1 /* 2 * fs/dcache.c 3 * 4 * Complete reimplementation 5 * (C) 1997 Thomas Schoebel-Theuer, 6 * with heavy changes by Linus Torvalds 7 */ 8 9 /* 10 * Notes on the allocation strategy: 11 * 12 * The dcache is a master of the icache - whenever a dcache entry 13 * exists, the inode will always exist. "iput()" is done either when 14 * the dcache entry is deleted or garbage collected. 15 */ 16 17 #include <linux/syscalls.h> 18 #include <linux/string.h> 19 #include <linux/mm.h> 20 #include <linux/fs.h> 21 #include <linux/fsnotify.h> 22 #include <linux/slab.h> 23 #include <linux/init.h> 24 #include <linux/hash.h> 25 #include <linux/cache.h> 26 #include <linux/export.h> 27 #include <linux/mount.h> 28 #include <linux/file.h> 29 #include <asm/uaccess.h> 30 #include <linux/security.h> 31 #include <linux/seqlock.h> 32 #include <linux/swap.h> 33 #include <linux/bootmem.h> 34 #include <linux/fs_struct.h> 35 #include <linux/hardirq.h> 36 #include <linux/bit_spinlock.h> 37 #include <linux/rculist_bl.h> 38 #include <linux/prefetch.h> 39 #include <linux/ratelimit.h> 40 #include "internal.h" 41 #include "mount.h" 42 43 /* 44 * Usage: 45 * dcache->d_inode->i_lock protects: 46 * - i_dentry, d_alias, d_inode of aliases 47 * dcache_hash_bucket lock protects: 48 * - the dcache hash table 49 * s_anon bl list spinlock protects: 50 * - the s_anon list (see __d_drop) 51 * dcache_lru_lock protects: 52 * - the dcache lru lists and counters 53 * d_lock protects: 54 * - d_flags 55 * - d_name 56 * - d_lru 57 * - d_count 58 * - d_unhashed() 59 * - d_parent and d_subdirs 60 * - childrens' d_child and d_parent 61 * - d_alias, d_inode 62 * 63 * Ordering: 64 * dentry->d_inode->i_lock 65 * dentry->d_lock 66 * dcache_lru_lock 67 * dcache_hash_bucket lock 68 * s_anon lock 69 * 70 * If there is an ancestor relationship: 71 * dentry->d_parent->...->d_parent->d_lock 72 * ... 73 * dentry->d_parent->d_lock 74 * dentry->d_lock 75 * 76 * If no ancestor relationship: 77 * if (dentry1 < dentry2) 78 * dentry1->d_lock 79 * dentry2->d_lock 80 */ 81 int sysctl_vfs_cache_pressure __read_mostly = 100; 82 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure); 83 84 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(dcache_lru_lock); 85 __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock); 86 87 EXPORT_SYMBOL(rename_lock); 88 89 static struct kmem_cache *dentry_cache __read_mostly; 90 91 /* 92 * This is the single most critical data structure when it comes 93 * to the dcache: the hashtable for lookups. Somebody should try 94 * to make this good - I've just made it work. 95 * 96 * This hash-function tries to avoid losing too many bits of hash 97 * information, yet avoid using a prime hash-size or similar. 98 */ 99 #define D_HASHBITS d_hash_shift 100 #define D_HASHMASK d_hash_mask 101 102 static unsigned int d_hash_mask __read_mostly; 103 static unsigned int d_hash_shift __read_mostly; 104 105 static struct hlist_bl_head *dentry_hashtable __read_mostly; 106 107 static inline struct hlist_bl_head *d_hash(const struct dentry *parent, 108 unsigned int hash) 109 { 110 hash += (unsigned long) parent / L1_CACHE_BYTES; 111 hash = hash + (hash >> D_HASHBITS); 112 return dentry_hashtable + (hash & D_HASHMASK); 113 } 114 115 /* Statistics gathering. */ 116 struct dentry_stat_t dentry_stat = { 117 .age_limit = 45, 118 }; 119 120 static DEFINE_PER_CPU(unsigned int, nr_dentry); 121 122 #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS) 123 static int get_nr_dentry(void) 124 { 125 int i; 126 int sum = 0; 127 for_each_possible_cpu(i) 128 sum += per_cpu(nr_dentry, i); 129 return sum < 0 ? 0 : sum; 130 } 131 132 int proc_nr_dentry(ctl_table *table, int write, void __user *buffer, 133 size_t *lenp, loff_t *ppos) 134 { 135 dentry_stat.nr_dentry = get_nr_dentry(); 136 return proc_dointvec(table, write, buffer, lenp, ppos); 137 } 138 #endif 139 140 /* 141 * Compare 2 name strings, return 0 if they match, otherwise non-zero. 142 * The strings are both count bytes long, and count is non-zero. 143 */ 144 #ifdef CONFIG_DCACHE_WORD_ACCESS 145 146 #include <asm/word-at-a-time.h> 147 /* 148 * NOTE! 'cs' and 'scount' come from a dentry, so it has a 149 * aligned allocation for this particular component. We don't 150 * strictly need the load_unaligned_zeropad() safety, but it 151 * doesn't hurt either. 152 * 153 * In contrast, 'ct' and 'tcount' can be from a pathname, and do 154 * need the careful unaligned handling. 155 */ 156 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount) 157 { 158 unsigned long a,b,mask; 159 160 for (;;) { 161 a = *(unsigned long *)cs; 162 b = load_unaligned_zeropad(ct); 163 if (tcount < sizeof(unsigned long)) 164 break; 165 if (unlikely(a != b)) 166 return 1; 167 cs += sizeof(unsigned long); 168 ct += sizeof(unsigned long); 169 tcount -= sizeof(unsigned long); 170 if (!tcount) 171 return 0; 172 } 173 mask = ~(~0ul << tcount*8); 174 return unlikely(!!((a ^ b) & mask)); 175 } 176 177 #else 178 179 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount) 180 { 181 do { 182 if (*cs != *ct) 183 return 1; 184 cs++; 185 ct++; 186 tcount--; 187 } while (tcount); 188 return 0; 189 } 190 191 #endif 192 193 static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount) 194 { 195 const unsigned char *cs; 196 /* 197 * Be careful about RCU walk racing with rename: 198 * use ACCESS_ONCE to fetch the name pointer. 199 * 200 * NOTE! Even if a rename will mean that the length 201 * was not loaded atomically, we don't care. The 202 * RCU walk will check the sequence count eventually, 203 * and catch it. And we won't overrun the buffer, 204 * because we're reading the name pointer atomically, 205 * and a dentry name is guaranteed to be properly 206 * terminated with a NUL byte. 207 * 208 * End result: even if 'len' is wrong, we'll exit 209 * early because the data cannot match (there can 210 * be no NUL in the ct/tcount data) 211 */ 212 cs = ACCESS_ONCE(dentry->d_name.name); 213 smp_read_barrier_depends(); 214 return dentry_string_cmp(cs, ct, tcount); 215 } 216 217 static void __d_free(struct rcu_head *head) 218 { 219 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu); 220 221 WARN_ON(!list_empty(&dentry->d_alias)); 222 if (dname_external(dentry)) 223 kfree(dentry->d_name.name); 224 kmem_cache_free(dentry_cache, dentry); 225 } 226 227 /* 228 * no locks, please. 229 */ 230 static void d_free(struct dentry *dentry) 231 { 232 BUG_ON(dentry->d_count); 233 this_cpu_dec(nr_dentry); 234 if (dentry->d_op && dentry->d_op->d_release) 235 dentry->d_op->d_release(dentry); 236 237 /* if dentry was never visible to RCU, immediate free is OK */ 238 if (!(dentry->d_flags & DCACHE_RCUACCESS)) 239 __d_free(&dentry->d_u.d_rcu); 240 else 241 call_rcu(&dentry->d_u.d_rcu, __d_free); 242 } 243 244 /** 245 * dentry_rcuwalk_barrier - invalidate in-progress rcu-walk lookups 246 * @dentry: the target dentry 247 * After this call, in-progress rcu-walk path lookup will fail. This 248 * should be called after unhashing, and after changing d_inode (if 249 * the dentry has not already been unhashed). 250 */ 251 static inline void dentry_rcuwalk_barrier(struct dentry *dentry) 252 { 253 assert_spin_locked(&dentry->d_lock); 254 /* Go through a barrier */ 255 write_seqcount_barrier(&dentry->d_seq); 256 } 257 258 /* 259 * Release the dentry's inode, using the filesystem 260 * d_iput() operation if defined. Dentry has no refcount 261 * and is unhashed. 262 */ 263 static void dentry_iput(struct dentry * dentry) 264 __releases(dentry->d_lock) 265 __releases(dentry->d_inode->i_lock) 266 { 267 struct inode *inode = dentry->d_inode; 268 if (inode) { 269 dentry->d_inode = NULL; 270 list_del_init(&dentry->d_alias); 271 spin_unlock(&dentry->d_lock); 272 spin_unlock(&inode->i_lock); 273 if (!inode->i_nlink) 274 fsnotify_inoderemove(inode); 275 if (dentry->d_op && dentry->d_op->d_iput) 276 dentry->d_op->d_iput(dentry, inode); 277 else 278 iput(inode); 279 } else { 280 spin_unlock(&dentry->d_lock); 281 } 282 } 283 284 /* 285 * Release the dentry's inode, using the filesystem 286 * d_iput() operation if defined. dentry remains in-use. 287 */ 288 static void dentry_unlink_inode(struct dentry * dentry) 289 __releases(dentry->d_lock) 290 __releases(dentry->d_inode->i_lock) 291 { 292 struct inode *inode = dentry->d_inode; 293 dentry->d_inode = NULL; 294 list_del_init(&dentry->d_alias); 295 dentry_rcuwalk_barrier(dentry); 296 spin_unlock(&dentry->d_lock); 297 spin_unlock(&inode->i_lock); 298 if (!inode->i_nlink) 299 fsnotify_inoderemove(inode); 300 if (dentry->d_op && dentry->d_op->d_iput) 301 dentry->d_op->d_iput(dentry, inode); 302 else 303 iput(inode); 304 } 305 306 /* 307 * dentry_lru_(add|del|prune|move_tail) must be called with d_lock held. 308 */ 309 static void dentry_lru_add(struct dentry *dentry) 310 { 311 if (list_empty(&dentry->d_lru)) { 312 spin_lock(&dcache_lru_lock); 313 list_add(&dentry->d_lru, &dentry->d_sb->s_dentry_lru); 314 dentry->d_sb->s_nr_dentry_unused++; 315 dentry_stat.nr_unused++; 316 spin_unlock(&dcache_lru_lock); 317 } 318 } 319 320 static void __dentry_lru_del(struct dentry *dentry) 321 { 322 list_del_init(&dentry->d_lru); 323 dentry->d_flags &= ~DCACHE_SHRINK_LIST; 324 dentry->d_sb->s_nr_dentry_unused--; 325 dentry_stat.nr_unused--; 326 } 327 328 /* 329 * Remove a dentry with references from the LRU. 330 */ 331 static void dentry_lru_del(struct dentry *dentry) 332 { 333 if (!list_empty(&dentry->d_lru)) { 334 spin_lock(&dcache_lru_lock); 335 __dentry_lru_del(dentry); 336 spin_unlock(&dcache_lru_lock); 337 } 338 } 339 340 /* 341 * Remove a dentry that is unreferenced and about to be pruned 342 * (unhashed and destroyed) from the LRU, and inform the file system. 343 * This wrapper should be called _prior_ to unhashing a victim dentry. 