xref: /openbmc/linux/fs/dcache.c (revision e1f7c9ee)
1 /*
2  * fs/dcache.c
3  *
4  * Complete reimplementation
5  * (C) 1997 Thomas Schoebel-Theuer,
6  * with heavy changes by Linus Torvalds
7  */
8 
9 /*
10  * Notes on the allocation strategy:
11  *
12  * The dcache is a master of the icache - whenever a dcache entry
13  * exists, the inode will always exist. "iput()" is done either when
14  * the dcache entry is deleted or garbage collected.
15  */
16 
17 #include <linux/syscalls.h>
18 #include <linux/string.h>
19 #include <linux/mm.h>
20 #include <linux/fs.h>
21 #include <linux/fsnotify.h>
22 #include <linux/slab.h>
23 #include <linux/init.h>
24 #include <linux/hash.h>
25 #include <linux/cache.h>
26 #include <linux/export.h>
27 #include <linux/mount.h>
28 #include <linux/file.h>
29 #include <asm/uaccess.h>
30 #include <linux/security.h>
31 #include <linux/seqlock.h>
32 #include <linux/swap.h>
33 #include <linux/bootmem.h>
34 #include <linux/fs_struct.h>
35 #include <linux/hardirq.h>
36 #include <linux/bit_spinlock.h>
37 #include <linux/rculist_bl.h>
38 #include <linux/prefetch.h>
39 #include <linux/ratelimit.h>
40 #include <linux/list_lru.h>
41 #include "internal.h"
42 #include "mount.h"
43 
44 /*
45  * Usage:
46  * dcache->d_inode->i_lock protects:
47  *   - i_dentry, d_alias, d_inode of aliases
48  * dcache_hash_bucket lock protects:
49  *   - the dcache hash table
50  * s_anon bl list spinlock protects:
51  *   - the s_anon list (see __d_drop)
52  * dentry->d_sb->s_dentry_lru_lock protects:
53  *   - the dcache lru lists and counters
54  * d_lock protects:
55  *   - d_flags
56  *   - d_name
57  *   - d_lru
58  *   - d_count
59  *   - d_unhashed()
60  *   - d_parent and d_subdirs
61  *   - childrens' d_child and d_parent
62  *   - d_alias, d_inode
63  *
64  * Ordering:
65  * dentry->d_inode->i_lock
66  *   dentry->d_lock
67  *     dentry->d_sb->s_dentry_lru_lock
68  *     dcache_hash_bucket lock
69  *     s_anon lock
70  *
71  * If there is an ancestor relationship:
72  * dentry->d_parent->...->d_parent->d_lock
73  *   ...
74  *     dentry->d_parent->d_lock
75  *       dentry->d_lock
76  *
77  * If no ancestor relationship:
78  * if (dentry1 < dentry2)
79  *   dentry1->d_lock
80  *     dentry2->d_lock
81  */
82 int sysctl_vfs_cache_pressure __read_mostly = 100;
83 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
84 
85 __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
86 
87 EXPORT_SYMBOL(rename_lock);
88 
89 static struct kmem_cache *dentry_cache __read_mostly;
90 
91 /*
92  * This is the single most critical data structure when it comes
93  * to the dcache: the hashtable for lookups. Somebody should try
94  * to make this good - I've just made it work.
95  *
96  * This hash-function tries to avoid losing too many bits of hash
97  * information, yet avoid using a prime hash-size or similar.
98  */
99 
100 static unsigned int d_hash_mask __read_mostly;
101 static unsigned int d_hash_shift __read_mostly;
102 
103 static struct hlist_bl_head *dentry_hashtable __read_mostly;
104 
105 static inline struct hlist_bl_head *d_hash(const struct dentry *parent,
106 					unsigned int hash)
107 {
108 	hash += (unsigned long) parent / L1_CACHE_BYTES;
109 	return dentry_hashtable + hash_32(hash, d_hash_shift);
110 }
111 
112 /* Statistics gathering. */
113 struct dentry_stat_t dentry_stat = {
114 	.age_limit = 45,
115 };
116 
117 static DEFINE_PER_CPU(long, nr_dentry);
118 static DEFINE_PER_CPU(long, nr_dentry_unused);
119 
120 #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
121 
122 /*
123  * Here we resort to our own counters instead of using generic per-cpu counters
124  * for consistency with what the vfs inode code does. We are expected to harvest
125  * better code and performance by having our own specialized counters.
126  *
127  * Please note that the loop is done over all possible CPUs, not over all online
128  * CPUs. The reason for this is that we don't want to play games with CPUs going
129  * on and off. If one of them goes off, we will just keep their counters.
130  *
131  * glommer: See cffbc8a for details, and if you ever intend to change this,
132  * please update all vfs counters to match.
133  */
134 static long get_nr_dentry(void)
135 {
136 	int i;
137 	long sum = 0;
138 	for_each_possible_cpu(i)
139 		sum += per_cpu(nr_dentry, i);
140 	return sum < 0 ? 0 : sum;
141 }
142 
143 static long get_nr_dentry_unused(void)
144 {
145 	int i;
146 	long sum = 0;
147 	for_each_possible_cpu(i)
148 		sum += per_cpu(nr_dentry_unused, i);
149 	return sum < 0 ? 0 : sum;
150 }
151 
152 int proc_nr_dentry(struct ctl_table *table, int write, void __user *buffer,
153 		   size_t *lenp, loff_t *ppos)
154 {
155 	dentry_stat.nr_dentry = get_nr_dentry();
156 	dentry_stat.nr_unused = get_nr_dentry_unused();
157 	return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
158 }
159 #endif
160 
161 /*
162  * Compare 2 name strings, return 0 if they match, otherwise non-zero.
163  * The strings are both count bytes long, and count is non-zero.
164  */
165 #ifdef CONFIG_DCACHE_WORD_ACCESS
166 
167 #include <asm/word-at-a-time.h>
168 /*
169  * NOTE! 'cs' and 'scount' come from a dentry, so it has a
170  * aligned allocation for this particular component. We don't
171  * strictly need the load_unaligned_zeropad() safety, but it
172  * doesn't hurt either.
173  *
174  * In contrast, 'ct' and 'tcount' can be from a pathname, and do
175  * need the careful unaligned handling.
176  */
177 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
178 {
179 	unsigned long a,b,mask;
180 
181 	for (;;) {
182 		a = *(unsigned long *)cs;
183 		b = load_unaligned_zeropad(ct);
184 		if (tcount < sizeof(unsigned long))
185 			break;
186 		if (unlikely(a != b))
187 			return 1;
188 		cs += sizeof(unsigned long);
189 		ct += sizeof(unsigned long);
190 		tcount -= sizeof(unsigned long);
191 		if (!tcount)
192 			return 0;
193 	}
194 	mask = bytemask_from_count(tcount);
195 	return unlikely(!!((a ^ b) & mask));
196 }
197 
198 #else
199 
200 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
201 {
202 	do {
203 		if (*cs != *ct)
204 			return 1;
205 		cs++;
206 		ct++;
207 		tcount--;
208 	} while (tcount);
209 	return 0;
210 }
211 
212 #endif
213 
214 static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount)
215 {
216 	const unsigned char *cs;
217 	/*
218 	 * Be careful about RCU walk racing with rename:
219 	 * use ACCESS_ONCE to fetch the name pointer.
220 	 *
221 	 * NOTE! Even if a rename will mean that the length
222 	 * was not loaded atomically, we don't care. The
223 	 * RCU walk will check the sequence count eventually,
224 	 * and catch it. And we won't overrun the buffer,
225 	 * because we're reading the name pointer atomically,
226 	 * and a dentry name is guaranteed to be properly
227 	 * terminated with a NUL byte.
228 	 *
229 	 * End result: even if 'len' is wrong, we'll exit
230 	 * early because the data cannot match (there can
231 	 * be no NUL in the ct/tcount data)
232 	 */
233 	cs = ACCESS_ONCE(dentry->d_name.name);
234 	smp_read_barrier_depends();
235 	return dentry_string_cmp(cs, ct, tcount);
236 }
237 
238 struct external_name {
239 	union {
240 		atomic_t count;
241 		struct rcu_head head;
242 	} u;
243 	unsigned char name[];
244 };
245 
246 static inline struct external_name *external_name(struct dentry *dentry)
247 {
248 	return container_of(dentry->d_name.name, struct external_name, name[0]);
249 }
250 
251 static void __d_free(struct rcu_head *head)
252 {
253 	struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
254 
255 	WARN_ON(!hlist_unhashed(&dentry->d_alias));
256 	kmem_cache_free(dentry_cache, dentry);
257 }
258 
259 static void __d_free_external(struct rcu_head *head)
260 {
261 	struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
262 	WARN_ON(!hlist_unhashed(&dentry->d_alias));
263 	kfree(external_name(dentry));
264 	kmem_cache_free(dentry_cache, dentry);
265 }
266 
267 static inline int dname_external(const struct dentry *dentry)
268 {
269 	return dentry->d_name.name != dentry->d_iname;
270 }
271 
272 static void dentry_free(struct dentry *dentry)
273 {
274 	if (unlikely(dname_external(dentry))) {
275 		struct external_name *p = external_name(dentry);
276 		if (likely(atomic_dec_and_test(&p->u.count))) {
277 			call_rcu(&dentry->d_u.d_rcu, __d_free_external);
278 			return;
279 		}
280 	}
281 	/* if dentry was never visible to RCU, immediate free is OK */
282 	if (!(dentry->d_flags & DCACHE_RCUACCESS))
283 		__d_free(&dentry->d_u.d_rcu);
284 	else
285 		call_rcu(&dentry->d_u.d_rcu, __d_free);
286 }
287 
288 /**
289  * dentry_rcuwalk_barrier - invalidate in-progress rcu-walk lookups
290  * @dentry: the target dentry
291  * After this call, in-progress rcu-walk path lookup will fail. This
292  * should be called after unhashing, and after changing d_inode (if
293  * the dentry has not already been unhashed).
294  */
295 static inline void dentry_rcuwalk_barrier(struct dentry *dentry)
296 {
297 	assert_spin_locked(&dentry->d_lock);
298 	/* Go through a barrier */
299 	write_seqcount_barrier(&dentry->d_seq);
300 }
301 
302 /*
303  * Release the dentry's inode, using the filesystem
304  * d_iput() operation if defined. Dentry has no refcount
305  * and is unhashed.
306  */
307 static void dentry_iput(struct dentry * dentry)
308 	__releases(dentry->d_lock)
309 	__releases(dentry->d_inode->i_lock)
310 {
311 	struct inode *inode = dentry->d_inode;
312 	if (inode) {
313 		dentry->d_inode = NULL;
314 		hlist_del_init(&dentry->d_alias);
315 		spin_unlock(&dentry->d_lock);
316 		spin_unlock(&inode->i_lock);
317 		if (!inode->i_nlink)
318 			fsnotify_inoderemove(inode);
319 		if (dentry->d_op && dentry->d_op->d_iput)
320 			dentry->d_op->d_iput(dentry, inode);
321 		else
322 			iput(inode);
323 	} else {
324 		spin_unlock(&dentry->d_lock);
325 	}
326 }
327 
328 /*
329  * Release the dentry's inode, using the filesystem
330  * d_iput() operation if defined. dentry remains in-use.
331  */
332 static void dentry_unlink_inode(struct dentry * dentry)
333 	__releases(dentry->d_lock)
334 	__releases(dentry->d_inode->i_lock)
335 {
336 	struct inode *inode = dentry->d_inode;
337 	__d_clear_type(dentry);
338 	dentry->d_inode = NULL;
339 	hlist_del_init(&dentry->d_alias);
340 	dentry_rcuwalk_barrier(dentry);
341 	spin_unlock(&dentry->d_lock);
342 	spin_unlock(&inode->i_lock);
343 	if (!inode->i_nlink)
344 		fsnotify_inoderemove(inode);
345 	if (dentry->d_op && dentry->d_op->d_iput)
346 		dentry->d_op->d_iput(dentry, inode);
347 	else
348 		iput(inode);
349 }
350 
351 /*
352  * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry
353  * is in use - which includes both the "real" per-superblock
354  * LRU list _and_ the DCACHE_SHRINK_LIST use.
355  *
356  * The DCACHE_SHRINK_LIST bit is set whenever the dentry is
357  * on the shrink list (ie not on the superblock LRU list).
358  *
359  * The per-cpu "nr_dentry_unused" counters are updated with
360  * the DCACHE_LRU_LIST bit.
361  *
362  * These helper functions make sure we always follow the
363  * rules. d_lock must be held by the caller.
364  */
365 #define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x))
366 static void d_lru_add(struct dentry *dentry)
367 {
368 	D_FLAG_VERIFY(dentry, 0);
369 	dentry->d_flags |= DCACHE_LRU_LIST;
370 	this_cpu_inc(nr_dentry_unused);
371 	WARN_ON_ONCE(!list_lru_add(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
372 }
373 
374 static void d_lru_del(struct dentry *dentry)
375 {
376 	D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
377 	dentry->d_flags &= ~DCACHE_LRU_LIST;
378 	this_cpu_dec(nr_dentry_unused);
379 	WARN_ON_ONCE(!list_lru_del(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
380 }
381 
382 static void d_shrink_del(struct dentry *dentry)
383 {
384 	D_FLAG_VERIFY(dentry, DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
385 	list_del_init(&dentry->d_lru);
386 	dentry->d_flags &= ~(DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
387 	this_cpu_dec(nr_dentry_unused);
388 }
389 
390 static void d_shrink_add(struct dentry *dentry, struct list_head *list)
391 {
392 	D_FLAG_VERIFY(dentry, 0);
393 	list_add(&dentry->d_lru, list);
394 	dentry->d_flags |= DCACHE_SHRINK_LIST | DCACHE_LRU_LIST;
395 	this_cpu_inc(nr_dentry_unused);
396 }
397 
398 /*
399  * These can only be called under the global LRU lock, ie during the
400  * callback for freeing the LRU list. "isolate" removes it from the
401  * LRU lists entirely, while shrink_move moves it to the indicated
402  * private list.
403  */
404 static void d_lru_isolate(struct dentry *dentry)
405 {
406 	D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
407 	dentry->d_flags &= ~DCACHE_LRU_LIST;
408 	this_cpu_dec(nr_dentry_unused);
409 	list_del_init(&dentry->d_lru);
410 }
411 
412 static void d_lru_shrink_move(struct dentry *dentry, struct list_head *list)
413 {
414 	D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
415 	dentry->d_flags |= DCACHE_SHRINK_LIST;
416 	list_move_tail(&dentry->d_lru, list);
417 }
418 
419 /*
420  * dentry_lru_(add|del)_list) must be called with d_lock held.
421  */
422 static void dentry_lru_add(struct dentry *dentry)
423 {
424 	if (unlikely(!(dentry->d_flags & DCACHE_LRU_LIST)))
425 		d_lru_add(dentry);
426 }
427 
428 /**
429  * d_drop - drop a dentry
430  * @dentry: dentry to drop
431  *
432  * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
433  * be found through a VFS lookup any more. Note that this is different from
434  * deleting the dentry - d_delete will try to mark the dentry negative if
435  * possible, giving a successful _negative_ lookup, while d_drop will
436  * just make the cache lookup fail.
437  *
438  * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
439  * reason (NFS timeouts or autofs deletes).
440  *
441  * __d_drop requires dentry->d_lock.
