1 /* 2 * fs/dcache.c 3 * 4 * Complete reimplementation 5 * (C) 1997 Thomas Schoebel-Theuer, 6 * with heavy changes by Linus Torvalds 7 */ 8 9 /* 10 * Notes on the allocation strategy: 11 * 12 * The dcache is a master of the icache - whenever a dcache entry 13 * exists, the inode will always exist. "iput()" is done either when 14 * the dcache entry is deleted or garbage collected. 15 */ 16 17 #include <linux/syscalls.h> 18 #include <linux/string.h> 19 #include <linux/mm.h> 20 #include <linux/fs.h> 21 #include <linux/fsnotify.h> 22 #include <linux/slab.h> 23 #include <linux/init.h> 24 #include <linux/hash.h> 25 #include <linux/cache.h> 26 #include <linux/module.h> 27 #include <linux/mount.h> 28 #include <linux/file.h> 29 #include <asm/uaccess.h> 30 #include <linux/security.h> 31 #include <linux/seqlock.h> 32 #include <linux/swap.h> 33 #include <linux/bootmem.h> 34 #include <linux/fs_struct.h> 35 #include <linux/hardirq.h> 36 #include "internal.h" 37 38 int sysctl_vfs_cache_pressure __read_mostly = 100; 39 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure); 40 41 __cacheline_aligned_in_smp DEFINE_SPINLOCK(dcache_lock); 42 __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock); 43 44 EXPORT_SYMBOL(dcache_lock); 45 46 static struct kmem_cache *dentry_cache __read_mostly; 47 48 #define DNAME_INLINE_LEN (sizeof(struct dentry)-offsetof(struct dentry,d_iname)) 49 50 /* 51 * This is the single most critical data structure when it comes 52 * to the dcache: the hashtable for lookups. Somebody should try 53 * to make this good - I've just made it work. 54 * 55 * This hash-function tries to avoid losing too many bits of hash 56 * information, yet avoid using a prime hash-size or similar. 57 */ 58 #define D_HASHBITS d_hash_shift 59 #define D_HASHMASK d_hash_mask 60 61 static unsigned int d_hash_mask __read_mostly; 62 static unsigned int d_hash_shift __read_mostly; 63 static struct hlist_head *dentry_hashtable __read_mostly; 64 65 /* Statistics gathering. */ 66 struct dentry_stat_t dentry_stat = { 67 .age_limit = 45, 68 }; 69 70 static void __d_free(struct dentry *dentry) 71 { 72 WARN_ON(!list_empty(&dentry->d_alias)); 73 if (dname_external(dentry)) 74 kfree(dentry->d_name.name); 75 kmem_cache_free(dentry_cache, dentry); 76 } 77 78 static void d_callback(struct rcu_head *head) 79 { 80 struct dentry * dentry = container_of(head, struct dentry, d_u.d_rcu); 81 __d_free(dentry); 82 } 83 84 /* 85 * no dcache_lock, please. The caller must decrement dentry_stat.nr_dentry 86 * inside dcache_lock. 87 */ 88 static void d_free(struct dentry *dentry) 89 { 90 if (dentry->d_op && dentry->d_op->d_release) 91 dentry->d_op->d_release(dentry); 92 /* if dentry was never inserted into hash, immediate free is OK */ 93 if (hlist_unhashed(&dentry->d_hash)) 94 __d_free(dentry); 95 else 96 call_rcu(&dentry->d_u.d_rcu, d_callback); 97 } 98 99 /* 100 * Release the dentry's inode, using the filesystem 101 * d_iput() operation if defined. 102 */ 103 static void dentry_iput(struct dentry * dentry) 104 __releases(dentry->d_lock) 105 __releases(dcache_lock) 106 { 107 struct inode *inode = dentry->d_inode; 108 if (inode) { 109 dentry->d_inode = NULL; 110 list_del_init(&dentry->d_alias); 111 spin_unlock(&dentry->d_lock); 112 spin_unlock(&dcache_lock); 113 if (!inode->i_nlink) 114 fsnotify_inoderemove(inode); 115 if (dentry->d_op && dentry->d_op->d_iput) 116 dentry->d_op->d_iput(dentry, inode); 117 else 118 iput(inode); 119 } else { 120 spin_unlock(&dentry->d_lock); 121 spin_unlock(&dcache_lock); 122 } 123 } 124 125 /* 126 * dentry_lru_(add|add_tail|del|del_init) must be called with dcache_lock held. 127 */ 128 static void dentry_lru_add(struct dentry *dentry) 129 { 130 list_add(&dentry->d_lru, &dentry->d_sb->s_dentry_lru); 131 dentry->d_sb->s_nr_dentry_unused++; 132 dentry_stat.nr_unused++; 133 } 134 135 static void dentry_lru_add_tail(struct dentry *dentry) 136 { 137 list_add_tail(&dentry->d_lru, &dentry->d_sb->s_dentry_lru); 138 dentry->d_sb->s_nr_dentry_unused++; 139 dentry_stat.nr_unused++; 140 } 141 142 static void dentry_lru_del(struct dentry *dentry) 143 { 144 if (!list_empty(&dentry->d_lru)) { 145 list_del(&dentry->d_lru); 146 dentry->d_sb->s_nr_dentry_unused--; 147 dentry_stat.nr_unused--; 148 } 149 } 150 151 static void dentry_lru_del_init(struct dentry *dentry) 152 { 153 if (likely(!list_empty(&dentry->d_lru))) { 154 list_del_init(&dentry->d_lru); 155 dentry->d_sb->s_nr_dentry_unused--; 156 dentry_stat.nr_unused--; 157 } 158 } 159 160 /** 161 * d_kill - kill dentry and return parent 162 * @dentry: dentry to kill 163 * 164 * The dentry must already be unhashed and removed from the LRU. 165 * 166 * If this is the root of the dentry tree, return NULL. 167 */ 168 static struct dentry *d_kill(struct dentry *dentry) 169 __releases(dentry->d_lock) 170 __releases(dcache_lock) 171 { 172 struct dentry *parent; 173 174 list_del(&dentry->d_u.d_child); 175 dentry_stat.nr_dentry--; /* For d_free, below */ 176 /*drops the locks, at that point nobody can reach this dentry */ 177 dentry_iput(dentry); 178 if (IS_ROOT(dentry)) 179 parent = NULL; 180 else 181 parent = dentry->d_parent; 182 d_free(dentry); 183 return parent; 184 } 185 186 /* 187 * This is dput 188 * 189 * This is complicated by the fact that we do not want to put 190 * dentries that are no longer on any hash chain on the unused 191 * list: we'd much rather just get rid of them immediately. 192 * 193 * However, that implies that we have to traverse the dentry 194 * tree upwards to the parents which might _also_ now be 195 * scheduled for deletion (it may have been only waiting for 196 * its last child to go away). 197 * 198 * This tail recursion is done by hand as we don't want to depend 199 * on the compiler to always get this right (gcc generally doesn't). 200 * Real recursion would eat up our stack space. 201 */ 202 203 /* 204 * dput - release a dentry 205 * @dentry: dentry to release 206 * 207 * Release a dentry. This will drop the usage count and if appropriate 208 * call the dentry unlink method as well as removing it from the queues and 209 * releasing its resources. If the parent dentries were scheduled for release 210 * they too may now get deleted. 211 * 212 * no dcache lock, please. 213 */ 214 215 void dput(struct dentry *dentry) 216 { 217 if (!dentry) 218 return; 219 220 repeat: 221 if (atomic_read(&dentry->d_count) == 1) 222 might_sleep(); 223 if (!atomic_dec_and_lock(&dentry->d_count, &dcache_lock)) 224 return; 225 226 spin_lock(&dentry->d_lock); 227 if (atomic_read(&dentry->d_count)) { 228 spin_unlock(&dentry->d_lock); 229 spin_unlock(&dcache_lock); 230 return; 231 } 232 233 /* 234 * AV: ->d_delete() is _NOT_ allowed to block now. 235 */ 236 if (dentry->d_op && dentry->d_op->d_delete) { 237 if (dentry->d_op->d_delete(dentry)) 238 goto unhash_it; 239 } 240 /* Unreachable? Get rid of it */ 241 if (d_unhashed(dentry)) 242 goto kill_it; 243 if (list_empty(&dentry->d_lru)) { 244 dentry->d_flags |= DCACHE_REFERENCED; 245 dentry_lru_add(dentry); 246 } 247 spin_unlock(&dentry->d_lock); 248 spin_unlock(&dcache_lock); 249 return; 250 251 unhash_it: 252 __d_drop(dentry); 253 kill_it: 254 /* if dentry was on the d_lru list delete it from there */ 255 dentry_lru_del(dentry); 256 dentry = d_kill(dentry); 257 if (dentry) 258 goto repeat; 259 } 260 261 /** 262 * d_invalidate - invalidate a dentry 263 * @dentry: dentry to invalidate 264 * 265 * Try to invalidate the dentry if it turns out to be 266 * possible. If there are other dentries that can be 267 * reached through this one we can't delete it and we 268 * return -EBUSY. On success we return 0. 269 * 270 * no dcache lock. 271 */ 272 273 int d_invalidate(struct dentry * dentry) 274 { 275 /* 276 * If it's already been dropped, return OK. 277 */ 278 spin_lock(&dcache_lock); 279 if (d_unhashed(dentry)) { 280 spin_unlock(&dcache_lock); 281 return 0; 282 } 283 /* 284 * Check whether to do a partial shrink_dcache 285 * to get rid of unused child entries. 286 */ 287 if (!list_empty(&dentry->d_subdirs)) { 288 spin_unlock(&dcache_lock); 289 shrink_dcache_parent(dentry); 290 spin_lock(&dcache_lock); 291 } 292 293 /* 294 * Somebody else still using it? 295 * 296 * If it's a directory, we can't drop it 297 * for fear of somebody re-populating it 298 * with children (even though dropping it 299 * would make it unreachable from the root, 300 * we might still populate it if it was a 301 * working directory or similar). 