344 */ 345 static void dentry_lru_prune(struct dentry *dentry) 346 { 347 if (!list_empty(&dentry->d_lru)) { 348 if (dentry->d_flags & DCACHE_OP_PRUNE) 349 dentry->d_op->d_prune(dentry); 350 351 spin_lock(&dcache_lru_lock); 352 __dentry_lru_del(dentry); 353 spin_unlock(&dcache_lru_lock); 354 } 355 } 356 357 static void dentry_lru_move_list(struct dentry *dentry, struct list_head *list) 358 { 359 spin_lock(&dcache_lru_lock); 360 if (list_empty(&dentry->d_lru)) { 361 list_add_tail(&dentry->d_lru, list); 362 dentry->d_sb->s_nr_dentry_unused++; 363 dentry_stat.nr_unused++; 364 } else { 365 list_move_tail(&dentry->d_lru, list); 366 } 367 spin_unlock(&dcache_lru_lock); 368 } 369 370 /** 371 * d_kill - kill dentry and return parent 372 * @dentry: dentry to kill 373 * @parent: parent dentry 374 * 375 * The dentry must already be unhashed and removed from the LRU. 376 * 377 * If this is the root of the dentry tree, return NULL. 378 * 379 * dentry->d_lock and parent->d_lock must be held by caller, and are dropped by 380 * d_kill. 381 */ 382 static struct dentry *d_kill(struct dentry *dentry, struct dentry *parent) 383 __releases(dentry->d_lock) 384 __releases(parent->d_lock) 385 __releases(dentry->d_inode->i_lock) 386 { 387 list_del(&dentry->d_u.d_child); 388 /* 389 * Inform try_to_ascend() that we are no longer attached to the 390 * dentry tree 391 */ 392 dentry->d_flags |= DCACHE_DISCONNECTED; 393 if (parent) 394 spin_unlock(&parent->d_lock); 395 dentry_iput(dentry); 396 /* 397 * dentry_iput drops the locks, at which point nobody (except 398 * transient RCU lookups) can reach this dentry. 399 */ 400 d_free(dentry); 401 return parent; 402 } 403 404 /* 405 * Unhash a dentry without inserting an RCU walk barrier or checking that 406 * dentry->d_lock is locked. The caller must take care of that, if 407 * appropriate. 408 */ 409 static void __d_shrink(struct dentry *dentry) 410 { 411 if (!d_unhashed(dentry)) { 412 struct hlist_bl_head *b; 413 if (unlikely(dentry->d_flags & DCACHE_DISCONNECTED)) 414 b = &dentry->d_sb->s_anon; 415 else 416 b = d_hash(dentry->d_parent, dentry->d_name.hash); 417 418 hlist_bl_lock(b); 419 __hlist_bl_del(&dentry->d_hash); 420 dentry->d_hash.pprev = NULL; 421 hlist_bl_unlock(b); 422 } 423 } 424 425 /** 426 * d_drop - drop a dentry 427 * @dentry: dentry to drop 428 * 429 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't 430 * be found through a VFS lookup any more. Note that this is different from 431 * deleting the dentry - d_delete will try to mark the dentry negative if 432 * possible, giving a successful _negative_ lookup, while d_drop will 433 * just make the cache lookup fail. 434 * 435 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some 436 * reason (NFS timeouts or autofs deletes). 437 * 438 * __d_drop requires dentry->d_lock. 439 */ 440 void __d_drop(struct dentry *dentry) 441 { 442 if (!d_unhashed(dentry)) { 443 __d_shrink(dentry); 444 dentry_rcuwalk_barrier(dentry); 445 } 446 } 447 EXPORT_SYMBOL(__d_drop); 448 449 void d_drop(struct dentry *dentry) 450 { 451 spin_lock(&dentry->d_lock); 452 __d_drop(dentry); 453 spin_unlock(&dentry->d_lock); 454 } 455 EXPORT_SYMBOL(d_drop); 456 457 /* 458 * d_clear_need_lookup - drop a dentry from cache and clear the need lookup flag 459 * @dentry: dentry to drop 460 * 461 * This is called when we do a lookup on a placeholder dentry that needed to be 462 * looked up. The dentry should have been hashed in order for it to be found by 463 * the lookup code, but now needs to be unhashed while we do the actual lookup 464 * and clear the DCACHE_NEED_LOOKUP flag. 465 */ 466 void d_clear_need_lookup(struct dentry *dentry) 467 { 468 spin_lock(&dentry->d_lock); 469 __d_drop(dentry); 470 dentry->d_flags &= ~DCACHE_NEED_LOOKUP; 471 spin_unlock(&dentry->d_lock); 472 } 473 EXPORT_SYMBOL(d_clear_need_lookup); 474 475 /* 476 * Finish off a dentry we've decided to kill. 477 * dentry->d_lock must be held, returns with it unlocked. 478 * If ref is non-zero, then decrement the refcount too. 479 * Returns dentry requiring refcount drop, or NULL if we're done. 480 */ 481 static inline struct dentry *dentry_kill(struct dentry *dentry, int ref) 482 __releases(dentry->d_lock) 483 { 484 struct inode *inode; 485 struct dentry *parent; 486 487 inode = dentry->d_inode; 488 if (inode && !spin_trylock(&inode->i_lock)) { 489 relock: 490 spin_unlock(&dentry->d_lock); 491 cpu_relax(); 492 return dentry; /* try again with same dentry */ 493 } 494 if (IS_ROOT(dentry)) 495 parent = NULL; 496 else 497 parent = dentry->d_parent; 498 if (parent && !spin_trylock(&parent->d_lock)) { 499 if (inode) 500 spin_unlock(&inode->i_lock); 501 goto relock; 502 } 503 504 if (ref) 505 dentry->d_count--; 506 /* 507 * if dentry was on the d_lru list delete it from there. 508 * inform the fs via d_prune that this dentry is about to be 509 * unhashed and destroyed. 510 */ 511 dentry_lru_prune(dentry); 512 /* if it was on the hash then remove it */ 513 __d_drop(dentry); 514 return d_kill(dentry, parent); 515 } 516 517 /* 518 * This is dput 519 * 520 * This is complicated by the fact that we do not want to put 521 * dentries that are no longer on any hash chain on the unused 522 * list: we'd much rather just get rid of them immediately. 523 * 524 * However, that implies that we have to traverse the dentry 525 * tree upwards to the parents which might _also_ now be 526 * scheduled for deletion (it may have been only waiting for 527 * its last child to go away). 528 * 529 * This tail recursion is done by hand as we don't want to depend 530 * on the compiler to always get this right (gcc generally doesn't). 531 * Real recursion would eat up our stack space. 532 */ 533 534 /* 535 * dput - release a dentry 536 * @dentry: dentry to release 537 * 538 * Release a dentry. This will drop the usage count and if appropriate 539 * call the dentry unlink method as well as removing it from the queues and 540 * releasing its resources. If the parent dentries were scheduled for release 541 * they too may now get deleted. 542 */ 543 void dput(struct dentry *dentry) 544 { 545 if (!dentry) 546 return; 547 548 repeat: 549 if (dentry->d_count == 1) 550 might_sleep(); 551 spin_lock(&dentry->d_lock); 552 BUG_ON(!dentry->d_count); 553 if (dentry->d_count > 1) { 554 dentry->d_count--; 555 spin_unlock(&dentry->d_lock); 556 return; 557 } 558 559 if (dentry->d_flags & DCACHE_OP_DELETE) { 560 if (dentry->d_op->d_delete(dentry)) 561 goto kill_it; 562 } 563 564 /* Unreachable? Get rid of it */ 565 if (d_unhashed(dentry)) 566 goto kill_it; 567 568 /* 569 * If this dentry needs lookup, don't set the referenced flag so that it 570 * is more likely to be cleaned up by the dcache shrinker in case of 571 * memory pressure. 572 */ 573 if (!d_need_lookup(dentry)) 574 dentry->d_flags |= DCACHE_REFERENCED; 575 dentry_lru_add(dentry); 576 577 dentry->d_count--; 578 spin_unlock(&dentry->d_lock); 579 return; 580 581 kill_it: 582 dentry = dentry_kill(dentry, 1); 583 if (dentry) 584 goto repeat; 585 } 586 EXPORT_SYMBOL(dput); 587 588 /** 589 * d_invalidate - invalidate a dentry 590 * @dentry: dentry to invalidate 591 * 592 * Try to invalidate the dentry if it turns out to be 593 * possible. If there are other dentries that can be 594 * reached through this one we can't delete it and we 595 * return -EBUSY. On success we return 0. 596 * 597 * no dcache lock. 598 */ 599 600 int d_invalidate(struct dentry * dentry) 601 { 602 /* 603 * If it's already been dropped, return OK. 604 */ 605 spin_lock(&dentry->d_lock); 606 if (d_unhashed(dentry)) { 607 spin_unlock(&dentry->d_lock); 608 return 0; 609 } 610 /* 611 * Check whether to do a partial shrink_dcache 612 * to get rid of unused child entries. 613 */ 614 if (!list_empty(&dentry->d_subdirs)) { 615 spin_unlock(&dentry->d_lock); 616 shrink_dcache_parent(dentry); 617 spin_lock(&dentry->d_lock); 618 } 619 620 /* 621 * Somebody else still using it? 622 * 623 * If it's a directory, we can't drop it 624 * for fear of somebody re-populating it 625 * with children (even though dropping it 626 * would make it unreachable from the root, 627 * we might still populate it if it was a 628 * working directory or similar). 629 * We also need to leave mountpoints alone, 630 * directory or not. 631 */ 632 if (dentry->d_count > 1 && dentry->d_inode) { 633 if (S_ISDIR(dentry->d_inode->i_mode) || d_mountpoint(dentry)) { 634 spin_unlock(&dentry->d_lock); 635 return -EBUSY; 636 } 637 } 638 639 __d_drop(dentry); 640 spin_unlock(&dentry->d_lock); 641 return 0; 642 } 643 EXPORT_SYMBOL(d_invalidate); 644 645 /* This must be called with d_lock held */ 646 static inline void __dget_dlock(struct dentry *dentry) 647 { 648 dentry->d_count++; 649 } 650 651 static inline void __dget(struct dentry *dentry) 652 { 653 spin_lock(&dentry->d_lock); 654 __dget_dlock(dentry); 655 spin_unlock(&dentry->d_lock); 656 } 657 658 struct dentry *dget_parent(struct dentry *dentry) 659 { 660 struct dentry *ret; 661 662 repeat: 663 /* 664 * Don't need rcu_dereference because we re-check it was correct under 665 * the lock. 666 */ 667 rcu_read_lock(); 668 ret = dentry->d_parent; 669 spin_lock(&ret->d_lock); 670 if (unlikely(ret != dentry->d_parent)) { 671 spin_unlock(&ret->d_lock); 672 rcu_read_unlock(); 673 goto repeat; 674 } 675 rcu_read_unlock(); 676 BUG_ON(!ret->d_count); 677 ret->d_count++; 678 spin_unlock(&ret->d_lock); 679 return ret; 680 } 681 EXPORT_SYMBOL(dget_parent); 682 683 /** 684 * d_find_alias - grab a hashed alias of inode 685 * @inode: inode in question 686 * 687 * If inode has a hashed alias, or is a directory and has any alias, 688 * acquire the reference to alias and return it. Otherwise return NULL. 689 * Notice that if inode is a directory there can be only one alias and 690 * it can be unhashed only if it has no children, or if it is the root 691 * of a filesystem. 