xref: /openbmc/linux/fs/dcache.c (revision d670b479)
1 /*
2  * fs/dcache.c
3  *
4  * Complete reimplementation
5  * (C) 1997 Thomas Schoebel-Theuer,
6  * with heavy changes by Linus Torvalds
7  */
8 
9 /*
10  * Notes on the allocation strategy:
11  *
12  * The dcache is a master of the icache - whenever a dcache entry
13  * exists, the inode will always exist. "iput()" is done either when
14  * the dcache entry is deleted or garbage collected.
15  */
16 
17 #include <linux/syscalls.h>
18 #include <linux/string.h>
19 #include <linux/mm.h>
20 #include <linux/fs.h>
21 #include <linux/fsnotify.h>
22 #include <linux/slab.h>
23 #include <linux/init.h>
24 #include <linux/hash.h>
25 #include <linux/cache.h>
26 #include <linux/export.h>
27 #include <linux/mount.h>
28 #include <linux/file.h>
29 #include <asm/uaccess.h>
30 #include <linux/security.h>
31 #include <linux/seqlock.h>
32 #include <linux/swap.h>
33 #include <linux/bootmem.h>
34 #include <linux/fs_struct.h>
35 #include <linux/hardirq.h>
36 #include <linux/bit_spinlock.h>
37 #include <linux/rculist_bl.h>
38 #include <linux/prefetch.h>
39 #include <linux/ratelimit.h>
40 #include "internal.h"
41 #include "mount.h"
42 
43 /*
44  * Usage:
45  * dcache->d_inode->i_lock protects:
46  *   - i_dentry, d_alias, d_inode of aliases
47  * dcache_hash_bucket lock protects:
48  *   - the dcache hash table
49  * s_anon bl list spinlock protects:
50  *   - the s_anon list (see __d_drop)
51  * dcache_lru_lock protects:
52  *   - the dcache lru lists and counters
53  * d_lock protects:
54  *   - d_flags
55  *   - d_name
56  *   - d_lru
57  *   - d_count
58  *   - d_unhashed()
59  *   - d_parent and d_subdirs
60  *   - childrens' d_child and d_parent
61  *   - d_alias, d_inode
62  *
63  * Ordering:
64  * dentry->d_inode->i_lock
65  *   dentry->d_lock
66  *     dcache_lru_lock
67  *     dcache_hash_bucket lock
68  *     s_anon lock
69  *
70  * If there is an ancestor relationship:
71  * dentry->d_parent->...->d_parent->d_lock
72  *   ...
73  *     dentry->d_parent->d_lock
74  *       dentry->d_lock
75  *
76  * If no ancestor relationship:
77  * if (dentry1 < dentry2)
78  *   dentry1->d_lock
79  *     dentry2->d_lock
80  */
81 int sysctl_vfs_cache_pressure __read_mostly = 100;
82 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
83 
84 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(dcache_lru_lock);
85 __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
86 
87 EXPORT_SYMBOL(rename_lock);
88 
89 static struct kmem_cache *dentry_cache __read_mostly;
90 
91 /*
92  * This is the single most critical data structure when it comes
93  * to the dcache: the hashtable for lookups. Somebody should try
94  * to make this good - I've just made it work.
95  *
96  * This hash-function tries to avoid losing too many bits of hash
97  * information, yet avoid using a prime hash-size or similar.
98  */
99 #define D_HASHBITS     d_hash_shift
100 #define D_HASHMASK     d_hash_mask
101 
102 static unsigned int d_hash_mask __read_mostly;
103 static unsigned int d_hash_shift __read_mostly;
104 
105 static struct hlist_bl_head *dentry_hashtable __read_mostly;
106 
107 static inline struct hlist_bl_head *d_hash(const struct dentry *parent,
108 					unsigned int hash)
109 {
110 	hash += (unsigned long) parent / L1_CACHE_BYTES;
111 	hash = hash + (hash >> D_HASHBITS);
112 	return dentry_hashtable + (hash & D_HASHMASK);
113 }
114 
115 /* Statistics gathering. */
116 struct dentry_stat_t dentry_stat = {
117 	.age_limit = 45,
118 };
119 
120 static DEFINE_PER_CPU(unsigned int, nr_dentry);
121 
122 #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
123 static int get_nr_dentry(void)
124 {
125 	int i;
126 	int sum = 0;
127 	for_each_possible_cpu(i)
128 		sum += per_cpu(nr_dentry, i);
129 	return sum < 0 ? 0 : sum;
130 }
131 
132 int proc_nr_dentry(ctl_table *table, int write, void __user *buffer,
133 		   size_t *lenp, loff_t *ppos)
134 {
135 	dentry_stat.nr_dentry = get_nr_dentry();
136 	return proc_dointvec(table, write, buffer, lenp, ppos);
137 }
138 #endif
139 
140 /*
141  * Compare 2 name strings, return 0 if they match, otherwise non-zero.
142  * The strings are both count bytes long, and count is non-zero.
143  */
144 #ifdef CONFIG_DCACHE_WORD_ACCESS
145 
146 #include <asm/word-at-a-time.h>
147 /*
148  * NOTE! 'cs' and 'scount' come from a dentry, so it has a
149  * aligned allocation for this particular component. We don't
150  * strictly need the load_unaligned_zeropad() safety, but it
151  * doesn't hurt either.
152  *
153  * In contrast, 'ct' and 'tcount' can be from a pathname, and do
154  * need the careful unaligned handling.
155  */
156 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
157 {
158 	unsigned long a,b,mask;
159 
160 	for (;;) {
161 		a = *(unsigned long *)cs;
162 		b = load_unaligned_zeropad(ct);
163 		if (tcount < sizeof(unsigned long))
164 			break;
165 		if (unlikely(a != b))
166 			return 1;
167 		cs += sizeof(unsigned long);
168 		ct += sizeof(unsigned long);
169 		tcount -= sizeof(unsigned long);
170 		if (!tcount)
171 			return 0;
172 	}
173 	mask = ~(~0ul << tcount*8);
174 	return unlikely(!!((a ^ b) & mask));
175 }
176 
177 #else
178 
179 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
180 {
181 	do {
182 		if (*cs != *ct)
183 			return 1;
184 		cs++;
185 		ct++;
186 		tcount--;
187 	} while (tcount);
188 	return 0;
189 }
190 
191 #endif
192 
193 static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount)
194 {
195 	const unsigned char *cs;
196 	/*
197 	 * Be careful about RCU walk racing with rename:
198 	 * use ACCESS_ONCE to fetch the name pointer.
199 	 *
200 	 * NOTE! Even if a rename will mean that the length
201 	 * was not loaded atomically, we don't care. The
202 	 * RCU walk will check the sequence count eventually,
203 	 * and catch it. And we won't overrun the buffer,
204 	 * because we're reading the name pointer atomically,
205 	 * and a dentry name is guaranteed to be properly
206 	 * terminated with a NUL byte.
207 	 *
208 	 * End result: even if 'len' is wrong, we'll exit
209 	 * early because the data cannot match (there can
210 	 * be no NUL in the ct/tcount data)
211 	 */
212 	cs = ACCESS_ONCE(dentry->d_name.name);
213 	smp_read_barrier_depends();
214 	return dentry_string_cmp(cs, ct, tcount);
215 }
216 
217 static void __d_free(struct rcu_head *head)
218 {
219 	struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
220 
221 	WARN_ON(!list_empty(&dentry->d_alias));
222 	if (dname_external(dentry))
223 		kfree(dentry->d_name.name);
224 	kmem_cache_free(dentry_cache, dentry);
225 }
226 
227 /*
228  * no locks, please.
229  */
230 static void d_free(struct dentry *dentry)
231 {
232 	BUG_ON(dentry->d_count);
233 	this_cpu_dec(nr_dentry);
234 	if (dentry->d_op && dentry->d_op->d_release)
235 		dentry->d_op->d_release(dentry);
236 
237 	/* if dentry was never visible to RCU, immediate free is OK */
238 	if (!(dentry->d_flags & DCACHE_RCUACCESS))
239 		__d_free(&dentry->d_u.d_rcu);
240 	else
241 		call_rcu(&dentry->d_u.d_rcu, __d_free);
242 }
243 
244 /**
245  * dentry_rcuwalk_barrier - invalidate in-progress rcu-walk lookups
246  * @dentry: the target dentry
247  * After this call, in-progress rcu-walk path lookup will fail. This
248  * should be called after unhashing, and after changing d_inode (if
249  * the dentry has not already been unhashed).
250  */
251 static inline void dentry_rcuwalk_barrier(struct dentry *dentry)
252 {
253 	assert_spin_locked(&dentry->d_lock);
254 	/* Go through a barrier */
255 	write_seqcount_barrier(&dentry->d_seq);
256 }
257 
258 /*
259  * Release the dentry's inode, using the filesystem
260  * d_iput() operation if defined. Dentry has no refcount
261  * and is unhashed.
262  */
263 static void dentry_iput(struct dentry * dentry)
264 	__releases(dentry->d_lock)
265 	__releases(dentry->d_inode->i_lock)
266 {
267 	struct inode *inode = dentry->d_inode;
268 	if (inode) {
269 		dentry->d_inode = NULL;
270 		list_del_init(&dentry->d_alias);
271 		spin_unlock(&dentry->d_lock);
272 		spin_unlock(&inode->i_lock);
273 		if (!inode->i_nlink)
274 			fsnotify_inoderemove(inode);
275 		if (dentry->d_op && dentry->d_op->d_iput)
276 			dentry->d_op->d_iput(dentry, inode);
277 		else
278 			iput(inode);
279 	} else {
280 		spin_unlock(&dentry->d_lock);
281 	}
282 }
283 
284 /*
285  * Release the dentry's inode, using the filesystem
286  * d_iput() operation if defined. dentry remains in-use.
287  */
288 static void dentry_unlink_inode(struct dentry * dentry)
289 	__releases(dentry->d_lock)
290 	__releases(dentry->d_inode->i_lock)
291 {
292 	struct inode *inode = dentry->d_inode;
293 	dentry->d_inode = NULL;
294 	list_del_init(&dentry->d_alias);
295 	dentry_rcuwalk_barrier(dentry);
296 	spin_unlock(&dentry->d_lock);
297 	spin_unlock(&inode->i_lock);
298 	if (!inode->i_nlink)
299 		fsnotify_inoderemove(inode);
300 	if (dentry->d_op && dentry->d_op->d_iput)
301 		dentry->d_op->d_iput(dentry, inode);
302 	else
303 		iput(inode);
304 }
305 
306 /*
307  * dentry_lru_(add|del|prune|move_tail) must be called with d_lock held.
308  */
309 static void dentry_lru_add(struct dentry *dentry)
310 {
311 	if (list_empty(&dentry->d_lru)) {
312 		spin_lock(&dcache_lru_lock);
313 		list_add(&dentry->d_lru, &dentry->d_sb->s_dentry_lru);
314 		dentry->d_sb->s_nr_dentry_unused++;
315 		dentry_stat.nr_unused++;
316 		spin_unlock(&dcache_lru_lock);
317 	}
318 }
319 
320 static void __dentry_lru_del(struct dentry *dentry)
321 {
322 	list_del_init(&dentry->d_lru);
323 	dentry->d_flags &= ~DCACHE_SHRINK_LIST;
324 	dentry->d_sb->s_nr_dentry_unused--;
325 	dentry_stat.nr_unused--;
326 }
327 
328 /*
329  * Remove a dentry with references from the LRU.
330  */
331 static void dentry_lru_del(struct dentry *dentry)
332 {
333 	if (!list_empty(&dentry->d_lru)) {
334 		spin_lock(&dcache_lru_lock);
335 		__dentry_lru_del(dentry);
336 		spin_unlock(&dcache_lru_lock);
337 	}
338 }
339 
340 /*
341  * Remove a dentry that is unreferenced and about to be pruned
342  * (unhashed and destroyed) from the LRU, and inform the file system.
343  * This wrapper should be called _prior_ to unhashing a victim dentry.
344  */
345 static void dentry_lru_prune(struct dentry *dentry)
346 {
347 	if (!list_empty(&dentry->d_lru)) {
348 		if (dentry->d_flags & DCACHE_OP_PRUNE)
349 			dentry->d_op->d_prune(dentry);
350 
351 		spin_lock(&dcache_lru_lock);
352 		__dentry_lru_del(dentry);
353 		spin_unlock(&dcache_lru_lock);
354 	}
355 }
356 
357 static void dentry_lru_move_list(struct dentry *dentry, struct list_head *list)
358 {
359 	spin_lock(&dcache_lru_lock);
360 	if (list_empty(&dentry->d_lru)) {
361 		list_add_tail(&dentry->d_lru, list);
362 		dentry->d_sb->s_nr_dentry_unused++;
363 		dentry_stat.nr_unused++;
364 	} else {
365 		list_move_tail(&dentry->d_lru, list);
366 	}
367 	spin_unlock(&dcache_lru_lock);
368 }
369 
370 /**
371  * d_kill - kill dentry and return parent
372  * @dentry: dentry to kill
373  * @parent: parent dentry
374  *
375  * The dentry must already be unhashed and removed from the LRU.
376  *
377  * If this is the root of the dentry tree, return NULL.
378  *
379  * dentry->d_lock and parent->d_lock must be held by caller, and are dropped by
380  * d_kill.
381  */
382 static struct dentry *d_kill(struct dentry *dentry, struct dentry *parent)
383 	__releases(dentry->d_lock)
384 	__releases(parent->d_lock)
385 	__releases(dentry->d_inode->i_lock)
386 {
387 	list_del(&dentry->d_u.d_child);
388 	/*
389 	 * Inform try_to_ascend() that we are no longer attached to the
390 	 * dentry tree
391 	 */
392 	dentry->d_flags |= DCACHE_DISCONNECTED;
393 	if (parent)
394 		spin_unlock(&parent->d_lock);
395 	dentry_iput(dentry);
396 	/*
397 	 * dentry_iput drops the locks, at which point nobody (except
398 	 * transient RCU lookups) can reach this dentry.
