1 /* 2 * fs/dcache.c 3 * 4 * Complete reimplementation 5 * (C) 1997 Thomas Schoebel-Theuer, 6 * with heavy changes by Linus Torvalds 7 */ 8 9 /* 10 * Notes on the allocation strategy: 11 * 12 * The dcache is a master of the icache - whenever a dcache entry 13 * exists, the inode will always exist. "iput()" is done either when 14 * the dcache entry is deleted or garbage collected. 15 */ 16 17 #include <linux/ratelimit.h> 18 #include <linux/string.h> 19 #include <linux/mm.h> 20 #include <linux/fs.h> 21 #include <linux/fsnotify.h> 22 #include <linux/slab.h> 23 #include <linux/init.h> 24 #include <linux/hash.h> 25 #include <linux/cache.h> 26 #include <linux/export.h> 27 #include <linux/security.h> 28 #include <linux/seqlock.h> 29 #include <linux/memblock.h> 30 #include <linux/bit_spinlock.h> 31 #include <linux/rculist_bl.h> 32 #include <linux/list_lru.h> 33 #include "internal.h" 34 #include "mount.h" 35 36 /* 37 * Usage: 38 * dcache->d_inode->i_lock protects: 39 * - i_dentry, d_u.d_alias, d_inode of aliases 40 * dcache_hash_bucket lock protects: 41 * - the dcache hash table 42 * s_roots bl list spinlock protects: 43 * - the s_roots list (see __d_drop) 44 * dentry->d_sb->s_dentry_lru_lock protects: 45 * - the dcache lru lists and counters 46 * d_lock protects: 47 * - d_flags 48 * - d_name 49 * - d_lru 50 * - d_count 51 * - d_unhashed() 52 * - d_parent and d_subdirs 53 * - childrens' d_child and d_parent 54 * - d_u.d_alias, d_inode 55 * 56 * Ordering: 57 * dentry->d_inode->i_lock 58 * dentry->d_lock 59 * dentry->d_sb->s_dentry_lru_lock 60 * dcache_hash_bucket lock 61 * s_roots lock 62 * 63 * If there is an ancestor relationship: 64 * dentry->d_parent->...->d_parent->d_lock 65 * ... 66 * dentry->d_parent->d_lock 67 * dentry->d_lock 68 * 69 * If no ancestor relationship: 70 * arbitrary, since it's serialized on rename_lock 71 */ 72 int sysctl_vfs_cache_pressure __read_mostly = 100; 73 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure); 74 75 __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock); 76 77 EXPORT_SYMBOL(rename_lock); 78 79 static struct kmem_cache *dentry_cache __read_mostly; 80 81 const struct qstr empty_name = QSTR_INIT("", 0); 82 EXPORT_SYMBOL(empty_name); 83 const struct qstr slash_name = QSTR_INIT("/", 1); 84 EXPORT_SYMBOL(slash_name); 85 86 /* 87 * This is the single most critical data structure when it comes 88 * to the dcache: the hashtable for lookups. Somebody should try 89 * to make this good - I've just made it work. 90 * 91 * This hash-function tries to avoid losing too many bits of hash 92 * information, yet avoid using a prime hash-size or similar. 93 */ 94 95 static unsigned int d_hash_shift __read_mostly; 96 97 static struct hlist_bl_head *dentry_hashtable __read_mostly; 98 99 static inline struct hlist_bl_head *d_hash(unsigned int hash) 100 { 101 return dentry_hashtable + (hash >> d_hash_shift); 102 } 103 104 #define IN_LOOKUP_SHIFT 10 105 static struct hlist_bl_head in_lookup_hashtable[1 << IN_LOOKUP_SHIFT]; 106 107 static inline struct hlist_bl_head *in_lookup_hash(const struct dentry *parent, 108 unsigned int hash) 109 { 110 hash += (unsigned long) parent / L1_CACHE_BYTES; 111 return in_lookup_hashtable + hash_32(hash, IN_LOOKUP_SHIFT); 112 } 113 114 115 /* Statistics gathering. */ 116 struct dentry_stat_t dentry_stat = { 117 .age_limit = 45, 118 }; 119 120 static DEFINE_PER_CPU(long, nr_dentry); 121 static DEFINE_PER_CPU(long, nr_dentry_unused); 122 static DEFINE_PER_CPU(long, nr_dentry_negative); 123 124 #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS) 125 126 /* 127 * Here we resort to our own counters instead of using generic per-cpu counters 128 * for consistency with what the vfs inode code does. We are expected to harvest 129 * better code and performance by having our own specialized counters. 130 * 131 * Please note that the loop is done over all possible CPUs, not over all online 132 * CPUs. The reason for this is that we don't want to play games with CPUs going 133 * on and off. If one of them goes off, we will just keep their counters. 134 * 135 * glommer: See cffbc8a for details, and if you ever intend to change this, 136 * please update all vfs counters to match. 137 */ 138 static long get_nr_dentry(void) 139 { 140 int i; 141 long sum = 0; 142 for_each_possible_cpu(i) 143 sum += per_cpu(nr_dentry, i); 144 return sum < 0 ? 0 : sum; 145 } 146 147 static long get_nr_dentry_unused(void) 148 { 149 int i; 150 long sum = 0; 151 for_each_possible_cpu(i) 152 sum += per_cpu(nr_dentry_unused, i); 153 return sum < 0 ? 0 : sum; 154 } 155 156 static long get_nr_dentry_negative(void) 157 { 158 int i; 159 long sum = 0; 160 161 for_each_possible_cpu(i) 162 sum += per_cpu(nr_dentry_negative, i); 163 return sum < 0 ? 0 : sum; 164 } 165 166 int proc_nr_dentry(struct ctl_table *table, int write, void __user *buffer, 167 size_t *lenp, loff_t *ppos) 168 { 169 dentry_stat.nr_dentry = get_nr_dentry(); 170 dentry_stat.nr_unused = get_nr_dentry_unused(); 171 dentry_stat.nr_negative = get_nr_dentry_negative(); 172 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos); 173 } 174 #endif 175 176 /* 177 * Compare 2 name strings, return 0 if they match, otherwise non-zero. 178 * The strings are both count bytes long, and count is non-zero. 179 */ 180 #ifdef CONFIG_DCACHE_WORD_ACCESS 181 182 #include <asm/word-at-a-time.h> 183 /* 184 * NOTE! 'cs' and 'scount' come from a dentry, so it has a 185 * aligned allocation for this particular component. We don't 186 * strictly need the load_unaligned_zeropad() safety, but it 187 * doesn't hurt either. 188 * 189 * In contrast, 'ct' and 'tcount' can be from a pathname, and do 190 * need the careful unaligned handling. 191 */ 192 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount) 193 { 194 unsigned long a,b,mask; 195 196 for (;;) { 197 a = read_word_at_a_time(cs); 198 b = load_unaligned_zeropad(ct); 199 if (tcount < sizeof(unsigned long)) 200 break; 201 if (unlikely(a != b)) 202 return 1; 203 cs += sizeof(unsigned long); 204 ct += sizeof(unsigned long); 205 tcount -= sizeof(unsigned long); 206 if (!tcount) 207 return 0; 208 } 209 mask = bytemask_from_count(tcount); 210 return unlikely(!!((a ^ b) & mask)); 211 } 212 213 #else 214 215 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount) 216 { 217 do { 218 if (*cs != *ct) 219 return 1; 220 cs++; 221 ct++; 222 tcount--; 223 } while (tcount); 224 return 0; 225 } 226 227 #endif 228 229 static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount) 230 { 231 /* 232 * Be careful about RCU walk racing with rename: 233 * use 'READ_ONCE' to fetch the name pointer. 234 * 235 * NOTE! Even if a rename will mean that the length 236 * was not loaded atomically, we don't care. The 237 * RCU walk will check the sequence count eventually, 238 * and catch it. And we won't overrun the buffer, 239 * because we're reading the name pointer atomically, 240 * and a dentry name is guaranteed to be properly 241 * terminated with a NUL byte. 242 * 243 * End result: even if 'len' is wrong, we'll exit 244 * early because the data cannot match (there can 245 * be no NUL in the ct/tcount data) 246 */ 247 const unsigned char *cs = READ_ONCE(dentry->d_name.name); 248 249 return dentry_string_cmp(cs, ct, tcount); 250 } 251 252 struct external_name { 253 union { 254 atomic_t count; 255 struct rcu_head head; 256 } u; 257 unsigned char name[]; 258 }; 259 260 static inline struct external_name *external_name(struct dentry *dentry) 261 { 262 return container_of(dentry->d_name.name, struct external_name, name[0]); 263 } 264 265 static void __d_free(struct rcu_head *head) 266 { 267 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu); 268 269 kmem_cache_free(dentry_cache, dentry); 270 } 271 272 static void __d_free_external(struct rcu_head *head) 273 { 274 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu); 275 kfree(external_name(dentry)); 276 kmem_cache_free(dentry_cache, dentry); 277 } 278 279 static inline int dname_external(const struct dentry *dentry) 280 { 281 return dentry->d_name.name != dentry->d_iname; 282 } 283 284 void take_dentry_name_snapshot(struct name_snapshot *name, struct dentry *dentry) 285 { 286 spin_lock(&dentry->d_lock); 287 if (unlikely(dname_external(dentry))) { 288 struct external_name *p = external_name(dentry); 289 atomic_inc(&p->u.count); 290 spin_unlock(&dentry->d_lock); 291 name->name = p->name; 292 } else { 293 memcpy(name->inline_name, dentry->d_iname, 294 dentry->d_name.len + 1); 295 spin_unlock(&dentry->d_lock); 296 name->name = name->inline_name; 297 } 298 } 299 EXPORT_SYMBOL(take_dentry_name_snapshot); 300 301 void release_dentry_name_snapshot(struct name_snapshot *name) 302 { 303 if (unlikely(name->name != name->inline_name)) { 304 struct external_name *p; 305 p = container_of(name->name, struct external_name, name[0]); 306 if (unlikely(atomic_dec_and_test(&p->u.count))) 307 kfree_rcu(p, u.head); 308 } 309 } 310 EXPORT_SYMBOL(release_dentry_name_snapshot); 311 312 static inline void __d_set_inode_and_type(struct dentry *dentry, 313 struct inode *inode, 314 unsigned type_flags) 315 { 316 unsigned flags; 317 318 dentry->d_inode = inode; 319 flags = READ_ONCE(dentry->d_flags); 320 flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU); 321 flags |= type_flags; 322 WRITE_ONCE(dentry->d_flags, flags); 323 } 324 325 static inline void __d_clear_type_and_inode(struct dentry *dentry) 326 { 327 unsigned flags = READ_ONCE(dentry->d_flags); 328 329 flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU); 330 WRITE_ONCE(dentry->d_flags, flags); 331 dentry->d_inode = NULL; 332 if (dentry->d_flags & DCACHE_LRU_LIST) 333 this_cpu_inc(nr_dentry_negative); 334 } 335 336 static void dentry_free(struct dentry *dentry) 337 { 338 WARN_ON(!hlist_unhashed(&dentry->d_u.d_alias)); 339 if (unlikely(dname_external(dentry))) { 340 struct external_name *p = external_name(dentry); 341 if (likely(atomic_dec_and_test(&p->u.count))) { 342 call_rcu(&dentry->d_u.d_rcu, __d_free_external); 343 return; 344 } 345 } 346 /* if dentry was never visible to RCU, immediate free is OK */ 347 if (!(dentry->d_flags & DCACHE_RCUACCESS)) 348 __d_free(&dentry->d_u.d_rcu); 349 else 350 call_rcu(&dentry->d_u.d_rcu, __d_free); 351 } 352 353 /* 354 * Release the dentry's inode, using the filesystem 355 * d_iput() operation if defined. 356 */ 357 static void dentry_unlink_inode(struct dentry * dentry) 358 __releases(dentry->d_lock) 359 __releases(dentry->d_inode->i_lock) 360 { 361 struct inode *inode = dentry->d_inode; 362 363 raw_write_seqcount_begin(&dentry->d_seq); 364 __d_clear_type_and_inode(dentry); 365 hlist_del_init(&dentry->d_u.d_alias); 366 raw_write_seqcount_end(&dentry->d_seq); 367 spin_unlock(&dentry->d_lock); 368 spin_unlock(&inode->i_lock); 369 if (!inode->i_nlink) 370 fsnotify_inoderemove(inode); 371 if (dentry->d_op && dentry->d_op->d_iput) 372 dentry->d_op->d_iput(dentry, inode); 373 else 374 iput(inode); 375 } 376 377 /* 378 * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry 379 * is in use - which includes both the "real" per-superblock 380 * LRU list _and_ the DCACHE_SHRINK_LIST use. 381 * 382 * The DCACHE_SHRINK_LIST bit is set whenever the dentry is 383 * on the shrink list (ie not on the superblock LRU list). 384 * 385 * The per-cpu "nr_dentry_unused" counters are updated with 386 * the DCACHE_LRU_LIST bit. 387 * 388 * The per-cpu "nr_dentry_negative" counters are only updated 389 * when deleted from or added to the per-superblock LRU list, not 390 * from/to the shrink list. That is to avoid an unneeded dec/inc 391 * pair when moving from LRU to shrink list in select_collect(). 392 * 393 * These helper functions make sure we always follow the 394 * rules. d_lock must be held by the caller. 