692 * 693 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer 694 * any other hashed alias over that. 695 */ 696 static struct dentry *__d_find_alias(struct inode *inode) 697 { 698 struct dentry *alias, *discon_alias; 699 700 again: 701 discon_alias = NULL; 702 list_for_each_entry(alias, &inode->i_dentry, d_alias) { 703 spin_lock(&alias->d_lock); 704 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) { 705 if (IS_ROOT(alias) && 706 (alias->d_flags & DCACHE_DISCONNECTED)) { 707 discon_alias = alias; 708 } else { 709 __dget_dlock(alias); 710 spin_unlock(&alias->d_lock); 711 return alias; 712 } 713 } 714 spin_unlock(&alias->d_lock); 715 } 716 if (discon_alias) { 717 alias = discon_alias; 718 spin_lock(&alias->d_lock); 719 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) { 720 if (IS_ROOT(alias) && 721 (alias->d_flags & DCACHE_DISCONNECTED)) { 722 __dget_dlock(alias); 723 spin_unlock(&alias->d_lock); 724 return alias; 725 } 726 } 727 spin_unlock(&alias->d_lock); 728 goto again; 729 } 730 return NULL; 731 } 732 733 struct dentry *d_find_alias(struct inode *inode) 734 { 735 struct dentry *de = NULL; 736 737 if (!list_empty(&inode->i_dentry)) { 738 spin_lock(&inode->i_lock); 739 de = __d_find_alias(inode); 740 spin_unlock(&inode->i_lock); 741 } 742 return de; 743 } 744 EXPORT_SYMBOL(d_find_alias); 745 746 /* 747 * Try to kill dentries associated with this inode. 748 * WARNING: you must own a reference to inode. 749 */ 750 void d_prune_aliases(struct inode *inode) 751 { 752 struct dentry *dentry; 753 restart: 754 spin_lock(&inode->i_lock); 755 list_for_each_entry(dentry, &inode->i_dentry, d_alias) { 756 spin_lock(&dentry->d_lock); 757 if (!dentry->d_count) { 758 __dget_dlock(dentry); 759 __d_drop(dentry); 760 spin_unlock(&dentry->d_lock); 761 spin_unlock(&inode->i_lock); 762 dput(dentry); 763 goto restart; 764 } 765 spin_unlock(&dentry->d_lock); 766 } 767 spin_unlock(&inode->i_lock); 768 } 769 EXPORT_SYMBOL(d_prune_aliases); 770 771 /* 772 * Try to throw away a dentry - free the inode, dput the parent. 773 * Requires dentry->d_lock is held, and dentry->d_count == 0. 774 * Releases dentry->d_lock. 775 * 776 * This may fail if locks cannot be acquired no problem, just try again. 777 */ 778 static void try_prune_one_dentry(struct dentry *dentry) 779 __releases(dentry->d_lock) 780 { 781 struct dentry *parent; 782 783 parent = dentry_kill(dentry, 0); 784 /* 785 * If dentry_kill returns NULL, we have nothing more to do. 786 * if it returns the same dentry, trylocks failed. In either 787 * case, just loop again. 788 * 789 * Otherwise, we need to prune ancestors too. This is necessary 790 * to prevent quadratic behavior of shrink_dcache_parent(), but 791 * is also expected to be beneficial in reducing dentry cache 792 * fragmentation. 793 */ 794 if (!parent) 795 return; 796 if (parent == dentry) 797 return; 798 799 /* Prune ancestors. */ 800 dentry = parent; 801 while (dentry) { 802 spin_lock(&dentry->d_lock); 803 if (dentry->d_count > 1) { 804 dentry->d_count--; 805 spin_unlock(&dentry->d_lock); 806 return; 807 } 808 dentry = dentry_kill(dentry, 1); 809 } 810 } 811 812 static void shrink_dentry_list(struct list_head *list) 813 { 814 struct dentry *dentry; 815 816 rcu_read_lock(); 817 for (;;) { 818 dentry = list_entry_rcu(list->prev, struct dentry, d_lru); 819 if (&dentry->d_lru == list) 820 break; /* empty */ 821 spin_lock(&dentry->d_lock); 822 if (dentry != list_entry(list->prev, struct dentry, d_lru)) { 823 spin_unlock(&dentry->d_lock); 824 continue; 825 } 826 827 /* 828 * We found an inuse dentry which was not removed from 829 * the LRU because of laziness during lookup. Do not free 830 * it - just keep it off the LRU list. 831 */ 832 if (dentry->d_count) { 833 dentry_lru_del(dentry); 834 spin_unlock(&dentry->d_lock); 835 continue; 836 } 837 838 rcu_read_unlock(); 839 840 try_prune_one_dentry(dentry); 841 842 rcu_read_lock(); 843 } 844 rcu_read_unlock(); 845 } 846 847 /** 848 * prune_dcache_sb - shrink the dcache 849 * @sb: superblock 850 * @count: number of entries to try to free 851 * 852 * Attempt to shrink the superblock dcache LRU by @count entries. This is 853 * done when we need more memory an called from the superblock shrinker 854 * function. 855 * 856 * This function may fail to free any resources if all the dentries are in 857 * use. 858 */ 859 void prune_dcache_sb(struct super_block *sb, int count) 860 { 861 struct dentry *dentry; 862 LIST_HEAD(referenced); 863 LIST_HEAD(tmp); 864 865 relock: 866 spin_lock(&dcache_lru_lock); 867 while (!list_empty(&sb->s_dentry_lru)) { 868 dentry = list_entry(sb->s_dentry_lru.prev, 869 struct dentry, d_lru); 870 BUG_ON(dentry->d_sb != sb); 871 872 if (!spin_trylock(&dentry->d_lock)) { 873 spin_unlock(&dcache_lru_lock); 874 cpu_relax(); 875 goto relock; 876 } 877 878 if (dentry->d_flags & DCACHE_REFERENCED) { 879 dentry->d_flags &= ~DCACHE_REFERENCED; 880 list_move(&dentry->d_lru, &referenced); 881 spin_unlock(&dentry->d_lock); 882 } else { 883 list_move_tail(&dentry->d_lru, &tmp); 884 dentry->d_flags |= DCACHE_SHRINK_LIST; 885 spin_unlock(&dentry->d_lock); 886 if (!--count) 887 break; 888 } 889 cond_resched_lock(&dcache_lru_lock); 890 } 891 if (!list_empty(&referenced)) 892 list_splice(&referenced, &sb->s_dentry_lru); 893 spin_unlock(&dcache_lru_lock); 894 895 shrink_dentry_list(&tmp); 896 } 897 898 /** 899 * shrink_dcache_sb - shrink dcache for a superblock 900 * @sb: superblock 901 * 902 * Shrink the dcache for the specified super block. This is used to free 903 * the dcache before unmounting a file system. 904 */ 905 void shrink_dcache_sb(struct super_block *sb) 906 { 907 LIST_HEAD(tmp); 908 909 spin_lock(&dcache_lru_lock); 910 while (!list_empty(&sb->s_dentry_lru)) { 911 list_splice_init(&sb->s_dentry_lru, &tmp); 912 spin_unlock(&dcache_lru_lock); 913 shrink_dentry_list(&tmp); 914 spin_lock(&dcache_lru_lock); 915 } 916 spin_unlock(&dcache_lru_lock); 917 } 918 EXPORT_SYMBOL(shrink_dcache_sb); 919 920 /* 921 * destroy a single subtree of dentries for unmount 922 * - see the comments on shrink_dcache_for_umount() for a description of the 923 * locking 924 */ 925 static void shrink_dcache_for_umount_subtree(struct dentry *dentry) 926 { 927 struct dentry *parent; 928 929 BUG_ON(!IS_ROOT(dentry)); 930 931 for (;;) { 932 /* descend to the first leaf in the current subtree */ 933 while (!list_empty(&dentry->d_subdirs)) 934 dentry = list_entry(dentry->d_subdirs.next, 935 struct dentry, d_u.d_child); 936 937 /* consume the dentries from this leaf up through its parents 938 * until we find one with children or run out altogether */ 939 do { 940 struct inode *inode; 941 942 /* 943 * remove the dentry from the lru, and inform 944 * the fs that this dentry is about to be 945 * unhashed and destroyed. 946 */ 947 dentry_lru_prune(dentry); 948 __d_shrink(dentry); 949 950 if (dentry->d_count != 0) { 951 printk(KERN_ERR 952 "BUG: Dentry %p{i=%lx,n=%s}" 953 " still in use (%d)" 954 " [unmount of %s %s]\n", 955 dentry, 956 dentry->d_inode ? 957 dentry->d_inode->i_ino : 0UL, 958 dentry->d_name.name, 959 dentry->d_count, 960 dentry->d_sb->s_type->name, 961 dentry->d_sb->s_id); 962 BUG(); 963 } 964 965 if (IS_ROOT(dentry)) { 966 parent = NULL; 967 list_del(&dentry->d_u.d_child); 968 } else { 969 parent = dentry->d_parent; 970 parent->d_count--; 971 list_del(&dentry->d_u.d_child); 972 } 973 974 inode = dentry->d_inode; 975 if (inode) { 976 dentry->d_inode = NULL; 977 list_del_init(&dentry->d_alias); 978 if (dentry->d_op && dentry->d_op->d_iput) 979 dentry->d_op->d_iput(dentry, inode); 980 else 981 iput(inode); 982 } 983 984 d_free(dentry); 985 986 /* finished when we fall off the top of the tree, 987 * otherwise we ascend to the parent and move to the 988 * next sibling if there is one */ 989 if (!parent) 990 return; 991 dentry = parent; 992 } while (list_empty(&dentry->d_subdirs)); 993 994 dentry = list_entry(dentry->d_subdirs.next, 995 struct dentry, d_u.d_child); 996 } 997 } 998 999 /* 1000 * destroy the dentries attached to a superblock on unmounting 1001 * - we don't need to use dentry->d_lock because: 1002 * - the superblock is detached from all mountings and open files, so the 1003 * dentry trees will not be rearranged by the VFS 1004 * - s_umount is write-locked, so the memory pressure shrinker will ignore 1005 * any dentries belonging to this superblock that it comes across 1006 * - the filesystem itself is no longer permitted to rearrange the dentries 1007 * in this superblock 1008 */ 1009 void shrink_dcache_for_umount(struct super_block *sb) 1010 { 1011 struct dentry *dentry; 1012 1013 if (down_read_trylock(&sb->s_umount)) 1014 BUG(); 1015 1016 dentry = sb->s_root; 1017 sb->s_root = NULL; 1018 dentry->d_count--; 1019 shrink_dcache_for_umount_subtree(dentry); 1020 1021 while (!hlist_bl_empty(&sb->s_anon)) { 1022 dentry = hlist_bl_entry(hlist_bl_first(&sb->s_anon), struct dentry, d_hash); 1023 shrink_dcache_for_umount_subtree(dentry); 1024 } 1025 } 1026 1027 /* 1028 * This tries to ascend one level of parenthood, but 1029 * we can race with renaming, so we need to re-check 1030 * the parenthood after dropping the lock and check 1031 * that the sequence number still matches. 1032 */ 1033 static struct dentry *try_to_ascend(struct dentry *old, int locked, unsigned seq) 1034 { 1035 struct dentry *new = old->d_parent; 1036 1037 rcu_read_lock(); 1038 spin_unlock(&old->d_lock); 1039 spin_lock(&new->d_lock); 1040 1041 /* 1042 * might go back up the wrong parent if we have had a rename 1043 * or deletion 1044 */ 1045 if (new != old->d_parent || 1046 (old->d_flags & DCACHE_DISCONNECTED) || 1047 (!locked && read_seqretry(&rename_lock, seq))) { 1048 spin_unlock(&new->d_lock); 1049 new = NULL; 1050 } 1051 rcu_read_unlock(); 1052 return new; 1053 } 1054 1055 1056 /* 1057 * Search for at least 1 mount point in the dentry's subdirs. 