399 	 */
400 	d_free(dentry);
401 	return parent;
402 }
403 
404 /*
405  * Unhash a dentry without inserting an RCU walk barrier or checking that
406  * dentry->d_lock is locked.  The caller must take care of that, if
407  * appropriate.
408  */
409 static void __d_shrink(struct dentry *dentry)
410 {
411 	if (!d_unhashed(dentry)) {
412 		struct hlist_bl_head *b;
413 		if (unlikely(dentry->d_flags & DCACHE_DISCONNECTED))
414 			b = &dentry->d_sb->s_anon;
415 		else
416 			b = d_hash(dentry->d_parent, dentry->d_name.hash);
417 
418 		hlist_bl_lock(b);
419 		__hlist_bl_del(&dentry->d_hash);
420 		dentry->d_hash.pprev = NULL;
421 		hlist_bl_unlock(b);
422 	}
423 }
424 
425 /**
426  * d_drop - drop a dentry
427  * @dentry: dentry to drop
428  *
429  * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
430  * be found through a VFS lookup any more. Note that this is different from
431  * deleting the dentry - d_delete will try to mark the dentry negative if
432  * possible, giving a successful _negative_ lookup, while d_drop will
433  * just make the cache lookup fail.
434  *
435  * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
436  * reason (NFS timeouts or autofs deletes).
437  *
438  * __d_drop requires dentry->d_lock.
439  */
440 void __d_drop(struct dentry *dentry)
441 {
442 	if (!d_unhashed(dentry)) {
443 		__d_shrink(dentry);
444 		dentry_rcuwalk_barrier(dentry);
445 	}
446 }
447 EXPORT_SYMBOL(__d_drop);
448 
449 void d_drop(struct dentry *dentry)
450 {
451 	spin_lock(&dentry->d_lock);
452 	__d_drop(dentry);
453 	spin_unlock(&dentry->d_lock);
454 }
455 EXPORT_SYMBOL(d_drop);
456 
457 /*
458  * d_clear_need_lookup - drop a dentry from cache and clear the need lookup flag
459  * @dentry: dentry to drop
460  *
461  * This is called when we do a lookup on a placeholder dentry that needed to be
462  * looked up.  The dentry should have been hashed in order for it to be found by
463  * the lookup code, but now needs to be unhashed while we do the actual lookup
464  * and clear the DCACHE_NEED_LOOKUP flag.
465  */
466 void d_clear_need_lookup(struct dentry *dentry)
467 {
468 	spin_lock(&dentry->d_lock);
469 	__d_drop(dentry);
470 	dentry->d_flags &= ~DCACHE_NEED_LOOKUP;
471 	spin_unlock(&dentry->d_lock);
472 }
473 EXPORT_SYMBOL(d_clear_need_lookup);
474 
475 /*
476  * Finish off a dentry we've decided to kill.
477  * dentry->d_lock must be held, returns with it unlocked.
478  * If ref is non-zero, then decrement the refcount too.
479  * Returns dentry requiring refcount drop, or NULL if we're done.
480  */
481 static inline struct dentry *dentry_kill(struct dentry *dentry, int ref)
482 	__releases(dentry->d_lock)
483 {
484 	struct inode *inode;
485 	struct dentry *parent;
486 
487 	inode = dentry->d_inode;
488 	if (inode && !spin_trylock(&inode->i_lock)) {
489 relock:
490 		spin_unlock(&dentry->d_lock);
491 		cpu_relax();
492 		return dentry; /* try again with same dentry */
493 	}
494 	if (IS_ROOT(dentry))
495 		parent = NULL;
496 	else
497 		parent = dentry->d_parent;
498 	if (parent && !spin_trylock(&parent->d_lock)) {
499 		if (inode)
500 			spin_unlock(&inode->i_lock);
501 		goto relock;
502 	}
503 
504 	if (ref)
505 		dentry->d_count--;
506 	/*
507 	 * if dentry was on the d_lru list delete it from there.
508 	 * inform the fs via d_prune that this dentry is about to be
509 	 * unhashed and destroyed.
510 	 */
511 	dentry_lru_prune(dentry);
512 	/* if it was on the hash then remove it */
513 	__d_drop(dentry);
514 	return d_kill(dentry, parent);
515 }
516 
517 /*
518  * This is dput
519  *
520  * This is complicated by the fact that we do not want to put
521  * dentries that are no longer on any hash chain on the unused
522  * list: we'd much rather just get rid of them immediately.
523  *
524  * However, that implies that we have to traverse the dentry
525  * tree upwards to the parents which might _also_ now be
526  * scheduled for deletion (it may have been only waiting for
527  * its last child to go away).
528  *
529  * This tail recursion is done by hand as we don't want to depend
530  * on the compiler to always get this right (gcc generally doesn't).
531  * Real recursion would eat up our stack space.
532  */
533 
534 /*
535  * dput - release a dentry
536  * @dentry: dentry to release
537  *
538  * Release a dentry. This will drop the usage count and if appropriate
539  * call the dentry unlink method as well as removing it from the queues and
540  * releasing its resources. If the parent dentries were scheduled for release
541  * they too may now get deleted.
542  */
543 void dput(struct dentry *dentry)
544 {
545 	if (!dentry)
546 		return;
547 
548 repeat:
549 	if (dentry->d_count == 1)
550 		might_sleep();
551 	spin_lock(&dentry->d_lock);
552 	BUG_ON(!dentry->d_count);
553 	if (dentry->d_count > 1) {
554 		dentry->d_count--;
555 		spin_unlock(&dentry->d_lock);
556 		return;
557 	}
558 
559 	if (dentry->d_flags & DCACHE_OP_DELETE) {
560 		if (dentry->d_op->d_delete(dentry))
561 			goto kill_it;
562 	}
563 
564 	/* Unreachable? Get rid of it */
565  	if (d_unhashed(dentry))
566 		goto kill_it;
567 
568 	/*
569 	 * If this dentry needs lookup, don't set the referenced flag so that it
570 	 * is more likely to be cleaned up by the dcache shrinker in case of
571 	 * memory pressure.
572 	 */
573 	if (!d_need_lookup(dentry))
574 		dentry->d_flags |= DCACHE_REFERENCED;
575 	dentry_lru_add(dentry);
576 
577 	dentry->d_count--;
578 	spin_unlock(&dentry->d_lock);
579 	return;
580 
581 kill_it:
582 	dentry = dentry_kill(dentry, 1);
583 	if (dentry)
584 		goto repeat;
585 }
586 EXPORT_SYMBOL(dput);
587 
588 /**
589  * d_invalidate - invalidate a dentry
590  * @dentry: dentry to invalidate
591  *
592  * Try to invalidate the dentry if it turns out to be
593  * possible. If there are other dentries that can be
594  * reached through this one we can't delete it and we
595  * return -EBUSY. On success we return 0.
596  *
597  * no dcache lock.
598  */
599 
600 int d_invalidate(struct dentry * dentry)
601 {
602 	/*
603 	 * If it's already been dropped, return OK.
604 	 */
605 	spin_lock(&dentry->d_lock);
606 	if (d_unhashed(dentry)) {
607 		spin_unlock(&dentry->d_lock);
608 		return 0;
609 	}
610 	/*
611 	 * Check whether to do a partial shrink_dcache
612 	 * to get rid of unused child entries.
613 	 */
614 	if (!list_empty(&dentry->d_subdirs)) {
615 		spin_unlock(&dentry->d_lock);
616 		shrink_dcache_parent(dentry);
617 		spin_lock(&dentry->d_lock);
618 	}
619 
620 	/*
621 	 * Somebody else still using it?
622 	 *
623 	 * If it's a directory, we can't drop it
624 	 * for fear of somebody re-populating it
625 	 * with children (even though dropping it
626 	 * would make it unreachable from the root,
627 	 * we might still populate it if it was a
628 	 * working directory or similar).
629 	 * We also need to leave mountpoints alone,
630 	 * directory or not.
631 	 */
632 	if (dentry->d_count > 1 && dentry->d_inode) {
633 		if (S_ISDIR(dentry->d_inode->i_mode) || d_mountpoint(dentry)) {
634 			spin_unlock(&dentry->d_lock);
635 			return -EBUSY;
636 		}
637 	}
638 
639 	__d_drop(dentry);
640 	spin_unlock(&dentry->d_lock);
641 	return 0;
642 }
643 EXPORT_SYMBOL(d_invalidate);
644 
645 /* This must be called with d_lock held */
646 static inline void __dget_dlock(struct dentry *dentry)
647 {
648 	dentry->d_count++;
649 }
650 
651 static inline void __dget(struct dentry *dentry)
652 {
653 	spin_lock(&dentry->d_lock);
654 	__dget_dlock(dentry);
655 	spin_unlock(&dentry->d_lock);
656 }
657 
658 struct dentry *dget_parent(struct dentry *dentry)
659 {
660 	struct dentry *ret;
661 
662 repeat:
663 	/*
664 	 * Don't need rcu_dereference because we re-check it was correct under
665 	 * the lock.
666 	 */
667 	rcu_read_lock();
668 	ret = dentry->d_parent;
669 	spin_lock(&ret->d_lock);
670 	if (unlikely(ret != dentry->d_parent)) {
671 		spin_unlock(&ret->d_lock);
672 		rcu_read_unlock();
673 		goto repeat;
674 	}
675 	rcu_read_unlock();
676 	BUG_ON(!ret->d_count);
677 	ret->d_count++;
678 	spin_unlock(&ret->d_lock);
679 	return ret;
680 }
681 EXPORT_SYMBOL(dget_parent);
682 
683 /**
684  * d_find_alias - grab a hashed alias of inode
685  * @inode: inode in question
686  *
687  * If inode has a hashed alias, or is a directory and has any alias,
688  * acquire the reference to alias and return it. Otherwise return NULL.
689  * Notice that if inode is a directory there can be only one alias and
690  * it can be unhashed only if it has no children, or if it is the root
691  * of a filesystem.
692  *
693  * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
694  * any other hashed alias over that.
695  */
696 static struct dentry *__d_find_alias(struct inode *inode)
697 {
698 	struct dentry *alias, *discon_alias;
699 
700 again:
701 	discon_alias = NULL;
702 	list_for_each_entry(alias, &inode->i_dentry, d_alias) {
703 		spin_lock(&alias->d_lock);
704  		if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
705 			if (IS_ROOT(alias) &&
706 			    (alias->d_flags & DCACHE_DISCONNECTED)) {
707 				discon_alias = alias;
708 			} else {
709 				__dget_dlock(alias);
710 				spin_unlock(&alias->d_lock);
711 				return alias;
712 			}
713 		}
714 		spin_unlock(&alias->d_lock);
715 	}
716 	if (discon_alias) {
717 		alias = discon_alias;
718 		spin_lock(&alias->d_lock);
719 		if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
720 			if (IS_ROOT(alias) &&
721 			    (alias->d_flags & DCACHE_DISCONNECTED)) {
722 				__dget_dlock(alias);
723 				spin_unlock(&alias->d_lock);
724 				return alias;
725 			}
726 		}
727 		spin_unlock(&alias->d_lock);
728 		goto again;
729 	}
730 	return NULL;
731 }
732 
733 struct dentry *d_find_alias(struct inode *inode)
734 {
735 	struct dentry *de = NULL;
736 
737 	if (!list_empty(&inode->i_dentry)) {
738 		spin_lock(&inode->i_lock);
739 		de = __d_find_alias(inode);
740 		spin_unlock(&inode->i_lock);
741 	}
742 	return de;
743 }
744 EXPORT_SYMBOL(d_find_alias);
745 
746 /*
747  *	Try to kill dentries associated with this inode.
748  * WARNING: you must own a reference to inode.
749  */
750 void d_prune_aliases(struct inode *inode)
751 {
752 	struct dentry *dentry;
753 restart:
754 	spin_lock(&inode->i_lock);
755 	list_for_each_entry(dentry, &inode->i_dentry, d_alias) {
756 		spin_lock(&dentry->d_lock);
757 		if (!dentry->d_count) {
758 			__dget_dlock(dentry);
759 			__d_drop(dentry);
760 			spin_unlock(&dentry->d_lock);
761 			spin_unlock(&inode->i_lock);
762 			dput(dentry);
763 			goto restart;
764 		}
765 		spin_unlock(&dentry->d_lock);
766 	}
767 	spin_unlock(&inode->i_lock);
768 }
769 EXPORT_SYMBOL(d_prune_aliases);
770 
771 /*
772  * Try to throw away a dentry - free the inode, dput the parent.
773  * Requires dentry->d_lock is held, and dentry->d_count == 0.
774  * Releases dentry->d_lock.
775  *
776  * This may fail if locks cannot be acquired no problem, just try again.
777  */
778 static void try_prune_one_dentry(struct dentry *dentry)
779 	__releases(dentry->d_lock)
780 {
781 	struct dentry *parent;
782 
783 	parent = dentry_kill(dentry, 0);
784 	/*
785 	 * If dentry_kill returns NULL, we have nothing more to do.
786 	 * if it returns the same dentry, trylocks failed. In either
787 	 * case, just loop again.
788 	 *
789 	 * Otherwise, we need to prune ancestors too. This is necessary
790 	 * to prevent quadratic behavior of shrink_dcache_parent(), but
791 	 * is also expected to be beneficial in reducing dentry cache
792 	 * fragmentation.
793 	 */
794 	if (!parent)
795 		return;
796 	if (parent == dentry)
797 		return;
798 
799 	/* Prune ancestors. */
800 	dentry = parent;
801 	while (dentry) {
802 		spin_lock(&dentry->d_lock);
803 		if (dentry->d_count > 1) {
804 			dentry->d_count--;
805 			spin_unlock(&dentry->d_lock);
806 			return;
807 		}
808 		dentry = dentry_kill(dentry, 1);
809 	}
810 }
811 
812 static void shrink_dentry_list(struct list_head *list)
813 {
814 	struct dentry *dentry;
815 
816 	rcu_read_lock();
817 	for (;;) {
818 		dentry = list_entry_rcu(list->prev, struct dentry, d_lru);
819 		if (&dentry->d_lru == list)
820 			break; /* empty */
821 		spin_lock(&dentry->d_lock);
822 		if (dentry != list_entry(list->prev, struct dentry, d_lru)) {
823 			spin_unlock(&dentry->d_lock);
824 			continue;
825 		}
826 
827 		/*
828 		 * We found an inuse dentry which was not removed from
829 		 * the LRU because of laziness during lookup.  Do not free
830 		 * it - just keep it off the LRU list.