302 */ 303 spin_lock(&dentry->d_lock); 304 if (atomic_read(&dentry->d_count) > 1) { 305 if (dentry->d_inode && S_ISDIR(dentry->d_inode->i_mode)) { 306 spin_unlock(&dentry->d_lock); 307 spin_unlock(&dcache_lock); 308 return -EBUSY; 309 } 310 } 311 312 __d_drop(dentry); 313 spin_unlock(&dentry->d_lock); 314 spin_unlock(&dcache_lock); 315 return 0; 316 } 317 318 /* This should be called _only_ with dcache_lock held */ 319 320 static inline struct dentry * __dget_locked(struct dentry *dentry) 321 { 322 atomic_inc(&dentry->d_count); 323 dentry_lru_del_init(dentry); 324 return dentry; 325 } 326 327 struct dentry * dget_locked(struct dentry *dentry) 328 { 329 return __dget_locked(dentry); 330 } 331 332 /** 333 * d_find_alias - grab a hashed alias of inode 334 * @inode: inode in question 335 * @want_discon: flag, used by d_splice_alias, to request 336 * that only a DISCONNECTED alias be returned. 337 * 338 * If inode has a hashed alias, or is a directory and has any alias, 339 * acquire the reference to alias and return it. Otherwise return NULL. 340 * Notice that if inode is a directory there can be only one alias and 341 * it can be unhashed only if it has no children, or if it is the root 342 * of a filesystem. 343 * 344 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer 345 * any other hashed alias over that one unless @want_discon is set, 346 * in which case only return an IS_ROOT, DCACHE_DISCONNECTED alias. 347 */ 348 349 static struct dentry * __d_find_alias(struct inode *inode, int want_discon) 350 { 351 struct list_head *head, *next, *tmp; 352 struct dentry *alias, *discon_alias=NULL; 353 354 head = &inode->i_dentry; 355 next = inode->i_dentry.next; 356 while (next != head) { 357 tmp = next; 358 next = tmp->next; 359 prefetch(next); 360 alias = list_entry(tmp, struct dentry, d_alias); 361 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) { 362 if (IS_ROOT(alias) && 363 (alias->d_flags & DCACHE_DISCONNECTED)) 364 discon_alias = alias; 365 else if (!want_discon) { 366 __dget_locked(alias); 367 return alias; 368 } 369 } 370 } 371 if (discon_alias) 372 __dget_locked(discon_alias); 373 return discon_alias; 374 } 375 376 struct dentry * d_find_alias(struct inode *inode) 377 { 378 struct dentry *de = NULL; 379 380 if (!list_empty(&inode->i_dentry)) { 381 spin_lock(&dcache_lock); 382 de = __d_find_alias(inode, 0); 383 spin_unlock(&dcache_lock); 384 } 385 return de; 386 } 387 388 /* 389 * Try to kill dentries associated with this inode. 390 * WARNING: you must own a reference to inode. 391 */ 392 void d_prune_aliases(struct inode *inode) 393 { 394 struct dentry *dentry; 395 restart: 396 spin_lock(&dcache_lock); 397 list_for_each_entry(dentry, &inode->i_dentry, d_alias) { 398 spin_lock(&dentry->d_lock); 399 if (!atomic_read(&dentry->d_count)) { 400 __dget_locked(dentry); 401 __d_drop(dentry); 402 spin_unlock(&dentry->d_lock); 403 spin_unlock(&dcache_lock); 404 dput(dentry); 405 goto restart; 406 } 407 spin_unlock(&dentry->d_lock); 408 } 409 spin_unlock(&dcache_lock); 410 } 411 412 /* 413 * Throw away a dentry - free the inode, dput the parent. This requires that 414 * the LRU list has already been removed. 415 * 416 * Try to prune ancestors as well. This is necessary to prevent 417 * quadratic behavior of shrink_dcache_parent(), but is also expected 418 * to be beneficial in reducing dentry cache fragmentation. 419 */ 420 static void prune_one_dentry(struct dentry * dentry) 421 __releases(dentry->d_lock) 422 __releases(dcache_lock) 423 __acquires(dcache_lock) 424 { 425 __d_drop(dentry); 426 dentry = d_kill(dentry); 427 428 /* 429 * Prune ancestors. Locking is simpler than in dput(), 430 * because dcache_lock needs to be taken anyway. 431 */ 432 spin_lock(&dcache_lock); 433 while (dentry) { 434 if (!atomic_dec_and_lock(&dentry->d_count, &dentry->d_lock)) 435 return; 436 437 if (dentry->d_op && dentry->d_op->d_delete) 438 dentry->d_op->d_delete(dentry); 439 dentry_lru_del_init(dentry); 440 __d_drop(dentry); 441 dentry = d_kill(dentry); 442 spin_lock(&dcache_lock); 443 } 444 } 445 446 /* 447 * Shrink the dentry LRU on a given superblock. 448 * @sb : superblock to shrink dentry LRU. 449 * @count: If count is NULL, we prune all dentries on superblock. 450 * @flags: If flags is non-zero, we need to do special processing based on 451 * which flags are set. This means we don't need to maintain multiple 452 * similar copies of this loop. 453 */ 454 static void __shrink_dcache_sb(struct super_block *sb, int *count, int flags) 455 { 456 LIST_HEAD(referenced); 457 LIST_HEAD(tmp); 458 struct dentry *dentry; 459 int cnt = 0; 460 461 BUG_ON(!sb); 462 BUG_ON((flags & DCACHE_REFERENCED) && count == NULL); 463 spin_lock(&dcache_lock); 464 if (count != NULL) 465 /* called from prune_dcache() and shrink_dcache_parent() */ 466 cnt = *count; 467 restart: 468 if (count == NULL) 469 list_splice_init(&sb->s_dentry_lru, &tmp); 470 else { 471 while (!list_empty(&sb->s_dentry_lru)) { 472 dentry = list_entry(sb->s_dentry_lru.prev, 473 struct dentry, d_lru); 474 BUG_ON(dentry->d_sb != sb); 475 476 spin_lock(&dentry->d_lock); 477 /* 478 * If we are honouring the DCACHE_REFERENCED flag and 479 * the dentry has this flag set, don't free it. Clear 480 * the flag and put it back on the LRU. 481 */ 482 if ((flags & DCACHE_REFERENCED) 483 && (dentry->d_flags & DCACHE_REFERENCED)) { 484 dentry->d_flags &= ~DCACHE_REFERENCED; 485 list_move(&dentry->d_lru, &referenced); 486 spin_unlock(&dentry->d_lock); 487 } else { 488 list_move_tail(&dentry->d_lru, &tmp); 489 spin_unlock(&dentry->d_lock); 490 cnt--; 491 if (!cnt) 492 break; 493 } 494 cond_resched_lock(&dcache_lock); 495 } 496 } 497 while (!list_empty(&tmp)) { 498 dentry = list_entry(tmp.prev, struct dentry, d_lru); 499 dentry_lru_del_init(dentry); 500 spin_lock(&dentry->d_lock); 501 /* 502 * We found an inuse dentry which was not removed from 503 * the LRU because of laziness during lookup. Do not free 504 * it - just keep it off the LRU list. 505 */ 506 if (atomic_read(&dentry->d_count)) { 507 spin_unlock(&dentry->d_lock); 508 continue; 509 } 510 prune_one_dentry(dentry); 511 /* dentry->d_lock was dropped in prune_one_dentry() */ 512 cond_resched_lock(&dcache_lock); 513 } 514 if (count == NULL && !list_empty(&sb->s_dentry_lru)) 515 goto restart; 516 if (count != NULL) 517 *count = cnt; 518 if (!list_empty(&referenced)) 519 list_splice(&referenced, &sb->s_dentry_lru); 520 spin_unlock(&dcache_lock); 521 } 522 523 /** 524 * prune_dcache - shrink the dcache 525 * @count: number of entries to try to free 526 * 527 * Shrink the dcache. This is done when we need more memory, or simply when we 528 * need to unmount something (at which point we need to unuse all dentries). 529 * 530 * This function may fail to free any resources if all the dentries are in use. 531 */ 532 static void prune_dcache(int count) 533 { 534 struct super_block *sb; 535 int w_count; 536 int unused = dentry_stat.nr_unused; 537 int prune_ratio; 538 int pruned; 539 540 if (unused == 0 || count == 0) 541 return; 542 spin_lock(&dcache_lock); 543 restart: 544 if (count >= unused) 545 prune_ratio = 1; 546 else 547 prune_ratio = unused / count; 548 spin_lock(&sb_lock); 549 list_for_each_entry(sb, &super_blocks, s_list) { 550 if (sb->s_nr_dentry_unused == 0) 551 continue; 552 sb->s_count++; 553 /* Now, we reclaim unused dentrins with fairness. 554 * We reclaim them same percentage from each superblock. 