1058 * We descend to the next level whenever the d_subdirs 1059 * list is non-empty and continue searching. 1060 */ 1061 1062 /** 1063 * have_submounts - check for mounts over a dentry 1064 * @parent: dentry to check. 1065 * 1066 * Return true if the parent or its subdirectories contain 1067 * a mount point 1068 */ 1069 int have_submounts(struct dentry *parent) 1070 { 1071 struct dentry *this_parent; 1072 struct list_head *next; 1073 unsigned seq; 1074 int locked = 0; 1075 1076 seq = read_seqbegin(&rename_lock); 1077 again: 1078 this_parent = parent; 1079 1080 if (d_mountpoint(parent)) 1081 goto positive; 1082 spin_lock(&this_parent->d_lock); 1083 repeat: 1084 next = this_parent->d_subdirs.next; 1085 resume: 1086 while (next != &this_parent->d_subdirs) { 1087 struct list_head *tmp = next; 1088 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child); 1089 next = tmp->next; 1090 1091 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED); 1092 /* Have we found a mount point ? */ 1093 if (d_mountpoint(dentry)) { 1094 spin_unlock(&dentry->d_lock); 1095 spin_unlock(&this_parent->d_lock); 1096 goto positive; 1097 } 1098 if (!list_empty(&dentry->d_subdirs)) { 1099 spin_unlock(&this_parent->d_lock); 1100 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_); 1101 this_parent = dentry; 1102 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_); 1103 goto repeat; 1104 } 1105 spin_unlock(&dentry->d_lock); 1106 } 1107 /* 1108 * All done at this level ... ascend and resume the search. 1109 */ 1110 if (this_parent != parent) { 1111 struct dentry *child = this_parent; 1112 this_parent = try_to_ascend(this_parent, locked, seq); 1113 if (!this_parent) 1114 goto rename_retry; 1115 next = child->d_u.d_child.next; 1116 goto resume; 1117 } 1118 spin_unlock(&this_parent->d_lock); 1119 if (!locked && read_seqretry(&rename_lock, seq)) 1120 goto rename_retry; 1121 if (locked) 1122 write_sequnlock(&rename_lock); 1123 return 0; /* No mount points found in tree */ 1124 positive: 1125 if (!locked && read_seqretry(&rename_lock, seq)) 1126 goto rename_retry; 1127 if (locked) 1128 write_sequnlock(&rename_lock); 1129 return 1; 1130 1131 rename_retry: 1132 locked = 1; 1133 write_seqlock(&rename_lock); 1134 goto again; 1135 } 1136 EXPORT_SYMBOL(have_submounts); 1137 1138 /* 1139 * Search the dentry child list for the specified parent, 1140 * and move any unused dentries to the end of the unused 1141 * list for prune_dcache(). We descend to the next level 1142 * whenever the d_subdirs list is non-empty and continue 1143 * searching. 1144 * 1145 * It returns zero iff there are no unused children, 1146 * otherwise it returns the number of children moved to 1147 * the end of the unused list. This may not be the total 1148 * number of unused children, because select_parent can 1149 * drop the lock and return early due to latency 1150 * constraints. 1151 */ 1152 static int select_parent(struct dentry *parent, struct list_head *dispose) 1153 { 1154 struct dentry *this_parent; 1155 struct list_head *next; 1156 unsigned seq; 1157 int found = 0; 1158 int locked = 0; 1159 1160 seq = read_seqbegin(&rename_lock); 1161 again: 1162 this_parent = parent; 1163 spin_lock(&this_parent->d_lock); 1164 repeat: 1165 next = this_parent->d_subdirs.next; 1166 resume: 1167 while (next != &this_parent->d_subdirs) { 1168 struct list_head *tmp = next; 1169 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child); 1170 next = tmp->next; 1171 1172 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED); 1173 1174 /* 1175 * move only zero ref count dentries to the dispose list. 1176 * 1177 * Those which are presently on the shrink list, being processed 1178 * by shrink_dentry_list(), shouldn't be moved. Otherwise the 1179 * loop in shrink_dcache_parent() might not make any progress 1180 * and loop forever. 1181 */ 1182 if (dentry->d_count) { 1183 dentry_lru_del(dentry); 1184 } else if (!(dentry->d_flags & DCACHE_SHRINK_LIST)) { 1185 dentry_lru_move_list(dentry, dispose); 1186 dentry->d_flags |= DCACHE_SHRINK_LIST; 1187 found++; 1188 } 1189 /* 1190 * We can return to the caller if we have found some (this 1191 * ensures forward progress). We'll be coming back to find 1192 * the rest. 1193 */ 1194 if (found && need_resched()) { 1195 spin_unlock(&dentry->d_lock); 1196 goto out; 1197 } 1198 1199 /* 1200 * Descend a level if the d_subdirs list is non-empty. 1201 */ 1202 if (!list_empty(&dentry->d_subdirs)) { 1203 spin_unlock(&this_parent->d_lock); 1204 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_); 1205 this_parent = dentry; 1206 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_); 1207 goto repeat; 1208 } 1209 1210 spin_unlock(&dentry->d_lock); 1211 } 1212 /* 1213 * All done at this level ... ascend and resume the search. 1214 */ 1215 if (this_parent != parent) { 1216 struct dentry *child = this_parent; 1217 this_parent = try_to_ascend(this_parent, locked, seq); 1218 if (!this_parent) 1219 goto rename_retry; 1220 next = child->d_u.d_child.next; 1221 goto resume; 1222 } 1223 out: 1224 spin_unlock(&this_parent->d_lock); 1225 if (!locked && read_seqretry(&rename_lock, seq)) 1226 goto rename_retry; 1227 if (locked) 1228 write_sequnlock(&rename_lock); 1229 return found; 1230 1231 rename_retry: 1232 if (found) 1233 return found; 1234 locked = 1; 1235 write_seqlock(&rename_lock); 1236 goto again; 1237 } 1238 1239 /** 1240 * shrink_dcache_parent - prune dcache 1241 * @parent: parent of entries to prune 1242 * 1243 * Prune the dcache to remove unused children of the parent dentry. 1244 */ 1245 void shrink_dcache_parent(struct dentry * parent) 1246 { 1247 LIST_HEAD(dispose); 1248 int found; 1249 1250 while ((found = select_parent(parent, &dispose)) != 0) 1251 shrink_dentry_list(&dispose); 1252 } 1253 EXPORT_SYMBOL(shrink_dcache_parent); 1254 1255 /** 1256 * __d_alloc - allocate a dcache entry 1257 * @sb: filesystem it will belong to 1258 * @name: qstr of the name 1259 * 1260 * Allocates a dentry. It returns %NULL if there is insufficient memory 1261 * available. On a success the dentry is returned. The name passed in is 1262 * copied and the copy passed in may be reused after this call. 1263 */ 1264 1265 struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name) 1266 { 1267 struct dentry *dentry; 1268 char *dname; 1269 1270 dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL); 1271 if (!dentry) 1272 return NULL; 1273 1274 /* 1275 * We guarantee that the inline name is always NUL-terminated. 1276 * This way the memcpy() done by the name switching in rename 1277 * will still always have a NUL at the end, even if we might 1278 * be overwriting an internal NUL character 1279 */ 1280 dentry->d_iname[DNAME_INLINE_LEN-1] = 0; 1281 if (name->len > DNAME_INLINE_LEN-1) { 1282 dname = kmalloc(name->len + 1, GFP_KERNEL); 1283 if (!dname) { 1284 kmem_cache_free(dentry_cache, dentry); 1285 return NULL; 1286 } 1287 } else { 1288 dname = dentry->d_iname; 1289 } 1290 1291 dentry->d_name.len = name->len; 1292 dentry->d_name.hash = name->hash; 1293 memcpy(dname, name->name, name->len); 1294 dname[name->len] = 0; 1295 1296 /* Make sure we always see the terminating NUL character */ 1297 smp_wmb(); 1298 dentry->d_name.name = dname; 1299 1300 dentry->d_count = 1; 1301 dentry->d_flags = 0; 1302 spin_lock_init(&dentry->d_lock); 1303 seqcount_init(&dentry->d_seq); 1304 dentry->d_inode = NULL; 1305 dentry->d_parent = dentry; 1306 dentry->d_sb = sb; 1307 dentry->d_op = NULL; 1308 dentry->d_fsdata = NULL; 1309 INIT_HLIST_BL_NODE(&dentry->d_hash); 1310 INIT_LIST_HEAD(&dentry->d_lru); 1311 INIT_LIST_HEAD(&dentry->d_subdirs); 1312 INIT_LIST_HEAD(&dentry->d_alias); 1313 INIT_LIST_HEAD(&dentry->d_u.d_child); 1314 d_set_d_op(dentry, dentry->d_sb->s_d_op); 1315 1316 this_cpu_inc(nr_dentry); 1317 1318 return dentry; 1319 } 1320 1321 /** 1322 * d_alloc - allocate a dcache entry 1323 * @parent: parent of entry to allocate 1324 * @name: qstr of the name 1325 * 1326 * Allocates a dentry. It returns %NULL if there is insufficient memory 1327 * available. On a success the dentry is returned. The name passed in is 1328 * copied and the copy passed in may be reused after this call. 1329 */ 1330 struct dentry *d_alloc(struct dentry * parent, const struct qstr *name) 1331 { 1332 struct dentry *dentry = __d_alloc(parent->d_sb, name); 1333 if (!dentry) 1334 return NULL; 1335 1336 spin_lock(&parent->d_lock); 1337 /* 1338 * don't need child lock because it is not subject 1339 * to concurrency here 1340 */ 1341 __dget_dlock(parent); 1342 dentry->d_parent = parent; 1343 list_add(&dentry->d_u.d_child, &parent->d_subdirs); 1344 spin_unlock(&parent->d_lock); 1345 1346 return dentry; 1347 } 1348 EXPORT_SYMBOL(d_alloc); 1349 1350 struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name) 1351 { 1352 struct dentry *dentry = __d_alloc(sb, name); 1353 if (dentry) 1354 dentry->d_flags |= DCACHE_DISCONNECTED; 1355 return dentry; 1356 } 1357 EXPORT_SYMBOL(d_alloc_pseudo); 1358 1359 struct dentry *d_alloc_name(struct dentry *parent, const char *name) 1360 { 1361 struct qstr q; 1362 1363 q.name = name; 1364 q.len = strlen(name); 1365 q.hash = full_name_hash(q.name, q.len); 1366 return d_alloc(parent, &q); 1367 } 1368 EXPORT_SYMBOL(d_alloc_name); 1369 1370 void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op) 1371 { 1372 WARN_ON_ONCE(dentry->d_op); 1373 WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH | 1374 DCACHE_OP_COMPARE | 1375 DCACHE_OP_REVALIDATE | 1376 DCACHE_OP_DELETE )); 1377 dentry->d_op = op; 1378 if (!op) 1379 return; 1380 if (op->d_hash) 1381 dentry->d_flags |= DCACHE_OP_HASH; 1382 if (op->d_compare) 1383 dentry->d_flags |= DCACHE_OP_COMPARE; 1384 if (op->d_revalidate) 1385 dentry->d_flags |= DCACHE_OP_REVALIDATE; 1386 if (op->d_delete) 1387 dentry->d_flags |= DCACHE_OP_DELETE; 1388 if (op->d_prune) 1389 dentry->d_flags |= DCACHE_OP_PRUNE; 1390 1391 } 1392 EXPORT_SYMBOL(d_set_d_op); 1393 1394 static void __d_instantiate(struct dentry *dentry, struct inode *inode) 1395 { 1396 spin_lock(&dentry->d_lock); 1397 if (inode) { 1398 if (unlikely(IS_AUTOMOUNT(inode))) 1399 dentry->d_flags |= DCACHE_NEED_AUTOMOUNT; 1400 list_add(&dentry->d_alias, &inode->i_dentry); 1401 } 1402 dentry->d_inode = inode; 1403 dentry_rcuwalk_barrier(dentry); 1404 spin_unlock(&dentry->d_lock); 1405 fsnotify_d_instantiate(dentry, inode); 1406 } 1407 1408 /** 1409 * d_instantiate - fill in inode information for a dentry 1410 * @entry: dentry to complete 1411 * @inode: inode to attach to this dentry 1412 * 1413 * Fill in inode information in the entry. 