442  */
443 void __d_drop(struct dentry *dentry)
444 {
445 	if (!d_unhashed(dentry)) {
446 		struct hlist_bl_head *b;
447 		/*
448 		 * Hashed dentries are normally on the dentry hashtable,
449 		 * with the exception of those newly allocated by
450 		 * d_obtain_alias, which are always IS_ROOT:
451 		 */
452 		if (unlikely(IS_ROOT(dentry)))
453 			b = &dentry->d_sb->s_anon;
454 		else
455 			b = d_hash(dentry->d_parent, dentry->d_name.hash);
456 
457 		hlist_bl_lock(b);
458 		__hlist_bl_del(&dentry->d_hash);
459 		dentry->d_hash.pprev = NULL;
460 		hlist_bl_unlock(b);
461 		dentry_rcuwalk_barrier(dentry);
462 	}
463 }
464 EXPORT_SYMBOL(__d_drop);
465 
466 void d_drop(struct dentry *dentry)
467 {
468 	spin_lock(&dentry->d_lock);
469 	__d_drop(dentry);
470 	spin_unlock(&dentry->d_lock);
471 }
472 EXPORT_SYMBOL(d_drop);
473 
474 static void __dentry_kill(struct dentry *dentry)
475 {
476 	struct dentry *parent = NULL;
477 	bool can_free = true;
478 	if (!IS_ROOT(dentry))
479 		parent = dentry->d_parent;
480 
481 	/*
482 	 * The dentry is now unrecoverably dead to the world.
483 	 */
484 	lockref_mark_dead(&dentry->d_lockref);
485 
486 	/*
487 	 * inform the fs via d_prune that this dentry is about to be
488 	 * unhashed and destroyed.
489 	 */
490 	if (dentry->d_flags & DCACHE_OP_PRUNE)
491 		dentry->d_op->d_prune(dentry);
492 
493 	if (dentry->d_flags & DCACHE_LRU_LIST) {
494 		if (!(dentry->d_flags & DCACHE_SHRINK_LIST))
495 			d_lru_del(dentry);
496 	}
497 	/* if it was on the hash then remove it */
498 	__d_drop(dentry);
499 	list_del(&dentry->d_u.d_child);
500 	/*
501 	 * Inform d_walk() that we are no longer attached to the
502 	 * dentry tree
503 	 */
504 	dentry->d_flags |= DCACHE_DENTRY_KILLED;
505 	if (parent)
506 		spin_unlock(&parent->d_lock);
507 	dentry_iput(dentry);
508 	/*
509 	 * dentry_iput drops the locks, at which point nobody (except
510 	 * transient RCU lookups) can reach this dentry.
511 	 */
512 	BUG_ON((int)dentry->d_lockref.count > 0);
513 	this_cpu_dec(nr_dentry);
514 	if (dentry->d_op && dentry->d_op->d_release)
515 		dentry->d_op->d_release(dentry);
516 
517 	spin_lock(&dentry->d_lock);
518 	if (dentry->d_flags & DCACHE_SHRINK_LIST) {
519 		dentry->d_flags |= DCACHE_MAY_FREE;
520 		can_free = false;
521 	}
522 	spin_unlock(&dentry->d_lock);
523 	if (likely(can_free))
524 		dentry_free(dentry);
525 }
526 
527 /*
528  * Finish off a dentry we've decided to kill.
529  * dentry->d_lock must be held, returns with it unlocked.
530  * If ref is non-zero, then decrement the refcount too.
531  * Returns dentry requiring refcount drop, or NULL if we're done.
532  */
533 static struct dentry *dentry_kill(struct dentry *dentry)
534 	__releases(dentry->d_lock)
535 {
536 	struct inode *inode = dentry->d_inode;
537 	struct dentry *parent = NULL;
538 
539 	if (inode && unlikely(!spin_trylock(&inode->i_lock)))
540 		goto failed;
541 
542 	if (!IS_ROOT(dentry)) {
543 		parent = dentry->d_parent;
544 		if (unlikely(!spin_trylock(&parent->d_lock))) {
545 			if (inode)
546 				spin_unlock(&inode->i_lock);
547 			goto failed;
548 		}
549 	}
550 
551 	__dentry_kill(dentry);
552 	return parent;
553 
554 failed:
555 	spin_unlock(&dentry->d_lock);
556 	cpu_relax();
557 	return dentry; /* try again with same dentry */
558 }
559 
560 static inline struct dentry *lock_parent(struct dentry *dentry)
561 {
562 	struct dentry *parent = dentry->d_parent;
563 	if (IS_ROOT(dentry))
564 		return NULL;
565 	if (unlikely((int)dentry->d_lockref.count < 0))
566 		return NULL;
567 	if (likely(spin_trylock(&parent->d_lock)))
568 		return parent;
569 	rcu_read_lock();
570 	spin_unlock(&dentry->d_lock);
571 again:
572 	parent = ACCESS_ONCE(dentry->d_parent);
573 	spin_lock(&parent->d_lock);
574 	/*
575 	 * We can't blindly lock dentry until we are sure
576 	 * that we won't violate the locking order.
577 	 * Any changes of dentry->d_parent must have
578 	 * been done with parent->d_lock held, so
579 	 * spin_lock() above is enough of a barrier
580 	 * for checking if it's still our child.
581 	 */
582 	if (unlikely(parent != dentry->d_parent)) {
583 		spin_unlock(&parent->d_lock);
584 		goto again;
585 	}
586 	rcu_read_unlock();
587 	if (parent != dentry)
588 		spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
589 	else
590 		parent = NULL;
591 	return parent;
592 }
593 
594 /*
595  * This is dput
596  *
597  * This is complicated by the fact that we do not want to put
598  * dentries that are no longer on any hash chain on the unused
599  * list: we'd much rather just get rid of them immediately.
600  *
601  * However, that implies that we have to traverse the dentry
602  * tree upwards to the parents which might _also_ now be
603  * scheduled for deletion (it may have been only waiting for
604  * its last child to go away).
605  *
606  * This tail recursion is done by hand as we don't want to depend
607  * on the compiler to always get this right (gcc generally doesn't).
608  * Real recursion would eat up our stack space.
609  */
610 
611 /*
612  * dput - release a dentry
613  * @dentry: dentry to release
614  *
615  * Release a dentry. This will drop the usage count and if appropriate
616  * call the dentry unlink method as well as removing it from the queues and
617  * releasing its resources. If the parent dentries were scheduled for release
618  * they too may now get deleted.
619  */
620 void dput(struct dentry *dentry)
621 {
622 	if (unlikely(!dentry))
623 		return;
624 
625 repeat:
626 	if (lockref_put_or_lock(&dentry->d_lockref))
627 		return;
628 
629 	/* Unreachable? Get rid of it */
630 	if (unlikely(d_unhashed(dentry)))
631 		goto kill_it;
632 
633 	if (unlikely(dentry->d_flags & DCACHE_OP_DELETE)) {
634 		if (dentry->d_op->d_delete(dentry))
635 			goto kill_it;
636 	}
637 
638 	if (!(dentry->d_flags & DCACHE_REFERENCED))
639 		dentry->d_flags |= DCACHE_REFERENCED;
640 	dentry_lru_add(dentry);
641 
642 	dentry->d_lockref.count--;
643 	spin_unlock(&dentry->d_lock);
644 	return;
645 
646 kill_it:
647 	dentry = dentry_kill(dentry);
648 	if (dentry)
649 		goto repeat;
650 }
651 EXPORT_SYMBOL(dput);
652 
653 
654 /* This must be called with d_lock held */
655 static inline void __dget_dlock(struct dentry *dentry)
656 {
657 	dentry->d_lockref.count++;
658 }
659 
660 static inline void __dget(struct dentry *dentry)
661 {
662 	lockref_get(&dentry->d_lockref);
663 }
664 
665 struct dentry *dget_parent(struct dentry *dentry)
666 {
667 	int gotref;
668 	struct dentry *ret;
669 
670 	/*
671 	 * Do optimistic parent lookup without any
672 	 * locking.
673 	 */
674 	rcu_read_lock();
675 	ret = ACCESS_ONCE(dentry->d_parent);
676 	gotref = lockref_get_not_zero(&ret->d_lockref);
677 	rcu_read_unlock();
678 	if (likely(gotref)) {
679 		if (likely(ret == ACCESS_ONCE(dentry->d_parent)))
680 			return ret;
681 		dput(ret);
682 	}
683 
684 repeat:
685 	/*
686 	 * Don't need rcu_dereference because we re-check it was correct under
687 	 * the lock.
688 	 */
689 	rcu_read_lock();
690 	ret = dentry->d_parent;
691 	spin_lock(&ret->d_lock);
692 	if (unlikely(ret != dentry->d_parent)) {
693 		spin_unlock(&ret->d_lock);
694 		rcu_read_unlock();
695 		goto repeat;
696 	}
697 	rcu_read_unlock();
698 	BUG_ON(!ret->d_lockref.count);
699 	ret->d_lockref.count++;
700 	spin_unlock(&ret->d_lock);
701 	return ret;
702 }
703 EXPORT_SYMBOL(dget_parent);
704 
705 /**
706  * d_find_alias - grab a hashed alias of inode
707  * @inode: inode in question
708  *
709  * If inode has a hashed alias, or is a directory and has any alias,
710  * acquire the reference to alias and return it. Otherwise return NULL.
711  * Notice that if inode is a directory there can be only one alias and
712  * it can be unhashed only if it has no children, or if it is the root
713  * of a filesystem, or if the directory was renamed and d_revalidate
714  * was the first vfs operation to notice.
715  *
716  * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
717  * any other hashed alias over that one.
718  */
719 static struct dentry *__d_find_alias(struct inode *inode)
720 {
721 	struct dentry *alias, *discon_alias;
722 
723 again:
724 	discon_alias = NULL;
725 	hlist_for_each_entry(alias, &inode->i_dentry, d_alias) {
726 		spin_lock(&alias->d_lock);
727  		if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
728 			if (IS_ROOT(alias) &&
729 			    (alias->d_flags & DCACHE_DISCONNECTED)) {
730 				discon_alias = alias;
731 			} else {
732 				__dget_dlock(alias);
733 				spin_unlock(&alias->d_lock);
734 				return alias;
735 			}
736 		}
737 		spin_unlock(&alias->d_lock);
738 	}
739 	if (discon_alias) {
740 		alias = discon_alias;
741 		spin_lock(&alias->d_lock);
742 		if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
743 			__dget_dlock(alias);
744 			spin_unlock(&alias->d_lock);
745 			return alias;
746 		}
747 		spin_unlock(&alias->d_lock);
748 		goto again;
749 	}
750 	return NULL;
751 }
752 
753 struct dentry *d_find_alias(struct inode *inode)
754 {
755 	struct dentry *de = NULL;
756 
757 	if (!hlist_empty(&inode->i_dentry)) {
758 		spin_lock(&inode->i_lock);
759 		de = __d_find_alias(inode);
760 		spin_unlock(&inode->i_lock);
761 	}
762 	return de;
763 }
764 EXPORT_SYMBOL(d_find_alias);
765 
766 /*
767  *	Try to kill dentries associated with this inode.
768  * WARNING: you must own a reference to inode.
769  */
770 void d_prune_aliases(struct inode *inode)
771 {
772 	struct dentry *dentry;
773 restart:
774 	spin_lock(&inode->i_lock);
775 	hlist_for_each_entry(dentry, &inode->i_dentry, d_alias) {
776 		spin_lock(&dentry->d_lock);
777 		if (!dentry->d_lockref.count) {
778 			struct dentry *parent = lock_parent(dentry);
779 			if (likely(!dentry->d_lockref.count)) {
780 				__dentry_kill(dentry);
781 				goto restart;
782 			}
783 			if (parent)
784 				spin_unlock(&parent->d_lock);
785 		}
786 		spin_unlock(&dentry->d_lock);
787 	}
788 	spin_unlock(&inode->i_lock);
789 }
790 EXPORT_SYMBOL(d_prune_aliases);
791 
792 static void shrink_dentry_list(struct list_head *list)
793 {
794 	struct dentry *dentry, *parent;
795 
796 	while (!list_empty(list)) {
797 		struct inode *inode;
798 		dentry = list_entry(list->prev, struct dentry, d_lru);
799 		spin_lock(&dentry->d_lock);
800 		parent = lock_parent(dentry);
801 
802 		/*
803 		 * The dispose list is isolated and dentries are not accounted
804 		 * to the LRU here, so we can simply remove it from the list
805 		 * here regardless of whether it is referenced or not.
806 		 */
807 		d_shrink_del(dentry);
808 
809 		/*
810 		 * We found an inuse dentry which was not removed from
811 		 * the LRU because of laziness during lookup. Do not free it.
812 		 */
813 		if ((int)dentry->d_lockref.count > 0) {
814 			spin_unlock(&dentry->d_lock);
815 			if (parent)
816 				spin_unlock(&parent->d_lock);
817 			continue;
818 		}
819 
820 
821 		if (unlikely(dentry->d_flags & DCACHE_DENTRY_KILLED)) {
822 			bool can_free = dentry->d_flags & DCACHE_MAY_FREE;
823 			spin_unlock(&dentry->d_lock);
824 			if (parent)
825 				spin_unlock(&parent->d_lock);
826 			if (can_free)
827 				dentry_free(dentry);
828 			continue;
829 		}
830 
831 		inode = dentry->d_inode;
832 		if (inode && unlikely(!spin_trylock(&inode->i_lock))) {
833 			d_shrink_add(dentry, list);
834 			spin_unlock(&dentry->d_lock);
835 			if (parent)
836 				spin_unlock(&parent->d_lock);
837 			continue;
838 		}
839 
840 		__dentry_kill(dentry);
841 
842 		/*
843 		 * We need to prune ancestors too. This is necessary to prevent
844 		 * quadratic behavior of shrink_dcache_parent(), but is also
845 		 * expected to be beneficial in reducing dentry cache
846 		 * fragmentation.
847 		 */
848 		dentry = parent;
849 		while (dentry && !lockref_put_or_lock(&dentry->d_lockref)) {
850 			parent = lock_parent(dentry);
851 			if (dentry->d_lockref.count != 1) {
852 				dentry->d_lockref.count--;
853 				spin_unlock(&dentry->d_lock);
854 				if (parent)
855 					spin_unlock(&parent->d_lock);
856 				break;
857 			}
858 			inode = dentry->d_inode;	/* can't be NULL */
859 			if (unlikely(!spin_trylock(&inode->i_lock))) {
860 				spin_unlock(&dentry->d_lock);
861 				if (parent)
862 					spin_unlock(&parent->d_lock);
863 				cpu_relax();
864 				continue;
865 			}
866 			__dentry_kill(dentry);
867 			dentry = parent;
868 		}
869 	}
870 }
871 
872 static enum lru_status
873 dentry_lru_isolate(struct list_head *item, spinlock_t *lru_lock, void *arg)
874 {
875 	struct list_head *freeable = arg;
876 	struct dentry	*dentry = container_of(item, struct dentry, d_lru);
877 
878 
879 	/*
880 	 * we are inverting the lru lock/dentry->d_lock here,
881 	 * so use a trylock. If we fail to get the lock, just skip
882 	 * it
883 	 */
884 	if (!spin_trylock(&dentry->d_lock))
885 		return LRU_SKIP;
886 
887 	/*
888 	 * Referenced dentries are still in use. If they have active
889 	 * counts, just remove them from the LRU. Otherwise give them
890 	 * another pass through the LRU.