831 		 */
832 		if (dentry->d_count) {
833 			dentry_lru_del(dentry);
834 			spin_unlock(&dentry->d_lock);
835 			continue;
836 		}
837 
838 		rcu_read_unlock();
839 
840 		try_prune_one_dentry(dentry);
841 
842 		rcu_read_lock();
843 	}
844 	rcu_read_unlock();
845 }
846 
847 /**
848  * prune_dcache_sb - shrink the dcache
849  * @sb: superblock
850  * @count: number of entries to try to free
851  *
852  * Attempt to shrink the superblock dcache LRU by @count entries. This is
853  * done when we need more memory an called from the superblock shrinker
854  * function.
855  *
856  * This function may fail to free any resources if all the dentries are in
857  * use.
858  */
859 void prune_dcache_sb(struct super_block *sb, int count)
860 {
861 	struct dentry *dentry;
862 	LIST_HEAD(referenced);
863 	LIST_HEAD(tmp);
864 
865 relock:
866 	spin_lock(&dcache_lru_lock);
867 	while (!list_empty(&sb->s_dentry_lru)) {
868 		dentry = list_entry(sb->s_dentry_lru.prev,
869 				struct dentry, d_lru);
870 		BUG_ON(dentry->d_sb != sb);
871 
872 		if (!spin_trylock(&dentry->d_lock)) {
873 			spin_unlock(&dcache_lru_lock);
874 			cpu_relax();
875 			goto relock;
876 		}
877 
878 		if (dentry->d_flags & DCACHE_REFERENCED) {
879 			dentry->d_flags &= ~DCACHE_REFERENCED;
880 			list_move(&dentry->d_lru, &referenced);
881 			spin_unlock(&dentry->d_lock);
882 		} else {
883 			list_move_tail(&dentry->d_lru, &tmp);
884 			dentry->d_flags |= DCACHE_SHRINK_LIST;
885 			spin_unlock(&dentry->d_lock);
886 			if (!--count)
887 				break;
888 		}
889 		cond_resched_lock(&dcache_lru_lock);
890 	}
891 	if (!list_empty(&referenced))
892 		list_splice(&referenced, &sb->s_dentry_lru);
893 	spin_unlock(&dcache_lru_lock);
894 
895 	shrink_dentry_list(&tmp);
896 }
897 
898 /**
899  * shrink_dcache_sb - shrink dcache for a superblock
900  * @sb: superblock
901  *
902  * Shrink the dcache for the specified super block. This is used to free
903  * the dcache before unmounting a file system.
904  */
905 void shrink_dcache_sb(struct super_block *sb)
906 {
907 	LIST_HEAD(tmp);
908 
909 	spin_lock(&dcache_lru_lock);
910 	while (!list_empty(&sb->s_dentry_lru)) {
911 		list_splice_init(&sb->s_dentry_lru, &tmp);
912 		spin_unlock(&dcache_lru_lock);
913 		shrink_dentry_list(&tmp);
914 		spin_lock(&dcache_lru_lock);
915 	}
916 	spin_unlock(&dcache_lru_lock);
917 }
918 EXPORT_SYMBOL(shrink_dcache_sb);
919 
920 /*
921  * destroy a single subtree of dentries for unmount
922  * - see the comments on shrink_dcache_for_umount() for a description of the
923  *   locking
924  */
925 static void shrink_dcache_for_umount_subtree(struct dentry *dentry)
926 {
927 	struct dentry *parent;
928 
929 	BUG_ON(!IS_ROOT(dentry));
930 
931 	for (;;) {
932 		/* descend to the first leaf in the current subtree */
933 		while (!list_empty(&dentry->d_subdirs))
934 			dentry = list_entry(dentry->d_subdirs.next,
935 					    struct dentry, d_u.d_child);
936 
937 		/* consume the dentries from this leaf up through its parents
938 		 * until we find one with children or run out altogether */
939 		do {
940 			struct inode *inode;
941 
942 			/*
943 			 * remove the dentry from the lru, and inform
944 			 * the fs that this dentry is about to be
945 			 * unhashed and destroyed.
946 			 */
947 			dentry_lru_prune(dentry);
948 			__d_shrink(dentry);
949 
950 			if (dentry->d_count != 0) {
951 				printk(KERN_ERR
952 				       "BUG: Dentry %p{i=%lx,n=%s}"
953 				       " still in use (%d)"
954 				       " [unmount of %s %s]\n",
955 				       dentry,
956 				       dentry->d_inode ?
957 				       dentry->d_inode->i_ino : 0UL,
958 				       dentry->d_name.name,
959 				       dentry->d_count,
960 				       dentry->d_sb->s_type->name,
961 				       dentry->d_sb->s_id);
962 				BUG();
963 			}
964 
965 			if (IS_ROOT(dentry)) {
966 				parent = NULL;
967 				list_del(&dentry->d_u.d_child);
968 			} else {
969 				parent = dentry->d_parent;
970 				parent->d_count--;
971 				list_del(&dentry->d_u.d_child);
972 			}
973 
974 			inode = dentry->d_inode;
975 			if (inode) {
976 				dentry->d_inode = NULL;
977 				list_del_init(&dentry->d_alias);
978 				if (dentry->d_op && dentry->d_op->d_iput)
979 					dentry->d_op->d_iput(dentry, inode);
980 				else
981 					iput(inode);
982 			}
983 
984 			d_free(dentry);
985 
986 			/* finished when we fall off the top of the tree,
987 			 * otherwise we ascend to the parent and move to the
988 			 * next sibling if there is one */
989 			if (!parent)
990 				return;
991 			dentry = parent;
992 		} while (list_empty(&dentry->d_subdirs));
993 
994 		dentry = list_entry(dentry->d_subdirs.next,
995 				    struct dentry, d_u.d_child);
996 	}
997 }
998 
999 /*
1000  * destroy the dentries attached to a superblock on unmounting
1001  * - we don't need to use dentry->d_lock because:
1002  *   - the superblock is detached from all mountings and open files, so the
1003  *     dentry trees will not be rearranged by the VFS
1004  *   - s_umount is write-locked, so the memory pressure shrinker will ignore
1005  *     any dentries belonging to this superblock that it comes across
1006  *   - the filesystem itself is no longer permitted to rearrange the dentries
1007  *     in this superblock
1008  */
1009 void shrink_dcache_for_umount(struct super_block *sb)
1010 {
1011 	struct dentry *dentry;
1012 
1013 	if (down_read_trylock(&sb->s_umount))
1014 		BUG();
1015 
1016 	dentry = sb->s_root;
1017 	sb->s_root = NULL;
1018 	dentry->d_count--;
1019 	shrink_dcache_for_umount_subtree(dentry);
1020 
1021 	while (!hlist_bl_empty(&sb->s_anon)) {
1022 		dentry = hlist_bl_entry(hlist_bl_first(&sb->s_anon), struct dentry, d_hash);
1023 		shrink_dcache_for_umount_subtree(dentry);
1024 	}
1025 }
1026 
1027 /*
1028  * This tries to ascend one level of parenthood, but
1029  * we can race with renaming, so we need to re-check
1030  * the parenthood after dropping the lock and check
1031  * that the sequence number still matches.
1032  */
1033 static struct dentry *try_to_ascend(struct dentry *old, int locked, unsigned seq)
1034 {
1035 	struct dentry *new = old->d_parent;
1036 
1037 	rcu_read_lock();
1038 	spin_unlock(&old->d_lock);
1039 	spin_lock(&new->d_lock);
1040 
1041 	/*
1042 	 * might go back up the wrong parent if we have had a rename
1043 	 * or deletion
1044 	 */
1045 	if (new != old->d_parent ||
1046 		 (old->d_flags & DCACHE_DISCONNECTED) ||
1047 		 (!locked && read_seqretry(&rename_lock, seq))) {
1048 		spin_unlock(&new->d_lock);
1049 		new = NULL;
1050 	}
1051 	rcu_read_unlock();
1052 	return new;
1053 }
1054 
1055 
1056 /*
1057  * Search for at least 1 mount point in the dentry's subdirs.
1058  * We descend to the next level whenever the d_subdirs
1059  * list is non-empty and continue searching.
1060  */
1061 
1062 /**
1063  * have_submounts - check for mounts over a dentry
1064  * @parent: dentry to check.
1065  *
1066  * Return true if the parent or its subdirectories contain
1067  * a mount point
1068  */
1069 int have_submounts(struct dentry *parent)
1070 {
1071 	struct dentry *this_parent;
1072 	struct list_head *next;
1073 	unsigned seq;
1074 	int locked = 0;
1075 
1076 	seq = read_seqbegin(&rename_lock);
1077 again:
1078 	this_parent = parent;
1079 
1080 	if (d_mountpoint(parent))
1081 		goto positive;
1082 	spin_lock(&this_parent->d_lock);
1083 repeat:
1084 	next = this_parent->d_subdirs.next;
1085 resume:
1086 	while (next != &this_parent->d_subdirs) {
1087 		struct list_head *tmp = next;
1088 		struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
1089 		next = tmp->next;
1090 
1091 		spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1092 		/* Have we found a mount point ? */
1093 		if (d_mountpoint(dentry)) {
1094 			spin_unlock(&dentry->d_lock);
1095 			spin_unlock(&this_parent->d_lock);
1096 			goto positive;
1097 		}
1098 		if (!list_empty(&dentry->d_subdirs)) {
1099 			spin_unlock(&this_parent->d_lock);
1100 			spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1101 			this_parent = dentry;
1102 			spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1103 			goto repeat;
1104 		}
1105 		spin_unlock(&dentry->d_lock);
1106 	}
1107 	/*
1108 	 * All done at this level ... ascend and resume the search.
1109 	 */
1110 	if (this_parent != parent) {
1111 		struct dentry *child = this_parent;
1112 		this_parent = try_to_ascend(this_parent, locked, seq);
1113 		if (!this_parent)
1114 			goto rename_retry;
1115 		next = child->d_u.d_child.next;
1116 		goto resume;
1117 	}
1118 	spin_unlock(&this_parent->d_lock);
1119 	if (!locked && read_seqretry(&rename_lock, seq))
1120 		goto rename_retry;
1121 	if (locked)
1122 		write_sequnlock(&rename_lock);
1123 	return 0; /* No mount points found in tree */
1124 positive:
1125 	if (!locked && read_seqretry(&rename_lock, seq))
1126 		goto rename_retry;
1127 	if (locked)
1128 		write_sequnlock(&rename_lock);
1129 	return 1;
1130 
1131 rename_retry:
1132 	locked = 1;
1133 	write_seqlock(&rename_lock);
1134 	goto again;
1135 }
1136 EXPORT_SYMBOL(have_submounts);
1137 
1138 /*
1139  * Search the dentry child list for the specified parent,
1140  * and move any unused dentries to the end of the unused
1141  * list for prune_dcache(). We descend to the next level
1142  * whenever the d_subdirs list is non-empty and continue
1143  * searching.
1144  *
1145  * It returns zero iff there are no unused children,
1146  * otherwise  it returns the number of children moved to
1147  * the end of the unused list. This may not be the total
1148  * number of unused children, because select_parent can
1149  * drop the lock and return early due to latency
1150  * constraints.
1151  */
1152 static int select_parent(struct dentry *parent, struct list_head *dispose)
1153 {
1154 	struct dentry *this_parent;
1155 	struct list_head *next;
1156 	unsigned seq;
1157 	int found = 0;
1158 	int locked = 0;
1159 
1160 	seq = read_seqbegin(&rename_lock);
1161 again:
1162 	this_parent = parent;
1163 	spin_lock(&this_parent->d_lock);
1164 repeat:
1165 	next = this_parent->d_subdirs.next;
1166 resume:
1167 	while (next != &this_parent->d_subdirs) {
1168 		struct list_head *tmp = next;
1169 		struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
1170 		next = tmp->next;
1171 
1172 		spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1173 
1174 		/*
1175 		 * move only zero ref count dentries to the dispose list.
1176 		 *
1177 		 * Those which are presently on the shrink list, being processed
1178 		 * by shrink_dentry_list(), shouldn't be moved.  Otherwise the
1179 		 * loop in shrink_dcache_parent() might not make any progress
1180 		 * and loop forever.
1181 		 */
1182 		if (dentry->d_count) {
1183 			dentry_lru_del(dentry);
1184 		} else if (!(dentry->d_flags & DCACHE_SHRINK_LIST)) {
1185 			dentry_lru_move_list(dentry, dispose);
1186 			dentry->d_flags |= DCACHE_SHRINK_LIST;
1187 			found++;
1188 		}
1189 		/*
1190 		 * We can return to the caller if we have found some (this
1191 		 * ensures forward progress). We'll be coming back to find
1192 		 * the rest.
1193 		 */
1194 		if (found && need_resched()) {
1195 			spin_unlock(&dentry->d_lock);
1196 			goto out;
1197 		}
1198 
1199 		/*
1200 		 * Descend a level if the d_subdirs list is non-empty.
1201 		 */
1202 		if (!list_empty(&dentry->d_subdirs)) {
1203 			spin_unlock(&this_parent->d_lock);
1204 			spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1205 			this_parent = dentry;
1206 			spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1207 			goto repeat;
1208 		}
1209 
1210 		spin_unlock(&dentry->d_lock);
1211 	}
1212 	/*
1213 	 * All done at this level ... ascend and resume the search.
