIT_HLIST_NODE(&dentry->d_u.d_alias);
2518 	INIT_LIST_HEAD(&dentry->d_lru);
2519 }
2520 EXPORT_SYMBOL(__d_lookup_done);
2521 
2522 /* inode->i_lock held if inode is non-NULL */
2523 
2524 static inline void __d_add(struct dentry *dentry, struct inode *inode)
2525 {
2526 	struct inode *dir = NULL;
2527 	unsigned n;
2528 	spin_lock(&dentry->d_lock);
2529 	if (unlikely(d_in_lookup(dentry))) {
2530 		dir = dentry->d_parent->d_inode;
2531 		n = start_dir_add(dir);
2532 		__d_lookup_done(dentry);
2533 	}
2534 	if (inode) {
2535 		unsigned add_flags = d_flags_for_inode(inode);
2536 		hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
2537 		raw_write_seqcount_begin(&dentry->d_seq);
2538 		__d_set_inode_and_type(dentry, inode, add_flags);
2539 		raw_write_seqcount_end(&dentry->d_seq);
2540 		fsnotify_update_flags(dentry);
2541 	}
2542 	__d_rehash(dentry);
2543 	if (dir)
2544 		end_dir_add(dir, n);
2545 	spin_unlock(&dentry->d_lock);
2546 	if (inode)
2547 		spin_unlock(&inode->i_lock);
2548 }
2549 
2550 /**
2551  * d_add - add dentry to hash queues
2552  * @entry: dentry to add
2553  * @inode: The inode to attach to this dentry
2554  *
2555  * This adds the entry to the hash queues and initializes @inode.
2556  * The entry was actually filled in earlier during d_alloc().
2557  */
2558 
2559 void d_add(struct dentry *entry, struct inode *inode)
2560 {
2561 	if (inode) {
2562 		security_d_instantiate(entry, inode);
2563 		spin_lock(&inode->i_lock);
2564 	}
2565 	__d_add(entry, inode);
2566 }
2567 EXPORT_SYMBOL(d_add);
2568 
2569 /**
2570  * d_exact_alias - find and hash an exact unhashed alias
2571  * @entry: dentry to add
2572  * @inode: The inode to go with this dentry
2573  *
2574  * If an unhashed dentry with the same name/parent and desired
2575  * inode already exists, hash and return it.  Otherwise, return
2576  * NULL.
2577  *
2578  * Parent directory should be locked.
2579  */
2580 struct dentry *d_exact_alias(struct dentry *entry, struct inode *inode)
2581 {
2582 	struct dentry *alias;
2583 	unsigned int hash = entry->d_name.hash;
2584 
2585 	spin_lock(&inode->i_lock);
2586 	hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
2587 		/*
2588 		 * Don't need alias->d_lock here, because aliases with
2589 		 * d_parent == entry->d_parent are not subject to name or
2590 		 * parent changes, because the parent inode i_mutex is held.
2591 		 */
2592 		if (alias->d_name.hash != hash)
2593 			continue;
2594 		if (alias->d_parent != entry->d_parent)
2595 			continue;
2596 		if (!d_same_name(alias, entry->d_parent, &entry->d_name))
2597 			continue;
2598 		spin_lock(&alias->d_lock);
2599 		if (!d_unhashed(alias)) {
2600 			spin_unlock(&alias->d_lock);
2601 			alias = NULL;
2602 		} else {
2603 			__dget_dlock(alias);
2604 			__d_rehash(alias);
2605 			spin_unlock(&alias->d_lock);
2606 		}
2607 		spin_unlock(&inode->i_lock);
2608 		return alias;
2609 	}
2610 	spin_unlock(&inode->i_lock);
2611 	return NULL;
2612 }
2613 EXPORT_SYMBOL(d_exact_alias);
2614 
2615 /**
2616  * dentry_update_name_case - update case insensitive dentry with a new name
2617  * @dentry: dentry to be updated
2618  * @name: new name
2619  *
2620  * Update a case insensitive dentry with new case of name.
2621  *
2622  * dentry must have been returned by d_lookup with name @name. Old and new
2623  * name lengths must match (ie. no d_compare which allows mismatched name
2624  * lengths).
2625  *
2626  * Parent inode i_mutex must be held over d_lookup and into this call (to
2627  * keep renames and concurrent inserts, and readdir(2) away).
2628  */
2629 void dentry_update_name_case(struct dentry *dentry, const struct qstr *name)
2630 {
2631 	BUG_ON(!inode_is_locked(dentry->d_parent->d_inode));
2632 	BUG_ON(dentry->d_name.len != name->len); /* d_lookup gives this */
2633 
2634 	spin_lock(&dentry->d_lock);
2635 	write_seqcount_begin(&dentry->d_seq);
2636 	memcpy((unsigned char *)dentry->d_name.name, name->name, name->len);
2637 	write_seqcount_end(&dentry->d_seq);
2638 	spin_unlock(&dentry->d_lock);
2639 }
2640 EXPORT_SYMBOL(dentry_update_name_case);
2641 
2642 static void swap_names(struct dentry *dentry, struct dentry *target)
2643 {
2644 	if (unlikely(dname_external(target))) {
2645 		if (unlikely(dname_external(dentry))) {
2646 			/*
2647 			 * Both external: swap the pointers
2648 			 */
2649 			swap(target->d_name.name, dentry->d_name.name);
2650 		} else {
2651 			/*
2652 			 * dentry:internal, target:external.  Steal target's
2653 			 * storage and make target internal.
