xref: /openbmc/linux/fs/dcache.c (revision ecba1060)
1 /*
2  * fs/dcache.c
3  *
4  * Complete reimplementation
5  * (C) 1997 Thomas Schoebel-Theuer,
6  * with heavy changes by Linus Torvalds
7  */
8 
9 /*
10  * Notes on the allocation strategy:
11  *
12  * The dcache is a master of the icache - whenever a dcache entry
13  * exists, the inode will always exist. "iput()" is done either when
14  * the dcache entry is deleted or garbage collected.
15  */
16 
17 #include <linux/syscalls.h>
18 #include <linux/string.h>
19 #include <linux/mm.h>
20 #include <linux/fs.h>
21 #include <linux/fsnotify.h>
22 #include <linux/slab.h>
23 #include <linux/init.h>
24 #include <linux/hash.h>
25 #include <linux/cache.h>
26 #include <linux/module.h>
27 #include <linux/mount.h>
28 #include <linux/file.h>
29 #include <asm/uaccess.h>
30 #include <linux/security.h>
31 #include <linux/seqlock.h>
32 #include <linux/swap.h>
33 #include <linux/bootmem.h>
34 #include <linux/fs_struct.h>
35 #include "internal.h"
36 
37 int sysctl_vfs_cache_pressure __read_mostly = 100;
38 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
39 
40  __cacheline_aligned_in_smp DEFINE_SPINLOCK(dcache_lock);
41 __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
42 
43 EXPORT_SYMBOL(dcache_lock);
44 
45 static struct kmem_cache *dentry_cache __read_mostly;
46 
47 #define DNAME_INLINE_LEN (sizeof(struct dentry)-offsetof(struct dentry,d_iname))
48 
49 /*
50  * This is the single most critical data structure when it comes
51  * to the dcache: the hashtable for lookups. Somebody should try
52  * to make this good - I've just made it work.
53  *
54  * This hash-function tries to avoid losing too many bits of hash
55  * information, yet avoid using a prime hash-size or similar.
56  */
57 #define D_HASHBITS     d_hash_shift
58 #define D_HASHMASK     d_hash_mask
59 
60 static unsigned int d_hash_mask __read_mostly;
61 static unsigned int d_hash_shift __read_mostly;
62 static struct hlist_head *dentry_hashtable __read_mostly;
63 
64 /* Statistics gathering. */
65 struct dentry_stat_t dentry_stat = {
66 	.age_limit = 45,
67 };
68 
69 static void __d_free(struct dentry *dentry)
70 {
71 	WARN_ON(!list_empty(&dentry->d_alias));
72 	if (dname_external(dentry))
73 		kfree(dentry->d_name.name);
74 	kmem_cache_free(dentry_cache, dentry);
75 }
76 
77 static void d_callback(struct rcu_head *head)
78 {
79 	struct dentry * dentry = container_of(head, struct dentry, d_u.d_rcu);
80 	__d_free(dentry);
81 }
82 
83 /*
84  * no dcache_lock, please.  The caller must decrement dentry_stat.nr_dentry
85  * inside dcache_lock.
86  */
87 static void d_free(struct dentry *dentry)
88 {
89 	if (dentry->d_op && dentry->d_op->d_release)
90 		dentry->d_op->d_release(dentry);
91 	/* if dentry was never inserted into hash, immediate free is OK */
92 	if (hlist_unhashed(&dentry->d_hash))
93 		__d_free(dentry);
94 	else
95 		call_rcu(&dentry->d_u.d_rcu, d_callback);
96 }
97 
98 /*
99  * Release the dentry's inode, using the filesystem
100  * d_iput() operation if defined.
101  */
102 static void dentry_iput(struct dentry * dentry)
103 	__releases(dentry->d_lock)
104 	__releases(dcache_lock)
105 {
106 	struct inode *inode = dentry->d_inode;
107 	if (inode) {
108 		dentry->d_inode = NULL;
109 		list_del_init(&dentry->d_alias);
110 		spin_unlock(&dentry->d_lock);
111 		spin_unlock(&dcache_lock);
112 		if (!inode->i_nlink)
113 			fsnotify_inoderemove(inode);
114 		if (dentry->d_op && dentry->d_op->d_iput)
115 			dentry->d_op->d_iput(dentry, inode);
116 		else
117 			iput(inode);
118 	} else {
119 		spin_unlock(&dentry->d_lock);
120 		spin_unlock(&dcache_lock);
121 	}
122 }
123 
124 /*
125  * dentry_lru_(add|add_tail|del|del_init) must be called with dcache_lock held.
126  */
127 static void dentry_lru_add(struct dentry *dentry)
128 {
129 	list_add(&dentry->d_lru, &dentry->d_sb->s_dentry_lru);
130 	dentry->d_sb->s_nr_dentry_unused++;
131 	dentry_stat.nr_unused++;
132 }
133 
134 static void dentry_lru_add_tail(struct dentry *dentry)
135 {
136 	list_add_tail(&dentry->d_lru, &dentry->d_sb->s_dentry_lru);
137 	dentry->d_sb->s_nr_dentry_unused++;
138 	dentry_stat.nr_unused++;
139 }
140 
141 static void dentry_lru_del(struct dentry *dentry)
142 {
143 	if (!list_empty(&dentry->d_lru)) {
144 		list_del(&dentry->d_lru);
145 		dentry->d_sb->s_nr_dentry_unused--;
146 		dentry_stat.nr_unused--;
147 	}
148 }
149 
150 static void dentry_lru_del_init(struct dentry *dentry)
151 {
152 	if (likely(!list_empty(&dentry->d_lru))) {
153 		list_del_init(&dentry->d_lru);
154 		dentry->d_sb->s_nr_dentry_unused--;
155 		dentry_stat.nr_unused--;
156 	}
157 }
158 
159 /**
160  * d_kill - kill dentry and return parent
161  * @dentry: dentry to kill
162  *
163  * The dentry must already be unhashed and removed from the LRU.
164  *
165  * If this is the root of the dentry tree, return NULL.
166  */
167 static struct dentry *d_kill(struct dentry *dentry)
168 	__releases(dentry->d_lock)
169 	__releases(dcache_lock)
170 {
171 	struct dentry *parent;
172 
173 	list_del(&dentry->d_u.d_child);
174 	dentry_stat.nr_dentry--;	/* For d_free, below */
175 	/*drops the locks, at that point nobody can reach this dentry */
176 	dentry_iput(dentry);
177 	if (IS_ROOT(dentry))
178 		parent = NULL;
179 	else
180 		parent = dentry->d_parent;
181 	d_free(dentry);
182 	return parent;
183 }
184 
185 /*
186  * This is dput
187  *
188  * This is complicated by the fact that we do not want to put
189  * dentries that are no longer on any hash chain on the unused
190  * list: we'd much rather just get rid of them immediately.
191  *
192  * However, that implies that we have to traverse the dentry
193  * tree upwards to the parents which might _also_ now be
194  * scheduled for deletion (it may have been only waiting for
195  * its last child to go away).
196  *
197  * This tail recursion is done by hand as we don't want to depend
198  * on the compiler to always get this right (gcc generally doesn't).
199  * Real recursion would eat up our stack space.
200  */
201 
202 /*
203  * dput - release a dentry
204  * @dentry: dentry to release
205  *
206  * Release a dentry. This will drop the usage count and if appropriate
207  * call the dentry unlink method as well as removing it from the queues and
208  * releasing its resources. If the parent dentries were scheduled for release
209  * they too may now get deleted.
210  *
211  * no dcache lock, please.
212  */
213 
214 void dput(struct dentry *dentry)
215 {
216 	if (!dentry)
217 		return;
218 
219 repeat:
220 	if (atomic_read(&dentry->d_count) == 1)
221 		might_sleep();
222 	if (!atomic_dec_and_lock(&dentry->d_count, &dcache_lock))
223 		return;
224 
225 	spin_lock(&dentry->d_lock);
226 	if (atomic_read(&dentry->d_count)) {
227 		spin_unlock(&dentry->d_lock);
228 		spin_unlock(&dcache_lock);
229 		return;
230 	}
231 
232 	/*
233 	 * AV: ->d_delete() is _NOT_ allowed to block now.
234 	 */
235 	if (dentry->d_op && dentry->d_op->d_delete) {
236 		if (dentry->d_op->d_delete(dentry))
237 			goto unhash_it;
238 	}
239 	/* Unreachable? Get rid of it */
240  	if (d_unhashed(dentry))
241 		goto kill_it;
242   	if (list_empty(&dentry->d_lru)) {
243   		dentry->d_flags |= DCACHE_REFERENCED;
244 		dentry_lru_add(dentry);
245   	}
246  	spin_unlock(&dentry->d_lock);
247 	spin_unlock(&dcache_lock);
248 	return;
249 
250 unhash_it:
251 	__d_drop(dentry);
252 kill_it:
253 	/* if dentry was on the d_lru list delete it from there */
254 	dentry_lru_del(dentry);
255 	dentry = d_kill(dentry);
256 	if (dentry)
257 		goto repeat;
258 }
259 
260 /**
261  * d_invalidate - invalidate a dentry
262  * @dentry: dentry to invalidate
263  *
264  * Try to invalidate the dentry if it turns out to be
265  * possible. If there are other dentries that can be
266  * reached through this one we can't delete it and we
267  * return -EBUSY. On success we return 0.
268  *
269  * no dcache lock.
270  */
271 
272 int d_invalidate(struct dentry * dentry)
273 {
274 	/*
275 	 * If it's already been dropped, return OK.
276 	 */
277 	spin_lock(&dcache_lock);
278 	if (d_unhashed(dentry)) {
279 		spin_unlock(&dcache_lock);
280 		return 0;
281 	}
282 	/*
283 	 * Check whether to do a partial shrink_dcache
284 	 * to get rid of unused child entries.
285 	 */
286 	if (!list_empty(&dentry->d_subdirs)) {
287 		spin_unlock(&dcache_lock);
288 		shrink_dcache_parent(dentry);
289 		spin_lock(&dcache_lock);
290 	}
291 
292 	/*
293 	 * Somebody else still using it?
294 	 *
295 	 * If it's a directory, we can't drop it
296 	 * for fear of somebody re-populating it
297 	 * with children (even though dropping it
298 	 * would make it unreachable from the root,
299 	 * we might still populate it if it was a
300 	 * working directory or similar).