1214 	 */
1215 	if (this_parent != parent) {
1216 		struct dentry *child = this_parent;
1217 		this_parent = try_to_ascend(this_parent, locked, seq);
1218 		if (!this_parent)
1219 			goto rename_retry;
1220 		next = child->d_u.d_child.next;
1221 		goto resume;
1222 	}
1223 out:
1224 	spin_unlock(&this_parent->d_lock);
1225 	if (!locked && read_seqretry(&rename_lock, seq))
1226 		goto rename_retry;
1227 	if (locked)
1228 		write_sequnlock(&rename_lock);
1229 	return found;
1230 
1231 rename_retry:
1232 	if (found)
1233 		return found;
1234 	locked = 1;
1235 	write_seqlock(&rename_lock);
1236 	goto again;
1237 }
1238 
1239 /**
1240  * shrink_dcache_parent - prune dcache
1241  * @parent: parent of entries to prune
1242  *
1243  * Prune the dcache to remove unused children of the parent dentry.
1244  */
1245 void shrink_dcache_parent(struct dentry * parent)
1246 {
1247 	LIST_HEAD(dispose);
1248 	int found;
1249 
1250 	while ((found = select_parent(parent, &dispose)) != 0)
1251 		shrink_dentry_list(&dispose);
1252 }
1253 EXPORT_SYMBOL(shrink_dcache_parent);
1254 
1255 /**
1256  * __d_alloc	-	allocate a dcache entry
1257  * @sb: filesystem it will belong to
1258  * @name: qstr of the name
1259  *
1260  * Allocates a dentry. It returns %NULL if there is insufficient memory
1261  * available. On a success the dentry is returned. The name passed in is
1262  * copied and the copy passed in may be reused after this call.
1263  */
1264 
1265 struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name)
1266 {
1267 	struct dentry *dentry;
1268 	char *dname;
1269 
1270 	dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
1271 	if (!dentry)
1272 		return NULL;
1273 
1274 	/*
1275 	 * We guarantee that the inline name is always NUL-terminated.
1276 	 * This way the memcpy() done by the name switching in rename
1277 	 * will still always have a NUL at the end, even if we might
1278 	 * be overwriting an internal NUL character
1279 	 */
1280 	dentry->d_iname[DNAME_INLINE_LEN-1] = 0;
1281 	if (name->len > DNAME_INLINE_LEN-1) {
1282 		dname = kmalloc(name->len + 1, GFP_KERNEL);
1283 		if (!dname) {
1284 			kmem_cache_free(dentry_cache, dentry);
1285 			return NULL;
1286 		}
1287 	} else  {
1288 		dname = dentry->d_iname;
1289 	}
1290 
1291 	dentry->d_name.len = name->len;
1292 	dentry->d_name.hash = name->hash;
1293 	memcpy(dname, name->name, name->len);
1294 	dname[name->len] = 0;
1295 
1296 	/* Make sure we always see the terminating NUL character */
1297 	smp_wmb();
1298 	dentry->d_name.name = dname;
1299 
1300 	dentry->d_count = 1;
1301 	dentry->d_flags = 0;
1302 	spin_lock_init(&dentry->d_lock);
1303 	seqcount_init(&dentry->d_seq);
1304 	dentry->d_inode = NULL;
1305 	dentry->d_parent = dentry;
1306 	dentry->d_sb = sb;
1307 	dentry->d_op = NULL;
1308 	dentry->d_fsdata = NULL;
1309 	INIT_HLIST_BL_NODE(&dentry->d_hash);
1310 	INIT_LIST_HEAD(&dentry->d_lru);
1311 	INIT_LIST_HEAD(&dentry->d_subdirs);
1312 	INIT_LIST_HEAD(&dentry->d_alias);
1313 	INIT_LIST_HEAD(&dentry->d_u.d_child);
1314 	d_set_d_op(dentry, dentry->d_sb->s_d_op);
1315 
1316 	this_cpu_inc(nr_dentry);
1317 
1318 	return dentry;
1319 }
1320 
1321 /**
1322  * d_alloc	-	allocate a dcache entry
1323  * @parent: parent of entry to allocate
1324  * @name: qstr of the name
1325  *
1326  * Allocates a dentry. It returns %NULL if there is insufficient memory
1327  * available. On a success the dentry is returned. The name passed in is
1328  * copied and the copy passed in may be reused after this call.
1329  */
1330 struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1331 {
1332 	struct dentry *dentry = __d_alloc(parent->d_sb, name);
1333 	if (!dentry)
1334 		return NULL;
1335 
1336 	spin_lock(&parent->d_lock);
1337 	/*
1338 	 * don't need child lock because it is not subject
1339 	 * to concurrency here
1340 	 */
1341 	__dget_dlock(parent);
1342 	dentry->d_parent = parent;
1343 	list_add(&dentry->d_u.d_child, &parent->d_subdirs);
1344 	spin_unlock(&parent->d_lock);
1345 
1346 	return dentry;
1347 }
1348 EXPORT_SYMBOL(d_alloc);
1349 
1350 struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
1351 {
1352 	struct dentry *dentry = __d_alloc(sb, name);
1353 	if (dentry)
1354 		dentry->d_flags |= DCACHE_DISCONNECTED;
1355 	return dentry;
1356 }
1357 EXPORT_SYMBOL(d_alloc_pseudo);
1358 
1359 struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1360 {
1361 	struct qstr q;
1362 
1363 	q.name = name;
1364 	q.len = strlen(name);
1365 	q.hash = full_name_hash(q.name, q.len);
1366 	return d_alloc(parent, &q);
1367 }
1368 EXPORT_SYMBOL(d_alloc_name);
1369 
1370 void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1371 {
1372 	WARN_ON_ONCE(dentry->d_op);
1373 	WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH	|
1374 				DCACHE_OP_COMPARE	|
1375 				DCACHE_OP_REVALIDATE	|
1376 				DCACHE_OP_DELETE ));
1377 	dentry->d_op = op;
1378 	if (!op)
1379 		return;
1380 	if (op->d_hash)
1381 		dentry->d_flags |= DCACHE_OP_HASH;
1382 	if (op->d_compare)
1383 		dentry->d_flags |= DCACHE_OP_COMPARE;
1384 	if (op->d_revalidate)
1385 		dentry->d_flags |= DCACHE_OP_REVALIDATE;
1386 	if (op->d_delete)
1387 		dentry->d_flags |= DCACHE_OP_DELETE;
1388 	if (op->d_prune)
1389 		dentry->d_flags |= DCACHE_OP_PRUNE;
1390 
1391 }
1392 EXPORT_SYMBOL(d_set_d_op);
1393 
1394 static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1395 {
1396 	spin_lock(&dentry->d_lock);
1397 	if (inode) {
1398 		if (unlikely(IS_AUTOMOUNT(inode)))
1399 			dentry->d_flags |= DCACHE_NEED_AUTOMOUNT;
1400 		list_add(&dentry->d_alias, &inode->i_dentry);
1401 	}
1402 	dentry->d_inode = inode;
1403 	dentry_rcuwalk_barrier(dentry);
1404 	spin_unlock(&dentry->d_lock);
1405 	fsnotify_d_instantiate(dentry, inode);
1406 }
1407 
1408 /**
1409  * d_instantiate - fill in inode information for a dentry
1410  * @entry: dentry to complete
1411  * @inode: inode to attach to this dentry
1412  *
1413  * Fill in inode information in the entry.
1414  *
1415  * This turns negative dentries into productive full members
1416  * of society.
1417  *
1418  * NOTE! This assumes that the inode count has been incremented
1419  * (or otherwise set) by the caller to indicate that it is now
1420  * in use by the dcache.
1421  */
1422 
1423 void d_instantiate(struct dentry *entry, struct inode * inode)
1424 {
1425 	BUG_ON(!list_empty(&entry->d_alias));
1426 	if (inode)
1427 		spin_lock(&inode->i_lock);
1428 	__d_instantiate(entry, inode);
1429 	if (inode)
1430 		spin_unlock(&inode->i_lock);
1431 	security_d_instantiate(entry, inode);
1432 }
1433 EXPORT_SYMBOL(d_instantiate);
1434 
1435 /**
1436  * d_instantiate_unique - instantiate a non-aliased dentry
1437  * @entry: dentry to instantiate
1438  * @inode: inode to attach to this dentry
1439  *
1440  * Fill in inode information in the entry. On success, it returns NULL.
1441  * If an unhashed alias of "entry" already exists, then we return the
1442  * aliased dentry instead and drop one reference to inode.
1443  *
1444  * Note that in order to avoid conflicts with rename() etc, the caller
1445  * had better be holding the parent directory semaphore.
1446  *
1447  * This also assumes that the inode count has been incremented
1448  * (or otherwise set) by the caller to indicate that it is now
1449  * in use by the dcache.
1450  */
1451 static struct dentry *__d_instantiate_unique(struct dentry *entry,
1452 					     struct inode *inode)
1453 {
1454 	struct dentry *alias;
1455 	int len = entry->d_name.len;
1456 	const char *name = entry->d_name.name;
1457 	unsigned int hash = entry->d_name.hash;
1458 
1459 	if (!inode) {
1460 		__d_instantiate(entry, NULL);
1461 		return NULL;
1462 	}
1463 
1464 	list_for_each_entry(alias, &inode->i_dentry, d_alias) {
1465 		/*
1466 		 * Don't need alias->d_lock here, because aliases with
1467 		 * d_parent == entry->d_parent are not subject to name or
1468 		 * parent changes, because the parent inode i_mutex is held.
1469 		 */
1470 		if (alias->d_name.hash != hash)
1471 			continue;
1472 		if (alias->d_parent != entry->d_parent)
1473 			continue;
1474 		if (alias->d_name.len != len)
1475 			continue;
1476 		if (dentry_cmp(alias, name, len))
1477 			continue;
1478 		__dget(alias);
1479 		return alias;
1480 	}
1481 
1482 	__d_instantiate(entry, inode);
1483 	return NULL;
1484 }
1485 
1486 struct dentry *d_instantiate_unique(struct dentry *entry, struct inode *inode)
1487 {
1488 	struct dentry *result;
1489 
1490 	BUG_ON(!list_empty(&entry->d_alias));
1491 
1492 	if (inode)
1493 		spin_lock(&inode->i_lock);
1494 	result = __d_instantiate_unique(entry, inode);
1495 	if (inode)
1496 		spin_unlock(&inode->i_lock);
1497 
1498 	if (!result) {
1499 		security_d_instantiate(entry, inode);
1500 		return NULL;
1501 	}
1502 
1503 	BUG_ON(!d_unhashed(result));
1504 	iput(inode);
1505 	return result;
1506 }
1507 
1508 EXPORT_SYMBOL(d_instantiate_unique);
1509 
1510 struct dentry *d_make_root(struct inode *root_inode)
1511 {
1512 	struct dentry *res = NULL;
1513 
1514 	if (root_inode) {
1515 		static const struct qstr name = QSTR_INIT("/", 1);
1516 
1517 		res = __d_alloc(root_inode->i_sb, &name);
1518 		if (res)
1519 			d_instantiate(res, root_inode);
1520 		else
1521 			iput(root_inode);
1522 	}
1523 	return res;
1524 }
1525 EXPORT_SYMBOL(d_make_root);
1526 
1527 static struct dentry * __d_find_any_alias(struct inode *inode)
1528 {
1529 	struct dentry *alias;
1530 
1531 	if (list_empty(&inode->i_dentry))
1532 		return NULL;
1533 	alias = list_first_entry(&inode->i_dentry, struct dentry, d_alias);
1534 	__dget(alias);
1535 	return alias;
1536 }
1537 
1538 /**
1539  * d_find_any_alias - find any alias for a given inode
1540  * @inode: inode to find an alias for
1541  *
1542  * If any aliases exist for the given inode, take and return a
1543  * reference for one of them.  If no aliases exist, return %NULL.
1544  */
1545 struct dentry *d_find_any_alias(struct inode *inode)
1546 {
1547 	struct dentry *de;
1548 
1549 	spin_lock(&inode->i_lock);
1550 	de = __d_find_any_alias(inode);
1551 	spin_unlock(&inode->i_lock);
1552 	return de;
1553 }
1554 EXPORT_SYMBOL(d_find_any_alias);
1555 
1556 /**
1557  * d_obtain_alias - find or allocate a dentry for a given inode
1558  * @inode: inode to allocate the dentry for
1559  *
1560  * Obtain a dentry for an inode resulting from NFS filehandle conversion or
1561  * similar open by handle operations.  The returned dentry may be anonymous,
1562  * or may have a full name (if the inode was already in the cache).
1563  *
1564  * When called on a directory inode, we must ensure that the inode only ever
1565  * has one dentry.  If a dentry is found, that is returned instead of
1566  * allocating a new one.
1567  *
1568  * On successful return, the reference to the inode has been transferred
1569  * to the dentry.  In case of an error the reference on the inode is released.
1570  * To make it easier to use in export operations a %NULL or IS_ERR inode may
1571  * be passed in and will be the error will be propagate to the return value,
1572  * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
1573  */
1574 struct dentry *d_obtain_alias(struct inode *inode)
1575 {
1576 	static const struct qstr anonstring = { .name = "" };
1577 	struct dentry *tmp;
1578 	struct dentry *res;
1579 
1580 	if (!inode)
1581 		return ERR_PTR(-ESTALE);
1582 	if (IS_ERR(inode))
1583 		return ERR_CAST(inode);
1584 
1585 	res = d_find_any_alias(inode);
1586 	if (res)
1587 		goto out_iput;
1588 
1589 	tmp = __d_alloc(inode->i_sb, &anonstring);
1590 	if (!tmp) {
1591 		res = ERR_PTR(-ENOMEM);
1592 		goto out_iput;
1593 	}
1594 
1595 	spin_lock(&inode->i_lock);
1596 	res = __d_find_any_alias(inode);
1597 	if (res) {
1598 		spin_unlock(&inode->i_lock);
1599 		dput(tmp);
1600 		goto out_iput;
1601 	}
1602 
1603 	/* attach a disconnected dentry */
1604 	spin_lock(&tmp->d_lock);
1605 	tmp->d_inode = inode;
1606 	tmp->d_flags |= DCACHE_DISCONNECTED;
1607 	list_add(&tmp->d_alias, &inode->i_dentry);
1608 	hlist_bl_lock(&tmp->d_sb->s_anon);
1609 	hlist_bl_add_head(&tmp->d_hash, &tmp->d_sb->s_anon);
1610 	hlist_bl_unlock(&tmp->d_sb->s_anon);
1611 	spin_unlock(&tmp->d_lock);
1612 	spin_unlock(&inode->i_lock);
1613 	security_d_instantiate(tmp, inode);
1614 
1615 	return tmp;
1616 
1617  out_iput:
1618 	if (res && !IS_ERR(res))
1619 		security_d_instantiate(res, inode);
1620 	iput(inode);
1621 	return res;
1622 }
1623 EXPORT_SYMBOL(d_obtain_alias);
1624 
1625 /**
1626  * d_splice_alias - splice a disconnected dentry into the tree if one exists
1627  * @inode:  the inode which may have a disconnected dentry
1628  * @dentry: a negative dentry which we want to point to the inode.
