1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * fs/dcache.c 4 * 5 * Complete reimplementation 6 * (C) 1997 Thomas Schoebel-Theuer, 7 * with heavy changes by Linus Torvalds 8 */ 9 10 /* 11 * Notes on the allocation strategy: 12 * 13 * The dcache is a master of the icache - whenever a dcache entry 14 * exists, the inode will always exist. "iput()" is done either when 15 * the dcache entry is deleted or garbage collected. 16 */ 17 18 #include <linux/ratelimit.h> 19 #include <linux/string.h> 20 #include <linux/mm.h> 21 #include <linux/fs.h> 22 #include <linux/fscrypt.h> 23 #include <linux/fsnotify.h> 24 #include <linux/slab.h> 25 #include <linux/init.h> 26 #include <linux/hash.h> 27 #include <linux/cache.h> 28 #include <linux/export.h> 29 #include <linux/security.h> 30 #include <linux/seqlock.h> 31 #include <linux/memblock.h> 32 #include <linux/bit_spinlock.h> 33 #include <linux/rculist_bl.h> 34 #include <linux/list_lru.h> 35 #include "internal.h" 36 #include "mount.h" 37 38 /* 39 * Usage: 40 * dcache->d_inode->i_lock protects: 41 * - i_dentry, d_u.d_alias, d_inode of aliases 42 * dcache_hash_bucket lock protects: 43 * - the dcache hash table 44 * s_roots bl list spinlock protects: 45 * - the s_roots list (see __d_drop) 46 * dentry->d_sb->s_dentry_lru_lock protects: 47 * - the dcache lru lists and counters 48 * d_lock protects: 49 * - d_flags 50 * - d_name 51 * - d_lru 52 * - d_count 53 * - d_unhashed() 54 * - d_parent and d_subdirs 55 * - childrens' d_child and d_parent 56 * - d_u.d_alias, d_inode 57 * 58 * Ordering: 59 * dentry->d_inode->i_lock 60 * dentry->d_lock 61 * dentry->d_sb->s_dentry_lru_lock 62 * dcache_hash_bucket lock 63 * s_roots lock 64 * 65 * If there is an ancestor relationship: 66 * dentry->d_parent->...->d_parent->d_lock 67 * ... 68 * dentry->d_parent->d_lock 69 * dentry->d_lock 70 * 71 * If no ancestor relationship: 72 * arbitrary, since it's serialized on rename_lock 73 */ 74 int sysctl_vfs_cache_pressure __read_mostly = 100; 75 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure); 76 77 __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock); 78 79 EXPORT_SYMBOL(rename_lock); 80 81 static struct kmem_cache *dentry_cache __read_mostly; 82 83 const struct qstr empty_name = QSTR_INIT("", 0); 84 EXPORT_SYMBOL(empty_name); 85 const struct qstr slash_name = QSTR_INIT("/", 1); 86 EXPORT_SYMBOL(slash_name); 87 88 /* 89 * This is the single most critical data structure when it comes 90 * to the dcache: the hashtable for lookups. Somebody should try 91 * to make this good - I've just made it work. 92 * 93 * This hash-function tries to avoid losing too many bits of hash 94 * information, yet avoid using a prime hash-size or similar. 95 */ 96 97 static unsigned int d_hash_shift __read_mostly; 98 99 static struct hlist_bl_head *dentry_hashtable __read_mostly; 100 101 static inline struct hlist_bl_head *d_hash(unsigned int hash) 102 { 103 return dentry_hashtable + (hash >> d_hash_shift); 104 } 105 106 #define IN_LOOKUP_SHIFT 10 107 static struct hlist_bl_head in_lookup_hashtable[1 << IN_LOOKUP_SHIFT]; 108 109 static inline struct hlist_bl_head *in_lookup_hash(const struct dentry *parent, 110 unsigned int hash) 111 { 112 hash += (unsigned long) parent / L1_CACHE_BYTES; 113 return in_lookup_hashtable + hash_32(hash, IN_LOOKUP_SHIFT); 114 } 115 116 117 /* Statistics gathering. */ 118 struct dentry_stat_t dentry_stat = { 119 .age_limit = 45, 120 }; 121 122 static DEFINE_PER_CPU(long, nr_dentry); 123 static DEFINE_PER_CPU(long, nr_dentry_unused); 124 static DEFINE_PER_CPU(long, nr_dentry_negative); 125 126 #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS) 127 128 /* 129 * Here we resort to our own counters instead of using generic per-cpu counters 130 * for consistency with what the vfs inode code does. We are expected to harvest 131 * better code and performance by having our own specialized counters. 132 * 133 * Please note that the loop is done over all possible CPUs, not over all online 134 * CPUs. The reason for this is that we don't want to play games with CPUs going 135 * on and off. If one of them goes off, we will just keep their counters. 136 * 137 * glommer: See cffbc8a for details, and if you ever intend to change this, 138 * please update all vfs counters to match. 139 */ 140 static long get_nr_dentry(void) 141 { 142 int i; 143 long sum = 0; 144 for_each_possible_cpu(i) 145 sum += per_cpu(nr_dentry, i); 146 return sum < 0 ? 0 : sum; 147 } 148 149 static long get_nr_dentry_unused(void) 150 { 151 int i; 152 long sum = 0; 153 for_each_possible_cpu(i) 154 sum += per_cpu(nr_dentry_unused, i); 155 return sum < 0 ? 0 : sum; 156 } 157 158 static long get_nr_dentry_negative(void) 159 { 160 int i; 161 long sum = 0; 162 163 for_each_possible_cpu(i) 164 sum += per_cpu(nr_dentry_negative, i); 165 return sum < 0 ? 0 : sum; 166 } 167 168 int proc_nr_dentry(struct ctl_table *table, int write, void *buffer, 169 size_t *lenp, loff_t *ppos) 170 { 171 dentry_stat.nr_dentry = get_nr_dentry(); 172 dentry_stat.nr_unused = get_nr_dentry_unused(); 173 dentry_stat.nr_negative = get_nr_dentry_negative(); 174 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos); 175 } 176 #endif 177 178 /* 179 * Compare 2 name strings, return 0 if they match, otherwise non-zero. 180 * The strings are both count bytes long, and count is non-zero. 181 */ 182 #ifdef CONFIG_DCACHE_WORD_ACCESS 183 184 #include <asm/word-at-a-time.h> 185 /* 186 * NOTE! 'cs' and 'scount' come from a dentry, so it has a 187 * aligned allocation for this particular component. We don't 188 * strictly need the load_unaligned_zeropad() safety, but it 189 * doesn't hurt either. 190 * 191 * In contrast, 'ct' and 'tcount' can be from a pathname, and do 192 * need the careful unaligned handling. 193 */ 194 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount) 195 { 196 unsigned long a,b,mask; 197 198 for (;;) { 199 a = read_word_at_a_time(cs); 200 b = load_unaligned_zeropad(ct); 201 if (tcount < sizeof(unsigned long)) 202 break; 203 if (unlikely(a != b)) 204 return 1; 205 cs += sizeof(unsigned long); 206 ct += sizeof(unsigned long); 207 tcount -= sizeof(unsigned long); 208 if (!tcount) 209 return 0; 210 } 211 mask = bytemask_from_count(tcount); 212 return unlikely(!!((a ^ b) & mask)); 213 } 214 215 #else 216 217 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount) 218 { 219 do { 220 if (*cs != *ct) 221 return 1; 222 cs++; 223 ct++; 224 tcount--; 225 } while (tcount); 226 return 0; 227 } 228 229 #endif 230 231 static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount) 232 { 233 /* 234 * Be careful about RCU walk racing with rename: 235 * use 'READ_ONCE' to fetch the name pointer. 236 * 237 * NOTE! Even if a rename will mean that the length 238 * was not loaded atomically, we don't care. The 239 * RCU walk will check the sequence count eventually, 240 * and catch it. And we won't overrun the buffer, 241 * because we're reading the name pointer atomically, 242 * and a dentry name is guaranteed to be properly 243 * terminated with a NUL byte. 244 * 245 * End result: even if 'len' is wrong, we'll exit 246 * early because the data cannot match (there can 247 * be no NUL in the ct/tcount data) 248 */ 249 const unsigned char *cs = READ_ONCE(dentry->d_name.name); 250 251 return dentry_string_cmp(cs, ct, tcount); 252 } 253 254 struct external_name { 255 union { 256 atomic_t count; 257 struct rcu_head head; 258 } u; 259 unsigned char name[]; 260 }; 261 262 static inline struct external_name *external_name(struct dentry *dentry) 263 { 264 return container_of(dentry->d_name.name, struct external_name, name[0]); 265 } 266 267 static void __d_free(struct rcu_head *head) 268 { 269 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu); 270 271 kmem_cache_free(dentry_cache, dentry); 272 } 273 274 static void __d_free_external(struct rcu_head *head) 275 { 276 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu); 277 kfree(external_name(dentry)); 278 kmem_cache_free(dentry_cache, dentry); 279 } 280 281 static inline int dname_external(const struct dentry *dentry) 282 { 283 return dentry->d_name.name != dentry->d_iname; 284 } 285 286 void take_dentry_name_snapshot(struct name_snapshot *name, struct dentry *dentry) 287 { 288 spin_lock(&dentry->d_lock); 289 name->name = dentry->d_name; 290 if (unlikely(dname_external(dentry))) { 291 atomic_inc(&external_name(dentry)->u.count); 292 } else { 293 memcpy(name->inline_name, dentry->d_iname, 294 dentry->d_name.len + 1); 295 name->name.name = name->inline_name; 296 } 297 spin_unlock(&dentry->d_lock); 298 } 299 EXPORT_SYMBOL(take_dentry_name_snapshot); 300 301 void release_dentry_name_snapshot(struct name_snapshot *name) 302 { 303 if (unlikely(name->name.name != name->inline_name)) { 304 struct external_name *p; 305 p = container_of(name->name.name, struct external_name, name[0]); 306 if (unlikely(atomic_dec_and_test(&p->u.count))) 307 kfree_rcu(p, u.head); 308 } 309 } 310 EXPORT_SYMBOL(release_dentry_name_snapshot); 311 312 static inline void __d_set_inode_and_type(struct dentry *dentry, 313 struct inode *inode, 314 unsigned type_flags) 315 { 316 unsigned flags; 317 318 dentry->d_inode = inode; 319 flags = READ_ONCE(dentry->d_flags); 320 flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU); 321 flags |= type_flags; 322 smp_store_release(&dentry->d_flags, flags); 323 } 324 325 static inline void __d_clear_type_and_inode(struct dentry *dentry) 326 { 327 unsigned flags = READ_ONCE(dentry->d_flags); 328 329 flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU); 330 WRITE_ONCE(dentry->d_flags, flags); 331 dentry->d_inode = NULL; 332 if (dentry->d_flags & DCACHE_LRU_LIST) 333 this_cpu_inc(nr_dentry_negative); 334 } 335 336 static void dentry_free(struct dentry *dentry) 337 { 338 WARN_ON(!hlist_unhashed(&dentry->d_u.d_alias)); 339 if (unlikely(dname_external(dentry))) { 340 struct external_name *p = external_name(dentry); 341 if (likely(atomic_dec_and_test(&p->u.count))) { 342 call_rcu(&dentry->d_u.d_rcu, __d_free_external); 343 return; 344 } 345 } 346 /* if dentry was never visible to RCU, immediate free is OK */ 347 if (dentry->d_flags & DCACHE_NORCU) 348 __d_free(&dentry->d_u.d_rcu); 349 else 350 call_rcu(&dentry->d_u.d_rcu, __d_free); 351 } 352 353 /* 354 * Release the dentry's inode, using the filesystem 355 * d_iput() operation if defined. 356 */ 357 static void dentry_unlink_inode(struct dentry * dentry) 358 __releases(dentry->d_lock) 359 __releases(dentry->d_inode->i_lock) 360 { 361 struct inode *inode = dentry->d_inode; 362 363 raw_write_seqcount_begin(&dentry->d_seq); 364 __d_clear_type_and_inode(dentry); 365 hlist_del_init(&dentry->d_u.d_alias); 366 raw_write_seqcount_end(&dentry->d_seq); 367 spin_unlock(&dentry->d_lock); 368 spin_unlock(&inode->i_lock); 369 if (!inode->i_nlink) 370 fsnotify_inoderemove(inode); 371 if (dentry->d_op && dentry->d_op->d_iput) 372 dentry->d_op->d_iput(dentry, inode); 373 else 374 iput(inode); 375 } 376 377 /* 378 * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry 379 * is in use - which includes both the "real" per-superblock 380 * LRU list _and_ the DCACHE_SHRINK_LIST use. 381 * 382 * The DCACHE_SHRINK_LIST bit is set whenever the dentry is 383 * on the shrink list (ie not on the superblock LRU list). 384 * 385 * The per-cpu "nr_dentry_unused" counters are updated with 386 * the DCACHE_LRU_LIST bit. 387 * 388 * The per-cpu "nr_dentry_negative" counters are only updated 389 * when deleted from or added to the per-superblock LRU list, not 390 * from/to the shrink list. That is to avoid an unneeded dec/inc 391 * pair when moving from LRU to shrink list in select_collect(). 392 * 393 * These helper functions make sure we always follow the 394 * rules. d_lock must be held by the caller. 