555 * We calculate number of dentries to scan on this sb 556 * as follows, but the implementation is arranged to avoid 557 * overflows: 558 * number of dentries to scan on this sb = 559 * count * (number of dentries on this sb / 560 * number of dentries in the machine) 561 */ 562 spin_unlock(&sb_lock); 563 if (prune_ratio != 1) 564 w_count = (sb->s_nr_dentry_unused / prune_ratio) + 1; 565 else 566 w_count = sb->s_nr_dentry_unused; 567 pruned = w_count; 568 /* 569 * We need to be sure this filesystem isn't being unmounted, 570 * otherwise we could race with generic_shutdown_super(), and 571 * end up holding a reference to an inode while the filesystem 572 * is unmounted. So we try to get s_umount, and make sure 573 * s_root isn't NULL. 574 */ 575 if (down_read_trylock(&sb->s_umount)) { 576 if ((sb->s_root != NULL) && 577 (!list_empty(&sb->s_dentry_lru))) { 578 spin_unlock(&dcache_lock); 579 __shrink_dcache_sb(sb, &w_count, 580 DCACHE_REFERENCED); 581 pruned -= w_count; 582 spin_lock(&dcache_lock); 583 } 584 up_read(&sb->s_umount); 585 } 586 spin_lock(&sb_lock); 587 count -= pruned; 588 /* 589 * restart only when sb is no longer on the list and 590 * we have more work to do. 591 */ 592 if (__put_super_and_need_restart(sb) && count > 0) { 593 spin_unlock(&sb_lock); 594 goto restart; 595 } 596 } 597 spin_unlock(&sb_lock); 598 spin_unlock(&dcache_lock); 599 } 600 601 /** 602 * shrink_dcache_sb - shrink dcache for a superblock 603 * @sb: superblock 604 * 605 * Shrink the dcache for the specified super block. This 606 * is used to free the dcache before unmounting a file 607 * system 608 */ 609 void shrink_dcache_sb(struct super_block * sb) 610 { 611 __shrink_dcache_sb(sb, NULL, 0); 612 } 613 614 /* 615 * destroy a single subtree of dentries for unmount 616 * - see the comments on shrink_dcache_for_umount() for a description of the 617 * locking 618 */ 619 static void shrink_dcache_for_umount_subtree(struct dentry *dentry) 620 { 621 struct dentry *parent; 622 unsigned detached = 0; 623 624 BUG_ON(!IS_ROOT(dentry)); 625 626 /* detach this root from the system */ 627 spin_lock(&dcache_lock); 628 dentry_lru_del_init(dentry); 629 __d_drop(dentry); 630 spin_unlock(&dcache_lock); 631 632 for (;;) { 633 /* descend to the first leaf in the current subtree */ 634 while (!list_empty(&dentry->d_subdirs)) { 635 struct dentry *loop; 636 637 /* this is a branch with children - detach all of them 638 * from the system in one go */ 639 spin_lock(&dcache_lock); 640 list_for_each_entry(loop, &dentry->d_subdirs, 641 d_u.d_child) { 642 dentry_lru_del_init(loop); 643 __d_drop(loop); 644 cond_resched_lock(&dcache_lock); 645 } 646 spin_unlock(&dcache_lock); 647 648 /* move to the first child */ 649 dentry = list_entry(dentry->d_subdirs.next, 650 struct dentry, d_u.d_child); 651 } 652 653 /* consume the dentries from this leaf up through its parents 654 * until we find one with children or run out altogether */ 655 do { 656 struct inode *inode; 657 658 if (atomic_read(&dentry->d_count) != 0) { 659 printk(KERN_ERR 660 "BUG: Dentry %p{i=%lx,n=%s}" 661 " still in use (%d)" 662 " [unmount of %s %s]\n", 663 dentry, 664 dentry->d_inode ? 665 dentry->d_inode->i_ino : 0UL, 666 dentry->d_name.name, 667 atomic_read(&dentry->d_count), 668 dentry->d_sb->s_type->name, 669 dentry->d_sb->s_id); 670 BUG(); 671 } 672 673 if (IS_ROOT(dentry)) 674 parent = NULL; 675 else { 676 parent = dentry->d_parent; 677 atomic_dec(&parent->d_count); 678 } 679 680 list_del(&dentry->d_u.d_child); 681 detached++; 682 683 inode = dentry->d_inode; 684 if (inode) { 685 dentry->d_inode = NULL; 686 list_del_init(&dentry->d_alias); 687 if (dentry->d_op && dentry->d_op->d_iput) 688 dentry->d_op->d_iput(dentry, inode); 689 else 690 iput(inode); 691 } 692 693 d_free(dentry); 694 695 /* finished when we fall off the top of the tree, 696 * otherwise we ascend to the parent and move to the 697 * next sibling if there is one */ 698 if (!parent) 699 goto out; 700 701 dentry = parent; 702 703 } while (list_empty(&dentry->d_subdirs)); 704 705 dentry = list_entry(dentry->d_subdirs.next, 706 struct dentry, d_u.d_child); 707 } 708 out: 709 /* several dentries were freed, need to correct nr_dentry */ 710 spin_lock(&dcache_lock); 711 dentry_stat.nr_dentry -= detached; 712 spin_unlock(&dcache_lock); 713 } 714 715 /* 716 * destroy the dentries attached to a superblock on unmounting 717 * - we don't need to use dentry->d_lock, and only need dcache_lock when 718 * removing the dentry from the system lists and hashes because: 719 * - the superblock is detached from all mountings and open files, so the 720 * dentry trees will not be rearranged by the VFS 721 * - s_umount is write-locked, so the memory pressure shrinker will ignore 722 * any dentries belonging to this superblock that it comes across 723 * - the filesystem itself is no longer permitted to rearrange the dentries 724 * in this superblock 725 */ 726 void shrink_dcache_for_umount(struct super_block *sb) 727 { 728 struct dentry *dentry; 729 730 if (down_read_trylock(&sb->s_umount)) 731 BUG(); 732 733 dentry = sb->s_root; 734 sb->s_root = NULL; 735 atomic_dec(&dentry->d_count); 736 shrink_dcache_for_umount_subtree(dentry); 737 738 while (!hlist_empty(&sb->s_anon)) { 739 dentry = hlist_entry(sb->s_anon.first, struct dentry, d_hash); 740 shrink_dcache_for_umount_subtree(dentry); 741 } 742 } 743 744 /* 745 * Search for at least 1 mount point in the dentry's subdirs. 746 * We descend to the next level whenever the d_subdirs 747 * list is non-empty and continue searching. 748 */ 749 750 /** 751 * have_submounts - check for mounts over a dentry 752 * @parent: dentry to check. 753 * 754 * Return true if the parent or its subdirectories contain 755 * a mount point 756 */ 757 758 int have_submounts(struct dentry *parent) 759 { 760 struct dentry *this_parent = parent; 761 struct list_head *next; 762 763 spin_lock(&dcache_lock); 764 if (d_mountpoint(parent)) 765 goto positive; 766 repeat: 767 next = this_parent->d_subdirs.next; 768 resume: 769 while (next != &this_parent->d_subdirs) { 770 struct list_head *tmp = next; 771 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child); 772 next = tmp->next; 773 /* Have we found a mount point ? */ 774 if (d_mountpoint(dentry)) 775 goto positive; 776 if (!list_empty(&dentry->d_subdirs)) { 777 this_parent = dentry; 778 goto repeat; 779 } 780 } 781 /* 782 * All done at this level ... ascend and resume the search. 783 */ 784 if (this_parent != parent) { 785 next = this_parent->d_u.d_child.next; 786 this_parent = this_parent->d_parent; 787 goto resume; 788 } 789 spin_unlock(&dcache_lock); 790 return 0; /* No mount points found in tree */ 791 positive: 792 spin_unlock(&dcache_lock); 793 return 1; 794 } 795 796 /* 797 * Search the dentry child list for the specified parent, 798 * and move any unused dentries to the end of the unused 799 * list for prune_dcache(). We descend to the next level 800 * whenever the d_subdirs list is non-empty and continue 801 * searching. 802 * 803 * It returns zero iff there are no unused children, 804 * otherwise it returns the number of children moved to 805 * the end of the unused list. This may not be the total 806 * number of unused children, because select_parent can 807 * drop the lock and return early due to latency 808 * constraints. 809 */ 810 static int select_parent(struct dentry * parent) 811 { 812 struct dentry *this_parent = parent; 813 struct list_head *next; 814 int found = 0; 815 816 spin_lock(&dcache_lock); 817 repeat: 818 next = this_parent->d_subdirs.next; 819 resume: 820 while (next != &this_parent->d_subdirs) { 821 struct list_head *tmp = next; 822 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child); 823 next = tmp->next; 824 825 dentry_lru_del_init(dentry); 826 /* 827 * move only zero ref count dentries to the end 828 * of the unused list for prune_dcache 829 */ 830 if (!atomic_read(&dentry->d_count)) { 831 dentry_lru_add_tail(dentry); 832 found++; 833 } 834 835 /* 836 * We can return to the caller if we have found some (this 837 * ensures forward progress). We'll be coming back to find 838 * the rest. 839 */ 840 if (found && need_resched()) 841 goto out; 842 843 /* 844 * Descend a level if the d_subdirs list is non-empty. 845 */ 846 if (!list_empty(&dentry->d_subdirs)) { 847 this_parent = dentry; 848 goto repeat; 849 } 850 } 851 /* 852 * All done at this level ... ascend and resume the search. 853 */ 854 if (this_parent != parent) { 855 next = this_parent->d_u.d_child.next; 856 this_parent = this_parent->d_parent; 857 goto resume; 858 } 859 out: 860 spin_unlock(&dcache_lock); 861 return found; 862 } 863 864 /** 865 * shrink_dcache_parent - prune dcache 866 * @parent: parent of entries to prune 867 * 868 * Prune the dcache to remove unused children of the parent dentry. 869 */ 870 871 void shrink_dcache_parent(struct dentry * parent) 872 { 873 struct super_block *sb = parent->d_sb; 874 int found; 875 876 while ((found = select_parent(parent)) != 0) 877 __shrink_dcache_sb(sb, &found, 0); 878 } 879 880 /* 881 * Scan `nr' dentries and return the number which remain. 882 * 883 * We need to avoid reentering the filesystem if the caller is performing a 884 * GFP_NOFS allocation attempt. One example deadlock is: 885 * 886 * ext2_new_block->getblk->GFP->shrink_dcache_memory->prune_dcache-> 887 * prune_one_dentry->dput->dentry_iput->iput->inode->i_sb->s_op->put_inode-> 888 * ext2_discard_prealloc->ext2_free_blocks->lock_super->DEADLOCK. 889 * 890 * In this case we return -1 to tell the caller that we baled. 