1629  *
1630  * If inode is a directory and has a 'disconnected' dentry (i.e. IS_ROOT and
1631  * DCACHE_DISCONNECTED), then d_move that in place of the given dentry
1632  * and return it, else simply d_add the inode to the dentry and return NULL.
1633  *
1634  * This is needed in the lookup routine of any filesystem that is exportable
1635  * (via knfsd) so that we can build dcache paths to directories effectively.
1636  *
1637  * If a dentry was found and moved, then it is returned.  Otherwise NULL
1638  * is returned.  This matches the expected return value of ->lookup.
1639  *
1640  */
1641 struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
1642 {
1643 	struct dentry *new = NULL;
1644 
1645 	if (IS_ERR(inode))
1646 		return ERR_CAST(inode);
1647 
1648 	if (inode && S_ISDIR(inode->i_mode)) {
1649 		spin_lock(&inode->i_lock);
1650 		new = __d_find_any_alias(inode);
1651 		if (new) {
1652 			spin_unlock(&inode->i_lock);
1653 			security_d_instantiate(new, inode);
1654 			d_move(new, dentry);
1655 			iput(inode);
1656 		} else {
1657 			/* already taking inode->i_lock, so d_add() by hand */
1658 			__d_instantiate(dentry, inode);
1659 			spin_unlock(&inode->i_lock);
1660 			security_d_instantiate(dentry, inode);
1661 			d_rehash(dentry);
1662 		}
1663 	} else
1664 		d_add(dentry, inode);
1665 	return new;
1666 }
1667 EXPORT_SYMBOL(d_splice_alias);
1668 
1669 /**
1670  * d_add_ci - lookup or allocate new dentry with case-exact name
1671  * @inode:  the inode case-insensitive lookup has found
1672  * @dentry: the negative dentry that was passed to the parent's lookup func
1673  * @name:   the case-exact name to be associated with the returned dentry
1674  *
1675  * This is to avoid filling the dcache with case-insensitive names to the
1676  * same inode, only the actual correct case is stored in the dcache for
1677  * case-insensitive filesystems.
1678  *
1679  * For a case-insensitive lookup match and if the the case-exact dentry
1680  * already exists in in the dcache, use it and return it.
1681  *
1682  * If no entry exists with the exact case name, allocate new dentry with
1683  * the exact case, and return the spliced entry.
1684  */
1685 struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
1686 			struct qstr *name)
1687 {
1688 	int error;
1689 	struct dentry *found;
1690 	struct dentry *new;
1691 
1692 	/*
1693 	 * First check if a dentry matching the name already exists,
1694 	 * if not go ahead and create it now.
1695 	 */
1696 	found = d_hash_and_lookup(dentry->d_parent, name);
1697 	if (!found) {
1698 		new = d_alloc(dentry->d_parent, name);
1699 		if (!new) {
1700 			error = -ENOMEM;
1701 			goto err_out;
1702 		}
1703 
1704 		found = d_splice_alias(inode, new);
1705 		if (found) {
1706 			dput(new);
1707 			return found;
1708 		}
1709 		return new;
1710 	}
1711 
1712 	/*
1713 	 * If a matching dentry exists, and it's not negative use it.
1714 	 *
1715 	 * Decrement the reference count to balance the iget() done
1716 	 * earlier on.
1717 	 */
1718 	if (found->d_inode) {
1719 		if (unlikely(found->d_inode != inode)) {
1720 			/* This can't happen because bad inodes are unhashed. */
1721 			BUG_ON(!is_bad_inode(inode));
1722 			BUG_ON(!is_bad_inode(found->d_inode));
1723 		}
1724 		iput(inode);
1725 		return found;
1726 	}
1727 
1728 	/*
1729 	 * We are going to instantiate this dentry, unhash it and clear the
1730 	 * lookup flag so we can do that.
1731 	 */
1732 	if (unlikely(d_need_lookup(found)))
1733 		d_clear_need_lookup(found);
1734 
1735 	/*
1736 	 * Negative dentry: instantiate it unless the inode is a directory and
1737 	 * already has a dentry.
1738 	 */
1739 	new = d_splice_alias(inode, found);
1740 	if (new) {
1741 		dput(found);
1742 		found = new;
1743 	}
1744 	return found;
1745 
1746 err_out:
1747 	iput(inode);
1748 	return ERR_PTR(error);
1749 }
1750 EXPORT_SYMBOL(d_add_ci);
1751 
1752 /*
1753  * Do the slow-case of the dentry name compare.
1754  *
1755  * Unlike the dentry_cmp() function, we need to atomically
1756  * load the name, length and inode information, so that the
1757  * filesystem can rely on them, and can use the 'name' and
1758  * 'len' information without worrying about walking off the
1759  * end of memory etc.
1760  *
1761  * Thus the read_seqcount_retry() and the "duplicate" info
1762  * in arguments (the low-level filesystem should not look
1763  * at the dentry inode or name contents directly, since
1764  * rename can change them while we're in RCU mode).
1765  */
1766 enum slow_d_compare {
1767 	D_COMP_OK,
1768 	D_COMP_NOMATCH,
1769 	D_COMP_SEQRETRY,
1770 };
1771 
1772 static noinline enum slow_d_compare slow_dentry_cmp(
1773 		const struct dentry *parent,
1774 		struct inode *inode,
1775 		struct dentry *dentry,
1776 		unsigned int seq,
1777 		const struct qstr *name)
1778 {
1779 	int tlen = dentry->d_name.len;
1780 	const char *tname = dentry->d_name.name;
1781 	struct inode *i = dentry->d_inode;
1782 
1783 	if (read_seqcount_retry(&dentry->d_seq, seq)) {
1784 		cpu_relax();
1785 		return D_COMP_SEQRETRY;
1786 	}
1787 	if (parent->d_op->d_compare(parent, inode,
1788 				dentry, i,
1789 				tlen, tname, name))
1790 		return D_COMP_NOMATCH;
1791 	return D_COMP_OK;
1792 }
1793 
1794 /**
1795  * __d_lookup_rcu - search for a dentry (racy, store-free)
1796  * @parent: parent dentry
1797  * @name: qstr of name we wish to find
1798  * @seqp: returns d_seq value at the point where the dentry was found
1799  * @inode: returns dentry->d_inode when the inode was found valid.
1800  * Returns: dentry, or NULL
1801  *
1802  * __d_lookup_rcu is the dcache lookup function for rcu-walk name
1803  * resolution (store-free path walking) design described in
1804  * Documentation/filesystems/path-lookup.txt.
1805  *
1806  * This is not to be used outside core vfs.
1807  *
1808  * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
1809  * held, and rcu_read_lock held. The returned dentry must not be stored into
1810  * without taking d_lock and checking d_seq sequence count against @seq
1811  * returned here.
1812  *
1813  * A refcount may be taken on the found dentry with the __d_rcu_to_refcount
1814  * function.
1815  *
1816  * Alternatively, __d_lookup_rcu may be called again to look up the child of
1817  * the returned dentry, so long as its parent's seqlock is checked after the
1818  * child is looked up. Thus, an interlocking stepping of sequence lock checks
1819  * is formed, giving integrity down the path walk.
1820  *
1821  * NOTE! The caller *has* to check the resulting dentry against the sequence
1822  * number we've returned before using any of the resulting dentry state!
1823  */
1824 struct dentry *__d_lookup_rcu(const struct dentry *parent,
1825 				const struct qstr *name,
1826 				unsigned *seqp, struct inode *inode)
1827 {
1828 	u64 hashlen = name->hash_len;
1829 	const unsigned char *str = name->name;
1830 	struct hlist_bl_head *b = d_hash(parent, hashlen_hash(hashlen));
1831 	struct hlist_bl_node *node;
1832 	struct dentry *dentry;
1833 
1834 	/*
1835 	 * Note: There is significant duplication with __d_lookup_rcu which is
1836 	 * required to prevent single threaded performance regressions
1837 	 * especially on architectures where smp_rmb (in seqcounts) are costly.
1838 	 * Keep the two functions in sync.
1839 	 */
1840 
1841 	/*
1842 	 * The hash list is protected using RCU.
1843 	 *
1844 	 * Carefully use d_seq when comparing a candidate dentry, to avoid
1845 	 * races with d_move().
1846 	 *
1847 	 * It is possible that concurrent renames can mess up our list
1848 	 * walk here and result in missing our dentry, resulting in the
1849 	 * false-negative result. d_lookup() protects against concurrent
1850 	 * renames using rename_lock seqlock.
1851 	 *
1852 	 * See Documentation/filesystems/path-lookup.txt for more details.
1853 	 */
1854 	hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
1855 		unsigned seq;
1856 
1857 seqretry:
1858 		/*
1859 		 * The dentry sequence count protects us from concurrent
1860 		 * renames, and thus protects inode, parent and name fields.
1861 		 *
1862 		 * The caller must perform a seqcount check in order
1863 		 * to do anything useful with the returned dentry,
1864 		 * including using the 'd_inode' pointer.
1865 		 *
1866 		 * NOTE! We do a "raw" seqcount_begin here. That means that
1867 		 * we don't wait for the sequence count to stabilize if it
1868 		 * is in the middle of a sequence change. If we do the slow
1869 		 * dentry compare, we will do seqretries until it is stable,
1870 		 * and if we end up with a successful lookup, we actually
1871 		 * want to exit RCU lookup anyway.
1872 		 */
1873 		seq = raw_seqcount_begin(&dentry->d_seq);
1874 		if (dentry->d_parent != parent)
1875 			continue;
1876 		if (d_unhashed(dentry))
1877 			continue;
1878 		*seqp = seq;
1879 
1880 		if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) {
1881 			if (dentry->d_name.hash != hashlen_hash(hashlen))
1882 				continue;
1883 			switch (slow_dentry_cmp(parent, inode, dentry, seq, name)) {
1884 			case D_COMP_OK:
1885 				return dentry;
1886 			case D_COMP_NOMATCH:
1887 				continue;
1888 			default:
1889 				goto seqretry;
1890 			}
1891 		}
1892 
1893 		if (dentry->d_name.hash_len != hashlen)
1894 			continue;
1895 		if (!dentry_cmp(dentry, str, hashlen_len(hashlen)))
1896 			return dentry;
1897 	}
1898 	return NULL;
1899 }
1900 
1901 /**
1902  * d_lookup - search for a dentry
1903  * @parent: parent dentry
1904  * @name: qstr of name we wish to find
1905  * Returns: dentry, or NULL
1906  *
1907  * d_lookup searches the children of the parent dentry for the name in
1908  * question. If the dentry is found its reference count is incremented and the
1909  * dentry is returned. The caller must use dput to free the entry when it has
1910  * finished using it. %NULL is returned if the dentry does not exist.
1911  */
1912 struct dentry *d_lookup(struct dentry *parent, struct qstr *name)
1913 {
1914 	struct dentry *dentry;
1915 	unsigned seq;
1916 
1917         do {
1918                 seq = read_seqbegin(&rename_lock);
1919                 dentry = __d_lookup(parent, name);
1920                 if (dentry)
1921 			break;
1922 	} while (read_seqretry(&rename_lock, seq));
1923 	return dentry;
1924 }
1925 EXPORT_SYMBOL(d_lookup);
1926 
1927 /**
1928  * __d_lookup - search for a dentry (racy)
1929  * @parent: parent dentry
1930  * @name: qstr of name we wish to find
1931  * Returns: dentry, or NULL
1932  *
1933  * __d_lookup is like d_lookup, however it may (rarely) return a
1934  * false-negative result due to unrelated rename activity.
1935  *
1936  * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
1937  * however it must be used carefully, eg. with a following d_lookup in
1938  * the case of failure.
1939  *
1940  * __d_lookup callers must be commented.
1941  */
1942 struct dentry *__d_lookup(struct dentry *parent, struct qstr *name)
1943 {
1944 	unsigned int len = name->len;
1945 	unsigned int hash = name->hash;
1946 	const unsigned char *str = name->name;
1947 	struct hlist_bl_head *b = d_hash(parent, hash);
1948 	struct hlist_bl_node *node;
1949 	struct dentry *found = NULL;
1950 	struct dentry *dentry;
1951 
1952 	/*
1953 	 * Note: There is significant duplication with __d_lookup_rcu which is
1954 	 * required to prevent single threaded performance regressions
1955 	 * especially on architectures where smp_rmb (in seqcounts) are costly.
1956 	 * Keep the two functions in sync.
1957 	 */
1958 
1959 	/*
1960 	 * The hash list is protected using RCU.
1961 	 *
1962 	 * Take d_lock when comparing a candidate dentry, to avoid races
1963 	 * with d_move().
1964 	 *
1965 	 * It is possible that concurrent renames can mess up our list
1966 	 * walk here and result in missing our dentry, resulting in the
1967 	 * false-negative result. d_lookup() protects against concurrent
1968 	 * renames using rename_lock seqlock.
1969 	 *
1970 	 * See Documentation/filesystems/path-lookup.txt for more details.