395 */ 396 #define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x)) 397 static void d_lru_add(struct dentry *dentry) 398 { 399 D_FLAG_VERIFY(dentry, 0); 400 dentry->d_flags |= DCACHE_LRU_LIST; 401 this_cpu_inc(nr_dentry_unused); 402 if (d_is_negative(dentry)) 403 this_cpu_inc(nr_dentry_negative); 404 WARN_ON_ONCE(!list_lru_add(&dentry->d_sb->s_dentry_lru, &dentry->d_lru)); 405 } 406 407 static void d_lru_del(struct dentry *dentry) 408 { 409 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST); 410 dentry->d_flags &= ~DCACHE_LRU_LIST; 411 this_cpu_dec(nr_dentry_unused); 412 if (d_is_negative(dentry)) 413 this_cpu_dec(nr_dentry_negative); 414 WARN_ON_ONCE(!list_lru_del(&dentry->d_sb->s_dentry_lru, &dentry->d_lru)); 415 } 416 417 static void d_shrink_del(struct dentry *dentry) 418 { 419 D_FLAG_VERIFY(dentry, DCACHE_SHRINK_LIST | DCACHE_LRU_LIST); 420 list_del_init(&dentry->d_lru); 421 dentry->d_flags &= ~(DCACHE_SHRINK_LIST | DCACHE_LRU_LIST); 422 this_cpu_dec(nr_dentry_unused); 423 } 424 425 static void d_shrink_add(struct dentry *dentry, struct list_head *list) 426 { 427 D_FLAG_VERIFY(dentry, 0); 428 list_add(&dentry->d_lru, list); 429 dentry->d_flags |= DCACHE_SHRINK_LIST | DCACHE_LRU_LIST; 430 this_cpu_inc(nr_dentry_unused); 431 } 432 433 /* 434 * These can only be called under the global LRU lock, ie during the 435 * callback for freeing the LRU list. "isolate" removes it from the 436 * LRU lists entirely, while shrink_move moves it to the indicated 437 * private list. 438 */ 439 static void d_lru_isolate(struct list_lru_one *lru, struct dentry *dentry) 440 { 441 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST); 442 dentry->d_flags &= ~DCACHE_LRU_LIST; 443 this_cpu_dec(nr_dentry_unused); 444 if (d_is_negative(dentry)) 445 this_cpu_dec(nr_dentry_negative); 446 list_lru_isolate(lru, &dentry->d_lru); 447 } 448 449 static void d_lru_shrink_move(struct list_lru_one *lru, struct dentry *dentry, 450 struct list_head *list) 451 { 452 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST); 453 dentry->d_flags |= DCACHE_SHRINK_LIST; 454 if (d_is_negative(dentry)) 455 this_cpu_dec(nr_dentry_negative); 456 list_lru_isolate_move(lru, &dentry->d_lru, list); 457 } 458 459 /** 460 * d_drop - drop a dentry 461 * @dentry: dentry to drop 462 * 463 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't 464 * be found through a VFS lookup any more. Note that this is different from 465 * deleting the dentry - d_delete will try to mark the dentry negative if 466 * possible, giving a successful _negative_ lookup, while d_drop will 467 * just make the cache lookup fail. 468 * 469 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some 470 * reason (NFS timeouts or autofs deletes). 471 * 472 * __d_drop requires dentry->d_lock 473 * ___d_drop doesn't mark dentry as "unhashed" 474 * (dentry->d_hash.pprev will be LIST_POISON2, not NULL). 475 */ 476 static void ___d_drop(struct dentry *dentry) 477 { 478 struct hlist_bl_head *b; 479 /* 480 * Hashed dentries are normally on the dentry hashtable, 481 * with the exception of those newly allocated by 482 * d_obtain_root, which are always IS_ROOT: 483 */ 484 if (unlikely(IS_ROOT(dentry))) 485 b = &dentry->d_sb->s_roots; 486 else 487 b = d_hash(dentry->d_name.hash); 488 489 hlist_bl_lock(b); 490 __hlist_bl_del(&dentry->d_hash); 491 hlist_bl_unlock(b); 492 } 493 494 void __d_drop(struct dentry *dentry) 495 { 496 if (!d_unhashed(dentry)) { 497 ___d_drop(dentry); 498 dentry->d_hash.pprev = NULL; 499 write_seqcount_invalidate(&dentry->d_seq); 500 } 501 } 502 EXPORT_SYMBOL(__d_drop); 503 504 void d_drop(struct dentry *dentry) 505 { 506 spin_lock(&dentry->d_lock); 507 __d_drop(dentry); 508 spin_unlock(&dentry->d_lock); 509 } 510 EXPORT_SYMBOL(d_drop); 511 512 static inline void dentry_unlist(struct dentry *dentry, struct dentry *parent) 513 { 514 struct dentry *next; 515 /* 516 * Inform d_walk() and shrink_dentry_list() that we are no longer 517 * attached to the dentry tree 518 */ 519 dentry->d_flags |= DCACHE_DENTRY_KILLED; 520 if (unlikely(list_empty(&dentry->d_child))) 521 return; 522 __list_del_entry(&dentry->d_child); 523 /* 524 * Cursors can move around the list of children. While we'd been 525 * a normal list member, it didn't matter - ->d_child.next would've 526 * been updated. However, from now on it won't be and for the 527 * things like d_walk() it might end up with a nasty surprise. 528 * Normally d_walk() doesn't care about cursors moving around - 529 * ->d_lock on parent prevents that and since a cursor has no children 530 * of its own, we get through it without ever unlocking the parent. 531 * There is one exception, though - if we ascend from a child that 532 * gets killed as soon as we unlock it, the next sibling is found 533 * using the value left in its ->d_child.next. And if _that_ 534 * pointed to a cursor, and cursor got moved (e.g. by lseek()) 535 * before d_walk() regains parent->d_lock, we'll end up skipping 536 * everything the cursor had been moved past. 537 * 538 * Solution: make sure that the pointer left behind in ->d_child.next 539 * points to something that won't be moving around. I.e. skip the 540 * cursors. 541 */ 542 while (dentry->d_child.next != &parent->d_subdirs) { 543 next = list_entry(dentry->d_child.next, struct dentry, d_child); 544 if (likely(!(next->d_flags & DCACHE_DENTRY_CURSOR))) 545 break; 546 dentry->d_child.next = next->d_child.next; 547 } 548 } 549 550 static void __dentry_kill(struct dentry *dentry) 551 { 552 struct dentry *parent = NULL; 553 bool can_free = true; 554 if (!IS_ROOT(dentry)) 555 parent = dentry->d_parent; 556 557 /* 558 * The dentry is now unrecoverably dead to the world. 559 */ 560 lockref_mark_dead(&dentry->d_lockref); 561 562 /* 563 * inform the fs via d_prune that this dentry is about to be 564 * unhashed and destroyed. 565 */ 566 if (dentry->d_flags & DCACHE_OP_PRUNE) 567 dentry->d_op->d_prune(dentry); 568 569 if (dentry->d_flags & DCACHE_LRU_LIST) { 570 if (!(dentry->d_flags & DCACHE_SHRINK_LIST)) 571 d_lru_del(dentry); 572 } 573 /* if it was on the hash then remove it */ 574 __d_drop(dentry); 575 dentry_unlist(dentry, parent); 576 if (parent) 577 spin_unlock(&parent->d_lock); 578 if (dentry->d_inode) 579 dentry_unlink_inode(dentry); 580 else 581 spin_unlock(&dentry->d_lock); 582 this_cpu_dec(nr_dentry); 583 if (dentry->d_op && dentry->d_op->d_release) 584 dentry->d_op->d_release(dentry); 585 586 spin_lock(&dentry->d_lock); 587 if (dentry->d_flags & DCACHE_SHRINK_LIST) { 588 dentry->d_flags |= DCACHE_MAY_FREE; 589 can_free = false; 590 } 591 spin_unlock(&dentry->d_lock); 592 if (likely(can_free)) 593 dentry_free(dentry); 594 cond_resched(); 595 } 596 597 static struct dentry *__lock_parent(struct dentry *dentry) 598 { 599 struct dentry *parent; 600 rcu_read_lock(); 601 spin_unlock(&dentry->d_lock); 602 again: 603 parent = READ_ONCE(dentry->d_parent); 604 spin_lock(&parent->d_lock); 605 /* 606 * We can't blindly lock dentry until we are sure 607 * that we won't violate the locking order. 608 * Any changes of dentry->d_parent must have 609 * been done with parent->d_lock held, so 610 * spin_lock() above is enough of a barrier 611 * for checking if it's still our child. 612 */ 613 if (unlikely(parent != dentry->d_parent)) { 614 spin_unlock(&parent->d_lock); 615 goto again; 616 } 617 rcu_read_unlock(); 618 if (parent != dentry) 619 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED); 620 else 621 parent = NULL; 622 return parent; 623 } 624 625 static inline struct dentry *lock_parent(struct dentry *dentry) 626 { 627 struct dentry *parent = dentry->d_parent; 628 if (IS_ROOT(dentry)) 629 return NULL; 630 if (likely(spin_trylock(&parent->d_lock))) 631 return parent; 632 return __lock_parent(dentry); 633 } 634 635 static inline bool retain_dentry(struct dentry *dentry) 636 { 637 WARN_ON(d_in_lookup(dentry)); 638 639 /* Unreachable? Get rid of it */ 640 if (unlikely(d_unhashed(dentry))) 641 return false; 642 643 if (unlikely(dentry->d_flags & DCACHE_DISCONNECTED)) 644 return false; 645 646 if (unlikely(dentry->d_flags & DCACHE_OP_DELETE)) { 647 if (dentry->d_op->d_delete(dentry)) 648 return false; 649 } 650 651 if (unlikely(dentry->d_flags & DCACHE_DONTCACHE)) 652 return false; 653 654 /* retain; LRU fodder */ 655 dentry->d_lockref.count--; 656 if (unlikely(!(dentry->d_flags & DCACHE_LRU_LIST))) 657 d_lru_add(dentry); 658 else if (unlikely(!(dentry->d_flags & DCACHE_REFERENCED))) 659 dentry->d_flags |= DCACHE_REFERENCED; 660 return true; 661 } 662 663 void d_mark_dontcache(struct inode *inode) 664 { 665 struct dentry *de; 666 667 spin_lock(&inode->i_lock); 668 hlist_for_each_entry(de, &inode->i_dentry, d_u.d_alias) { 669 spin_lock(&de->d_lock); 670 de->d_flags |= DCACHE_DONTCACHE; 671 spin_unlock(&de->d_lock); 672 } 673 inode->i_state |= I_DONTCACHE; 674 spin_unlock(&inode->i_lock); 675 } 676 EXPORT_SYMBOL(d_mark_dontcache); 677 678 /* 679 * Finish off a dentry we've decided to kill. 680 * dentry->d_lock must be held, returns with it unlocked. 681 * Returns dentry requiring refcount drop, or NULL if we're done. 682 */ 683 static struct dentry *dentry_kill(struct dentry *dentry) 684 __releases(dentry->d_lock) 685 { 686 struct inode *inode = dentry->d_inode; 687 struct dentry *parent = NULL; 688 689 if (inode && unlikely(!spin_trylock(&inode->i_lock))) 690 goto slow_positive; 691 692 if (!IS_ROOT(dentry)) { 693 parent = dentry->d_parent; 694 if (unlikely(!spin_trylock(&parent->d_lock))) { 695 parent = __lock_parent(dentry); 696 if (likely(inode || !dentry->d_inode)) 697 goto got_locks; 698 /* negative that became positive */ 699 if (parent) 700 spin_unlock(&parent->d_lock); 701 inode = dentry->d_inode; 702 goto slow_positive; 703 } 704 } 705 __dentry_kill(dentry); 706 return parent; 707 708 slow_positive: 709 spin_unlock(&dentry->d_lock); 710 spin_lock(&inode->i_lock); 711 spin_lock(&dentry->d_lock); 712 parent = lock_parent(dentry); 713 got_locks: 714 if (unlikely(dentry->d_lockref.count != 1)) { 715 dentry->d_lockref.count--; 716 } else if (likely(!retain_dentry(dentry))) { 717 __dentry_kill(dentry); 718 return parent; 719 } 720 /* we are keeping it, after all */ 721 if (inode) 722 spin_unlock(&inode->i_lock); 723 if (parent) 724 spin_unlock(&parent->d_lock); 725 spin_unlock(&dentry->d_lock); 726 return NULL; 727 } 728 729 /* 730 * Try to do a lockless dput(), and return whether that was successful. 731 * 732 * If unsuccessful, we return false, having already taken the dentry lock. 733 * 734 * The caller needs to hold the RCU read lock, so that the dentry is 735 * guaranteed to stay around even if the refcount goes down to zero! 736 */ 737 static inline bool fast_dput(struct dentry *dentry) 738 { 739 int ret; 740 unsigned int d_flags; 741 742 /* 743 * If we have a d_op->d_delete() operation, we sould not 744 * let the dentry count go to zero, so use "put_or_lock". 745 */ 746 if (unlikely(dentry->d_flags & DCACHE_OP_DELETE)) 747 return lockref_put_or_lock(&dentry->d_lockref); 748 749 /* 750 * .. otherwise, we can try to just decrement the 751 * lockref optimistically. 752 */ 753 ret = lockref_put_return(&dentry->d_lockref); 754 755 /* 756 * If the lockref_put_return() failed due to the lock being held 757 * by somebody else, the fast path has failed. We will need to 758 * get the lock, and then check the count again. 759 */ 760 if (unlikely(ret < 0)) { 761 spin_lock(&dentry->d_lock); 762 if (dentry->d_lockref.count > 1) { 763 dentry->d_lockref.count--; 764 spin_unlock(&dentry->d_lock); 765 return true; 766 } 767 return false; 768 } 769 770 /* 771 * If we weren't the last ref, we're done. 772 */ 773 if (ret) 774 return true; 775 776 /* 777 * Careful, careful. The reference count went down 778 * to zero, but we don't hold the dentry lock, so 779 * somebody else could get it again, and do another 780 * dput(), and we need to not race with that. 781 * 782 * However, there is a very special and common case 783 * where we don't care, because there is nothing to 784 * do: the dentry is still hashed, it does not have 785 * a 'delete' op, and it's referenced and already on 786 * the LRU list. 787 * 788 * NOTE! Since we aren't locked, these values are 789 * not "stable". However, it is sufficient that at 790 * some point after we dropped the reference the 791 * dentry was hashed and the flags had the proper 792 * value. Other dentry users may have re-gotten 793 * a reference to the dentry and change that, but 794 * our work is done - we can leave the dentry 795 * around with a zero refcount. 