301 	 */
302 	spin_lock(&dentry->d_lock);
303 	if (atomic_read(&dentry->d_count) > 1) {
304 		if (dentry->d_inode && S_ISDIR(dentry->d_inode->i_mode)) {
305 			spin_unlock(&dentry->d_lock);
306 			spin_unlock(&dcache_lock);
307 			return -EBUSY;
308 		}
309 	}
310 
311 	__d_drop(dentry);
312 	spin_unlock(&dentry->d_lock);
313 	spin_unlock(&dcache_lock);
314 	return 0;
315 }
316 
317 /* This should be called _only_ with dcache_lock held */
318 
319 static inline struct dentry * __dget_locked(struct dentry *dentry)
320 {
321 	atomic_inc(&dentry->d_count);
322 	dentry_lru_del_init(dentry);
323 	return dentry;
324 }
325 
326 struct dentry * dget_locked(struct dentry *dentry)
327 {
328 	return __dget_locked(dentry);
329 }
330 
331 /**
332  * d_find_alias - grab a hashed alias of inode
333  * @inode: inode in question
334  * @want_discon:  flag, used by d_splice_alias, to request
335  *          that only a DISCONNECTED alias be returned.
336  *
337  * If inode has a hashed alias, or is a directory and has any alias,
338  * acquire the reference to alias and return it. Otherwise return NULL.
339  * Notice that if inode is a directory there can be only one alias and
340  * it can be unhashed only if it has no children, or if it is the root
341  * of a filesystem.
342  *
343  * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
344  * any other hashed alias over that one unless @want_discon is set,
345  * in which case only return an IS_ROOT, DCACHE_DISCONNECTED alias.
346  */
347 
348 static struct dentry * __d_find_alias(struct inode *inode, int want_discon)
349 {
350 	struct list_head *head, *next, *tmp;
351 	struct dentry *alias, *discon_alias=NULL;
352 
353 	head = &inode->i_dentry;
354 	next = inode->i_dentry.next;
355 	while (next != head) {
356 		tmp = next;
357 		next = tmp->next;
358 		prefetch(next);
359 		alias = list_entry(tmp, struct dentry, d_alias);
360  		if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
361 			if (IS_ROOT(alias) &&
362 			    (alias->d_flags & DCACHE_DISCONNECTED))
363 				discon_alias = alias;
364 			else if (!want_discon) {
365 				__dget_locked(alias);
366 				return alias;
367 			}
368 		}
369 	}
370 	if (discon_alias)
371 		__dget_locked(discon_alias);
372 	return discon_alias;
373 }
374 
375 struct dentry * d_find_alias(struct inode *inode)
376 {
377 	struct dentry *de = NULL;
378 
379 	if (!list_empty(&inode->i_dentry)) {
380 		spin_lock(&dcache_lock);
381 		de = __d_find_alias(inode, 0);
382 		spin_unlock(&dcache_lock);
383 	}
384 	return de;
385 }
386 
387 /*
388  *	Try to kill dentries associated with this inode.
389  * WARNING: you must own a reference to inode.
390  */
391 void d_prune_aliases(struct inode *inode)
392 {
393 	struct dentry *dentry;
394 restart:
395 	spin_lock(&dcache_lock);
396 	list_for_each_entry(dentry, &inode->i_dentry, d_alias) {
397 		spin_lock(&dentry->d_lock);
398 		if (!atomic_read(&dentry->d_count)) {
399 			__dget_locked(dentry);
400 			__d_drop(dentry);
401 			spin_unlock(&dentry->d_lock);
402 			spin_unlock(&dcache_lock);
403 			dput(dentry);
404 			goto restart;
405 		}
406 		spin_unlock(&dentry->d_lock);
407 	}
408 	spin_unlock(&dcache_lock);
409 }
410 
411 /*
412  * Throw away a dentry - free the inode, dput the parent.  This requires that
413  * the LRU list has already been removed.
414  *
415  * Try to prune ancestors as well.  This is necessary to prevent
416  * quadratic behavior of shrink_dcache_parent(), but is also expected
417  * to be beneficial in reducing dentry cache fragmentation.
418  */
419 static void prune_one_dentry(struct dentry * dentry)
420 	__releases(dentry->d_lock)
421 	__releases(dcache_lock)
422 	__acquires(dcache_lock)
423 {
424 	__d_drop(dentry);
425 	dentry = d_kill(dentry);
426 
427 	/*
428 	 * Prune ancestors.  Locking is simpler than in dput(),
429 	 * because dcache_lock needs to be taken anyway.
430 	 */
431 	spin_lock(&dcache_lock);
432 	while (dentry) {
433 		if (!atomic_dec_and_lock(&dentry->d_count, &dentry->d_lock))
434 			return;
435 
436 		if (dentry->d_op && dentry->d_op->d_delete)
437 			dentry->d_op->d_delete(dentry);
438 		dentry_lru_del_init(dentry);
439 		__d_drop(dentry);
440 		dentry = d_kill(dentry);
441 		spin_lock(&dcache_lock);
442 	}
443 }
444 
445 /*
446  * Shrink the dentry LRU on a given superblock.
447  * @sb   : superblock to shrink dentry LRU.
448  * @count: If count is NULL, we prune all dentries on superblock.
449  * @flags: If flags is non-zero, we need to do special processing based on
450  * which flags are set. This means we don't need to maintain multiple
451  * similar copies of this loop.
452  */
453 static void __shrink_dcache_sb(struct super_block *sb, int *count, int flags)
454 {
455 	LIST_HEAD(referenced);
456 	LIST_HEAD(tmp);
457 	struct dentry *dentry;
458 	int cnt = 0;
459 
460 	BUG_ON(!sb);
461 	BUG_ON((flags & DCACHE_REFERENCED) && count == NULL);
462 	spin_lock(&dcache_lock);
463 	if (count != NULL)
464 		/* called from prune_dcache() and shrink_dcache_parent() */
465 		cnt = *count;
466 restart:
467 	if (count == NULL)
468 		list_splice_init(&sb->s_dentry_lru, &tmp);
469 	else {
470 		while (!list_empty(&sb->s_dentry_lru)) {
471 			dentry = list_entry(sb->s_dentry_lru.prev,
472 					struct dentry, d_lru);
473 			BUG_ON(dentry->d_sb != sb);
474 
475 			spin_lock(&dentry->d_lock);
476 			/*
477 			 * If we are honouring the DCACHE_REFERENCED flag and
478 			 * the dentry has this flag set, don't free it. Clear
479 			 * the flag and put it back on the LRU.
480 			 */
481 			if ((flags & DCACHE_REFERENCED)
482 				&& (dentry->d_flags & DCACHE_REFERENCED)) {
483 				dentry->d_flags &= ~DCACHE_REFERENCED;
484 				list_move(&dentry->d_lru, &referenced);
485 				spin_unlock(&dentry->d_lock);
486 			} else {
487 				list_move_tail(&dentry->d_lru, &tmp);
488 				spin_unlock(&dentry->d_lock);
489 				cnt--;
490 				if (!cnt)
491 					break;
492 			}
493 			cond_resched_lock(&dcache_lock);
494 		}
495 	}
496 	while (!list_empty(&tmp)) {
497 		dentry = list_entry(tmp.prev, struct dentry, d_lru);
498 		dentry_lru_del_init(dentry);
499 		spin_lock(&dentry->d_lock);
500 		/*
501 		 * We found an inuse dentry which was not removed from
502 		 * the LRU because of laziness during lookup.  Do not free
503 		 * it - just keep it off the LRU list.
504 		 */
505 		if (atomic_read(&dentry->d_count)) {
506 			spin_unlock(&dentry->d_lock);
507 			continue;
508 		}
509 		prune_one_dentry(dentry);
510 		/* dentry->d_lock was dropped in prune_one_dentry() */
511 		cond_resched_lock(&dcache_lock);
512 	}
513 	if (count == NULL && !list_empty(&sb->s_dentry_lru))
514 		goto restart;
515 	if (count != NULL)
516 		*count = cnt;
517 	if (!list_empty(&referenced))
518 		list_splice(&referenced, &sb->s_dentry_lru);
519 	spin_unlock(&dcache_lock);
520 }
521 
522 /**
523  * prune_dcache - shrink the dcache
524  * @count: number of entries to try to free
525  *
526  * Shrink the dcache. This is done when we need more memory, or simply when we
527  * need to unmount something (at which point we need to unuse all dentries).
528  *
529  * This function may fail to free any resources if all the dentries are in use.
530  */
531 static void prune_dcache(int count)
532 {
533 	struct super_block *sb;
534 	int w_count;
535 	int unused = dentry_stat.nr_unused;
536 	int prune_ratio;
537 	int pruned;
538 
539 	if (unused == 0 || count == 0)
540 		return;
541 	spin_lock(&dcache_lock);
542 restart:
543 	if (count >= unused)
544 		prune_ratio = 1;
545 	else
546 		prune_ratio = unused / count;
547 	spin_lock(&sb_lock);
548 	list_for_each_entry(sb, &super_blocks, s_list) {
549 		if (sb->s_nr_dentry_unused == 0)
550 			continue;
551 		sb->s_count++;
552 		/* Now, we reclaim unused dentrins with fairness.
553 		 * We reclaim them same percentage from each superblock.
554 		 * We calculate number of dentries to scan on this sb
555 		 * as follows, but the implementation is arranged to avoid
556 		 * overflows:
557 		 * number of dentries to scan on this sb =
558 		 * count * (number of dentries on this sb /
559 		 * number of dentries in the machine)
560 		 */
561 		spin_unlock(&sb_lock);
562 		if (prune_ratio != 1)
563 			w_count = (sb->s_nr_dentry_unused / prune_ratio) + 1;
564 		else
565 			w_count = sb->s_nr_dentry_unused;
566 		pruned = w_count;
567 		/*
568 		 * We need to be sure this filesystem isn't being unmounted,
569 		 * otherwise we could race with generic_shutdown_super(), and
570 		 * end up holding a reference to an inode while the filesystem
571 		 * is unmounted.  So we try to get s_umount, and make sure
572 		 * s_root isn't NULL.
573 		 */
574 		if (down_read_trylock(&sb->s_umount)) {
575 			if ((sb->s_root != NULL) &&
576 			    (!list_empty(&sb->s_dentry_lru))) {
577 				spin_unlock(&dcache_lock);
578 				__shrink_dcache_sb(sb, &w_count,
579 						DCACHE_REFERENCED);
580 				pruned -= w_count;
581 				spin_lock(&dcache_lock);
582 			}
583 			up_read(&sb->s_umount);
584 		}
585 		spin_lock(&sb_lock);
586 		count -= pruned;
587 		/*
588 		 * restart only when sb is no longer on the list and
589 		 * we have more work to do.