2654 			 */
2655 			memcpy(target->d_iname, dentry->d_name.name,
2656 					dentry->d_name.len + 1);
2657 			dentry->d_name.name = target->d_name.name;
2658 			target->d_name.name = target->d_iname;
2659 		}
2660 	} else {
2661 		if (unlikely(dname_external(dentry))) {
2662 			/*
2663 			 * dentry:external, target:internal.  Give dentry's
2664 			 * storage to target and make dentry internal
2665 			 */
2666 			memcpy(dentry->d_iname, target->d_name.name,
2667 					target->d_name.len + 1);
2668 			target->d_name.name = dentry->d_name.name;
2669 			dentry->d_name.name = dentry->d_iname;
2670 		} else {
2671 			/*
2672 			 * Both are internal.
2673 			 */
2674 			unsigned int i;
2675 			BUILD_BUG_ON(!IS_ALIGNED(DNAME_INLINE_LEN, sizeof(long)));
2676 			kmemcheck_mark_initialized(dentry->d_iname, DNAME_INLINE_LEN);
2677 			kmemcheck_mark_initialized(target->d_iname, DNAME_INLINE_LEN);
2678 			for (i = 0; i < DNAME_INLINE_LEN / sizeof(long); i++) {
2679 				swap(((long *) &dentry->d_iname)[i],
2680 				     ((long *) &target->d_iname)[i]);
2681 			}
2682 		}
2683 	}
2684 	swap(dentry->d_name.hash_len, target->d_name.hash_len);
2685 }
2686 
2687 static void copy_name(struct dentry *dentry, struct dentry *target)
2688 {
2689 	struct external_name *old_name = NULL;
2690 	if (unlikely(dname_external(dentry)))
2691 		old_name = external_name(dentry);
2692 	if (unlikely(dname_external(target))) {
2693 		atomic_inc(&external_name(target)->u.count);
2694 		dentry->d_name = target->d_name;
2695 	} else {
2696 		memcpy(dentry->d_iname, target->d_name.name,
2697 				target->d_name.len + 1);
2698 		dentry->d_name.name = dentry->d_iname;
2699 		dentry->d_name.hash_len = target->d_name.hash_len;
2700 	}
2701 	if (old_name && likely(atomic_dec_and_test(&old_name->u.count)))
2702 		kfree_rcu(old_name, u.head);
2703 }
2704 
2705 static void dentry_lock_for_move(struct dentry *dentry, struct dentry *target)
2706 {
2707 	/*
2708 	 * XXXX: do we really need to take target->d_lock?
2709 	 */
2710 	if (IS_ROOT(dentry) || dentry->d_parent == target->d_parent)
2711 		spin_lock(&target->d_parent->d_lock);
2712 	else {
2713 		if (d_ancestor(dentry->d_parent, target->d_parent)) {
2714 			spin_lock(&dentry->d_parent->d_lock);
2715 			spin_lock_nested(&target->d_parent->d_lock,
2716 						DENTRY_D_LOCK_NESTED);
2717 		} else {
2718 			spin_lock(&target->d_parent->d_lock);
2719 			spin_lock_nested(&dentry->d_parent->d_lock,
2720 						DENTRY_D_LOCK_NESTED);
2721 		}
2722 	}
2723 	if (target < dentry) {
2724 		spin_lock_nested(&target->d_lock, 2);
2725 		spin_lock_nested(&dentry->d_lock, 3);
2726 	} else {
2727 		spin_lock_nested(&dentry->d_lock, 2);
2728 		spin_lock_nested(&target->d_lock, 3);
2729 	}
2730 }
2731 
2732 static void dentry_unlock_for_move(struct dentry *dentry, struct dentry *target)
2733 {
2734 	if (target->d_parent != dentry->d_parent)
2735 		spin_unlock(&dentry->d_parent->d_lock);
2736 	if (target->d_parent != target)
2737 		spin_unlock(&target->d_parent->d_lock);
2738 	spin_unlock(&target->d_lock);
2739 	spin_unlock(&dentry->d_lock);
2740 }
2741 
2742 /*
2743  * When switching names, the actual string doesn't strictly have to
2744  * be preserved in the target - because we're dropping the target
2745  * anyway. As such, we can just do a simple memcpy() to copy over
2746  * the new name before we switch, unless we are going to rehash
2747  * it.  Note that if we *do* unhash the target, we are not allowed
2748  * to rehash it without giving it a new name/hash key - whether
2749  * we swap or overwrite the names here, resulting name won't match
2750  * the reality in filesystem; it's only there for d_path() purposes.
2751  * Note that all of this is happening under rename_lock, so the
2752  * any hash lookup seeing it in the middle of manipulations will
2753  * be discarded anyway.  So we do not care what happens to the hash
2754  * key in that case.