395 */ 396 #define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x)) 397 static void d_lru_add(struct dentry *dentry) 398 { 399 D_FLAG_VERIFY(dentry, 0); 400 dentry->d_flags |= DCACHE_LRU_LIST; 401 this_cpu_inc(nr_dentry_unused); 402 if (d_is_negative(dentry)) 403 this_cpu_inc(nr_dentry_negative); 404 WARN_ON_ONCE(!list_lru_add(&dentry->d_sb->s_dentry_lru, &dentry->d_lru)); 405 } 406 407 static void d_lru_del(struct dentry *dentry) 408 { 409 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST); 410 dentry->d_flags &= ~DCACHE_LRU_LIST; 411 this_cpu_dec(nr_dentry_unused); 412 if (d_is_negative(dentry)) 413 this_cpu_dec(nr_dentry_negative); 414 WARN_ON_ONCE(!list_lru_del(&dentry->d_sb->s_dentry_lru, &dentry->d_lru)); 415 } 416 417 static void d_shrink_del(struct dentry *dentry) 418 { 419 D_FLAG_VERIFY(dentry, DCACHE_SHRINK_LIST | DCACHE_LRU_LIST); 420 list_del_init(&dentry->d_lru); 421 dentry->d_flags &= ~(DCACHE_SHRINK_LIST | DCACHE_LRU_LIST); 422 this_cpu_dec(nr_dentry_unused); 423 } 424 425 static void d_shrink_add(struct dentry *dentry, struct list_head *list) 426 { 427 D_FLAG_VERIFY(dentry, 0); 428 list_add(&dentry->d_lru, list); 429 dentry->d_flags |= DCACHE_SHRINK_LIST | DCACHE_LRU_LIST; 430 this_cpu_inc(nr_dentry_unused); 431 } 432 433 /* 434 * These can only be called under the global LRU lock, ie during the 435 * callback for freeing the LRU list. "isolate" removes it from the 436 * LRU lists entirely, while shrink_move moves it to the indicated 437 * private list. 438 */ 439 static void d_lru_isolate(struct list_lru_one *lru, struct dentry *dentry) 440 { 441 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST); 442 dentry->d_flags &= ~DCACHE_LRU_LIST; 443 this_cpu_dec(nr_dentry_unused); 444 if (d_is_negative(dentry)) 445 this_cpu_dec(nr_dentry_negative); 446 list_lru_isolate(lru, &dentry->d_lru); 447 } 448 449 static void d_lru_shrink_move(struct list_lru_one *lru, struct dentry *dentry, 450 struct list_head *list) 451 { 452 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST); 453 dentry->d_flags |= DCACHE_SHRINK_LIST; 454 if (d_is_negative(dentry)) 455 this_cpu_dec(nr_dentry_negative); 456 list_lru_isolate_move(lru, &dentry->d_lru, list); 457 } 458 459 /** 460 * d_drop - drop a dentry 461 * @dentry: dentry to drop 462 * 463 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't 464 * be found through a VFS lookup any more. Note that this is different from 465 * deleting the dentry - d_delete will try to mark the dentry negative if 466 * possible, giving a successful _negative_ lookup, while d_drop will 467 * just make the cache lookup fail. 468 * 469 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some 470 * reason (NFS timeouts or autofs deletes). 471 * 472 * __d_drop requires dentry->d_lock 473 * ___d_drop doesn't mark dentry as "unhashed" 474 * (dentry->d_hash.pprev will be LIST_POISON2, not NULL). 475 */ 476 static void ___d_drop(struct dentry *dentry) 477 { 478 struct hlist_bl_head *b; 479 /* 480 * Hashed dentries are normally on the dentry hashtable, 481 * with the exception of those newly allocated by 482 * d_obtain_root, which are always IS_ROOT: 483 */ 484 if (unlikely(IS_ROOT(dentry))) 485 b = &dentry->d_sb->s_roots; 486 else 487 b = d_hash(dentry->d_name.hash); 488 489 hlist_bl_lock(b); 490 __hlist_bl_del(&dentry->d_hash); 491 hlist_bl_unlock(b); 492 } 493 494 void __d_drop(struct dentry *dentry) 495 { 496 if (!d_unhashed(dentry)) { 497 ___d_drop(dentry); 498 dentry->d_hash.pprev = NULL; 499 write_seqcount_invalidate(&dentry->d_seq); 500 } 501 } 502 EXPORT_SYMBOL(__d_drop); 503 504 void d_drop(struct dentry *dentry) 505 { 506 spin_lock(&dentry->d_lock); 507 __d_drop(dentry); 508 spin_unlock(&dentry->d_lock); 509 } 510 EXPORT_SYMBOL(d_drop); 511 512 static inline void dentry_unlist(struct dentry *dentry, struct dentry *parent) 513 { 514 struct dentry *next; 515 /* 516 * Inform d_walk() and shrink_dentry_list() that we are no longer 517 * attached to the dentry tree 518 */ 519 dentry->d_flags |= DCACHE_DENTRY_KILLED; 520 if (unlikely(list_empty(&dentry->d_child))) 521 return; 522 __list_del_entry(&dentry->d_child); 523 /* 524 * Cursors can move around the list of children. While we'd been 525 * a normal list member, it didn't matter - ->d_child.next would've 526 * been updated. However, from now on it won't be and for the 527 * things like d_walk() it might end up with a nasty surprise. 528 * Normally d_walk() doesn't care about cursors moving around - 529 * ->d_lock on parent prevents that and since a cursor has no children 530 * of its own, we get through it without ever unlocking the parent. 531 * There is one exception, though - if we ascend from a child that 532 * gets killed as soon as we unlock it, the next sibling is found 533 * using the value left in its ->d_child.next. And if _that_ 534 * pointed to a cursor, and cursor got moved (e.g. by lseek()) 535 * before d_walk() regains parent->d_lock, we'll end up skipping 536 * everything the cursor had been moved past. 537 * 538 * Solution: make sure that the pointer left behind in ->d_child.next 539 * points to something that won't be moving around. I.e. skip the 540 * cursors. 541 */ 542 while (dentry->d_child.next != &parent->d_subdirs) { 543 next = list_entry(dentry->d_child.next, struct dentry, d_child); 544 if (likely(!(next->d_flags & DCACHE_DENTRY_CURSOR))) 545 break; 546 dentry->d_child.next = next->d_child.next; 547 } 548 } 549 550 static void __dentry_kill(struct dentry *dentry) 551 { 552 struct dentry *parent = NULL; 553 bool can_free = true; 554 if (!IS_ROOT(dentry)) 555 parent = dentry->d_parent; 556 557 /* 558 * The dentry is now unrecoverably dead to the world. 559 */ 560 lockref_mark_dead(&dentry->d_lockref); 561 562 /* 563 * inform the fs via d_prune that this dentry is about to be 564 * unhashed and destroyed. 565 */ 566 if (dentry->d_flags & DCACHE_OP_PRUNE) 567 dentry->d_op->d_prune(dentry); 568 569 if (dentry->d_flags & DCACHE_LRU_LIST) { 570 if (!(dentry->d_flags & DCACHE_SHRINK_LIST)) 571 d_lru_del(dentry); 572 } 573 /* if it was on the hash then remove it */ 574 __d_drop(dentry); 575 dentry_unlist(dentry, parent); 576 if (parent) 577 spin_unlock(&parent->d_lock); 578 if (dentry->d_inode) 579 dentry_unlink_inode(dentry); 580 else 581 spin_unlock(&dentry->d_lock); 582 this_cpu_dec(nr_dentry); 583 if (dentry->d_op && dentry->d_op->d_release) 584 dentry->d_op->d_release(dentry); 585 586 spin_lock(&dentry->d_lock); 587 if (dentry->d_flags & DCACHE_SHRINK_LIST) { 588 dentry->d_flags |= DCACHE_MAY_FREE; 589 can_free = false; 590 } 591 spin_unlock(&dentry->d_lock); 592 if (likely(can_free)) 593 dentry_free(dentry); 594 cond_resched(); 595 } 596 597 static struct dentry *__lock_parent(struct dentry *dentry) 598 { 599 struct dentry *parent; 600 rcu_read_lock(); 601 spin_unlock(&dentry->d_lock); 602 again: 603 parent = READ_ONCE(dentry->d_parent); 604 spin_lock(&parent->d_lock); 605 /* 606 * We can't blindly lock dentry until we are sure 607 * that we won't violate the locking order. 608 * Any changes of dentry->d_parent must have 609 * been done with parent->d_lock held, so 610 * spin_lock() above is enough of a barrier 611 * for checking if it's still our child. 612 */ 613 if (unlikely(parent != dentry->d_parent)) { 614 spin_unlock(&parent->d_lock); 615 goto again; 616 } 617 rcu_read_unlock(); 618 if (parent != dentry) 619 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED); 620 else 621 parent = NULL; 622 return parent; 623 } 624 625 static inline struct dentry *lock_parent(struct dentry *dentry) 626 { 627 struct dentry *parent = dentry->d_parent; 628 if (IS_ROOT(dentry)) 629 return NULL; 630 if (likely(spin_trylock(&parent->d_lock))) 631 return parent; 632 return __lock_parent(dentry); 633 } 634 635 static inline bool retain_dentry(struct dentry *dentry) 636 { 637 WARN_ON(d_in_lookup(dentry)); 638 639 /* Unreachable? Get rid of it */ 640 if (unlikely(d_unhashed(dentry))) 641 return false; 642 643 if (unlikely(dentry->d_flags & DCACHE_DISCONNECTED)) 644 return false; 645 646 if (unlikely(dentry->d_flags & DCACHE_OP_DELETE)) { 647 if (dentry->d_op->d_delete(dentry)) 648 return false; 649 } 650 /* retain; LRU fodder */ 651 dentry->d_lockref.count--; 652 if (unlikely(!(dentry->d_flags & DCACHE_LRU_LIST))) 653 d_lru_add(dentry); 654 else if (unlikely(!(dentry->d_flags & DCACHE_REFERENCED))) 655 dentry->d_flags |= DCACHE_REFERENCED; 656 return true; 657 } 658 659 /* 660 * Finish off a dentry we've decided to kill. 661 * dentry->d_lock must be held, returns with it unlocked. 662 * Returns dentry requiring refcount drop, or NULL if we're done. 663 */ 664 static struct dentry *dentry_kill(struct dentry *dentry) 665 __releases(dentry->d_lock) 666 { 667 struct inode *inode = dentry->d_inode; 668 struct dentry *parent = NULL; 669 670 if (inode && unlikely(!spin_trylock(&inode->i_lock))) 671 goto slow_positive; 672 673 if (!IS_ROOT(dentry)) { 674 parent = dentry->d_parent; 675 if (unlikely(!spin_trylock(&parent->d_lock))) { 676 parent = __lock_parent(dentry); 677 if (likely(inode || !dentry->d_inode)) 678 goto got_locks; 679 /* negative that became positive */ 680 if (parent) 681 spin_unlock(&parent->d_lock); 682 inode = dentry->d_inode; 683 goto slow_positive; 684 } 685 } 686 __dentry_kill(dentry); 687 return parent; 688 689 slow_positive: 690 spin_unlock(&dentry->d_lock); 691 spin_lock(&inode->i_lock); 692 spin_lock(&dentry->d_lock); 693 parent = lock_parent(dentry); 694 got_locks: 695 if (unlikely(dentry->d_lockref.count != 1)) { 696 dentry->d_lockref.count--; 697 } else if (likely(!retain_dentry(dentry))) { 698 __dentry_kill(dentry); 699 return parent; 700 } 701 /* we are keeping it, after all */ 702 if (inode) 703 spin_unlock(&inode->i_lock); 704 if (parent) 705 spin_unlock(&parent->d_lock); 706 spin_unlock(&dentry->d_lock); 707 return NULL; 708 } 709 710 /* 711 * Try to do a lockless dput(), and return whether that was successful. 712 * 713 * If unsuccessful, we return false, having already taken the dentry lock. 714 * 715 * The caller needs to hold the RCU read lock, so that the dentry is 716 * guaranteed to stay around even if the refcount goes down to zero! 717 */ 718 static inline bool fast_dput(struct dentry *dentry) 719 { 720 int ret; 721 unsigned int d_flags; 722 723 /* 724 * If we have a d_op->d_delete() operation, we sould not 725 * let the dentry count go to zero, so use "put_or_lock". 726 */ 727 if (unlikely(dentry->d_flags & DCACHE_OP_DELETE)) 728 return lockref_put_or_lock(&dentry->d_lockref); 729 730 /* 731 * .. otherwise, we can try to just decrement the 732 * lockref optimistically. 733 */ 734 ret = lockref_put_return(&dentry->d_lockref); 735 736 /* 737 * If the lockref_put_return() failed due to the lock being held 738 * by somebody else, the fast path has failed. We will need to 739 * get the lock, and then check the count again. 740 */ 741 if (unlikely(ret < 0)) { 742 spin_lock(&dentry->d_lock); 743 if (dentry->d_lockref.count > 1) { 744 dentry->d_lockref.count--; 745 spin_unlock(&dentry->d_lock); 746 return true; 747 } 748 return false; 749 } 750 751 /* 752 * If we weren't the last ref, we're done. 753 */ 754 if (ret) 755 return true; 756 757 /* 758 * Careful, careful. The reference count went down 759 * to zero, but we don't hold the dentry lock, so 760 * somebody else could get it again, and do another 761 * dput(), and we need to not race with that. 762 * 763 * However, there is a very special and common case 764 * where we don't care, because there is nothing to 765 * do: the dentry is still hashed, it does not have 766 * a 'delete' op, and it's referenced and already on 767 * the LRU list. 768 * 769 * NOTE! Since we aren't locked, these values are 770 * not "stable". However, it is sufficient that at 771 * some point after we dropped the reference the 772 * dentry was hashed and the flags had the proper 773 * value. Other dentry users may have re-gotten 774 * a reference to the dentry and change that, but 775 * our work is done - we can leave the dentry 776 * around with a zero refcount. 