590 		 */
591 		if (__put_super_and_need_restart(sb) && count > 0) {
592 			spin_unlock(&sb_lock);
593 			goto restart;
594 		}
595 	}
596 	spin_unlock(&sb_lock);
597 	spin_unlock(&dcache_lock);
598 }
599 
600 /**
601  * shrink_dcache_sb - shrink dcache for a superblock
602  * @sb: superblock
603  *
604  * Shrink the dcache for the specified super block. This
605  * is used to free the dcache before unmounting a file
606  * system
607  */
608 void shrink_dcache_sb(struct super_block * sb)
609 {
610 	__shrink_dcache_sb(sb, NULL, 0);
611 }
612 
613 /*
614  * destroy a single subtree of dentries for unmount
615  * - see the comments on shrink_dcache_for_umount() for a description of the
616  *   locking
617  */
618 static void shrink_dcache_for_umount_subtree(struct dentry *dentry)
619 {
620 	struct dentry *parent;
621 	unsigned detached = 0;
622 
623 	BUG_ON(!IS_ROOT(dentry));
624 
625 	/* detach this root from the system */
626 	spin_lock(&dcache_lock);
627 	dentry_lru_del_init(dentry);
628 	__d_drop(dentry);
629 	spin_unlock(&dcache_lock);
630 
631 	for (;;) {
632 		/* descend to the first leaf in the current subtree */
633 		while (!list_empty(&dentry->d_subdirs)) {
634 			struct dentry *loop;
635 
636 			/* this is a branch with children - detach all of them
637 			 * from the system in one go */
638 			spin_lock(&dcache_lock);
639 			list_for_each_entry(loop, &dentry->d_subdirs,
640 					    d_u.d_child) {
641 				dentry_lru_del_init(loop);
642 				__d_drop(loop);
643 				cond_resched_lock(&dcache_lock);
644 			}
645 			spin_unlock(&dcache_lock);
646 
647 			/* move to the first child */
648 			dentry = list_entry(dentry->d_subdirs.next,
649 					    struct dentry, d_u.d_child);
650 		}
651 
652 		/* consume the dentries from this leaf up through its parents
653 		 * until we find one with children or run out altogether */
654 		do {
655 			struct inode *inode;
656 
657 			if (atomic_read(&dentry->d_count) != 0) {
658 				printk(KERN_ERR
659 				       "BUG: Dentry %p{i=%lx,n=%s}"
660 				       " still in use (%d)"
661 				       " [unmount of %s %s]\n",
662 				       dentry,
663 				       dentry->d_inode ?
664 				       dentry->d_inode->i_ino : 0UL,
665 				       dentry->d_name.name,
666 				       atomic_read(&dentry->d_count),
667 				       dentry->d_sb->s_type->name,
668 				       dentry->d_sb->s_id);
669 				BUG();
670 			}
671 
672 			if (IS_ROOT(dentry))
673 				parent = NULL;
674 			else {
675 				parent = dentry->d_parent;
676 				atomic_dec(&parent->d_count);
677 			}
678 
679 			list_del(&dentry->d_u.d_child);
680 			detached++;
681 
682 			inode = dentry->d_inode;
683 			if (inode) {
684 				dentry->d_inode = NULL;
685 				list_del_init(&dentry->d_alias);
686 				if (dentry->d_op && dentry->d_op->d_iput)
687 					dentry->d_op->d_iput(dentry, inode);
688 				else
689 					iput(inode);
690 			}
691 
692 			d_free(dentry);
693 
694 			/* finished when we fall off the top of the tree,
695 			 * otherwise we ascend to the parent and move to the
696 			 * next sibling if there is one */
697 			if (!parent)
698 				goto out;
699 
700 			dentry = parent;
701 
702 		} while (list_empty(&dentry->d_subdirs));
703 
704 		dentry = list_entry(dentry->d_subdirs.next,
705 				    struct dentry, d_u.d_child);
706 	}
707 out:
708 	/* several dentries were freed, need to correct nr_dentry */
709 	spin_lock(&dcache_lock);
710 	dentry_stat.nr_dentry -= detached;
711 	spin_unlock(&dcache_lock);
712 }
713 
714 /*
715  * destroy the dentries attached to a superblock on unmounting
716  * - we don't need to use dentry->d_lock, and only need dcache_lock when
717  *   removing the dentry from the system lists and hashes because:
718  *   - the superblock is detached from all mountings and open files, so the
719  *     dentry trees will not be rearranged by the VFS
720  *   - s_umount is write-locked, so the memory pressure shrinker will ignore
721  *     any dentries belonging to this superblock that it comes across
722  *   - the filesystem itself is no longer permitted to rearrange the dentries
723  *     in this superblock
724  */
725 void shrink_dcache_for_umount(struct super_block *sb)
726 {
727 	struct dentry *dentry;
728 
729 	if (down_read_trylock(&sb->s_umount))
730 		BUG();
731 
732 	dentry = sb->s_root;
733 	sb->s_root = NULL;
734 	atomic_dec(&dentry->d_count);
735 	shrink_dcache_for_umount_subtree(dentry);
736 
737 	while (!hlist_empty(&sb->s_anon)) {
738 		dentry = hlist_entry(sb->s_anon.first, struct dentry, d_hash);
739 		shrink_dcache_for_umount_subtree(dentry);
740 	}
741 }
742 
743 /*
744  * Search for at least 1 mount point in the dentry's subdirs.
745  * We descend to the next level whenever the d_subdirs
746  * list is non-empty and continue searching.
747  */
748 
749 /**
750  * have_submounts - check for mounts over a dentry
751  * @parent: dentry to check.
752  *
753  * Return true if the parent or its subdirectories contain
754  * a mount point
755  */
756 
757 int have_submounts(struct dentry *parent)
758 {
759 	struct dentry *this_parent = parent;
760 	struct list_head *next;
761 
762 	spin_lock(&dcache_lock);
763 	if (d_mountpoint(parent))
764 		goto positive;
765 repeat:
766 	next = this_parent->d_subdirs.next;
767 resume:
768 	while (next != &this_parent->d_subdirs) {
769 		struct list_head *tmp = next;
770 		struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
771 		next = tmp->next;
772 		/* Have we found a mount point ? */
773 		if (d_mountpoint(dentry))
774 			goto positive;
775 		if (!list_empty(&dentry->d_subdirs)) {
776 			this_parent = dentry;
777 			goto repeat;
778 		}
779 	}
780 	/*
781 	 * All done at this level ... ascend and resume the search.
782 	 */
783 	if (this_parent != parent) {
784 		next = this_parent->d_u.d_child.next;
785 		this_parent = this_parent->d_parent;
786 		goto resume;
787 	}
788 	spin_unlock(&dcache_lock);
789 	return 0; /* No mount points found in tree */
790 positive:
791 	spin_unlock(&dcache_lock);
792 	return 1;
793 }
794 
795 /*
796  * Search the dentry child list for the specified parent,
797  * and move any unused dentries to the end of the unused
798  * list for prune_dcache(). We descend to the next level
799  * whenever the d_subdirs list is non-empty and continue
800  * searching.
801  *
802  * It returns zero iff there are no unused children,
803  * otherwise  it returns the number of children moved to
804  * the end of the unused list. This may not be the total
805  * number of unused children, because select_parent can
806  * drop the lock and return early due to latency
807  * constraints.
808  */
809 static int select_parent(struct dentry * parent)
810 {
811 	struct dentry *this_parent = parent;
812 	struct list_head *next;
813 	int found = 0;
814 
815 	spin_lock(&dcache_lock);
816 repeat:
817 	next = this_parent->d_subdirs.next;
818 resume:
819 	while (next != &this_parent->d_subdirs) {
820 		struct list_head *tmp = next;
821 		struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
822 		next = tmp->next;
823 
824 		dentry_lru_del_init(dentry);
825 		/*
826 		 * move only zero ref count dentries to the end
827 		 * of the unused list for prune_dcache
828 		 */
829 		if (!atomic_read(&dentry->d_count)) {
830 			dentry_lru_add_tail(dentry);
831 			found++;
832 		}
833 
834 		/*
835 		 * We can return to the caller if we have found some (this
836 		 * ensures forward progress). We'll be coming back to find
837 		 * the rest.
838 		 */
839 		if (found && need_resched())
840 			goto out;
841 
842 		/*
843 		 * Descend a level if the d_subdirs list is non-empty.
844 		 */
845 		if (!list_empty(&dentry->d_subdirs)) {
846 			this_parent = dentry;
847 			goto repeat;
848 		}
849 	}
850 	/*
851 	 * All done at this level ... ascend and resume the search.
852 	 */
853 	if (this_parent != parent) {
854 		next = this_parent->d_u.d_child.next;
855 		this_parent = this_parent->d_parent;
856 		goto resume;
857 	}
858 out:
859 	spin_unlock(&dcache_lock);
860 	return found;
861 }
862 
863 /**
864  * shrink_dcache_parent - prune dcache
865  * @parent: parent of entries to prune
866  *
867  * Prune the dcache to remove unused children of the parent dentry.
868  */
869 
870 void shrink_dcache_parent(struct dentry * parent)
871 {
872 	struct super_block *sb = parent->d_sb;
873 	int found;
874 
875 	while ((found = select_parent(parent)) != 0)
876 		__shrink_dcache_sb(sb, &found, 0);
877 }
878 
879 /*
880  * Scan `nr' dentries and return the number which remain.
881  *
882  * We need to avoid reentering the filesystem if the caller is performing a
883  * GFP_NOFS allocation attempt.  One example deadlock is:
884  *
885  * ext2_new_block->getblk->GFP->shrink_dcache_memory->prune_dcache->
886  * prune_one_dentry->dput->dentry_iput->iput->inode->i_sb->s_op->put_inode->
887  * ext2_discard_prealloc->ext2_free_blocks->lock_super->DEADLOCK.
888  *
889  * In this case we return -1 to tell the caller that we baled.