1971 	 */
1972 	rcu_read_lock();
1973 
1974 	hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
1975 
1976 		if (dentry->d_name.hash != hash)
1977 			continue;
1978 
1979 		spin_lock(&dentry->d_lock);
1980 		if (dentry->d_parent != parent)
1981 			goto next;
1982 		if (d_unhashed(dentry))
1983 			goto next;
1984 
1985 		/*
1986 		 * It is safe to compare names since d_move() cannot
1987 		 * change the qstr (protected by d_lock).
1988 		 */
1989 		if (parent->d_flags & DCACHE_OP_COMPARE) {
1990 			int tlen = dentry->d_name.len;
1991 			const char *tname = dentry->d_name.name;
1992 			if (parent->d_op->d_compare(parent, parent->d_inode,
1993 						dentry, dentry->d_inode,
1994 						tlen, tname, name))
1995 				goto next;
1996 		} else {
1997 			if (dentry->d_name.len != len)
1998 				goto next;
1999 			if (dentry_cmp(dentry, str, len))
2000 				goto next;
2001 		}
2002 
2003 		dentry->d_count++;
2004 		found = dentry;
2005 		spin_unlock(&dentry->d_lock);
2006 		break;
2007 next:
2008 		spin_unlock(&dentry->d_lock);
2009  	}
2010  	rcu_read_unlock();
2011 
2012  	return found;
2013 }
2014 
2015 /**
2016  * d_hash_and_lookup - hash the qstr then search for a dentry
2017  * @dir: Directory to search in
2018  * @name: qstr of name we wish to find
2019  *
2020  * On hash failure or on lookup failure NULL is returned.
2021  */
2022 struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
2023 {
2024 	struct dentry *dentry = NULL;
2025 
2026 	/*
2027 	 * Check for a fs-specific hash function. Note that we must
2028 	 * calculate the standard hash first, as the d_op->d_hash()
2029 	 * routine may choose to leave the hash value unchanged.
2030 	 */
2031 	name->hash = full_name_hash(name->name, name->len);
2032 	if (dir->d_flags & DCACHE_OP_HASH) {
2033 		if (dir->d_op->d_hash(dir, dir->d_inode, name) < 0)
2034 			goto out;
2035 	}
2036 	dentry = d_lookup(dir, name);
2037 out:
2038 	return dentry;
2039 }
2040 
2041 /**
2042  * d_validate - verify dentry provided from insecure source (deprecated)
2043  * @dentry: The dentry alleged to be valid child of @dparent
2044  * @dparent: The parent dentry (known to be valid)
2045  *
2046  * An insecure source has sent us a dentry, here we verify it and dget() it.
2047  * This is used by ncpfs in its readdir implementation.
2048  * Zero is returned in the dentry is invalid.
2049  *
2050  * This function is slow for big directories, and deprecated, do not use it.
2051  */
2052 int d_validate(struct dentry *dentry, struct dentry *dparent)
2053 {
2054 	struct dentry *child;
2055 
2056 	spin_lock(&dparent->d_lock);
2057 	list_for_each_entry(child, &dparent->d_subdirs, d_u.d_child) {
2058 		if (dentry == child) {
2059 			spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
2060 			__dget_dlock(dentry);
2061 			spin_unlock(&dentry->d_lock);
2062 			spin_unlock(&dparent->d_lock);
2063 			return 1;
2064 		}
2065 	}
2066 	spin_unlock(&dparent->d_lock);
2067 
2068 	return 0;
2069 }
2070 EXPORT_SYMBOL(d_validate);
2071 
2072 /*
2073  * When a file is deleted, we have two options:
2074  * - turn this dentry into a negative dentry
2075  * - unhash this dentry and free it.
2076  *
2077  * Usually, we want to just turn this into
2078  * a negative dentry, but if anybody else is
2079  * currently using the dentry or the inode
2080  * we can't do that and we fall back on removing
2081  * it from the hash queues and waiting for
2082  * it to be deleted later when it has no users
2083  */
2084 
2085 /**
2086  * d_delete - delete a dentry
2087  * @dentry: The dentry to delete
2088  *
2089  * Turn the dentry into a negative dentry if possible, otherwise
2090  * remove it from the hash queues so it can be deleted later
2091  */
2092 
2093 void d_delete(struct dentry * dentry)
2094 {
2095 	struct inode *inode;
2096 	int isdir = 0;
2097 	/*
2098 	 * Are we the only user?
2099 	 */
2100 again:
2101 	spin_lock(&dentry->d_lock);
2102 	inode = dentry->d_inode;
2103 	isdir = S_ISDIR(inode->i_mode);
2104 	if (dentry->d_count == 1) {
2105 		if (inode && !spin_trylock(&inode->i_lock)) {
2106 			spin_unlock(&dentry->d_lock);
2107 			cpu_relax();
2108 			goto again;
2109 		}
2110 		dentry->d_flags &= ~DCACHE_CANT_MOUNT;
2111 		dentry_unlink_inode(dentry);
2112 		fsnotify_nameremove(dentry, isdir);
2113 		return;
2114 	}
2115 
2116 	if (!d_unhashed(dentry))
2117 		__d_drop(dentry);
2118 
2119 	spin_unlock(&dentry->d_lock);
2120 
2121 	fsnotify_nameremove(dentry, isdir);
2122 }
2123 EXPORT_SYMBOL(d_delete);
2124 
2125 static void __d_rehash(struct dentry * entry, struct hlist_bl_head *b)
2126 {
2127 	BUG_ON(!d_unhashed(entry));
2128 	hlist_bl_lock(b);
2129 	entry->d_flags |= DCACHE_RCUACCESS;
2130 	hlist_bl_add_head_rcu(&entry->d_hash, b);
2131 	hlist_bl_unlock(b);
2132 }
2133 
2134 static void _d_rehash(struct dentry * entry)
2135 {
2136 	__d_rehash(entry, d_hash(entry->d_parent, entry->d_name.hash));
2137 }
2138 
2139 /**
2140  * d_rehash	- add an entry back to the hash
2141  * @entry: dentry to add to the hash
2142  *
2143  * Adds a dentry to the hash according to its name.
2144  */
2145 
2146 void d_rehash(struct dentry * entry)
2147 {
2148 	spin_lock(&entry->d_lock);
2149 	_d_rehash(entry);
2150 	spin_unlock(&entry->d_lock);
2151 }
2152 EXPORT_SYMBOL(d_rehash);
2153 
2154 /**
2155  * dentry_update_name_case - update case insensitive dentry with a new name
2156  * @dentry: dentry to be updated
2157  * @name: new name
2158  *
2159  * Update a case insensitive dentry with new case of name.
2160  *
2161  * dentry must have been returned by d_lookup with name @name. Old and new
2162  * name lengths must match (ie. no d_compare which allows mismatched name
2163  * lengths).
2164  *
2165  * Parent inode i_mutex must be held over d_lookup and into this call (to
2166  * keep renames and concurrent inserts, and readdir(2) away).
2167  */
2168 void dentry_update_name_case(struct dentry *dentry, struct qstr *name)
2169 {
2170 	BUG_ON(!mutex_is_locked(&dentry->d_parent->d_inode->i_mutex));
2171 	BUG_ON(dentry->d_name.len != name->len); /* d_lookup gives this */
2172 
2173 	spin_lock(&dentry->d_lock);
2174 	write_seqcount_begin(&dentry->d_seq);
2175 	memcpy((unsigned char *)dentry->d_name.name, name->name, name->len);
2176 	write_seqcount_end(&dentry->d_seq);
2177 	spin_unlock(&dentry->d_lock);
2178 }
2179 EXPORT_SYMBOL(dentry_update_name_case);
2180 
2181 static void switch_names(struct dentry *dentry, struct dentry *target)
2182 {
2183 	if (dname_external(target)) {
2184 		if (dname_external(dentry)) {
2185 			/*
2186 			 * Both external: swap the pointers
2187 			 */
2188 			swap(target->d_name.name, dentry->d_name.name);
2189 		} else {
2190 			/*
2191 			 * dentry:internal, target:external.  Steal target's
2192 			 * storage and make target internal.
2193 			 */
2194 			memcpy(target->d_iname, dentry->d_name.name,
2195 					dentry->d_name.len + 1);
2196 			dentry->d_name.name = target->d_name.name;
2197 			target->d_name.name = target->d_iname;
2198 		}
2199 	} else {
2200 		if (dname_external(dentry)) {
2201 			/*
2202 			 * dentry:external, target:internal.  Give dentry's
2203 			 * storage to target and make dentry internal
2204 			 */
2205 			memcpy(dentry->d_iname, target->d_name.name,
2206 					target->d_name.len + 1);
2207 			target->d_name.name = dentry->d_name.name;
2208 			dentry->d_name.name = dentry->d_iname;
2209 		} else {
2210 			/*
2211 			 * Both are internal.  Just copy target to dentry
2212 			 */
2213 			memcpy(dentry->d_iname, target->d_name.name,
2214 					target->d_name.len + 1);
2215 			dentry->d_name.len = target->d_name.len;
2216 			return;
2217 		}
2218 	}
2219 	swap(dentry->d_name.len, target->d_name.len);
2220 }
2221 
2222 static void dentry_lock_for_move(struct dentry *dentry, struct dentry *target)
2223 {
2224 	/*
2225 	 * XXXX: do we really need to take target->d_lock?
2226 	 */
2227 	if (IS_ROOT(dentry) || dentry->d_parent == target->d_parent)
2228 		spin_lock(&target->d_parent->d_lock);
2229 	else {
2230 		if (d_ancestor(dentry->d_parent, target->d_parent)) {
2231 			spin_lock(&dentry->d_parent->d_lock);
2232 			spin_lock_nested(&target->d_parent->d_lock,
2233 						DENTRY_D_LOCK_NESTED);
2234 		} else {
2235 			spin_lock(&target->d_parent->d_lock);
2236 			spin_lock_nested(&dentry->d_parent->d_lock,
2237 						DENTRY_D_LOCK_NESTED);
2238 		}
2239 	}
2240 	if (target < dentry) {
2241 		spin_lock_nested(&target->d_lock, 2);
2242 		spin_lock_nested(&dentry->d_lock, 3);
2243 	} else {
2244 		spin_lock_nested(&dentry->d_lock, 2);
2245 		spin_lock_nested(&target->d_lock, 3);
2246 	}
2247 }
2248 
2249 static void dentry_unlock_parents_for_move(struct dentry *dentry,
2250 					struct dentry *target)
2251 {
2252 	if (target->d_parent != dentry->d_parent)
2253 		spin_unlock(&dentry->d_parent->d_lock);
2254 	if (target->d_parent != target)
2255 		spin_unlock(&target->d_parent->d_lock);
2256 }
2257 
2258 /*
2259  * When switching names, the actual string doesn't strictly have to
2260  * be preserved in the target - because we're dropping the target
2261  * anyway. As such, we can just do a simple memcpy() to copy over
2262  * the new name before we switch.
2263  *
2264  * Note that we have to be a lot more careful about getting the hash
2265  * switched - we have to switch the hash value properly even if it
2266  * then no longer matches the actual (corrupted) string of the target.
2267  * The hash value has to match the hash queue that the dentry is on..
2268  */
2269 /*
2270  * __d_move - move a dentry
2271  * @dentry: entry to move
2272  * @target: new dentry
2273  *
2274  * Update the dcache to reflect the move of a file name. Negative
2275  * dcache entries should not be moved in this way. Caller must hold
2276  * rename_lock, the i_mutex of the source and target directories,
2277  * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
2278  */
2279 static void __d_move(struct dentry * dentry, struct dentry * target)
2280 {
2281 	if (!dentry->d_inode)
2282 		printk(KERN_WARNING "VFS: moving negative dcache entry\n");
2283 
2284 	BUG_ON(d_ancestor(dentry, target));
2285 	BUG_ON(d_ancestor(target, dentry));
2286 
2287 	dentry_lock_for_move(dentry, target);
2288 
2289 	write_seqcount_begin(&dentry->d_seq);
2290 	write_seqcount_begin(&target->d_seq);
2291 
2292 	/* __d_drop does write_seqcount_barrier, but they're OK to nest. */
2293 
2294 	/*
2295 	 * Move the dentry to the target hash queue. Don't bother checking
2296 	 * for the same hash queue because of how unlikely it is.
2297 	 */
2298 	__d_drop(dentry);
2299 	__d_rehash(dentry, d_hash(target->d_parent, target->d_name.hash));
2300 
2301 	/* Unhash the target: dput() will then get rid of it */
2302 	__d_drop(target);
2303 
2304 	list_del(&dentry->d_u.d_child);
2305 	list_del(&target->d_u.d_child);
2306 
2307 	/* Switch the names.. */
2308 	switch_names(dentry, target);
2309 	swap(dentry->d_name.hash, target->d_name.hash);
2310 
2311 	/* ... and switch the parents */
2312 	if (IS_ROOT(dentry)) {
2313 		dentry->d_parent = target->d_parent;
2314 		target->d_parent = target;
2315 		INIT_LIST_HEAD(&target->d_u.d_child);
2316 	} else {
2317 		swap(dentry->d_parent, target->d_parent);
2318 
2319 		/* And add them back to the (new) parent lists */
2320 		list_add(&target->d_u.d_child, &target->d_parent->d_subdirs);
2321 	}
2322 
2323 	list_add(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs);
2324 
2325 	write_seqcount_end(&target->d_seq);
2326 	write_seqcount_end(&dentry->d_seq);
2327 
2328 	dentry_unlock_parents_for_move(dentry, target);
2329 	spin_unlock(&target->d_lock);
2330 	fsnotify_d_move(dentry);
2331 	spin_unlock(&dentry->d_lock);
2332 }
2333 
2334 /*
2335  * d_move - move a dentry
2336  * @dentry: entry to move
2337  * @target: new dentry
2338  *
2339  * Update the dcache to reflect the move of a file name. Negative
2340  * dcache entries should not be moved in this way. See the locking
2341  * requirements for __d_move.
2342  */
2343 void d_move(struct dentry *dentry, struct dentry *target)
2344 {
2345 	write_seqlock(&rename_lock);
2346 	__d_move(dentry, target);
2347 	write_sequnlock(&rename_lock);
2348 }
2349 EXPORT_SYMBOL(d_move);
2350 
2351 /**
2352  * d_ancestor - search for an ancestor
2353  * @p1: ancestor dentry
2354  * @p2: child dentry
2355  *
2356  * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2357  * an ancestor of p2, else NULL.