777 */ 778 smp_rmb(); 779 d_flags = READ_ONCE(dentry->d_flags); 780 d_flags &= DCACHE_REFERENCED | DCACHE_LRU_LIST | DCACHE_DISCONNECTED; 781 782 /* Nothing to do? Dropping the reference was all we needed? */ 783 if (d_flags == (DCACHE_REFERENCED | DCACHE_LRU_LIST) && !d_unhashed(dentry)) 784 return true; 785 786 /* 787 * Not the fast normal case? Get the lock. We've already decremented 788 * the refcount, but we'll need to re-check the situation after 789 * getting the lock. 790 */ 791 spin_lock(&dentry->d_lock); 792 793 /* 794 * Did somebody else grab a reference to it in the meantime, and 795 * we're no longer the last user after all? Alternatively, somebody 796 * else could have killed it and marked it dead. Either way, we 797 * don't need to do anything else. 798 */ 799 if (dentry->d_lockref.count) { 800 spin_unlock(&dentry->d_lock); 801 return true; 802 } 803 804 /* 805 * Re-get the reference we optimistically dropped. We hold the 806 * lock, and we just tested that it was zero, so we can just 807 * set it to 1. 808 */ 809 dentry->d_lockref.count = 1; 810 return false; 811 } 812 813 814 /* 815 * This is dput 816 * 817 * This is complicated by the fact that we do not want to put 818 * dentries that are no longer on any hash chain on the unused 819 * list: we'd much rather just get rid of them immediately. 820 * 821 * However, that implies that we have to traverse the dentry 822 * tree upwards to the parents which might _also_ now be 823 * scheduled for deletion (it may have been only waiting for 824 * its last child to go away). 825 * 826 * This tail recursion is done by hand as we don't want to depend 827 * on the compiler to always get this right (gcc generally doesn't). 828 * Real recursion would eat up our stack space. 829 */ 830 831 /* 832 * dput - release a dentry 833 * @dentry: dentry to release 834 * 835 * Release a dentry. This will drop the usage count and if appropriate 836 * call the dentry unlink method as well as removing it from the queues and 837 * releasing its resources. If the parent dentries were scheduled for release 838 * they too may now get deleted. 839 */ 840 void dput(struct dentry *dentry) 841 { 842 while (dentry) { 843 might_sleep(); 844 845 rcu_read_lock(); 846 if (likely(fast_dput(dentry))) { 847 rcu_read_unlock(); 848 return; 849 } 850 851 /* Slow case: now with the dentry lock held */ 852 rcu_read_unlock(); 853 854 if (likely(retain_dentry(dentry))) { 855 spin_unlock(&dentry->d_lock); 856 return; 857 } 858 859 dentry = dentry_kill(dentry); 860 } 861 } 862 EXPORT_SYMBOL(dput); 863 864 865 /* This must be called with d_lock held */ 866 static inline void __dget_dlock(struct dentry *dentry) 867 { 868 dentry->d_lockref.count++; 869 } 870 871 static inline void __dget(struct dentry *dentry) 872 { 873 lockref_get(&dentry->d_lockref); 874 } 875 876 struct dentry *dget_parent(struct dentry *dentry) 877 { 878 int gotref; 879 struct dentry *ret; 880 881 /* 882 * Do optimistic parent lookup without any 883 * locking. 884 */ 885 rcu_read_lock(); 886 ret = READ_ONCE(dentry->d_parent); 887 gotref = lockref_get_not_zero(&ret->d_lockref); 888 rcu_read_unlock(); 889 if (likely(gotref)) { 890 if (likely(ret == READ_ONCE(dentry->d_parent))) 891 return ret; 892 dput(ret); 893 } 894 895 repeat: 896 /* 897 * Don't need rcu_dereference because we re-check it was correct under 898 * the lock. 899 */ 900 rcu_read_lock(); 901 ret = dentry->d_parent; 902 spin_lock(&ret->d_lock); 903 if (unlikely(ret != dentry->d_parent)) { 904 spin_unlock(&ret->d_lock); 905 rcu_read_unlock(); 906 goto repeat; 907 } 908 rcu_read_unlock(); 909 BUG_ON(!ret->d_lockref.count); 910 ret->d_lockref.count++; 911 spin_unlock(&ret->d_lock); 912 return ret; 913 } 914 EXPORT_SYMBOL(dget_parent); 915 916 static struct dentry * __d_find_any_alias(struct inode *inode) 917 { 918 struct dentry *alias; 919 920 if (hlist_empty(&inode->i_dentry)) 921 return NULL; 922 alias = hlist_entry(inode->i_dentry.first, struct dentry, d_u.d_alias); 923 __dget(alias); 924 return alias; 925 } 926 927 /** 928 * d_find_any_alias - find any alias for a given inode 929 * @inode: inode to find an alias for 930 * 931 * If any aliases exist for the given inode, take and return a 932 * reference for one of them. If no aliases exist, return %NULL. 933 */ 934 struct dentry *d_find_any_alias(struct inode *inode) 935 { 936 struct dentry *de; 937 938 spin_lock(&inode->i_lock); 939 de = __d_find_any_alias(inode); 940 spin_unlock(&inode->i_lock); 941 return de; 942 } 943 EXPORT_SYMBOL(d_find_any_alias); 944 945 /** 946 * d_find_alias - grab a hashed alias of inode 947 * @inode: inode in question 948 * 949 * If inode has a hashed alias, or is a directory and has any alias, 950 * acquire the reference to alias and return it. Otherwise return NULL. 951 * Notice that if inode is a directory there can be only one alias and 952 * it can be unhashed only if it has no children, or if it is the root 953 * of a filesystem, or if the directory was renamed and d_revalidate 954 * was the first vfs operation to notice. 955 * 956 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer 957 * any other hashed alias over that one. 958 */ 959 static struct dentry *__d_find_alias(struct inode *inode) 960 { 961 struct dentry *alias; 962 963 if (S_ISDIR(inode->i_mode)) 964 return __d_find_any_alias(inode); 965 966 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) { 967 spin_lock(&alias->d_lock); 968 if (!d_unhashed(alias)) { 969 __dget_dlock(alias); 970 spin_unlock(&alias->d_lock); 971 return alias; 972 } 973 spin_unlock(&alias->d_lock); 974 } 975 return NULL; 976 } 977 978 struct dentry *d_find_alias(struct inode *inode) 979 { 980 struct dentry *de = NULL; 981 982 if (!hlist_empty(&inode->i_dentry)) { 983 spin_lock(&inode->i_lock); 984 de = __d_find_alias(inode); 985 spin_unlock(&inode->i_lock); 986 } 987 return de; 988 } 989 EXPORT_SYMBOL(d_find_alias); 990 991 /* 992 * Try to kill dentries associated with this inode. 993 * WARNING: you must own a reference to inode. 994 */ 995 void d_prune_aliases(struct inode *inode) 996 { 997 struct dentry *dentry; 998 restart: 999 spin_lock(&inode->i_lock); 1000 hlist_for_each_entry(dentry, &inode->i_dentry, d_u.d_alias) { 1001 spin_lock(&dentry->d_lock); 1002 if (!dentry->d_lockref.count) { 1003 struct dentry *parent = lock_parent(dentry); 1004 if (likely(!dentry->d_lockref.count)) { 1005 __dentry_kill(dentry); 1006 dput(parent); 1007 goto restart; 1008 } 1009 if (parent) 1010 spin_unlock(&parent->d_lock); 1011 } 1012 spin_unlock(&dentry->d_lock); 1013 } 1014 spin_unlock(&inode->i_lock); 1015 } 1016 EXPORT_SYMBOL(d_prune_aliases); 1017 1018 /* 1019 * Lock a dentry from shrink list. 1020 * Called under rcu_read_lock() and dentry->d_lock; the former 1021 * guarantees that nothing we access will be freed under us. 1022 * Note that dentry is *not* protected from concurrent dentry_kill(), 1023 * d_delete(), etc. 1024 * 1025 * Return false if dentry has been disrupted or grabbed, leaving 1026 * the caller to kick it off-list. Otherwise, return true and have 1027 * that dentry's inode and parent both locked. 1028 */ 1029 static bool shrink_lock_dentry(struct dentry *dentry) 1030 { 1031 struct inode *inode; 1032 struct dentry *parent; 1033 1034 if (dentry->d_lockref.count) 1035 return false; 1036 1037 inode = dentry->d_inode; 1038 if (inode && unlikely(!spin_trylock(&inode->i_lock))) { 1039 spin_unlock(&dentry->d_lock); 1040 spin_lock(&inode->i_lock); 1041 spin_lock(&dentry->d_lock); 1042 if (unlikely(dentry->d_lockref.count)) 1043 goto out; 1044 /* changed inode means that somebody had grabbed it */ 1045 if (unlikely(inode != dentry->d_inode)) 1046 goto out; 1047 } 1048 1049 parent = dentry->d_parent; 1050 if (IS_ROOT(dentry) || likely(spin_trylock(&parent->d_lock))) 1051 return true; 1052 1053 spin_unlock(&dentry->d_lock); 1054 spin_lock(&parent->d_lock); 1055 if (unlikely(parent != dentry->d_parent)) { 1056 spin_unlock(&parent->d_lock); 1057 spin_lock(&dentry->d_lock); 1058 goto out; 1059 } 1060 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED); 1061 if (likely(!dentry->d_lockref.count)) 1062 return true; 1063 spin_unlock(&parent->d_lock); 1064 out: 1065 if (inode) 1066 spin_unlock(&inode->i_lock); 1067 return false; 1068 } 1069 1070 static void shrink_dentry_list(struct list_head *list) 1071 { 1072 while (!list_empty(list)) { 1073 struct dentry *dentry, *parent; 1074 1075 dentry = list_entry(list->prev, struct dentry, d_lru); 1076 spin_lock(&dentry->d_lock); 1077 rcu_read_lock(); 1078 if (!shrink_lock_dentry(dentry)) { 1079 bool can_free = false; 1080 rcu_read_unlock(); 1081 d_shrink_del(dentry); 1082 if (dentry->d_lockref.count < 0) 1083 can_free = dentry->d_flags & DCACHE_MAY_FREE; 1084 spin_unlock(&dentry->d_lock); 1085 if (can_free) 1086 dentry_free(dentry); 1087 continue; 1088 } 1089 rcu_read_unlock(); 1090 d_shrink_del(dentry); 1091 parent = dentry->d_parent; 1092 __dentry_kill(dentry); 1093 if (parent == dentry) 1094 continue; 1095 /* 1096 * We need to prune ancestors too. This is necessary to prevent 1097 * quadratic behavior of shrink_dcache_parent(), but is also 1098 * expected to be beneficial in reducing dentry cache 1099 * fragmentation. 1100 */ 1101 dentry = parent; 1102 while (dentry && !lockref_put_or_lock(&dentry->d_lockref)) 1103 dentry = dentry_kill(dentry); 1104 } 1105 } 1106 1107 static enum lru_status dentry_lru_isolate(struct list_head *item, 1108 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg) 1109 { 1110 struct list_head *freeable = arg; 1111 struct dentry *dentry = container_of(item, struct dentry, d_lru); 1112 1113 1114 /* 1115 * we are inverting the lru lock/dentry->d_lock here, 1116 * so use a trylock. If we fail to get the lock, just skip 1117 * it 1118 */ 1119 if (!spin_trylock(&dentry->d_lock)) 1120 return LRU_SKIP; 1121 1122 /* 1123 * Referenced dentries are still in use. If they have active 1124 * counts, just remove them from the LRU. Otherwise give them 1125 * another pass through the LRU. 1126 */ 1127 if (dentry->d_lockref.count) { 1128 d_lru_isolate(lru, dentry); 1129 spin_unlock(&dentry->d_lock); 1130 return LRU_REMOVED; 1131 } 1132 1133 if (dentry->d_flags & DCACHE_REFERENCED) { 1134 dentry->d_flags &= ~DCACHE_REFERENCED; 1135 spin_unlock(&dentry->d_lock); 1136 1137 /* 1138 * The list move itself will be made by the common LRU code. At 1139 * this point, we've dropped the dentry->d_lock but keep the 1140 * lru lock. This is safe to do, since every list movement is 1141 * protected by the lru lock even if both locks are held. 1142 * 1143 * This is guaranteed by the fact that all LRU management 1144 * functions are intermediated by the LRU API calls like 1145 * list_lru_add and list_lru_del. List movement in this file 1146 * only ever occur through this functions or through callbacks 1147 * like this one, that are called from the LRU API. 1148 * 1149 * The only exceptions to this are functions like 1150 * shrink_dentry_list, and code that first checks for the 1151 * DCACHE_SHRINK_LIST flag. Those are guaranteed to be 1152 * operating only with stack provided lists after they are 1153 * properly isolated from the main list. It is thus, always a 1154 * local access. 1155 */ 1156 return LRU_ROTATE; 1157 } 1158 1159 d_lru_shrink_move(lru, dentry, freeable); 1160 spin_unlock(&dentry->d_lock); 1161 1162 return LRU_REMOVED; 1163 } 1164 1165 /** 1166 * prune_dcache_sb - shrink the dcache 1167 * @sb: superblock 1168 * @sc: shrink control, passed to list_lru_shrink_walk() 1169 * 1170 * Attempt to shrink the superblock dcache LRU by @sc->nr_to_scan entries. This 1171 * is done when we need more memory and called from the superblock shrinker 1172 * function. 