890  */
891 static int shrink_dcache_memory(int nr, gfp_t gfp_mask)
892 {
893 	if (nr) {
894 		if (!(gfp_mask & __GFP_FS))
895 			return -1;
896 		prune_dcache(nr);
897 	}
898 	return (dentry_stat.nr_unused / 100) * sysctl_vfs_cache_pressure;
899 }
900 
901 static struct shrinker dcache_shrinker = {
902 	.shrink = shrink_dcache_memory,
903 	.seeks = DEFAULT_SEEKS,
904 };
905 
906 /**
907  * d_alloc	-	allocate a dcache entry
908  * @parent: parent of entry to allocate
909  * @name: qstr of the name
910  *
911  * Allocates a dentry. It returns %NULL if there is insufficient memory
912  * available. On a success the dentry is returned. The name passed in is
913  * copied and the copy passed in may be reused after this call.
914  */
915 
916 struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
917 {
918 	struct dentry *dentry;
919 	char *dname;
920 
921 	dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
922 	if (!dentry)
923 		return NULL;
924 
925 	if (name->len > DNAME_INLINE_LEN-1) {
926 		dname = kmalloc(name->len + 1, GFP_KERNEL);
927 		if (!dname) {
928 			kmem_cache_free(dentry_cache, dentry);
929 			return NULL;
930 		}
931 	} else  {
932 		dname = dentry->d_iname;
933 	}
934 	dentry->d_name.name = dname;
935 
936 	dentry->d_name.len = name->len;
937 	dentry->d_name.hash = name->hash;
938 	memcpy(dname, name->name, name->len);
939 	dname[name->len] = 0;
940 
941 	atomic_set(&dentry->d_count, 1);
942 	dentry->d_flags = DCACHE_UNHASHED;
943 	spin_lock_init(&dentry->d_lock);
944 	dentry->d_inode = NULL;
945 	dentry->d_parent = NULL;
946 	dentry->d_sb = NULL;
947 	dentry->d_op = NULL;
948 	dentry->d_fsdata = NULL;
949 	dentry->d_mounted = 0;
950 	INIT_HLIST_NODE(&dentry->d_hash);
951 	INIT_LIST_HEAD(&dentry->d_lru);
952 	INIT_LIST_HEAD(&dentry->d_subdirs);
953 	INIT_LIST_HEAD(&dentry->d_alias);
954 
955 	if (parent) {
956 		dentry->d_parent = dget(parent);
957 		dentry->d_sb = parent->d_sb;
958 	} else {
959 		INIT_LIST_HEAD(&dentry->d_u.d_child);
960 	}
961 
962 	spin_lock(&dcache_lock);
963 	if (parent)
964 		list_add(&dentry->d_u.d_child, &parent->d_subdirs);
965 	dentry_stat.nr_dentry++;
966 	spin_unlock(&dcache_lock);
967 
968 	return dentry;
969 }
970 
971 struct dentry *d_alloc_name(struct dentry *parent, const char *name)
972 {
973 	struct qstr q;
974 
975 	q.name = name;
976 	q.len = strlen(name);
977 	q.hash = full_name_hash(q.name, q.len);
978 	return d_alloc(parent, &q);
979 }
980 
981 /* the caller must hold dcache_lock */
982 static void __d_instantiate(struct dentry *dentry, struct inode *inode)
983 {
984 	if (inode)
985 		list_add(&dentry->d_alias, &inode->i_dentry);
986 	dentry->d_inode = inode;
987 	fsnotify_d_instantiate(dentry, inode);
988 }
989 
990 /**
991  * d_instantiate - fill in inode information for a dentry
992  * @entry: dentry to complete
993  * @inode: inode to attach to this dentry
994  *
995  * Fill in inode information in the entry.
996  *
997  * This turns negative dentries into productive full members
998  * of society.
999  *
1000  * NOTE! This assumes that the inode count has been incremented
1001  * (or otherwise set) by the caller to indicate that it is now
1002  * in use by the dcache.
1003  */
1004 
1005 void d_instantiate(struct dentry *entry, struct inode * inode)
1006 {
1007 	BUG_ON(!list_empty(&entry->d_alias));
1008 	spin_lock(&dcache_lock);
1009 	__d_instantiate(entry, inode);
1010 	spin_unlock(&dcache_lock);
1011 	security_d_instantiate(entry, inode);
1012 }
1013 
1014 /**
1015  * d_instantiate_unique - instantiate a non-aliased dentry
1016  * @entry: dentry to instantiate
1017  * @inode: inode to attach to this dentry
1018  *
1019  * Fill in inode information in the entry. On success, it returns NULL.
1020  * If an unhashed alias of "entry" already exists, then we return the
1021  * aliased dentry instead and drop one reference to inode.
1022  *
1023  * Note that in order to avoid conflicts with rename() etc, the caller
1024  * had better be holding the parent directory semaphore.
1025  *
1026  * This also assumes that the inode count has been incremented
1027  * (or otherwise set) by the caller to indicate that it is now
1028  * in use by the dcache.
1029  */
1030 static struct dentry *__d_instantiate_unique(struct dentry *entry,
1031 					     struct inode *inode)
1032 {
1033 	struct dentry *alias;
1034 	int len = entry->d_name.len;
1035 	const char *name = entry->d_name.name;
1036 	unsigned int hash = entry->d_name.hash;
1037 
1038 	if (!inode) {
1039 		__d_instantiate(entry, NULL);
1040 		return NULL;
1041 	}
1042 
1043 	list_for_each_entry(alias, &inode->i_dentry, d_alias) {
1044 		struct qstr *qstr = &alias->d_name;
1045 
1046 		if (qstr->hash != hash)
1047 			continue;
1048 		if (alias->d_parent != entry->d_parent)
1049 			continue;
1050 		if (qstr->len != len)
1051 			continue;
1052 		if (memcmp(qstr->name, name, len))
1053 			continue;
1054 		dget_locked(alias);
1055 		return alias;
1056 	}
1057 
1058 	__d_instantiate(entry, inode);
1059 	return NULL;
1060 }
1061 
1062 struct dentry *d_instantiate_unique(struct dentry *entry, struct inode *inode)
1063 {
1064 	struct dentry *result;
1065 
1066 	BUG_ON(!list_empty(&entry->d_alias));
1067 
1068 	spin_lock(&dcache_lock);
1069 	result = __d_instantiate_unique(entry, inode);
1070 	spin_unlock(&dcache_lock);
1071 
1072 	if (!result) {
1073 		security_d_instantiate(entry, inode);
1074 		return NULL;
1075 	}
1076 
1077 	BUG_ON(!d_unhashed(result));
1078 	iput(inode);
1079 	return result;
1080 }
1081 
1082 EXPORT_SYMBOL(d_instantiate_unique);
1083 
1084 /**
1085  * d_alloc_root - allocate root dentry
1086  * @root_inode: inode to allocate the root for
1087  *
1088  * Allocate a root ("/") dentry for the inode given. The inode is
1089  * instantiated and returned. %NULL is returned if there is insufficient
1090  * memory or the inode passed is %NULL.
1091  */
1092 
1093 struct dentry * d_alloc_root(struct inode * root_inode)
1094 {
1095 	struct dentry *res = NULL;
1096 
1097 	if (root_inode) {
1098 		static const struct qstr name = { .name = "/", .len = 1 };
1099 
1100 		res = d_alloc(NULL, &name);
1101 		if (res) {
1102 			res->d_sb = root_inode->i_sb;
1103 			res->d_parent = res;
1104 			d_instantiate(res, root_inode);
1105 		}
1106 	}
1107 	return res;
1108 }
1109 
1110 static inline struct hlist_head *d_hash(struct dentry *parent,
1111 					unsigned long hash)
1112 {
1113 	hash += ((unsigned long) parent ^ GOLDEN_RATIO_PRIME) / L1_CACHE_BYTES;
1114 	hash = hash ^ ((hash ^ GOLDEN_RATIO_PRIME) >> D_HASHBITS);
1115 	return dentry_hashtable + (hash & D_HASHMASK);
1116 }
1117 
1118 /**
1119  * d_obtain_alias - find or allocate a dentry for a given inode
1120  * @inode: inode to allocate the dentry for
1121  *
1122  * Obtain a dentry for an inode resulting from NFS filehandle conversion or
1123  * similar open by handle operations.  The returned dentry may be anonymous,
1124  * or may have a full name (if the inode was already in the cache).
1125  *
1126  * When called on a directory inode, we must ensure that the inode only ever
1127  * has one dentry.  If a dentry is found, that is returned instead of
1128  * allocating a new one.
1129  *
1130  * On successful return, the reference to the inode has been transferred
1131  * to the dentry.  In case of an error the reference on the inode is released.
1132  * To make it easier to use in export operations a %NULL or IS_ERR inode may
1133  * be passed in and will be the error will be propagate to the return value,
1134  * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
1135  */
1136 struct dentry *d_obtain_alias(struct inode *inode)
1137 {
1138 	static const struct qstr anonstring = { .name = "" };
1139 	struct dentry *tmp;
1140 	struct dentry *res;
1141 
1142 	if (!inode)
1143 		return ERR_PTR(-ESTALE);
1144 	if (IS_ERR(inode))
1145 		return ERR_CAST(inode);
1146 
1147 	res = d_find_alias(inode);
1148 	if (res)
1149 		goto out_iput;
1150 
1151 	tmp = d_alloc(NULL, &anonstring);
1152 	if (!tmp) {
1153 		res = ERR_PTR(-ENOMEM);
1154 		goto out_iput;
1155 	}
1156 	tmp->d_parent = tmp; /* make sure dput doesn't croak */
1157 
1158 	spin_lock(&dcache_lock);
1159 	res = __d_find_alias(inode, 0);
1160 	if (res) {
1161 		spin_unlock(&dcache_lock);
1162 		dput(tmp);
1163 		goto out_iput;
1164 	}
1165 
1166 	/* attach a disconnected dentry */
1167 	spin_lock(&tmp->d_lock);
1168 	tmp->d_sb = inode->i_sb;
1169 	tmp->d_inode = inode;
1170 	tmp->d_flags |= DCACHE_DISCONNECTED;
1171 	tmp->d_flags &= ~DCACHE_UNHASHED;
1172 	list_add(&tmp->d_alias, &inode->i_dentry);
1173 	hlist_add_head(&tmp->d_hash, &inode->i_sb->s_anon);
1174 	spin_unlock(&tmp->d_lock);
1175 
1176 	spin_unlock(&dcache_lock);
1177 	return tmp;
1178 
1179  out_iput:
1180 	iput(inode);
1181 	return res;
1182 }
1183 EXPORT_SYMBOL(d_obtain_alias);
1184 
1185 /**
1186  * d_splice_alias - splice a disconnected dentry into the tree if one exists
1187  * @inode:  the inode which may have a disconnected dentry
1188  * @dentry: a negative dentry which we want to point to the inode.