796 * 797 * Nevertheless, there are two cases that we should kill 798 * the dentry anyway. 799 * 1. free disconnected dentries as soon as their refcount 800 * reached zero. 801 * 2. free dentries if they should not be cached. 802 */ 803 smp_rmb(); 804 d_flags = READ_ONCE(dentry->d_flags); 805 d_flags &= DCACHE_REFERENCED | DCACHE_LRU_LIST | 806 DCACHE_DISCONNECTED | DCACHE_DONTCACHE; 807 808 /* Nothing to do? Dropping the reference was all we needed? */ 809 if (d_flags == (DCACHE_REFERENCED | DCACHE_LRU_LIST) && !d_unhashed(dentry)) 810 return true; 811 812 /* 813 * Not the fast normal case? Get the lock. We've already decremented 814 * the refcount, but we'll need to re-check the situation after 815 * getting the lock. 816 */ 817 spin_lock(&dentry->d_lock); 818 819 /* 820 * Did somebody else grab a reference to it in the meantime, and 821 * we're no longer the last user after all? Alternatively, somebody 822 * else could have killed it and marked it dead. Either way, we 823 * don't need to do anything else. 824 */ 825 if (dentry->d_lockref.count) { 826 spin_unlock(&dentry->d_lock); 827 return true; 828 } 829 830 /* 831 * Re-get the reference we optimistically dropped. We hold the 832 * lock, and we just tested that it was zero, so we can just 833 * set it to 1. 834 */ 835 dentry->d_lockref.count = 1; 836 return false; 837 } 838 839 840 /* 841 * This is dput 842 * 843 * This is complicated by the fact that we do not want to put 844 * dentries that are no longer on any hash chain on the unused 845 * list: we'd much rather just get rid of them immediately. 846 * 847 * However, that implies that we have to traverse the dentry 848 * tree upwards to the parents which might _also_ now be 849 * scheduled for deletion (it may have been only waiting for 850 * its last child to go away). 851 * 852 * This tail recursion is done by hand as we don't want to depend 853 * on the compiler to always get this right (gcc generally doesn't). 854 * Real recursion would eat up our stack space. 855 */ 856 857 /* 858 * dput - release a dentry 859 * @dentry: dentry to release 860 * 861 * Release a dentry. This will drop the usage count and if appropriate 862 * call the dentry unlink method as well as removing it from the queues and 863 * releasing its resources. If the parent dentries were scheduled for release 864 * they too may now get deleted. 865 */ 866 void dput(struct dentry *dentry) 867 { 868 while (dentry) { 869 might_sleep(); 870 871 rcu_read_lock(); 872 if (likely(fast_dput(dentry))) { 873 rcu_read_unlock(); 874 return; 875 } 876 877 /* Slow case: now with the dentry lock held */ 878 rcu_read_unlock(); 879 880 if (likely(retain_dentry(dentry))) { 881 spin_unlock(&dentry->d_lock); 882 return; 883 } 884 885 dentry = dentry_kill(dentry); 886 } 887 } 888 EXPORT_SYMBOL(dput); 889 890 static void __dput_to_list(struct dentry *dentry, struct list_head *list) 891 __must_hold(&dentry->d_lock) 892 { 893 if (dentry->d_flags & DCACHE_SHRINK_LIST) { 894 /* let the owner of the list it's on deal with it */ 895 --dentry->d_lockref.count; 896 } else { 897 if (dentry->d_flags & DCACHE_LRU_LIST) 898 d_lru_del(dentry); 899 if (!--dentry->d_lockref.count) 900 d_shrink_add(dentry, list); 901 } 902 } 903 904 void dput_to_list(struct dentry *dentry, struct list_head *list) 905 { 906 rcu_read_lock(); 907 if (likely(fast_dput(dentry))) { 908 rcu_read_unlock(); 909 return; 910 } 911 rcu_read_unlock(); 912 if (!retain_dentry(dentry)) 913 __dput_to_list(dentry, list); 914 spin_unlock(&dentry->d_lock); 915 } 916 917 /* This must be called with d_lock held */ 918 static inline void __dget_dlock(struct dentry *dentry) 919 { 920 dentry->d_lockref.count++; 921 } 922 923 static inline void __dget(struct dentry *dentry) 924 { 925 lockref_get(&dentry->d_lockref); 926 } 927 928 struct dentry *dget_parent(struct dentry *dentry) 929 { 930 int gotref; 931 struct dentry *ret; 932 unsigned seq; 933 934 /* 935 * Do optimistic parent lookup without any 936 * locking. 937 */ 938 rcu_read_lock(); 939 seq = raw_seqcount_begin(&dentry->d_seq); 940 ret = READ_ONCE(dentry->d_parent); 941 gotref = lockref_get_not_zero(&ret->d_lockref); 942 rcu_read_unlock(); 943 if (likely(gotref)) { 944 if (!read_seqcount_retry(&dentry->d_seq, seq)) 945 return ret; 946 dput(ret); 947 } 948 949 repeat: 950 /* 951 * Don't need rcu_dereference because we re-check it was correct under 952 * the lock. 953 */ 954 rcu_read_lock(); 955 ret = dentry->d_parent; 956 spin_lock(&ret->d_lock); 957 if (unlikely(ret != dentry->d_parent)) { 958 spin_unlock(&ret->d_lock); 959 rcu_read_unlock(); 960 goto repeat; 961 } 962 rcu_read_unlock(); 963 BUG_ON(!ret->d_lockref.count); 964 ret->d_lockref.count++; 965 spin_unlock(&ret->d_lock); 966 return ret; 967 } 968 EXPORT_SYMBOL(dget_parent); 969 970 static struct dentry * __d_find_any_alias(struct inode *inode) 971 { 972 struct dentry *alias; 973 974 if (hlist_empty(&inode->i_dentry)) 975 return NULL; 976 alias = hlist_entry(inode->i_dentry.first, struct dentry, d_u.d_alias); 977 __dget(alias); 978 return alias; 979 } 980 981 /** 982 * d_find_any_alias - find any alias for a given inode 983 * @inode: inode to find an alias for 984 * 985 * If any aliases exist for the given inode, take and return a 986 * reference for one of them. If no aliases exist, return %NULL. 987 */ 988 struct dentry *d_find_any_alias(struct inode *inode) 989 { 990 struct dentry *de; 991 992 spin_lock(&inode->i_lock); 993 de = __d_find_any_alias(inode); 994 spin_unlock(&inode->i_lock); 995 return de; 996 } 997 EXPORT_SYMBOL(d_find_any_alias); 998 999 /** 1000 * d_find_alias - grab a hashed alias of inode 1001 * @inode: inode in question 1002 * 1003 * If inode has a hashed alias, or is a directory and has any alias, 1004 * acquire the reference to alias and return it. Otherwise return NULL. 1005 * Notice that if inode is a directory there can be only one alias and 1006 * it can be unhashed only if it has no children, or if it is the root 1007 * of a filesystem, or if the directory was renamed and d_revalidate 1008 * was the first vfs operation to notice. 1009 * 1010 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer 1011 * any other hashed alias over that one. 1012 */ 1013 static struct dentry *__d_find_alias(struct inode *inode) 1014 { 1015 struct dentry *alias; 1016 1017 if (S_ISDIR(inode->i_mode)) 1018 return __d_find_any_alias(inode); 1019 1020 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) { 1021 spin_lock(&alias->d_lock); 1022 if (!d_unhashed(alias)) { 1023 __dget_dlock(alias); 1024 spin_unlock(&alias->d_lock); 1025 return alias; 1026 } 1027 spin_unlock(&alias->d_lock); 1028 } 1029 return NULL; 1030 } 1031 1032 struct dentry *d_find_alias(struct inode *inode) 1033 { 1034 struct dentry *de = NULL; 1035 1036 if (!hlist_empty(&inode->i_dentry)) { 1037 spin_lock(&inode->i_lock); 1038 de = __d_find_alias(inode); 1039 spin_unlock(&inode->i_lock); 1040 } 1041 return de; 1042 } 1043 EXPORT_SYMBOL(d_find_alias); 1044 1045 /* 1046 * Try to kill dentries associated with this inode. 1047 * WARNING: you must own a reference to inode. 1048 */ 1049 void d_prune_aliases(struct inode *inode) 1050 { 1051 struct dentry *dentry; 1052 restart: 1053 spin_lock(&inode->i_lock); 1054 hlist_for_each_entry(dentry, &inode->i_dentry, d_u.d_alias) { 1055 spin_lock(&dentry->d_lock); 1056 if (!dentry->d_lockref.count) { 1057 struct dentry *parent = lock_parent(dentry); 1058 if (likely(!dentry->d_lockref.count)) { 1059 __dentry_kill(dentry); 1060 dput(parent); 1061 goto restart; 1062 } 1063 if (parent) 1064 spin_unlock(&parent->d_lock); 1065 } 1066 spin_unlock(&dentry->d_lock); 1067 } 1068 spin_unlock(&inode->i_lock); 1069 } 1070 EXPORT_SYMBOL(d_prune_aliases); 1071 1072 /* 1073 * Lock a dentry from shrink list. 1074 * Called under rcu_read_lock() and dentry->d_lock; the former 1075 * guarantees that nothing we access will be freed under us. 1076 * Note that dentry is *not* protected from concurrent dentry_kill(), 1077 * d_delete(), etc. 1078 * 1079 * Return false if dentry has been disrupted or grabbed, leaving 1080 * the caller to kick it off-list. Otherwise, return true and have 1081 * that dentry's inode and parent both locked. 1082 */ 1083 static bool shrink_lock_dentry(struct dentry *dentry) 1084 { 1085 struct inode *inode; 1086 struct dentry *parent; 1087 1088 if (dentry->d_lockref.count) 1089 return false; 1090 1091 inode = dentry->d_inode; 1092 if (inode && unlikely(!spin_trylock(&inode->i_lock))) { 1093 spin_unlock(&dentry->d_lock); 1094 spin_lock(&inode->i_lock); 1095 spin_lock(&dentry->d_lock); 1096 if (unlikely(dentry->d_lockref.count)) 1097 goto out; 1098 /* changed inode means that somebody had grabbed it */ 1099 if (unlikely(inode != dentry->d_inode)) 1100 goto out; 1101 } 1102 1103 parent = dentry->d_parent; 1104 if (IS_ROOT(dentry) || likely(spin_trylock(&parent->d_lock))) 1105 return true; 1106 1107 spin_unlock(&dentry->d_lock); 1108 spin_lock(&parent->d_lock); 1109 if (unlikely(parent != dentry->d_parent)) { 1110 spin_unlock(&parent->d_lock); 1111 spin_lock(&dentry->d_lock); 1112 goto out; 1113 } 1114 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED); 1115 if (likely(!dentry->d_lockref.count)) 1116 return true; 1117 spin_unlock(&parent->d_lock); 1118 out: 1119 if (inode) 1120 spin_unlock(&inode->i_lock); 1121 return false; 1122 } 1123 1124 void shrink_dentry_list(struct list_head *list) 1125 { 1126 while (!list_empty(list)) { 1127 struct dentry *dentry, *parent; 1128 1129 dentry = list_entry(list->prev, struct dentry, d_lru); 1130 spin_lock(&dentry->d_lock); 1131 rcu_read_lock(); 1132 if (!shrink_lock_dentry(dentry)) { 1133 bool can_free = false; 1134 rcu_read_unlock(); 1135 d_shrink_del(dentry); 1136 if (dentry->d_lockref.count < 0) 1137 can_free = dentry->d_flags & DCACHE_MAY_FREE; 1138 spin_unlock(&dentry->d_lock); 1139 if (can_free) 1140 dentry_free(dentry); 1141 continue; 1142 } 1143 rcu_read_unlock(); 1144 d_shrink_del(dentry); 1145 parent = dentry->d_parent; 1146 if (parent != dentry) 1147 __dput_to_list(parent, list); 1148 __dentry_kill(dentry); 1149 } 1150 } 1151 1152 static enum lru_status dentry_lru_isolate(struct list_head *item, 1153 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg) 1154 { 1155 struct list_head *freeable = arg; 1156 struct dentry *dentry = container_of(item, struct dentry, d_lru); 1157 1158 1159 /* 1160 * we are inverting the lru lock/dentry->d_lock here, 1161 * so use a trylock. If we fail to get the lock, just skip 1162 * it 1163 */ 1164 if (!spin_trylock(&dentry->d_lock)) 1165 return LRU_SKIP; 1166 1167 /* 1168 * Referenced dentries are still in use. If they have active 1169 * counts, just remove them from the LRU. Otherwise give them 1170 * another pass through the LRU. 1171 */ 1172 if (dentry->d_lockref.count) { 1173 d_lru_isolate(lru, dentry); 1174 spin_unlock(&dentry->d_lock); 1175 return LRU_REMOVED; 1176 } 1177 1178 if (dentry->d_flags & DCACHE_REFERENCED) { 1179 dentry->d_flags &= ~DCACHE_REFERENCED; 1180 spin_unlock(&dentry->d_lock); 1181 1182 /* 1183 * The list move itself will be made by the common LRU code. At 1184 * this point, we've dropped the dentry->d_lock but keep the 1185 * lru lock. This is safe to do, since every list movement is 1186 * protected by the lru lock even if both locks are held. 1187 * 1188 * This is guaranteed by the fact that all LRU management 1189 * functions are intermediated by the LRU API calls like 1190 * list_lru_add and list_lru_del. List movement in this file 1191 * only ever occur through this functions or through callbacks 1192 * like this one, that are called from the LRU API. 1193 * 1194 * The only exceptions to this are functions like 1195 * shrink_dentry_list, and code that first checks for the 1196 * DCACHE_SHRINK_LIST flag. Those are guaranteed to be 1197 * operating only with stack provided lists after they are 1198 * properly isolated from the main list. It is thus, always a 1199 * local access. 