1173 * 1174 * This function may fail to free any resources if all the dentries are in 1175 * use. 1176 */ 1177 long prune_dcache_sb(struct super_block *sb, struct shrink_control *sc) 1178 { 1179 LIST_HEAD(dispose); 1180 long freed; 1181 1182 freed = list_lru_shrink_walk(&sb->s_dentry_lru, sc, 1183 dentry_lru_isolate, &dispose); 1184 shrink_dentry_list(&dispose); 1185 return freed; 1186 } 1187 1188 static enum lru_status dentry_lru_isolate_shrink(struct list_head *item, 1189 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg) 1190 { 1191 struct list_head *freeable = arg; 1192 struct dentry *dentry = container_of(item, struct dentry, d_lru); 1193 1194 /* 1195 * we are inverting the lru lock/dentry->d_lock here, 1196 * so use a trylock. If we fail to get the lock, just skip 1197 * it 1198 */ 1199 if (!spin_trylock(&dentry->d_lock)) 1200 return LRU_SKIP; 1201 1202 d_lru_shrink_move(lru, dentry, freeable); 1203 spin_unlock(&dentry->d_lock); 1204 1205 return LRU_REMOVED; 1206 } 1207 1208 1209 /** 1210 * shrink_dcache_sb - shrink dcache for a superblock 1211 * @sb: superblock 1212 * 1213 * Shrink the dcache for the specified super block. This is used to free 1214 * the dcache before unmounting a file system. 1215 */ 1216 void shrink_dcache_sb(struct super_block *sb) 1217 { 1218 do { 1219 LIST_HEAD(dispose); 1220 1221 list_lru_walk(&sb->s_dentry_lru, 1222 dentry_lru_isolate_shrink, &dispose, 1024); 1223 shrink_dentry_list(&dispose); 1224 } while (list_lru_count(&sb->s_dentry_lru) > 0); 1225 } 1226 EXPORT_SYMBOL(shrink_dcache_sb); 1227 1228 /** 1229 * enum d_walk_ret - action to talke during tree walk 1230 * @D_WALK_CONTINUE: contrinue walk 1231 * @D_WALK_QUIT: quit walk 1232 * @D_WALK_NORETRY: quit when retry is needed 1233 * @D_WALK_SKIP: skip this dentry and its children 1234 */ 1235 enum d_walk_ret { 1236 D_WALK_CONTINUE, 1237 D_WALK_QUIT, 1238 D_WALK_NORETRY, 1239 D_WALK_SKIP, 1240 }; 1241 1242 /** 1243 * d_walk - walk the dentry tree 1244 * @parent: start of walk 1245 * @data: data passed to @enter() and @finish() 1246 * @enter: callback when first entering the dentry 1247 * 1248 * The @enter() callbacks are called with d_lock held. 1249 */ 1250 static void d_walk(struct dentry *parent, void *data, 1251 enum d_walk_ret (*enter)(void *, struct dentry *)) 1252 { 1253 struct dentry *this_parent; 1254 struct list_head *next; 1255 unsigned seq = 0; 1256 enum d_walk_ret ret; 1257 bool retry = true; 1258 1259 again: 1260 read_seqbegin_or_lock(&rename_lock, &seq); 1261 this_parent = parent; 1262 spin_lock(&this_parent->d_lock); 1263 1264 ret = enter(data, this_parent); 1265 switch (ret) { 1266 case D_WALK_CONTINUE: 1267 break; 1268 case D_WALK_QUIT: 1269 case D_WALK_SKIP: 1270 goto out_unlock; 1271 case D_WALK_NORETRY: 1272 retry = false; 1273 break; 1274 } 1275 repeat: 1276 next = this_parent->d_subdirs.next; 1277 resume: 1278 while (next != &this_parent->d_subdirs) { 1279 struct list_head *tmp = next; 1280 struct dentry *dentry = list_entry(tmp, struct dentry, d_child); 1281 next = tmp->next; 1282 1283 if (unlikely(dentry->d_flags & DCACHE_DENTRY_CURSOR)) 1284 continue; 1285 1286 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED); 1287 1288 ret = enter(data, dentry); 1289 switch (ret) { 1290 case D_WALK_CONTINUE: 1291 break; 1292 case D_WALK_QUIT: 1293 spin_unlock(&dentry->d_lock); 1294 goto out_unlock; 1295 case D_WALK_NORETRY: 1296 retry = false; 1297 break; 1298 case D_WALK_SKIP: 1299 spin_unlock(&dentry->d_lock); 1300 continue; 1301 } 1302 1303 if (!list_empty(&dentry->d_subdirs)) { 1304 spin_unlock(&this_parent->d_lock); 1305 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_); 1306 this_parent = dentry; 1307 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_); 1308 goto repeat; 1309 } 1310 spin_unlock(&dentry->d_lock); 1311 } 1312 /* 1313 * All done at this level ... ascend and resume the search. 1314 */ 1315 rcu_read_lock(); 1316 ascend: 1317 if (this_parent != parent) { 1318 struct dentry *child = this_parent; 1319 this_parent = child->d_parent; 1320 1321 spin_unlock(&child->d_lock); 1322 spin_lock(&this_parent->d_lock); 1323 1324 /* might go back up the wrong parent if we have had a rename. */ 1325 if (need_seqretry(&rename_lock, seq)) 1326 goto rename_retry; 1327 /* go into the first sibling still alive */ 1328 do { 1329 next = child->d_child.next; 1330 if (next == &this_parent->d_subdirs) 1331 goto ascend; 1332 child = list_entry(next, struct dentry, d_child); 1333 } while (unlikely(child->d_flags & DCACHE_DENTRY_KILLED)); 1334 rcu_read_unlock(); 1335 goto resume; 1336 } 1337 if (need_seqretry(&rename_lock, seq)) 1338 goto rename_retry; 1339 rcu_read_unlock(); 1340 1341 out_unlock: 1342 spin_unlock(&this_parent->d_lock); 1343 done_seqretry(&rename_lock, seq); 1344 return; 1345 1346 rename_retry: 1347 spin_unlock(&this_parent->d_lock); 1348 rcu_read_unlock(); 1349 BUG_ON(seq & 1); 1350 if (!retry) 1351 return; 1352 seq = 1; 1353 goto again; 1354 } 1355 1356 struct check_mount { 1357 struct vfsmount *mnt; 1358 unsigned int mounted; 1359 }; 1360 1361 static enum d_walk_ret path_check_mount(void *data, struct dentry *dentry) 1362 { 1363 struct check_mount *info = data; 1364 struct path path = { .mnt = info->mnt, .dentry = dentry }; 1365 1366 if (likely(!d_mountpoint(dentry))) 1367 return D_WALK_CONTINUE; 1368 if (__path_is_mountpoint(&path)) { 1369 info->mounted = 1; 1370 return D_WALK_QUIT; 1371 } 1372 return D_WALK_CONTINUE; 1373 } 1374 1375 /** 1376 * path_has_submounts - check for mounts over a dentry in the 1377 * current namespace. 1378 * @parent: path to check. 1379 * 1380 * Return true if the parent or its subdirectories contain 1381 * a mount point in the current namespace. 1382 */ 1383 int path_has_submounts(const struct path *parent) 1384 { 1385 struct check_mount data = { .mnt = parent->mnt, .mounted = 0 }; 1386 1387 read_seqlock_excl(&mount_lock); 1388 d_walk(parent->dentry, &data, path_check_mount); 1389 read_sequnlock_excl(&mount_lock); 1390 1391 return data.mounted; 1392 } 1393 EXPORT_SYMBOL(path_has_submounts); 1394 1395 /* 1396 * Called by mount code to set a mountpoint and check if the mountpoint is 1397 * reachable (e.g. NFS can unhash a directory dentry and then the complete 1398 * subtree can become unreachable). 1399 * 1400 * Only one of d_invalidate() and d_set_mounted() must succeed. For 1401 * this reason take rename_lock and d_lock on dentry and ancestors. 1402 */ 1403 int d_set_mounted(struct dentry *dentry) 1404 { 1405 struct dentry *p; 1406 int ret = -ENOENT; 1407 write_seqlock(&rename_lock); 1408 for (p = dentry->d_parent; !IS_ROOT(p); p = p->d_parent) { 1409 /* Need exclusion wrt. d_invalidate() */ 1410 spin_lock(&p->d_lock); 1411 if (unlikely(d_unhashed(p))) { 1412 spin_unlock(&p->d_lock); 1413 goto out; 1414 } 1415 spin_unlock(&p->d_lock); 1416 } 1417 spin_lock(&dentry->d_lock); 1418 if (!d_unlinked(dentry)) { 1419 ret = -EBUSY; 1420 if (!d_mountpoint(dentry)) { 1421 dentry->d_flags |= DCACHE_MOUNTED; 1422 ret = 0; 1423 } 1424 } 1425 spin_unlock(&dentry->d_lock); 1426 out: 1427 write_sequnlock(&rename_lock); 1428 return ret; 1429 } 1430 1431 /* 1432 * Search the dentry child list of the specified parent, 1433 * and move any unused dentries to the end of the unused 1434 * list for prune_dcache(). We descend to the next level 1435 * whenever the d_subdirs list is non-empty and continue 1436 * searching. 1437 * 1438 * It returns zero iff there are no unused children, 1439 * otherwise it returns the number of children moved to 1440 * the end of the unused list. This may not be the total 1441 * number of unused children, because select_parent can 1442 * drop the lock and return early due to latency 1443 * constraints. 1444 */ 1445 1446 struct select_data { 1447 struct dentry *start; 1448 struct list_head dispose; 1449 int found; 1450 }; 1451 1452 static enum d_walk_ret select_collect(void *_data, struct dentry *dentry) 1453 { 1454 struct select_data *data = _data; 1455 enum d_walk_ret ret = D_WALK_CONTINUE; 1456 1457 if (data->start == dentry) 1458 goto out; 1459 1460 if (dentry->d_flags & DCACHE_SHRINK_LIST) { 1461 data->found++; 1462 } else { 1463 if (dentry->d_flags & DCACHE_LRU_LIST) 1464 d_lru_del(dentry); 1465 if (!dentry->d_lockref.count) { 1466 d_shrink_add(dentry, &data->dispose); 1467 data->found++; 1468 } 1469 } 1470 /* 1471 * We can return to the caller if we have found some (this 1472 * ensures forward progress). We'll be coming back to find 1473 * the rest. 1474 */ 1475 if (!list_empty(&data->dispose)) 1476 ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY; 1477 out: 1478 return ret; 1479 } 1480 1481 /** 1482 * shrink_dcache_parent - prune dcache 1483 * @parent: parent of entries to prune 1484 * 1485 * Prune the dcache to remove unused children of the parent dentry. 1486 */ 1487 void shrink_dcache_parent(struct dentry *parent) 1488 { 1489 for (;;) { 1490 struct select_data data; 1491 1492 INIT_LIST_HEAD(&data.dispose); 1493 data.start = parent; 1494 data.found = 0; 1495 1496 d_walk(parent, &data, select_collect); 1497 1498 if (!list_empty(&data.dispose)) { 1499 shrink_dentry_list(&data.dispose); 1500 continue; 1501 } 1502 1503 cond_resched(); 1504 if (!data.found) 1505 break; 1506 } 1507 } 1508 EXPORT_SYMBOL(shrink_dcache_parent); 1509 1510 static enum d_walk_ret umount_check(void *_data, struct dentry *dentry) 1511 { 1512 /* it has busy descendents; complain about those instead */ 1513 if (!list_empty(&dentry->d_subdirs)) 1514 return D_WALK_CONTINUE; 1515 1516 /* root with refcount 1 is fine */ 1517 if (dentry == _data && dentry->d_lockref.count == 1) 1518 return D_WALK_CONTINUE; 1519 1520 printk(KERN_ERR "BUG: Dentry %p{i=%lx,n=%pd} " 1521 " still in use (%d) [unmount of %s %s]\n", 1522 dentry, 1523 dentry->d_inode ? 1524 dentry->d_inode->i_ino : 0UL, 1525 dentry, 1526 dentry->d_lockref.count, 1527 dentry->d_sb->s_type->name, 1528 dentry->d_sb->s_id); 1529 WARN_ON(1); 1530 return D_WALK_CONTINUE; 1531 } 1532 1533 static void do_one_tree(struct dentry *dentry) 1534 { 1535 shrink_dcache_parent(dentry); 1536 d_walk(dentry, dentry, umount_check); 1537 d_drop(dentry); 1538 dput(dentry); 1539 } 1540 1541 /* 1542 * destroy the dentries attached to a superblock on unmounting 1543 */ 1544 void shrink_dcache_for_umount(struct super_block *sb) 1545 { 1546 struct dentry *dentry; 1547 1548 WARN(down_read_trylock(&sb->s_umount), "s_umount should've been locked"); 1549 1550 dentry = sb->s_root; 1551 sb->s_root = NULL; 1552 do_one_tree(dentry); 1553 1554 while (!hlist_bl_empty(&sb->s_roots)) { 1555 dentry = dget(hlist_bl_entry(hlist_bl_first(&sb->s_roots), struct dentry, d_hash)); 1556 do_one_tree(dentry); 1557 } 1558 } 1559 1560 static enum d_walk_ret find_submount(void *_data, struct dentry *dentry) 1561 { 1562 struct dentry **victim = _data; 1563 if (d_mountpoint(dentry)) { 1564 __dget_dlock(dentry); 1565 *victim = dentry; 1566 return D_WALK_QUIT; 1567 } 1568 return D_WALK_CONTINUE; 1569 } 1570 1571 /** 1572 * d_invalidate - detach submounts, prune dcache, and drop 1573 * @dentry: dentry to invalidate (aka detach, prune and drop) 1574 */ 1575 void d_invalidate(struct dentry *dentry) 1576 { 1577 bool had_submounts = false; 1578 spin_lock(&dentry->d_lock); 1579 if (d_unhashed(dentry)) { 1580 spin_unlock(&dentry->d_lock); 1581 return; 1582 } 1583 __d_drop(dentry); 1584 spin_unlock(&dentry->d_lock); 1585 1586 /* Negative dentries can be dropped without further checks */ 1587 if (!dentry->d_inode) 1588 return; 1589 1590 shrink_dcache_parent(dentry); 1591 for (;;) { 1592 struct dentry *victim = NULL; 1593 d_walk(dentry, &victim, find_submount); 1594 if (!victim) { 1595 if (had_submounts) 1596 shrink_dcache_parent(dentry); 1597 return; 1598 } 1599 had_submounts = true; 1600 detach_mounts(victim); 1601 dput(victim); 1602 } 1603 } 1604 EXPORT_SYMBOL(d_invalidate); 1605 1606 /** 1607 * __d_alloc - allocate a dcache entry 1608 * @sb: filesystem it will belong to 1609 * @name: qstr of the name 1610 * 1611 * Allocates a dentry. It returns %NULL if there is insufficient memory 1612 * available. On a success the dentry is returned. The name passed in is 1613 * copied and the copy passed in may be reused after this call. 1614 */ 1615 1616 struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name) 1617 { 1618 struct dentry *dentry; 1619 char *dname; 1620 int err; 1621 1622 dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL); 1623 if (!dentry) 1624 return NULL; 1625 1626 /* 1627 * We guarantee that the inline name is always NUL-terminated. 