1189  *
1190  * If inode is a directory and has a 'disconnected' dentry (i.e. IS_ROOT and
1191  * DCACHE_DISCONNECTED), then d_move that in place of the given dentry
1192  * and return it, else simply d_add the inode to the dentry and return NULL.
1193  *
1194  * This is needed in the lookup routine of any filesystem that is exportable
1195  * (via knfsd) so that we can build dcache paths to directories effectively.
1196  *
1197  * If a dentry was found and moved, then it is returned.  Otherwise NULL
1198  * is returned.  This matches the expected return value of ->lookup.
1199  *
1200  */
1201 struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
1202 {
1203 	struct dentry *new = NULL;
1204 
1205 	if (inode && S_ISDIR(inode->i_mode)) {
1206 		spin_lock(&dcache_lock);
1207 		new = __d_find_alias(inode, 1);
1208 		if (new) {
1209 			BUG_ON(!(new->d_flags & DCACHE_DISCONNECTED));
1210 			spin_unlock(&dcache_lock);
1211 			security_d_instantiate(new, inode);
1212 			d_rehash(dentry);
1213 			d_move(new, dentry);
1214 			iput(inode);
1215 		} else {
1216 			/* already taking dcache_lock, so d_add() by hand */
1217 			__d_instantiate(dentry, inode);
1218 			spin_unlock(&dcache_lock);
1219 			security_d_instantiate(dentry, inode);
1220 			d_rehash(dentry);
1221 		}
1222 	} else
1223 		d_add(dentry, inode);
1224 	return new;
1225 }
1226 
1227 /**
1228  * d_add_ci - lookup or allocate new dentry with case-exact name
1229  * @inode:  the inode case-insensitive lookup has found
1230  * @dentry: the negative dentry that was passed to the parent's lookup func
1231  * @name:   the case-exact name to be associated with the returned dentry
1232  *
1233  * This is to avoid filling the dcache with case-insensitive names to the
1234  * same inode, only the actual correct case is stored in the dcache for
1235  * case-insensitive filesystems.
1236  *
1237  * For a case-insensitive lookup match and if the the case-exact dentry
1238  * already exists in in the dcache, use it and return it.
1239  *
1240  * If no entry exists with the exact case name, allocate new dentry with
1241  * the exact case, and return the spliced entry.
1242  */
1243 struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
1244 			struct qstr *name)
1245 {
1246 	int error;
1247 	struct dentry *found;
1248 	struct dentry *new;
1249 
1250 	/*
1251 	 * First check if a dentry matching the name already exists,
1252 	 * if not go ahead and create it now.
1253 	 */
1254 	found = d_hash_and_lookup(dentry->d_parent, name);
1255 	if (!found) {
1256 		new = d_alloc(dentry->d_parent, name);
1257 		if (!new) {
1258 			error = -ENOMEM;
1259 			goto err_out;
1260 		}
1261 
1262 		found = d_splice_alias(inode, new);
1263 		if (found) {
1264 			dput(new);
1265 			return found;
1266 		}
1267 		return new;
1268 	}
1269 
1270 	/*
1271 	 * If a matching dentry exists, and it's not negative use it.
1272 	 *
1273 	 * Decrement the reference count to balance the iget() done
1274 	 * earlier on.
1275 	 */
1276 	if (found->d_inode) {
1277 		if (unlikely(found->d_inode != inode)) {
1278 			/* This can't happen because bad inodes are unhashed. */
1279 			BUG_ON(!is_bad_inode(inode));
1280 			BUG_ON(!is_bad_inode(found->d_inode));
1281 		}
1282 		iput(inode);
1283 		return found;
1284 	}
1285 
1286 	/*
1287 	 * Negative dentry: instantiate it unless the inode is a directory and
1288 	 * already has a dentry.
1289 	 */
1290 	spin_lock(&dcache_lock);
1291 	if (!S_ISDIR(inode->i_mode) || list_empty(&inode->i_dentry)) {
1292 		__d_instantiate(found, inode);
1293 		spin_unlock(&dcache_lock);
1294 		security_d_instantiate(found, inode);
1295 		return found;
1296 	}
1297 
1298 	/*
1299 	 * In case a directory already has a (disconnected) entry grab a
1300 	 * reference to it, move it in place and use it.
1301 	 */
1302 	new = list_entry(inode->i_dentry.next, struct dentry, d_alias);
1303 	dget_locked(new);
1304 	spin_unlock(&dcache_lock);
1305 	security_d_instantiate(found, inode);
1306 	d_move(new, found);
1307 	iput(inode);
1308 	dput(found);
1309 	return new;
1310 
1311 err_out:
1312 	iput(inode);
1313 	return ERR_PTR(error);
1314 }
1315 
1316 /**
1317  * d_lookup - search for a dentry
1318  * @parent: parent dentry
1319  * @name: qstr of name we wish to find
1320  *
1321  * Searches the children of the parent dentry for the name in question. If
1322  * the dentry is found its reference count is incremented and the dentry
1323  * is returned. The caller must use dput to free the entry when it has
1324  * finished using it. %NULL is returned on failure.
1325  *
1326  * __d_lookup is dcache_lock free. The hash list is protected using RCU.
1327  * Memory barriers are used while updating and doing lockless traversal.
1328  * To avoid races with d_move while rename is happening, d_lock is used.
1329  *
1330  * Overflows in memcmp(), while d_move, are avoided by keeping the length
1331  * and name pointer in one structure pointed by d_qstr.
1332  *
1333  * rcu_read_lock() and rcu_read_unlock() are used to disable preemption while
1334  * lookup is going on.
1335  *
1336  * The dentry unused LRU is not updated even if lookup finds the required dentry
1337  * in there. It is updated in places such as prune_dcache, shrink_dcache_sb,
1338  * select_parent and __dget_locked. This laziness saves lookup from dcache_lock
1339  * acquisition.
1340  *
1341  * d_lookup() is protected against the concurrent renames in some unrelated
1342  * directory using the seqlockt_t rename_lock.
1343  */
1344 
1345 struct dentry * d_lookup(struct dentry * parent, struct qstr * name)
1346 {
1347 	struct dentry * dentry = NULL;
1348 	unsigned long seq;
1349 
1350         do {
1351                 seq = read_seqbegin(&rename_lock);
1352                 dentry = __d_lookup(parent, name);
1353                 if (dentry)
1354 			break;
1355 	} while (read_seqretry(&rename_lock, seq));
1356 	return dentry;
1357 }
1358 
1359 struct dentry * __d_lookup(struct dentry * parent, struct qstr * name)
1360 {
1361 	unsigned int len = name->len;
1362 	unsigned int hash = name->hash;
1363 	const unsigned char *str = name->name;
1364 	struct hlist_head *head = d_hash(parent,hash);
1365 	struct dentry *found = NULL;
1366 	struct hlist_node *node;
1367 	struct dentry *dentry;
1368 
1369 	rcu_read_lock();
1370 
1371 	hlist_for_each_entry_rcu(dentry, node, head, d_hash) {
1372 		struct qstr *qstr;
1373 
1374 		if (dentry->d_name.hash != hash)
1375 			continue;
1376 		if (dentry->d_parent != parent)
1377 			continue;
1378 
1379 		spin_lock(&dentry->d_lock);
1380 
1381 		/*
1382 		 * Recheck the dentry after taking the lock - d_move may have
1383 		 * changed things.  Don't bother checking the hash because we're
1384 		 * about to compare the whole name anyway.
1385 		 */
1386 		if (dentry->d_parent != parent)
1387 			goto next;
1388 
1389 		/* non-existing due to RCU? */
1390 		if (d_unhashed(dentry))
1391 			goto next;
1392 
1393 		/*
1394 		 * It is safe to compare names since d_move() cannot
1395 		 * change the qstr (protected by d_lock).
1396 		 */
1397 		qstr = &dentry->d_name;
1398 		if (parent->d_op && parent->d_op->d_compare) {
1399 			if (parent->d_op->d_compare(parent, qstr, name))
1400 				goto next;
1401 		} else {
1402 			if (qstr->len != len)
1403 				goto next;
1404 			if (memcmp(qstr->name, str, len))
1405 				goto next;
1406 		}
1407 
1408 		atomic_inc(&dentry->d_count);
1409 		found = dentry;
1410 		spin_unlock(&dentry->d_lock);
1411 		break;
1412 next:
1413 		spin_unlock(&dentry->d_lock);
1414  	}
1415  	rcu_read_unlock();
1416 
1417  	return found;
1418 }
1419 
1420 /**
1421  * d_hash_and_lookup - hash the qstr then search for a dentry
1422  * @dir: Directory to search in
1423  * @name: qstr of name we wish to find
1424  *
1425  * On hash failure or on lookup failure NULL is returned.
1426  */
1427 struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
1428 {
1429 	struct dentry *dentry = NULL;
1430 
1431 	/*
1432 	 * Check for a fs-specific hash function. Note that we must
1433 	 * calculate the standard hash first, as the d_op->d_hash()
1434 	 * routine may choose to leave the hash value unchanged.
1435 	 */
1436 	name->hash = full_name_hash(name->name, name->len);
1437 	if (dir->d_op && dir->d_op->d_hash) {
1438 		if (dir->d_op->d_hash(dir, name) < 0)
1439 			goto out;
1440 	}
1441 	dentry = d_lookup(dir, name);
1442 out:
1443 	return dentry;
1444 }
1445 
1446 /**
1447  * d_validate - verify dentry provided from insecure source
1448  * @dentry: The dentry alleged to be valid child of @dparent
1449  * @dparent: The parent dentry (known to be valid)
1450  *
1451  * An insecure source has sent us a dentry, here we verify it and dget() it.
1452  * This is used by ncpfs in its readdir implementation.
1453  * Zero is returned in the dentry is invalid.