891 */ 892 static int shrink_dcache_memory(int nr, gfp_t gfp_mask) 893 { 894 if (nr) { 895 if (!(gfp_mask & __GFP_FS)) 896 return -1; 897 prune_dcache(nr); 898 } 899 return (dentry_stat.nr_unused / 100) * sysctl_vfs_cache_pressure; 900 } 901 902 static struct shrinker dcache_shrinker = { 903 .shrink = shrink_dcache_memory, 904 .seeks = DEFAULT_SEEKS, 905 }; 906 907 /** 908 * d_alloc - allocate a dcache entry 909 * @parent: parent of entry to allocate 910 * @name: qstr of the name 911 * 912 * Allocates a dentry. It returns %NULL if there is insufficient memory 913 * available. On a success the dentry is returned. The name passed in is 914 * copied and the copy passed in may be reused after this call. 915 */ 916 917 struct dentry *d_alloc(struct dentry * parent, const struct qstr *name) 918 { 919 struct dentry *dentry; 920 char *dname; 921 922 dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL); 923 if (!dentry) 924 return NULL; 925 926 if (name->len > DNAME_INLINE_LEN-1) { 927 dname = kmalloc(name->len + 1, GFP_KERNEL); 928 if (!dname) { 929 kmem_cache_free(dentry_cache, dentry); 930 return NULL; 931 } 932 } else { 933 dname = dentry->d_iname; 934 } 935 dentry->d_name.name = dname; 936 937 dentry->d_name.len = name->len; 938 dentry->d_name.hash = name->hash; 939 memcpy(dname, name->name, name->len); 940 dname[name->len] = 0; 941 942 atomic_set(&dentry->d_count, 1); 943 dentry->d_flags = DCACHE_UNHASHED; 944 spin_lock_init(&dentry->d_lock); 945 dentry->d_inode = NULL; 946 dentry->d_parent = NULL; 947 dentry->d_sb = NULL; 948 dentry->d_op = NULL; 949 dentry->d_fsdata = NULL; 950 dentry->d_mounted = 0; 951 INIT_HLIST_NODE(&dentry->d_hash); 952 INIT_LIST_HEAD(&dentry->d_lru); 953 INIT_LIST_HEAD(&dentry->d_subdirs); 954 INIT_LIST_HEAD(&dentry->d_alias); 955 956 if (parent) { 957 dentry->d_parent = dget(parent); 958 dentry->d_sb = parent->d_sb; 959 } else { 960 INIT_LIST_HEAD(&dentry->d_u.d_child); 961 } 962 963 spin_lock(&dcache_lock); 964 if (parent) 965 list_add(&dentry->d_u.d_child, &parent->d_subdirs); 966 dentry_stat.nr_dentry++; 967 spin_unlock(&dcache_lock); 968 969 return dentry; 970 } 971 972 struct dentry *d_alloc_name(struct dentry *parent, const char *name) 973 { 974 struct qstr q; 975 976 q.name = name; 977 q.len = strlen(name); 978 q.hash = full_name_hash(q.name, q.len); 979 return d_alloc(parent, &q); 980 } 981 982 /* the caller must hold dcache_lock */ 983 static void __d_instantiate(struct dentry *dentry, struct inode *inode) 984 { 985 if (inode) 986 list_add(&dentry->d_alias, &inode->i_dentry); 987 dentry->d_inode = inode; 988 fsnotify_d_instantiate(dentry, inode); 989 } 990 991 /** 992 * d_instantiate - fill in inode information for a dentry 993 * @entry: dentry to complete 994 * @inode: inode to attach to this dentry 995 * 996 * Fill in inode information in the entry. 997 * 998 * This turns negative dentries into productive full members 999 * of society. 1000 * 1001 * NOTE! This assumes that the inode count has been incremented 1002 * (or otherwise set) by the caller to indicate that it is now 1003 * in use by the dcache. 1004 */ 1005 1006 void d_instantiate(struct dentry *entry, struct inode * inode) 1007 { 1008 BUG_ON(!list_empty(&entry->d_alias)); 1009 spin_lock(&dcache_lock); 1010 __d_instantiate(entry, inode); 1011 spin_unlock(&dcache_lock); 1012 security_d_instantiate(entry, inode); 1013 } 1014 1015 /** 1016 * d_instantiate_unique - instantiate a non-aliased dentry 1017 * @entry: dentry to instantiate 1018 * @inode: inode to attach to this dentry 1019 * 1020 * Fill in inode information in the entry. On success, it returns NULL. 1021 * If an unhashed alias of "entry" already exists, then we return the 1022 * aliased dentry instead and drop one reference to inode. 1023 * 1024 * Note that in order to avoid conflicts with rename() etc, the caller 1025 * had better be holding the parent directory semaphore. 1026 * 1027 * This also assumes that the inode count has been incremented 1028 * (or otherwise set) by the caller to indicate that it is now 1029 * in use by the dcache. 1030 */ 1031 static struct dentry *__d_instantiate_unique(struct dentry *entry, 1032 struct inode *inode) 1033 { 1034 struct dentry *alias; 1035 int len = entry->d_name.len; 1036 const char *name = entry->d_name.name; 1037 unsigned int hash = entry->d_name.hash; 1038 1039 if (!inode) { 1040 __d_instantiate(entry, NULL); 1041 return NULL; 1042 } 1043 1044 list_for_each_entry(alias, &inode->i_dentry, d_alias) { 1045 struct qstr *qstr = &alias->d_name; 1046 1047 if (qstr->hash != hash) 1048 continue; 1049 if (alias->d_parent != entry->d_parent) 1050 continue; 1051 if (qstr->len != len) 1052 continue; 1053 if (memcmp(qstr->name, name, len)) 1054 continue; 1055 dget_locked(alias); 1056 return alias; 1057 } 1058 1059 __d_instantiate(entry, inode); 1060 return NULL; 1061 } 1062 1063 struct dentry *d_instantiate_unique(struct dentry *entry, struct inode *inode) 1064 { 1065 struct dentry *result; 1066 1067 BUG_ON(!list_empty(&entry->d_alias)); 1068 1069 spin_lock(&dcache_lock); 1070 result = __d_instantiate_unique(entry, inode); 1071 spin_unlock(&dcache_lock); 1072 1073 if (!result) { 1074 security_d_instantiate(entry, inode); 1075 return NULL; 1076 } 1077 1078 BUG_ON(!d_unhashed(result)); 1079 iput(inode); 1080 return result; 1081 } 1082 1083 EXPORT_SYMBOL(d_instantiate_unique); 1084 1085 /** 1086 * d_alloc_root - allocate root dentry 1087 * @root_inode: inode to allocate the root for 1088 * 1089 * Allocate a root ("/") dentry for the inode given. The inode is 1090 * instantiated and returned. %NULL is returned if there is insufficient 1091 * memory or the inode passed is %NULL. 1092 */ 1093 1094 struct dentry * d_alloc_root(struct inode * root_inode) 1095 { 1096 struct dentry *res = NULL; 1097 1098 if (root_inode) { 1099 static const struct qstr name = { .name = "/", .len = 1 }; 1100 1101 res = d_alloc(NULL, &name); 1102 if (res) { 1103 res->d_sb = root_inode->i_sb; 1104 res->d_parent = res; 1105 d_instantiate(res, root_inode); 1106 } 1107 } 1108 return res; 1109 } 1110 1111 static inline struct hlist_head *d_hash(struct dentry *parent, 1112 unsigned long hash) 1113 { 1114 hash += ((unsigned long) parent ^ GOLDEN_RATIO_PRIME) / L1_CACHE_BYTES; 1115 hash = hash ^ ((hash ^ GOLDEN_RATIO_PRIME) >> D_HASHBITS); 1116 return dentry_hashtable + (hash & D_HASHMASK); 1117 } 1118 1119 /** 1120 * d_obtain_alias - find or allocate a dentry for a given inode 1121 * @inode: inode to allocate the dentry for 1122 * 1123 * Obtain a dentry for an inode resulting from NFS filehandle conversion or 1124 * similar open by handle operations. The returned dentry may be anonymous, 1125 * or may have a full name (if the inode was already in the cache). 1126 * 1127 * When called on a directory inode, we must ensure that the inode only ever 1128 * has one dentry. If a dentry is found, that is returned instead of 1129 * allocating a new one. 1130 * 1131 * On successful return, the reference to the inode has been transferred 1132 * to the dentry. In case of an error the reference on the inode is released. 1133 * To make it easier to use in export operations a %NULL or IS_ERR inode may 1134 * be passed in and will be the error will be propagate to the return value, 1135 * with a %NULL @inode replaced by ERR_PTR(-ESTALE). 1136 */ 1137 struct dentry *d_obtain_alias(struct inode *inode) 1138 { 1139 static const struct qstr anonstring = { .name = "" }; 1140 struct dentry *tmp; 1141 struct dentry *res; 1142 1143 if (!inode) 1144 return ERR_PTR(-ESTALE); 1145 if (IS_ERR(inode)) 1146 return ERR_CAST(inode); 1147 1148 res = d_find_alias(inode); 1149 if (res) 1150 goto out_iput; 1151 1152 tmp = d_alloc(NULL, &anonstring); 1153 if (!tmp) { 1154 res = ERR_PTR(-ENOMEM); 1155 goto out_iput; 1156 } 1157 tmp->d_parent = tmp; /* make sure dput doesn't croak */ 1158 1159 spin_lock(&dcache_lock); 1160 res = __d_find_alias(inode, 0); 1161 if (res) { 1162 spin_unlock(&dcache_lock); 1163 dput(tmp); 1164 goto out_iput; 1165 } 1166 1167 /* attach a disconnected dentry */ 1168 spin_lock(&tmp->d_lock); 1169 tmp->d_sb = inode->i_sb; 1170 tmp->d_inode = inode; 1171 tmp->d_flags |= DCACHE_DISCONNECTED; 1172 tmp->d_flags &= ~DCACHE_UNHASHED; 1173 list_add(&tmp->d_alias, &inode->i_dentry); 1174 hlist_add_head(&tmp->d_hash, &inode->i_sb->s_anon); 1175 spin_unlock(&tmp->d_lock); 1176 1177 spin_unlock(&dcache_lock); 1178 return tmp; 1179 1180 out_iput: 1181 iput(inode); 1182 return res; 1183 } 1184 EXPORT_SYMBOL(d_obtain_alias); 1185 1186 /** 1187 * d_splice_alias - splice a disconnected dentry into the tree if one exists 1188 * @inode: the inode which may have a disconnected dentry 1189 * @dentry: a negative dentry which we want to point to the inode. 