891 	 */
892 	if (dentry->d_lockref.count) {
893 		d_lru_isolate(dentry);
894 		spin_unlock(&dentry->d_lock);
895 		return LRU_REMOVED;
896 	}
897 
898 	if (dentry->d_flags & DCACHE_REFERENCED) {
899 		dentry->d_flags &= ~DCACHE_REFERENCED;
900 		spin_unlock(&dentry->d_lock);
901 
902 		/*
903 		 * The list move itself will be made by the common LRU code. At
904 		 * this point, we've dropped the dentry->d_lock but keep the
905 		 * lru lock. This is safe to do, since every list movement is
906 		 * protected by the lru lock even if both locks are held.
907 		 *
908 		 * This is guaranteed by the fact that all LRU management
909 		 * functions are intermediated by the LRU API calls like
910 		 * list_lru_add and list_lru_del. List movement in this file
911 		 * only ever occur through this functions or through callbacks
912 		 * like this one, that are called from the LRU API.
913 		 *
914 		 * The only exceptions to this are functions like
915 		 * shrink_dentry_list, and code that first checks for the
916 		 * DCACHE_SHRINK_LIST flag.  Those are guaranteed to be
917 		 * operating only with stack provided lists after they are
918 		 * properly isolated from the main list.  It is thus, always a
919 		 * local access.
920 		 */
921 		return LRU_ROTATE;
922 	}
923 
924 	d_lru_shrink_move(dentry, freeable);
925 	spin_unlock(&dentry->d_lock);
926 
927 	return LRU_REMOVED;
928 }
929 
930 /**
931  * prune_dcache_sb - shrink the dcache
932  * @sb: superblock
933  * @nr_to_scan : number of entries to try to free
934  * @nid: which node to scan for freeable entities
935  *
936  * Attempt to shrink the superblock dcache LRU by @nr_to_scan entries. This is
937  * done when we need more memory an called from the superblock shrinker
938  * function.
939  *
940  * This function may fail to free any resources if all the dentries are in
941  * use.
942  */
943 long prune_dcache_sb(struct super_block *sb, unsigned long nr_to_scan,
944 		     int nid)
945 {
946 	LIST_HEAD(dispose);
947 	long freed;
948 
949 	freed = list_lru_walk_node(&sb->s_dentry_lru, nid, dentry_lru_isolate,
950 				       &dispose, &nr_to_scan);
951 	shrink_dentry_list(&dispose);
952 	return freed;
953 }
954 
955 static enum lru_status dentry_lru_isolate_shrink(struct list_head *item,
956 						spinlock_t *lru_lock, void *arg)
957 {
958 	struct list_head *freeable = arg;
959 	struct dentry	*dentry = container_of(item, struct dentry, d_lru);
960 
961 	/*
962 	 * we are inverting the lru lock/dentry->d_lock here,
963 	 * so use a trylock. If we fail to get the lock, just skip
964 	 * it
965 	 */
966 	if (!spin_trylock(&dentry->d_lock))
967 		return LRU_SKIP;
968 
969 	d_lru_shrink_move(dentry, freeable);
970 	spin_unlock(&dentry->d_lock);
971 
972 	return LRU_REMOVED;
973 }
974 
975 
976 /**
977  * shrink_dcache_sb - shrink dcache for a superblock
978  * @sb: superblock
979  *
980  * Shrink the dcache for the specified super block. This is used to free
981  * the dcache before unmounting a file system.
982  */
983 void shrink_dcache_sb(struct super_block *sb)
984 {
985 	long freed;
986 
987 	do {
988 		LIST_HEAD(dispose);
989 
990 		freed = list_lru_walk(&sb->s_dentry_lru,
991 			dentry_lru_isolate_shrink, &dispose, UINT_MAX);
992 
993 		this_cpu_sub(nr_dentry_unused, freed);
994 		shrink_dentry_list(&dispose);
995 	} while (freed > 0);
996 }
997 EXPORT_SYMBOL(shrink_dcache_sb);
998 
999 /**
1000  * enum d_walk_ret - action to talke during tree walk
1001  * @D_WALK_CONTINUE:	contrinue walk
1002  * @D_WALK_QUIT:	quit walk
1003  * @D_WALK_NORETRY:	quit when retry is needed
1004  * @D_WALK_SKIP:	skip this dentry and its children
1005  */
1006 enum d_walk_ret {
1007 	D_WALK_CONTINUE,
1008 	D_WALK_QUIT,
1009 	D_WALK_NORETRY,
1010 	D_WALK_SKIP,
1011 };
1012 
1013 /**
1014  * d_walk - walk the dentry tree
1015  * @parent:	start of walk
1016  * @data:	data passed to @enter() and @finish()
1017  * @enter:	callback when first entering the dentry
1018  * @finish:	callback when successfully finished the walk
1019  *
1020  * The @enter() and @finish() callbacks are called with d_lock held.
1021  */
1022 static void d_walk(struct dentry *parent, void *data,
1023 		   enum d_walk_ret (*enter)(void *, struct dentry *),
1024 		   void (*finish)(void *))
1025 {
1026 	struct dentry *this_parent;
1027 	struct list_head *next;
1028 	unsigned seq = 0;
1029 	enum d_walk_ret ret;
1030 	bool retry = true;
1031 
1032 again:
1033 	read_seqbegin_or_lock(&rename_lock, &seq);
1034 	this_parent = parent;
1035 	spin_lock(&this_parent->d_lock);
1036 
1037 	ret = enter(data, this_parent);
1038 	switch (ret) {
1039 	case D_WALK_CONTINUE:
1040 		break;
1041 	case D_WALK_QUIT:
1042 	case D_WALK_SKIP:
1043 		goto out_unlock;
1044 	case D_WALK_NORETRY:
1045 		retry = false;
1046 		break;
1047 	}
1048 repeat:
1049 	next = this_parent->d_subdirs.next;
1050 resume:
1051 	while (next != &this_parent->d_subdirs) {
1052 		struct list_head *tmp = next;
1053 		struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
1054 		next = tmp->next;
1055 
1056 		spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1057 
1058 		ret = enter(data, dentry);
1059 		switch (ret) {
1060 		case D_WALK_CONTINUE:
1061 			break;
1062 		case D_WALK_QUIT:
1063 			spin_unlock(&dentry->d_lock);
1064 			goto out_unlock;
1065 		case D_WALK_NORETRY:
1066 			retry = false;
1067 			break;
1068 		case D_WALK_SKIP:
1069 			spin_unlock(&dentry->d_lock);
1070 			continue;
1071 		}
1072 
1073 		if (!list_empty(&dentry->d_subdirs)) {
1074 			spin_unlock(&this_parent->d_lock);
1075 			spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1076 			this_parent = dentry;
1077 			spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1078 			goto repeat;
1079 		}
1080 		spin_unlock(&dentry->d_lock);
1081 	}
1082 	/*
1083 	 * All done at this level ... ascend and resume the search.
1084 	 */
1085 	if (this_parent != parent) {
1086 		struct dentry *child = this_parent;
1087 		this_parent = child->d_parent;
1088 
1089 		rcu_read_lock();
1090 		spin_unlock(&child->d_lock);
1091 		spin_lock(&this_parent->d_lock);
1092 
1093 		/*
1094 		 * might go back up the wrong parent if we have had a rename
1095 		 * or deletion
1096 		 */
1097 		if (this_parent != child->d_parent ||
1098 			 (child->d_flags & DCACHE_DENTRY_KILLED) ||
1099 			 need_seqretry(&rename_lock, seq)) {
1100 			spin_unlock(&this_parent->d_lock);
1101 			rcu_read_unlock();
1102 			goto rename_retry;
1103 		}
1104 		rcu_read_unlock();
1105 		next = child->d_u.d_child.next;
1106 		goto resume;
1107 	}
1108 	if (need_seqretry(&rename_lock, seq)) {
1109 		spin_unlock(&this_parent->d_lock);
1110 		goto rename_retry;
1111 	}
1112 	if (finish)
1113 		finish(data);
1114 
1115 out_unlock:
1116 	spin_unlock(&this_parent->d_lock);
1117 	done_seqretry(&rename_lock, seq);
1118 	return;
1119 
1120 rename_retry:
1121 	if (!retry)
1122 		return;
1123 	seq = 1;
1124 	goto again;
1125 }
1126 
1127 /*
1128  * Search for at least 1 mount point in the dentry's subdirs.
1129  * We descend to the next level whenever the d_subdirs
1130  * list is non-empty and continue searching.
1131  */
1132 
1133 static enum d_walk_ret check_mount(void *data, struct dentry *dentry)
1134 {
1135 	int *ret = data;
1136 	if (d_mountpoint(dentry)) {
1137 		*ret = 1;
1138 		return D_WALK_QUIT;
1139 	}
1140 	return D_WALK_CONTINUE;
1141 }
1142 
1143 /**
1144  * have_submounts - check for mounts over a dentry
1145  * @parent: dentry to check.
1146  *
1147  * Return true if the parent or its subdirectories contain
1148  * a mount point
1149  */
1150 int have_submounts(struct dentry *parent)
1151 {
1152 	int ret = 0;
1153 
1154 	d_walk(parent, &ret, check_mount, NULL);
1155 
1156 	return ret;
1157 }
1158 EXPORT_SYMBOL(have_submounts);
1159 
1160 /*
1161  * Called by mount code to set a mountpoint and check if the mountpoint is
1162  * reachable (e.g. NFS can unhash a directory dentry and then the complete
1163  * subtree can become unreachable).
1164  *
1165  * Only one of d_invalidate() and d_set_mounted() must succeed.  For
1166  * this reason take rename_lock and d_lock on dentry and ancestors.
1167  */
1168 int d_set_mounted(struct dentry *dentry)
1169 {
1170 	struct dentry *p;
1171 	int ret = -ENOENT;
1172 	write_seqlock(&rename_lock);
1173 	for (p = dentry->d_parent; !IS_ROOT(p); p = p->d_parent) {
1174 		/* Need exclusion wrt. d_invalidate() */
1175 		spin_lock(&p->d_lock);
1176 		if (unlikely(d_unhashed(p))) {
1177 			spin_unlock(&p->d_lock);
1178 			goto out;
1179 		}
1180 		spin_unlock(&p->d_lock);
1181 	}
1182 	spin_lock(&dentry->d_lock);
1183 	if (!d_unlinked(dentry)) {
1184 		dentry->d_flags |= DCACHE_MOUNTED;
1185 		ret = 0;
1186 	}
1187  	spin_unlock(&dentry->d_lock);
1188 out:
1189 	write_sequnlock(&rename_lock);
1190 	return ret;
1191 }
1192 
1193 /*
1194  * Search the dentry child list of the specified parent,
1195  * and move any unused dentries to the end of the unused
1196  * list for prune_dcache(). We descend to the next level
1197  * whenever the d_subdirs list is non-empty and continue
1198  * searching.
1199  *
1200  * It returns zero iff there are no unused children,
1201  * otherwise  it returns the number of children moved to
1202  * the end of the unused list. This may not be the total
1203  * number of unused children, because select_parent can
1204  * drop the lock and return early due to latency
1205  * constraints.
1206  */
1207 
1208 struct select_data {
1209 	struct dentry *start;
1210 	struct list_head dispose;
1211 	int found;
1212 };
1213 
1214 static enum d_walk_ret select_collect(void *_data, struct dentry *dentry)
1215 {
1216 	struct select_data *data = _data;
1217 	enum d_walk_ret ret = D_WALK_CONTINUE;
1218 
1219 	if (data->start == dentry)
1220 		goto out;
1221 
1222 	if (dentry->d_flags & DCACHE_SHRINK_LIST) {
1223 		data->found++;
1224 	} else {
1225 		if (dentry->d_flags & DCACHE_LRU_LIST)
1226 			d_lru_del(dentry);
1227 		if (!dentry->d_lockref.count) {
1228 			d_shrink_add(dentry, &data->dispose);
1229 			data->found++;
1230 		}
1231 	}
1232 	/*
1233 	 * We can return to the caller if we have found some (this
1234 	 * ensures forward progress). We'll be coming back to find
1235 	 * the rest.
1236 	 */
1237 	if (!list_empty(&data->dispose))
1238 		ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY;
1239 out:
1240 	return ret;
1241 }
1242 
1243 /**
1244  * shrink_dcache_parent - prune dcache
1245  * @parent: parent of entries to prune
1246  *
1247  * Prune the dcache to remove unused children of the parent dentry.
1248  */
1249 void shrink_dcache_parent(struct dentry *parent)
1250 {
1251 	for (;;) {
1252 		struct select_data data;
1253 
1254 		INIT_LIST_HEAD(&data.dispose);
1255 		data.start = parent;
1256 		data.found = 0;
1257 
1258 		d_walk(parent, &data, select_collect, NULL);
1259 		if (!data.found)
1260 			break;
1261 
1262 		shrink_dentry_list(&data.dispose);
1263 		cond_resched();
1264 	}
1265 }
1266 EXPORT_SYMBOL(shrink_dcache_parent);
1267 
1268 static enum d_walk_ret umount_check(void *_data, struct dentry *dentry)
1269 {
1270 	/* it has busy descendents; complain about those instead */
1271 	if (!list_empty(&dentry->d_subdirs))
1272 		return D_WALK_CONTINUE;
1273 
1274 	/* root with refcount 1 is fine */
1275 	if (dentry == _data && dentry->d_lockref.count == 1)
1276 		return D_WALK_CONTINUE;
1277 
1278 	printk(KERN_ERR "BUG: Dentry %p{i=%lx,n=%pd} "
1279 			" still in use (%d) [unmount of %s %s]\n",
1280 		       dentry,
1281 		       dentry->d_inode ?
1282 		       dentry->d_inode->i_ino : 0UL,
1283 		       dentry,
1284 		       dentry->d_lockref.count,
1285 		       dentry->d_sb->s_type->name,
1286 		       dentry->d_sb->s_id);
1287 	WARN_ON(1);
1288 	return D_WALK_CONTINUE;
1289 }
1290 
1291 static void do_one_tree(struct dentry *dentry)
1292 {
1293 	shrink_dcache_parent(dentry);
1294 	d_walk(dentry, dentry, umount_check, NULL);
1295 	d_drop(dentry);
1296 	dput(dentry);
1297 }
1298 
1299 /*
1300  * destroy the dentries attached to a superblock on unmounting
1301  */
1302 void shrink_dcache_for_umount(struct super_block *sb)
1303 {
1304 	struct dentry *dentry;
1305 
1306 	WARN(down_read_trylock(&sb->s_umount), "s_umount should've been locked");
1307 
1308 	dentry = sb->s_root;
1309 	sb->s_root = NULL;
1310 	do_one_tree(dentry);
1311 
1312 	while (!hlist_bl_empty(&sb->s_anon)) {
1313 		dentry = dget(hlist_bl_entry(hlist_bl_first(&sb->s_anon), struct dentry, d_hash));
1314 		do_one_tree(dentry);
1315 	}
1316 }
1317 
1318 struct detach_data {
1319 	struct select_data select;
1320 	struct dentry *mountpoint;
1321 };
1322 static enum d_walk_ret detach_and_collect(void *_data, struct dentry *dentry)
1323 {
1324 	struct detach_data *data = _data;
1325 
1326 	if (d_mountpoint(dentry)) {
1327 		__dget_dlock(dentry);
1328 		data->mountpoint = dentry;
1329 		return D_WALK_QUIT;
1330 	}
1331 
1332 	return select_collect(&data->select, dentry);
1333 }
1334 
1335 static void check_and_drop(void *_data)
1336 {
1337 	struct detach_data *data = _data;
1338 
1339 	if (!data->mountpoint && !data->select.found)
1340 		__d_drop(data->select.start);
1341 }
1342 
1343 /**
1344  * d_invalidate - detach submounts, prune dcache, and drop
1345  * @dentry: dentry to invalidate (aka detach, prune and drop)
1346  *
1347  * no dcache lock.