1628 * This way the memcpy() done by the name switching in rename 1629 * will still always have a NUL at the end, even if we might 1630 * be overwriting an internal NUL character 1631 */ 1632 dentry->d_iname[DNAME_INLINE_LEN-1] = 0; 1633 if (unlikely(!name)) { 1634 name = &slash_name; 1635 dname = dentry->d_iname; 1636 } else if (name->len > DNAME_INLINE_LEN-1) { 1637 size_t size = offsetof(struct external_name, name[1]); 1638 struct external_name *p = kmalloc(size + name->len, 1639 GFP_KERNEL_ACCOUNT | 1640 __GFP_RECLAIMABLE); 1641 if (!p) { 1642 kmem_cache_free(dentry_cache, dentry); 1643 return NULL; 1644 } 1645 atomic_set(&p->u.count, 1); 1646 dname = p->name; 1647 } else { 1648 dname = dentry->d_iname; 1649 } 1650 1651 dentry->d_name.len = name->len; 1652 dentry->d_name.hash = name->hash; 1653 memcpy(dname, name->name, name->len); 1654 dname[name->len] = 0; 1655 1656 /* Make sure we always see the terminating NUL character */ 1657 smp_store_release(&dentry->d_name.name, dname); /* ^^^ */ 1658 1659 dentry->d_lockref.count = 1; 1660 dentry->d_flags = 0; 1661 spin_lock_init(&dentry->d_lock); 1662 seqcount_init(&dentry->d_seq); 1663 dentry->d_inode = NULL; 1664 dentry->d_parent = dentry; 1665 dentry->d_sb = sb; 1666 dentry->d_op = NULL; 1667 dentry->d_fsdata = NULL; 1668 INIT_HLIST_BL_NODE(&dentry->d_hash); 1669 INIT_LIST_HEAD(&dentry->d_lru); 1670 INIT_LIST_HEAD(&dentry->d_subdirs); 1671 INIT_HLIST_NODE(&dentry->d_u.d_alias); 1672 INIT_LIST_HEAD(&dentry->d_child); 1673 d_set_d_op(dentry, dentry->d_sb->s_d_op); 1674 1675 if (dentry->d_op && dentry->d_op->d_init) { 1676 err = dentry->d_op->d_init(dentry); 1677 if (err) { 1678 if (dname_external(dentry)) 1679 kfree(external_name(dentry)); 1680 kmem_cache_free(dentry_cache, dentry); 1681 return NULL; 1682 } 1683 } 1684 1685 this_cpu_inc(nr_dentry); 1686 1687 return dentry; 1688 } 1689 1690 /** 1691 * d_alloc - allocate a dcache entry 1692 * @parent: parent of entry to allocate 1693 * @name: qstr of the name 1694 * 1695 * Allocates a dentry. It returns %NULL if there is insufficient memory 1696 * available. On a success the dentry is returned. The name passed in is 1697 * copied and the copy passed in may be reused after this call. 1698 */ 1699 struct dentry *d_alloc(struct dentry * parent, const struct qstr *name) 1700 { 1701 struct dentry *dentry = __d_alloc(parent->d_sb, name); 1702 if (!dentry) 1703 return NULL; 1704 dentry->d_flags |= DCACHE_RCUACCESS; 1705 spin_lock(&parent->d_lock); 1706 /* 1707 * don't need child lock because it is not subject 1708 * to concurrency here 1709 */ 1710 __dget_dlock(parent); 1711 dentry->d_parent = parent; 1712 list_add(&dentry->d_child, &parent->d_subdirs); 1713 spin_unlock(&parent->d_lock); 1714 1715 return dentry; 1716 } 1717 EXPORT_SYMBOL(d_alloc); 1718 1719 struct dentry *d_alloc_anon(struct super_block *sb) 1720 { 1721 return __d_alloc(sb, NULL); 1722 } 1723 EXPORT_SYMBOL(d_alloc_anon); 1724 1725 struct dentry *d_alloc_cursor(struct dentry * parent) 1726 { 1727 struct dentry *dentry = d_alloc_anon(parent->d_sb); 1728 if (dentry) { 1729 dentry->d_flags |= DCACHE_RCUACCESS | DCACHE_DENTRY_CURSOR; 1730 dentry->d_parent = dget(parent); 1731 } 1732 return dentry; 1733 } 1734 1735 /** 1736 * d_alloc_pseudo - allocate a dentry (for lookup-less filesystems) 1737 * @sb: the superblock 1738 * @name: qstr of the name 1739 * 1740 * For a filesystem that just pins its dentries in memory and never 1741 * performs lookups at all, return an unhashed IS_ROOT dentry. 1742 */ 1743 struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name) 1744 { 1745 return __d_alloc(sb, name); 1746 } 1747 EXPORT_SYMBOL(d_alloc_pseudo); 1748 1749 struct dentry *d_alloc_name(struct dentry *parent, const char *name) 1750 { 1751 struct qstr q; 1752 1753 q.name = name; 1754 q.hash_len = hashlen_string(parent, name); 1755 return d_alloc(parent, &q); 1756 } 1757 EXPORT_SYMBOL(d_alloc_name); 1758 1759 void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op) 1760 { 1761 WARN_ON_ONCE(dentry->d_op); 1762 WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH | 1763 DCACHE_OP_COMPARE | 1764 DCACHE_OP_REVALIDATE | 1765 DCACHE_OP_WEAK_REVALIDATE | 1766 DCACHE_OP_DELETE | 1767 DCACHE_OP_REAL)); 1768 dentry->d_op = op; 1769 if (!op) 1770 return; 1771 if (op->d_hash) 1772 dentry->d_flags |= DCACHE_OP_HASH; 1773 if (op->d_compare) 1774 dentry->d_flags |= DCACHE_OP_COMPARE; 1775 if (op->d_revalidate) 1776 dentry->d_flags |= DCACHE_OP_REVALIDATE; 1777 if (op->d_weak_revalidate) 1778 dentry->d_flags |= DCACHE_OP_WEAK_REVALIDATE; 1779 if (op->d_delete) 1780 dentry->d_flags |= DCACHE_OP_DELETE; 1781 if (op->d_prune) 1782 dentry->d_flags |= DCACHE_OP_PRUNE; 1783 if (op->d_real) 1784 dentry->d_flags |= DCACHE_OP_REAL; 1785 1786 } 1787 EXPORT_SYMBOL(d_set_d_op); 1788 1789 1790 /* 1791 * d_set_fallthru - Mark a dentry as falling through to a lower layer 1792 * @dentry - The dentry to mark 1793 * 1794 * Mark a dentry as falling through to the lower layer (as set with 1795 * d_pin_lower()). This flag may be recorded on the medium. 1796 */ 1797 void d_set_fallthru(struct dentry *dentry) 1798 { 1799 spin_lock(&dentry->d_lock); 1800 dentry->d_flags |= DCACHE_FALLTHRU; 1801 spin_unlock(&dentry->d_lock); 1802 } 1803 EXPORT_SYMBOL(d_set_fallthru); 1804 1805 static unsigned d_flags_for_inode(struct inode *inode) 1806 { 1807 unsigned add_flags = DCACHE_REGULAR_TYPE; 1808 1809 if (!inode) 1810 return DCACHE_MISS_TYPE; 1811 1812 if (S_ISDIR(inode->i_mode)) { 1813 add_flags = DCACHE_DIRECTORY_TYPE; 1814 if (unlikely(!(inode->i_opflags & IOP_LOOKUP))) { 1815 if (unlikely(!inode->i_op->lookup)) 1816 add_flags = DCACHE_AUTODIR_TYPE; 1817 else 1818 inode->i_opflags |= IOP_LOOKUP; 1819 } 1820 goto type_determined; 1821 } 1822 1823 if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) { 1824 if (unlikely(inode->i_op->get_link)) { 1825 add_flags = DCACHE_SYMLINK_TYPE; 1826 goto type_determined; 1827 } 1828 inode->i_opflags |= IOP_NOFOLLOW; 1829 } 1830 1831 if (unlikely(!S_ISREG(inode->i_mode))) 1832 add_flags = DCACHE_SPECIAL_TYPE; 1833 1834 type_determined: 1835 if (unlikely(IS_AUTOMOUNT(inode))) 1836 add_flags |= DCACHE_NEED_AUTOMOUNT; 1837 return add_flags; 1838 } 1839 1840 static void __d_instantiate(struct dentry *dentry, struct inode *inode) 1841 { 1842 unsigned add_flags = d_flags_for_inode(inode); 1843 WARN_ON(d_in_lookup(dentry)); 1844 1845 spin_lock(&dentry->d_lock); 1846 /* 1847 * Decrement negative dentry count if it was in the LRU list. 1848 */ 1849 if (dentry->d_flags & DCACHE_LRU_LIST) 1850 this_cpu_dec(nr_dentry_negative); 1851 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry); 1852 raw_write_seqcount_begin(&dentry->d_seq); 1853 __d_set_inode_and_type(dentry, inode, add_flags); 1854 raw_write_seqcount_end(&dentry->d_seq); 1855 fsnotify_update_flags(dentry); 1856 spin_unlock(&dentry->d_lock); 1857 } 1858 1859 /** 1860 * d_instantiate - fill in inode information for a dentry 1861 * @entry: dentry to complete 1862 * @inode: inode to attach to this dentry 1863 * 1864 * Fill in inode information in the entry. 1865 * 1866 * This turns negative dentries into productive full members 1867 * of society. 1868 * 1869 * NOTE! This assumes that the inode count has been incremented 1870 * (or otherwise set) by the caller to indicate that it is now 1871 * in use by the dcache. 1872 */ 1873 1874 void d_instantiate(struct dentry *entry, struct inode * inode) 1875 { 1876 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias)); 1877 if (inode) { 1878 security_d_instantiate(entry, inode); 1879 spin_lock(&inode->i_lock); 1880 __d_instantiate(entry, inode); 1881 spin_unlock(&inode->i_lock); 1882 } 1883 } 1884 EXPORT_SYMBOL(d_instantiate); 1885 1886 /* 1887 * This should be equivalent to d_instantiate() + unlock_new_inode(), 1888 * with lockdep-related part of unlock_new_inode() done before 1889 * anything else. Use that instead of open-coding d_instantiate()/ 1890 * unlock_new_inode() combinations. 1891 */ 1892 void d_instantiate_new(struct dentry *entry, struct inode *inode) 1893 { 1894 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias)); 1895 BUG_ON(!inode); 1896 lockdep_annotate_inode_mutex_key(inode); 1897 security_d_instantiate(entry, inode); 1898 spin_lock(&inode->i_lock); 1899 __d_instantiate(entry, inode); 1900 WARN_ON(!(inode->i_state & I_NEW)); 1901 inode->i_state &= ~I_NEW & ~I_CREATING; 1902 smp_mb(); 1903 wake_up_bit(&inode->i_state, __I_NEW); 1904 spin_unlock(&inode->i_lock); 1905 } 1906 EXPORT_SYMBOL(d_instantiate_new); 1907 1908 struct dentry *d_make_root(struct inode *root_inode) 1909 { 1910 struct dentry *res = NULL; 1911 1912 if (root_inode) { 1913 res = d_alloc_anon(root_inode->i_sb); 1914 if (res) { 1915 res->d_flags |= DCACHE_RCUACCESS; 1916 d_instantiate(res, root_inode); 1917 } else { 1918 iput(root_inode); 1919 } 1920 } 1921 return res; 1922 } 1923 EXPORT_SYMBOL(d_make_root); 1924 1925 static struct dentry *__d_instantiate_anon(struct dentry *dentry, 1926 struct inode *inode, 1927 bool disconnected) 1928 { 1929 struct dentry *res; 1930 unsigned add_flags; 1931 1932 security_d_instantiate(dentry, inode); 1933 spin_lock(&inode->i_lock); 1934 res = __d_find_any_alias(inode); 1935 if (res) { 1936 spin_unlock(&inode->i_lock); 1937 dput(dentry); 1938 goto out_iput; 1939 } 1940 1941 /* attach a disconnected dentry */ 1942 add_flags = d_flags_for_inode(inode); 1943 1944 if (disconnected) 1945 add_flags |= DCACHE_DISCONNECTED; 1946 1947 spin_lock(&dentry->d_lock); 1948 __d_set_inode_and_type(dentry, inode, add_flags); 1949 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry); 1950 if (!disconnected) { 1951 hlist_bl_lock(&dentry->d_sb->s_roots); 1952 hlist_bl_add_head(&dentry->d_hash, &dentry->d_sb->s_roots); 1953 hlist_bl_unlock(&dentry->d_sb->s_roots); 1954 } 1955 spin_unlock(&dentry->d_lock); 1956 spin_unlock(&inode->i_lock); 1957 1958 return dentry; 1959 1960 out_iput: 1961 iput(inode); 1962 return res; 1963 } 1964 1965 struct dentry *d_instantiate_anon(struct dentry *dentry, struct inode *inode) 1966 { 1967 return __d_instantiate_anon(dentry, inode, true); 1968 } 1969 EXPORT_SYMBOL(d_instantiate_anon); 1970 1971 static struct dentry *__d_obtain_alias(struct inode *inode, bool disconnected) 1972 { 1973 struct dentry *tmp; 1974 struct dentry *res; 1975 1976 if (!inode) 1977 return ERR_PTR(-ESTALE); 1978 if (IS_ERR(inode)) 1979 return ERR_CAST(inode); 1980 1981 res = d_find_any_alias(inode); 1982 if (res) 1983 goto out_iput; 1984 1985 tmp = d_alloc_anon(inode->i_sb); 1986 if (!tmp) { 1987 res = ERR_PTR(-ENOMEM); 1988 goto out_iput; 1989 } 1990 1991 return __d_instantiate_anon(tmp, inode, disconnected); 1992 1993 out_iput: 1994 iput(inode); 1995 return res; 1996 } 1997 1998 /** 1999 * d_obtain_alias - find or allocate a DISCONNECTED dentry for a given inode 2000 * @inode: inode to allocate the dentry for 2001 * 2002 * Obtain a dentry for an inode resulting from NFS filehandle conversion or 2003 * similar open by handle operations. The returned dentry may be anonymous, 2004 * or may have a full name (if the inode was already in the cache). 