1414 * 1415 * This turns negative dentries into productive full members 1416 * of society. 1417 * 1418 * NOTE! This assumes that the inode count has been incremented 1419 * (or otherwise set) by the caller to indicate that it is now 1420 * in use by the dcache. 1421 */ 1422 1423 void d_instantiate(struct dentry *entry, struct inode * inode) 1424 { 1425 BUG_ON(!list_empty(&entry->d_alias)); 1426 if (inode) 1427 spin_lock(&inode->i_lock); 1428 __d_instantiate(entry, inode); 1429 if (inode) 1430 spin_unlock(&inode->i_lock); 1431 security_d_instantiate(entry, inode); 1432 } 1433 EXPORT_SYMBOL(d_instantiate); 1434 1435 /** 1436 * d_instantiate_unique - instantiate a non-aliased dentry 1437 * @entry: dentry to instantiate 1438 * @inode: inode to attach to this dentry 1439 * 1440 * Fill in inode information in the entry. On success, it returns NULL. 1441 * If an unhashed alias of "entry" already exists, then we return the 1442 * aliased dentry instead and drop one reference to inode. 1443 * 1444 * Note that in order to avoid conflicts with rename() etc, the caller 1445 * had better be holding the parent directory semaphore. 1446 * 1447 * This also assumes that the inode count has been incremented 1448 * (or otherwise set) by the caller to indicate that it is now 1449 * in use by the dcache. 1450 */ 1451 static struct dentry *__d_instantiate_unique(struct dentry *entry, 1452 struct inode *inode) 1453 { 1454 struct dentry *alias; 1455 int len = entry->d_name.len; 1456 const char *name = entry->d_name.name; 1457 unsigned int hash = entry->d_name.hash; 1458 1459 if (!inode) { 1460 __d_instantiate(entry, NULL); 1461 return NULL; 1462 } 1463 1464 list_for_each_entry(alias, &inode->i_dentry, d_alias) { 1465 /* 1466 * Don't need alias->d_lock here, because aliases with 1467 * d_parent == entry->d_parent are not subject to name or 1468 * parent changes, because the parent inode i_mutex is held. 1469 */ 1470 if (alias->d_name.hash != hash) 1471 continue; 1472 if (alias->d_parent != entry->d_parent) 1473 continue; 1474 if (alias->d_name.len != len) 1475 continue; 1476 if (dentry_cmp(alias, name, len)) 1477 continue; 1478 __dget(alias); 1479 return alias; 1480 } 1481 1482 __d_instantiate(entry, inode); 1483 return NULL; 1484 } 1485 1486 struct dentry *d_instantiate_unique(struct dentry *entry, struct inode *inode) 1487 { 1488 struct dentry *result; 1489 1490 BUG_ON(!list_empty(&entry->d_alias)); 1491 1492 if (inode) 1493 spin_lock(&inode->i_lock); 1494 result = __d_instantiate_unique(entry, inode); 1495 if (inode) 1496 spin_unlock(&inode->i_lock); 1497 1498 if (!result) { 1499 security_d_instantiate(entry, inode); 1500 return NULL; 1501 } 1502 1503 BUG_ON(!d_unhashed(result)); 1504 iput(inode); 1505 return result; 1506 } 1507 1508 EXPORT_SYMBOL(d_instantiate_unique); 1509 1510 struct dentry *d_make_root(struct inode *root_inode) 1511 { 1512 struct dentry *res = NULL; 1513 1514 if (root_inode) { 1515 static const struct qstr name = QSTR_INIT("/", 1); 1516 1517 res = __d_alloc(root_inode->i_sb, &name); 1518 if (res) 1519 d_instantiate(res, root_inode); 1520 else 1521 iput(root_inode); 1522 } 1523 return res; 1524 } 1525 EXPORT_SYMBOL(d_make_root); 1526 1527 static struct dentry * __d_find_any_alias(struct inode *inode) 1528 { 1529 struct dentry *alias; 1530 1531 if (list_empty(&inode->i_dentry)) 1532 return NULL; 1533 alias = list_first_entry(&inode->i_dentry, struct dentry, d_alias); 1534 __dget(alias); 1535 return alias; 1536 } 1537 1538 /** 1539 * d_find_any_alias - find any alias for a given inode 1540 * @inode: inode to find an alias for 1541 * 1542 * If any aliases exist for the given inode, take and return a 1543 * reference for one of them. If no aliases exist, return %NULL. 1544 */ 1545 struct dentry *d_find_any_alias(struct inode *inode) 1546 { 1547 struct dentry *de; 1548 1549 spin_lock(&inode->i_lock); 1550 de = __d_find_any_alias(inode); 1551 spin_unlock(&inode->i_lock); 1552 return de; 1553 } 1554 EXPORT_SYMBOL(d_find_any_alias); 1555 1556 /** 1557 * d_obtain_alias - find or allocate a dentry for a given inode 1558 * @inode: inode to allocate the dentry for 1559 * 1560 * Obtain a dentry for an inode resulting from NFS filehandle conversion or 1561 * similar open by handle operations. The returned dentry may be anonymous, 1562 * or may have a full name (if the inode was already in the cache). 1563 * 1564 * When called on a directory inode, we must ensure that the inode only ever 1565 * has one dentry. If a dentry is found, that is returned instead of 1566 * allocating a new one. 1567 * 1568 * On successful return, the reference to the inode has been transferred 1569 * to the dentry. In case of an error the reference on the inode is released. 1570 * To make it easier to use in export operations a %NULL or IS_ERR inode may 1571 * be passed in and will be the error will be propagate to the return value, 1572 * with a %NULL @inode replaced by ERR_PTR(-ESTALE). 1573 */ 1574 struct dentry *d_obtain_alias(struct inode *inode) 1575 { 1576 static const struct qstr anonstring = { .name = "" }; 1577 struct dentry *tmp; 1578 struct dentry *res; 1579 1580 if (!inode) 1581 return ERR_PTR(-ESTALE); 1582 if (IS_ERR(inode)) 1583 return ERR_CAST(inode); 1584 1585 res = d_find_any_alias(inode); 1586 if (res) 1587 goto out_iput; 1588 1589 tmp = __d_alloc(inode->i_sb, &anonstring); 1590 if (!tmp) { 1591 res = ERR_PTR(-ENOMEM); 1592 goto out_iput; 1593 } 1594 1595 spin_lock(&inode->i_lock); 1596 res = __d_find_any_alias(inode); 1597 if (res) { 1598 spin_unlock(&inode->i_lock); 1599 dput(tmp); 1600 goto out_iput; 1601 } 1602 1603 /* attach a disconnected dentry */ 1604 spin_lock(&tmp->d_lock); 1605 tmp->d_inode = inode; 1606 tmp->d_flags |= DCACHE_DISCONNECTED; 1607 list_add(&tmp->d_alias, &inode->i_dentry); 1608 hlist_bl_lock(&tmp->d_sb->s_anon); 1609 hlist_bl_add_head(&tmp->d_hash, &tmp->d_sb->s_anon); 1610 hlist_bl_unlock(&tmp->d_sb->s_anon); 1611 spin_unlock(&tmp->d_lock); 1612 spin_unlock(&inode->i_lock); 1613 security_d_instantiate(tmp, inode); 1614 1615 return tmp; 1616 1617 out_iput: 1618 if (res && !IS_ERR(res)) 1619 security_d_instantiate(res, inode); 1620 iput(inode); 1621 return res; 1622 } 1623 EXPORT_SYMBOL(d_obtain_alias); 1624 1625 /** 1626 * d_splice_alias - splice a disconnected dentry into the tree if one exists 1627 * @inode: the inode which may have a disconnected dentry 1628 * @dentry: a negative dentry which we want to point to the inode. 1629 * 1630 * If inode is a directory and has a 'disconnected' dentry (i.e. IS_ROOT and 1631 * DCACHE_DISCONNECTED), then d_move that in place of the given dentry 1632 * and return it, else simply d_add the inode to the dentry and return NULL. 1633 * 1634 * This is needed in the lookup routine of any filesystem that is exportable 1635 * (via knfsd) so that we can build dcache paths to directories effectively. 1636 * 1637 * If a dentry was found and moved, then it is returned. Otherwise NULL 1638 * is returned. This matches the expected return value of ->lookup. 1639 * 1640 */ 1641 struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry) 1642 { 1643 struct dentry *new = NULL; 1644 1645 if (IS_ERR(inode)) 1646 return ERR_CAST(inode); 1647 1648 if (inode && S_ISDIR(inode->i_mode)) { 1649 spin_lock(&inode->i_lock); 1650 new = __d_find_any_alias(inode); 1651 if (new) { 1652 spin_unlock(&inode->i_lock); 1653 security_d_instantiate(new, inode); 1654 d_move(new, dentry); 1655 iput(inode); 1656 } else { 1657 /* already taking inode->i_lock, so d_add() by hand */ 1658 __d_instantiate(dentry, inode); 1659 spin_unlock(&inode->i_lock); 1660 security_d_instantiate(dentry, inode); 1661 d_rehash(dentry); 1662 } 1663 } else 1664 d_add(dentry, inode); 1665 return new; 1666 } 1667 EXPORT_SYMBOL(d_splice_alias); 1668 1669 /** 1670 * d_add_ci - lookup or allocate new dentry with case-exact name 1671 * @inode: the inode case-insensitive lookup has found 1672 * @dentry: the negative dentry that was passed to the parent's lookup func 1673 * @name: the case-exact name to be associated with the returned dentry 1674 * 1675 * This is to avoid filling the dcache with case-insensitive names to the 1676 * same inode, only the actual correct case is stored in the dcache for 1677 * case-insensitive filesystems. 1678 * 1679 * For a case-insensitive lookup match and if the the case-exact dentry 1680 * already exists in in the dcache, use it and return it. 1681 * 1682 * If no entry exists with the exact case name, allocate new dentry with 1683 * the exact case, and return the spliced entry. 