1190 * 1191 * If inode is a directory and has a 'disconnected' dentry (i.e. IS_ROOT and 1192 * DCACHE_DISCONNECTED), then d_move that in place of the given dentry 1193 * and return it, else simply d_add the inode to the dentry and return NULL. 1194 * 1195 * This is needed in the lookup routine of any filesystem that is exportable 1196 * (via knfsd) so that we can build dcache paths to directories effectively. 1197 * 1198 * If a dentry was found and moved, then it is returned. Otherwise NULL 1199 * is returned. This matches the expected return value of ->lookup. 1200 * 1201 */ 1202 struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry) 1203 { 1204 struct dentry *new = NULL; 1205 1206 if (inode && S_ISDIR(inode->i_mode)) { 1207 spin_lock(&dcache_lock); 1208 new = __d_find_alias(inode, 1); 1209 if (new) { 1210 BUG_ON(!(new->d_flags & DCACHE_DISCONNECTED)); 1211 spin_unlock(&dcache_lock); 1212 security_d_instantiate(new, inode); 1213 d_rehash(dentry); 1214 d_move(new, dentry); 1215 iput(inode); 1216 } else { 1217 /* already taking dcache_lock, so d_add() by hand */ 1218 __d_instantiate(dentry, inode); 1219 spin_unlock(&dcache_lock); 1220 security_d_instantiate(dentry, inode); 1221 d_rehash(dentry); 1222 } 1223 } else 1224 d_add(dentry, inode); 1225 return new; 1226 } 1227 1228 /** 1229 * d_add_ci - lookup or allocate new dentry with case-exact name 1230 * @inode: the inode case-insensitive lookup has found 1231 * @dentry: the negative dentry that was passed to the parent's lookup func 1232 * @name: the case-exact name to be associated with the returned dentry 1233 * 1234 * This is to avoid filling the dcache with case-insensitive names to the 1235 * same inode, only the actual correct case is stored in the dcache for 1236 * case-insensitive filesystems. 1237 * 1238 * For a case-insensitive lookup match and if the the case-exact dentry 1239 * already exists in in the dcache, use it and return it. 1240 * 1241 * If no entry exists with the exact case name, allocate new dentry with 1242 * the exact case, and return the spliced entry. 1243 */ 1244 struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode, 1245 struct qstr *name) 1246 { 1247 int error; 1248 struct dentry *found; 1249 struct dentry *new; 1250 1251 /* 1252 * First check if a dentry matching the name already exists, 1253 * if not go ahead and create it now. 1254 */ 1255 found = d_hash_and_lookup(dentry->d_parent, name); 1256 if (!found) { 1257 new = d_alloc(dentry->d_parent, name); 1258 if (!new) { 1259 error = -ENOMEM; 1260 goto err_out; 1261 } 1262 1263 found = d_splice_alias(inode, new); 1264 if (found) { 1265 dput(new); 1266 return found; 1267 } 1268 return new; 1269 } 1270 1271 /* 1272 * If a matching dentry exists, and it's not negative use it. 1273 * 1274 * Decrement the reference count to balance the iget() done 1275 * earlier on. 1276 */ 1277 if (found->d_inode) { 1278 if (unlikely(found->d_inode != inode)) { 1279 /* This can't happen because bad inodes are unhashed. */ 1280 BUG_ON(!is_bad_inode(inode)); 1281 BUG_ON(!is_bad_inode(found->d_inode)); 1282 } 1283 iput(inode); 1284 return found; 1285 } 1286 1287 /* 1288 * Negative dentry: instantiate it unless the inode is a directory and 1289 * already has a dentry. 1290 */ 1291 spin_lock(&dcache_lock); 1292 if (!S_ISDIR(inode->i_mode) || list_empty(&inode->i_dentry)) { 1293 __d_instantiate(found, inode); 1294 spin_unlock(&dcache_lock); 1295 security_d_instantiate(found, inode); 1296 return found; 1297 } 1298 1299 /* 1300 * In case a directory already has a (disconnected) entry grab a 1301 * reference to it, move it in place and use it. 1302 */ 1303 new = list_entry(inode->i_dentry.next, struct dentry, d_alias); 1304 dget_locked(new); 1305 spin_unlock(&dcache_lock); 1306 security_d_instantiate(found, inode); 1307 d_move(new, found); 1308 iput(inode); 1309 dput(found); 1310 return new; 1311 1312 err_out: 1313 iput(inode); 1314 return ERR_PTR(error); 1315 } 1316 1317 /** 1318 * d_lookup - search for a dentry 1319 * @parent: parent dentry 1320 * @name: qstr of name we wish to find 1321 * 1322 * Searches the children of the parent dentry for the name in question. If 1323 * the dentry is found its reference count is incremented and the dentry 1324 * is returned. The caller must use dput to free the entry when it has 1325 * finished using it. %NULL is returned on failure. 1326 * 1327 * __d_lookup is dcache_lock free. The hash list is protected using RCU. 1328 * Memory barriers are used while updating and doing lockless traversal. 1329 * To avoid races with d_move while rename is happening, d_lock is used. 1330 * 1331 * Overflows in memcmp(), while d_move, are avoided by keeping the length 1332 * and name pointer in one structure pointed by d_qstr. 1333 * 1334 * rcu_read_lock() and rcu_read_unlock() are used to disable preemption while 1335 * lookup is going on. 1336 * 1337 * The dentry unused LRU is not updated even if lookup finds the required dentry 1338 * in there. It is updated in places such as prune_dcache, shrink_dcache_sb, 1339 * select_parent and __dget_locked. This laziness saves lookup from dcache_lock 1340 * acquisition. 1341 * 1342 * d_lookup() is protected against the concurrent renames in some unrelated 1343 * directory using the seqlockt_t rename_lock. 1344 */ 1345 1346 struct dentry * d_lookup(struct dentry * parent, struct qstr * name) 1347 { 1348 struct dentry * dentry = NULL; 1349 unsigned long seq; 1350 1351 do { 1352 seq = read_seqbegin(&rename_lock); 1353 dentry = __d_lookup(parent, name); 1354 if (dentry) 1355 break; 1356 } while (read_seqretry(&rename_lock, seq)); 1357 return dentry; 1358 } 1359 1360 struct dentry * __d_lookup(struct dentry * parent, struct qstr * name) 1361 { 1362 unsigned int len = name->len; 1363 unsigned int hash = name->hash; 1364 const unsigned char *str = name->name; 1365 struct hlist_head *head = d_hash(parent,hash); 1366 struct dentry *found = NULL; 1367 struct hlist_node *node; 1368 struct dentry *dentry; 1369 1370 rcu_read_lock(); 1371 1372 hlist_for_each_entry_rcu(dentry, node, head, d_hash) { 1373 struct qstr *qstr; 1374 1375 if (dentry->d_name.hash != hash) 1376 continue; 1377 if (dentry->d_parent != parent) 1378 continue; 1379 1380 spin_lock(&dentry->d_lock); 1381 1382 /* 1383 * Recheck the dentry after taking the lock - d_move may have 1384 * changed things. Don't bother checking the hash because we're 1385 * about to compare the whole name anyway. 1386 */ 1387 if (dentry->d_parent != parent) 1388 goto next; 1389 1390 /* non-existing due to RCU? */ 1391 if (d_unhashed(dentry)) 1392 goto next; 1393 1394 /* 1395 * It is safe to compare names since d_move() cannot 1396 * change the qstr (protected by d_lock). 1397 */ 1398 qstr = &dentry->d_name; 1399 if (parent->d_op && parent->d_op->d_compare) { 1400 if (parent->d_op->d_compare(parent, qstr, name)) 1401 goto next; 1402 } else { 1403 if (qstr->len != len) 1404 goto next; 1405 if (memcmp(qstr->name, str, len)) 1406 goto next; 1407 } 1408 1409 atomic_inc(&dentry->d_count); 1410 found = dentry; 1411 spin_unlock(&dentry->d_lock); 1412 break; 1413 next: 1414 spin_unlock(&dentry->d_lock); 1415 } 1416 rcu_read_unlock(); 1417 1418 return found; 1419 } 1420 1421 /** 1422 * d_hash_and_lookup - hash the qstr then search for a dentry 1423 * @dir: Directory to search in 1424 * @name: qstr of name we wish to find 1425 * 1426 * On hash failure or on lookup failure NULL is returned. 1427 */ 1428 struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name) 1429 { 1430 struct dentry *dentry = NULL; 1431 1432 /* 1433 * Check for a fs-specific hash function. Note that we must 1434 * calculate the standard hash first, as the d_op->d_hash() 1435 * routine may choose to leave the hash value unchanged. 1436 */ 1437 name->hash = full_name_hash(name->name, name->len); 1438 if (dir->d_op && dir->d_op->d_hash) { 1439 if (dir->d_op->d_hash(dir, name) < 0) 1440 goto out; 1441 } 1442 dentry = d_lookup(dir, name); 1443 out: 1444 return dentry; 1445 } 1446 1447 /** 1448 * d_validate - verify dentry provided from insecure source 1449 * @dentry: The dentry alleged to be valid child of @dparent 1450 * @dparent: The parent dentry (known to be valid) 1451 * 1452 * An insecure source has sent us a dentry, here we verify it and dget() it. 1453 * This is used by ncpfs in its readdir implementation. 