1200 */ 1201 return LRU_ROTATE; 1202 } 1203 1204 d_lru_shrink_move(lru, dentry, freeable); 1205 spin_unlock(&dentry->d_lock); 1206 1207 return LRU_REMOVED; 1208 } 1209 1210 /** 1211 * prune_dcache_sb - shrink the dcache 1212 * @sb: superblock 1213 * @sc: shrink control, passed to list_lru_shrink_walk() 1214 * 1215 * Attempt to shrink the superblock dcache LRU by @sc->nr_to_scan entries. This 1216 * is done when we need more memory and called from the superblock shrinker 1217 * function. 1218 * 1219 * This function may fail to free any resources if all the dentries are in 1220 * use. 1221 */ 1222 long prune_dcache_sb(struct super_block *sb, struct shrink_control *sc) 1223 { 1224 LIST_HEAD(dispose); 1225 long freed; 1226 1227 freed = list_lru_shrink_walk(&sb->s_dentry_lru, sc, 1228 dentry_lru_isolate, &dispose); 1229 shrink_dentry_list(&dispose); 1230 return freed; 1231 } 1232 1233 static enum lru_status dentry_lru_isolate_shrink(struct list_head *item, 1234 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg) 1235 { 1236 struct list_head *freeable = arg; 1237 struct dentry *dentry = container_of(item, struct dentry, d_lru); 1238 1239 /* 1240 * we are inverting the lru lock/dentry->d_lock here, 1241 * so use a trylock. If we fail to get the lock, just skip 1242 * it 1243 */ 1244 if (!spin_trylock(&dentry->d_lock)) 1245 return LRU_SKIP; 1246 1247 d_lru_shrink_move(lru, dentry, freeable); 1248 spin_unlock(&dentry->d_lock); 1249 1250 return LRU_REMOVED; 1251 } 1252 1253 1254 /** 1255 * shrink_dcache_sb - shrink dcache for a superblock 1256 * @sb: superblock 1257 * 1258 * Shrink the dcache for the specified super block. This is used to free 1259 * the dcache before unmounting a file system. 1260 */ 1261 void shrink_dcache_sb(struct super_block *sb) 1262 { 1263 do { 1264 LIST_HEAD(dispose); 1265 1266 list_lru_walk(&sb->s_dentry_lru, 1267 dentry_lru_isolate_shrink, &dispose, 1024); 1268 shrink_dentry_list(&dispose); 1269 } while (list_lru_count(&sb->s_dentry_lru) > 0); 1270 } 1271 EXPORT_SYMBOL(shrink_dcache_sb); 1272 1273 /** 1274 * enum d_walk_ret - action to talke during tree walk 1275 * @D_WALK_CONTINUE: contrinue walk 1276 * @D_WALK_QUIT: quit walk 1277 * @D_WALK_NORETRY: quit when retry is needed 1278 * @D_WALK_SKIP: skip this dentry and its children 1279 */ 1280 enum d_walk_ret { 1281 D_WALK_CONTINUE, 1282 D_WALK_QUIT, 1283 D_WALK_NORETRY, 1284 D_WALK_SKIP, 1285 }; 1286 1287 /** 1288 * d_walk - walk the dentry tree 1289 * @parent: start of walk 1290 * @data: data passed to @enter() and @finish() 1291 * @enter: callback when first entering the dentry 1292 * 1293 * The @enter() callbacks are called with d_lock held. 1294 */ 1295 static void d_walk(struct dentry *parent, void *data, 1296 enum d_walk_ret (*enter)(void *, struct dentry *)) 1297 { 1298 struct dentry *this_parent; 1299 struct list_head *next; 1300 unsigned seq = 0; 1301 enum d_walk_ret ret; 1302 bool retry = true; 1303 1304 again: 1305 read_seqbegin_or_lock(&rename_lock, &seq); 1306 this_parent = parent; 1307 spin_lock(&this_parent->d_lock); 1308 1309 ret = enter(data, this_parent); 1310 switch (ret) { 1311 case D_WALK_CONTINUE: 1312 break; 1313 case D_WALK_QUIT: 1314 case D_WALK_SKIP: 1315 goto out_unlock; 1316 case D_WALK_NORETRY: 1317 retry = false; 1318 break; 1319 } 1320 repeat: 1321 next = this_parent->d_subdirs.next; 1322 resume: 1323 while (next != &this_parent->d_subdirs) { 1324 struct list_head *tmp = next; 1325 struct dentry *dentry = list_entry(tmp, struct dentry, d_child); 1326 next = tmp->next; 1327 1328 if (unlikely(dentry->d_flags & DCACHE_DENTRY_CURSOR)) 1329 continue; 1330 1331 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED); 1332 1333 ret = enter(data, dentry); 1334 switch (ret) { 1335 case D_WALK_CONTINUE: 1336 break; 1337 case D_WALK_QUIT: 1338 spin_unlock(&dentry->d_lock); 1339 goto out_unlock; 1340 case D_WALK_NORETRY: 1341 retry = false; 1342 break; 1343 case D_WALK_SKIP: 1344 spin_unlock(&dentry->d_lock); 1345 continue; 1346 } 1347 1348 if (!list_empty(&dentry->d_subdirs)) { 1349 spin_unlock(&this_parent->d_lock); 1350 spin_release(&dentry->d_lock.dep_map, _RET_IP_); 1351 this_parent = dentry; 1352 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_); 1353 goto repeat; 1354 } 1355 spin_unlock(&dentry->d_lock); 1356 } 1357 /* 1358 * All done at this level ... ascend and resume the search. 1359 */ 1360 rcu_read_lock(); 1361 ascend: 1362 if (this_parent != parent) { 1363 struct dentry *child = this_parent; 1364 this_parent = child->d_parent; 1365 1366 spin_unlock(&child->d_lock); 1367 spin_lock(&this_parent->d_lock); 1368 1369 /* might go back up the wrong parent if we have had a rename. */ 1370 if (need_seqretry(&rename_lock, seq)) 1371 goto rename_retry; 1372 /* go into the first sibling still alive */ 1373 do { 1374 next = child->d_child.next; 1375 if (next == &this_parent->d_subdirs) 1376 goto ascend; 1377 child = list_entry(next, struct dentry, d_child); 1378 } while (unlikely(child->d_flags & DCACHE_DENTRY_KILLED)); 1379 rcu_read_unlock(); 1380 goto resume; 1381 } 1382 if (need_seqretry(&rename_lock, seq)) 1383 goto rename_retry; 1384 rcu_read_unlock(); 1385 1386 out_unlock: 1387 spin_unlock(&this_parent->d_lock); 1388 done_seqretry(&rename_lock, seq); 1389 return; 1390 1391 rename_retry: 1392 spin_unlock(&this_parent->d_lock); 1393 rcu_read_unlock(); 1394 BUG_ON(seq & 1); 1395 if (!retry) 1396 return; 1397 seq = 1; 1398 goto again; 1399 } 1400 1401 struct check_mount { 1402 struct vfsmount *mnt; 1403 unsigned int mounted; 1404 }; 1405 1406 static enum d_walk_ret path_check_mount(void *data, struct dentry *dentry) 1407 { 1408 struct check_mount *info = data; 1409 struct path path = { .mnt = info->mnt, .dentry = dentry }; 1410 1411 if (likely(!d_mountpoint(dentry))) 1412 return D_WALK_CONTINUE; 1413 if (__path_is_mountpoint(&path)) { 1414 info->mounted = 1; 1415 return D_WALK_QUIT; 1416 } 1417 return D_WALK_CONTINUE; 1418 } 1419 1420 /** 1421 * path_has_submounts - check for mounts over a dentry in the 1422 * current namespace. 1423 * @parent: path to check. 1424 * 1425 * Return true if the parent or its subdirectories contain 1426 * a mount point in the current namespace. 1427 */ 1428 int path_has_submounts(const struct path *parent) 1429 { 1430 struct check_mount data = { .mnt = parent->mnt, .mounted = 0 }; 1431 1432 read_seqlock_excl(&mount_lock); 1433 d_walk(parent->dentry, &data, path_check_mount); 1434 read_sequnlock_excl(&mount_lock); 1435 1436 return data.mounted; 1437 } 1438 EXPORT_SYMBOL(path_has_submounts); 1439 1440 /* 1441 * Called by mount code to set a mountpoint and check if the mountpoint is 1442 * reachable (e.g. NFS can unhash a directory dentry and then the complete 1443 * subtree can become unreachable). 1444 * 1445 * Only one of d_invalidate() and d_set_mounted() must succeed. For 1446 * this reason take rename_lock and d_lock on dentry and ancestors. 1447 */ 1448 int d_set_mounted(struct dentry *dentry) 1449 { 1450 struct dentry *p; 1451 int ret = -ENOENT; 1452 write_seqlock(&rename_lock); 1453 for (p = dentry->d_parent; !IS_ROOT(p); p = p->d_parent) { 1454 /* Need exclusion wrt. d_invalidate() */ 1455 spin_lock(&p->d_lock); 1456 if (unlikely(d_unhashed(p))) { 1457 spin_unlock(&p->d_lock); 1458 goto out; 1459 } 1460 spin_unlock(&p->d_lock); 1461 } 1462 spin_lock(&dentry->d_lock); 1463 if (!d_unlinked(dentry)) { 1464 ret = -EBUSY; 1465 if (!d_mountpoint(dentry)) { 1466 dentry->d_flags |= DCACHE_MOUNTED; 1467 ret = 0; 1468 } 1469 } 1470 spin_unlock(&dentry->d_lock); 1471 out: 1472 write_sequnlock(&rename_lock); 1473 return ret; 1474 } 1475 1476 /* 1477 * Search the dentry child list of the specified parent, 1478 * and move any unused dentries to the end of the unused 1479 * list for prune_dcache(). We descend to the next level 1480 * whenever the d_subdirs list is non-empty and continue 1481 * searching. 1482 * 1483 * It returns zero iff there are no unused children, 1484 * otherwise it returns the number of children moved to 1485 * the end of the unused list. This may not be the total 1486 * number of unused children, because select_parent can 1487 * drop the lock and return early due to latency 1488 * constraints. 1489 */ 1490 1491 struct select_data { 1492 struct dentry *start; 1493 union { 1494 long found; 1495 struct dentry *victim; 1496 }; 1497 struct list_head dispose; 1498 }; 1499 1500 static enum d_walk_ret select_collect(void *_data, struct dentry *dentry) 1501 { 1502 struct select_data *data = _data; 1503 enum d_walk_ret ret = D_WALK_CONTINUE; 1504 1505 if (data->start == dentry) 1506 goto out; 1507 1508 if (dentry->d_flags & DCACHE_SHRINK_LIST) { 1509 data->found++; 1510 } else { 1511 if (dentry->d_flags & DCACHE_LRU_LIST) 1512 d_lru_del(dentry); 1513 if (!dentry->d_lockref.count) { 1514 d_shrink_add(dentry, &data->dispose); 1515 data->found++; 1516 } 1517 } 1518 /* 1519 * We can return to the caller if we have found some (this 1520 * ensures forward progress). We'll be coming back to find 1521 * the rest. 1522 */ 1523 if (!list_empty(&data->dispose)) 1524 ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY; 1525 out: 1526 return ret; 1527 } 1528 1529 static enum d_walk_ret select_collect2(void *_data, struct dentry *dentry) 1530 { 1531 struct select_data *data = _data; 1532 enum d_walk_ret ret = D_WALK_CONTINUE; 1533 1534 if (data->start == dentry) 1535 goto out; 1536 1537 if (dentry->d_flags & DCACHE_SHRINK_LIST) { 1538 if (!dentry->d_lockref.count) { 1539 rcu_read_lock(); 1540 data->victim = dentry; 1541 return D_WALK_QUIT; 1542 } 1543 } else { 1544 if (dentry->d_flags & DCACHE_LRU_LIST) 1545 d_lru_del(dentry); 1546 if (!dentry->d_lockref.count) 1547 d_shrink_add(dentry, &data->dispose); 1548 } 1549 /* 1550 * We can return to the caller if we have found some (this 1551 * ensures forward progress). We'll be coming back to find 1552 * the rest. 1553 */ 1554 if (!list_empty(&data->dispose)) 1555 ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY; 1556 out: 1557 return ret; 1558 } 1559 1560 /** 1561 * shrink_dcache_parent - prune dcache 1562 * @parent: parent of entries to prune 1563 * 1564 * Prune the dcache to remove unused children of the parent dentry. 1565 */ 1566 void shrink_dcache_parent(struct dentry *parent) 1567 { 1568 for (;;) { 1569 struct select_data data = {.start = parent}; 1570 1571 INIT_LIST_HEAD(&data.dispose); 1572 d_walk(parent, &data, select_collect); 1573 1574 if (!list_empty(&data.dispose)) { 1575 shrink_dentry_list(&data.dispose); 1576 continue; 1577 } 1578 1579 cond_resched(); 1580 if (!data.found) 1581 break; 1582 data.victim = NULL; 1583 d_walk(parent, &data, select_collect2); 1584 if (data.victim) { 1585 struct dentry *parent; 1586 spin_lock(&data.victim->d_lock); 1587 if (!shrink_lock_dentry(data.victim)) { 1588 spin_unlock(&data.victim->d_lock); 1589 rcu_read_unlock(); 1590 } else { 1591 rcu_read_unlock(); 1592 parent = data.victim->d_parent; 1593 if (parent != data.victim) 1594 __dput_to_list(parent, &data.dispose); 1595 __dentry_kill(data.victim); 1596 } 1597 } 1598 if (!list_empty(&data.dispose)) 1599 shrink_dentry_list(&data.dispose); 1600 } 1601 } 1602 EXPORT_SYMBOL(shrink_dcache_parent); 1603 1604 static enum d_walk_ret umount_check(void *_data, struct dentry *dentry) 1605 { 1606 /* it has busy descendents; complain about those instead */ 1607 if (!list_empty(&dentry->d_subdirs)) 1608 return D_WALK_CONTINUE; 1609 1610 /* root with refcount 1 is fine */ 1611 if (dentry == _data && dentry->d_lockref.count == 1) 1612 return D_WALK_CONTINUE; 1613 1614 printk(KERN_ERR "BUG: Dentry %p{i=%lx,n=%pd} " 1615 " still in use (%d) [unmount of %s %s]\n", 1616 dentry, 1617 dentry->d_inode ? 