2755  */
2756 /*
2757  * __d_move - move a dentry
2758  * @dentry: entry to move
2759  * @target: new dentry
2760  * @exchange: exchange the two dentries
2761  *
2762  * Update the dcache to reflect the move of a file name. Negative
2763  * dcache entries should not be moved in this way. Caller must hold
2764  * rename_lock, the i_mutex of the source and target directories,
2765  * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
2766  */
2767 static void __d_move(struct dentry *dentry, struct dentry *target,
2768 		     bool exchange)
2769 {
2770 	struct inode *dir = NULL;
2771 	unsigned n;
2772 	if (!dentry->d_inode)
2773 		printk(KERN_WARNING "VFS: moving negative dcache entry\n");
2774 
2775 	BUG_ON(d_ancestor(dentry, target));
2776 	BUG_ON(d_ancestor(target, dentry));
2777 
2778 	dentry_lock_for_move(dentry, target);
2779 	if (unlikely(d_in_lookup(target))) {
2780 		dir = target->d_parent->d_inode;
2781 		n = start_dir_add(dir);
2782 		__d_lookup_done(target);
2783 	}
2784 
2785 	write_seqcount_begin(&dentry->d_seq);
2786 	write_seqcount_begin_nested(&target->d_seq, DENTRY_D_LOCK_NESTED);
2787 
2788 	/* unhash both */
2789 	/* __d_drop does write_seqcount_barrier, but they're OK to nest. */
2790 	__d_drop(dentry);
2791 	__d_drop(target);
2792 
2793 	/* Switch the names.. */
2794 	if (exchange)
2795 		swap_names(dentry, target);
2796 	else
2797 		copy_name(dentry, target);
2798 
2799 	/* rehash in new place(s) */
2800 	__d_rehash(dentry);
2801 	if (exchange)
2802 		__d_rehash(target);
2803 
2804 	/* ... and switch them in the tree */
2805 	if (IS_ROOT(dentry)) {
2806 		/* splicing a tree */
2807 		dentry->d_flags |= DCACHE_RCUACCESS;
2808 		dentry->d_parent = target->d_parent;
2809 		target->d_parent = target;
2810 		list_del_init(&target->d_child);
2811 		list_move(&dentry->d_child, &dentry->d_parent->d_subdirs);
2812 	} else {
2813 		/* swapping two dentries */
2814 		swap(dentry->d_parent, target->d_parent);
2815 		list_move(&target->d_child, &target->d_parent->d_subdirs);
2816 		list_move(&dentry->d_child, &dentry->d_parent->d_subdirs);
2817 		if (exchange)
2818 			fsnotify_update_flags(target);
2819 		fsnotify_update_flags(dentry);
2820 	}
2821 
2822 	write_seqcount_end(&target->d_seq);
2823 	write_seqcount_end(&dentry->d_seq);
2824 
2825 	if (dir)
2826 		end_dir_add(dir, n);
2827 	dentry_unlock_for_move(dentry, target);
2828 }
2829 
2830 /*
2831  * d_move - move a dentry
2832  * @dentry: entry to move
2833  * @target: new dentry
2834  *
2835  * Update the dcache to reflect the move of a file name. Negative
2836  * dcache entries should not be moved in this way. See the locking
2837  * requirements for __d_move.
2838  */
2839 void d_move(struct dentry *dentry, struct dentry *target)
2840 {
2841 	write_seqlock(&rename_lock);
2842 	__d_move(dentry, target, false);
2843 	write_sequnlock(&rename_lock);
2844 }
2845 EXPORT_SYMBOL(d_move);
2846 
2847 /*
2848  * d_exchange - exchange two dentries
2849  * @dentry1: first dentry
2850  * @dentry2: second dentry
2851  */
2852 void d_exchange(struct dentry *dentry1, struct dentry *dentry2)
2853 {
2854 	write_seqlock(&rename_lock);
2855 
2856 	WARN_ON(!dentry1->d_inode);
2857 	WARN_ON(!dentry2->d_inode);
2858 	WARN_ON(IS_ROOT(dentry1));
2859 	WARN_ON(IS_ROOT(dentry2));
2860 
2861 	__d_move(dentry1, dentry2, true);
2862 
2863 	write_sequnlock(&rename_lock);
2864 }
2865 
2866 /**
2867  * d_ancestor - search for an ancestor
2868  * @p1: ancestor dentry
2869  * @p2: child dentry
2870  *
2871  * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2872  * an ancestor of p2, else NULL.
2873  */
2874 struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
2875 {
2876 	struct dentry *p;
2877 
2878 	for (p = p2; !IS_ROOT(p); p = p->d_parent) {
2879 		if (p->d_parent == p1)
2880 			return p;
2881 	}
2882 	return NULL;
2883 }
2884 
2885 /*
2886  * This helper attempts to cope with remotely renamed directories
2887  *
2888  * It assumes that the caller is already holding
2889  * dentry->d_parent->d_inode->i_mutex, and rename_lock
2890  *
2891  * Note: If ever the locking in lock_rename() changes, then please
2892  * remember to update this too...