1348  *
1349  * The final d_drop is done as an atomic operation relative to
1350  * rename_lock ensuring there are no races with d_set_mounted.  This
1351  * ensures there are no unhashed dentries on the path to a mountpoint.
1352  */
1353 void d_invalidate(struct dentry *dentry)
1354 {
1355 	/*
1356 	 * If it's already been dropped, return OK.
1357 	 */
1358 	spin_lock(&dentry->d_lock);
1359 	if (d_unhashed(dentry)) {
1360 		spin_unlock(&dentry->d_lock);
1361 		return;
1362 	}
1363 	spin_unlock(&dentry->d_lock);
1364 
1365 	/* Negative dentries can be dropped without further checks */
1366 	if (!dentry->d_inode) {
1367 		d_drop(dentry);
1368 		return;
1369 	}
1370 
1371 	for (;;) {
1372 		struct detach_data data;
1373 
1374 		data.mountpoint = NULL;
1375 		INIT_LIST_HEAD(&data.select.dispose);
1376 		data.select.start = dentry;
1377 		data.select.found = 0;
1378 
1379 		d_walk(dentry, &data, detach_and_collect, check_and_drop);
1380 
1381 		if (data.select.found)
1382 			shrink_dentry_list(&data.select.dispose);
1383 
1384 		if (data.mountpoint) {
1385 			detach_mounts(data.mountpoint);
1386 			dput(data.mountpoint);
1387 		}
1388 
1389 		if (!data.mountpoint && !data.select.found)
1390 			break;
1391 
1392 		cond_resched();
1393 	}
1394 }
1395 EXPORT_SYMBOL(d_invalidate);
1396 
1397 /**
1398  * __d_alloc	-	allocate a dcache entry
1399  * @sb: filesystem it will belong to
1400  * @name: qstr of the name
1401  *
1402  * Allocates a dentry. It returns %NULL if there is insufficient memory
1403  * available. On a success the dentry is returned. The name passed in is
1404  * copied and the copy passed in may be reused after this call.
1405  */
1406 
1407 struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name)
1408 {
1409 	struct dentry *dentry;
1410 	char *dname;
1411 
1412 	dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
1413 	if (!dentry)
1414 		return NULL;
1415 
1416 	/*
1417 	 * We guarantee that the inline name is always NUL-terminated.
1418 	 * This way the memcpy() done by the name switching in rename
1419 	 * will still always have a NUL at the end, even if we might
1420 	 * be overwriting an internal NUL character
1421 	 */
1422 	dentry->d_iname[DNAME_INLINE_LEN-1] = 0;
1423 	if (name->len > DNAME_INLINE_LEN-1) {
1424 		size_t size = offsetof(struct external_name, name[1]);
1425 		struct external_name *p = kmalloc(size + name->len, GFP_KERNEL);
1426 		if (!p) {
1427 			kmem_cache_free(dentry_cache, dentry);
1428 			return NULL;
1429 		}
1430 		atomic_set(&p->u.count, 1);
1431 		dname = p->name;
1432 	} else  {
1433 		dname = dentry->d_iname;
1434 	}
1435 
1436 	dentry->d_name.len = name->len;
1437 	dentry->d_name.hash = name->hash;
1438 	memcpy(dname, name->name, name->len);
1439 	dname[name->len] = 0;
1440 
1441 	/* Make sure we always see the terminating NUL character */
1442 	smp_wmb();
1443 	dentry->d_name.name = dname;
1444 
1445 	dentry->d_lockref.count = 1;
1446 	dentry->d_flags = 0;
1447 	spin_lock_init(&dentry->d_lock);
1448 	seqcount_init(&dentry->d_seq);
1449 	dentry->d_inode = NULL;
1450 	dentry->d_parent = dentry;
1451 	dentry->d_sb = sb;
1452 	dentry->d_op = NULL;
1453 	dentry->d_fsdata = NULL;
1454 	INIT_HLIST_BL_NODE(&dentry->d_hash);
1455 	INIT_LIST_HEAD(&dentry->d_lru);
1456 	INIT_LIST_HEAD(&dentry->d_subdirs);
1457 	INIT_HLIST_NODE(&dentry->d_alias);
1458 	INIT_LIST_HEAD(&dentry->d_u.d_child);
1459 	d_set_d_op(dentry, dentry->d_sb->s_d_op);
1460 
1461 	this_cpu_inc(nr_dentry);
1462 
1463 	return dentry;
1464 }
1465 
1466 /**
1467  * d_alloc	-	allocate a dcache entry
1468  * @parent: parent of entry to allocate
1469  * @name: qstr of the name
1470  *
1471  * Allocates a dentry. It returns %NULL if there is insufficient memory
1472  * available. On a success the dentry is returned. The name passed in is
1473  * copied and the copy passed in may be reused after this call.
1474  */
1475 struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1476 {
1477 	struct dentry *dentry = __d_alloc(parent->d_sb, name);
1478 	if (!dentry)
1479 		return NULL;
1480 
1481 	spin_lock(&parent->d_lock);
1482 	/*
1483 	 * don't need child lock because it is not subject
1484 	 * to concurrency here
1485 	 */
1486 	__dget_dlock(parent);
1487 	dentry->d_parent = parent;
1488 	list_add(&dentry->d_u.d_child, &parent->d_subdirs);
1489 	spin_unlock(&parent->d_lock);
1490 
1491 	return dentry;
1492 }
1493 EXPORT_SYMBOL(d_alloc);
1494 
1495 /**
1496  * d_alloc_pseudo - allocate a dentry (for lookup-less filesystems)
1497  * @sb: the superblock
1498  * @name: qstr of the name
1499  *
1500  * For a filesystem that just pins its dentries in memory and never
1501  * performs lookups at all, return an unhashed IS_ROOT dentry.
1502  */
1503 struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
1504 {
1505 	return __d_alloc(sb, name);
1506 }
1507 EXPORT_SYMBOL(d_alloc_pseudo);
1508 
1509 struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1510 {
1511 	struct qstr q;
1512 
1513 	q.name = name;
1514 	q.len = strlen(name);
1515 	q.hash = full_name_hash(q.name, q.len);
1516 	return d_alloc(parent, &q);
1517 }
1518 EXPORT_SYMBOL(d_alloc_name);
1519 
1520 void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1521 {
1522 	WARN_ON_ONCE(dentry->d_op);
1523 	WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH	|
1524 				DCACHE_OP_COMPARE	|
1525 				DCACHE_OP_REVALIDATE	|
1526 				DCACHE_OP_WEAK_REVALIDATE	|
1527 				DCACHE_OP_DELETE ));
1528 	dentry->d_op = op;
1529 	if (!op)
1530 		return;
1531 	if (op->d_hash)
1532 		dentry->d_flags |= DCACHE_OP_HASH;
1533 	if (op->d_compare)
1534 		dentry->d_flags |= DCACHE_OP_COMPARE;
1535 	if (op->d_revalidate)
1536 		dentry->d_flags |= DCACHE_OP_REVALIDATE;
1537 	if (op->d_weak_revalidate)
1538 		dentry->d_flags |= DCACHE_OP_WEAK_REVALIDATE;
1539 	if (op->d_delete)
1540 		dentry->d_flags |= DCACHE_OP_DELETE;
1541 	if (op->d_prune)
1542 		dentry->d_flags |= DCACHE_OP_PRUNE;
1543 
1544 }
1545 EXPORT_SYMBOL(d_set_d_op);
1546 
1547 static unsigned d_flags_for_inode(struct inode *inode)
1548 {
1549 	unsigned add_flags = DCACHE_FILE_TYPE;
1550 
1551 	if (!inode)
1552 		return DCACHE_MISS_TYPE;
1553 
1554 	if (S_ISDIR(inode->i_mode)) {
1555 		add_flags = DCACHE_DIRECTORY_TYPE;
1556 		if (unlikely(!(inode->i_opflags & IOP_LOOKUP))) {
1557 			if (unlikely(!inode->i_op->lookup))
1558 				add_flags = DCACHE_AUTODIR_TYPE;
1559 			else
1560 				inode->i_opflags |= IOP_LOOKUP;
1561 		}
1562 	} else if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) {
1563 		if (unlikely(inode->i_op->follow_link))
1564 			add_flags = DCACHE_SYMLINK_TYPE;
1565 		else
1566 			inode->i_opflags |= IOP_NOFOLLOW;
1567 	}
1568 
1569 	if (unlikely(IS_AUTOMOUNT(inode)))
1570 		add_flags |= DCACHE_NEED_AUTOMOUNT;
1571 	return add_flags;
1572 }
1573 
1574 static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1575 {
1576 	unsigned add_flags = d_flags_for_inode(inode);
1577 
1578 	spin_lock(&dentry->d_lock);
1579 	__d_set_type(dentry, add_flags);
1580 	if (inode)
1581 		hlist_add_head(&dentry->d_alias, &inode->i_dentry);
1582 	dentry->d_inode = inode;
1583 	dentry_rcuwalk_barrier(dentry);
1584 	spin_unlock(&dentry->d_lock);
1585 	fsnotify_d_instantiate(dentry, inode);
1586 }
1587 
1588 /**
1589  * d_instantiate - fill in inode information for a dentry
1590  * @entry: dentry to complete
1591  * @inode: inode to attach to this dentry
1592  *
1593  * Fill in inode information in the entry.
1594  *
1595  * This turns negative dentries into productive full members
1596  * of society.
1597  *
1598  * NOTE! This assumes that the inode count has been incremented
1599  * (or otherwise set) by the caller to indicate that it is now
1600  * in use by the dcache.
1601  */
1602 
1603 void d_instantiate(struct dentry *entry, struct inode * inode)
1604 {
1605 	BUG_ON(!hlist_unhashed(&entry->d_alias));
1606 	if (inode)
1607 		spin_lock(&inode->i_lock);
1608 	__d_instantiate(entry, inode);
1609 	if (inode)
1610 		spin_unlock(&inode->i_lock);
1611 	security_d_instantiate(entry, inode);
1612 }
1613 EXPORT_SYMBOL(d_instantiate);
1614 
1615 /**
1616  * d_instantiate_unique - instantiate a non-aliased dentry
1617  * @entry: dentry to instantiate
1618  * @inode: inode to attach to this dentry
1619  *
1620  * Fill in inode information in the entry. On success, it returns NULL.
1621  * If an unhashed alias of "entry" already exists, then we return the
1622  * aliased dentry instead and drop one reference to inode.
1623  *
1624  * Note that in order to avoid conflicts with rename() etc, the caller
1625  * had better be holding the parent directory semaphore.
1626  *
1627  * This also assumes that the inode count has been incremented
1628  * (or otherwise set) by the caller to indicate that it is now
1629  * in use by the dcache.
1630  */
1631 static struct dentry *__d_instantiate_unique(struct dentry *entry,
1632 					     struct inode *inode)
1633 {
1634 	struct dentry *alias;
1635 	int len = entry->d_name.len;
1636 	const char *name = entry->d_name.name;
1637 	unsigned int hash = entry->d_name.hash;
1638 
1639 	if (!inode) {
1640 		__d_instantiate(entry, NULL);
1641 		return NULL;
1642 	}
1643 
1644 	hlist_for_each_entry(alias, &inode->i_dentry, d_alias) {
1645 		/*
1646 		 * Don't need alias->d_lock here, because aliases with
1647 		 * d_parent == entry->d_parent are not subject to name or
1648 		 * parent changes, because the parent inode i_mutex is held.
1649 		 */
1650 		if (alias->d_name.hash != hash)
1651 			continue;
1652 		if (alias->d_parent != entry->d_parent)
1653 			continue;
1654 		if (alias->d_name.len != len)
1655 			continue;
1656 		if (dentry_cmp(alias, name, len))
1657 			continue;
1658 		__dget(alias);
1659 		return alias;
1660 	}
1661 
1662 	__d_instantiate(entry, inode);
1663 	return NULL;
1664 }
1665 
1666 struct dentry *d_instantiate_unique(struct dentry *entry, struct inode *inode)
1667 {
1668 	struct dentry *result;
1669 
1670 	BUG_ON(!hlist_unhashed(&entry->d_alias));
1671 
1672 	if (inode)
1673 		spin_lock(&inode->i_lock);
1674 	result = __d_instantiate_unique(entry, inode);
1675 	if (inode)
1676 		spin_unlock(&inode->i_lock);
1677 
1678 	if (!result) {
1679 		security_d_instantiate(entry, inode);
1680 		return NULL;
1681 	}
1682 
1683 	BUG_ON(!d_unhashed(result));
1684 	iput(inode);
1685 	return result;
1686 }
1687 
1688 EXPORT_SYMBOL(d_instantiate_unique);
1689 
1690 /**
1691  * d_instantiate_no_diralias - instantiate a non-aliased dentry
1692  * @entry: dentry to complete
1693  * @inode: inode to attach to this dentry
1694  *
1695  * Fill in inode information in the entry.  If a directory alias is found, then
1696  * return an error (and drop inode).  Together with d_materialise_unique() this
1697  * guarantees that a directory inode may never have more than one alias.
1698  */
1699 int d_instantiate_no_diralias(struct dentry *entry, struct inode *inode)
1700 {
1701 	BUG_ON(!hlist_unhashed(&entry->d_alias));
1702 
1703 	spin_lock(&inode->i_lock);
1704 	if (S_ISDIR(inode->i_mode) && !hlist_empty(&inode->i_dentry)) {
1705 		spin_unlock(&inode->i_lock);
1706 		iput(inode);
1707 		return -EBUSY;
1708 	}
1709 	__d_instantiate(entry, inode);
1710 	spin_unlock(&inode->i_lock);
1711 	security_d_instantiate(entry, inode);
1712 
1713 	return 0;
1714 }
1715 EXPORT_SYMBOL(d_instantiate_no_diralias);
1716 
1717 struct dentry *d_make_root(struct inode *root_inode)
1718 {
1719 	struct dentry *res = NULL;
1720 
1721 	if (root_inode) {
1722 		static const struct qstr name = QSTR_INIT("/", 1);
1723 
1724 		res = __d_alloc(root_inode->i_sb, &name);
1725 		if (res)
1726 			d_instantiate(res, root_inode);
1727 		else
1728 			iput(root_inode);
1729 	}
1730 	return res;
1731 }
1732 EXPORT_SYMBOL(d_make_root);
1733 
1734 static struct dentry * __d_find_any_alias(struct inode *inode)
1735 {
1736 	struct dentry *alias;
1737 
1738 	if (hlist_empty(&inode->i_dentry))
1739 		return NULL;
1740 	alias = hlist_entry(inode->i_dentry.first, struct dentry, d_alias);
1741 	__dget(alias);
1742 	return alias;
1743 }
1744 
1745 /**
1746  * d_find_any_alias - find any alias for a given inode
1747  * @inode: inode to find an alias for
1748  *
1749  * If any aliases exist for the given inode, take and return a
1750  * reference for one of them.  If no aliases exist, return %NULL.