1618 dentry->d_inode->i_ino : 0UL, 1619 dentry, 1620 dentry->d_lockref.count, 1621 dentry->d_sb->s_type->name, 1622 dentry->d_sb->s_id); 1623 WARN_ON(1); 1624 return D_WALK_CONTINUE; 1625 } 1626 1627 static void do_one_tree(struct dentry *dentry) 1628 { 1629 shrink_dcache_parent(dentry); 1630 d_walk(dentry, dentry, umount_check); 1631 d_drop(dentry); 1632 dput(dentry); 1633 } 1634 1635 /* 1636 * destroy the dentries attached to a superblock on unmounting 1637 */ 1638 void shrink_dcache_for_umount(struct super_block *sb) 1639 { 1640 struct dentry *dentry; 1641 1642 WARN(down_read_trylock(&sb->s_umount), "s_umount should've been locked"); 1643 1644 dentry = sb->s_root; 1645 sb->s_root = NULL; 1646 do_one_tree(dentry); 1647 1648 while (!hlist_bl_empty(&sb->s_roots)) { 1649 dentry = dget(hlist_bl_entry(hlist_bl_first(&sb->s_roots), struct dentry, d_hash)); 1650 do_one_tree(dentry); 1651 } 1652 } 1653 1654 static enum d_walk_ret find_submount(void *_data, struct dentry *dentry) 1655 { 1656 struct dentry **victim = _data; 1657 if (d_mountpoint(dentry)) { 1658 __dget_dlock(dentry); 1659 *victim = dentry; 1660 return D_WALK_QUIT; 1661 } 1662 return D_WALK_CONTINUE; 1663 } 1664 1665 /** 1666 * d_invalidate - detach submounts, prune dcache, and drop 1667 * @dentry: dentry to invalidate (aka detach, prune and drop) 1668 */ 1669 void d_invalidate(struct dentry *dentry) 1670 { 1671 bool had_submounts = false; 1672 spin_lock(&dentry->d_lock); 1673 if (d_unhashed(dentry)) { 1674 spin_unlock(&dentry->d_lock); 1675 return; 1676 } 1677 __d_drop(dentry); 1678 spin_unlock(&dentry->d_lock); 1679 1680 /* Negative dentries can be dropped without further checks */ 1681 if (!dentry->d_inode) 1682 return; 1683 1684 shrink_dcache_parent(dentry); 1685 for (;;) { 1686 struct dentry *victim = NULL; 1687 d_walk(dentry, &victim, find_submount); 1688 if (!victim) { 1689 if (had_submounts) 1690 shrink_dcache_parent(dentry); 1691 return; 1692 } 1693 had_submounts = true; 1694 detach_mounts(victim); 1695 dput(victim); 1696 } 1697 } 1698 EXPORT_SYMBOL(d_invalidate); 1699 1700 /** 1701 * __d_alloc - allocate a dcache entry 1702 * @sb: filesystem it will belong to 1703 * @name: qstr of the name 1704 * 1705 * Allocates a dentry. It returns %NULL if there is insufficient memory 1706 * available. On a success the dentry is returned. The name passed in is 1707 * copied and the copy passed in may be reused after this call. 1708 */ 1709 1710 static struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name) 1711 { 1712 struct dentry *dentry; 1713 char *dname; 1714 int err; 1715 1716 dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL); 1717 if (!dentry) 1718 return NULL; 1719 1720 /* 1721 * We guarantee that the inline name is always NUL-terminated. 1722 * This way the memcpy() done by the name switching in rename 1723 * will still always have a NUL at the end, even if we might 1724 * be overwriting an internal NUL character 1725 */ 1726 dentry->d_iname[DNAME_INLINE_LEN-1] = 0; 1727 if (unlikely(!name)) { 1728 name = &slash_name; 1729 dname = dentry->d_iname; 1730 } else if (name->len > DNAME_INLINE_LEN-1) { 1731 size_t size = offsetof(struct external_name, name[1]); 1732 struct external_name *p = kmalloc(size + name->len, 1733 GFP_KERNEL_ACCOUNT | 1734 __GFP_RECLAIMABLE); 1735 if (!p) { 1736 kmem_cache_free(dentry_cache, dentry); 1737 return NULL; 1738 } 1739 atomic_set(&p->u.count, 1); 1740 dname = p->name; 1741 } else { 1742 dname = dentry->d_iname; 1743 } 1744 1745 dentry->d_name.len = name->len; 1746 dentry->d_name.hash = name->hash; 1747 memcpy(dname, name->name, name->len); 1748 dname[name->len] = 0; 1749 1750 /* Make sure we always see the terminating NUL character */ 1751 smp_store_release(&dentry->d_name.name, dname); /* ^^^ */ 1752 1753 dentry->d_lockref.count = 1; 1754 dentry->d_flags = 0; 1755 spin_lock_init(&dentry->d_lock); 1756 seqcount_spinlock_init(&dentry->d_seq, &dentry->d_lock); 1757 dentry->d_inode = NULL; 1758 dentry->d_parent = dentry; 1759 dentry->d_sb = sb; 1760 dentry->d_op = NULL; 1761 dentry->d_fsdata = NULL; 1762 INIT_HLIST_BL_NODE(&dentry->d_hash); 1763 INIT_LIST_HEAD(&dentry->d_lru); 1764 INIT_LIST_HEAD(&dentry->d_subdirs); 1765 INIT_HLIST_NODE(&dentry->d_u.d_alias); 1766 INIT_LIST_HEAD(&dentry->d_child); 1767 d_set_d_op(dentry, dentry->d_sb->s_d_op); 1768 1769 if (dentry->d_op && dentry->d_op->d_init) { 1770 err = dentry->d_op->d_init(dentry); 1771 if (err) { 1772 if (dname_external(dentry)) 1773 kfree(external_name(dentry)); 1774 kmem_cache_free(dentry_cache, dentry); 1775 return NULL; 1776 } 1777 } 1778 1779 this_cpu_inc(nr_dentry); 1780 1781 return dentry; 1782 } 1783 1784 /** 1785 * d_alloc - allocate a dcache entry 1786 * @parent: parent of entry to allocate 1787 * @name: qstr of the name 1788 * 1789 * Allocates a dentry. It returns %NULL if there is insufficient memory 1790 * available. On a success the dentry is returned. The name passed in is 1791 * copied and the copy passed in may be reused after this call. 1792 */ 1793 struct dentry *d_alloc(struct dentry * parent, const struct qstr *name) 1794 { 1795 struct dentry *dentry = __d_alloc(parent->d_sb, name); 1796 if (!dentry) 1797 return NULL; 1798 spin_lock(&parent->d_lock); 1799 /* 1800 * don't need child lock because it is not subject 1801 * to concurrency here 1802 */ 1803 __dget_dlock(parent); 1804 dentry->d_parent = parent; 1805 list_add(&dentry->d_child, &parent->d_subdirs); 1806 spin_unlock(&parent->d_lock); 1807 1808 return dentry; 1809 } 1810 EXPORT_SYMBOL(d_alloc); 1811 1812 struct dentry *d_alloc_anon(struct super_block *sb) 1813 { 1814 return __d_alloc(sb, NULL); 1815 } 1816 EXPORT_SYMBOL(d_alloc_anon); 1817 1818 struct dentry *d_alloc_cursor(struct dentry * parent) 1819 { 1820 struct dentry *dentry = d_alloc_anon(parent->d_sb); 1821 if (dentry) { 1822 dentry->d_flags |= DCACHE_DENTRY_CURSOR; 1823 dentry->d_parent = dget(parent); 1824 } 1825 return dentry; 1826 } 1827 1828 /** 1829 * d_alloc_pseudo - allocate a dentry (for lookup-less filesystems) 1830 * @sb: the superblock 1831 * @name: qstr of the name 1832 * 1833 * For a filesystem that just pins its dentries in memory and never 1834 * performs lookups at all, return an unhashed IS_ROOT dentry. 1835 * This is used for pipes, sockets et.al. - the stuff that should 1836 * never be anyone's children or parents. Unlike all other 1837 * dentries, these will not have RCU delay between dropping the 1838 * last reference and freeing them. 1839 * 1840 * The only user is alloc_file_pseudo() and that's what should 1841 * be considered a public interface. Don't use directly. 1842 */ 1843 struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name) 1844 { 1845 struct dentry *dentry = __d_alloc(sb, name); 1846 if (likely(dentry)) 1847 dentry->d_flags |= DCACHE_NORCU; 1848 return dentry; 1849 } 1850 1851 struct dentry *d_alloc_name(struct dentry *parent, const char *name) 1852 { 1853 struct qstr q; 1854 1855 q.name = name; 1856 q.hash_len = hashlen_string(parent, name); 1857 return d_alloc(parent, &q); 1858 } 1859 EXPORT_SYMBOL(d_alloc_name); 1860 1861 void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op) 1862 { 1863 WARN_ON_ONCE(dentry->d_op); 1864 WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH | 1865 DCACHE_OP_COMPARE | 1866 DCACHE_OP_REVALIDATE | 1867 DCACHE_OP_WEAK_REVALIDATE | 1868 DCACHE_OP_DELETE | 1869 DCACHE_OP_REAL)); 1870 dentry->d_op = op; 1871 if (!op) 1872 return; 1873 if (op->d_hash) 1874 dentry->d_flags |= DCACHE_OP_HASH; 1875 if (op->d_compare) 1876 dentry->d_flags |= DCACHE_OP_COMPARE; 1877 if (op->d_revalidate) 1878 dentry->d_flags |= DCACHE_OP_REVALIDATE; 1879 if (op->d_weak_revalidate) 1880 dentry->d_flags |= DCACHE_OP_WEAK_REVALIDATE; 1881 if (op->d_delete) 1882 dentry->d_flags |= DCACHE_OP_DELETE; 1883 if (op->d_prune) 1884 dentry->d_flags |= DCACHE_OP_PRUNE; 1885 if (op->d_real) 1886 dentry->d_flags |= DCACHE_OP_REAL; 1887 1888 } 1889 EXPORT_SYMBOL(d_set_d_op); 1890 1891 1892 /* 1893 * d_set_fallthru - Mark a dentry as falling through to a lower layer 1894 * @dentry - The dentry to mark 1895 * 1896 * Mark a dentry as falling through to the lower layer (as set with 1897 * d_pin_lower()). This flag may be recorded on the medium. 1898 */ 1899 void d_set_fallthru(struct dentry *dentry) 1900 { 1901 spin_lock(&dentry->d_lock); 1902 dentry->d_flags |= DCACHE_FALLTHRU; 1903 spin_unlock(&dentry->d_lock); 1904 } 1905 EXPORT_SYMBOL(d_set_fallthru); 1906 1907 static unsigned d_flags_for_inode(struct inode *inode) 1908 { 1909 unsigned add_flags = DCACHE_REGULAR_TYPE; 1910 1911 if (!inode) 1912 return DCACHE_MISS_TYPE; 1913 1914 if (S_ISDIR(inode->i_mode)) { 1915 add_flags = DCACHE_DIRECTORY_TYPE; 1916 if (unlikely(!(inode->i_opflags & IOP_LOOKUP))) { 1917 if (unlikely(!inode->i_op->lookup)) 1918 add_flags = DCACHE_AUTODIR_TYPE; 1919 else 1920 inode->i_opflags |= IOP_LOOKUP; 1921 } 1922 goto type_determined; 1923 } 1924 1925 if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) { 1926 if (unlikely(inode->i_op->get_link)) { 1927 add_flags = DCACHE_SYMLINK_TYPE; 1928 goto type_determined; 1929 } 1930 inode->i_opflags |= IOP_NOFOLLOW; 1931 } 1932 1933 if (unlikely(!S_ISREG(inode->i_mode))) 1934 add_flags = DCACHE_SPECIAL_TYPE; 1935 1936 type_determined: 1937 if (unlikely(IS_AUTOMOUNT(inode))) 1938 add_flags |= DCACHE_NEED_AUTOMOUNT; 1939 return add_flags; 1940 } 1941 1942 static void __d_instantiate(struct dentry *dentry, struct inode *inode) 1943 { 1944 unsigned add_flags = d_flags_for_inode(inode); 1945 WARN_ON(d_in_lookup(dentry)); 1946 1947 spin_lock(&dentry->d_lock); 1948 /* 1949 * Decrement negative dentry count if it was in the LRU list. 1950 */ 1951 if (dentry->d_flags & DCACHE_LRU_LIST) 1952 this_cpu_dec(nr_dentry_negative); 1953 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry); 1954 raw_write_seqcount_begin(&dentry->d_seq); 1955 __d_set_inode_and_type(dentry, inode, add_flags); 1956 raw_write_seqcount_end(&dentry->d_seq); 1957 fsnotify_update_flags(dentry); 1958 spin_unlock(&dentry->d_lock); 1959 } 1960 1961 /** 1962 * d_instantiate - fill in inode information for a dentry 1963 * @entry: dentry to complete 1964 * @inode: inode to attach to this dentry 1965 * 1966 * Fill in inode information in the entry. 1967 * 1968 * This turns negative dentries into productive full members 1969 * of society. 1970 * 1971 * NOTE! This assumes that the inode count has been incremented 1972 * (or otherwise set) by the caller to indicate that it is now 1973 * in use by the dcache. 1974 */ 1975 1976 void d_instantiate(struct dentry *entry, struct inode * inode) 1977 { 1978 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias)); 1979 if (inode) { 1980 security_d_instantiate(entry, inode); 1981 spin_lock(&inode->i_lock); 1982 __d_instantiate(entry, inode); 1983 spin_unlock(&inode->i_lock); 1984 } 1985 } 1986 EXPORT_SYMBOL(d_instantiate); 1987 1988 /* 1989 * This should be equivalent to d_instantiate() + unlock_new_inode(), 1990 * with lockdep-related part of unlock_new_inode() done before 1991 * anything else. Use that instead of open-coding d_instantiate()/ 1992 * unlock_new_inode() combinations. 1993 */ 1994 void d_instantiate_new(struct dentry *entry, struct inode *inode) 1995 { 1996 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias)); 1997 BUG_ON(!inode); 1998 lockdep_annotate_inode_mutex_key(inode); 1999 security_d_instantiate(entry, inode); 2000 spin_lock(&inode->i_lock); 2001 __d_instantiate(entry, inode); 2002 WARN_ON(!