2893  */
2894 static int __d_unalias(struct inode *inode,
2895 		struct dentry *dentry, struct dentry *alias)
2896 {
2897 	struct mutex *m1 = NULL;
2898 	struct rw_semaphore *m2 = NULL;
2899 	int ret = -ESTALE;
2900 
2901 	/* If alias and dentry share a parent, then no extra locks required */
2902 	if (alias->d_parent == dentry->d_parent)
2903 		goto out_unalias;
2904 
2905 	/* See lock_rename() */
2906 	if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
2907 		goto out_err;
2908 	m1 = &dentry->d_sb->s_vfs_rename_mutex;
2909 	if (!inode_trylock_shared(alias->d_parent->d_inode))
2910 		goto out_err;
2911 	m2 = &alias->d_parent->d_inode->i_rwsem;
2912 out_unalias:
2913 	__d_move(alias, dentry, false);
2914 	ret = 0;
2915 out_err:
2916 	if (m2)
2917 		up_read(m2);
2918 	if (m1)
2919 		mutex_unlock(m1);
2920 	return ret;
2921 }
2922 
2923 /**
2924  * d_splice_alias - splice a disconnected dentry into the tree if one exists
2925  * @inode:  the inode which may have a disconnected dentry
2926  * @dentry: a negative dentry which we want to point to the inode.
2927  *
2928  * If inode is a directory and has an IS_ROOT alias, then d_move that in
2929  * place of the given dentry and return it, else simply d_add the inode
2930  * to the dentry and return NULL.
2931  *
2932  * If a non-IS_ROOT directory is found, the filesystem is corrupt, and
2933  * we should error out: directories can't have multiple aliases.
2934  *
2935  * This is needed in the lookup routine of any filesystem that is exportable
2936  * (via knfsd) so that we can build dcache paths to directories effectively.
2937  *
2938  * If a dentry was found and moved, then it is returned.  Otherwise NULL
2939  * is returned.  This matches the expected return value of ->lookup.
2940  *
2941  * Cluster filesystems may call this function with a negative, hashed dentry.
2942  * In that case, we know that the inode will be a regular file, and also this
2943  * will only occur during atomic_open. So we need to check for the dentry
2944  * being already hashed only in the final case.
2945  */
2946 struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
2947 {
2948 	if (IS_ERR(inode))
2949 		return ERR_CAST(inode);
2950 
2951 	BUG_ON(!d_unhashed(dentry));
2952 
2953 	if (!inode)
2954 		goto out;
2955 
2956 	security_d_instantiate(dentry, inode);
2957 	spin_lock(&inode->i_lock);
2958 	if (S_ISDIR(inode->i_mode)) {
2959 		struct dentry *new = __d_find_any_alias(inode);
2960 		if (unlikely(new)) {
2961 			/* The reference to new ensures it remains an alias */
2962 			spin_unlock(&inode->i_lock);
2963 			write_seqlock(&rename_lock);
2964 			if (unlikely(d_ancestor(new, dentry))) {
2965 				write_sequnlock(&rename_lock);
2966 				dput(new);
2967 				new = ERR_PTR(-ELOOP);
2968 				pr_warn_ratelimited(
2969 					"VFS: Lookup of '%s' in %s %s"
2970 					" would have caused loop\n",
2971 					dentry->d_name.name,
2972 					inode->i_sb->s_type->name,
2973 					inode->i_sb->s_id);
2974 			} else if (!IS_ROOT(new)) {
2975 				int err = __d_unalias(inode, dentry, new);
2976 				write_sequnlock(&rename_lock);
2977 				if (err) {
2978 					dput(new);
2979 					new = ERR_PTR(err);
2980 				}
2981 			} else {
2982 				__d_move(new, dentry, false);
2983 				write_sequnlock(&rename_lock);
2984 			}
2985 			iput(inode);
2986 			return new;
2987 		}
2988 	}
2989 out:
2990 	__d_add(dentry, inode);
2991 	return NULL;
2992 }
2993 EXPORT_SYMBOL(d_splice_alias);
2994 
2995 static int prepend(char **buffer, int *buflen, const char *str, int namelen)
2996 {
2997 	*buflen -= namelen;
2998 	if (*buflen < 0)
2999 		return -ENAMETOOLONG;
3000 	*buffer -= namelen;
3001 	memcpy(*buffer, str, namelen);
3002 	return 0;
3003 }
3004 
3005 /**
3006  * prepend_name - prepend a pathname in front of current buffer pointer
3007  * @buffer: buffer pointer
3008  * @buflen: allocated length of the buffer
3009  * @name:   name string and length qstr structure
3010  *
3011  * With RCU path tracing, it may race with d_move(). Use ACCESS_ONCE() to
3012  * make sure that either the old or the new name pointer and length are
3013  * fetched. However, there may be mismatch between length and pointer.
3014  * The length cannot be trusted, we need to copy it byte-by-byte until
3015  * the length is reached or a null byte is found. It also prepends "/" at
3016  * the beginning of the name. The sequence number check at the caller will
3017  * retry it again when a d_move() does happen. So any garbage in the buffer
3018  * due to mismatched pointer and length will be discarded.
3019  *
3020  * Data dependency barrier is needed to make sure that we see that terminating
3021  * NUL.  Alpha strikes again, film at 11...