2358  */
2359 struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
2360 {
2361 	struct dentry *p;
2362 
2363 	for (p = p2; !IS_ROOT(p); p = p->d_parent) {
2364 		if (p->d_parent == p1)
2365 			return p;
2366 	}
2367 	return NULL;
2368 }
2369 
2370 /*
2371  * This helper attempts to cope with remotely renamed directories
2372  *
2373  * It assumes that the caller is already holding
2374  * dentry->d_parent->d_inode->i_mutex, inode->i_lock and rename_lock
2375  *
2376  * Note: If ever the locking in lock_rename() changes, then please
2377  * remember to update this too...
2378  */
2379 static struct dentry *__d_unalias(struct inode *inode,
2380 		struct dentry *dentry, struct dentry *alias)
2381 {
2382 	struct mutex *m1 = NULL, *m2 = NULL;
2383 	struct dentry *ret;
2384 
2385 	/* If alias and dentry share a parent, then no extra locks required */
2386 	if (alias->d_parent == dentry->d_parent)
2387 		goto out_unalias;
2388 
2389 	/* See lock_rename() */
2390 	ret = ERR_PTR(-EBUSY);
2391 	if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
2392 		goto out_err;
2393 	m1 = &dentry->d_sb->s_vfs_rename_mutex;
2394 	if (!mutex_trylock(&alias->d_parent->d_inode->i_mutex))
2395 		goto out_err;
2396 	m2 = &alias->d_parent->d_inode->i_mutex;
2397 out_unalias:
2398 	__d_move(alias, dentry);
2399 	ret = alias;
2400 out_err:
2401 	spin_unlock(&inode->i_lock);
2402 	if (m2)
2403 		mutex_unlock(m2);
2404 	if (m1)
2405 		mutex_unlock(m1);
2406 	return ret;
2407 }
2408 
2409 /*
2410  * Prepare an anonymous dentry for life in the superblock's dentry tree as a
2411  * named dentry in place of the dentry to be replaced.
2412  * returns with anon->d_lock held!
2413  */
2414 static void __d_materialise_dentry(struct dentry *dentry, struct dentry *anon)
2415 {
2416 	struct dentry *dparent, *aparent;
2417 
2418 	dentry_lock_for_move(anon, dentry);
2419 
2420 	write_seqcount_begin(&dentry->d_seq);
2421 	write_seqcount_begin(&anon->d_seq);
2422 
2423 	dparent = dentry->d_parent;
2424 	aparent = anon->d_parent;
2425 
2426 	switch_names(dentry, anon);
2427 	swap(dentry->d_name.hash, anon->d_name.hash);
2428 
2429 	dentry->d_parent = (aparent == anon) ? dentry : aparent;
2430 	list_del(&dentry->d_u.d_child);
2431 	if (!IS_ROOT(dentry))
2432 		list_add(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs);
2433 	else
2434 		INIT_LIST_HEAD(&dentry->d_u.d_child);
2435 
2436 	anon->d_parent = (dparent == dentry) ? anon : dparent;
2437 	list_del(&anon->d_u.d_child);
2438 	if (!IS_ROOT(anon))
2439 		list_add(&anon->d_u.d_child, &anon->d_parent->d_subdirs);
2440 	else
2441 		INIT_LIST_HEAD(&anon->d_u.d_child);
2442 
2443 	write_seqcount_end(&dentry->d_seq);
2444 	write_seqcount_end(&anon->d_seq);
2445 
2446 	dentry_unlock_parents_for_move(anon, dentry);
2447 	spin_unlock(&dentry->d_lock);
2448 
2449 	/* anon->d_lock still locked, returns locked */
2450 	anon->d_flags &= ~DCACHE_DISCONNECTED;
2451 }
2452 
2453 /**
2454  * d_materialise_unique - introduce an inode into the tree
2455  * @dentry: candidate dentry
2456  * @inode: inode to bind to the dentry, to which aliases may be attached
2457  *
2458  * Introduces an dentry into the tree, substituting an extant disconnected
2459  * root directory alias in its place if there is one. Caller must hold the
2460  * i_mutex of the parent directory.
2461  */
2462 struct dentry *d_materialise_unique(struct dentry *dentry, struct inode *inode)
2463 {
2464 	struct dentry *actual;
2465 
2466 	BUG_ON(!d_unhashed(dentry));
2467 
2468 	if (!inode) {
2469 		actual = dentry;
2470 		__d_instantiate(dentry, NULL);
2471 		d_rehash(actual);
2472 		goto out_nolock;
2473 	}
2474 
2475 	spin_lock(&inode->i_lock);
2476 
2477 	if (S_ISDIR(inode->i_mode)) {
2478 		struct dentry *alias;
2479 
2480 		/* Does an aliased dentry already exist? */
2481 		alias = __d_find_alias(inode);
2482 		if (alias) {
2483 			actual = alias;
2484 			write_seqlock(&rename_lock);
2485 
2486 			if (d_ancestor(alias, dentry)) {
2487 				/* Check for loops */
2488 				actual = ERR_PTR(-ELOOP);
2489 				spin_unlock(&inode->i_lock);
2490 			} else if (IS_ROOT(alias)) {
2491 				/* Is this an anonymous mountpoint that we
2492 				 * could splice into our tree? */
2493 				__d_materialise_dentry(dentry, alias);
2494 				write_sequnlock(&rename_lock);
2495 				__d_drop(alias);
2496 				goto found;
2497 			} else {
2498 				/* Nope, but we must(!) avoid directory
2499 				 * aliasing. This drops inode->i_lock */
2500 				actual = __d_unalias(inode, dentry, alias);
2501 			}
2502 			write_sequnlock(&rename_lock);
2503 			if (IS_ERR(actual)) {
2504 				if (PTR_ERR(actual) == -ELOOP)
2505 					pr_warn_ratelimited(
2506 						"VFS: Lookup of '%s' in %s %s"
2507 						" would have caused loop\n",
2508 						dentry->d_name.name,
2509 						inode->i_sb->s_type->name,
2510 						inode->i_sb->s_id);
2511 				dput(alias);
2512 			}
2513 			goto out_nolock;
2514 		}
2515 	}
2516 
2517 	/* Add a unique reference */
2518 	actual = __d_instantiate_unique(dentry, inode);
2519 	if (!actual)
2520 		actual = dentry;
2521 	else
2522 		BUG_ON(!d_unhashed(actual));
2523 
2524 	spin_lock(&actual->d_lock);
2525 found:
2526 	_d_rehash(actual);
2527 	spin_unlock(&actual->d_lock);
2528 	spin_unlock(&inode->i_lock);
2529 out_nolock:
2530 	if (actual == dentry) {
2531 		security_d_instantiate(dentry, inode);
2532 		return NULL;
2533 	}
2534 
2535 	iput(inode);
2536 	return actual;
2537 }
2538 EXPORT_SYMBOL_GPL(d_materialise_unique);
2539 
2540 static int prepend(char **buffer, int *buflen, const char *str, int namelen)
2541 {
2542 	*buflen -= namelen;
2543 	if (*buflen < 0)
2544 		return -ENAMETOOLONG;
2545 	*buffer -= namelen;
2546 	memcpy(*buffer, str, namelen);
2547 	return 0;
2548 }
2549 
2550 static int prepend_name(char **buffer, int *buflen, struct qstr *name)
2551 {
2552 	return prepend(buffer, buflen, name->name, name->len);
2553 }
2554 
2555 /**
2556  * prepend_path - Prepend path string to a buffer
2557  * @path: the dentry/vfsmount to report
2558  * @root: root vfsmnt/dentry
2559  * @buffer: pointer to the end of the buffer
2560  * @buflen: pointer to buffer length
2561  *
2562  * Caller holds the rename_lock.
2563  */
2564 static int prepend_path(const struct path *path,
2565 			const struct path *root,
2566 			char **buffer, int *buflen)
2567 {
2568 	struct dentry *dentry = path->dentry;
2569 	struct vfsmount *vfsmnt = path->mnt;
2570 	struct mount *mnt = real_mount(vfsmnt);
2571 	bool slash = false;
2572 	int error = 0;
2573 
2574 	br_read_lock(&vfsmount_lock);
2575 	while (dentry != root->dentry || vfsmnt != root->mnt) {
2576 		struct dentry * parent;
2577 
2578 		if (dentry == vfsmnt->mnt_root || IS_ROOT(dentry)) {
2579 			/* Global root? */
2580 			if (!mnt_has_parent(mnt))
2581 				goto global_root;
2582 			dentry = mnt->mnt_mountpoint;
2583 			mnt = mnt->mnt_parent;
2584 			vfsmnt = &mnt->mnt;
2585 			continue;
2586 		}
2587 		parent = dentry->d_parent;
2588 		prefetch(parent);
2589 		spin_lock(&dentry->d_lock);
2590 		error = prepend_name(buffer, buflen, &dentry->d_name);
2591 		spin_unlock(&dentry->d_lock);
2592 		if (!error)
2593 			error = prepend(buffer, buflen, "/", 1);
2594 		if (error)
2595 			break;
2596 
2597 		slash = true;
2598 		dentry = parent;
2599 	}
2600 
2601 	if (!error && !slash)
2602 		error = prepend(buffer, buflen, "/", 1);
2603 
2604 out:
2605 	br_read_unlock(&vfsmount_lock);
2606 	return error;
2607 
2608 global_root:
2609 	/*
2610 	 * Filesystems needing to implement special "root names"
2611 	 * should do so with ->d_dname()
2612 	 */
2613 	if (IS_ROOT(dentry) &&
2614 	    (dentry->d_name.len != 1 || dentry->d_name.name[0] != '/')) {
2615 		WARN(1, "Root dentry has weird name <%.*s>\n",
2616 		     (int) dentry->d_name.len, dentry->d_name.name);
2617 	}
2618 	if (!slash)
2619 		error = prepend(buffer, buflen, "/", 1);
2620 	if (!error)
2621 		error = real_mount(vfsmnt)->mnt_ns ? 1 : 2;
2622 	goto out;
2623 }
2624 
2625 /**
2626  * __d_path - return the path of a dentry
2627  * @path: the dentry/vfsmount to report
2628  * @root: root vfsmnt/dentry
2629  * @buf: buffer to return value in
2630  * @buflen: buffer length
2631  *
2632  * Convert a dentry into an ASCII path name.
2633  *
2634  * Returns a pointer into the buffer or an error code if the
2635  * path was too long.
2636  *
2637  * "buflen" should be positive.
2638  *
2639  * If the path is not reachable from the supplied root, return %NULL.
2640  */
2641 char *__d_path(const struct path *path,
2642 	       const struct path *root,
2643 	       char *buf, int buflen)
2644 {
2645 	char *res = buf + buflen;
2646 	int error;
2647 
2648 	prepend(&res, &buflen, "\0", 1);
2649 	write_seqlock(&rename_lock);
2650 	error = prepend_path(path, root, &res, &buflen);
2651 	write_sequnlock(&rename_lock);
2652 
2653 	if (error < 0)
2654 		return ERR_PTR(error);
2655 	if (error > 0)
2656 		return NULL;
2657 	return res;
2658 }
2659 
2660 char *d_absolute_path(const struct path *path,
2661 	       char *buf, int buflen)
2662 {
2663 	struct path root = {};
2664 	char *res = buf + buflen;
2665 	int error;
2666 
2667 	prepend(&res, &buflen, "\0", 1);
2668 	write_seqlock(&rename_lock);
2669 	error = prepend_path(path, &root, &res, &buflen);
2670 	write_sequnlock(&rename_lock);
2671 
2672 	if (error > 1)
2673 		error = -EINVAL;
2674 	if (error < 0)
2675 		return ERR_PTR(error);
2676 	return res;
2677 }
2678 
2679 /*
2680  * same as __d_path but appends "(deleted)" for unlinked files.
2681  */
2682 static int path_with_deleted(const struct path *path,
2683 			     const struct path *root,
2684 			     char **buf, int *buflen)
2685 {
2686 	prepend(buf, buflen, "\0", 1);
2687 	if (d_unlinked(path->dentry)) {
2688 		int error = prepend(buf, buflen, " (deleted)", 10);
2689 		if (error)
2690 			return error;
2691 	}
2692 
2693 	return prepend_path(path, root, buf, buflen);
2694 }
2695 
2696 static int prepend_unreachable(char **buffer, int *buflen)
2697 {
2698 	return prepend(buffer, buflen, "(unreachable)", 13);
2699 }
2700 
2701 /**
2702  * d_path - return the path of a dentry
2703  * @path: path to report
2704  * @buf: buffer to return value in
2705  * @buflen: buffer length
2706  *
2707  * Convert a dentry into an ASCII path name. If the entry has been deleted
2708  * the string " (deleted)" is appended. Note that this is ambiguous.
2709  *
2710  * Returns a pointer into the buffer or an error code if the path was
2711  * too long. Note: Callers should use the returned pointer, not the passed
2712  * in buffer, to use the name! The implementation often starts at an offset
2713  * into the buffer, and may leave 0 bytes at the start.
2714  *
2715  * "buflen" should be positive.
2716  */
2717 char *d_path(const struct path *path, char *buf, int buflen)
2718 {
2719 	char *res = buf + buflen;
2720 	struct path root;
2721 	int error;
2722 
2723 	/*
2724 	 * We have various synthetic filesystems that never get mounted.  On
2725 	 * these filesystems dentries are never used for lookup purposes, and
2726 	 * thus don't need to be hashed.  They also don't need a name until a
2727 	 * user wants to identify the object in /proc/pid/fd/.  The little hack
2728 	 * below allows us to generate a name for these objects on demand:
2729 	 */
2730 	if (path->dentry->d_op && path->dentry->d_op->d_dname)
2731 		return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
2732 
2733 	get_fs_root(current->fs, &root);
2734 	write_seqlock(&rename_lock);
2735 	error = path_with_deleted(path, &root, &res, &buflen);
2736 	if (error < 0)
2737 		res = ERR_PTR(error);
2738 	write_sequnlock(&rename_lock);
2739 	path_put(&root);
2740 	return res;
2741 }
2742 EXPORT_SYMBOL(d_path);
2743 
2744 /**
2745  * d_path_with_unreachable - return the path of a dentry
2746  * @path: path to report
2747  * @buf: buffer to return value in
2748  * @buflen: buffer length
2749  *
2750  * The difference from d_path() is that this prepends "(unreachable)"
2751  * to paths which are unreachable from the current process' root.