2005 * 2006 * When called on a directory inode, we must ensure that the inode only ever 2007 * has one dentry. If a dentry is found, that is returned instead of 2008 * allocating a new one. 2009 * 2010 * On successful return, the reference to the inode has been transferred 2011 * to the dentry. In case of an error the reference on the inode is released. 2012 * To make it easier to use in export operations a %NULL or IS_ERR inode may 2013 * be passed in and the error will be propagated to the return value, 2014 * with a %NULL @inode replaced by ERR_PTR(-ESTALE). 2015 */ 2016 struct dentry *d_obtain_alias(struct inode *inode) 2017 { 2018 return __d_obtain_alias(inode, true); 2019 } 2020 EXPORT_SYMBOL(d_obtain_alias); 2021 2022 /** 2023 * d_obtain_root - find or allocate a dentry for a given inode 2024 * @inode: inode to allocate the dentry for 2025 * 2026 * Obtain an IS_ROOT dentry for the root of a filesystem. 2027 * 2028 * We must ensure that directory inodes only ever have one dentry. If a 2029 * dentry is found, that is returned instead of allocating a new one. 2030 * 2031 * On successful return, the reference to the inode has been transferred 2032 * to the dentry. In case of an error the reference on the inode is 2033 * released. A %NULL or IS_ERR inode may be passed in and will be the 2034 * error will be propagate to the return value, with a %NULL @inode 2035 * replaced by ERR_PTR(-ESTALE). 2036 */ 2037 struct dentry *d_obtain_root(struct inode *inode) 2038 { 2039 return __d_obtain_alias(inode, false); 2040 } 2041 EXPORT_SYMBOL(d_obtain_root); 2042 2043 /** 2044 * d_add_ci - lookup or allocate new dentry with case-exact name 2045 * @inode: the inode case-insensitive lookup has found 2046 * @dentry: the negative dentry that was passed to the parent's lookup func 2047 * @name: the case-exact name to be associated with the returned dentry 2048 * 2049 * This is to avoid filling the dcache with case-insensitive names to the 2050 * same inode, only the actual correct case is stored in the dcache for 2051 * case-insensitive filesystems. 2052 * 2053 * For a case-insensitive lookup match and if the the case-exact dentry 2054 * already exists in in the dcache, use it and return it. 2055 * 2056 * If no entry exists with the exact case name, allocate new dentry with 2057 * the exact case, and return the spliced entry. 2058 */ 2059 struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode, 2060 struct qstr *name) 2061 { 2062 struct dentry *found, *res; 2063 2064 /* 2065 * First check if a dentry matching the name already exists, 2066 * if not go ahead and create it now. 2067 */ 2068 found = d_hash_and_lookup(dentry->d_parent, name); 2069 if (found) { 2070 iput(inode); 2071 return found; 2072 } 2073 if (d_in_lookup(dentry)) { 2074 found = d_alloc_parallel(dentry->d_parent, name, 2075 dentry->d_wait); 2076 if (IS_ERR(found) || !d_in_lookup(found)) { 2077 iput(inode); 2078 return found; 2079 } 2080 } else { 2081 found = d_alloc(dentry->d_parent, name); 2082 if (!found) { 2083 iput(inode); 2084 return ERR_PTR(-ENOMEM); 2085 } 2086 } 2087 res = d_splice_alias(inode, found); 2088 if (res) { 2089 dput(found); 2090 return res; 2091 } 2092 return found; 2093 } 2094 EXPORT_SYMBOL(d_add_ci); 2095 2096 2097 static inline bool d_same_name(const struct dentry *dentry, 2098 const struct dentry *parent, 2099 const struct qstr *name) 2100 { 2101 if (likely(!(parent->d_flags & DCACHE_OP_COMPARE))) { 2102 if (dentry->d_name.len != name->len) 2103 return false; 2104 return dentry_cmp(dentry, name->name, name->len) == 0; 2105 } 2106 return parent->d_op->d_compare(dentry, 2107 dentry->d_name.len, dentry->d_name.name, 2108 name) == 0; 2109 } 2110 2111 /** 2112 * __d_lookup_rcu - search for a dentry (racy, store-free) 2113 * @parent: parent dentry 2114 * @name: qstr of name we wish to find 2115 * @seqp: returns d_seq value at the point where the dentry was found 2116 * Returns: dentry, or NULL 2117 * 2118 * __d_lookup_rcu is the dcache lookup function for rcu-walk name 2119 * resolution (store-free path walking) design described in 2120 * Documentation/filesystems/path-lookup.txt. 2121 * 2122 * This is not to be used outside core vfs. 2123 * 2124 * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock 2125 * held, and rcu_read_lock held. The returned dentry must not be stored into 2126 * without taking d_lock and checking d_seq sequence count against @seq 2127 * returned here. 2128 * 2129 * A refcount may be taken on the found dentry with the d_rcu_to_refcount 2130 * function. 2131 * 2132 * Alternatively, __d_lookup_rcu may be called again to look up the child of 2133 * the returned dentry, so long as its parent's seqlock is checked after the 2134 * child is looked up. Thus, an interlocking stepping of sequence lock checks 2135 * is formed, giving integrity down the path walk. 2136 * 2137 * NOTE! The caller *has* to check the resulting dentry against the sequence 2138 * number we've returned before using any of the resulting dentry state! 2139 */ 2140 struct dentry *__d_lookup_rcu(const struct dentry *parent, 2141 const struct qstr *name, 2142 unsigned *seqp) 2143 { 2144 u64 hashlen = name->hash_len; 2145 const unsigned char *str = name->name; 2146 struct hlist_bl_head *b = d_hash(hashlen_hash(hashlen)); 2147 struct hlist_bl_node *node; 2148 struct dentry *dentry; 2149 2150 /* 2151 * Note: There is significant duplication with __d_lookup_rcu which is 2152 * required to prevent single threaded performance regressions 2153 * especially on architectures where smp_rmb (in seqcounts) are costly. 2154 * Keep the two functions in sync. 2155 */ 2156 2157 /* 2158 * The hash list is protected using RCU. 2159 * 2160 * Carefully use d_seq when comparing a candidate dentry, to avoid 2161 * races with d_move(). 2162 * 2163 * It is possible that concurrent renames can mess up our list 2164 * walk here and result in missing our dentry, resulting in the 2165 * false-negative result. d_lookup() protects against concurrent 2166 * renames using rename_lock seqlock. 2167 * 2168 * See Documentation/filesystems/path-lookup.txt for more details. 2169 */ 2170 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) { 2171 unsigned seq; 2172 2173 seqretry: 2174 /* 2175 * The dentry sequence count protects us from concurrent 2176 * renames, and thus protects parent and name fields. 2177 * 2178 * The caller must perform a seqcount check in order 2179 * to do anything useful with the returned dentry. 2180 * 2181 * NOTE! We do a "raw" seqcount_begin here. That means that 2182 * we don't wait for the sequence count to stabilize if it 2183 * is in the middle of a sequence change. If we do the slow 2184 * dentry compare, we will do seqretries until it is stable, 2185 * and if we end up with a successful lookup, we actually 2186 * want to exit RCU lookup anyway. 2187 * 2188 * Note that raw_seqcount_begin still *does* smp_rmb(), so 2189 * we are still guaranteed NUL-termination of ->d_name.name. 2190 */ 2191 seq = raw_seqcount_begin(&dentry->d_seq); 2192 if (dentry->d_parent != parent) 2193 continue; 2194 if (d_unhashed(dentry)) 2195 continue; 2196 2197 if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) { 2198 int tlen; 2199 const char *tname; 2200 if (dentry->d_name.hash != hashlen_hash(hashlen)) 2201 continue; 2202 tlen = dentry->d_name.len; 2203 tname = dentry->d_name.name; 2204 /* we want a consistent (name,len) pair */ 2205 if (read_seqcount_retry(&dentry->d_seq, seq)) { 2206 cpu_relax(); 2207 goto seqretry; 2208 } 2209 if (parent->d_op->d_compare(dentry, 2210 tlen, tname, name) != 0) 2211 continue; 2212 } else { 2213 if (dentry->d_name.hash_len != hashlen) 2214 continue; 2215 if (dentry_cmp(dentry, str, hashlen_len(hashlen)) != 0) 2216 continue; 2217 } 2218 *seqp = seq; 2219 return dentry; 2220 } 2221 return NULL; 2222 } 2223 2224 /** 2225 * d_lookup - search for a dentry 2226 * @parent: parent dentry 2227 * @name: qstr of name we wish to find 2228 * Returns: dentry, or NULL 2229 * 2230 * d_lookup searches the children of the parent dentry for the name in 2231 * question. If the dentry is found its reference count is incremented and the 2232 * dentry is returned. The caller must use dput to free the entry when it has 2233 * finished using it. %NULL is returned if the dentry does not exist. 2234 */ 2235 struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name) 2236 { 2237 struct dentry *dentry; 2238 unsigned seq; 2239 2240 do { 2241 seq = read_seqbegin(&rename_lock); 2242 dentry = __d_lookup(parent, name); 2243 if (dentry) 2244 break; 2245 } while (read_seqretry(&rename_lock, seq)); 2246 return dentry; 2247 } 2248 EXPORT_SYMBOL(d_lookup); 2249 2250 /** 2251 * __d_lookup - search for a dentry (racy) 2252 * @parent: parent dentry 2253 * @name: qstr of name we wish to find 2254 * Returns: dentry, or NULL 2255 * 2256 * __d_lookup is like d_lookup, however it may (rarely) return a 2257 * false-negative result due to unrelated rename activity. 2258 * 2259 * __d_lookup is slightly faster by avoiding rename_lock read seqlock, 2260 * however it must be used carefully, eg. with a following d_lookup in 2261 * the case of failure. 2262 * 2263 * __d_lookup callers must be commented. 2264 */ 2265 struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name) 2266 { 2267 unsigned int hash = name->hash; 2268 struct hlist_bl_head *b = d_hash(hash); 2269 struct hlist_bl_node *node; 2270 struct dentry *found = NULL; 2271 struct dentry *dentry; 2272 2273 /* 2274 * Note: There is significant duplication with __d_lookup_rcu which is 2275 * required to prevent single threaded performance regressions 2276 * especially on architectures where smp_rmb (in seqcounts) are costly. 2277 * Keep the two functions in sync. 2278 */ 2279 2280 /* 2281 * The hash list is protected using RCU. 2282 * 2283 * Take d_lock when comparing a candidate dentry, to avoid races 2284 * with d_move(). 2285 * 2286 * It is possible that concurrent renames can mess up our list 2287 * walk here and result in missing our dentry, resulting in the 2288 * false-negative result. d_lookup() protects against concurrent 2289 * renames using rename_lock seqlock. 2290 * 2291 * See Documentation/filesystems/path-lookup.txt for more details. 2292 */ 2293 rcu_read_lock(); 2294 2295 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) { 2296 2297 if (dentry->d_name.hash != hash) 2298 continue; 2299 2300 spin_lock(&dentry->d_lock); 2301 if (dentry->d_parent != parent) 2302 goto next; 2303 if (d_unhashed(dentry)) 2304 goto next; 2305 2306 if (!d_same_name(dentry, parent, name)) 2307 goto next; 2308 2309 dentry->d_lockref.count++; 2310 found = dentry; 2311 spin_unlock(&dentry->d_lock); 2312 break; 2313 next: 2314 spin_unlock(&dentry->d_lock); 2315 } 2316 rcu_read_unlock(); 2317 2318 return found; 2319 } 2320 2321 /** 2322 * d_hash_and_lookup - hash the qstr then search for a dentry 2323 * @dir: Directory to search in 2324 * @name: qstr of name we wish to find 2325 * 2326 * On lookup failure NULL is returned; on bad name - ERR_PTR(-error) 2327 */ 2328 struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name) 2329 { 2330 /* 2331 * Check for a fs-specific hash function. Note that we must 2332 * calculate the standard hash first, as the d_op->d_hash() 2333 * routine may choose to leave the hash value unchanged. 