3022  */
3023 static int prepend_name(char **buffer, int *buflen, const struct qstr *name)
3024 {
3025 	const char *dname = ACCESS_ONCE(name->name);
3026 	u32 dlen = ACCESS_ONCE(name->len);
3027 	char *p;
3028 
3029 	smp_read_barrier_depends();
3030 
3031 	*buflen -= dlen + 1;
3032 	if (*buflen < 0)
3033 		return -ENAMETOOLONG;
3034 	p = *buffer -= dlen + 1;
3035 	*p++ = '/';
3036 	while (dlen--) {
3037 		char c = *dname++;
3038 		if (!c)
3039 			break;
3040 		*p++ = c;
3041 	}
3042 	return 0;
3043 }
3044 
3045 /**
3046  * prepend_path - Prepend path string to a buffer
3047  * @path: the dentry/vfsmount to report
3048  * @root: root vfsmnt/dentry
3049  * @buffer: pointer to the end of the buffer
3050  * @buflen: pointer to buffer length
3051  *
3052  * The function will first try to write out the pathname without taking any
3053  * lock other than the RCU read lock to make sure that dentries won't go away.
3054  * It only checks the sequence number of the global rename_lock as any change
3055  * in the dentry's d_seq will be preceded by changes in the rename_lock
3056  * sequence number. If the sequence number had been changed, it will restart
3057  * the whole pathname back-tracing sequence again by taking the rename_lock.
3058  * In this case, there is no need to take the RCU read lock as the recursive
3059  * parent pointer references will keep the dentry chain alive as long as no
3060  * rename operation is performed.
3061  */
3062 static int prepend_path(const struct path *path,
3063 			const struct path *root,
3064 			char **buffer, int *buflen)
3065 {
3066 	struct dentry *dentry;
3067 	struct vfsmount *vfsmnt;
3068 	struct mount *mnt;
3069 	int error = 0;
3070 	unsigned seq, m_seq = 0;
3071 	char *bptr;
3072 	int blen;
3073 
3074 	rcu_read_lock();
3075 restart_mnt:
3076 	read_seqbegin_or_lock(&mount_lock, &m_seq);
3077 	seq = 0;
3078 	rcu_read_lock();
3079 restart:
3080 	bptr = *buffer;
3081 	blen = *buflen;
3082 	error = 0;
3083 	dentry = path->dentry;
3084 	vfsmnt = path->mnt;
3085 	mnt = real_mount(vfsmnt);
3086 	read_seqbegin_or_lock(&rename_lock, &seq);
3087 	while (dentry != root->dentry || vfsmnt != root->mnt) {
3088 		struct dentry * parent;
3089 
3090 		if (dentry == vfsmnt->mnt_root || IS_ROOT(dentry)) {
3091 			struct mount *parent = ACCESS_ONCE(mnt->mnt_parent);
3092 			/* Escaped? */
3093 			if (dentry != vfsmnt->mnt_root) {
3094 				bptr = *buffer;
3095 				blen = *buflen;
3096 				error = 3;
3097 				break;
3098 			}
3099 			/* Global root? */
3100 			if (mnt != parent) {
3101 				dentry = ACCESS_ONCE(mnt->mnt_mountpoint);
3102 				mnt = parent;
3103 				vfsmnt = &mnt->mnt;
3104 				continue;
3105 			}
3106 			if (!error)
3107 				error = is_mounted(vfsmnt) ? 1 : 2;
3108 			break;
3109 		}
3110 		parent = dentry->d_parent;
3111 		prefetch(parent);
3112 		error = prepend_name(&bptr, &blen, &dentry->d_name);
3113 		if (error)
3114 			break;
3115 
3116 		dentry = parent;
3117 	}
3118 	if (!(seq & 1))
3119 		rcu_read_unlock();
3120 	if (need_seqretry(&rename_lock, seq)) {
3121 		seq = 1;
3122 		goto restart;
3123 	}
3124 	done_seqretry(&rename_lock, seq);
3125 
3126 	if (!(m_seq & 1))
3127 		rcu_read_unlock();
3128 	if (need_seqretry(&mount_lock, m_seq)) {
3129 		m_seq = 1;
3130 		goto restart_mnt;
3131 	}
3132 	done_seqretry(&mount_lock, m_seq);
3133 
3134 	if (error >= 0 && bptr == *buffer) {
3135 		if (--blen < 0)
3136 			error = -ENAMETOOLONG;
3137 		else
3138 			*--bptr = '/';
3139 	}
3140 	*buffer = bptr;
3141 	*buflen = blen;
3142 	return error;
3143 }
3144 
3145 /**
3146  * __d_path - return the path of a dentry
3147  * @path: the dentry/vfsmount to report
3148  * @root: root vfsmnt/dentry
3149  * @buf: buffer to return value in
3150  * @buflen: buffer length
3151  *
3152  * Convert a dentry into an ASCII path name.
3153  *
3154  * Returns a pointer into the buffer or an error code if the
3155  * path was too long.
3156  *
3157  * "buflen" should be positive.
3158  *
3159  * If the path is not reachable from the supplied root, return %NULL.