1454  */
1455 
1456 int d_validate(struct dentry *dentry, struct dentry *dparent)
1457 {
1458 	struct hlist_head *base;
1459 	struct hlist_node *lhp;
1460 
1461 	/* Check whether the ptr might be valid at all.. */
1462 	if (!kmem_ptr_validate(dentry_cache, dentry))
1463 		goto out;
1464 
1465 	if (dentry->d_parent != dparent)
1466 		goto out;
1467 
1468 	spin_lock(&dcache_lock);
1469 	base = d_hash(dparent, dentry->d_name.hash);
1470 	hlist_for_each(lhp,base) {
1471 		/* hlist_for_each_entry_rcu() not required for d_hash list
1472 		 * as it is parsed under dcache_lock
1473 		 */
1474 		if (dentry == hlist_entry(lhp, struct dentry, d_hash)) {
1475 			__dget_locked(dentry);
1476 			spin_unlock(&dcache_lock);
1477 			return 1;
1478 		}
1479 	}
1480 	spin_unlock(&dcache_lock);
1481 out:
1482 	return 0;
1483 }
1484 
1485 /*
1486  * When a file is deleted, we have two options:
1487  * - turn this dentry into a negative dentry
1488  * - unhash this dentry and free it.
1489  *
1490  * Usually, we want to just turn this into
1491  * a negative dentry, but if anybody else is
1492  * currently using the dentry or the inode
1493  * we can't do that and we fall back on removing
1494  * it from the hash queues and waiting for
1495  * it to be deleted later when it has no users
1496  */
1497 
1498 /**
1499  * d_delete - delete a dentry
1500  * @dentry: The dentry to delete
1501  *
1502  * Turn the dentry into a negative dentry if possible, otherwise
1503  * remove it from the hash queues so it can be deleted later
1504  */
1505 
1506 void d_delete(struct dentry * dentry)
1507 {
1508 	int isdir = 0;
1509 	/*
1510 	 * Are we the only user?
1511 	 */
1512 	spin_lock(&dcache_lock);
1513 	spin_lock(&dentry->d_lock);
1514 	isdir = S_ISDIR(dentry->d_inode->i_mode);
1515 	if (atomic_read(&dentry->d_count) == 1) {
1516 		dentry_iput(dentry);
1517 		fsnotify_nameremove(dentry, isdir);
1518 		return;
1519 	}
1520 
1521 	if (!d_unhashed(dentry))
1522 		__d_drop(dentry);
1523 
1524 	spin_unlock(&dentry->d_lock);
1525 	spin_unlock(&dcache_lock);
1526 
1527 	fsnotify_nameremove(dentry, isdir);
1528 }
1529 
1530 static void __d_rehash(struct dentry * entry, struct hlist_head *list)
1531 {
1532 
1533  	entry->d_flags &= ~DCACHE_UNHASHED;
1534  	hlist_add_head_rcu(&entry->d_hash, list);
1535 }
1536 
1537 static void _d_rehash(struct dentry * entry)
1538 {
1539 	__d_rehash(entry, d_hash(entry->d_parent, entry->d_name.hash));
1540 }
1541 
1542 /**
1543  * d_rehash	- add an entry back to the hash
1544  * @entry: dentry to add to the hash
1545  *
1546  * Adds a dentry to the hash according to its name.
1547  */
1548 
1549 void d_rehash(struct dentry * entry)
1550 {
1551 	spin_lock(&dcache_lock);
1552 	spin_lock(&entry->d_lock);
1553 	_d_rehash(entry);
1554 	spin_unlock(&entry->d_lock);
1555 	spin_unlock(&dcache_lock);
1556 }
1557 
1558 /*
1559  * When switching names, the actual string doesn't strictly have to
1560  * be preserved in the target - because we're dropping the target
1561  * anyway. As such, we can just do a simple memcpy() to copy over
1562  * the new name before we switch.
1563  *
1564  * Note that we have to be a lot more careful about getting the hash
1565  * switched - we have to switch the hash value properly even if it
1566  * then no longer matches the actual (corrupted) string of the target.
1567  * The hash value has to match the hash queue that the dentry is on..
1568  */
1569 static void switch_names(struct dentry *dentry, struct dentry *target)
1570 {
1571 	if (dname_external(target)) {
1572 		if (dname_external(dentry)) {
1573 			/*
1574 			 * Both external: swap the pointers
1575 			 */
1576 			swap(target->d_name.name, dentry->d_name.name);
1577 		} else {
1578 			/*
1579 			 * dentry:internal, target:external.  Steal target's
1580 			 * storage and make target internal.
1581 			 */
1582 			memcpy(target->d_iname, dentry->d_name.name,
1583 					dentry->d_name.len + 1);
1584 			dentry->d_name.name = target->d_name.name;
1585 			target->d_name.name = target->d_iname;
1586 		}
1587 	} else {
1588 		if (dname_external(dentry)) {
1589 			/*
1590 			 * dentry:external, target:internal.  Give dentry's
1591 			 * storage to target and make dentry internal
1592 			 */
1593 			memcpy(dentry->d_iname, target->d_name.name,
1594 					target->d_name.len + 1);
1595 			target->d_name.name = dentry->d_name.name;
1596 			dentry->d_name.name = dentry->d_iname;
1597 		} else {
1598 			/*
1599 			 * Both are internal.  Just copy target to dentry
1600 			 */
1601 			memcpy(dentry->d_iname, target->d_name.name,
1602 					target->d_name.len + 1);
1603 			dentry->d_name.len = target->d_name.len;
1604 			return;
1605 		}
1606 	}
1607 	swap(dentry->d_name.len, target->d_name.len);
1608 }
1609 
1610 /*
1611  * We cannibalize "target" when moving dentry on top of it,
1612  * because it's going to be thrown away anyway. We could be more
1613  * polite about it, though.
1614  *
1615  * This forceful removal will result in ugly /proc output if
1616  * somebody holds a file open that got deleted due to a rename.
1617  * We could be nicer about the deleted file, and let it show
1618  * up under the name it had before it was deleted rather than
1619  * under the original name of the file that was moved on top of it.
1620  */
1621 
1622 /*
1623  * d_move_locked - move a dentry
1624  * @dentry: entry to move
1625  * @target: new dentry
1626  *
1627  * Update the dcache to reflect the move of a file name. Negative
1628  * dcache entries should not be moved in this way.
1629  */
1630 static void d_move_locked(struct dentry * dentry, struct dentry * target)
1631 {
1632 	struct hlist_head *list;
1633 
1634 	if (!dentry->d_inode)
1635 		printk(KERN_WARNING "VFS: moving negative dcache entry\n");
1636 
1637 	write_seqlock(&rename_lock);
1638 	/*
1639 	 * XXXX: do we really need to take target->d_lock?
1640 	 */
1641 	if (target < dentry) {
1642 		spin_lock(&target->d_lock);
1643 		spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1644 	} else {
1645 		spin_lock(&dentry->d_lock);
1646 		spin_lock_nested(&target->d_lock, DENTRY_D_LOCK_NESTED);
1647 	}
1648 
1649 	/* Move the dentry to the target hash queue, if on different bucket */
1650 	if (d_unhashed(dentry))
1651 		goto already_unhashed;
1652 
1653 	hlist_del_rcu(&dentry->d_hash);
1654 
1655 already_unhashed:
1656 	list = d_hash(target->d_parent, target->d_name.hash);
1657 	__d_rehash(dentry, list);
1658 
1659 	/* Unhash the target: dput() will then get rid of it */
1660 	__d_drop(target);
1661 
1662 	list_del(&dentry->d_u.d_child);
1663 	list_del(&target->d_u.d_child);
1664 
1665 	/* Switch the names.. */
1666 	switch_names(dentry, target);
1667 	swap(dentry->d_name.hash, target->d_name.hash);
1668 
1669 	/* ... and switch the parents */
1670 	if (IS_ROOT(dentry)) {
1671 		dentry->d_parent = target->d_parent;
1672 		target->d_parent = target;
1673 		INIT_LIST_HEAD(&target->d_u.d_child);
1674 	} else {
1675 		swap(dentry->d_parent, target->d_parent);
1676 
1677 		/* And add them back to the (new) parent lists */
1678 		list_add(&target->d_u.d_child, &target->d_parent->d_subdirs);
1679 	}
1680 
1681 	list_add(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs);
1682 	spin_unlock(&target->d_lock);
1683 	fsnotify_d_move(dentry);
1684 	spin_unlock(&dentry->d_lock);
1685 	write_sequnlock(&rename_lock);
1686 }
1687 
1688 /**
1689  * d_move - move a dentry
1690  * @dentry: entry to move
1691  * @target: new dentry
1692  *
1693  * Update the dcache to reflect the move of a file name. Negative
1694  * dcache entries should not be moved in this way.
1695  */
1696 
1697 void d_move(struct dentry * dentry, struct dentry * target)
1698 {
1699 	spin_lock(&dcache_lock);
1700 	d_move_locked(dentry, target);
1701 	spin_unlock(&dcache_lock);
1702 }
1703 
1704 /**
1705  * d_ancestor - search for an ancestor
1706  * @p1: ancestor dentry
1707  * @p2: child dentry
1708  *
1709  * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
1710  * an ancestor of p2, else NULL.
1711  */
1712 struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
1713 {
1714 	struct dentry *p;
1715 
1716 	for (p = p2; !IS_ROOT(p); p = p->d_parent) {
1717 		if (p->d_parent == p1)
1718 			return p;
1719 	}
1720 	return NULL;
1721 }
1722 
1723 /*
1724  * This helper attempts to cope with remotely renamed directories
1725  *
1726  * It assumes that the caller is already holding
1727  * dentry->d_parent->d_inode->i_mutex and the dcache_lock
1728  *
1729  * Note: If ever the locking in lock_rename() changes, then please
1730  * remember to update this too...
1731  */
1732 static struct dentry *__d_unalias(struct dentry *dentry, struct dentry *alias)
1733 	__releases(dcache_lock)
1734 {
1735 	struct mutex *m1 = NULL, *m2 = NULL;
1736 	struct dentry *ret;
1737 
1738 	/* If alias and dentry share a parent, then no extra locks required */
1739 	if (alias->d_parent == dentry->d_parent)
1740 		goto out_unalias;
1741 
1742 	/* Check for loops */
1743 	ret = ERR_PTR(-ELOOP);
1744 	if (d_ancestor(alias, dentry))
1745 		goto out_err;
1746 
1747 	/* See lock_rename() */
1748 	ret = ERR_PTR(-EBUSY);
1749 	if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
1750 		goto out_err;
1751 	m1 = &dentry->d_sb->s_vfs_rename_mutex;
1752 	if (!mutex_trylock(&alias->d_parent->d_inode->i_mutex))
1753 		goto out_err;
1754 	m2 = &alias->d_parent->d_inode->i_mutex;
1755 out_unalias:
1756 	d_move_locked(alias, dentry);
1757 	ret = alias;
1758 out_err:
1759 	spin_unlock(&dcache_lock);
1760 	if (m2)
1761 		mutex_unlock(m2);
1762 	if (m1)
1763 		mutex_unlock(m1);
1764 	return ret;
1765 }
1766 
1767 /*
1768  * Prepare an anonymous dentry for life in the superblock's dentry tree as a
1769  * named dentry in place of the dentry to be replaced.