1684 */ 1685 struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode, 1686 struct qstr *name) 1687 { 1688 int error; 1689 struct dentry *found; 1690 struct dentry *new; 1691 1692 /* 1693 * First check if a dentry matching the name already exists, 1694 * if not go ahead and create it now. 1695 */ 1696 found = d_hash_and_lookup(dentry->d_parent, name); 1697 if (!found) { 1698 new = d_alloc(dentry->d_parent, name); 1699 if (!new) { 1700 error = -ENOMEM; 1701 goto err_out; 1702 } 1703 1704 found = d_splice_alias(inode, new); 1705 if (found) { 1706 dput(new); 1707 return found; 1708 } 1709 return new; 1710 } 1711 1712 /* 1713 * If a matching dentry exists, and it's not negative use it. 1714 * 1715 * Decrement the reference count to balance the iget() done 1716 * earlier on. 1717 */ 1718 if (found->d_inode) { 1719 if (unlikely(found->d_inode != inode)) { 1720 /* This can't happen because bad inodes are unhashed. */ 1721 BUG_ON(!is_bad_inode(inode)); 1722 BUG_ON(!is_bad_inode(found->d_inode)); 1723 } 1724 iput(inode); 1725 return found; 1726 } 1727 1728 /* 1729 * We are going to instantiate this dentry, unhash it and clear the 1730 * lookup flag so we can do that. 1731 */ 1732 if (unlikely(d_need_lookup(found))) 1733 d_clear_need_lookup(found); 1734 1735 /* 1736 * Negative dentry: instantiate it unless the inode is a directory and 1737 * already has a dentry. 1738 */ 1739 new = d_splice_alias(inode, found); 1740 if (new) { 1741 dput(found); 1742 found = new; 1743 } 1744 return found; 1745 1746 err_out: 1747 iput(inode); 1748 return ERR_PTR(error); 1749 } 1750 EXPORT_SYMBOL(d_add_ci); 1751 1752 /* 1753 * Do the slow-case of the dentry name compare. 1754 * 1755 * Unlike the dentry_cmp() function, we need to atomically 1756 * load the name, length and inode information, so that the 1757 * filesystem can rely on them, and can use the 'name' and 1758 * 'len' information without worrying about walking off the 1759 * end of memory etc. 1760 * 1761 * Thus the read_seqcount_retry() and the "duplicate" info 1762 * in arguments (the low-level filesystem should not look 1763 * at the dentry inode or name contents directly, since 1764 * rename can change them while we're in RCU mode). 1765 */ 1766 enum slow_d_compare { 1767 D_COMP_OK, 1768 D_COMP_NOMATCH, 1769 D_COMP_SEQRETRY, 1770 }; 1771 1772 static noinline enum slow_d_compare slow_dentry_cmp( 1773 const struct dentry *parent, 1774 struct inode *inode, 1775 struct dentry *dentry, 1776 unsigned int seq, 1777 const struct qstr *name) 1778 { 1779 int tlen = dentry->d_name.len; 1780 const char *tname = dentry->d_name.name; 1781 struct inode *i = dentry->d_inode; 1782 1783 if (read_seqcount_retry(&dentry->d_seq, seq)) { 1784 cpu_relax(); 1785 return D_COMP_SEQRETRY; 1786 } 1787 if (parent->d_op->d_compare(parent, inode, 1788 dentry, i, 1789 tlen, tname, name)) 1790 return D_COMP_NOMATCH; 1791 return D_COMP_OK; 1792 } 1793 1794 /** 1795 * __d_lookup_rcu - search for a dentry (racy, store-free) 1796 * @parent: parent dentry 1797 * @name: qstr of name we wish to find 1798 * @seqp: returns d_seq value at the point where the dentry was found 1799 * @inode: returns dentry->d_inode when the inode was found valid. 1800 * Returns: dentry, or NULL 1801 * 1802 * __d_lookup_rcu is the dcache lookup function for rcu-walk name 1803 * resolution (store-free path walking) design described in 1804 * Documentation/filesystems/path-lookup.txt. 1805 * 1806 * This is not to be used outside core vfs. 1807 * 1808 * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock 1809 * held, and rcu_read_lock held. The returned dentry must not be stored into 1810 * without taking d_lock and checking d_seq sequence count against @seq 1811 * returned here. 1812 * 1813 * A refcount may be taken on the found dentry with the __d_rcu_to_refcount 1814 * function. 1815 * 1816 * Alternatively, __d_lookup_rcu may be called again to look up the child of 1817 * the returned dentry, so long as its parent's seqlock is checked after the 1818 * child is looked up. Thus, an interlocking stepping of sequence lock checks 1819 * is formed, giving integrity down the path walk. 1820 * 1821 * NOTE! The caller *has* to check the resulting dentry against the sequence 1822 * number we've returned before using any of the resulting dentry state! 1823 */ 1824 struct dentry *__d_lookup_rcu(const struct dentry *parent, 1825 const struct qstr *name, 1826 unsigned *seqp, struct inode *inode) 1827 { 1828 u64 hashlen = name->hash_len; 1829 const unsigned char *str = name->name; 1830 struct hlist_bl_head *b = d_hash(parent, hashlen_hash(hashlen)); 1831 struct hlist_bl_node *node; 1832 struct dentry *dentry; 1833 1834 /* 1835 * Note: There is significant duplication with __d_lookup_rcu which is 1836 * required to prevent single threaded performance regressions 1837 * especially on architectures where smp_rmb (in seqcounts) are costly. 1838 * Keep the two functions in sync. 1839 */ 1840 1841 /* 1842 * The hash list is protected using RCU. 1843 * 1844 * Carefully use d_seq when comparing a candidate dentry, to avoid 1845 * races with d_move(). 1846 * 1847 * It is possible that concurrent renames can mess up our list 1848 * walk here and result in missing our dentry, resulting in the 1849 * false-negative result. d_lookup() protects against concurrent 1850 * renames using rename_lock seqlock. 1851 * 1852 * See Documentation/filesystems/path-lookup.txt for more details. 1853 */ 1854 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) { 1855 unsigned seq; 1856 1857 seqretry: 1858 /* 1859 * The dentry sequence count protects us from concurrent 1860 * renames, and thus protects inode, parent and name fields. 1861 * 1862 * The caller must perform a seqcount check in order 1863 * to do anything useful with the returned dentry, 1864 * including using the 'd_inode' pointer. 1865 * 1866 * NOTE! We do a "raw" seqcount_begin here. That means that 1867 * we don't wait for the sequence count to stabilize if it 1868 * is in the middle of a sequence change. If we do the slow 1869 * dentry compare, we will do seqretries until it is stable, 1870 * and if we end up with a successful lookup, we actually 1871 * want to exit RCU lookup anyway. 1872 */ 1873 seq = raw_seqcount_begin(&dentry->d_seq); 1874 if (dentry->d_parent != parent) 1875 continue; 1876 if (d_unhashed(dentry)) 1877 continue; 1878 *seqp = seq; 1879 1880 if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) { 1881 if (dentry->d_name.hash != hashlen_hash(hashlen)) 1882 continue; 1883 switch (slow_dentry_cmp(parent, inode, dentry, seq, name)) { 1884 case D_COMP_OK: 1885 return dentry; 1886 case D_COMP_NOMATCH: 1887 continue; 1888 default: 1889 goto seqretry; 1890 } 1891 } 1892 1893 if (dentry->d_name.hash_len != hashlen) 1894 continue; 1895 if (!dentry_cmp(dentry, str, hashlen_len(hashlen))) 1896 return dentry; 1897 } 1898 return NULL; 1899 } 1900 1901 /** 1902 * d_lookup - search for a dentry 1903 * @parent: parent dentry 1904 * @name: qstr of name we wish to find 1905 * Returns: dentry, or NULL 1906 * 1907 * d_lookup searches the children of the parent dentry for the name in 1908 * question. If the dentry is found its reference count is incremented and the 1909 * dentry is returned. The caller must use dput to free the entry when it has 1910 * finished using it. %NULL is returned if the dentry does not exist. 1911 */ 1912 struct dentry *d_lookup(struct dentry *parent, struct qstr *name) 1913 { 1914 struct dentry *dentry; 1915 unsigned seq; 1916 1917 do { 1918 seq = read_seqbegin(&rename_lock); 1919 dentry = __d_lookup(parent, name); 1920 if (dentry) 1921 break; 1922 } while (read_seqretry(&rename_lock, seq)); 1923 return dentry; 1924 } 1925 EXPORT_SYMBOL(d_lookup); 1926 1927 /** 1928 * __d_lookup - search for a dentry (racy) 1929 * @parent: parent dentry 1930 * @name: qstr of name we wish to find 1931 * Returns: dentry, or NULL 1932 * 1933 * __d_lookup is like d_lookup, however it may (rarely) return a 1934 * false-negative result due to unrelated rename activity. 1935 * 1936 * __d_lookup is slightly faster by avoiding rename_lock read seqlock, 1937 * however it must be used carefully, eg. with a following d_lookup in 1938 * the case of failure. 1939 * 1940 * __d_lookup callers must be commented. 1941 */ 1942 struct dentry *__d_lookup(struct dentry *parent, struct qstr *name) 1943 { 1944 unsigned int len = name->len; 1945 unsigned int hash = name->hash; 1946 const unsigned char *str = name->name; 1947 struct hlist_bl_head *b = d_hash(parent, hash); 1948 struct hlist_bl_node *node; 1949 struct dentry *found = NULL; 1950 struct dentry *dentry; 1951 1952 /* 1953 * Note: There is significant duplication with __d_lookup_rcu which is 1954 * required to prevent single threaded performance regressions 1955 * especially on architectures where smp_rmb (in seqcounts) are costly. 1956 * Keep the two functions in sync. 1957 */ 1958 1959 /* 1960 * The hash list is protected using RCU. 1961 * 1962 * Take d_lock when comparing a candidate dentry, to avoid races 1963 * with d_move(). 1964 * 1965 * It is possible that concurrent renames can mess up our list 1966 * walk here and result in missing our dentry, resulting in the 1967 * false-negative result. d_lookup() protects against concurrent 1968 * renames using rename_lock seqlock. 1969 * 1970 * See Documentation/filesystems/path-lookup.txt for more details. 1971 */ 1972 rcu_read_lock(); 1973 1974 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) { 1975 1976 if (dentry->d_name.hash != hash) 1977 continue; 1978 1979 spin_lock(&dentry->d_lock); 1980 if (dentry->d_parent != parent) 1981 goto next; 1982 if (d_unhashed(dentry)) 1983 goto next; 1984 1985 /* 1986 * It is safe to compare names since d_move() cannot 1987 * change the qstr (protected by d_lock). 