3160  */
3161 char *__d_path(const struct path *path,
3162 	       const struct path *root,
3163 	       char *buf, int buflen)
3164 {
3165 	char *res = buf + buflen;
3166 	int error;
3167 
3168 	prepend(&res, &buflen, "\0", 1);
3169 	error = prepend_path(path, root, &res, &buflen);
3170 
3171 	if (error < 0)
3172 		return ERR_PTR(error);
3173 	if (error > 0)
3174 		return NULL;
3175 	return res;
3176 }
3177 
3178 char *d_absolute_path(const struct path *path,
3179 	       char *buf, int buflen)
3180 {
3181 	struct path root = {};
3182 	char *res = buf + buflen;
3183 	int error;
3184 
3185 	prepend(&res, &buflen, "\0", 1);
3186 	error = prepend_path(path, &root, &res, &buflen);
3187 
3188 	if (error > 1)
3189 		error = -EINVAL;
3190 	if (error < 0)
3191 		return ERR_PTR(error);
3192 	return res;
3193 }
3194 
3195 /*
3196  * same as __d_path but appends "(deleted)" for unlinked files.
3197  */
3198 static int path_with_deleted(const struct path *path,
3199 			     const struct path *root,
3200 			     char **buf, int *buflen)
3201 {
3202 	prepend(buf, buflen, "\0", 1);
3203 	if (d_unlinked(path->dentry)) {
3204 		int error = prepend(buf, buflen, " (deleted)", 10);
3205 		if (error)
3206 			return error;
3207 	}
3208 
3209 	return prepend_path(path, root, buf, buflen);
3210 }
3211 
3212 static int prepend_unreachable(char **buffer, int *buflen)
3213 {
3214 	return prepend(buffer, buflen, "(unreachable)", 13);
3215 }
3216 
3217 static void get_fs_root_rcu(struct fs_struct *fs, struct path *root)
3218 {
3219 	unsigned seq;
3220 
3221 	do {
3222 		seq = read_seqcount_begin(&fs->seq);
3223 		*root = fs->root;
3224 	} while (read_seqcount_retry(&fs->seq, seq));
3225 }
3226 
3227 /**
3228  * d_path - return the path of a dentry
3229  * @path: path to report
3230  * @buf: buffer to return value in
3231  * @buflen: buffer length
3232  *
3233  * Convert a dentry into an ASCII path name. If the entry has been deleted
3234  * the string " (deleted)" is appended. Note that this is ambiguous.
3235  *
3236  * Returns a pointer into the buffer or an error code if the path was
3237  * too long. Note: Callers should use the returned pointer, not the passed
3238  * in buffer, to use the name! The implementation often starts at an offset
3239  * into the buffer, and may leave 0 bytes at the start.
3240  *
3241  * "buflen" should be positive.
3242  */
3243 char *d_path(const struct path *path, char *buf, int buflen)
3244 {
3245 	char *res = buf + buflen;
3246 	struct path root;
3247 	int error;
3248 
3249 	/*
3250 	 * We have various synthetic filesystems that never get mounted.  On
3251 	 * these filesystems dentries are never used for lookup purposes, and
3252 	 * thus don't need to be hashed.  They also don't need a name until a
3253 	 * user wants to identify the object in /proc/pid/fd/.  The little hack
3254 	 * below allows us to generate a name for these objects on demand:
3255 	 *
3256 	 * Some pseudo inodes are mountable.  When they are mounted
3257 	 * path->dentry == path->mnt->mnt_root.  In that case don't call d_dname
3258 	 * and instead have d_path return the mounted path.
3259 	 */
3260 	if (path->dentry->d_op && path->dentry->d_op->d_dname &&
3261 	    (!IS_ROOT(path->dentry) || path->dentry != path->mnt->mnt_root))
3262 		return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
3263 
3264 	rcu_read_lock();
3265 	get_fs_root_rcu(current->fs, &root);
3266 	error = path_with_deleted(path, &root, &res, &buflen);
3267 	rcu_read_unlock();
3268 
3269 	if (error < 0)
3270 		res = ERR_PTR(error);
3271 	return res;
3272 }
3273 EXPORT_SYMBOL(d_path);
3274 
3275 /*
3276  * Helper function for dentry_operations.d_dname() members
3277  */
3278 char *dynamic_dname(struct dentry *dentry, char *buffer, int buflen,
3279 			const char *fmt, ...)
3280 {
3281 	va_list args;
3282 	char temp[64];
3283 	int sz;
3284 
3285 	va_start(args, fmt);
3286 	sz = vsnprintf(temp, sizeof(temp), fmt, args) + 1;
3287 	va_end(args);
3288 
3289 	if (sz > sizeof(temp) || sz > buflen)
3290 		return ERR_PTR(-ENAMETOOLONG);
3291 
3292 	buffer += buflen - sz;
3293 	return memcpy(buffer, temp, sz);
3294 }
3295 
3296 char *simple_dname(struct dentry *dentry, char *buffer, int buflen)
3297 {
3298 	char *end = buffer + buflen;
3299 	/* these dentries are never renamed, so d_lock is not needed */
3300 	if (prepend(&end, &buflen, " (deleted)", 11) ||
3301 	    prepend(&end, &buflen, dentry->d_name.name, dentry->d_name.len) ||
3302 	    prepend(&end, &buflen, "/", 1))
3303 		end = ERR_PTR(-ENAMETOOLONG);
3304 	return end;
3305 }
3306 EXPORT_SYMBOL(simple_dname);
3307 
3308 /*
3309  * Write full pathname from the root of the filesystem into the buffer.