1751  */
1752 struct dentry *d_find_any_alias(struct inode *inode)
1753 {
1754 	struct dentry *de;
1755 
1756 	spin_lock(&inode->i_lock);
1757 	de = __d_find_any_alias(inode);
1758 	spin_unlock(&inode->i_lock);
1759 	return de;
1760 }
1761 EXPORT_SYMBOL(d_find_any_alias);
1762 
1763 static struct dentry *__d_obtain_alias(struct inode *inode, int disconnected)
1764 {
1765 	static const struct qstr anonstring = QSTR_INIT("/", 1);
1766 	struct dentry *tmp;
1767 	struct dentry *res;
1768 	unsigned add_flags;
1769 
1770 	if (!inode)
1771 		return ERR_PTR(-ESTALE);
1772 	if (IS_ERR(inode))
1773 		return ERR_CAST(inode);
1774 
1775 	res = d_find_any_alias(inode);
1776 	if (res)
1777 		goto out_iput;
1778 
1779 	tmp = __d_alloc(inode->i_sb, &anonstring);
1780 	if (!tmp) {
1781 		res = ERR_PTR(-ENOMEM);
1782 		goto out_iput;
1783 	}
1784 
1785 	spin_lock(&inode->i_lock);
1786 	res = __d_find_any_alias(inode);
1787 	if (res) {
1788 		spin_unlock(&inode->i_lock);
1789 		dput(tmp);
1790 		goto out_iput;
1791 	}
1792 
1793 	/* attach a disconnected dentry */
1794 	add_flags = d_flags_for_inode(inode);
1795 
1796 	if (disconnected)
1797 		add_flags |= DCACHE_DISCONNECTED;
1798 
1799 	spin_lock(&tmp->d_lock);
1800 	tmp->d_inode = inode;
1801 	tmp->d_flags |= add_flags;
1802 	hlist_add_head(&tmp->d_alias, &inode->i_dentry);
1803 	hlist_bl_lock(&tmp->d_sb->s_anon);
1804 	hlist_bl_add_head(&tmp->d_hash, &tmp->d_sb->s_anon);
1805 	hlist_bl_unlock(&tmp->d_sb->s_anon);
1806 	spin_unlock(&tmp->d_lock);
1807 	spin_unlock(&inode->i_lock);
1808 	security_d_instantiate(tmp, inode);
1809 
1810 	return tmp;
1811 
1812  out_iput:
1813 	if (res && !IS_ERR(res))
1814 		security_d_instantiate(res, inode);
1815 	iput(inode);
1816 	return res;
1817 }
1818 
1819 /**
1820  * d_obtain_alias - find or allocate a DISCONNECTED dentry for a given inode
1821  * @inode: inode to allocate the dentry for
1822  *
1823  * Obtain a dentry for an inode resulting from NFS filehandle conversion or
1824  * similar open by handle operations.  The returned dentry may be anonymous,
1825  * or may have a full name (if the inode was already in the cache).
1826  *
1827  * When called on a directory inode, we must ensure that the inode only ever
1828  * has one dentry.  If a dentry is found, that is returned instead of
1829  * allocating a new one.
1830  *
1831  * On successful return, the reference to the inode has been transferred
1832  * to the dentry.  In case of an error the reference on the inode is released.
1833  * To make it easier to use in export operations a %NULL or IS_ERR inode may
1834  * be passed in and the error will be propagated to the return value,
1835  * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
1836  */
1837 struct dentry *d_obtain_alias(struct inode *inode)
1838 {
1839 	return __d_obtain_alias(inode, 1);
1840 }
1841 EXPORT_SYMBOL(d_obtain_alias);
1842 
1843 /**
1844  * d_obtain_root - find or allocate a dentry for a given inode
1845  * @inode: inode to allocate the dentry for
1846  *
1847  * Obtain an IS_ROOT dentry for the root of a filesystem.
1848  *
1849  * We must ensure that directory inodes only ever have one dentry.  If a
1850  * dentry is found, that is returned instead of allocating a new one.
1851  *
1852  * On successful return, the reference to the inode has been transferred
1853  * to the dentry.  In case of an error the reference on the inode is
1854  * released.  A %NULL or IS_ERR inode may be passed in and will be the
1855  * error will be propagate to the return value, with a %NULL @inode
1856  * replaced by ERR_PTR(-ESTALE).
1857  */
1858 struct dentry *d_obtain_root(struct inode *inode)
1859 {
1860 	return __d_obtain_alias(inode, 0);
1861 }
1862 EXPORT_SYMBOL(d_obtain_root);
1863 
1864 /**
1865  * d_add_ci - lookup or allocate new dentry with case-exact name
1866  * @inode:  the inode case-insensitive lookup has found
1867  * @dentry: the negative dentry that was passed to the parent's lookup func
1868  * @name:   the case-exact name to be associated with the returned dentry
1869  *
1870  * This is to avoid filling the dcache with case-insensitive names to the
1871  * same inode, only the actual correct case is stored in the dcache for
1872  * case-insensitive filesystems.
1873  *
1874  * For a case-insensitive lookup match and if the the case-exact dentry
1875  * already exists in in the dcache, use it and return it.
1876  *
1877  * If no entry exists with the exact case name, allocate new dentry with
1878  * the exact case, and return the spliced entry.
1879  */
1880 struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
1881 			struct qstr *name)
1882 {
1883 	struct dentry *found;
1884 	struct dentry *new;
1885 
1886 	/*
1887 	 * First check if a dentry matching the name already exists,
1888 	 * if not go ahead and create it now.
1889 	 */
1890 	found = d_hash_and_lookup(dentry->d_parent, name);
1891 	if (unlikely(IS_ERR(found)))
1892 		goto err_out;
1893 	if (!found) {
1894 		new = d_alloc(dentry->d_parent, name);
1895 		if (!new) {
1896 			found = ERR_PTR(-ENOMEM);
1897 			goto err_out;
1898 		}
1899 
1900 		found = d_splice_alias(inode, new);
1901 		if (found) {
1902 			dput(new);
1903 			return found;
1904 		}
1905 		return new;
1906 	}
1907 
1908 	/*
1909 	 * If a matching dentry exists, and it's not negative use it.
1910 	 *
1911 	 * Decrement the reference count to balance the iget() done
1912 	 * earlier on.
1913 	 */
1914 	if (found->d_inode) {
1915 		if (unlikely(found->d_inode != inode)) {
1916 			/* This can't happen because bad inodes are unhashed. */
1917 			BUG_ON(!is_bad_inode(inode));
1918 			BUG_ON(!is_bad_inode(found->d_inode));
1919 		}
1920 		iput(inode);
1921 		return found;
1922 	}
1923 
1924 	/*
1925 	 * Negative dentry: instantiate it unless the inode is a directory and
1926 	 * already has a dentry.
1927 	 */
1928 	new = d_splice_alias(inode, found);
1929 	if (new) {
1930 		dput(found);
1931 		found = new;
1932 	}
1933 	return found;
1934 
1935 err_out:
1936 	iput(inode);
1937 	return found;
1938 }
1939 EXPORT_SYMBOL(d_add_ci);
1940 
1941 /*
1942  * Do the slow-case of the dentry name compare.
1943  *
1944  * Unlike the dentry_cmp() function, we need to atomically
1945  * load the name and length information, so that the
1946  * filesystem can rely on them, and can use the 'name' and
1947  * 'len' information without worrying about walking off the
1948  * end of memory etc.
1949  *
1950  * Thus the read_seqcount_retry() and the "duplicate" info
1951  * in arguments (the low-level filesystem should not look
1952  * at the dentry inode or name contents directly, since
1953  * rename can change them while we're in RCU mode).
1954  */
1955 enum slow_d_compare {
1956 	D_COMP_OK,
1957 	D_COMP_NOMATCH,
1958 	D_COMP_SEQRETRY,
1959 };
1960 
1961 static noinline enum slow_d_compare slow_dentry_cmp(
1962 		const struct dentry *parent,
1963 		struct dentry *dentry,
1964 		unsigned int seq,
1965 		const struct qstr *name)
1966 {
1967 	int tlen = dentry->d_name.len;
1968 	const char *tname = dentry->d_name.name;
1969 
1970 	if (read_seqcount_retry(&dentry->d_seq, seq)) {
1971 		cpu_relax();
1972 		return D_COMP_SEQRETRY;
1973 	}
1974 	if (parent->d_op->d_compare(parent, dentry, tlen, tname, name))
1975 		return D_COMP_NOMATCH;
1976 	return D_COMP_OK;
1977 }
1978 
1979 /**
1980  * __d_lookup_rcu - search for a dentry (racy, store-free)
1981  * @parent: parent dentry
1982  * @name: qstr of name we wish to find
1983  * @seqp: returns d_seq value at the point where the dentry was found
1984  * Returns: dentry, or NULL
1985  *
1986  * __d_lookup_rcu is the dcache lookup function for rcu-walk name
1987  * resolution (store-free path walking) design described in
1988  * Documentation/filesystems/path-lookup.txt.
1989  *
1990  * This is not to be used outside core vfs.
1991  *
1992  * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
1993  * held, and rcu_read_lock held. The returned dentry must not be stored into
1994  * without taking d_lock and checking d_seq sequence count against @seq
1995  * returned here.
1996  *
1997  * A refcount may be taken on the found dentry with the d_rcu_to_refcount
1998  * function.
1999  *
2000  * Alternatively, __d_lookup_rcu may be called again to look up the child of
2001  * the returned dentry, so long as its parent's seqlock is checked after the
2002  * child is looked up. Thus, an interlocking stepping of sequence lock checks
2003  * is formed, giving integrity down the path walk.
2004  *
2005  * NOTE! The caller *has* to check the resulting dentry against the sequence
2006  * number we've returned before using any of the resulting dentry state!
2007  */
2008 struct dentry *__d_lookup_rcu(const struct dentry *parent,
2009 				const struct qstr *name,
2010 				unsigned *seqp)
2011 {
2012 	u64 hashlen = name->hash_len;
2013 	const unsigned char *str = name->name;
2014 	struct hlist_bl_head *b = d_hash(parent, hashlen_hash(hashlen));
2015 	struct hlist_bl_node *node;
2016 	struct dentry *dentry;
2017 
2018 	/*
2019 	 * Note: There is significant duplication with __d_lookup_rcu which is
2020 	 * required to prevent single threaded performance regressions
2021 	 * especially on architectures where smp_rmb (in seqcounts) are costly.
2022 	 * Keep the two functions in sync.
2023 	 */
2024 
2025 	/*
2026 	 * The hash list is protected using RCU.
2027 	 *
2028 	 * Carefully use d_seq when comparing a candidate dentry, to avoid
2029 	 * races with d_move().
2030 	 *
2031 	 * It is possible that concurrent renames can mess up our list
2032 	 * walk here and result in missing our dentry, resulting in the
2033 	 * false-negative result. d_lookup() protects against concurrent
2034 	 * renames using rename_lock seqlock.
2035 	 *
2036 	 * See Documentation/filesystems/path-lookup.txt for more details.
2037 	 */
2038 	hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2039 		unsigned seq;
2040 
2041 seqretry:
2042 		/*
2043 		 * The dentry sequence count protects us from concurrent
2044 		 * renames, and thus protects parent and name fields.
2045 		 *
2046 		 * The caller must perform a seqcount check in order
2047 		 * to do anything useful with the returned dentry.
2048 		 *
2049 		 * NOTE! We do a "raw" seqcount_begin here. That means that
2050 		 * we don't wait for the sequence count to stabilize if it
2051 		 * is in the middle of a sequence change. If we do the slow
2052 		 * dentry compare, we will do seqretries until it is stable,
2053 		 * and if we end up with a successful lookup, we actually
2054 		 * want to exit RCU lookup anyway.
2055 		 */
2056 		seq = raw_seqcount_begin(&dentry->d_seq);
2057 		if (dentry->d_parent != parent)
2058 			continue;
2059 		if (d_unhashed(dentry))
2060 			continue;
2061 
2062 		if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) {
2063 			if (dentry->d_name.hash != hashlen_hash(hashlen))
2064 				continue;
2065 			*seqp = seq;
2066 			switch (slow_dentry_cmp(parent, dentry, seq, name)) {
2067 			case D_COMP_OK:
2068 				return dentry;
2069 			case D_COMP_NOMATCH:
2070 				continue;
2071 			default:
2072 				goto seqretry;
2073 			}
2074 		}
2075 
2076 		if (dentry->d_name.hash_len != hashlen)
2077 			continue;
2078 		*seqp = seq;
2079 		if (!dentry_cmp(dentry, str, hashlen_len(hashlen)))
2080 			return dentry;
2081 	}
2082 	return NULL;
2083 }
2084 
2085 /**
2086  * d_lookup - search for a dentry
2087  * @parent: parent dentry
2088  * @name: qstr of name we wish to find
2089  * Returns: dentry, or NULL
2090  *
2091  * d_lookup searches the children of the parent dentry for the name in
2092  * question. If the dentry is found its reference count is incremented and the
2093  * dentry is returned. The caller must use dput to free the entry when it has
2094  * finished using it. %NULL is returned if the dentry does not exist.
2095  */
2096 struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name)
2097 {
2098 	struct dentry *dentry;
2099 	unsigned seq;
2100 
2101 	do {
2102 		seq = read_seqbegin(&rename_lock);
2103 		dentry = __d_lookup(parent, name);
2104 		if (dentry)
2105 			break;
2106 	} while (read_seqretry(&rename_lock, seq));
2107 	return dentry;
2108 }
2109 EXPORT_SYMBOL(d_lookup);
2110 
2111 /**
2112  * __d_lookup - search for a dentry (racy)
2113  * @parent: parent dentry
2114  * @name: qstr of name we wish to find
2115  * Returns: dentry, or NULL
2116  *
2117  * __d_lookup is like d_lookup, however it may (rarely) return a
2118  * false-negative result due to unrelated rename activity.
2119  *
2120  * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
2121  * however it must be used carefully, eg. with a following d_lookup in
2122  * the case of failure.
2123  *
2124  * __d_lookup callers must be commented.
2125  */
2126 struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name)
2127 {
2128 	unsigned int len = name->len;
2129 	unsigned int hash = name->hash;
2130 	const unsigned char *str = name->name;
2131 	struct hlist_bl_head *b = d_hash(parent, hash);
2132 	struct hlist_bl_node *node;
2133 	struct dentry *found = NULL;
2134 	struct dentry *dentry;
2135 
2136 	/*
2137 	 * Note: There is significant duplication with __d_lookup_rcu which is
2138 	 * required to prevent single threaded performance regressions
2139 	 * especially on architectures where smp_rmb (in seqcounts) are costly.
2140 	 * Keep the two functions in sync.
2141 	 */
2142 
2143 	/*
2144 	 * The hash list is protected using RCU.
2145 	 *
2146 	 * Take d_lock when comparing a candidate dentry, to avoid races
2147 	 * with d_move().
2148 	 *
2149 	 * It is possible that concurrent renames can mess up our list
2150 	 * walk here and result in missing our dentry, resulting in the
2151 	 * false-negative result. d_lookup() protects against concurrent
2152 	 * renames using rename_lock seqlock.
2153 	 *
2154 	 * See Documentation/filesystems/path-lookup.txt for more details.
2155 	 */
2156 	rcu_read_lock();
2157 
2158 	hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2159 
2160 		if (dentry->d_name.hash != hash)
2161 			continue;
2162 
2163 		spin_lock(&dentry->d_lock);
2164 		if (dentry->d_parent != parent)
2165 			goto next;
2166 		if (d_unhashed(dentry))
2167 			goto next;
2168 
2169 		/*
2170 		 * It is safe to compare names since d_move() cannot
2171 		 * change the qstr (protected by d_lock).