1988 */ 1989 if (parent->d_flags & DCACHE_OP_COMPARE) { 1990 int tlen = dentry->d_name.len; 1991 const char *tname = dentry->d_name.name; 1992 if (parent->d_op->d_compare(parent, parent->d_inode, 1993 dentry, dentry->d_inode, 1994 tlen, tname, name)) 1995 goto next; 1996 } else { 1997 if (dentry->d_name.len != len) 1998 goto next; 1999 if (dentry_cmp(dentry, str, len)) 2000 goto next; 2001 } 2002 2003 dentry->d_count++; 2004 found = dentry; 2005 spin_unlock(&dentry->d_lock); 2006 break; 2007 next: 2008 spin_unlock(&dentry->d_lock); 2009 } 2010 rcu_read_unlock(); 2011 2012 return found; 2013 } 2014 2015 /** 2016 * d_hash_and_lookup - hash the qstr then search for a dentry 2017 * @dir: Directory to search in 2018 * @name: qstr of name we wish to find 2019 * 2020 * On hash failure or on lookup failure NULL is returned. 2021 */ 2022 struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name) 2023 { 2024 struct dentry *dentry = NULL; 2025 2026 /* 2027 * Check for a fs-specific hash function. Note that we must 2028 * calculate the standard hash first, as the d_op->d_hash() 2029 * routine may choose to leave the hash value unchanged. 2030 */ 2031 name->hash = full_name_hash(name->name, name->len); 2032 if (dir->d_flags & DCACHE_OP_HASH) { 2033 if (dir->d_op->d_hash(dir, dir->d_inode, name) < 0) 2034 goto out; 2035 } 2036 dentry = d_lookup(dir, name); 2037 out: 2038 return dentry; 2039 } 2040 2041 /** 2042 * d_validate - verify dentry provided from insecure source (deprecated) 2043 * @dentry: The dentry alleged to be valid child of @dparent 2044 * @dparent: The parent dentry (known to be valid) 2045 * 2046 * An insecure source has sent us a dentry, here we verify it and dget() it. 2047 * This is used by ncpfs in its readdir implementation. 2048 * Zero is returned in the dentry is invalid. 2049 * 2050 * This function is slow for big directories, and deprecated, do not use it. 2051 */ 2052 int d_validate(struct dentry *dentry, struct dentry *dparent) 2053 { 2054 struct dentry *child; 2055 2056 spin_lock(&dparent->d_lock); 2057 list_for_each_entry(child, &dparent->d_subdirs, d_u.d_child) { 2058 if (dentry == child) { 2059 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED); 2060 __dget_dlock(dentry); 2061 spin_unlock(&dentry->d_lock); 2062 spin_unlock(&dparent->d_lock); 2063 return 1; 2064 } 2065 } 2066 spin_unlock(&dparent->d_lock); 2067 2068 return 0; 2069 } 2070 EXPORT_SYMBOL(d_validate); 2071 2072 /* 2073 * When a file is deleted, we have two options: 2074 * - turn this dentry into a negative dentry 2075 * - unhash this dentry and free it. 2076 * 2077 * Usually, we want to just turn this into 2078 * a negative dentry, but if anybody else is 2079 * currently using the dentry or the inode 2080 * we can't do that and we fall back on removing 2081 * it from the hash queues and waiting for 2082 * it to be deleted later when it has no users 2083 */ 2084 2085 /** 2086 * d_delete - delete a dentry 2087 * @dentry: The dentry to delete 2088 * 2089 * Turn the dentry into a negative dentry if possible, otherwise 2090 * remove it from the hash queues so it can be deleted later 2091 */ 2092 2093 void d_delete(struct dentry * dentry) 2094 { 2095 struct inode *inode; 2096 int isdir = 0; 2097 /* 2098 * Are we the only user? 2099 */ 2100 again: 2101 spin_lock(&dentry->d_lock); 2102 inode = dentry->d_inode; 2103 isdir = S_ISDIR(inode->i_mode); 2104 if (dentry->d_count == 1) { 2105 if (inode && !spin_trylock(&inode->i_lock)) { 2106 spin_unlock(&dentry->d_lock); 2107 cpu_relax(); 2108 goto again; 2109 } 2110 dentry->d_flags &= ~DCACHE_CANT_MOUNT; 2111 dentry_unlink_inode(dentry); 2112 fsnotify_nameremove(dentry, isdir); 2113 return; 2114 } 2115 2116 if (!d_unhashed(dentry)) 2117 __d_drop(dentry); 2118 2119 spin_unlock(&dentry->d_lock); 2120 2121 fsnotify_nameremove(dentry, isdir); 2122 } 2123 EXPORT_SYMBOL(d_delete); 2124 2125 static void __d_rehash(struct dentry * entry, struct hlist_bl_head *b) 2126 { 2127 BUG_ON(!d_unhashed(entry)); 2128 hlist_bl_lock(b); 2129 entry->d_flags |= DCACHE_RCUACCESS; 2130 hlist_bl_add_head_rcu(&entry->d_hash, b); 2131 hlist_bl_unlock(b); 2132 } 2133 2134 static void _d_rehash(struct dentry * entry) 2135 { 2136 __d_rehash(entry, d_hash(entry->d_parent, entry->d_name.hash)); 2137 } 2138 2139 /** 2140 * d_rehash - add an entry back to the hash 2141 * @entry: dentry to add to the hash 2142 * 2143 * Adds a dentry to the hash according to its name. 2144 */ 2145 2146 void d_rehash(struct dentry * entry) 2147 { 2148 spin_lock(&entry->d_lock); 2149 _d_rehash(entry); 2150 spin_unlock(&entry->d_lock); 2151 } 2152 EXPORT_SYMBOL(d_rehash); 2153 2154 /** 2155 * dentry_update_name_case - update case insensitive dentry with a new name 2156 * @dentry: dentry to be updated 2157 * @name: new name 2158 * 2159 * Update a case insensitive dentry with new case of name. 2160 * 2161 * dentry must have been returned by d_lookup with name @name. Old and new 2162 * name lengths must match (ie. no d_compare which allows mismatched name 2163 * lengths). 2164 * 2165 * Parent inode i_mutex must be held over d_lookup and into this call (to 2166 * keep renames and concurrent inserts, and readdir(2) away). 2167 */ 2168 void dentry_update_name_case(struct dentry *dentry, struct qstr *name) 2169 { 2170 BUG_ON(!mutex_is_locked(&dentry->d_parent->d_inode->i_mutex)); 2171 BUG_ON(dentry->d_name.len != name->len); /* d_lookup gives this */ 2172 2173 spin_lock(&dentry->d_lock); 2174 write_seqcount_begin(&dentry->d_seq); 2175 memcpy((unsigned char *)dentry->d_name.name, name->name, name->len); 2176 write_seqcount_end(&dentry->d_seq); 2177 spin_unlock(&dentry->d_lock); 2178 } 2179 EXPORT_SYMBOL(dentry_update_name_case); 2180 2181 static void switch_names(struct dentry *dentry, struct dentry *target) 2182 { 2183 if (dname_external(target)) { 2184 if (dname_external(dentry)) { 2185 /* 2186 * Both external: swap the pointers 2187 */ 2188 swap(target->d_name.name, dentry->d_name.name); 2189 } else { 2190 /* 2191 * dentry:internal, target:external. Steal target's 2192 * storage and make target internal. 2193 */ 2194 memcpy(target->d_iname, dentry->d_name.name, 2195 dentry->d_name.len + 1); 2196 dentry->d_name.name = target->d_name.name; 2197 target->d_name.name = target->d_iname; 2198 } 2199 } else { 2200 if (dname_external(dentry)) { 2201 /* 2202 * dentry:external, target:internal. Give dentry's 2203 * storage to target and make dentry internal 2204 */ 2205 memcpy(dentry->d_iname, target->d_name.name, 2206 target->d_name.len + 1); 2207 target->d_name.name = dentry->d_name.name; 2208 dentry->d_name.name = dentry->d_iname; 2209 } else { 2210 /* 2211 * Both are internal. Just copy target to dentry 2212 */ 2213 memcpy(dentry->d_iname, target->d_name.name, 2214 target->d_name.len + 1); 2215 dentry->d_name.len = target->d_name.len; 2216 return; 2217 } 2218 } 2219 swap(dentry->d_name.len, target->d_name.len); 2220 } 2221 2222 static void dentry_lock_for_move(struct dentry *dentry, struct dentry *target) 2223 { 2224 /* 2225 * XXXX: do we really need to take target->d_lock? 2226 */ 2227 if (IS_ROOT(dentry) || dentry->d_parent == target->d_parent) 2228 spin_lock(&target->d_parent->d_lock); 2229 else { 2230 if (d_ancestor(dentry->d_parent, target->d_parent)) { 2231 spin_lock(&dentry->d_parent->d_lock); 2232 spin_lock_nested(&target->d_parent->d_lock, 2233 DENTRY_D_LOCK_NESTED); 2234 } else { 2235 spin_lock(&target->d_parent->d_lock); 2236 spin_lock_nested(&dentry->d_parent->d_lock, 2237 DENTRY_D_LOCK_NESTED); 2238 } 2239 } 2240 if (target < dentry) { 2241 spin_lock_nested(&target->d_lock, 2); 2242 spin_lock_nested(&dentry->d_lock, 3); 2243 } else { 2244 spin_lock_nested(&dentry->d_lock, 2); 2245 spin_lock_nested(&target->d_lock, 3); 2246 } 2247 } 2248 2249 static void dentry_unlock_parents_for_move(struct dentry *dentry, 2250 struct dentry *target) 2251 { 2252 if (target->d_parent != dentry->d_parent) 2253 spin_unlock(&dentry->d_parent->d_lock); 2254 if (target->d_parent != target) 2255 spin_unlock(&target->d_parent->d_lock); 2256 } 2257 2258 /* 2259 * When switching names, the actual string doesn't strictly have to 2260 * be preserved in the target - because we're dropping the target 2261 * anyway. As such, we can just do a simple memcpy() to copy over 2262 * the new name before we switch. 2263 * 2264 * Note that we have to be a lot more careful about getting the hash 2265 * switched - we have to switch the hash value properly even if it 2266 * then no longer matches the actual (corrupted) string of the target. 2267 * The hash value has to match the hash queue that the dentry is on.. 2268 */ 2269 /* 2270 * __d_move - move a dentry 2271 * @dentry: entry to move 2272 * @target: new dentry 2273 * 2274 * Update the dcache to reflect the move of a file name. Negative 2275 * dcache entries should not be moved in this way. Caller must hold 2276 * rename_lock, the i_mutex of the source and target directories, 2277 * and the sb->s_vfs_rename_mutex if they differ. See lock_rename(). 