3310  */
3311 static char *__dentry_path(struct dentry *d, char *buf, int buflen)
3312 {
3313 	struct dentry *dentry;
3314 	char *end, *retval;
3315 	int len, seq = 0;
3316 	int error = 0;
3317 
3318 	if (buflen < 2)
3319 		goto Elong;
3320 
3321 	rcu_read_lock();
3322 restart:
3323 	dentry = d;
3324 	end = buf + buflen;
3325 	len = buflen;
3326 	prepend(&end, &len, "\0", 1);
3327 	/* Get '/' right */
3328 	retval = end-1;
3329 	*retval = '/';
3330 	read_seqbegin_or_lock(&rename_lock, &seq);
3331 	while (!IS_ROOT(dentry)) {
3332 		struct dentry *parent = dentry->d_parent;
3333 
3334 		prefetch(parent);
3335 		error = prepend_name(&end, &len, &dentry->d_name);
3336 		if (error)
3337 			break;
3338 
3339 		retval = end;
3340 		dentry = parent;
3341 	}
3342 	if (!(seq & 1))
3343 		rcu_read_unlock();
3344 	if (need_seqretry(&rename_lock, seq)) {
3345 		seq = 1;
3346 		goto restart;
3347 	}
3348 	done_seqretry(&rename_lock, seq);
3349 	if (error)
3350 		goto Elong;
3351 	return retval;
3352 Elong:
3353 	return ERR_PTR(-ENAMETOOLONG);
3354 }
3355 
3356 char *dentry_path_raw(struct dentry *dentry, char *buf, int buflen)
3357 {
3358 	return __dentry_path(dentry, buf, buflen);
3359 }
3360 EXPORT_SYMBOL(dentry_path_raw);
3361 
3362 char *dentry_path(struct dentry *dentry, char *buf, int buflen)
3363 {
3364 	char *p = NULL;
3365 	char *retval;
3366 
3367 	if (d_unlinked(dentry)) {
3368 		p = buf + buflen;
3369 		if (prepend(&p, &buflen, "//deleted", 10) != 0)
3370 			goto Elong;
3371 		buflen++;
3372 	}
3373 	retval = __dentry_path(dentry, buf, buflen);
3374 	if (!IS_ERR(retval) && p)
3375 		*p = '/';	/* restore '/' overriden with '\0' */
3376 	return retval;
3377 Elong:
3378 	return ERR_PTR(-ENAMETOOLONG);
3379 }
3380 
3381 static void get_fs_root_and_pwd_rcu(struct fs_struct *fs, struct path *root,
3382 				    struct path *pwd)
3383 {
3384 	unsigned seq;
3385 
3386 	do {
3387 		seq = read_seqcount_begin(&fs->seq);
3388 		*root = fs->root;
3389 		*pwd = fs->pwd;
3390 	} while (read_seqcount_retry(&fs->seq, seq));
3391 }
3392 
3393 /*
3394  * NOTE! The user-level library version returns a
3395  * character pointer. The kernel system call just
3396  * returns the length of the buffer filled (which
3397  * includes the ending '\0' character), or a negative
3398  * error value. So libc would do something like
3399  *
3400  *	char *getcwd(char * buf, size_t size)
3401  *	{
3402  *		int retval;
3403  *
3404  *		retval = sys_getcwd(buf, size);
3405  *		if (retval >= 0)
3406  *			return buf;
3407  *		errno = -retval;
3408  *		return NULL;
3409  *	}
3410  */
3411 SYSCALL_DEFINE2(getcwd, char __user *, buf, unsigned long, size)
3412 {
3413 	int error;
3414 	struct path pwd, root;
3415 	char *page = __getname();
3416 
3417 	if (!page)
3418 		return -ENOMEM;
3419 
3420 	rcu_read_lock();
3421 	get_fs_root_and_pwd_rcu(current->fs, &root, &pwd);
3422 
3423 	error = -ENOENT;
3424 	if (!d_unlinked(pwd.dentry)) {
3425 		unsigned long len;
3426 		char *cwd = page + PATH_MAX;
3427 		int buflen = PATH_MAX;
3428 
3429 		prepend(&cwd, &buflen, "\0", 1);
3430 		error = prepend_path(&pwd, &root, &cwd, &buflen);
3431 		rcu_read_unlock();
3432 
3433 		if (error < 0)
3434 			goto out;
3435 
3436 		/* Unreachable from current root */
3437 		if (error > 0) {
3438 			error = prepend_unreachable(&cwd, &buflen);
3439 			if (error)
3440 				goto out;
3441 		}
3442 
3443 		error = -ERANGE;
3444 		len = PATH_MAX + page - cwd;
3445 		if (len <= size) {
3446 			error = len;
3447 			if (copy_to_user(buf, cwd, len))
3448 				error = -EFAULT;
3449 		}
3450 	} else {
3451 		rcu_read_unlock();
3452 	}
3453 
3454 out:
3455 	__putname(page);
3456 	return error;
3457 }
3458 
3459 /*
3460  * Test whether new_dentry is a subdirectory of old_dentry.
3461  *
3462  * Trivially implemented using the dcache structure
3463  */
3464 
3465 /**
3466  * is_subdir - is new dentry a subdirectory of old_dentry
3467  * @new_dentry: new dentry
3468  * @old_dentry: old dentry
3469  *
3470  * Returns true if new_dentry is a subdirectory of the parent (at any depth).