2334 */ 2335 name->hash = full_name_hash(dir, name->name, name->len); 2336 if (dir->d_flags & DCACHE_OP_HASH) { 2337 int err = dir->d_op->d_hash(dir, name); 2338 if (unlikely(err < 0)) 2339 return ERR_PTR(err); 2340 } 2341 return d_lookup(dir, name); 2342 } 2343 EXPORT_SYMBOL(d_hash_and_lookup); 2344 2345 /* 2346 * When a file is deleted, we have two options: 2347 * - turn this dentry into a negative dentry 2348 * - unhash this dentry and free it. 2349 * 2350 * Usually, we want to just turn this into 2351 * a negative dentry, but if anybody else is 2352 * currently using the dentry or the inode 2353 * we can't do that and we fall back on removing 2354 * it from the hash queues and waiting for 2355 * it to be deleted later when it has no users 2356 */ 2357 2358 /** 2359 * d_delete - delete a dentry 2360 * @dentry: The dentry to delete 2361 * 2362 * Turn the dentry into a negative dentry if possible, otherwise 2363 * remove it from the hash queues so it can be deleted later 2364 */ 2365 2366 void d_delete(struct dentry * dentry) 2367 { 2368 struct inode *inode = dentry->d_inode; 2369 int isdir = d_is_dir(dentry); 2370 2371 spin_lock(&inode->i_lock); 2372 spin_lock(&dentry->d_lock); 2373 /* 2374 * Are we the only user? 2375 */ 2376 if (dentry->d_lockref.count == 1) { 2377 dentry->d_flags &= ~DCACHE_CANT_MOUNT; 2378 dentry_unlink_inode(dentry); 2379 } else { 2380 __d_drop(dentry); 2381 spin_unlock(&dentry->d_lock); 2382 spin_unlock(&inode->i_lock); 2383 } 2384 fsnotify_nameremove(dentry, isdir); 2385 } 2386 EXPORT_SYMBOL(d_delete); 2387 2388 static void __d_rehash(struct dentry *entry) 2389 { 2390 struct hlist_bl_head *b = d_hash(entry->d_name.hash); 2391 2392 hlist_bl_lock(b); 2393 hlist_bl_add_head_rcu(&entry->d_hash, b); 2394 hlist_bl_unlock(b); 2395 } 2396 2397 /** 2398 * d_rehash - add an entry back to the hash 2399 * @entry: dentry to add to the hash 2400 * 2401 * Adds a dentry to the hash according to its name. 2402 */ 2403 2404 void d_rehash(struct dentry * entry) 2405 { 2406 spin_lock(&entry->d_lock); 2407 __d_rehash(entry); 2408 spin_unlock(&entry->d_lock); 2409 } 2410 EXPORT_SYMBOL(d_rehash); 2411 2412 static inline unsigned start_dir_add(struct inode *dir) 2413 { 2414 2415 for (;;) { 2416 unsigned n = dir->i_dir_seq; 2417 if (!(n & 1) && cmpxchg(&dir->i_dir_seq, n, n + 1) == n) 2418 return n; 2419 cpu_relax(); 2420 } 2421 } 2422 2423 static inline void end_dir_add(struct inode *dir, unsigned n) 2424 { 2425 smp_store_release(&dir->i_dir_seq, n + 2); 2426 } 2427 2428 static void d_wait_lookup(struct dentry *dentry) 2429 { 2430 if (d_in_lookup(dentry)) { 2431 DECLARE_WAITQUEUE(wait, current); 2432 add_wait_queue(dentry->d_wait, &wait); 2433 do { 2434 set_current_state(TASK_UNINTERRUPTIBLE); 2435 spin_unlock(&dentry->d_lock); 2436 schedule(); 2437 spin_lock(&dentry->d_lock); 2438 } while (d_in_lookup(dentry)); 2439 } 2440 } 2441 2442 struct dentry *d_alloc_parallel(struct dentry *parent, 2443 const struct qstr *name, 2444 wait_queue_head_t *wq) 2445 { 2446 unsigned int hash = name->hash; 2447 struct hlist_bl_head *b = in_lookup_hash(parent, hash); 2448 struct hlist_bl_node *node; 2449 struct dentry *new = d_alloc(parent, name); 2450 struct dentry *dentry; 2451 unsigned seq, r_seq, d_seq; 2452 2453 if (unlikely(!new)) 2454 return ERR_PTR(-ENOMEM); 2455 2456 retry: 2457 rcu_read_lock(); 2458 seq = smp_load_acquire(&parent->d_inode->i_dir_seq); 2459 r_seq = read_seqbegin(&rename_lock); 2460 dentry = __d_lookup_rcu(parent, name, &d_seq); 2461 if (unlikely(dentry)) { 2462 if (!lockref_get_not_dead(&dentry->d_lockref)) { 2463 rcu_read_unlock(); 2464 goto retry; 2465 } 2466 if (read_seqcount_retry(&dentry->d_seq, d_seq)) { 2467 rcu_read_unlock(); 2468 dput(dentry); 2469 goto retry; 2470 } 2471 rcu_read_unlock(); 2472 dput(new); 2473 return dentry; 2474 } 2475 if (unlikely(read_seqretry(&rename_lock, r_seq))) { 2476 rcu_read_unlock(); 2477 goto retry; 2478 } 2479 2480 if (unlikely(seq & 1)) { 2481 rcu_read_unlock(); 2482 goto retry; 2483 } 2484 2485 hlist_bl_lock(b); 2486 if (unlikely(READ_ONCE(parent->d_inode->i_dir_seq) != seq)) { 2487 hlist_bl_unlock(b); 2488 rcu_read_unlock(); 2489 goto retry; 2490 } 2491 /* 2492 * No changes for the parent since the beginning of d_lookup(). 2493 * Since all removals from the chain happen with hlist_bl_lock(), 2494 * any potential in-lookup matches are going to stay here until 2495 * we unlock the chain. All fields are stable in everything 2496 * we encounter. 2497 */ 2498 hlist_bl_for_each_entry(dentry, node, b, d_u.d_in_lookup_hash) { 2499 if (dentry->d_name.hash != hash) 2500 continue; 2501 if (dentry->d_parent != parent) 2502 continue; 2503 if (!d_same_name(dentry, parent, name)) 2504 continue; 2505 hlist_bl_unlock(b); 2506 /* now we can try to grab a reference */ 2507 if (!lockref_get_not_dead(&dentry->d_lockref)) { 2508 rcu_read_unlock(); 2509 goto retry; 2510 } 2511 2512 rcu_read_unlock(); 2513 /* 2514 * somebody is likely to be still doing lookup for it; 2515 * wait for them to finish 2516 */ 2517 spin_lock(&dentry->d_lock); 2518 d_wait_lookup(dentry); 2519 /* 2520 * it's not in-lookup anymore; in principle we should repeat 2521 * everything from dcache lookup, but it's likely to be what 2522 * d_lookup() would've found anyway. If it is, just return it; 2523 * otherwise we really have to repeat the whole thing. 2524 */ 2525 if (unlikely(dentry->d_name.hash != hash)) 2526 goto mismatch; 2527 if (unlikely(dentry->d_parent != parent)) 2528 goto mismatch; 2529 if (unlikely(d_unhashed(dentry))) 2530 goto mismatch; 2531 if (unlikely(!d_same_name(dentry, parent, name))) 2532 goto mismatch; 2533 /* OK, it *is* a hashed match; return it */ 2534 spin_unlock(&dentry->d_lock); 2535 dput(new); 2536 return dentry; 2537 } 2538 rcu_read_unlock(); 2539 /* we can't take ->d_lock here; it's OK, though. */ 2540 new->d_flags |= DCACHE_PAR_LOOKUP; 2541 new->d_wait = wq; 2542 hlist_bl_add_head_rcu(&new->d_u.d_in_lookup_hash, b); 2543 hlist_bl_unlock(b); 2544 return new; 2545 mismatch: 2546 spin_unlock(&dentry->d_lock); 2547 dput(dentry); 2548 goto retry; 2549 } 2550 EXPORT_SYMBOL(d_alloc_parallel); 2551 2552 void __d_lookup_done(struct dentry *dentry) 2553 { 2554 struct hlist_bl_head *b = in_lookup_hash(dentry->d_parent, 2555 dentry->d_name.hash); 2556 hlist_bl_lock(b); 2557 dentry->d_flags &= ~DCACHE_PAR_LOOKUP; 2558 __hlist_bl_del(&dentry->d_u.d_in_lookup_hash); 2559 wake_up_all(dentry->d_wait); 2560 dentry->d_wait = NULL; 2561 hlist_bl_unlock(b); 2562 INIT_HLIST_NODE(&dentry->d_u.d_alias); 2563 INIT_LIST_HEAD(&dentry->d_lru); 2564 } 2565 EXPORT_SYMBOL(__d_lookup_done); 2566 2567 /* inode->i_lock held if inode is non-NULL */ 2568 2569 static inline void __d_add(struct dentry *dentry, struct inode *inode) 2570 { 2571 struct inode *dir = NULL; 2572 unsigned n; 2573 spin_lock(&dentry->d_lock); 2574 if (unlikely(d_in_lookup(dentry))) { 2575 dir = dentry->d_parent->d_inode; 2576 n = start_dir_add(dir); 2577 __d_lookup_done(dentry); 2578 } 2579 if (inode) { 2580 unsigned add_flags = d_flags_for_inode(inode); 2581 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry); 2582 raw_write_seqcount_begin(&dentry->d_seq); 2583 __d_set_inode_and_type(dentry, inode, add_flags); 2584 raw_write_seqcount_end(&dentry->d_seq); 2585 fsnotify_update_flags(dentry); 2586 } 2587 __d_rehash(dentry); 2588 if (dir) 2589 end_dir_add(dir, n); 2590 spin_unlock(&dentry->d_lock); 2591 if (inode) 2592 spin_unlock(&inode->i_lock); 2593 } 2594 2595 /** 2596 * d_add - add dentry to hash queues 2597 * @entry: dentry to add 2598 * @inode: The inode to attach to this dentry 2599 * 2600 * This adds the entry to the hash queues and initializes @inode. 2601 * The entry was actually filled in earlier during d_alloc(). 2602 */ 2603 2604 void d_add(struct dentry *entry, struct inode *inode) 2605 { 2606 if (inode) { 2607 security_d_instantiate(entry, inode); 2608 spin_lock(&inode->i_lock); 2609 } 2610 __d_add(entry, inode); 2611 } 2612 EXPORT_SYMBOL(d_add); 2613 2614 /** 2615 * d_exact_alias - find and hash an exact unhashed alias 2616 * @entry: dentry to add 2617 * @inode: The inode to go with this dentry 2618 * 2619 * If an unhashed dentry with the same name/parent and desired 2620 * inode already exists, hash and return it. Otherwise, return 2621 * NULL. 2622 * 2623 * Parent directory should be locked. 2624 */ 2625 struct dentry *d_exact_alias(struct dentry *entry, struct inode *inode) 2626 { 2627 struct dentry *alias; 2628 unsigned int hash = entry->d_name.hash; 2629 2630 spin_lock(&inode->i_lock); 2631 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) { 2632 /* 2633 * Don't need alias->d_lock here, because aliases with 2634 * d_parent == entry->d_parent are not subject to name or 2635 * parent changes, because the parent inode i_mutex is held. 2636 */ 2637 if (alias->d_name.hash != hash) 2638 continue; 2639 if (alias->d_parent != entry->d_parent) 2640 continue; 2641 if (!d_same_name(alias, entry->d_parent, &entry->d_name)) 2642 continue; 2643 spin_lock(&alias->d_lock); 2644 if (!d_unhashed(alias)) { 2645 spin_unlock(&alias->d_lock); 2646 alias = NULL; 2647 } else { 2648 __dget_dlock(alias); 2649 __d_rehash(alias); 2650 spin_unlock(&alias->d_lock); 2651 } 2652 spin_unlock(&inode->i_lock); 2653 return alias; 2654 } 2655 spin_unlock(&inode->i_lock); 2656 return NULL; 2657 } 2658 EXPORT_SYMBOL(d_exact_alias); 2659 2660 static void swap_names(struct dentry *dentry, struct dentry *target) 2661 { 2662 if (unlikely(dname_external(target))) { 2663 if (unlikely(dname_external(dentry))) { 2664 /* 2665 * Both external: swap the pointers 2666 */ 2667 swap(target->d_name.name, dentry->d_name.name); 2668 } else { 2669 /* 2670 * dentry:internal, target:external. Steal target's 2671 * storage and make target internal. 2672 */ 2673 memcpy(target->d_iname, dentry->d_name.name, 2674 dentry->d_name.len + 1); 2675 dentry->d_name.name = target->d_name.name; 2676 target->d_name.name = target->d_iname; 2677 } 2678 } else { 2679 if (unlikely(dname_external(dentry))) { 2680 /* 2681 * dentry:external, target:internal. Give dentry's 2682 * storage to target and make dentry internal 2683 */ 2684 memcpy(dentry->d_iname, target->d_name.name, 2685 target->d_name.len + 1); 2686 target->d_name.name = dentry->d_name.name; 2687 dentry->d_name.name = dentry->d_iname; 2688 } else { 2689 /* 2690 * Both are internal. 2691 */ 2692 unsigned int i; 2693 BUILD_BUG_ON(!IS_ALIGNED(DNAME_INLINE_LEN, sizeof(long))); 2694 for (i = 0; i < DNAME_INLINE_LEN / sizeof(long); i++) { 2695 swap(((long *) &dentry->d_iname)[i], 2696 ((long *) &target->d_iname)[i]); 2697 } 2698 } 2699 } 2700 swap(dentry->d_name.hash_len, target->d_name.hash_len); 2701 } 2702 2703 static void copy_name(struct dentry *dentry, struct dentry *target) 2704 { 2705 struct external_name *old_name = NULL; 2706 if (unlikely(dname_external(dentry))) 2707 old_name = external_name(dentry); 2708 if (unlikely(dname_external(target))) { 2709 atomic_inc(&external_name(target)->u.count); 2710 dentry->d_name = target->d_name; 2711 } else { 2712 memcpy(dentry->d_iname, target->d_name.name, 2713 target->d_name.len + 1); 2714 dentry->d_name.name = dentry->d_iname; 2715 dentry->d_name.hash_len = target->d_name.hash_len; 2716 } 2717 if (old_name && likely(atomic_dec_and_test(&old_name->u.count))) 2718 kfree_rcu(old_name, u.head); 2719 } 2720 2721 /* 2722 * __d_move - move a dentry 2723 * @dentry: entry to move 2724 * @target: new dentry 2725 * @exchange: exchange the two dentries 2726 * 2727 * Update the dcache to reflect the move of a file name. Negative 2728 * dcache entries should not be moved in this way. Caller must hold 2729 * rename_lock, the i_mutex of the source and target directories, 2730 * and the sb->s_vfs_rename_mutex if they differ. See lock_rename(). 