2172 		 */
2173 		if (parent->d_flags & DCACHE_OP_COMPARE) {
2174 			int tlen = dentry->d_name.len;
2175 			const char *tname = dentry->d_name.name;
2176 			if (parent->d_op->d_compare(parent, dentry, tlen, tname, name))
2177 				goto next;
2178 		} else {
2179 			if (dentry->d_name.len != len)
2180 				goto next;
2181 			if (dentry_cmp(dentry, str, len))
2182 				goto next;
2183 		}
2184 
2185 		dentry->d_lockref.count++;
2186 		found = dentry;
2187 		spin_unlock(&dentry->d_lock);
2188 		break;
2189 next:
2190 		spin_unlock(&dentry->d_lock);
2191  	}
2192  	rcu_read_unlock();
2193 
2194  	return found;
2195 }
2196 
2197 /**
2198  * d_hash_and_lookup - hash the qstr then search for a dentry
2199  * @dir: Directory to search in
2200  * @name: qstr of name we wish to find
2201  *
2202  * On lookup failure NULL is returned; on bad name - ERR_PTR(-error)
2203  */
2204 struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
2205 {
2206 	/*
2207 	 * Check for a fs-specific hash function. Note that we must
2208 	 * calculate the standard hash first, as the d_op->d_hash()
2209 	 * routine may choose to leave the hash value unchanged.
2210 	 */
2211 	name->hash = full_name_hash(name->name, name->len);
2212 	if (dir->d_flags & DCACHE_OP_HASH) {
2213 		int err = dir->d_op->d_hash(dir, name);
2214 		if (unlikely(err < 0))
2215 			return ERR_PTR(err);
2216 	}
2217 	return d_lookup(dir, name);
2218 }
2219 EXPORT_SYMBOL(d_hash_and_lookup);
2220 
2221 /**
2222  * d_validate - verify dentry provided from insecure source (deprecated)
2223  * @dentry: The dentry alleged to be valid child of @dparent
2224  * @dparent: The parent dentry (known to be valid)
2225  *
2226  * An insecure source has sent us a dentry, here we verify it and dget() it.
2227  * This is used by ncpfs in its readdir implementation.
2228  * Zero is returned in the dentry is invalid.
2229  *
2230  * This function is slow for big directories, and deprecated, do not use it.
2231  */
2232 int d_validate(struct dentry *dentry, struct dentry *dparent)
2233 {
2234 	struct dentry *child;
2235 
2236 	spin_lock(&dparent->d_lock);
2237 	list_for_each_entry(child, &dparent->d_subdirs, d_u.d_child) {
2238 		if (dentry == child) {
2239 			spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
2240 			__dget_dlock(dentry);
2241 			spin_unlock(&dentry->d_lock);
2242 			spin_unlock(&dparent->d_lock);
2243 			return 1;
2244 		}
2245 	}
2246 	spin_unlock(&dparent->d_lock);
2247 
2248 	return 0;
2249 }
2250 EXPORT_SYMBOL(d_validate);
2251 
2252 /*
2253  * When a file is deleted, we have two options:
2254  * - turn this dentry into a negative dentry
2255  * - unhash this dentry and free it.
2256  *
2257  * Usually, we want to just turn this into
2258  * a negative dentry, but if anybody else is
2259  * currently using the dentry or the inode
2260  * we can't do that and we fall back on removing
2261  * it from the hash queues and waiting for
2262  * it to be deleted later when it has no users
2263  */
2264 
2265 /**
2266  * d_delete - delete a dentry
2267  * @dentry: The dentry to delete
2268  *
2269  * Turn the dentry into a negative dentry if possible, otherwise
2270  * remove it from the hash queues so it can be deleted later
2271  */
2272 
2273 void d_delete(struct dentry * dentry)
2274 {
2275 	struct inode *inode;
2276 	int isdir = 0;
2277 	/*
2278 	 * Are we the only user?
2279 	 */
2280 again:
2281 	spin_lock(&dentry->d_lock);
2282 	inode = dentry->d_inode;
2283 	isdir = S_ISDIR(inode->i_mode);
2284 	if (dentry->d_lockref.count == 1) {
2285 		if (!spin_trylock(&inode->i_lock)) {
2286 			spin_unlock(&dentry->d_lock);
2287 			cpu_relax();
2288 			goto again;
2289 		}
2290 		dentry->d_flags &= ~DCACHE_CANT_MOUNT;
2291 		dentry_unlink_inode(dentry);
2292 		fsnotify_nameremove(dentry, isdir);
2293 		return;
2294 	}
2295 
2296 	if (!d_unhashed(dentry))
2297 		__d_drop(dentry);
2298 
2299 	spin_unlock(&dentry->d_lock);
2300 
2301 	fsnotify_nameremove(dentry, isdir);
2302 }
2303 EXPORT_SYMBOL(d_delete);
2304 
2305 static void __d_rehash(struct dentry * entry, struct hlist_bl_head *b)
2306 {
2307 	BUG_ON(!d_unhashed(entry));
2308 	hlist_bl_lock(b);
2309 	entry->d_flags |= DCACHE_RCUACCESS;
2310 	hlist_bl_add_head_rcu(&entry->d_hash, b);
2311 	hlist_bl_unlock(b);
2312 }
2313 
2314 static void _d_rehash(struct dentry * entry)
2315 {
2316 	__d_rehash(entry, d_hash(entry->d_parent, entry->d_name.hash));
2317 }
2318 
2319 /**
2320  * d_rehash	- add an entry back to the hash
2321  * @entry: dentry to add to the hash
2322  *
2323  * Adds a dentry to the hash according to its name.
2324  */
2325 
2326 void d_rehash(struct dentry * entry)
2327 {
2328 	spin_lock(&entry->d_lock);
2329 	_d_rehash(entry);
2330 	spin_unlock(&entry->d_lock);
2331 }
2332 EXPORT_SYMBOL(d_rehash);
2333 
2334 /**
2335  * dentry_update_name_case - update case insensitive dentry with a new name
2336  * @dentry: dentry to be updated
2337  * @name: new name
2338  *
2339  * Update a case insensitive dentry with new case of name.
2340  *
2341  * dentry must have been returned by d_lookup with name @name. Old and new
2342  * name lengths must match (ie. no d_compare which allows mismatched name
2343  * lengths).
2344  *
2345  * Parent inode i_mutex must be held over d_lookup and into this call (to
2346  * keep renames and concurrent inserts, and readdir(2) away).
2347  */
2348 void dentry_update_name_case(struct dentry *dentry, struct qstr *name)
2349 {
2350 	BUG_ON(!mutex_is_locked(&dentry->d_parent->d_inode->i_mutex));
2351 	BUG_ON(dentry->d_name.len != name->len); /* d_lookup gives this */
2352 
2353 	spin_lock(&dentry->d_lock);
2354 	write_seqcount_begin(&dentry->d_seq);
2355 	memcpy((unsigned char *)dentry->d_name.name, name->name, name->len);
2356 	write_seqcount_end(&dentry->d_seq);
2357 	spin_unlock(&dentry->d_lock);
2358 }
2359 EXPORT_SYMBOL(dentry_update_name_case);
2360 
2361 static void swap_names(struct dentry *dentry, struct dentry *target)
2362 {
2363 	if (unlikely(dname_external(target))) {
2364 		if (unlikely(dname_external(dentry))) {
2365 			/*
2366 			 * Both external: swap the pointers
2367 			 */
2368 			swap(target->d_name.name, dentry->d_name.name);
2369 		} else {
2370 			/*
2371 			 * dentry:internal, target:external.  Steal target's
2372 			 * storage and make target internal.
2373 			 */
2374 			memcpy(target->d_iname, dentry->d_name.name,
2375 					dentry->d_name.len + 1);
2376 			dentry->d_name.name = target->d_name.name;
2377 			target->d_name.name = target->d_iname;
2378 		}
2379 	} else {
2380 		if (unlikely(dname_external(dentry))) {
2381 			/*
2382 			 * dentry:external, target:internal.  Give dentry's
2383 			 * storage to target and make dentry internal
2384 			 */
2385 			memcpy(dentry->d_iname, target->d_name.name,
2386 					target->d_name.len + 1);
2387 			target->d_name.name = dentry->d_name.name;
2388 			dentry->d_name.name = dentry->d_iname;
2389 		} else {
2390 			/*
2391 			 * Both are internal.
2392 			 */
2393 			unsigned int i;
2394 			BUILD_BUG_ON(!IS_ALIGNED(DNAME_INLINE_LEN, sizeof(long)));
2395 			for (i = 0; i < DNAME_INLINE_LEN / sizeof(long); i++) {
2396 				swap(((long *) &dentry->d_iname)[i],
2397 				     ((long *) &target->d_iname)[i]);
2398 			}
2399 		}
2400 	}
2401 	swap(dentry->d_name.hash_len, target->d_name.hash_len);
2402 }
2403 
2404 static void copy_name(struct dentry *dentry, struct dentry *target)
2405 {
2406 	struct external_name *old_name = NULL;
2407 	if (unlikely(dname_external(dentry)))
2408 		old_name = external_name(dentry);
2409 	if (unlikely(dname_external(target))) {
2410 		atomic_inc(&external_name(target)->u.count);
2411 		dentry->d_name = target->d_name;
2412 	} else {
2413 		memcpy(dentry->d_iname, target->d_name.name,
2414 				target->d_name.len + 1);
2415 		dentry->d_name.name = dentry->d_iname;
2416 		dentry->d_name.hash_len = target->d_name.hash_len;
2417 	}
2418 	if (old_name && likely(atomic_dec_and_test(&old_name->u.count)))
2419 		kfree_rcu(old_name, u.head);
2420 }
2421 
2422 static void dentry_lock_for_move(struct dentry *dentry, struct dentry *target)
2423 {
2424 	/*
2425 	 * XXXX: do we really need to take target->d_lock?
2426 	 */
2427 	if (IS_ROOT(dentry) || dentry->d_parent == target->d_parent)
2428 		spin_lock(&target->d_parent->d_lock);
2429 	else {
2430 		if (d_ancestor(dentry->d_parent, target->d_parent)) {
2431 			spin_lock(&dentry->d_parent->d_lock);
2432 			spin_lock_nested(&target->d_parent->d_lock,
2433 						DENTRY_D_LOCK_NESTED);
2434 		} else {
2435 			spin_lock(&target->d_parent->d_lock);
2436 			spin_lock_nested(&dentry->d_parent->d_lock,
2437 						DENTRY_D_LOCK_NESTED);
2438 		}
2439 	}
2440 	if (target < dentry) {
2441 		spin_lock_nested(&target->d_lock, 2);
2442 		spin_lock_nested(&dentry->d_lock, 3);
2443 	} else {
2444 		spin_lock_nested(&dentry->d_lock, 2);
2445 		spin_lock_nested(&target->d_lock, 3);
2446 	}
2447 }
2448 
2449 static void dentry_unlock_for_move(struct dentry *dentry, struct dentry *target)
2450 {
2451 	if (target->d_parent != dentry->d_parent)
2452 		spin_unlock(&dentry->d_parent->d_lock);
2453 	if (target->d_parent != target)
2454 		spin_unlock(&target->d_parent->d_lock);
2455 	spin_unlock(&target->d_lock);
2456 	spin_unlock(&dentry->d_lock);
2457 }
2458 
2459 /*
2460  * When switching names, the actual string doesn't strictly have to
2461  * be preserved in the target - because we're dropping the target
2462  * anyway. As such, we can just do a simple memcpy() to copy over
2463  * the new name before we switch, unless we are going to rehash
2464  * it.  Note that if we *do* unhash the target, we are not allowed
2465  * to rehash it without giving it a new name/hash key - whether
2466  * we swap or overwrite the names here, resulting name won't match
2467  * the reality in filesystem; it's only there for d_path() purposes.
2468  * Note that all of this is happening under rename_lock, so the
2469  * any hash lookup seeing it in the middle of manipulations will
2470  * be discarded anyway.  So we do not care what happens to the hash
2471  * key in that case.
2472  */
2473 /*
2474  * __d_move - move a dentry
2475  * @dentry: entry to move
2476  * @target: new dentry
2477  * @exchange: exchange the two dentries
2478  *
2479  * Update the dcache to reflect the move of a file name. Negative
2480  * dcache entries should not be moved in this way. Caller must hold
2481  * rename_lock, the i_mutex of the source and target directories,
2482  * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
2483  */
2484 static void __d_move(struct dentry *dentry, struct dentry *target,
2485 		     bool exchange)
2486 {
2487 	if (!dentry->d_inode)
2488 		printk(KERN_WARNING "VFS: moving negative dcache entry\n");
2489 
2490 	BUG_ON(d_ancestor(dentry, target));
2491 	BUG_ON(d_ancestor(target, dentry));
2492 
2493 	dentry_lock_for_move(dentry, target);
2494 
2495 	write_seqcount_begin(&dentry->d_seq);
2496 	write_seqcount_begin_nested(&target->d_seq, DENTRY_D_LOCK_NESTED);
2497 
2498 	/* __d_drop does write_seqcount_barrier, but they're OK to nest. */
2499 
2500 	/*
2501 	 * Move the dentry to the target hash queue. Don't bother checking
2502 	 * for the same hash queue because of how unlikely it is.
2503 	 */
2504 	__d_drop(dentry);
2505 	__d_rehash(dentry, d_hash(target->d_parent, target->d_name.hash));
2506 
2507 	/*
2508 	 * Unhash the target (d_delete() is not usable here).  If exchanging
2509 	 * the two dentries, then rehash onto the other's hash queue.
2510 	 */
2511 	__d_drop(target);
2512 	if (exchange) {
2513 		__d_rehash(target,
2514 			   d_hash(dentry->d_parent, dentry->d_name.hash));
2515 	}
2516 
2517 	/* Switch the names.. */
2518 	if (exchange)
2519 		swap_names(dentry, target);
2520 	else
2521 		copy_name(dentry, target);
2522 
2523 	/* ... and switch them in the tree */
2524 	if (IS_ROOT(dentry)) {
2525 		/* splicing a tree */
2526 		dentry->d_parent = target->d_parent;
2527 		target->d_parent = target;
2528 		list_del_init(&target->d_u.d_child);
2529 		list_move(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs);
2530 	} else {
2531 		/* swapping two dentries */
2532 		swap(dentry->d_parent, target->d_parent);
2533 		list_move(&target->d_u.d_child, &target->d_parent->d_subdirs);
2534 		list_move(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs);
2535 		if (exchange)
2536 			fsnotify_d_move(target);
2537 		fsnotify_d_move(dentry);
2538 	}
2539 
2540 	write_seqcount_end(&target->d_seq);
2541 	write_seqcount_end(&dentry->d_seq);
2542 
2543 	dentry_unlock_for_move(dentry, target);
2544 }
2545 
2546 /*
2547  * d_move - move a dentry
2548  * @dentry: entry to move
2549  * @target: new dentry
2550  *
2551  * Update the dcache to reflect the move of a file name. Negative
2552  * dcache entries should not be moved in this way. See the locking
2553  * requirements for __d_move.