(inode->i_state & I_NEW)); 2003 inode->i_state &= ~I_NEW & ~I_CREATING; 2004 smp_mb(); 2005 wake_up_bit(&inode->i_state, __I_NEW); 2006 spin_unlock(&inode->i_lock); 2007 } 2008 EXPORT_SYMBOL(d_instantiate_new); 2009 2010 struct dentry *d_make_root(struct inode *root_inode) 2011 { 2012 struct dentry *res = NULL; 2013 2014 if (root_inode) { 2015 res = d_alloc_anon(root_inode->i_sb); 2016 if (res) 2017 d_instantiate(res, root_inode); 2018 else 2019 iput(root_inode); 2020 } 2021 return res; 2022 } 2023 EXPORT_SYMBOL(d_make_root); 2024 2025 static struct dentry *__d_instantiate_anon(struct dentry *dentry, 2026 struct inode *inode, 2027 bool disconnected) 2028 { 2029 struct dentry *res; 2030 unsigned add_flags; 2031 2032 security_d_instantiate(dentry, inode); 2033 spin_lock(&inode->i_lock); 2034 res = __d_find_any_alias(inode); 2035 if (res) { 2036 spin_unlock(&inode->i_lock); 2037 dput(dentry); 2038 goto out_iput; 2039 } 2040 2041 /* attach a disconnected dentry */ 2042 add_flags = d_flags_for_inode(inode); 2043 2044 if (disconnected) 2045 add_flags |= DCACHE_DISCONNECTED; 2046 2047 spin_lock(&dentry->d_lock); 2048 __d_set_inode_and_type(dentry, inode, add_flags); 2049 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry); 2050 if (!disconnected) { 2051 hlist_bl_lock(&dentry->d_sb->s_roots); 2052 hlist_bl_add_head(&dentry->d_hash, &dentry->d_sb->s_roots); 2053 hlist_bl_unlock(&dentry->d_sb->s_roots); 2054 } 2055 spin_unlock(&dentry->d_lock); 2056 spin_unlock(&inode->i_lock); 2057 2058 return dentry; 2059 2060 out_iput: 2061 iput(inode); 2062 return res; 2063 } 2064 2065 struct dentry *d_instantiate_anon(struct dentry *dentry, struct inode *inode) 2066 { 2067 return __d_instantiate_anon(dentry, inode, true); 2068 } 2069 EXPORT_SYMBOL(d_instantiate_anon); 2070 2071 static struct dentry *__d_obtain_alias(struct inode *inode, bool disconnected) 2072 { 2073 struct dentry *tmp; 2074 struct dentry *res; 2075 2076 if (!inode) 2077 return ERR_PTR(-ESTALE); 2078 if (IS_ERR(inode)) 2079 return ERR_CAST(inode); 2080 2081 res = d_find_any_alias(inode); 2082 if (res) 2083 goto out_iput; 2084 2085 tmp = d_alloc_anon(inode->i_sb); 2086 if (!tmp) { 2087 res = ERR_PTR(-ENOMEM); 2088 goto out_iput; 2089 } 2090 2091 return __d_instantiate_anon(tmp, inode, disconnected); 2092 2093 out_iput: 2094 iput(inode); 2095 return res; 2096 } 2097 2098 /** 2099 * d_obtain_alias - find or allocate a DISCONNECTED dentry for a given inode 2100 * @inode: inode to allocate the dentry for 2101 * 2102 * Obtain a dentry for an inode resulting from NFS filehandle conversion or 2103 * similar open by handle operations. The returned dentry may be anonymous, 2104 * or may have a full name (if the inode was already in the cache). 2105 * 2106 * When called on a directory inode, we must ensure that the inode only ever 2107 * has one dentry. If a dentry is found, that is returned instead of 2108 * allocating a new one. 2109 * 2110 * On successful return, the reference to the inode has been transferred 2111 * to the dentry. In case of an error the reference on the inode is released. 2112 * To make it easier to use in export operations a %NULL or IS_ERR inode may 2113 * be passed in and the error will be propagated to the return value, 2114 * with a %NULL @inode replaced by ERR_PTR(-ESTALE). 2115 */ 2116 struct dentry *d_obtain_alias(struct inode *inode) 2117 { 2118 return __d_obtain_alias(inode, true); 2119 } 2120 EXPORT_SYMBOL(d_obtain_alias); 2121 2122 /** 2123 * d_obtain_root - find or allocate a dentry for a given inode 2124 * @inode: inode to allocate the dentry for 2125 * 2126 * Obtain an IS_ROOT dentry for the root of a filesystem. 2127 * 2128 * We must ensure that directory inodes only ever have one dentry. If a 2129 * dentry is found, that is returned instead of allocating a new one. 2130 * 2131 * On successful return, the reference to the inode has been transferred 2132 * to the dentry. In case of an error the reference on the inode is 2133 * released. A %NULL or IS_ERR inode may be passed in and will be the 2134 * error will be propagate to the return value, with a %NULL @inode 2135 * replaced by ERR_PTR(-ESTALE). 2136 */ 2137 struct dentry *d_obtain_root(struct inode *inode) 2138 { 2139 return __d_obtain_alias(inode, false); 2140 } 2141 EXPORT_SYMBOL(d_obtain_root); 2142 2143 /** 2144 * d_add_ci - lookup or allocate new dentry with case-exact name 2145 * @inode: the inode case-insensitive lookup has found 2146 * @dentry: the negative dentry that was passed to the parent's lookup func 2147 * @name: the case-exact name to be associated with the returned dentry 2148 * 2149 * This is to avoid filling the dcache with case-insensitive names to the 2150 * same inode, only the actual correct case is stored in the dcache for 2151 * case-insensitive filesystems. 2152 * 2153 * For a case-insensitive lookup match and if the the case-exact dentry 2154 * already exists in in the dcache, use it and return it. 2155 * 2156 * If no entry exists with the exact case name, allocate new dentry with 2157 * the exact case, and return the spliced entry. 2158 */ 2159 struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode, 2160 struct qstr *name) 2161 { 2162 struct dentry *found, *res; 2163 2164 /* 2165 * First check if a dentry matching the name already exists, 2166 * if not go ahead and create it now. 2167 */ 2168 found = d_hash_and_lookup(dentry->d_parent, name); 2169 if (found) { 2170 iput(inode); 2171 return found; 2172 } 2173 if (d_in_lookup(dentry)) { 2174 found = d_alloc_parallel(dentry->d_parent, name, 2175 dentry->d_wait); 2176 if (IS_ERR(found) || !d_in_lookup(found)) { 2177 iput(inode); 2178 return found; 2179 } 2180 } else { 2181 found = d_alloc(dentry->d_parent, name); 2182 if (!found) { 2183 iput(inode); 2184 return ERR_PTR(-ENOMEM); 2185 } 2186 } 2187 res = d_splice_alias(inode, found); 2188 if (res) { 2189 dput(found); 2190 return res; 2191 } 2192 return found; 2193 } 2194 EXPORT_SYMBOL(d_add_ci); 2195 2196 2197 static inline bool d_same_name(const struct dentry *dentry, 2198 const struct dentry *parent, 2199 const struct qstr *name) 2200 { 2201 if (likely(!(parent->d_flags & DCACHE_OP_COMPARE))) { 2202 if (dentry->d_name.len != name->len) 2203 return false; 2204 return dentry_cmp(dentry, name->name, name->len) == 0; 2205 } 2206 return parent->d_op->d_compare(dentry, 2207 dentry->d_name.len, dentry->d_name.name, 2208 name) == 0; 2209 } 2210 2211 /** 2212 * __d_lookup_rcu - search for a dentry (racy, store-free) 2213 * @parent: parent dentry 2214 * @name: qstr of name we wish to find 2215 * @seqp: returns d_seq value at the point where the dentry was found 2216 * Returns: dentry, or NULL 2217 * 2218 * __d_lookup_rcu is the dcache lookup function for rcu-walk name 2219 * resolution (store-free path walking) design described in 2220 * Documentation/filesystems/path-lookup.txt. 2221 * 2222 * This is not to be used outside core vfs. 2223 * 2224 * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock 2225 * held, and rcu_read_lock held. The returned dentry must not be stored into 2226 * without taking d_lock and checking d_seq sequence count against @seq 2227 * returned here. 2228 * 2229 * A refcount may be taken on the found dentry with the d_rcu_to_refcount 2230 * function. 2231 * 2232 * Alternatively, __d_lookup_rcu may be called again to look up the child of 2233 * the returned dentry, so long as its parent's seqlock is checked after the 2234 * child is looked up. Thus, an interlocking stepping of sequence lock checks 2235 * is formed, giving integrity down the path walk. 2236 * 2237 * NOTE! The caller *has* to check the resulting dentry against the sequence 2238 * number we've returned before using any of the resulting dentry state! 2239 */ 2240 struct dentry *__d_lookup_rcu(const struct dentry *parent, 2241 const struct qstr *name, 2242 unsigned *seqp) 2243 { 2244 u64 hashlen = name->hash_len; 2245 const unsigned char *str = name->name; 2246 struct hlist_bl_head *b = d_hash(hashlen_hash(hashlen)); 2247 struct hlist_bl_node *node; 2248 struct dentry *dentry; 2249 2250 /* 2251 * Note: There is significant duplication with __d_lookup_rcu which is 2252 * required to prevent single threaded performance regressions 2253 * especially on architectures where smp_rmb (in seqcounts) are costly. 2254 * Keep the two functions in sync. 2255 */ 2256 2257 /* 2258 * The hash list is protected using RCU. 2259 * 2260 * Carefully use d_seq when comparing a candidate dentry, to avoid 2261 * races with d_move(). 2262 * 2263 * It is possible that concurrent renames can mess up our list 2264 * walk here and result in missing our dentry, resulting in the 2265 * false-negative result. d_lookup() protects against concurrent 2266 * renames using rename_lock seqlock. 2267 * 2268 * See Documentation/filesystems/path-lookup.txt for more details. 2269 */ 2270 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) { 2271 unsigned seq; 2272 2273 seqretry: 2274 /* 2275 * The dentry sequence count protects us from concurrent 2276 * renames, and thus protects parent and name fields. 2277 * 2278 * The caller must perform a seqcount check in order 2279 * to do anything useful with the returned dentry. 2280 * 2281 * NOTE! We do a "raw" seqcount_begin here. That means that 2282 * we don't wait for the sequence count to stabilize if it 2283 * is in the middle of a sequence change. If we do the slow 2284 * dentry compare, we will do seqretries until it is stable, 2285 * and if we end up with a successful lookup, we actually 2286 * want to exit RCU lookup anyway. 2287 * 2288 * Note that raw_seqcount_begin still *does* smp_rmb(), so 2289 * we are still guaranteed NUL-termination of ->d_name.name. 2290 */ 2291 seq = raw_seqcount_begin(&dentry->d_seq); 2292 if (dentry->d_parent != parent) 2293 continue; 2294 if (d_unhashed(dentry)) 2295 continue; 2296 2297 if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) { 2298 int tlen; 2299 const char *tname; 2300 if (dentry->d_name.hash != hashlen_hash(hashlen)) 2301 continue; 2302 tlen = dentry->d_name.len; 2303 tname = dentry->d_name.name; 2304 /* we want a consistent (name,len) pair */ 2305 if (read_seqcount_retry(&dentry->d_seq, seq)) { 2306 cpu_relax(); 2307 goto seqretry; 2308 } 2309 if (parent->d_op->d_compare(dentry, 2310 tlen, tname, name) != 0) 2311 continue; 2312 } else { 2313 if (dentry->d_name.hash_len != hashlen) 2314 continue; 2315 if (dentry_cmp(dentry, str, hashlen_len(hashlen)) != 0) 2316 continue; 2317 } 2318 *seqp = seq; 2319 return dentry; 2320 } 2321 return NULL; 2322 } 2323 2324 /** 2325 * d_lookup - search for a dentry 2326 * @parent: parent dentry 2327 * @name: qstr of name we wish to find 2328 * Returns: dentry, or NULL 2329 * 2330 * d_lookup searches the children of the parent dentry for the name in 2331 * question. If the dentry is found its reference count is incremented and the 2332 * dentry is returned. The caller must use dput to free the entry when it has 2333 * finished using it. %NULL is returned if the dentry does not exist. 2334 */ 2335 struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name) 2336 { 2337 struct dentry *dentry; 2338 unsigned seq; 2339 2340 do { 2341 seq = read_seqbegin(&rename_lock); 2342 dentry = __d_lookup(parent, name); 2343 if (dentry) 2344 break; 2345 } while (read_seqretry(&rename_lock, seq)); 2346 return dentry; 2347 } 2348 EXPORT_SYMBOL(d_lookup); 2349 2350 /** 2351 * __d_lookup - search for a dentry (racy) 2352 * @parent: parent dentry 2353 * @name: qstr of name we wish to find 2354 * Returns: dentry, or NULL 2355 * 2356 * __d_lookup is like d_lookup, however it may (rarely) return a 2357 * false-negative result due to unrelated rename activity. 2358 * 2359 * __d_lookup is slightly faster by avoiding rename_lock read seqlock, 2360 * however it must be used carefully, eg. with a following d_lookup in 2361 * the case of failure. 2362 * 2363 * __d_lookup callers must be commented. 2364 */ 2365 struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name) 2366 { 2367 unsigned int hash = name->hash; 2368 struct hlist_bl_head *b = d_hash(hash); 2369 struct hlist_bl_node *node; 2370 struct dentry *found = NULL; 2371 struct dentry *dentry; 2372 2373 /* 2374 * Note: There is significant duplication with __d_lookup_rcu which is 2375 * required to prevent single threaded performance regressions 2376 * especially on architectures where smp_rmb (in seqcounts) are costly. 2377 * Keep the two functions in sync. 2378 */ 2379 2380 /* 2381 * The hash list is protected using RCU. 2382 * 2383 * Take d_lock when comparing a candidate dentry, to avoid races 2384 * with d_move(). 2385 * 2386 * It is possible that concurrent renames can mess up our list 2387 * walk here and result in missing our dentry, resulting in the 2388 * false-negative result. d_lookup() protects against concurrent 2389 * renames using rename_lock seqlock. 2390 * 2391 * See Documentation/filesystems/path-lookup.txt for more details. 