2731 */ 2732 static void __d_move(struct dentry *dentry, struct dentry *target, 2733 bool exchange) 2734 { 2735 struct dentry *old_parent, *p; 2736 struct inode *dir = NULL; 2737 unsigned n; 2738 2739 WARN_ON(!dentry->d_inode); 2740 if (WARN_ON(dentry == target)) 2741 return; 2742 2743 BUG_ON(d_ancestor(target, dentry)); 2744 old_parent = dentry->d_parent; 2745 p = d_ancestor(old_parent, target); 2746 if (IS_ROOT(dentry)) { 2747 BUG_ON(p); 2748 spin_lock(&target->d_parent->d_lock); 2749 } else if (!p) { 2750 /* target is not a descendent of dentry->d_parent */ 2751 spin_lock(&target->d_parent->d_lock); 2752 spin_lock_nested(&old_parent->d_lock, DENTRY_D_LOCK_NESTED); 2753 } else { 2754 BUG_ON(p == dentry); 2755 spin_lock(&old_parent->d_lock); 2756 if (p != target) 2757 spin_lock_nested(&target->d_parent->d_lock, 2758 DENTRY_D_LOCK_NESTED); 2759 } 2760 spin_lock_nested(&dentry->d_lock, 2); 2761 spin_lock_nested(&target->d_lock, 3); 2762 2763 if (unlikely(d_in_lookup(target))) { 2764 dir = target->d_parent->d_inode; 2765 n = start_dir_add(dir); 2766 __d_lookup_done(target); 2767 } 2768 2769 write_seqcount_begin(&dentry->d_seq); 2770 write_seqcount_begin_nested(&target->d_seq, DENTRY_D_LOCK_NESTED); 2771 2772 /* unhash both */ 2773 if (!d_unhashed(dentry)) 2774 ___d_drop(dentry); 2775 if (!d_unhashed(target)) 2776 ___d_drop(target); 2777 2778 /* ... and switch them in the tree */ 2779 dentry->d_parent = target->d_parent; 2780 if (!exchange) { 2781 copy_name(dentry, target); 2782 target->d_hash.pprev = NULL; 2783 dentry->d_parent->d_lockref.count++; 2784 if (dentry == old_parent) 2785 dentry->d_flags |= DCACHE_RCUACCESS; 2786 else 2787 WARN_ON(!--old_parent->d_lockref.count); 2788 } else { 2789 target->d_parent = old_parent; 2790 swap_names(dentry, target); 2791 list_move(&target->d_child, &target->d_parent->d_subdirs); 2792 __d_rehash(target); 2793 fsnotify_update_flags(target); 2794 } 2795 list_move(&dentry->d_child, &dentry->d_parent->d_subdirs); 2796 __d_rehash(dentry); 2797 fsnotify_update_flags(dentry); 2798 2799 write_seqcount_end(&target->d_seq); 2800 write_seqcount_end(&dentry->d_seq); 2801 2802 if (dir) 2803 end_dir_add(dir, n); 2804 2805 if (dentry->d_parent != old_parent) 2806 spin_unlock(&dentry->d_parent->d_lock); 2807 if (dentry != old_parent) 2808 spin_unlock(&old_parent->d_lock); 2809 spin_unlock(&target->d_lock); 2810 spin_unlock(&dentry->d_lock); 2811 } 2812 2813 /* 2814 * d_move - move a dentry 2815 * @dentry: entry to move 2816 * @target: new dentry 2817 * 2818 * Update the dcache to reflect the move of a file name. Negative 2819 * dcache entries should not be moved in this way. See the locking 2820 * requirements for __d_move. 2821 */ 2822 void d_move(struct dentry *dentry, struct dentry *target) 2823 { 2824 write_seqlock(&rename_lock); 2825 __d_move(dentry, target, false); 2826 write_sequnlock(&rename_lock); 2827 } 2828 EXPORT_SYMBOL(d_move); 2829 2830 /* 2831 * d_exchange - exchange two dentries 2832 * @dentry1: first dentry 2833 * @dentry2: second dentry 2834 */ 2835 void d_exchange(struct dentry *dentry1, struct dentry *dentry2) 2836 { 2837 write_seqlock(&rename_lock); 2838 2839 WARN_ON(!dentry1->d_inode); 2840 WARN_ON(!dentry2->d_inode); 2841 WARN_ON(IS_ROOT(dentry1)); 2842 WARN_ON(IS_ROOT(dentry2)); 2843 2844 __d_move(dentry1, dentry2, true); 2845 2846 write_sequnlock(&rename_lock); 2847 } 2848 2849 /** 2850 * d_ancestor - search for an ancestor 2851 * @p1: ancestor dentry 2852 * @p2: child dentry 2853 * 2854 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is 2855 * an ancestor of p2, else NULL. 2856 */ 2857 struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2) 2858 { 2859 struct dentry *p; 2860 2861 for (p = p2; !IS_ROOT(p); p = p->d_parent) { 2862 if (p->d_parent == p1) 2863 return p; 2864 } 2865 return NULL; 2866 } 2867 2868 /* 2869 * This helper attempts to cope with remotely renamed directories 2870 * 2871 * It assumes that the caller is already holding 2872 * dentry->d_parent->d_inode->i_mutex, and rename_lock 2873 * 2874 * Note: If ever the locking in lock_rename() changes, then please 2875 * remember to update this too... 2876 */ 2877 static int __d_unalias(struct inode *inode, 2878 struct dentry *dentry, struct dentry *alias) 2879 { 2880 struct mutex *m1 = NULL; 2881 struct rw_semaphore *m2 = NULL; 2882 int ret = -ESTALE; 2883 2884 /* If alias and dentry share a parent, then no extra locks required */ 2885 if (alias->d_parent == dentry->d_parent) 2886 goto out_unalias; 2887 2888 /* See lock_rename() */ 2889 if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex)) 2890 goto out_err; 2891 m1 = &dentry->d_sb->s_vfs_rename_mutex; 2892 if (!inode_trylock_shared(alias->d_parent->d_inode)) 2893 goto out_err; 2894 m2 = &alias->d_parent->d_inode->i_rwsem; 2895 out_unalias: 2896 __d_move(alias, dentry, false); 2897 ret = 0; 2898 out_err: 2899 if (m2) 2900 up_read(m2); 2901 if (m1) 2902 mutex_unlock(m1); 2903 return ret; 2904 } 2905 2906 /** 2907 * d_splice_alias - splice a disconnected dentry into the tree if one exists 2908 * @inode: the inode which may have a disconnected dentry 2909 * @dentry: a negative dentry which we want to point to the inode. 2910 * 2911 * If inode is a directory and has an IS_ROOT alias, then d_move that in 2912 * place of the given dentry and return it, else simply d_add the inode 2913 * to the dentry and return NULL. 2914 * 2915 * If a non-IS_ROOT directory is found, the filesystem is corrupt, and 2916 * we should error out: directories can't have multiple aliases. 2917 * 2918 * This is needed in the lookup routine of any filesystem that is exportable 2919 * (via knfsd) so that we can build dcache paths to directories effectively. 2920 * 2921 * If a dentry was found and moved, then it is returned. Otherwise NULL 2922 * is returned. This matches the expected return value of ->lookup. 2923 * 2924 * Cluster filesystems may call this function with a negative, hashed dentry. 2925 * In that case, we know that the inode will be a regular file, and also this 2926 * will only occur during atomic_open. So we need to check for the dentry 2927 * being already hashed only in the final case. 2928 */ 2929 struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry) 2930 { 2931 if (IS_ERR(inode)) 2932 return ERR_CAST(inode); 2933 2934 BUG_ON(!d_unhashed(dentry)); 2935 2936 if (!inode) 2937 goto out; 2938 2939 security_d_instantiate(dentry, inode); 2940 spin_lock(&inode->i_lock); 2941 if (S_ISDIR(inode->i_mode)) { 2942 struct dentry *new = __d_find_any_alias(inode); 2943 if (unlikely(new)) { 2944 /* The reference to new ensures it remains an alias */ 2945 spin_unlock(&inode->i_lock); 2946 write_seqlock(&rename_lock); 2947 if (unlikely(d_ancestor(new, dentry))) { 2948 write_sequnlock(&rename_lock); 2949 dput(new); 2950 new = ERR_PTR(-ELOOP); 2951 pr_warn_ratelimited( 2952 "VFS: Lookup of '%s' in %s %s" 2953 " would have caused loop\n", 2954 dentry->d_name.name, 2955 inode->i_sb->s_type->name, 2956 inode->i_sb->s_id); 2957 } else if (!IS_ROOT(new)) { 2958 struct dentry *old_parent = dget(new->d_parent); 2959 int err = __d_unalias(inode, dentry, new); 2960 write_sequnlock(&rename_lock); 2961 if (err) { 2962 dput(new); 2963 new = ERR_PTR(err); 2964 } 2965 dput(old_parent); 2966 } else { 2967 __d_move(new, dentry, false); 2968 write_sequnlock(&rename_lock); 2969 } 2970 iput(inode); 2971 return new; 2972 } 2973 } 2974 out: 2975 __d_add(dentry, inode); 2976 return NULL; 2977 } 2978 EXPORT_SYMBOL(d_splice_alias); 2979 2980 /* 2981 * Test whether new_dentry is a subdirectory of old_dentry. 2982 * 2983 * Trivially implemented using the dcache structure 2984 */ 2985 2986 /** 2987 * is_subdir - is new dentry a subdirectory of old_dentry 2988 * @new_dentry: new dentry 2989 * @old_dentry: old dentry 2990 * 2991 * Returns true if new_dentry is a subdirectory of the parent (at any depth). 2992 * Returns false otherwise. 2993 * Caller must ensure that "new_dentry" is pinned before calling is_subdir() 2994 */ 2995 2996 bool is_subdir(struct dentry *new_dentry, struct dentry *old_dentry) 2997 { 2998 bool result; 2999 unsigned seq; 3000 3001 if (new_dentry == old_dentry) 3002 return true; 3003 3004 do { 3005 /* for restarting inner loop in case of seq retry */ 3006 seq = read_seqbegin(&rename_lock); 3007 /* 3008 * Need rcu_readlock to protect against the d_parent trashing 3009 * due to d_move 3010 */ 3011 rcu_read_lock(); 3012 if (d_ancestor(old_dentry, new_dentry)) 3013 result = true; 3014 else 3015 result = false; 3016 rcu_read_unlock(); 3017 } while (read_seqretry(&rename_lock, seq)); 3018 3019 return result; 3020 } 3021 EXPORT_SYMBOL(is_subdir); 3022 3023 static enum d_walk_ret d_genocide_kill(void *data, struct dentry *dentry) 3024 { 3025 struct dentry *root = data; 3026 if (dentry != root) { 3027 if (d_unhashed(dentry) || !dentry->d_inode) 3028 return D_WALK_SKIP; 3029 3030 if (!(dentry->d_flags & DCACHE_GENOCIDE)) { 3031 dentry->d_flags |= DCACHE_GENOCIDE; 3032 dentry->d_lockref.count--; 3033 } 3034 } 3035 return D_WALK_CONTINUE; 3036 } 3037 3038 void d_genocide(struct dentry *parent) 3039 { 3040 d_walk(parent, parent, d_genocide_kill); 3041 } 3042 3043 EXPORT_SYMBOL(d_genocide); 3044 3045 void d_tmpfile(struct dentry *dentry, struct inode *inode) 3046 { 3047 inode_dec_link_count(inode); 3048 BUG_ON(dentry->d_name.name != dentry->d_iname || 3049 !hlist_unhashed(&dentry->d_u.d_alias) || 3050 !d_unlinked(dentry)); 3051 spin_lock(&dentry->d_parent->d_lock); 3052 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED); 3053 dentry->d_name.len = sprintf(dentry->d_iname, "#%llu", 3054 (unsigned long long)inode->i_ino); 3055 spin_unlock(&dentry->d_lock); 3056 spin_unlock(&dentry->d_parent->d_lock); 3057 d_instantiate(dentry, inode); 3058 } 3059 EXPORT_SYMBOL(d_tmpfile); 3060 3061 static __initdata unsigned long dhash_entries; 3062 static int __init set_dhash_entries(char *str) 3063 { 3064 if (!str) 3065 return 0; 3066 dhash_entries = simple_strtoul(str, &str, 0); 3067 return 1; 3068 } 3069 __setup("dhash_entries=", set_dhash_entries); 3070 3071 static void __init dcache_init_early(void) 3072 { 3073 /* If hashes are distributed across NUMA nodes, defer 3074 * hash allocation until vmalloc space is available. 3075 */ 3076 if (hashdist) 3077 return; 3078 3079 dentry_hashtable = 3080 alloc_large_system_hash("Dentry cache", 3081 sizeof(struct hlist_bl_head), 3082 dhash_entries, 3083 13, 3084 HASH_EARLY | HASH_ZERO, 3085 &d_hash_shift, 3086 NULL, 3087 0, 3088 0); 3089 d_hash_shift = 32 - d_hash_shift; 3090 } 3091 3092 static void __init dcache_init(void) 3093 { 3094 /* 3095 * A constructor could be added for stable state like the lists, 3096 * but it is probably not worth it because of the cache nature 3097 * of the dcache. 3098 */ 3099 dentry_cache = KMEM_CACHE_USERCOPY(dentry, 3100 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD|SLAB_ACCOUNT, 3101 d_iname); 3102 3103 /* Hash may have been set up in dcache_init_early */ 3104 if (!hashdist) 3105 return; 3106 3107 dentry_hashtable = 3108 alloc_large_system_hash("Dentry cache", 3109 sizeof(struct hlist_bl_head), 3110 dhash_entries, 3111 13, 3112 HASH_ZERO, 3113 &d_hash_shift, 3114 NULL, 3115 0, 3116 0); 3117 d_hash_shift = 32 - d_hash_shift; 3118 } 3119 3120 /* SLAB cache for __getname() consumers */ 3121 struct kmem_cache *names_cachep __read_mostly; 3122 EXPORT_SYMBOL(names_cachep); 3123 3124 void __init vfs_caches_init_early(void) 3125 { 3126 int i; 3127 3128 for (i = 0; i < ARRAY_SIZE(in_lookup_hashtable); i++) 3129 INIT_HLIST_BL_HEAD(&in_lookup_hashtable[i]); 3130 3131 dcache_init_early(); 3132 inode_init_early(); 3133 } 3134 3135 void __init vfs_caches_init(void) 3136 { 3137 names_cachep = kmem_cache_create_usercopy("names_cache", PATH_MAX, 0, 3138 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 0, PATH_MAX, NULL); 3139 3140 dcache_init(); 3141 inode_init(); 3142 files_init(); 3143 files_maxfiles_init(); 3144 mnt_init(); 3145 bdev_cache_init(); 3146 chrdev_init(); 3147 } 3148