1454 * Zero is returned in the dentry is invalid. 1455 */ 1456 1457 int d_validate(struct dentry *dentry, struct dentry *dparent) 1458 { 1459 struct hlist_head *base; 1460 struct hlist_node *lhp; 1461 1462 /* Check whether the ptr might be valid at all.. */ 1463 if (!kmem_ptr_validate(dentry_cache, dentry)) 1464 goto out; 1465 1466 if (dentry->d_parent != dparent) 1467 goto out; 1468 1469 spin_lock(&dcache_lock); 1470 base = d_hash(dparent, dentry->d_name.hash); 1471 hlist_for_each(lhp,base) { 1472 /* hlist_for_each_entry_rcu() not required for d_hash list 1473 * as it is parsed under dcache_lock 1474 */ 1475 if (dentry == hlist_entry(lhp, struct dentry, d_hash)) { 1476 __dget_locked(dentry); 1477 spin_unlock(&dcache_lock); 1478 return 1; 1479 } 1480 } 1481 spin_unlock(&dcache_lock); 1482 out: 1483 return 0; 1484 } 1485 1486 /* 1487 * When a file is deleted, we have two options: 1488 * - turn this dentry into a negative dentry 1489 * - unhash this dentry and free it. 1490 * 1491 * Usually, we want to just turn this into 1492 * a negative dentry, but if anybody else is 1493 * currently using the dentry or the inode 1494 * we can't do that and we fall back on removing 1495 * it from the hash queues and waiting for 1496 * it to be deleted later when it has no users 1497 */ 1498 1499 /** 1500 * d_delete - delete a dentry 1501 * @dentry: The dentry to delete 1502 * 1503 * Turn the dentry into a negative dentry if possible, otherwise 1504 * remove it from the hash queues so it can be deleted later 1505 */ 1506 1507 void d_delete(struct dentry * dentry) 1508 { 1509 int isdir = 0; 1510 /* 1511 * Are we the only user? 1512 */ 1513 spin_lock(&dcache_lock); 1514 spin_lock(&dentry->d_lock); 1515 isdir = S_ISDIR(dentry->d_inode->i_mode); 1516 if (atomic_read(&dentry->d_count) == 1) { 1517 dentry_iput(dentry); 1518 fsnotify_nameremove(dentry, isdir); 1519 return; 1520 } 1521 1522 if (!d_unhashed(dentry)) 1523 __d_drop(dentry); 1524 1525 spin_unlock(&dentry->d_lock); 1526 spin_unlock(&dcache_lock); 1527 1528 fsnotify_nameremove(dentry, isdir); 1529 } 1530 1531 static void __d_rehash(struct dentry * entry, struct hlist_head *list) 1532 { 1533 1534 entry->d_flags &= ~DCACHE_UNHASHED; 1535 hlist_add_head_rcu(&entry->d_hash, list); 1536 } 1537 1538 static void _d_rehash(struct dentry * entry) 1539 { 1540 __d_rehash(entry, d_hash(entry->d_parent, entry->d_name.hash)); 1541 } 1542 1543 /** 1544 * d_rehash - add an entry back to the hash 1545 * @entry: dentry to add to the hash 1546 * 1547 * Adds a dentry to the hash according to its name. 1548 */ 1549 1550 void d_rehash(struct dentry * entry) 1551 { 1552 spin_lock(&dcache_lock); 1553 spin_lock(&entry->d_lock); 1554 _d_rehash(entry); 1555 spin_unlock(&entry->d_lock); 1556 spin_unlock(&dcache_lock); 1557 } 1558 1559 /* 1560 * When switching names, the actual string doesn't strictly have to 1561 * be preserved in the target - because we're dropping the target 1562 * anyway. As such, we can just do a simple memcpy() to copy over 1563 * the new name before we switch. 1564 * 1565 * Note that we have to be a lot more careful about getting the hash 1566 * switched - we have to switch the hash value properly even if it 1567 * then no longer matches the actual (corrupted) string of the target. 1568 * The hash value has to match the hash queue that the dentry is on.. 1569 */ 1570 static void switch_names(struct dentry *dentry, struct dentry *target) 1571 { 1572 if (dname_external(target)) { 1573 if (dname_external(dentry)) { 1574 /* 1575 * Both external: swap the pointers 1576 */ 1577 swap(target->d_name.name, dentry->d_name.name); 1578 } else { 1579 /* 1580 * dentry:internal, target:external. Steal target's 1581 * storage and make target internal. 1582 */ 1583 memcpy(target->d_iname, dentry->d_name.name, 1584 dentry->d_name.len + 1); 1585 dentry->d_name.name = target->d_name.name; 1586 target->d_name.name = target->d_iname; 1587 } 1588 } else { 1589 if (dname_external(dentry)) { 1590 /* 1591 * dentry:external, target:internal. Give dentry's 1592 * storage to target and make dentry internal 1593 */ 1594 memcpy(dentry->d_iname, target->d_name.name, 1595 target->d_name.len + 1); 1596 target->d_name.name = dentry->d_name.name; 1597 dentry->d_name.name = dentry->d_iname; 1598 } else { 1599 /* 1600 * Both are internal. Just copy target to dentry 1601 */ 1602 memcpy(dentry->d_iname, target->d_name.name, 1603 target->d_name.len + 1); 1604 dentry->d_name.len = target->d_name.len; 1605 return; 1606 } 1607 } 1608 swap(dentry->d_name.len, target->d_name.len); 1609 } 1610 1611 /* 1612 * We cannibalize "target" when moving dentry on top of it, 1613 * because it's going to be thrown away anyway. We could be more 1614 * polite about it, though. 1615 * 1616 * This forceful removal will result in ugly /proc output if 1617 * somebody holds a file open that got deleted due to a rename. 1618 * We could be nicer about the deleted file, and let it show 1619 * up under the name it had before it was deleted rather than 1620 * under the original name of the file that was moved on top of it. 1621 */ 1622 1623 /* 1624 * d_move_locked - move a dentry 1625 * @dentry: entry to move 1626 * @target: new dentry 1627 * 1628 * Update the dcache to reflect the move of a file name. Negative 1629 * dcache entries should not be moved in this way. 1630 */ 1631 static void d_move_locked(struct dentry * dentry, struct dentry * target) 1632 { 1633 struct hlist_head *list; 1634 1635 if (!dentry->d_inode) 1636 printk(KERN_WARNING "VFS: moving negative dcache entry\n"); 1637 1638 write_seqlock(&rename_lock); 1639 /* 1640 * XXXX: do we really need to take target->d_lock? 1641 */ 1642 if (target < dentry) { 1643 spin_lock(&target->d_lock); 1644 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED); 1645 } else { 1646 spin_lock(&dentry->d_lock); 1647 spin_lock_nested(&target->d_lock, DENTRY_D_LOCK_NESTED); 1648 } 1649 1650 /* Move the dentry to the target hash queue, if on different bucket */ 1651 if (d_unhashed(dentry)) 1652 goto already_unhashed; 1653 1654 hlist_del_rcu(&dentry->d_hash); 1655 1656 already_unhashed: 1657 list = d_hash(target->d_parent, target->d_name.hash); 1658 __d_rehash(dentry, list); 1659 1660 /* Unhash the target: dput() will then get rid of it */ 1661 __d_drop(target); 1662 1663 list_del(&dentry->d_u.d_child); 1664 list_del(&target->d_u.d_child); 1665 1666 /* Switch the names.. */ 1667 switch_names(dentry, target); 1668 swap(dentry->d_name.hash, target->d_name.hash); 1669 1670 /* ... and switch the parents */ 1671 if (IS_ROOT(dentry)) { 1672 dentry->d_parent = target->d_parent; 1673 target->d_parent = target; 1674 INIT_LIST_HEAD(&target->d_u.d_child); 1675 } else { 1676 swap(dentry->d_parent, target->d_parent); 1677 1678 /* And add them back to the (new) parent lists */ 1679 list_add(&target->d_u.d_child, &target->d_parent->d_subdirs); 1680 } 1681 1682 list_add(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs); 1683 spin_unlock(&target->d_lock); 1684 fsnotify_d_move(dentry); 1685 spin_unlock(&dentry->d_lock); 1686 write_sequnlock(&rename_lock); 1687 } 1688 1689 /** 1690 * d_move - move a dentry 1691 * @dentry: entry to move 1692 * @target: new dentry 1693 * 1694 * Update the dcache to reflect the move of a file name. Negative 1695 * dcache entries should not be moved in this way. 1696 */ 1697 1698 void d_move(struct dentry * dentry, struct dentry * target) 1699 { 1700 spin_lock(&dcache_lock); 1701 d_move_locked(dentry, target); 1702 spin_unlock(&dcache_lock); 1703 } 1704 1705 /** 1706 * d_ancestor - search for an ancestor 1707 * @p1: ancestor dentry 1708 * @p2: child dentry 1709 * 1710 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is 1711 * an ancestor of p2, else NULL. 1712 */ 1713 struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2) 1714 { 1715 struct dentry *p; 1716 1717 for (p = p2; !IS_ROOT(p); p = p->d_parent) { 1718 if (p->d_parent == p1) 1719 return p; 1720 } 1721 return NULL; 1722 } 1723 1724 /* 1725 * This helper attempts to cope with remotely renamed directories 1726 * 1727 * It assumes that the caller is already holding 1728 * dentry->d_parent->d_inode->i_mutex and the dcache_lock 1729 * 1730 * Note: If ever the locking in lock_rename() changes, then please 1731 * remember to update this too... 1732 */ 1733 static struct dentry *__d_unalias(struct dentry *dentry, struct dentry *alias) 1734 __releases(dcache_lock) 1735 { 1736 struct mutex *m1 = NULL, *m2 = NULL; 1737 struct dentry *ret; 1738 1739 /* If alias and dentry share a parent, then no extra locks required */ 1740 if (alias->d_parent == dentry->d_parent) 1741 goto out_unalias; 1742 1743 /* Check for loops */ 1744 ret = ERR_PTR(-ELOOP); 1745 if (d_ancestor(alias, dentry)) 1746 goto out_err; 1747 1748 /* See lock_rename() */ 1749 ret = ERR_PTR(-EBUSY); 1750 if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex)) 1751 goto out_err; 1752 m1 = &dentry->d_sb->s_vfs_rename_mutex; 1753 if (!mutex_trylock(&alias->d_parent->d_inode->i_mutex)) 1754 goto out_err; 1755 m2 = &alias->d_parent->d_inode->i_mutex; 1756 out_unalias: 1757 d_move_locked(alias, dentry); 1758 ret = alias; 1759 out_err: 1760 spin_unlock(&dcache_lock); 1761 if (m2) 1762 mutex_unlock(m2); 1763 if (m1) 1764 mutex_unlock(m1); 1765 return ret; 1766 } 1767 1768 /* 1769 * Prepare an anonymous dentry for life in the superblock's dentry tree as a 1770 * named dentry in place of the dentry to be replaced. 