1770  */
1771 static void __d_materialise_dentry(struct dentry *dentry, struct dentry *anon)
1772 {
1773 	struct dentry *dparent, *aparent;
1774 
1775 	switch_names(dentry, anon);
1776 	swap(dentry->d_name.hash, anon->d_name.hash);
1777 
1778 	dparent = dentry->d_parent;
1779 	aparent = anon->d_parent;
1780 
1781 	dentry->d_parent = (aparent == anon) ? dentry : aparent;
1782 	list_del(&dentry->d_u.d_child);
1783 	if (!IS_ROOT(dentry))
1784 		list_add(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs);
1785 	else
1786 		INIT_LIST_HEAD(&dentry->d_u.d_child);
1787 
1788 	anon->d_parent = (dparent == dentry) ? anon : dparent;
1789 	list_del(&anon->d_u.d_child);
1790 	if (!IS_ROOT(anon))
1791 		list_add(&anon->d_u.d_child, &anon->d_parent->d_subdirs);
1792 	else
1793 		INIT_LIST_HEAD(&anon->d_u.d_child);
1794 
1795 	anon->d_flags &= ~DCACHE_DISCONNECTED;
1796 }
1797 
1798 /**
1799  * d_materialise_unique - introduce an inode into the tree
1800  * @dentry: candidate dentry
1801  * @inode: inode to bind to the dentry, to which aliases may be attached
1802  *
1803  * Introduces an dentry into the tree, substituting an extant disconnected
1804  * root directory alias in its place if there is one
1805  */
1806 struct dentry *d_materialise_unique(struct dentry *dentry, struct inode *inode)
1807 {
1808 	struct dentry *actual;
1809 
1810 	BUG_ON(!d_unhashed(dentry));
1811 
1812 	spin_lock(&dcache_lock);
1813 
1814 	if (!inode) {
1815 		actual = dentry;
1816 		__d_instantiate(dentry, NULL);
1817 		goto found_lock;
1818 	}
1819 
1820 	if (S_ISDIR(inode->i_mode)) {
1821 		struct dentry *alias;
1822 
1823 		/* Does an aliased dentry already exist? */
1824 		alias = __d_find_alias(inode, 0);
1825 		if (alias) {
1826 			actual = alias;
1827 			/* Is this an anonymous mountpoint that we could splice
1828 			 * into our tree? */
1829 			if (IS_ROOT(alias)) {
1830 				spin_lock(&alias->d_lock);
1831 				__d_materialise_dentry(dentry, alias);
1832 				__d_drop(alias);
1833 				goto found;
1834 			}
1835 			/* Nope, but we must(!) avoid directory aliasing */
1836 			actual = __d_unalias(dentry, alias);
1837 			if (IS_ERR(actual))
1838 				dput(alias);
1839 			goto out_nolock;
1840 		}
1841 	}
1842 
1843 	/* Add a unique reference */
1844 	actual = __d_instantiate_unique(dentry, inode);
1845 	if (!actual)
1846 		actual = dentry;
1847 	else if (unlikely(!d_unhashed(actual)))
1848 		goto shouldnt_be_hashed;
1849 
1850 found_lock:
1851 	spin_lock(&actual->d_lock);
1852 found:
1853 	_d_rehash(actual);
1854 	spin_unlock(&actual->d_lock);
1855 	spin_unlock(&dcache_lock);
1856 out_nolock:
1857 	if (actual == dentry) {
1858 		security_d_instantiate(dentry, inode);
1859 		return NULL;
1860 	}
1861 
1862 	iput(inode);
1863 	return actual;
1864 
1865 shouldnt_be_hashed:
1866 	spin_unlock(&dcache_lock);
1867 	BUG();
1868 }
1869 
1870 static int prepend(char **buffer, int *buflen, const char *str, int namelen)
1871 {
1872 	*buflen -= namelen;
1873 	if (*buflen < 0)
1874 		return -ENAMETOOLONG;
1875 	*buffer -= namelen;
1876 	memcpy(*buffer, str, namelen);
1877 	return 0;
1878 }
1879 
1880 static int prepend_name(char **buffer, int *buflen, struct qstr *name)
1881 {
1882 	return prepend(buffer, buflen, name->name, name->len);
1883 }
1884 
1885 /**
1886  * __d_path - return the path of a dentry
1887  * @path: the dentry/vfsmount to report
1888  * @root: root vfsmnt/dentry (may be modified by this function)
1889  * @buffer: buffer to return value in
1890  * @buflen: buffer length
1891  *
1892  * Convert a dentry into an ASCII path name. If the entry has been deleted
1893  * the string " (deleted)" is appended. Note that this is ambiguous.
1894  *
1895  * Returns a pointer into the buffer or an error code if the
1896  * path was too long.
1897  *
1898  * "buflen" should be positive. Caller holds the dcache_lock.
1899  *
1900  * If path is not reachable from the supplied root, then the value of
1901  * root is changed (without modifying refcounts).
1902  */
1903 char *__d_path(const struct path *path, struct path *root,
1904 	       char *buffer, int buflen)
1905 {
1906 	struct dentry *dentry = path->dentry;
1907 	struct vfsmount *vfsmnt = path->mnt;
1908 	char *end = buffer + buflen;
1909 	char *retval;
1910 
1911 	spin_lock(&vfsmount_lock);
1912 	prepend(&end, &buflen, "\0", 1);
1913 	if (d_unlinked(dentry) &&
1914 		(prepend(&end, &buflen, " (deleted)", 10) != 0))
1915 			goto Elong;
1916 
1917 	if (buflen < 1)
1918 		goto Elong;
1919 	/* Get '/' right */
1920 	retval = end-1;
1921 	*retval = '/';
1922 
1923 	for (;;) {
1924 		struct dentry * parent;
1925 
1926 		if (dentry == root->dentry && vfsmnt == root->mnt)
1927 			break;
1928 		if (dentry == vfsmnt->mnt_root || IS_ROOT(dentry)) {
1929 			/* Global root? */
1930 			if (vfsmnt->mnt_parent == vfsmnt) {
1931 				goto global_root;
1932 			}
1933 			dentry = vfsmnt->mnt_mountpoint;
1934 			vfsmnt = vfsmnt->mnt_parent;
1935 			continue;
1936 		}
1937 		parent = dentry->d_parent;
1938 		prefetch(parent);
1939 		if ((prepend_name(&end, &buflen, &dentry->d_name) != 0) ||
1940 		    (prepend(&end, &buflen, "/", 1) != 0))
1941 			goto Elong;
1942 		retval = end;
1943 		dentry = parent;
1944 	}
1945 
1946 out:
1947 	spin_unlock(&vfsmount_lock);
1948 	return retval;
1949 
1950 global_root:
1951 	retval += 1;	/* hit the slash */
1952 	if (prepend_name(&retval, &buflen, &dentry->d_name) != 0)
1953 		goto Elong;
1954 	root->mnt = vfsmnt;
1955 	root->dentry = dentry;
1956 	goto out;
1957 
1958 Elong:
1959 	retval = ERR_PTR(-ENAMETOOLONG);
1960 	goto out;
1961 }
1962 
1963 /**
1964  * d_path - return the path of a dentry
1965  * @path: path to report
1966  * @buf: buffer to return value in
1967  * @buflen: buffer length
1968  *
1969  * Convert a dentry into an ASCII path name. If the entry has been deleted
1970  * the string " (deleted)" is appended. Note that this is ambiguous.
1971  *
1972  * Returns a pointer into the buffer or an error code if the path was
1973  * too long. Note: Callers should use the returned pointer, not the passed
1974  * in buffer, to use the name! The implementation often starts at an offset
1975  * into the buffer, and may leave 0 bytes at the start.
1976  *
1977  * "buflen" should be positive.
1978  */
1979 char *d_path(const struct path *path, char *buf, int buflen)
1980 {
1981 	char *res;
1982 	struct path root;
1983 	struct path tmp;
1984 
1985 	/*
1986 	 * We have various synthetic filesystems that never get mounted.  On
1987 	 * these filesystems dentries are never used for lookup purposes, and
1988 	 * thus don't need to be hashed.  They also don't need a name until a
1989 	 * user wants to identify the object in /proc/pid/fd/.  The little hack
1990 	 * below allows us to generate a name for these objects on demand:
1991 	 */
1992 	if (path->dentry->d_op && path->dentry->d_op->d_dname)
1993 		return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
1994 
1995 	read_lock(&current->fs->lock);
1996 	root = current->fs->root;
1997 	path_get(&root);
1998 	read_unlock(&current->fs->lock);
1999 	spin_lock(&dcache_lock);
2000 	tmp = root;
2001 	res = __d_path(path, &tmp, buf, buflen);
2002 	spin_unlock(&dcache_lock);
2003 	path_put(&root);
2004 	return res;
2005 }
2006 
2007 /*
2008  * Helper function for dentry_operations.d_dname() members
2009  */
2010 char *dynamic_dname(struct dentry *dentry, char *buffer, int buflen,
2011 			const char *fmt, ...)
2012 {
2013 	va_list args;
2014 	char temp[64];
2015 	int sz;
2016 
2017 	va_start(args, fmt);
2018 	sz = vsnprintf(temp, sizeof(temp), fmt, args) + 1;
2019 	va_end(args);
2020 
2021 	if (sz > sizeof(temp) || sz > buflen)
2022 		return ERR_PTR(-ENAMETOOLONG);
2023 
2024 	buffer += buflen - sz;
2025 	return memcpy(buffer, temp, sz);
2026 }
2027 
2028 /*
2029  * Write full pathname from the root of the filesystem into the buffer.