2392 */ 2393 rcu_read_lock(); 2394 2395 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) { 2396 2397 if (dentry->d_name.hash != hash) 2398 continue; 2399 2400 spin_lock(&dentry->d_lock); 2401 if (dentry->d_parent != parent) 2402 goto next; 2403 if (d_unhashed(dentry)) 2404 goto next; 2405 2406 if (!d_same_name(dentry, parent, name)) 2407 goto next; 2408 2409 dentry->d_lockref.count++; 2410 found = dentry; 2411 spin_unlock(&dentry->d_lock); 2412 break; 2413 next: 2414 spin_unlock(&dentry->d_lock); 2415 } 2416 rcu_read_unlock(); 2417 2418 return found; 2419 } 2420 2421 /** 2422 * d_hash_and_lookup - hash the qstr then search for a dentry 2423 * @dir: Directory to search in 2424 * @name: qstr of name we wish to find 2425 * 2426 * On lookup failure NULL is returned; on bad name - ERR_PTR(-error) 2427 */ 2428 struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name) 2429 { 2430 /* 2431 * Check for a fs-specific hash function. Note that we must 2432 * calculate the standard hash first, as the d_op->d_hash() 2433 * routine may choose to leave the hash value unchanged. 2434 */ 2435 name->hash = full_name_hash(dir, name->name, name->len); 2436 if (dir->d_flags & DCACHE_OP_HASH) { 2437 int err = dir->d_op->d_hash(dir, name); 2438 if (unlikely(err < 0)) 2439 return ERR_PTR(err); 2440 } 2441 return d_lookup(dir, name); 2442 } 2443 EXPORT_SYMBOL(d_hash_and_lookup); 2444 2445 /* 2446 * When a file is deleted, we have two options: 2447 * - turn this dentry into a negative dentry 2448 * - unhash this dentry and free it. 2449 * 2450 * Usually, we want to just turn this into 2451 * a negative dentry, but if anybody else is 2452 * currently using the dentry or the inode 2453 * we can't do that and we fall back on removing 2454 * it from the hash queues and waiting for 2455 * it to be deleted later when it has no users 2456 */ 2457 2458 /** 2459 * d_delete - delete a dentry 2460 * @dentry: The dentry to delete 2461 * 2462 * Turn the dentry into a negative dentry if possible, otherwise 2463 * remove it from the hash queues so it can be deleted later 2464 */ 2465 2466 void d_delete(struct dentry * dentry) 2467 { 2468 struct inode *inode = dentry->d_inode; 2469 2470 spin_lock(&inode->i_lock); 2471 spin_lock(&dentry->d_lock); 2472 /* 2473 * Are we the only user? 2474 */ 2475 if (dentry->d_lockref.count == 1) { 2476 dentry->d_flags &= ~DCACHE_CANT_MOUNT; 2477 dentry_unlink_inode(dentry); 2478 } else { 2479 __d_drop(dentry); 2480 spin_unlock(&dentry->d_lock); 2481 spin_unlock(&inode->i_lock); 2482 } 2483 } 2484 EXPORT_SYMBOL(d_delete); 2485 2486 static void __d_rehash(struct dentry *entry) 2487 { 2488 struct hlist_bl_head *b = d_hash(entry->d_name.hash); 2489 2490 hlist_bl_lock(b); 2491 hlist_bl_add_head_rcu(&entry->d_hash, b); 2492 hlist_bl_unlock(b); 2493 } 2494 2495 /** 2496 * d_rehash - add an entry back to the hash 2497 * @entry: dentry to add to the hash 2498 * 2499 * Adds a dentry to the hash according to its name. 2500 */ 2501 2502 void d_rehash(struct dentry * entry) 2503 { 2504 spin_lock(&entry->d_lock); 2505 __d_rehash(entry); 2506 spin_unlock(&entry->d_lock); 2507 } 2508 EXPORT_SYMBOL(d_rehash); 2509 2510 static inline unsigned start_dir_add(struct inode *dir) 2511 { 2512 2513 for (;;) { 2514 unsigned n = dir->i_dir_seq; 2515 if (!(n & 1) && cmpxchg(&dir->i_dir_seq, n, n + 1) == n) 2516 return n; 2517 cpu_relax(); 2518 } 2519 } 2520 2521 static inline void end_dir_add(struct inode *dir, unsigned n) 2522 { 2523 smp_store_release(&dir->i_dir_seq, n + 2); 2524 } 2525 2526 static void d_wait_lookup(struct dentry *dentry) 2527 { 2528 if (d_in_lookup(dentry)) { 2529 DECLARE_WAITQUEUE(wait, current); 2530 add_wait_queue(dentry->d_wait, &wait); 2531 do { 2532 set_current_state(TASK_UNINTERRUPTIBLE); 2533 spin_unlock(&dentry->d_lock); 2534 schedule(); 2535 spin_lock(&dentry->d_lock); 2536 } while (d_in_lookup(dentry)); 2537 } 2538 } 2539 2540 struct dentry *d_alloc_parallel(struct dentry *parent, 2541 const struct qstr *name, 2542 wait_queue_head_t *wq) 2543 { 2544 unsigned int hash = name->hash; 2545 struct hlist_bl_head *b = in_lookup_hash(parent, hash); 2546 struct hlist_bl_node *node; 2547 struct dentry *new = d_alloc(parent, name); 2548 struct dentry *dentry; 2549 unsigned seq, r_seq, d_seq; 2550 2551 if (unlikely(!new)) 2552 return ERR_PTR(-ENOMEM); 2553 2554 retry: 2555 rcu_read_lock(); 2556 seq = smp_load_acquire(&parent->d_inode->i_dir_seq); 2557 r_seq = read_seqbegin(&rename_lock); 2558 dentry = __d_lookup_rcu(parent, name, &d_seq); 2559 if (unlikely(dentry)) { 2560 if (!lockref_get_not_dead(&dentry->d_lockref)) { 2561 rcu_read_unlock(); 2562 goto retry; 2563 } 2564 if (read_seqcount_retry(&dentry->d_seq, d_seq)) { 2565 rcu_read_unlock(); 2566 dput(dentry); 2567 goto retry; 2568 } 2569 rcu_read_unlock(); 2570 dput(new); 2571 return dentry; 2572 } 2573 if (unlikely(read_seqretry(&rename_lock, r_seq))) { 2574 rcu_read_unlock(); 2575 goto retry; 2576 } 2577 2578 if (unlikely(seq & 1)) { 2579 rcu_read_unlock(); 2580 goto retry; 2581 } 2582 2583 hlist_bl_lock(b); 2584 if (unlikely(READ_ONCE(parent->d_inode->i_dir_seq) != seq)) { 2585 hlist_bl_unlock(b); 2586 rcu_read_unlock(); 2587 goto retry; 2588 } 2589 /* 2590 * No changes for the parent since the beginning of d_lookup(). 2591 * Since all removals from the chain happen with hlist_bl_lock(), 2592 * any potential in-lookup matches are going to stay here until 2593 * we unlock the chain. All fields are stable in everything 2594 * we encounter. 2595 */ 2596 hlist_bl_for_each_entry(dentry, node, b, d_u.d_in_lookup_hash) { 2597 if (dentry->d_name.hash != hash) 2598 continue; 2599 if (dentry->d_parent != parent) 2600 continue; 2601 if (!d_same_name(dentry, parent, name)) 2602 continue; 2603 hlist_bl_unlock(b); 2604 /* now we can try to grab a reference */ 2605 if (!lockref_get_not_dead(&dentry->d_lockref)) { 2606 rcu_read_unlock(); 2607 goto retry; 2608 } 2609 2610 rcu_read_unlock(); 2611 /* 2612 * somebody is likely to be still doing lookup for it; 2613 * wait for them to finish 2614 */ 2615 spin_lock(&dentry->d_lock); 2616 d_wait_lookup(dentry); 2617 /* 2618 * it's not in-lookup anymore; in principle we should repeat 2619 * everything from dcache lookup, but it's likely to be what 2620 * d_lookup() would've found anyway. If it is, just return it; 2621 * otherwise we really have to repeat the whole thing. 2622 */ 2623 if (unlikely(dentry->d_name.hash != hash)) 2624 goto mismatch; 2625 if (unlikely(dentry->d_parent != parent)) 2626 goto mismatch; 2627 if (unlikely(d_unhashed(dentry))) 2628 goto mismatch; 2629 if (unlikely(!d_same_name(dentry, parent, name))) 2630 goto mismatch; 2631 /* OK, it *is* a hashed match; return it */ 2632 spin_unlock(&dentry->d_lock); 2633 dput(new); 2634 return dentry; 2635 } 2636 rcu_read_unlock(); 2637 /* we can't take ->d_lock here; it's OK, though. */ 2638 new->d_flags |= DCACHE_PAR_LOOKUP; 2639 new->d_wait = wq; 2640 hlist_bl_add_head_rcu(&new->d_u.d_in_lookup_hash, b); 2641 hlist_bl_unlock(b); 2642 return new; 2643 mismatch: 2644 spin_unlock(&dentry->d_lock); 2645 dput(dentry); 2646 goto retry; 2647 } 2648 EXPORT_SYMBOL(d_alloc_parallel); 2649 2650 void __d_lookup_done(struct dentry *dentry) 2651 { 2652 struct hlist_bl_head *b = in_lookup_hash(dentry->d_parent, 2653 dentry->d_name.hash); 2654 hlist_bl_lock(b); 2655 dentry->d_flags &= ~DCACHE_PAR_LOOKUP; 2656 __hlist_bl_del(&dentry->d_u.d_in_lookup_hash); 2657 wake_up_all(dentry->d_wait); 2658 dentry->d_wait = NULL; 2659 hlist_bl_unlock(b); 2660 INIT_HLIST_NODE(&dentry->d_u.d_alias); 2661 INIT_LIST_HEAD(&dentry->d_lru); 2662 } 2663 EXPORT_SYMBOL(__d_lookup_done); 2664 2665 /* inode->i_lock held if inode is non-NULL */ 2666 2667 static inline void __d_add(struct dentry *dentry, struct inode *inode) 2668 { 2669 struct inode *dir = NULL; 2670 unsigned n; 2671 spin_lock(&dentry->d_lock); 2672 if (unlikely(d_in_lookup(dentry))) { 2673 dir = dentry->d_parent->d_inode; 2674 n = start_dir_add(dir); 2675 __d_lookup_done(dentry); 2676 } 2677 if (inode) { 2678 unsigned add_flags = d_flags_for_inode(inode); 2679 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry); 2680 raw_write_seqcount_begin(&dentry->d_seq); 2681 __d_set_inode_and_type(dentry, inode, add_flags); 2682 raw_write_seqcount_end(&dentry->d_seq); 2683 fsnotify_update_flags(dentry); 2684 } 2685 __d_rehash(dentry); 2686 if (dir) 2687 end_dir_add(dir, n); 2688 spin_unlock(&dentry->d_lock); 2689 if (inode) 2690 spin_unlock(&inode->i_lock); 2691 } 2692 2693 /** 2694 * d_add - add dentry to hash queues 2695 * @entry: dentry to add 2696 * @inode: The inode to attach to this dentry 2697 * 2698 * This adds the entry to the hash queues and initializes @inode. 2699 * The entry was actually filled in earlier during d_alloc(). 2700 */ 2701 2702 void d_add(struct dentry *entry, struct inode *inode) 2703 { 2704 if (inode) { 2705 security_d_instantiate(entry, inode); 2706 spin_lock(&inode->i_lock); 2707 } 2708 __d_add(entry, inode); 2709 } 2710 EXPORT_SYMBOL(d_add); 2711 2712 /** 2713 * d_exact_alias - find and hash an exact unhashed alias 2714 * @entry: dentry to add 2715 * @inode: The inode to go with this dentry 2716 * 2717 * If an unhashed dentry with the same name/parent and desired 2718 * inode already exists, hash and return it. Otherwise, return 2719 * NULL. 2720 * 2721 * Parent directory should be locked. 2722 */ 2723 struct dentry *d_exact_alias(struct dentry *entry, struct inode *inode) 2724 { 2725 struct dentry *alias; 2726 unsigned int hash = entry->d_name.hash; 2727 2728 spin_lock(&inode->i_lock); 2729 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) { 2730 /* 2731 * Don't need alias->d_lock here, because aliases with 2732 * d_parent == entry->d_parent are not subject to name or 2733 * parent changes, because the parent inode i_mutex is held. 2734 */ 2735 if (alias->d_name.hash != hash) 2736 continue; 2737 if (alias->d_parent != entry->d_parent) 2738 continue; 2739 if (!d_same_name(alias, entry->d_parent, &entry->d_name)) 2740 continue; 2741 spin_lock(&alias->d_lock); 2742 if (!d_unhashed(alias)) { 2743 spin_unlock(&alias->d_lock); 2744 alias = NULL; 2745 } else { 2746 __dget_dlock(alias); 2747 __d_rehash(alias); 2748 spin_unlock(&alias->d_lock); 2749 } 2750 spin_unlock(&inode->i_lock); 2751 return alias; 2752 } 2753 spin_unlock(&inode->i_lock); 2754 return NULL; 2755 } 2756 EXPORT_SYMBOL(d_exact_alias); 2757 2758 static void swap_names(struct dentry *dentry, struct dentry *target) 2759 { 2760 if (unlikely(dname_external(target))) { 2761 if (unlikely(dname_external(dentry))) { 2762 /* 2763 * Both external: swap the pointers 2764 */ 2765 swap(target->d_name.name, dentry->d_name.name); 2766 } else { 2767 /* 2768 * dentry:internal, target:external. Steal target's 2769 * storage and make target internal. 2770 */ 2771 memcpy(target->d_iname, dentry->d_name.name, 2772 dentry->d_name.len + 1); 2773 dentry->d_name.name = target->d_name.name; 2774 target->d_name.name = target->d_iname; 2775 } 2776 } else { 2777 if (unlikely(dname_external(dentry))) { 2778 /* 2779 * dentry:external, target:internal. Give dentry's 2780 * storage to target and make dentry internal 2781 */ 2782 memcpy(dentry->d_iname, target->d_name.name, 2783 target->d_name.len + 1); 2784 target->d_name.name = dentry->d_name.name; 2785 dentry->d_name.name = dentry->d_iname; 2786 } else { 2787 /* 2788 * Both are internal. 2789 */ 2790 unsigned int i; 2791 BUILD_BUG_ON(!IS_ALIGNED(DNAME_INLINE_LEN, sizeof(long))); 2792 for (i = 0; i < DNAME_INLINE_LEN / sizeof(long); i++) { 2793 swap(((long *) &dentry->d_iname)[i], 2794 ((long *) &target->d_iname)[i]); 2795 } 2796 } 2797 } 2798 swap(dentry->d_name.hash_len, target->d_name.hash_len); 2799 } 2800 2801 static void copy_name(struct dentry *dentry, struct dentry *target) 2802 { 2803 struct external_name *old_name = NULL; 2804 if (unlikely(dname_external(dentry))) 2805 old_name = external_name(dentry); 2806 if (unlikely(dname_external(target))) { 2807 atomic_inc(&external_name(target)->u.count); 2808 dentry->d_name = target->d_name; 2809 } else { 2810 memcpy(dentry->d_iname, target->d_name.name, 2811 target->d_name.len + 1); 2812 dentry->d_name.name = dentry->d_iname; 2813 dentry->d_name.hash_len = target->d_name.hash_len; 2814 } 2815 if (old_name && likely(atomic_dec_and_test(&old_name->u.count))) 2816 kfree_rcu(old_name, u.head); 2817 } 2818 2819 /* 2820 * __d_move - move a dentry 2821 * @dentry: entry to move 2822 * @target: new dentry 2823 * @exchange: exchange the two dentries 2824 * 2825 * Update the dcache to reflect the move of a file name. Negative 2826 * dcache entries should not be moved in this way. Caller must hold 2827 * rename_lock, the i_mutex of the source and target directories, 2828 * and the sb->s_vfs_rename_mutex if they differ. See lock_rename(). 