2554  */
2555 void d_move(struct dentry *dentry, struct dentry *target)
2556 {
2557 	write_seqlock(&rename_lock);
2558 	__d_move(dentry, target, false);
2559 	write_sequnlock(&rename_lock);
2560 }
2561 EXPORT_SYMBOL(d_move);
2562 
2563 /*
2564  * d_exchange - exchange two dentries
2565  * @dentry1: first dentry
2566  * @dentry2: second dentry
2567  */
2568 void d_exchange(struct dentry *dentry1, struct dentry *dentry2)
2569 {
2570 	write_seqlock(&rename_lock);
2571 
2572 	WARN_ON(!dentry1->d_inode);
2573 	WARN_ON(!dentry2->d_inode);
2574 	WARN_ON(IS_ROOT(dentry1));
2575 	WARN_ON(IS_ROOT(dentry2));
2576 
2577 	__d_move(dentry1, dentry2, true);
2578 
2579 	write_sequnlock(&rename_lock);
2580 }
2581 
2582 /**
2583  * d_ancestor - search for an ancestor
2584  * @p1: ancestor dentry
2585  * @p2: child dentry
2586  *
2587  * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2588  * an ancestor of p2, else NULL.
2589  */
2590 struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
2591 {
2592 	struct dentry *p;
2593 
2594 	for (p = p2; !IS_ROOT(p); p = p->d_parent) {
2595 		if (p->d_parent == p1)
2596 			return p;
2597 	}
2598 	return NULL;
2599 }
2600 
2601 /*
2602  * This helper attempts to cope with remotely renamed directories
2603  *
2604  * It assumes that the caller is already holding
2605  * dentry->d_parent->d_inode->i_mutex, inode->i_lock and rename_lock
2606  *
2607  * Note: If ever the locking in lock_rename() changes, then please
2608  * remember to update this too...
2609  */
2610 static struct dentry *__d_unalias(struct inode *inode,
2611 		struct dentry *dentry, struct dentry *alias)
2612 {
2613 	struct mutex *m1 = NULL, *m2 = NULL;
2614 	struct dentry *ret = ERR_PTR(-EBUSY);
2615 
2616 	/* If alias and dentry share a parent, then no extra locks required */
2617 	if (alias->d_parent == dentry->d_parent)
2618 		goto out_unalias;
2619 
2620 	/* See lock_rename() */
2621 	if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
2622 		goto out_err;
2623 	m1 = &dentry->d_sb->s_vfs_rename_mutex;
2624 	if (!mutex_trylock(&alias->d_parent->d_inode->i_mutex))
2625 		goto out_err;
2626 	m2 = &alias->d_parent->d_inode->i_mutex;
2627 out_unalias:
2628 	__d_move(alias, dentry, false);
2629 	ret = alias;
2630 out_err:
2631 	spin_unlock(&inode->i_lock);
2632 	if (m2)
2633 		mutex_unlock(m2);
2634 	if (m1)
2635 		mutex_unlock(m1);
2636 	return ret;
2637 }
2638 
2639 /**
2640  * d_splice_alias - splice a disconnected dentry into the tree if one exists
2641  * @inode:  the inode which may have a disconnected dentry
2642  * @dentry: a negative dentry which we want to point to the inode.
2643  *
2644  * If inode is a directory and has an IS_ROOT alias, then d_move that in
2645  * place of the given dentry and return it, else simply d_add the inode
2646  * to the dentry and return NULL.
2647  *
2648  * If a non-IS_ROOT directory is found, the filesystem is corrupt, and
2649  * we should error out: directories can't have multiple aliases.
2650  *
2651  * This is needed in the lookup routine of any filesystem that is exportable
2652  * (via knfsd) so that we can build dcache paths to directories effectively.
2653  *
2654  * If a dentry was found and moved, then it is returned.  Otherwise NULL
2655  * is returned.  This matches the expected return value of ->lookup.
2656  *
2657  * Cluster filesystems may call this function with a negative, hashed dentry.
2658  * In that case, we know that the inode will be a regular file, and also this
2659  * will only occur during atomic_open. So we need to check for the dentry
2660  * being already hashed only in the final case.
2661  */
2662 struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
2663 {
2664 	struct dentry *new = NULL;
2665 
2666 	if (IS_ERR(inode))
2667 		return ERR_CAST(inode);
2668 
2669 	if (inode && S_ISDIR(inode->i_mode)) {
2670 		spin_lock(&inode->i_lock);
2671 		new = __d_find_any_alias(inode);
2672 		if (new) {
2673 			if (!IS_ROOT(new)) {
2674 				spin_unlock(&inode->i_lock);
2675 				dput(new);
2676 				iput(inode);
2677 				return ERR_PTR(-EIO);
2678 			}
2679 			if (d_ancestor(new, dentry)) {
2680 				spin_unlock(&inode->i_lock);
2681 				dput(new);
2682 				iput(inode);
2683 				return ERR_PTR(-EIO);
2684 			}
2685 			write_seqlock(&rename_lock);
2686 			__d_move(new, dentry, false);
2687 			write_sequnlock(&rename_lock);
2688 			spin_unlock(&inode->i_lock);
2689 			security_d_instantiate(new, inode);
2690 			iput(inode);
2691 		} else {
2692 			/* already taking inode->i_lock, so d_add() by hand */
2693 			__d_instantiate(dentry, inode);
2694 			spin_unlock(&inode->i_lock);
2695 			security_d_instantiate(dentry, inode);
2696 			d_rehash(dentry);
2697 		}
2698 	} else {
2699 		d_instantiate(dentry, inode);
2700 		if (d_unhashed(dentry))
2701 			d_rehash(dentry);
2702 	}
2703 	return new;
2704 }
2705 EXPORT_SYMBOL(d_splice_alias);
2706 
2707 /**
2708  * d_materialise_unique - introduce an inode into the tree
2709  * @dentry: candidate dentry
2710  * @inode: inode to bind to the dentry, to which aliases may be attached
2711  *
2712  * Introduces an dentry into the tree, substituting an extant disconnected
2713  * root directory alias in its place if there is one. Caller must hold the
2714  * i_mutex of the parent directory.
2715  */
2716 struct dentry *d_materialise_unique(struct dentry *dentry, struct inode *inode)
2717 {
2718 	struct dentry *actual;
2719 
2720 	BUG_ON(!d_unhashed(dentry));
2721 
2722 	if (!inode) {
2723 		actual = dentry;
2724 		__d_instantiate(dentry, NULL);
2725 		d_rehash(actual);
2726 		goto out_nolock;
2727 	}
2728 
2729 	spin_lock(&inode->i_lock);
2730 
2731 	if (S_ISDIR(inode->i_mode)) {
2732 		struct dentry *alias;
2733 
2734 		/* Does an aliased dentry already exist? */
2735 		alias = __d_find_alias(inode);
2736 		if (alias) {
2737 			actual = alias;
2738 			write_seqlock(&rename_lock);
2739 
2740 			if (d_ancestor(alias, dentry)) {
2741 				/* Check for loops */
2742 				actual = ERR_PTR(-ELOOP);
2743 				spin_unlock(&inode->i_lock);
2744 			} else if (IS_ROOT(alias)) {
2745 				/* Is this an anonymous mountpoint that we
2746 				 * could splice into our tree? */
2747 				__d_move(alias, dentry, false);
2748 				write_sequnlock(&rename_lock);
2749 				goto found;
2750 			} else {
2751 				/* Nope, but we must(!) avoid directory
2752 				 * aliasing. This drops inode->i_lock */
2753 				actual = __d_unalias(inode, dentry, alias);
2754 			}
2755 			write_sequnlock(&rename_lock);
2756 			if (IS_ERR(actual)) {
2757 				if (PTR_ERR(actual) == -ELOOP)
2758 					pr_warn_ratelimited(
2759 						"VFS: Lookup of '%s' in %s %s"
2760 						" would have caused loop\n",
2761 						dentry->d_name.name,
2762 						inode->i_sb->s_type->name,
2763 						inode->i_sb->s_id);
2764 				dput(alias);
2765 			}
2766 			goto out_nolock;
2767 		}
2768 	}
2769 
2770 	/* Add a unique reference */
2771 	actual = __d_instantiate_unique(dentry, inode);
2772 	if (!actual)
2773 		actual = dentry;
2774 
2775 	d_rehash(actual);
2776 found:
2777 	spin_unlock(&inode->i_lock);
2778 out_nolock:
2779 	if (actual == dentry) {
2780 		security_d_instantiate(dentry, inode);
2781 		return NULL;
2782 	}
2783 
2784 	iput(inode);
2785 	return actual;
2786 }
2787 EXPORT_SYMBOL_GPL(d_materialise_unique);
2788 
2789 static int prepend(char **buffer, int *buflen, const char *str, int namelen)
2790 {
2791 	*buflen -= namelen;
2792 	if (*buflen < 0)
2793 		return -ENAMETOOLONG;
2794 	*buffer -= namelen;
2795 	memcpy(*buffer, str, namelen);
2796 	return 0;
2797 }
2798 
2799 /**
2800  * prepend_name - prepend a pathname in front of current buffer pointer
2801  * @buffer: buffer pointer
2802  * @buflen: allocated length of the buffer
2803  * @name:   name string and length qstr structure
2804  *
2805  * With RCU path tracing, it may race with d_move(). Use ACCESS_ONCE() to
2806  * make sure that either the old or the new name pointer and length are
2807  * fetched. However, there may be mismatch between length and pointer.
2808  * The length cannot be trusted, we need to copy it byte-by-byte until
2809  * the length is reached or a null byte is found. It also prepends "/" at
2810  * the beginning of the name. The sequence number check at the caller will
2811  * retry it again when a d_move() does happen. So any garbage in the buffer
2812  * due to mismatched pointer and length will be discarded.
2813  *
2814  * Data dependency barrier is needed to make sure that we see that terminating
2815  * NUL.  Alpha strikes again, film at 11...
2816  */
2817 static int prepend_name(char **buffer, int *buflen, struct qstr *name)
2818 {
2819 	const char *dname = ACCESS_ONCE(name->name);
2820 	u32 dlen = ACCESS_ONCE(name->len);
2821 	char *p;
2822 
2823 	smp_read_barrier_depends();
2824 
2825 	*buflen -= dlen + 1;
2826 	if (*buflen < 0)
2827 		return -ENAMETOOLONG;
2828 	p = *buffer -= dlen + 1;
2829 	*p++ = '/';
2830 	while (dlen--) {
2831 		char c = *dname++;
2832 		if (!c)
2833 			break;
2834 		*p++ = c;
2835 	}
2836 	return 0;
2837 }
2838 
2839 /**
2840  * prepend_path - Prepend path string to a buffer
2841  * @path: the dentry/vfsmount to report
2842  * @root: root vfsmnt/dentry
2843  * @buffer: pointer to the end of the buffer
2844  * @buflen: pointer to buffer length
2845  *
2846  * The function will first try to write out the pathname without taking any
2847  * lock other than the RCU read lock to make sure that dentries won't go away.
2848  * It only checks the sequence number of the global rename_lock as any change
2849  * in the dentry's d_seq will be preceded by changes in the rename_lock
2850  * sequence number. If the sequence number had been changed, it will restart
2851  * the whole pathname back-tracing sequence again by taking the rename_lock.
2852  * In this case, there is no need to take the RCU read lock as the recursive
2853  * parent pointer references will keep the dentry chain alive as long as no
2854  * rename operation is performed.
2855  */
2856 static int prepend_path(const struct path *path,
2857 			const struct path *root,
2858 			char **buffer, int *buflen)
2859 {
2860 	struct dentry *dentry;
2861 	struct vfsmount *vfsmnt;
2862 	struct mount *mnt;
2863 	int error = 0;
2864 	unsigned seq, m_seq = 0;
2865 	char *bptr;
2866 	int blen;
2867 
2868 	rcu_read_lock();
2869 restart_mnt:
2870 	read_seqbegin_or_lock(&mount_lock, &m_seq);
2871 	seq = 0;
2872 	rcu_read_lock();
2873 restart:
2874 	bptr = *buffer;
2875 	blen = *buflen;
2876 	error = 0;
2877 	dentry = path->dentry;
2878 	vfsmnt = path->mnt;
2879 	mnt = real_mount(vfsmnt);
2880 	read_seqbegin_or_lock(&rename_lock, &seq);
2881 	while (dentry != root->dentry || vfsmnt != root->mnt) {
2882 		struct dentry * parent;
2883 
2884 		if (dentry == vfsmnt->mnt_root || IS_ROOT(dentry)) {
2885 			struct mount *parent = ACCESS_ONCE(mnt->mnt_parent);
2886 			/* Global root? */
2887 			if (mnt != parent) {
2888 				dentry = ACCESS_ONCE(mnt->mnt_mountpoint);
2889 				mnt = parent;
2890 				vfsmnt = &mnt->mnt;
2891 				continue;
2892 			}
2893 			/*
2894 			 * Filesystems needing to implement special "root names"
2895 			 * should do so with ->d_dname()
2896 			 */
2897 			if (IS_ROOT(dentry) &&
2898 			   (dentry->d_name.len != 1 ||
2899 			    dentry->d_name.name[0] != '/')) {
2900 				WARN(1, "Root dentry has weird name <%.*s>\n",
2901 				     (int) dentry->d_name.len,
2902 				     dentry->d_name.name);
2903 			}
2904 			if (!error)
2905 				error = is_mounted(vfsmnt) ? 1 : 2;
2906 			break;
2907 		}
2908 		parent = dentry->d_parent;
2909 		prefetch(parent);
2910 		error = prepend_name(&bptr, &blen, &dentry->d_name);
2911 		if (error)
2912 			break;
2913 
2914 		dentry = parent;
2915 	}
2916 	if (!(seq & 1))
2917 		rcu_read_unlock();
2918 	if (need_seqretry(&rename_lock, seq)) {
2919 		seq = 1;
2920 		goto restart;
2921 	}
2922 	done_seqretry(&rename_lock, seq);
2923 
2924 	if (!(m_seq & 1))
2925 		rcu_read_unlock();
2926 	if (need_seqretry(&mount_lock, m_seq)) {
2927 		m_seq = 1;
2928 		goto restart_mnt;
2929 	}
2930 	done_seqretry(&mount_lock, m_seq);
2931 
2932 	if (error >= 0 && bptr == *buffer) {
2933 		if (--blen < 0)
2934 			error = -ENAMETOOLONG;
2935 		else
2936 			*--bptr = '/';
2937 	}
2938 	*buffer = bptr;
2939 	*buflen = blen;
2940 	return error;
2941 }
2942 
2943 /**
2944  * __d_path - return the path of a dentry
2945  * @path: the dentry/vfsmount to report
2946  * @root: root vfsmnt/dentry
2947  * @buf: buffer to return value in
2948  * @buflen: buffer length
2949  *
2950  * Convert a dentry into an ASCII path name.
2951  *
2952  * Returns a pointer into the buffer or an error code if the
2953  * path was too long.
2954  *
2955  * "buflen" should be positive.
2956  *
2957  * If the path is not reachable from the supplied root, return %NULL.
2958  */
2959 char *__d_path(const struct path *path,
2960 	       const struct path *root,
2961 	       char *buf, int buflen)
2962 {
2963 	char *res = buf + buflen;
2964 	int error;
2965 
2966 	prepend(&res, &buflen, "\0", 1);
2967 	error = prepend_path(path, root, &res, &buflen);
2968 
2969 	if (error < 0)
2970 		return ERR_PTR(error);
2971 	if (error > 0)
2972 		return NULL;
2973 	return res;
2974 }
2975 
2976 char *d_absolute_path(const struct path *path,
2977 	       char *buf, int buflen)
2978 {
2979 	struct path root = {};
2980 	char *res = buf + buflen;
2981 	int error;
2982 
2983 	prepend(&res, &buflen, "\0", 1);
2984 	error = prepend_path(path, &root, &res, &buflen);
2985 
2986 	if (error > 1)
2987 		error = -EINVAL;
2988 	if (error < 0)
2989 		return ERR_PTR(error);
2990 	return res;
2991 }
2992 
2993 /*
2994  * same as __d_path but appends "(deleted)" for unlinked files.