3471  * Returns false otherwise.
3472  * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
3473  */
3474 
3475 bool is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
3476 {
3477 	bool result;
3478 	unsigned seq;
3479 
3480 	if (new_dentry == old_dentry)
3481 		return true;
3482 
3483 	do {
3484 		/* for restarting inner loop in case of seq retry */
3485 		seq = read_seqbegin(&rename_lock);
3486 		/*
3487 		 * Need rcu_readlock to protect against the d_parent trashing
3488 		 * due to d_move
3489 		 */
3490 		rcu_read_lock();
3491 		if (d_ancestor(old_dentry, new_dentry))
3492 			result = true;
3493 		else
3494 			result = false;
3495 		rcu_read_unlock();
3496 	} while (read_seqretry(&rename_lock, seq));
3497 
3498 	return result;
3499 }
3500 
3501 static enum d_walk_ret d_genocide_kill(void *data, struct dentry *dentry)
3502 {
3503 	struct dentry *root = data;
3504 	if (dentry != root) {
3505 		if (d_unhashed(dentry) || !dentry->d_inode)
3506 			return D_WALK_SKIP;
3507 
3508 		if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
3509 			dentry->d_flags |= DCACHE_GENOCIDE;
3510 			dentry->d_lockref.count--;
3511 		}
3512 	}
3513 	return D_WALK_CONTINUE;
3514 }
3515 
3516 void d_genocide(struct dentry *parent)
3517 {
3518 	d_walk(parent, parent, d_genocide_kill, NULL);
3519 }
3520 
3521 void d_tmpfile(struct dentry *dentry, struct inode *inode)
3522 {
3523 	inode_dec_link_count(inode);
3524 	BUG_ON(dentry->d_name.name != dentry->d_iname ||
3525 		!hlist_unhashed(&dentry->d_u.d_alias) ||
3526 		!d_unlinked(dentry));
3527 	spin_lock(&dentry->d_parent->d_lock);
3528 	spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
3529 	dentry->d_name.len = sprintf(dentry->d_iname, "#%llu",
3530 				(unsigned long long)inode->i_ino);
3531 	spin_unlock(&dentry->d_lock);
3532 	spin_unlock(&dentry->d_parent->d_lock);
3533 	d_instantiate(dentry, inode);
3534 }
3535 EXPORT_SYMBOL(d_tmpfile);
3536 
3537 static __initdata unsigned long dhash_entries;
3538 static int __init set_dhash_entries(char *str)
3539 {
3540 	if (!str)
3541 		return 0;
3542 	dhash_entries = simple_strtoul(str, &str, 0);
3543 	return 1;
3544 }
3545 __setup("dhash_entries=", set_dhash_entries);
3546 
3547 static void __init dcache_init_early(void)
3548 {
3549 	unsigned int loop;
3550 
3551 	/* If hashes are distributed across NUMA nodes, defer
3552 	 * hash allocation until vmalloc space is available.
3553 	 */
3554 	if (hashdist)
3555 		return;
3556 
3557 	dentry_hashtable =
3558 		alloc_large_system_hash("Dentry cache",
3559 					sizeof(struct hlist_bl_head),
3560 					dhash_entries,
3561 					13,
3562 					HASH_EARLY,
3563 					&d_hash_shift,
3564 					&d_hash_mask,
3565 					0,
3566 					0);
3567 
3568 	for (loop = 0; loop < (1U << d_hash_shift); loop++)
3569 		INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
3570 }
3571 
3572 static void __init dcache_init(void)
3573 {
3574 	unsigned int loop;
3575 
3576 	/*
3577 	 * A constructor could be added for stable state like the lists,
3578 	 * but it is probably not worth it because of the cache nature
3579 	 * of the dcache.
3580 	 */
3581 	dentry_cache = KMEM_CACHE(dentry,
3582 		SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD|SLAB_ACCOUNT);
3583 
3584 	/* Hash may have been set up in dcache_init_early */
3585 	if (!hashdist)
3586 		return;
3587 
3588 	dentry_hashtable =
3589 		alloc_large_system_hash("Dentry cache",
3590 					sizeof(struct hlist_bl_head),
3591 					dhash_entries,
3592 					13,
3593 					0,
3594 					&d_hash_shift,
3595 					&d_hash_mask,
3596 					0,
3597 					0);
3598 
3599 	for (loop = 0; loop < (1U << d_hash_shift); loop++)
3600 		INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
3601 }
3602 
3603 /* SLAB cache for __getname() consumers */
3604 struct kmem_cache *names_cachep __read_mostly;
3605 EXPORT_SYMBOL(names_cachep);
3606 
3607 EXPORT_SYMBOL(d_genocide);
3608 
3609 void __init vfs_caches_init_early(void)
3610 {
3611 	dcache_init_early();
3612 	inode_init_early();
3613 }
3614 
3615 void __init vfs_caches_init(void)
3616 {
3617 	names_cachep = kmem_cache_create("names_cache", PATH_MAX, 0,
3618 			SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
3619 
3620 	dcache_init();
3621 	inode_init();
3622 	files_init();
3623 	files_maxfiles_init();
3624 	mnt_init();
3625 	bdev_cache_init();
3626 	chrdev_init();
3627 }
3628