2829 */ 2830 static void __d_move(struct dentry *dentry, struct dentry *target, 2831 bool exchange) 2832 { 2833 struct dentry *old_parent, *p; 2834 struct inode *dir = NULL; 2835 unsigned n; 2836 2837 WARN_ON(!dentry->d_inode); 2838 if (WARN_ON(dentry == target)) 2839 return; 2840 2841 BUG_ON(d_ancestor(target, dentry)); 2842 old_parent = dentry->d_parent; 2843 p = d_ancestor(old_parent, target); 2844 if (IS_ROOT(dentry)) { 2845 BUG_ON(p); 2846 spin_lock(&target->d_parent->d_lock); 2847 } else if (!p) { 2848 /* target is not a descendent of dentry->d_parent */ 2849 spin_lock(&target->d_parent->d_lock); 2850 spin_lock_nested(&old_parent->d_lock, DENTRY_D_LOCK_NESTED); 2851 } else { 2852 BUG_ON(p == dentry); 2853 spin_lock(&old_parent->d_lock); 2854 if (p != target) 2855 spin_lock_nested(&target->d_parent->d_lock, 2856 DENTRY_D_LOCK_NESTED); 2857 } 2858 spin_lock_nested(&dentry->d_lock, 2); 2859 spin_lock_nested(&target->d_lock, 3); 2860 2861 if (unlikely(d_in_lookup(target))) { 2862 dir = target->d_parent->d_inode; 2863 n = start_dir_add(dir); 2864 __d_lookup_done(target); 2865 } 2866 2867 write_seqcount_begin(&dentry->d_seq); 2868 write_seqcount_begin_nested(&target->d_seq, DENTRY_D_LOCK_NESTED); 2869 2870 /* unhash both */ 2871 if (!d_unhashed(dentry)) 2872 ___d_drop(dentry); 2873 if (!d_unhashed(target)) 2874 ___d_drop(target); 2875 2876 /* ... and switch them in the tree */ 2877 dentry->d_parent = target->d_parent; 2878 if (!exchange) { 2879 copy_name(dentry, target); 2880 target->d_hash.pprev = NULL; 2881 dentry->d_parent->d_lockref.count++; 2882 if (dentry != old_parent) /* wasn't IS_ROOT */ 2883 WARN_ON(!--old_parent->d_lockref.count); 2884 } else { 2885 target->d_parent = old_parent; 2886 swap_names(dentry, target); 2887 list_move(&target->d_child, &target->d_parent->d_subdirs); 2888 __d_rehash(target); 2889 fsnotify_update_flags(target); 2890 } 2891 list_move(&dentry->d_child, &dentry->d_parent->d_subdirs); 2892 __d_rehash(dentry); 2893 fsnotify_update_flags(dentry); 2894 fscrypt_handle_d_move(dentry); 2895 2896 write_seqcount_end(&target->d_seq); 2897 write_seqcount_end(&dentry->d_seq); 2898 2899 if (dir) 2900 end_dir_add(dir, n); 2901 2902 if (dentry->d_parent != old_parent) 2903 spin_unlock(&dentry->d_parent->d_lock); 2904 if (dentry != old_parent) 2905 spin_unlock(&old_parent->d_lock); 2906 spin_unlock(&target->d_lock); 2907 spin_unlock(&dentry->d_lock); 2908 } 2909 2910 /* 2911 * d_move - move a dentry 2912 * @dentry: entry to move 2913 * @target: new dentry 2914 * 2915 * Update the dcache to reflect the move of a file name. Negative 2916 * dcache entries should not be moved in this way. See the locking 2917 * requirements for __d_move. 2918 */ 2919 void d_move(struct dentry *dentry, struct dentry *target) 2920 { 2921 write_seqlock(&rename_lock); 2922 __d_move(dentry, target, false); 2923 write_sequnlock(&rename_lock); 2924 } 2925 EXPORT_SYMBOL(d_move); 2926 2927 /* 2928 * d_exchange - exchange two dentries 2929 * @dentry1: first dentry 2930 * @dentry2: second dentry 2931 */ 2932 void d_exchange(struct dentry *dentry1, struct dentry *dentry2) 2933 { 2934 write_seqlock(&rename_lock); 2935 2936 WARN_ON(!dentry1->d_inode); 2937 WARN_ON(!dentry2->d_inode); 2938 WARN_ON(IS_ROOT(dentry1)); 2939 WARN_ON(IS_ROOT(dentry2)); 2940 2941 __d_move(dentry1, dentry2, true); 2942 2943 write_sequnlock(&rename_lock); 2944 } 2945 2946 /** 2947 * d_ancestor - search for an ancestor 2948 * @p1: ancestor dentry 2949 * @p2: child dentry 2950 * 2951 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is 2952 * an ancestor of p2, else NULL. 2953 */ 2954 struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2) 2955 { 2956 struct dentry *p; 2957 2958 for (p = p2; !IS_ROOT(p); p = p->d_parent) { 2959 if (p->d_parent == p1) 2960 return p; 2961 } 2962 return NULL; 2963 } 2964 2965 /* 2966 * This helper attempts to cope with remotely renamed directories 2967 * 2968 * It assumes that the caller is already holding 2969 * dentry->d_parent->d_inode->i_mutex, and rename_lock 2970 * 2971 * Note: If ever the locking in lock_rename() changes, then please 2972 * remember to update this too... 2973 */ 2974 static int __d_unalias(struct inode *inode, 2975 struct dentry *dentry, struct dentry *alias) 2976 { 2977 struct mutex *m1 = NULL; 2978 struct rw_semaphore *m2 = NULL; 2979 int ret = -ESTALE; 2980 2981 /* If alias and dentry share a parent, then no extra locks required */ 2982 if (alias->d_parent == dentry->d_parent) 2983 goto out_unalias; 2984 2985 /* See lock_rename() */ 2986 if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex)) 2987 goto out_err; 2988 m1 = &dentry->d_sb->s_vfs_rename_mutex; 2989 if (!inode_trylock_shared(alias->d_parent->d_inode)) 2990 goto out_err; 2991 m2 = &alias->d_parent->d_inode->i_rwsem; 2992 out_unalias: 2993 __d_move(alias, dentry, false); 2994 ret = 0; 2995 out_err: 2996 if (m2) 2997 up_read(m2); 2998 if (m1) 2999 mutex_unlock(m1); 3000 return ret; 3001 } 3002 3003 /** 3004 * d_splice_alias - splice a disconnected dentry into the tree if one exists 3005 * @inode: the inode which may have a disconnected dentry 3006 * @dentry: a negative dentry which we want to point to the inode. 3007 * 3008 * If inode is a directory and has an IS_ROOT alias, then d_move that in 3009 * place of the given dentry and return it, else simply d_add the inode 3010 * to the dentry and return NULL. 3011 * 3012 * If a non-IS_ROOT directory is found, the filesystem is corrupt, and 3013 * we should error out: directories can't have multiple aliases. 3014 * 3015 * This is needed in the lookup routine of any filesystem that is exportable 3016 * (via knfsd) so that we can build dcache paths to directories effectively. 3017 * 3018 * If a dentry was found and moved, then it is returned. Otherwise NULL 3019 * is returned. This matches the expected return value of ->lookup. 3020 * 3021 * Cluster filesystems may call this function with a negative, hashed dentry. 3022 * In that case, we know that the inode will be a regular file, and also this 3023 * will only occur during atomic_open. So we need to check for the dentry 3024 * being already hashed only in the final case. 3025 */ 3026 struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry) 3027 { 3028 if (IS_ERR(inode)) 3029 return ERR_CAST(inode); 3030 3031 BUG_ON(!d_unhashed(dentry)); 3032 3033 if (!inode) 3034 goto out; 3035 3036 security_d_instantiate(dentry, inode); 3037 spin_lock(&inode->i_lock); 3038 if (S_ISDIR(inode->i_mode)) { 3039 struct dentry *new = __d_find_any_alias(inode); 3040 if (unlikely(new)) { 3041 /* The reference to new ensures it remains an alias */ 3042 spin_unlock(&inode->i_lock); 3043 write_seqlock(&rename_lock); 3044 if (unlikely(d_ancestor(new, dentry))) { 3045 write_sequnlock(&rename_lock); 3046 dput(new); 3047 new = ERR_PTR(-ELOOP); 3048 pr_warn_ratelimited( 3049 "VFS: Lookup of '%s' in %s %s" 3050 " would have caused loop\n", 3051 dentry->d_name.name, 3052 inode->i_sb->s_type->name, 3053 inode->i_sb->s_id); 3054 } else if (!IS_ROOT(new)) { 3055 struct dentry *old_parent = dget(new->d_parent); 3056 int err = __d_unalias(inode, dentry, new); 3057 write_sequnlock(&rename_lock); 3058 if (err) { 3059 dput(new); 3060 new = ERR_PTR(err); 3061 } 3062 dput(old_parent); 3063 } else { 3064 __d_move(new, dentry, false); 3065 write_sequnlock(&rename_lock); 3066 } 3067 iput(inode); 3068 return new; 3069 } 3070 } 3071 out: 3072 __d_add(dentry, inode); 3073 return NULL; 3074 } 3075 EXPORT_SYMBOL(d_splice_alias); 3076 3077 /* 3078 * Test whether new_dentry is a subdirectory of old_dentry. 3079 * 3080 * Trivially implemented using the dcache structure 3081 */ 3082 3083 /** 3084 * is_subdir - is new dentry a subdirectory of old_dentry 3085 * @new_dentry: new dentry 3086 * @old_dentry: old dentry 3087 * 3088 * Returns true if new_dentry is a subdirectory of the parent (at any depth). 3089 * Returns false otherwise. 3090 * Caller must ensure that "new_dentry" is pinned before calling is_subdir() 3091 */ 3092 3093 bool is_subdir(struct dentry *new_dentry, struct dentry *old_dentry) 3094 { 3095 bool result; 3096 unsigned seq; 3097 3098 if (new_dentry == old_dentry) 3099 return true; 3100 3101 do { 3102 /* for restarting inner loop in case of seq retry */ 3103 seq = read_seqbegin(&rename_lock); 3104 /* 3105 * Need rcu_readlock to protect against the d_parent trashing 3106 * due to d_move 3107 */ 3108 rcu_read_lock(); 3109 if (d_ancestor(old_dentry, new_dentry)) 3110 result = true; 3111 else 3112 result = false; 3113 rcu_read_unlock(); 3114 } while (read_seqretry(&rename_lock, seq)); 3115 3116 return result; 3117 } 3118 EXPORT_SYMBOL(is_subdir); 3119 3120 static enum d_walk_ret d_genocide_kill(void *data, struct dentry *dentry) 3121 { 3122 struct dentry *root = data; 3123 if (dentry != root) { 3124 if (d_unhashed(dentry) || !dentry->d_inode) 3125 return D_WALK_SKIP; 3126 3127 if (!(dentry->d_flags & DCACHE_GENOCIDE)) { 3128 dentry->d_flags |= DCACHE_GENOCIDE; 3129 dentry->d_lockref.count--; 3130 } 3131 } 3132 return D_WALK_CONTINUE; 3133 } 3134 3135 void d_genocide(struct dentry *parent) 3136 { 3137 d_walk(parent, parent, d_genocide_kill); 3138 } 3139 3140 EXPORT_SYMBOL(d_genocide); 3141 3142 void d_tmpfile(struct dentry *dentry, struct inode *inode) 3143 { 3144 inode_dec_link_count(inode); 3145 BUG_ON(dentry->d_name.name != dentry->d_iname || 3146 !hlist_unhashed(&dentry->d_u.d_alias) || 3147 !d_unlinked(dentry)); 3148 spin_lock(&dentry->d_parent->d_lock); 3149 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED); 3150 dentry->d_name.len = sprintf(dentry->d_iname, "#%llu", 3151 (unsigned long long)inode->i_ino); 3152 spin_unlock(&dentry->d_lock); 3153 spin_unlock(&dentry->d_parent->d_lock); 3154 d_instantiate(dentry, inode); 3155 } 3156 EXPORT_SYMBOL(d_tmpfile); 3157 3158 static __initdata unsigned long dhash_entries; 3159 static int __init set_dhash_entries(char *str) 3160 { 3161 if (!str) 3162 return 0; 3163 dhash_entries = simple_strtoul(str, &str, 0); 3164 return 1; 3165 } 3166 __setup("dhash_entries=", set_dhash_entries); 3167 3168 static void __init dcache_init_early(void) 3169 { 3170 /* If hashes are distributed across NUMA nodes, defer 3171 * hash allocation until vmalloc space is available. 3172 */ 3173 if (hashdist) 3174 return; 3175 3176 dentry_hashtable = 3177 alloc_large_system_hash("Dentry cache", 3178 sizeof(struct hlist_bl_head), 3179 dhash_entries, 3180 13, 3181 HASH_EARLY | HASH_ZERO, 3182 &d_hash_shift, 3183 NULL, 3184 0, 3185 0); 3186 d_hash_shift = 32 - d_hash_shift; 3187 } 3188 3189 static void __init dcache_init(void) 3190 { 3191 /* 3192 * A constructor could be added for stable state like the lists, 3193 * but it is probably not worth it because of the cache nature 3194 * of the dcache. 3195 */ 3196 dentry_cache = KMEM_CACHE_USERCOPY(dentry, 3197 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD|SLAB_ACCOUNT, 3198 d_iname); 3199 3200 /* Hash may have been set up in dcache_init_early */ 3201 if (!hashdist) 3202 return; 3203 3204 dentry_hashtable = 3205 alloc_large_system_hash("Dentry cache", 3206 sizeof(struct hlist_bl_head), 3207 dhash_entries, 3208 13, 3209 HASH_ZERO, 3210 &d_hash_shift, 3211 NULL, 3212 0, 3213 0); 3214 d_hash_shift = 32 - d_hash_shift; 3215 } 3216 3217 /* SLAB cache for __getname() consumers */ 3218 struct kmem_cache *names_cachep __read_mostly; 3219 EXPORT_SYMBOL(names_cachep); 3220 3221 void __init vfs_caches_init_early(void) 3222 { 3223 int i; 3224 3225 for (i = 0; i < ARRAY_SIZE(in_lookup_hashtable); i++) 3226 INIT_HLIST_BL_HEAD(&in_lookup_hashtable[i]); 3227 3228 dcache_init_early(); 3229 inode_init_early(); 3230 } 3231 3232 void __init vfs_caches_init(void) 3233 { 3234 names_cachep = kmem_cache_create_usercopy("names_cache", PATH_MAX, 0, 3235 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 0, PATH_MAX, NULL); 3236 3237 dcache_init(); 3238 inode_init(); 3239 files_init(); 3240 files_maxfiles_init(); 3241 mnt_init(); 3242 bdev_cache_init(); 3243 chrdev_init(); 3244 } 3245