1771 */ 1772 static void __d_materialise_dentry(struct dentry *dentry, struct dentry *anon) 1773 { 1774 struct dentry *dparent, *aparent; 1775 1776 switch_names(dentry, anon); 1777 swap(dentry->d_name.hash, anon->d_name.hash); 1778 1779 dparent = dentry->d_parent; 1780 aparent = anon->d_parent; 1781 1782 dentry->d_parent = (aparent == anon) ? dentry : aparent; 1783 list_del(&dentry->d_u.d_child); 1784 if (!IS_ROOT(dentry)) 1785 list_add(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs); 1786 else 1787 INIT_LIST_HEAD(&dentry->d_u.d_child); 1788 1789 anon->d_parent = (dparent == dentry) ? anon : dparent; 1790 list_del(&anon->d_u.d_child); 1791 if (!IS_ROOT(anon)) 1792 list_add(&anon->d_u.d_child, &anon->d_parent->d_subdirs); 1793 else 1794 INIT_LIST_HEAD(&anon->d_u.d_child); 1795 1796 anon->d_flags &= ~DCACHE_DISCONNECTED; 1797 } 1798 1799 /** 1800 * d_materialise_unique - introduce an inode into the tree 1801 * @dentry: candidate dentry 1802 * @inode: inode to bind to the dentry, to which aliases may be attached 1803 * 1804 * Introduces an dentry into the tree, substituting an extant disconnected 1805 * root directory alias in its place if there is one 1806 */ 1807 struct dentry *d_materialise_unique(struct dentry *dentry, struct inode *inode) 1808 { 1809 struct dentry *actual; 1810 1811 BUG_ON(!d_unhashed(dentry)); 1812 1813 spin_lock(&dcache_lock); 1814 1815 if (!inode) { 1816 actual = dentry; 1817 __d_instantiate(dentry, NULL); 1818 goto found_lock; 1819 } 1820 1821 if (S_ISDIR(inode->i_mode)) { 1822 struct dentry *alias; 1823 1824 /* Does an aliased dentry already exist? */ 1825 alias = __d_find_alias(inode, 0); 1826 if (alias) { 1827 actual = alias; 1828 /* Is this an anonymous mountpoint that we could splice 1829 * into our tree? */ 1830 if (IS_ROOT(alias)) { 1831 spin_lock(&alias->d_lock); 1832 __d_materialise_dentry(dentry, alias); 1833 __d_drop(alias); 1834 goto found; 1835 } 1836 /* Nope, but we must(!) avoid directory aliasing */ 1837 actual = __d_unalias(dentry, alias); 1838 if (IS_ERR(actual)) 1839 dput(alias); 1840 goto out_nolock; 1841 } 1842 } 1843 1844 /* Add a unique reference */ 1845 actual = __d_instantiate_unique(dentry, inode); 1846 if (!actual) 1847 actual = dentry; 1848 else if (unlikely(!d_unhashed(actual))) 1849 goto shouldnt_be_hashed; 1850 1851 found_lock: 1852 spin_lock(&actual->d_lock); 1853 found: 1854 _d_rehash(actual); 1855 spin_unlock(&actual->d_lock); 1856 spin_unlock(&dcache_lock); 1857 out_nolock: 1858 if (actual == dentry) { 1859 security_d_instantiate(dentry, inode); 1860 return NULL; 1861 } 1862 1863 iput(inode); 1864 return actual; 1865 1866 shouldnt_be_hashed: 1867 spin_unlock(&dcache_lock); 1868 BUG(); 1869 } 1870 1871 static int prepend(char **buffer, int *buflen, const char *str, int namelen) 1872 { 1873 *buflen -= namelen; 1874 if (*buflen < 0) 1875 return -ENAMETOOLONG; 1876 *buffer -= namelen; 1877 memcpy(*buffer, str, namelen); 1878 return 0; 1879 } 1880 1881 static int prepend_name(char **buffer, int *buflen, struct qstr *name) 1882 { 1883 return prepend(buffer, buflen, name->name, name->len); 1884 } 1885 1886 /** 1887 * __d_path - return the path of a dentry 1888 * @path: the dentry/vfsmount to report 1889 * @root: root vfsmnt/dentry (may be modified by this function) 1890 * @buffer: buffer to return value in 1891 * @buflen: buffer length 1892 * 1893 * Convert a dentry into an ASCII path name. If the entry has been deleted 1894 * the string " (deleted)" is appended. Note that this is ambiguous. 1895 * 1896 * Returns a pointer into the buffer or an error code if the 1897 * path was too long. 1898 * 1899 * "buflen" should be positive. Caller holds the dcache_lock. 1900 * 1901 * If path is not reachable from the supplied root, then the value of 1902 * root is changed (without modifying refcounts). 1903 */ 1904 char *__d_path(const struct path *path, struct path *root, 1905 char *buffer, int buflen) 1906 { 1907 struct dentry *dentry = path->dentry; 1908 struct vfsmount *vfsmnt = path->mnt; 1909 char *end = buffer + buflen; 1910 char *retval; 1911 1912 spin_lock(&vfsmount_lock); 1913 prepend(&end, &buflen, "\0", 1); 1914 if (d_unlinked(dentry) && 1915 (prepend(&end, &buflen, " (deleted)", 10) != 0)) 1916 goto Elong; 1917 1918 if (buflen < 1) 1919 goto Elong; 1920 /* Get '/' right */ 1921 retval = end-1; 1922 *retval = '/'; 1923 1924 for (;;) { 1925 struct dentry * parent; 1926 1927 if (dentry == root->dentry && vfsmnt == root->mnt) 1928 break; 1929 if (dentry == vfsmnt->mnt_root || IS_ROOT(dentry)) { 1930 /* Global root? */ 1931 if (vfsmnt->mnt_parent == vfsmnt) { 1932 goto global_root; 1933 } 1934 dentry = vfsmnt->mnt_mountpoint; 1935 vfsmnt = vfsmnt->mnt_parent; 1936 continue; 1937 } 1938 parent = dentry->d_parent; 1939 prefetch(parent); 1940 if ((prepend_name(&end, &buflen, &dentry->d_name) != 0) || 1941 (prepend(&end, &buflen, "/", 1) != 0)) 1942 goto Elong; 1943 retval = end; 1944 dentry = parent; 1945 } 1946 1947 out: 1948 spin_unlock(&vfsmount_lock); 1949 return retval; 1950 1951 global_root: 1952 retval += 1; /* hit the slash */ 1953 if (prepend_name(&retval, &buflen, &dentry->d_name) != 0) 1954 goto Elong; 1955 root->mnt = vfsmnt; 1956 root->dentry = dentry; 1957 goto out; 1958 1959 Elong: 1960 retval = ERR_PTR(-ENAMETOOLONG); 1961 goto out; 1962 } 1963 1964 /** 1965 * d_path - return the path of a dentry 1966 * @path: path to report 1967 * @buf: buffer to return value in 1968 * @buflen: buffer length 1969 * 1970 * Convert a dentry into an ASCII path name. If the entry has been deleted 1971 * the string " (deleted)" is appended. Note that this is ambiguous. 1972 * 1973 * Returns a pointer into the buffer or an error code if the path was 1974 * too long. Note: Callers should use the returned pointer, not the passed 1975 * in buffer, to use the name! The implementation often starts at an offset 1976 * into the buffer, and may leave 0 bytes at the start. 1977 * 1978 * "buflen" should be positive. 1979 */ 1980 char *d_path(const struct path *path, char *buf, int buflen) 1981 { 1982 char *res; 1983 struct path root; 1984 struct path tmp; 1985 1986 /* 1987 * We have various synthetic filesystems that never get mounted. On 1988 * these filesystems dentries are never used for lookup purposes, and 1989 * thus don't need to be hashed. They also don't need a name until a 1990 * user wants to identify the object in /proc/pid/fd/. The little hack 1991 * below allows us to generate a name for these objects on demand: 1992 */ 1993 if (path->dentry->d_op && path->dentry->d_op->d_dname) 1994 return path->dentry->d_op->d_dname(path->dentry, buf, buflen); 1995 1996 read_lock(¤t->fs->lock); 1997 root = current->fs->root; 1998 path_get(&root); 1999 read_unlock(¤t->fs->lock); 2000 spin_lock(&dcache_lock); 2001 tmp = root; 2002 res = __d_path(path, &tmp, buf, buflen); 2003 spin_unlock(&dcache_lock); 2004 path_put(&root); 2005 return res; 2006 } 2007 2008 /* 2009 * Helper function for dentry_operations.d_dname() members 2010 */ 2011 char *dynamic_dname(struct dentry *dentry, char *buffer, int buflen, 2012 const char *fmt, ...) 2013 { 2014 va_list args; 2015 char temp[64]; 2016 int sz; 2017 2018 va_start(args, fmt); 2019 sz = vsnprintf(temp, sizeof(temp), fmt, args) + 1; 2020 va_end(args); 2021 2022 if (sz > sizeof(temp) || sz > buflen) 2023 return ERR_PTR(-ENAMETOOLONG); 2024 2025 buffer += buflen - sz; 2026 return memcpy(buffer, temp, sz); 2027 } 2028 2029 /* 2030 * Write full pathname from the root of the filesystem into the buffer. 