2995  */
2996 static int path_with_deleted(const struct path *path,
2997 			     const struct path *root,
2998 			     char **buf, int *buflen)
2999 {
3000 	prepend(buf, buflen, "\0", 1);
3001 	if (d_unlinked(path->dentry)) {
3002 		int error = prepend(buf, buflen, " (deleted)", 10);
3003 		if (error)
3004 			return error;
3005 	}
3006 
3007 	return prepend_path(path, root, buf, buflen);
3008 }
3009 
3010 static int prepend_unreachable(char **buffer, int *buflen)
3011 {
3012 	return prepend(buffer, buflen, "(unreachable)", 13);
3013 }
3014 
3015 static void get_fs_root_rcu(struct fs_struct *fs, struct path *root)
3016 {
3017 	unsigned seq;
3018 
3019 	do {
3020 		seq = read_seqcount_begin(&fs->seq);
3021 		*root = fs->root;
3022 	} while (read_seqcount_retry(&fs->seq, seq));
3023 }
3024 
3025 /**
3026  * d_path - return the path of a dentry
3027  * @path: path to report
3028  * @buf: buffer to return value in
3029  * @buflen: buffer length
3030  *
3031  * Convert a dentry into an ASCII path name. If the entry has been deleted
3032  * the string " (deleted)" is appended. Note that this is ambiguous.
3033  *
3034  * Returns a pointer into the buffer or an error code if the path was
3035  * too long. Note: Callers should use the returned pointer, not the passed
3036  * in buffer, to use the name! The implementation often starts at an offset
3037  * into the buffer, and may leave 0 bytes at the start.
3038  *
3039  * "buflen" should be positive.
3040  */
3041 char *d_path(const struct path *path, char *buf, int buflen)
3042 {
3043 	char *res = buf + buflen;
3044 	struct path root;
3045 	int error;
3046 
3047 	/*
3048 	 * We have various synthetic filesystems that never get mounted.  On
3049 	 * these filesystems dentries are never used for lookup purposes, and
3050 	 * thus don't need to be hashed.  They also don't need a name until a
3051 	 * user wants to identify the object in /proc/pid/fd/.  The little hack
3052 	 * below allows us to generate a name for these objects on demand:
3053 	 *
3054 	 * Some pseudo inodes are mountable.  When they are mounted
3055 	 * path->dentry == path->mnt->mnt_root.  In that case don't call d_dname
3056 	 * and instead have d_path return the mounted path.
3057 	 */
3058 	if (path->dentry->d_op && path->dentry->d_op->d_dname &&
3059 	    (!IS_ROOT(path->dentry) || path->dentry != path->mnt->mnt_root))
3060 		return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
3061 
3062 	rcu_read_lock();
3063 	get_fs_root_rcu(current->fs, &root);
3064 	error = path_with_deleted(path, &root, &res, &buflen);
3065 	rcu_read_unlock();
3066 
3067 	if (error < 0)
3068 		res = ERR_PTR(error);
3069 	return res;
3070 }
3071 EXPORT_SYMBOL(d_path);
3072 
3073 /*
3074  * Helper function for dentry_operations.d_dname() members
3075  */
3076 char *dynamic_dname(struct dentry *dentry, char *buffer, int buflen,
3077 			const char *fmt, ...)
3078 {
3079 	va_list args;
3080 	char temp[64];
3081 	int sz;
3082 
3083 	va_start(args, fmt);
3084 	sz = vsnprintf(temp, sizeof(temp), fmt, args) + 1;
3085 	va_end(args);
3086 
3087 	if (sz > sizeof(temp) || sz > buflen)
3088 		return ERR_PTR(-ENAMETOOLONG);
3089 
3090 	buffer += buflen - sz;
3091 	return memcpy(buffer, temp, sz);
3092 }
3093 
3094 char *simple_dname(struct dentry *dentry, char *buffer, int buflen)
3095 {
3096 	char *end = buffer + buflen;
3097 	/* these dentries are never renamed, so d_lock is not needed */
3098 	if (prepend(&end, &buflen, " (deleted)", 11) ||
3099 	    prepend(&end, &buflen, dentry->d_name.name, dentry->d_name.len) ||
3100 	    prepend(&end, &buflen, "/", 1))
3101 		end = ERR_PTR(-ENAMETOOLONG);
3102 	return end;
3103 }
3104 EXPORT_SYMBOL(simple_dname);
3105 
3106 /*
3107  * Write full pathname from the root of the filesystem into the buffer.
3108  */
3109 static char *__dentry_path(struct dentry *d, char *buf, int buflen)
3110 {
3111 	struct dentry *dentry;
3112 	char *end, *retval;
3113 	int len, seq = 0;
3114 	int error = 0;
3115 
3116 	if (buflen < 2)
3117 		goto Elong;
3118 
3119 	rcu_read_lock();
3120 restart:
3121 	dentry = d;
3122 	end = buf + buflen;
3123 	len = buflen;
3124 	prepend(&end, &len, "\0", 1);
3125 	/* Get '/' right */
3126 	retval = end-1;
3127 	*retval = '/';
3128 	read_seqbegin_or_lock(&rename_lock, &seq);
3129 	while (!IS_ROOT(dentry)) {
3130 		struct dentry *parent = dentry->d_parent;
3131 
3132 		prefetch(parent);
3133 		error = prepend_name(&end, &len, &dentry->d_name);
3134 		if (error)
3135 			break;
3136 
3137 		retval = end;
3138 		dentry = parent;
3139 	}
3140 	if (!(seq & 1))
3141 		rcu_read_unlock();
3142 	if (need_seqretry(&rename_lock, seq)) {
3143 		seq = 1;
3144 		goto restart;
3145 	}
3146 	done_seqretry(&rename_lock, seq);
3147 	if (error)
3148 		goto Elong;
3149 	return retval;
3150 Elong:
3151 	return ERR_PTR(-ENAMETOOLONG);
3152 }
3153 
3154 char *dentry_path_raw(struct dentry *dentry, char *buf, int buflen)
3155 {
3156 	return __dentry_path(dentry, buf, buflen);
3157 }
3158 EXPORT_SYMBOL(dentry_path_raw);
3159 
3160 char *dentry_path(struct dentry *dentry, char *buf, int buflen)
3161 {
3162 	char *p = NULL;
3163 	char *retval;
3164 
3165 	if (d_unlinked(dentry)) {
3166 		p = buf + buflen;
3167 		if (prepend(&p, &buflen, "//deleted", 10) != 0)
3168 			goto Elong;
3169 		buflen++;
3170 	}
3171 	retval = __dentry_path(dentry, buf, buflen);
3172 	if (!IS_ERR(retval) && p)
3173 		*p = '/';	/* restore '/' overriden with '\0' */
3174 	return retval;
3175 Elong:
3176 	return ERR_PTR(-ENAMETOOLONG);
3177 }
3178 
3179 static void get_fs_root_and_pwd_rcu(struct fs_struct *fs, struct path *root,
3180 				    struct path *pwd)
3181 {
3182 	unsigned seq;
3183 
3184 	do {
3185 		seq = read_seqcount_begin(&fs->seq);
3186 		*root = fs->root;
3187 		*pwd = fs->pwd;
3188 	} while (read_seqcount_retry(&fs->seq, seq));
3189 }
3190 
3191 /*
3192  * NOTE! The user-level library version returns a
3193  * character pointer. The kernel system call just
3194  * returns the length of the buffer filled (which
3195  * includes the ending '\0' character), or a negative
3196  * error value. So libc would do something like
3197  *
3198  *	char *getcwd(char * buf, size_t size)
3199  *	{
3200  *		int retval;
3201  *
3202  *		retval = sys_getcwd(buf, size);
3203  *		if (retval >= 0)
3204  *			return buf;
3205  *		errno = -retval;
3206  *		return NULL;
3207  *	}
3208  */
3209 SYSCALL_DEFINE2(getcwd, char __user *, buf, unsigned long, size)
3210 {
3211 	int error;
3212 	struct path pwd, root;
3213 	char *page = __getname();
3214 
3215 	if (!page)
3216 		return -ENOMEM;
3217 
3218 	rcu_read_lock();
3219 	get_fs_root_and_pwd_rcu(current->fs, &root, &pwd);
3220 
3221 	error = -ENOENT;
3222 	if (!d_unlinked(pwd.dentry)) {
3223 		unsigned long len;
3224 		char *cwd = page + PATH_MAX;
3225 		int buflen = PATH_MAX;
3226 
3227 		prepend(&cwd, &buflen, "\0", 1);
3228 		error = prepend_path(&pwd, &root, &cwd, &buflen);
3229 		rcu_read_unlock();
3230 
3231 		if (error < 0)
3232 			goto out;
3233 
3234 		/* Unreachable from current root */
3235 		if (error > 0) {
3236 			error = prepend_unreachable(&cwd, &buflen);
3237 			if (error)
3238 				goto out;
3239 		}
3240 
3241 		error = -ERANGE;
3242 		len = PATH_MAX + page - cwd;
3243 		if (len <= size) {
3244 			error = len;
3245 			if (copy_to_user(buf, cwd, len))
3246 				error = -EFAULT;
3247 		}
3248 	} else {
3249 		rcu_read_unlock();
3250 	}
3251 
3252 out:
3253 	__putname(page);
3254 	return error;
3255 }
3256 
3257 /*
3258  * Test whether new_dentry is a subdirectory of old_dentry.
3259  *
3260  * Trivially implemented using the dcache structure
3261  */
3262 
3263 /**
3264  * is_subdir - is new dentry a subdirectory of old_dentry
3265  * @new_dentry: new dentry
3266  * @old_dentry: old dentry
3267  *
3268  * Returns 1 if new_dentry is a subdirectory of the parent (at any depth).
3269  * Returns 0 otherwise.
3270  * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
3271  */
3272 
3273 int is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
3274 {
3275 	int result;
3276 	unsigned seq;
3277 
3278 	if (new_dentry == old_dentry)
3279 		return 1;
3280 
3281 	do {
3282 		/* for restarting inner loop in case of seq retry */
3283 		seq = read_seqbegin(&rename_lock);
3284 		/*
3285 		 * Need rcu_readlock to protect against the d_parent trashing
3286 		 * due to d_move
3287 		 */
3288 		rcu_read_lock();
3289 		if (d_ancestor(old_dentry, new_dentry))
3290 			result = 1;
3291 		else
3292 			result = 0;
3293 		rcu_read_unlock();
3294 	} while (read_seqretry(&rename_lock, seq));
3295 
3296 	return result;
3297 }
3298 
3299 static enum d_walk_ret d_genocide_kill(void *data, struct dentry *dentry)
3300 {
3301 	struct dentry *root = data;
3302 	if (dentry != root) {
3303 		if (d_unhashed(dentry) || !dentry->d_inode)
3304 			return D_WALK_SKIP;
3305 
3306 		if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
3307 			dentry->d_flags |= DCACHE_GENOCIDE;
3308 			dentry->d_lockref.count--;
3309 		}
3310 	}
3311 	return D_WALK_CONTINUE;
3312 }
3313 
3314 void d_genocide(struct dentry *parent)
3315 {
3316 	d_walk(parent, parent, d_genocide_kill, NULL);
3317 }
3318 
3319 void d_tmpfile(struct dentry *dentry, struct inode *inode)
3320 {
3321 	inode_dec_link_count(inode);
3322 	BUG_ON(dentry->d_name.name != dentry->d_iname ||
3323 		!hlist_unhashed(&dentry->d_alias) ||
3324 		!d_unlinked(dentry));
3325 	spin_lock(&dentry->d_parent->d_lock);
3326 	spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
3327 	dentry->d_name.len = sprintf(dentry->d_iname, "#%llu",
3328 				(unsigned long long)inode->i_ino);
3329 	spin_unlock(&dentry->d_lock);
3330 	spin_unlock(&dentry->d_parent->d_lock);
3331 	d_instantiate(dentry, inode);
3332 }
3333 EXPORT_SYMBOL(d_tmpfile);
3334 
3335 static __initdata unsigned long dhash_entries;
3336 static int __init set_dhash_entries(char *str)
3337 {
3338 	if (!str)
3339 		return 0;
3340 	dhash_entries = simple_strtoul(str, &str, 0);
3341 	return 1;
3342 }
3343 __setup("dhash_entries=", set_dhash_entries);
3344 
3345 static void __init dcache_init_early(void)
3346 {
3347 	unsigned int loop;
3348 
3349 	/* If hashes are distributed across NUMA nodes, defer
3350 	 * hash allocation until vmalloc space is available.
3351 	 */
3352 	if (hashdist)
3353 		return;
3354 
3355 	dentry_hashtable =
3356 		alloc_large_system_hash("Dentry cache",
3357 					sizeof(struct hlist_bl_head),
3358 					dhash_entries,
3359 					13,
3360 					HASH_EARLY,
3361 					&d_hash_shift,
3362 					&d_hash_mask,
3363 					0,
3364 					0);
3365 
3366 	for (loop = 0; loop < (1U << d_hash_shift); loop++)
3367 		INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
3368 }
3369 
3370 static void __init dcache_init(void)
3371 {
3372 	unsigned int loop;
3373 
3374 	/*
3375 	 * A constructor could be added for stable state like the lists,
3376 	 * but it is probably not worth it because of the cache nature
3377 	 * of the dcache.
3378 	 */
3379 	dentry_cache = KMEM_CACHE(dentry,
3380 		SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD);
3381 
3382 	/* Hash may have been set up in dcache_init_early */
3383 	if (!hashdist)
3384 		return;
3385 
3386 	dentry_hashtable =
3387 		alloc_large_system_hash("Dentry cache",
3388 					sizeof(struct hlist_bl_head),
3389 					dhash_entries,
3390 					13,
3391 					0,
3392 					&d_hash_shift,
3393 					&d_hash_mask,
3394 					0,
3395 					0);
3396 
3397 	for (loop = 0; loop < (1U << d_hash_shift); loop++)
3398 		INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
3399 }
3400 
3401 /* SLAB cache for __getname() consumers */
3402 struct kmem_cache *names_cachep __read_mostly;
3403 EXPORT_SYMBOL(names_cachep);
3404 
3405 EXPORT_SYMBOL(d_genocide);
3406 
3407 void __init vfs_caches_init_early(void)
3408 {
3409 	dcache_init_early();
3410 	inode_init_early();
3411 }
3412 
3413 void __init vfs_caches_init(unsigned long mempages)
3414 {
3415 	unsigned long reserve;
3416 
3417 	/* Base hash sizes on available memory, with a reserve equal to
3418            150% of current kernel size */
3419 
3420 	reserve = min((mempages - nr_free_pages()) * 3/2, mempages - 1);
3421 	mempages -= reserve;
3422 
3423 	names_cachep = kmem_cache_create("names_cache", PATH_MAX, 0,
3424 			SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
3425 
3426 	dcache_init();
3427 	inode_init();
3428 	files_init(mempages);
3429 	mnt_init();
3430 	bdev_cache_init();
3431 	chrdev_init();
3432 }
3433