2030  */
2031 char *dentry_path(struct dentry *dentry, char *buf, int buflen)
2032 {
2033 	char *end = buf + buflen;
2034 	char *retval;
2035 
2036 	spin_lock(&dcache_lock);
2037 	prepend(&end, &buflen, "\0", 1);
2038 	if (d_unlinked(dentry) &&
2039 		(prepend(&end, &buflen, "//deleted", 9) != 0))
2040 			goto Elong;
2041 	if (buflen < 1)
2042 		goto Elong;
2043 	/* Get '/' right */
2044 	retval = end-1;
2045 	*retval = '/';
2046 
2047 	while (!IS_ROOT(dentry)) {
2048 		struct dentry *parent = dentry->d_parent;
2049 
2050 		prefetch(parent);
2051 		if ((prepend_name(&end, &buflen, &dentry->d_name) != 0) ||
2052 		    (prepend(&end, &buflen, "/", 1) != 0))
2053 			goto Elong;
2054 
2055 		retval = end;
2056 		dentry = parent;
2057 	}
2058 	spin_unlock(&dcache_lock);
2059 	return retval;
2060 Elong:
2061 	spin_unlock(&dcache_lock);
2062 	return ERR_PTR(-ENAMETOOLONG);
2063 }
2064 
2065 /*
2066  * NOTE! The user-level library version returns a
2067  * character pointer. The kernel system call just
2068  * returns the length of the buffer filled (which
2069  * includes the ending '\0' character), or a negative
2070  * error value. So libc would do something like
2071  *
2072  *	char *getcwd(char * buf, size_t size)
2073  *	{
2074  *		int retval;
2075  *
2076  *		retval = sys_getcwd(buf, size);
2077  *		if (retval >= 0)
2078  *			return buf;
2079  *		errno = -retval;
2080  *		return NULL;
2081  *	}
2082  */
2083 SYSCALL_DEFINE2(getcwd, char __user *, buf, unsigned long, size)
2084 {
2085 	int error;
2086 	struct path pwd, root;
2087 	char *page = (char *) __get_free_page(GFP_USER);
2088 
2089 	if (!page)
2090 		return -ENOMEM;
2091 
2092 	read_lock(&current->fs->lock);
2093 	pwd = current->fs->pwd;
2094 	path_get(&pwd);
2095 	root = current->fs->root;
2096 	path_get(&root);
2097 	read_unlock(&current->fs->lock);
2098 
2099 	error = -ENOENT;
2100 	spin_lock(&dcache_lock);
2101 	if (!d_unlinked(pwd.dentry)) {
2102 		unsigned long len;
2103 		struct path tmp = root;
2104 		char * cwd;
2105 
2106 		cwd = __d_path(&pwd, &tmp, page, PAGE_SIZE);
2107 		spin_unlock(&dcache_lock);
2108 
2109 		error = PTR_ERR(cwd);
2110 		if (IS_ERR(cwd))
2111 			goto out;
2112 
2113 		error = -ERANGE;
2114 		len = PAGE_SIZE + page - cwd;
2115 		if (len <= size) {
2116 			error = len;
2117 			if (copy_to_user(buf, cwd, len))
2118 				error = -EFAULT;
2119 		}
2120 	} else
2121 		spin_unlock(&dcache_lock);
2122 
2123 out:
2124 	path_put(&pwd);
2125 	path_put(&root);
2126 	free_page((unsigned long) page);
2127 	return error;
2128 }
2129 
2130 /*
2131  * Test whether new_dentry is a subdirectory of old_dentry.
2132  *
2133  * Trivially implemented using the dcache structure
2134  */
2135 
2136 /**
2137  * is_subdir - is new dentry a subdirectory of old_dentry
2138  * @new_dentry: new dentry
2139  * @old_dentry: old dentry
2140  *
2141  * Returns 1 if new_dentry is a subdirectory of the parent (at any depth).
2142  * Returns 0 otherwise.
2143  * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
2144  */
2145 
2146 int is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
2147 {
2148 	int result;
2149 	unsigned long seq;
2150 
2151 	if (new_dentry == old_dentry)
2152 		return 1;
2153 
2154 	/*
2155 	 * Need rcu_readlock to protect against the d_parent trashing
2156 	 * due to d_move
2157 	 */
2158 	rcu_read_lock();
2159 	do {
2160 		/* for restarting inner loop in case of seq retry */
2161 		seq = read_seqbegin(&rename_lock);
2162 		if (d_ancestor(old_dentry, new_dentry))
2163 			result = 1;
2164 		else
2165 			result = 0;
2166 	} while (read_seqretry(&rename_lock, seq));
2167 	rcu_read_unlock();
2168 
2169 	return result;
2170 }
2171 
2172 void d_genocide(struct dentry *root)
2173 {
2174 	struct dentry *this_parent = root;
2175 	struct list_head *next;
2176 
2177 	spin_lock(&dcache_lock);
2178 repeat:
2179 	next = this_parent->d_subdirs.next;
2180 resume:
2181 	while (next != &this_parent->d_subdirs) {
2182 		struct list_head *tmp = next;
2183 		struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
2184 		next = tmp->next;
2185 		if (d_unhashed(dentry)||!dentry->d_inode)
2186 			continue;
2187 		if (!list_empty(&dentry->d_subdirs)) {
2188 			this_parent = dentry;
2189 			goto repeat;
2190 		}
2191 		atomic_dec(&dentry->d_count);
2192 	}
2193 	if (this_parent != root) {
2194 		next = this_parent->d_u.d_child.next;
2195 		atomic_dec(&this_parent->d_count);
2196 		this_parent = this_parent->d_parent;
2197 		goto resume;
2198 	}
2199 	spin_unlock(&dcache_lock);
2200 }
2201 
2202 /**
2203  * find_inode_number - check for dentry with name
2204  * @dir: directory to check
2205  * @name: Name to find.
2206  *
2207  * Check whether a dentry already exists for the given name,
2208  * and return the inode number if it has an inode. Otherwise
2209  * 0 is returned.
2210  *
2211  * This routine is used to post-process directory listings for
2212  * filesystems using synthetic inode numbers, and is necessary
2213  * to keep getcwd() working.
2214  */
2215 
2216 ino_t find_inode_number(struct dentry *dir, struct qstr *name)
2217 {
2218 	struct dentry * dentry;
2219 	ino_t ino = 0;
2220 
2221 	dentry = d_hash_and_lookup(dir, name);
2222 	if (dentry) {
2223 		if (dentry->d_inode)
2224 			ino = dentry->d_inode->i_ino;
2225 		dput(dentry);
2226 	}
2227 	return ino;
2228 }
2229 
2230 static __initdata unsigned long dhash_entries;
2231 static int __init set_dhash_entries(char *str)
2232 {
2233 	if (!str)
2234 		return 0;
2235 	dhash_entries = simple_strtoul(str, &str, 0);
2236 	return 1;
2237 }
2238 __setup("dhash_entries=", set_dhash_entries);
2239 
2240 static void __init dcache_init_early(void)
2241 {
2242 	int loop;
2243 
2244 	/* If hashes are distributed across NUMA nodes, defer
2245 	 * hash allocation until vmalloc space is available.
2246 	 */
2247 	if (hashdist)
2248 		return;
2249 
2250 	dentry_hashtable =
2251 		alloc_large_system_hash("Dentry cache",
2252 					sizeof(struct hlist_head),
2253 					dhash_entries,
2254 					13,
2255 					HASH_EARLY,
2256 					&d_hash_shift,
2257 					&d_hash_mask,
2258 					0);
2259 
2260 	for (loop = 0; loop < (1 << d_hash_shift); loop++)
2261 		INIT_HLIST_HEAD(&dentry_hashtable[loop]);
2262 }
2263 
2264 static void __init dcache_init(void)
2265 {
2266 	int loop;
2267 
2268 	/*
2269 	 * A constructor could be added for stable state like the lists,
2270 	 * but it is probably not worth it because of the cache nature
2271 	 * of the dcache.
2272 	 */
2273 	dentry_cache = KMEM_CACHE(dentry,
2274 		SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD);
2275 
2276 	register_shrinker(&dcache_shrinker);
2277 
2278 	/* Hash may have been set up in dcache_init_early */
2279 	if (!hashdist)
2280 		return;
2281 
2282 	dentry_hashtable =
2283 		alloc_large_system_hash("Dentry cache",
2284 					sizeof(struct hlist_head),
2285 					dhash_entries,
2286 					13,
2287 					0,
2288 					&d_hash_shift,
2289 					&d_hash_mask,
2290 					0);
2291 
2292 	for (loop = 0; loop < (1 << d_hash_shift); loop++)
2293 		INIT_HLIST_HEAD(&dentry_hashtable[loop]);
2294 }
2295 
2296 /* SLAB cache for __getname() consumers */
2297 struct kmem_cache *names_cachep __read_mostly;
2298 
2299 EXPORT_SYMBOL(d_genocide);
2300 
2301 void __init vfs_caches_init_early(void)
2302 {
2303 	dcache_init_early();
2304 	inode_init_early();
2305 }
2306 
2307 void __init vfs_caches_init(unsigned long mempages)
2308 {
2309 	unsigned long reserve;
2310 
2311 	/* Base hash sizes on available memory, with a reserve equal to
2312            150% of current kernel size */
2313 
2314 	reserve = min((mempages - nr_free_pages()) * 3/2, mempages - 1);
2315 	mempages -= reserve;
2316 
2317 	names_cachep = kmem_cache_create("names_cache", PATH_MAX, 0,
2318 			SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
2319 
2320 	dcache_init();
2321 	inode_init();
2322 	files_init(mempages);
2323 	mnt_init();
2324 	bdev_cache_init();
2325 	chrdev_init();
2326 }
2327 
2328 EXPORT_SYMBOL(d_alloc);
2329 EXPORT_SYMBOL(d_alloc_root);
2330 EXPORT_SYMBOL(d_delete);
2331 EXPORT_SYMBOL(d_find_alias);
2332 EXPORT_SYMBOL(d_instantiate);
2333 EXPORT_SYMBOL(d_invalidate);
2334 EXPORT_SYMBOL(d_lookup);
2335 EXPORT_SYMBOL(d_move);
2336 EXPORT_SYMBOL_GPL(d_materialise_unique);
2337 EXPORT_SYMBOL(d_path);
2338 EXPORT_SYMBOL(d_prune_aliases);
2339 EXPORT_SYMBOL(d_rehash);
2340 EXPORT_SYMBOL(d_splice_alias);
2341 EXPORT_SYMBOL(d_add_ci);
2342 EXPORT_SYMBOL(d_validate);
2343 EXPORT_SYMBOL(dget_locked);
2344 EXPORT_SYMBOL(dput);
2345 EXPORT_SYMBOL(find_inode_number);
2346 EXPORT_SYMBOL(have_submounts);
2347 EXPORT_SYMBOL(names_cachep);
2348 EXPORT_SYMBOL(shrink_dcache_parent);
2349 EXPORT_SYMBOL(shrink_dcache_sb);
2350