2031 */ 2032 char *dentry_path(struct dentry *dentry, char *buf, int buflen) 2033 { 2034 char *end = buf + buflen; 2035 char *retval; 2036 2037 spin_lock(&dcache_lock); 2038 prepend(&end, &buflen, "\0", 1); 2039 if (d_unlinked(dentry) && 2040 (prepend(&end, &buflen, "//deleted", 9) != 0)) 2041 goto Elong; 2042 if (buflen < 1) 2043 goto Elong; 2044 /* Get '/' right */ 2045 retval = end-1; 2046 *retval = '/'; 2047 2048 while (!IS_ROOT(dentry)) { 2049 struct dentry *parent = dentry->d_parent; 2050 2051 prefetch(parent); 2052 if ((prepend_name(&end, &buflen, &dentry->d_name) != 0) || 2053 (prepend(&end, &buflen, "/", 1) != 0)) 2054 goto Elong; 2055 2056 retval = end; 2057 dentry = parent; 2058 } 2059 spin_unlock(&dcache_lock); 2060 return retval; 2061 Elong: 2062 spin_unlock(&dcache_lock); 2063 return ERR_PTR(-ENAMETOOLONG); 2064 } 2065 2066 /* 2067 * NOTE! The user-level library version returns a 2068 * character pointer. The kernel system call just 2069 * returns the length of the buffer filled (which 2070 * includes the ending '\0' character), or a negative 2071 * error value. So libc would do something like 2072 * 2073 * char *getcwd(char * buf, size_t size) 2074 * { 2075 * int retval; 2076 * 2077 * retval = sys_getcwd(buf, size); 2078 * if (retval >= 0) 2079 * return buf; 2080 * errno = -retval; 2081 * return NULL; 2082 * } 2083 */ 2084 SYSCALL_DEFINE2(getcwd, char __user *, buf, unsigned long, size) 2085 { 2086 int error; 2087 struct path pwd, root; 2088 char *page = (char *) __get_free_page(GFP_USER); 2089 2090 if (!page) 2091 return -ENOMEM; 2092 2093 read_lock(¤t->fs->lock); 2094 pwd = current->fs->pwd; 2095 path_get(&pwd); 2096 root = current->fs->root; 2097 path_get(&root); 2098 read_unlock(¤t->fs->lock); 2099 2100 error = -ENOENT; 2101 spin_lock(&dcache_lock); 2102 if (!d_unlinked(pwd.dentry)) { 2103 unsigned long len; 2104 struct path tmp = root; 2105 char * cwd; 2106 2107 cwd = __d_path(&pwd, &tmp, page, PAGE_SIZE); 2108 spin_unlock(&dcache_lock); 2109 2110 error = PTR_ERR(cwd); 2111 if (IS_ERR(cwd)) 2112 goto out; 2113 2114 error = -ERANGE; 2115 len = PAGE_SIZE + page - cwd; 2116 if (len <= size) { 2117 error = len; 2118 if (copy_to_user(buf, cwd, len)) 2119 error = -EFAULT; 2120 } 2121 } else 2122 spin_unlock(&dcache_lock); 2123 2124 out: 2125 path_put(&pwd); 2126 path_put(&root); 2127 free_page((unsigned long) page); 2128 return error; 2129 } 2130 2131 /* 2132 * Test whether new_dentry is a subdirectory of old_dentry. 2133 * 2134 * Trivially implemented using the dcache structure 2135 */ 2136 2137 /** 2138 * is_subdir - is new dentry a subdirectory of old_dentry 2139 * @new_dentry: new dentry 2140 * @old_dentry: old dentry 2141 * 2142 * Returns 1 if new_dentry is a subdirectory of the parent (at any depth). 2143 * Returns 0 otherwise. 2144 * Caller must ensure that "new_dentry" is pinned before calling is_subdir() 2145 */ 2146 2147 int is_subdir(struct dentry *new_dentry, struct dentry *old_dentry) 2148 { 2149 int result; 2150 unsigned long seq; 2151 2152 if (new_dentry == old_dentry) 2153 return 1; 2154 2155 /* 2156 * Need rcu_readlock to protect against the d_parent trashing 2157 * due to d_move 2158 */ 2159 rcu_read_lock(); 2160 do { 2161 /* for restarting inner loop in case of seq retry */ 2162 seq = read_seqbegin(&rename_lock); 2163 if (d_ancestor(old_dentry, new_dentry)) 2164 result = 1; 2165 else 2166 result = 0; 2167 } while (read_seqretry(&rename_lock, seq)); 2168 rcu_read_unlock(); 2169 2170 return result; 2171 } 2172 2173 void d_genocide(struct dentry *root) 2174 { 2175 struct dentry *this_parent = root; 2176 struct list_head *next; 2177 2178 spin_lock(&dcache_lock); 2179 repeat: 2180 next = this_parent->d_subdirs.next; 2181 resume: 2182 while (next != &this_parent->d_subdirs) { 2183 struct list_head *tmp = next; 2184 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child); 2185 next = tmp->next; 2186 if (d_unhashed(dentry)||!dentry->d_inode) 2187 continue; 2188 if (!list_empty(&dentry->d_subdirs)) { 2189 this_parent = dentry; 2190 goto repeat; 2191 } 2192 atomic_dec(&dentry->d_count); 2193 } 2194 if (this_parent != root) { 2195 next = this_parent->d_u.d_child.next; 2196 atomic_dec(&this_parent->d_count); 2197 this_parent = this_parent->d_parent; 2198 goto resume; 2199 } 2200 spin_unlock(&dcache_lock); 2201 } 2202 2203 /** 2204 * find_inode_number - check for dentry with name 2205 * @dir: directory to check 2206 * @name: Name to find. 2207 * 2208 * Check whether a dentry already exists for the given name, 2209 * and return the inode number if it has an inode. Otherwise 2210 * 0 is returned. 2211 * 2212 * This routine is used to post-process directory listings for 2213 * filesystems using synthetic inode numbers, and is necessary 2214 * to keep getcwd() working. 2215 */ 2216 2217 ino_t find_inode_number(struct dentry *dir, struct qstr *name) 2218 { 2219 struct dentry * dentry; 2220 ino_t ino = 0; 2221 2222 dentry = d_hash_and_lookup(dir, name); 2223 if (dentry) { 2224 if (dentry->d_inode) 2225 ino = dentry->d_inode->i_ino; 2226 dput(dentry); 2227 } 2228 return ino; 2229 } 2230 2231 static __initdata unsigned long dhash_entries; 2232 static int __init set_dhash_entries(char *str) 2233 { 2234 if (!str) 2235 return 0; 2236 dhash_entries = simple_strtoul(str, &str, 0); 2237 return 1; 2238 } 2239 __setup("dhash_entries=", set_dhash_entries); 2240 2241 static void __init dcache_init_early(void) 2242 { 2243 int loop; 2244 2245 /* If hashes are distributed across NUMA nodes, defer 2246 * hash allocation until vmalloc space is available. 2247 */ 2248 if (hashdist) 2249 return; 2250 2251 dentry_hashtable = 2252 alloc_large_system_hash("Dentry cache", 2253 sizeof(struct hlist_head), 2254 dhash_entries, 2255 13, 2256 HASH_EARLY, 2257 &d_hash_shift, 2258 &d_hash_mask, 2259 0); 2260 2261 for (loop = 0; loop < (1 << d_hash_shift); loop++) 2262 INIT_HLIST_HEAD(&dentry_hashtable[loop]); 2263 } 2264 2265 static void __init dcache_init(void) 2266 { 2267 int loop; 2268 2269 /* 2270 * A constructor could be added for stable state like the lists, 2271 * but it is probably not worth it because of the cache nature 2272 * of the dcache. 2273 */ 2274 dentry_cache = KMEM_CACHE(dentry, 2275 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD); 2276 2277 register_shrinker(&dcache_shrinker); 2278 2279 /* Hash may have been set up in dcache_init_early */ 2280 if (!hashdist) 2281 return; 2282 2283 dentry_hashtable = 2284 alloc_large_system_hash("Dentry cache", 2285 sizeof(struct hlist_head), 2286 dhash_entries, 2287 13, 2288 0, 2289 &d_hash_shift, 2290 &d_hash_mask, 2291 0); 2292 2293 for (loop = 0; loop < (1 << d_hash_shift); loop++) 2294 INIT_HLIST_HEAD(&dentry_hashtable[loop]); 2295 } 2296 2297 /* SLAB cache for __getname() consumers */ 2298 struct kmem_cache *names_cachep __read_mostly; 2299 2300 EXPORT_SYMBOL(d_genocide); 2301 2302 void __init vfs_caches_init_early(void) 2303 { 2304 dcache_init_early(); 2305 inode_init_early(); 2306 } 2307 2308 void __init vfs_caches_init(unsigned long mempages) 2309 { 2310 unsigned long reserve; 2311 2312 /* Base hash sizes on available memory, with a reserve equal to 2313 150% of current kernel size */ 2314 2315 reserve = min((mempages - nr_free_pages()) * 3/2, mempages - 1); 2316 mempages -= reserve; 2317 2318 names_cachep = kmem_cache_create("names_cache", PATH_MAX, 0, 2319 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL); 2320 2321 dcache_init(); 2322 inode_init(); 2323 files_init(mempages); 2324 mnt_init(); 2325 bdev_cache_init(); 2326 chrdev_init(); 2327 } 2328 2329 EXPORT_SYMBOL(d_alloc); 2330 EXPORT_SYMBOL(d_alloc_root); 2331 EXPORT_SYMBOL(d_delete); 2332 EXPORT_SYMBOL(d_find_alias); 2333 EXPORT_SYMBOL(d_instantiate); 2334 EXPORT_SYMBOL(d_invalidate); 2335 EXPORT_SYMBOL(d_lookup); 2336 EXPORT_SYMBOL(d_move); 2337 EXPORT_SYMBOL_GPL(d_materialise_unique); 2338 EXPORT_SYMBOL(d_path); 2339 EXPORT_SYMBOL(d_prune_aliases); 2340 EXPORT_SYMBOL(d_rehash); 2341 EXPORT_SYMBOL(d_splice_alias); 2342 EXPORT_SYMBOL(d_add_ci); 2343 EXPORT_SYMBOL(d_validate); 2344 EXPORT_SYMBOL(dget_locked); 2345 EXPORT_SYMBOL(dput); 2346 EXPORT_SYMBOL(find_inode_number); 2347 EXPORT_SYMBOL(have_submounts); 2348 EXPORT_SYMBOL(names_cachep); 2349 EXPORT_SYMBOL(shrink_dcache_parent); 2350 EXPORT_SYMBOL(shrink_dcache_sb); 2351