2752  */
2753 char *d_path_with_unreachable(const struct path *path, char *buf, int buflen)
2754 {
2755 	char *res = buf + buflen;
2756 	struct path root;
2757 	int error;
2758 
2759 	if (path->dentry->d_op && path->dentry->d_op->d_dname)
2760 		return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
2761 
2762 	get_fs_root(current->fs, &root);
2763 	write_seqlock(&rename_lock);
2764 	error = path_with_deleted(path, &root, &res, &buflen);
2765 	if (error > 0)
2766 		error = prepend_unreachable(&res, &buflen);
2767 	write_sequnlock(&rename_lock);
2768 	path_put(&root);
2769 	if (error)
2770 		res =  ERR_PTR(error);
2771 
2772 	return res;
2773 }
2774 
2775 /*
2776  * Helper function for dentry_operations.d_dname() members
2777  */
2778 char *dynamic_dname(struct dentry *dentry, char *buffer, int buflen,
2779 			const char *fmt, ...)
2780 {
2781 	va_list args;
2782 	char temp[64];
2783 	int sz;
2784 
2785 	va_start(args, fmt);
2786 	sz = vsnprintf(temp, sizeof(temp), fmt, args) + 1;
2787 	va_end(args);
2788 
2789 	if (sz > sizeof(temp) || sz > buflen)
2790 		return ERR_PTR(-ENAMETOOLONG);
2791 
2792 	buffer += buflen - sz;
2793 	return memcpy(buffer, temp, sz);
2794 }
2795 
2796 /*
2797  * Write full pathname from the root of the filesystem into the buffer.
2798  */
2799 static char *__dentry_path(struct dentry *dentry, char *buf, int buflen)
2800 {
2801 	char *end = buf + buflen;
2802 	char *retval;
2803 
2804 	prepend(&end, &buflen, "\0", 1);
2805 	if (buflen < 1)
2806 		goto Elong;
2807 	/* Get '/' right */
2808 	retval = end-1;
2809 	*retval = '/';
2810 
2811 	while (!IS_ROOT(dentry)) {
2812 		struct dentry *parent = dentry->d_parent;
2813 		int error;
2814 
2815 		prefetch(parent);
2816 		spin_lock(&dentry->d_lock);
2817 		error = prepend_name(&end, &buflen, &dentry->d_name);
2818 		spin_unlock(&dentry->d_lock);
2819 		if (error != 0 || prepend(&end, &buflen, "/", 1) != 0)
2820 			goto Elong;
2821 
2822 		retval = end;
2823 		dentry = parent;
2824 	}
2825 	return retval;
2826 Elong:
2827 	return ERR_PTR(-ENAMETOOLONG);
2828 }
2829 
2830 char *dentry_path_raw(struct dentry *dentry, char *buf, int buflen)
2831 {
2832 	char *retval;
2833 
2834 	write_seqlock(&rename_lock);
2835 	retval = __dentry_path(dentry, buf, buflen);
2836 	write_sequnlock(&rename_lock);
2837 
2838 	return retval;
2839 }
2840 EXPORT_SYMBOL(dentry_path_raw);
2841 
2842 char *dentry_path(struct dentry *dentry, char *buf, int buflen)
2843 {
2844 	char *p = NULL;
2845 	char *retval;
2846 
2847 	write_seqlock(&rename_lock);
2848 	if (d_unlinked(dentry)) {
2849 		p = buf + buflen;
2850 		if (prepend(&p, &buflen, "//deleted", 10) != 0)
2851 			goto Elong;
2852 		buflen++;
2853 	}
2854 	retval = __dentry_path(dentry, buf, buflen);
2855 	write_sequnlock(&rename_lock);
2856 	if (!IS_ERR(retval) && p)
2857 		*p = '/';	/* restore '/' overriden with '\0' */
2858 	return retval;
2859 Elong:
2860 	return ERR_PTR(-ENAMETOOLONG);
2861 }
2862 
2863 /*
2864  * NOTE! The user-level library version returns a
2865  * character pointer. The kernel system call just
2866  * returns the length of the buffer filled (which
2867  * includes the ending '\0' character), or a negative
2868  * error value. So libc would do something like
2869  *
2870  *	char *getcwd(char * buf, size_t size)
2871  *	{
2872  *		int retval;
2873  *
2874  *		retval = sys_getcwd(buf, size);
2875  *		if (retval >= 0)
2876  *			return buf;
2877  *		errno = -retval;
2878  *		return NULL;
2879  *	}
2880  */
2881 SYSCALL_DEFINE2(getcwd, char __user *, buf, unsigned long, size)
2882 {
2883 	int error;
2884 	struct path pwd, root;
2885 	char *page = (char *) __get_free_page(GFP_USER);
2886 
2887 	if (!page)
2888 		return -ENOMEM;
2889 
2890 	get_fs_root_and_pwd(current->fs, &root, &pwd);
2891 
2892 	error = -ENOENT;
2893 	write_seqlock(&rename_lock);
2894 	if (!d_unlinked(pwd.dentry)) {
2895 		unsigned long len;
2896 		char *cwd = page + PAGE_SIZE;
2897 		int buflen = PAGE_SIZE;
2898 
2899 		prepend(&cwd, &buflen, "\0", 1);
2900 		error = prepend_path(&pwd, &root, &cwd, &buflen);
2901 		write_sequnlock(&rename_lock);
2902 
2903 		if (error < 0)
2904 			goto out;
2905 
2906 		/* Unreachable from current root */
2907 		if (error > 0) {
2908 			error = prepend_unreachable(&cwd, &buflen);
2909 			if (error)
2910 				goto out;
2911 		}
2912 
2913 		error = -ERANGE;
2914 		len = PAGE_SIZE + page - cwd;
2915 		if (len <= size) {
2916 			error = len;
2917 			if (copy_to_user(buf, cwd, len))
2918 				error = -EFAULT;
2919 		}
2920 	} else {
2921 		write_sequnlock(&rename_lock);
2922 	}
2923 
2924 out:
2925 	path_put(&pwd);
2926 	path_put(&root);
2927 	free_page((unsigned long) page);
2928 	return error;
2929 }
2930 
2931 /*
2932  * Test whether new_dentry is a subdirectory of old_dentry.
2933  *
2934  * Trivially implemented using the dcache structure
2935  */
2936 
2937 /**
2938  * is_subdir - is new dentry a subdirectory of old_dentry
2939  * @new_dentry: new dentry
2940  * @old_dentry: old dentry
2941  *
2942  * Returns 1 if new_dentry is a subdirectory of the parent (at any depth).
2943  * Returns 0 otherwise.
2944  * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
2945  */
2946 
2947 int is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
2948 {
2949 	int result;
2950 	unsigned seq;
2951 
2952 	if (new_dentry == old_dentry)
2953 		return 1;
2954 
2955 	do {
2956 		/* for restarting inner loop in case of seq retry */
2957 		seq = read_seqbegin(&rename_lock);
2958 		/*
2959 		 * Need rcu_readlock to protect against the d_parent trashing
2960 		 * due to d_move
2961 		 */
2962 		rcu_read_lock();
2963 		if (d_ancestor(old_dentry, new_dentry))
2964 			result = 1;
2965 		else
2966 			result = 0;
2967 		rcu_read_unlock();
2968 	} while (read_seqretry(&rename_lock, seq));
2969 
2970 	return result;
2971 }
2972 
2973 void d_genocide(struct dentry *root)
2974 {
2975 	struct dentry *this_parent;
2976 	struct list_head *next;
2977 	unsigned seq;
2978 	int locked = 0;
2979 
2980 	seq = read_seqbegin(&rename_lock);
2981 again:
2982 	this_parent = root;
2983 	spin_lock(&this_parent->d_lock);
2984 repeat:
2985 	next = this_parent->d_subdirs.next;
2986 resume:
2987 	while (next != &this_parent->d_subdirs) {
2988 		struct list_head *tmp = next;
2989 		struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
2990 		next = tmp->next;
2991 
2992 		spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
2993 		if (d_unhashed(dentry) || !dentry->d_inode) {
2994 			spin_unlock(&dentry->d_lock);
2995 			continue;
2996 		}
2997 		if (!list_empty(&dentry->d_subdirs)) {
2998 			spin_unlock(&this_parent->d_lock);
2999 			spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
3000 			this_parent = dentry;
3001 			spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
3002 			goto repeat;
3003 		}
3004 		if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
3005 			dentry->d_flags |= DCACHE_GENOCIDE;
3006 			dentry->d_count--;
3007 		}
3008 		spin_unlock(&dentry->d_lock);
3009 	}
3010 	if (this_parent != root) {
3011 		struct dentry *child = this_parent;
3012 		if (!(this_parent->d_flags & DCACHE_GENOCIDE)) {
3013 			this_parent->d_flags |= DCACHE_GENOCIDE;
3014 			this_parent->d_count--;
3015 		}
3016 		this_parent = try_to_ascend(this_parent, locked, seq);
3017 		if (!this_parent)
3018 			goto rename_retry;
3019 		next = child->d_u.d_child.next;
3020 		goto resume;
3021 	}
3022 	spin_unlock(&this_parent->d_lock);
3023 	if (!locked && read_seqretry(&rename_lock, seq))
3024 		goto rename_retry;
3025 	if (locked)
3026 		write_sequnlock(&rename_lock);
3027 	return;
3028 
3029 rename_retry:
3030 	locked = 1;
3031 	write_seqlock(&rename_lock);
3032 	goto again;
3033 }
3034 
3035 /**
3036  * find_inode_number - check for dentry with name
3037  * @dir: directory to check
3038  * @name: Name to find.
3039  *
3040  * Check whether a dentry already exists for the given name,
3041  * and return the inode number if it has an inode. Otherwise
3042  * 0 is returned.
3043  *
3044  * This routine is used to post-process directory listings for
3045  * filesystems using synthetic inode numbers, and is necessary
3046  * to keep getcwd() working.
3047  */
3048 
3049 ino_t find_inode_number(struct dentry *dir, struct qstr *name)
3050 {
3051 	struct dentry * dentry;
3052 	ino_t ino = 0;
3053 
3054 	dentry = d_hash_and_lookup(dir, name);
3055 	if (dentry) {
3056 		if (dentry->d_inode)
3057 			ino = dentry->d_inode->i_ino;
3058 		dput(dentry);
3059 	}
3060 	return ino;
3061 }
3062 EXPORT_SYMBOL(find_inode_number);
3063 
3064 static __initdata unsigned long dhash_entries;
3065 static int __init set_dhash_entries(char *str)
3066 {
3067 	if (!str)
3068 		return 0;
3069 	dhash_entries = simple_strtoul(str, &str, 0);
3070 	return 1;
3071 }
3072 __setup("dhash_entries=", set_dhash_entries);
3073 
3074 static void __init dcache_init_early(void)
3075 {
3076 	unsigned int loop;
3077 
3078 	/* If hashes are distributed across NUMA nodes, defer
3079 	 * hash allocation until vmalloc space is available.
3080 	 */
3081 	if (hashdist)
3082 		return;
3083 
3084 	dentry_hashtable =
3085 		alloc_large_system_hash("Dentry cache",
3086 					sizeof(struct hlist_bl_head),
3087 					dhash_entries,
3088 					13,
3089 					HASH_EARLY,
3090 					&d_hash_shift,
3091 					&d_hash_mask,
3092 					0,
3093 					0);
3094 
3095 	for (loop = 0; loop < (1U << d_hash_shift); loop++)
3096 		INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
3097 }
3098 
3099 static void __init dcache_init(void)
3100 {
3101 	unsigned int loop;
3102 
3103 	/*
3104 	 * A constructor could be added for stable state like the lists,
3105 	 * but it is probably not worth it because of the cache nature
3106 	 * of the dcache.
3107 	 */
3108 	dentry_cache = KMEM_CACHE(dentry,
3109 		SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD);
3110 
3111 	/* Hash may have been set up in dcache_init_early */
3112 	if (!hashdist)
3113 		return;
3114 
3115 	dentry_hashtable =
3116 		alloc_large_system_hash("Dentry cache",
3117 					sizeof(struct hlist_bl_head),
3118 					dhash_entries,
3119 					13,
3120 					0,
3121 					&d_hash_shift,
3122 					&d_hash_mask,
3123 					0,
3124 					0);
3125 
3126 	for (loop = 0; loop < (1U << d_hash_shift); loop++)
3127 		INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
3128 }
3129 
3130 /* SLAB cache for __getname() consumers */
3131 struct kmem_cache *names_cachep __read_mostly;
3132 EXPORT_SYMBOL(names_cachep);
3133 
3134 EXPORT_SYMBOL(d_genocide);
3135 
3136 void __init vfs_caches_init_early(void)
3137 {
3138 	dcache_init_early();
3139 	inode_init_early();
3140 }
3141 
3142 void __init vfs_caches_init(unsigned long mempages)
3143 {
3144 	unsigned long reserve;
3145 
3146 	/* Base hash sizes on available memory, with a reserve equal to
3147            150% of current kernel size */
3148 
3149 	reserve = min((mempages - nr_free_pages()) * 3/2, mempages - 1);
3150 	mempages -= reserve;
3151 
3152 	names_cachep = kmem_cache_create("names_cache", PATH_MAX, 0,
3153 			SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
3154 
3155 	dcache_init();
3156 	inode_init();
3157 	files_init(mempages);
3158 	mnt_init();
3159 	bdev_cache_init();
3160 	chrdev_init();
3161 }
3162