2278 */ 2279 static void __d_move(struct dentry * dentry, struct dentry * target) 2280 { 2281 if (!dentry->d_inode) 2282 printk(KERN_WARNING "VFS: moving negative dcache entry\n"); 2283 2284 BUG_ON(d_ancestor(dentry, target)); 2285 BUG_ON(d_ancestor(target, dentry)); 2286 2287 dentry_lock_for_move(dentry, target); 2288 2289 write_seqcount_begin(&dentry->d_seq); 2290 write_seqcount_begin(&target->d_seq); 2291 2292 /* __d_drop does write_seqcount_barrier, but they're OK to nest. */ 2293 2294 /* 2295 * Move the dentry to the target hash queue. Don't bother checking 2296 * for the same hash queue because of how unlikely it is. 2297 */ 2298 __d_drop(dentry); 2299 __d_rehash(dentry, d_hash(target->d_parent, target->d_name.hash)); 2300 2301 /* Unhash the target: dput() will then get rid of it */ 2302 __d_drop(target); 2303 2304 list_del(&dentry->d_u.d_child); 2305 list_del(&target->d_u.d_child); 2306 2307 /* Switch the names.. */ 2308 switch_names(dentry, target); 2309 swap(dentry->d_name.hash, target->d_name.hash); 2310 2311 /* ... and switch the parents */ 2312 if (IS_ROOT(dentry)) { 2313 dentry->d_parent = target->d_parent; 2314 target->d_parent = target; 2315 INIT_LIST_HEAD(&target->d_u.d_child); 2316 } else { 2317 swap(dentry->d_parent, target->d_parent); 2318 2319 /* And add them back to the (new) parent lists */ 2320 list_add(&target->d_u.d_child, &target->d_parent->d_subdirs); 2321 } 2322 2323 list_add(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs); 2324 2325 write_seqcount_end(&target->d_seq); 2326 write_seqcount_end(&dentry->d_seq); 2327 2328 dentry_unlock_parents_for_move(dentry, target); 2329 spin_unlock(&target->d_lock); 2330 fsnotify_d_move(dentry); 2331 spin_unlock(&dentry->d_lock); 2332 } 2333 2334 /* 2335 * d_move - move a dentry 2336 * @dentry: entry to move 2337 * @target: new dentry 2338 * 2339 * Update the dcache to reflect the move of a file name. Negative 2340 * dcache entries should not be moved in this way. See the locking 2341 * requirements for __d_move. 2342 */ 2343 void d_move(struct dentry *dentry, struct dentry *target) 2344 { 2345 write_seqlock(&rename_lock); 2346 __d_move(dentry, target); 2347 write_sequnlock(&rename_lock); 2348 } 2349 EXPORT_SYMBOL(d_move); 2350 2351 /** 2352 * d_ancestor - search for an ancestor 2353 * @p1: ancestor dentry 2354 * @p2: child dentry 2355 * 2356 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is 2357 * an ancestor of p2, else NULL. 2358 */ 2359 struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2) 2360 { 2361 struct dentry *p; 2362 2363 for (p = p2; !IS_ROOT(p); p = p->d_parent) { 2364 if (p->d_parent == p1) 2365 return p; 2366 } 2367 return NULL; 2368 } 2369 2370 /* 2371 * This helper attempts to cope with remotely renamed directories 2372 * 2373 * It assumes that the caller is already holding 2374 * dentry->d_parent->d_inode->i_mutex, inode->i_lock and rename_lock 2375 * 2376 * Note: If ever the locking in lock_rename() changes, then please 2377 * remember to update this too... 2378 */ 2379 static struct dentry *__d_unalias(struct inode *inode, 2380 struct dentry *dentry, struct dentry *alias) 2381 { 2382 struct mutex *m1 = NULL, *m2 = NULL; 2383 struct dentry *ret; 2384 2385 /* If alias and dentry share a parent, then no extra locks required */ 2386 if (alias->d_parent == dentry->d_parent) 2387 goto out_unalias; 2388 2389 /* See lock_rename() */ 2390 ret = ERR_PTR(-EBUSY); 2391 if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex)) 2392 goto out_err; 2393 m1 = &dentry->d_sb->s_vfs_rename_mutex; 2394 if (!mutex_trylock(&alias->d_parent->d_inode->i_mutex)) 2395 goto out_err; 2396 m2 = &alias->d_parent->d_inode->i_mutex; 2397 out_unalias: 2398 __d_move(alias, dentry); 2399 ret = alias; 2400 out_err: 2401 spin_unlock(&inode->i_lock); 2402 if (m2) 2403 mutex_unlock(m2); 2404 if (m1) 2405 mutex_unlock(m1); 2406 return ret; 2407 } 2408 2409 /* 2410 * Prepare an anonymous dentry for life in the superblock's dentry tree as a 2411 * named dentry in place of the dentry to be replaced. 2412 * returns with anon->d_lock held! 2413 */ 2414 static void __d_materialise_dentry(struct dentry *dentry, struct dentry *anon) 2415 { 2416 struct dentry *dparent, *aparent; 2417 2418 dentry_lock_for_move(anon, dentry); 2419 2420 write_seqcount_begin(&dentry->d_seq); 2421 write_seqcount_begin(&anon->d_seq); 2422 2423 dparent = dentry->d_parent; 2424 aparent = anon->d_parent; 2425 2426 switch_names(dentry, anon); 2427 swap(dentry->d_name.hash, anon->d_name.hash); 2428 2429 dentry->d_parent = (aparent == anon) ? dentry : aparent; 2430 list_del(&dentry->d_u.d_child); 2431 if (!IS_ROOT(dentry)) 2432 list_add(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs); 2433 else 2434 INIT_LIST_HEAD(&dentry->d_u.d_child); 2435 2436 anon->d_parent = (dparent == dentry) ? anon : dparent; 2437 list_del(&anon->d_u.d_child); 2438 if (!IS_ROOT(anon)) 2439 list_add(&anon->d_u.d_child, &anon->d_parent->d_subdirs); 2440 else 2441 INIT_LIST_HEAD(&anon->d_u.d_child); 2442 2443 write_seqcount_end(&dentry->d_seq); 2444 write_seqcount_end(&anon->d_seq); 2445 2446 dentry_unlock_parents_for_move(anon, dentry); 2447 spin_unlock(&dentry->d_lock); 2448 2449 /* anon->d_lock still locked, returns locked */ 2450 anon->d_flags &= ~DCACHE_DISCONNECTED; 2451 } 2452 2453 /** 2454 * d_materialise_unique - introduce an inode into the tree 2455 * @dentry: candidate dentry 2456 * @inode: inode to bind to the dentry, to which aliases may be attached 2457 * 2458 * Introduces an dentry into the tree, substituting an extant disconnected 2459 * root directory alias in its place if there is one. Caller must hold the 2460 * i_mutex of the parent directory. 2461 */ 2462 struct dentry *d_materialise_unique(struct dentry *dentry, struct inode *inode) 2463 { 2464 struct dentry *actual; 2465 2466 BUG_ON(!d_unhashed(dentry)); 2467 2468 if (!inode) { 2469 actual = dentry; 2470 __d_instantiate(dentry, NULL); 2471 d_rehash(actual); 2472 goto out_nolock; 2473 } 2474 2475 spin_lock(&inode->i_lock); 2476 2477 if (S_ISDIR(inode->i_mode)) { 2478 struct dentry *alias; 2479 2480 /* Does an aliased dentry already exist? */ 2481 alias = __d_find_alias(inode); 2482 if (alias) { 2483 actual = alias; 2484 write_seqlock(&rename_lock); 2485 2486 if (d_ancestor(alias, dentry)) { 2487 /* Check for loops */ 2488 actual = ERR_PTR(-ELOOP); 2489 spin_unlock(&inode->i_lock); 2490 } else if (IS_ROOT(alias)) { 2491 /* Is this an anonymous mountpoint that we 2492 * could splice into our tree? */ 2493 __d_materialise_dentry(dentry, alias); 2494 write_sequnlock(&rename_lock); 2495 __d_drop(alias); 2496 goto found; 2497 } else { 2498 /* Nope, but we must(!) avoid directory 2499 * aliasing. This drops inode->i_lock */ 2500 actual = __d_unalias(inode, dentry, alias); 2501 } 2502 write_sequnlock(&rename_lock); 2503 if (IS_ERR(actual)) { 2504 if (PTR_ERR(actual) == -ELOOP) 2505 pr_warn_ratelimited( 2506 "VFS: Lookup of '%s' in %s %s" 2507 " would have caused loop\n", 2508 dentry->d_name.name, 2509 inode->i_sb->s_type->name, 2510 inode->i_sb->s_id); 2511 dput(alias); 2512 } 2513 goto out_nolock; 2514 } 2515 } 2516 2517 /* Add a unique reference */ 2518 actual = __d_instantiate_unique(dentry, inode); 2519 if (!actual) 2520 actual = dentry; 2521 else 2522 BUG_ON(!d_unhashed(actual)); 2523 2524 spin_lock(&actual->d_lock); 2525 found: 2526 _d_rehash(actual); 2527 spin_unlock(&actual->d_lock); 2528 spin_unlock(&inode->i_lock); 2529 out_nolock: 2530 if (actual == dentry) { 2531 security_d_instantiate(dentry, inode); 2532 return NULL; 2533 } 2534 2535 iput(inode); 2536 return actual; 2537 } 2538 EXPORT_SYMBOL_GPL(d_materialise_unique); 2539 2540 static int prepend(char **buffer, int *buflen, const char *str, int namelen) 2541 { 2542 *buflen -= namelen; 2543 if (*buflen < 0) 2544 return -ENAMETOOLONG; 2545 *buffer -= namelen; 2546 memcpy(*buffer, str, namelen); 2547 return 0; 2548 } 2549 2550 static int prepend_name(char **buffer, int *buflen, struct qstr *name) 2551 { 2552 return prepend(buffer, buflen, name->name, name->len); 2553 } 2554 2555 /** 2556 * prepend_path - Prepend path string to a buffer 2557 * @path: the dentry/vfsmount to report 2558 * @root: root vfsmnt/dentry 2559 * @buffer: pointer to the end of the buffer 2560 * @buflen: pointer to buffer length 2561 * 2562 * Caller holds the rename_lock. 2563 */ 2564 static int prepend_path(const struct path *path, 2565 const struct path *root, 2566 char **buffer, int *buflen) 2567 { 2568 struct dentry *dentry = path->dentry; 2569 struct vfsmount *vfsmnt = path->mnt; 2570 struct mount *mnt = real_mount(vfsmnt); 2571 bool slash = false; 2572 int error = 0; 2573 2574 br_read_lock(&vfsmount_lock); 2575 while (dentry != root->dentry || vfsmnt != root->mnt) { 2576 struct dentry * parent; 2577 2578 if (dentry == vfsmnt->mnt_root || IS_ROOT(dentry)) { 2579 /* Global root? */ 2580 if (!mnt_has_parent(mnt)) 2581 goto global_root; 2582 dentry = mnt->mnt_mountpoint; 2583 mnt = mnt->mnt_parent; 2584 vfsmnt = &mnt->mnt; 2585 continue; 2586 } 2587 parent = dentry->d_parent; 2588 prefetch(parent); 2589 spin_lock(&dentry->d_lock); 2590 error = prepend_name(buffer, buflen, &dentry->d_name); 2591 spin_unlock(&dentry->d_lock); 2592 if (!error) 2593 error = prepend(buffer, buflen, "/", 1); 2594 if (error) 2595 break; 2596 2597 slash = true; 2598 dentry = parent; 2599 } 2600 2601 if (!error && !slash) 2602 error = prepend(buffer, buflen, "/", 1); 2603 2604 out: 2605 br_read_unlock(&vfsmount_lock); 2606 return error; 2607 2608 global_root: 2609 /* 2610 * Filesystems needing to implement special "root names" 2611 * should do so with ->d_dname() 2612 */ 2613 if (IS_ROOT(dentry) && 2614 (dentry->d_name.len != 1 || dentry->d_name.name[0] != '/')) { 2615 WARN(1, "Root dentry has weird name <%.*s>\n", 2616 (int) dentry->d_name.len, dentry->d_name.name); 2617 } 2618 if (!slash) 2619 error = prepend(buffer, buflen, "/", 1); 2620 if (!error) 2621 error = real_mount(vfsmnt)->mnt_ns ? 1 : 2; 2622 goto out; 2623 } 2624 2625 /** 2626 * __d_path - return the path of a dentry 2627 * @path: the dentry/vfsmount to report 2628 * @root: root vfsmnt/dentry 2629 * @buf: buffer to return value in 2630 * @buflen: buffer length 2631 * 2632 * Convert a dentry into an ASCII path name. 2633 * 2634 * Returns a pointer into the buffer or an error code if the 2635 * path was too long. 2636 * 2637 * "buflen" should be positive. 2638 * 2639 * If the path is not reachable from the supplied root, return %NULL. 2640 */ 2641 char *__d_path(const struct path *path, 2642 const struct path *root, 2643 char *buf, int buflen) 2644 { 2645 char *res = buf + buflen; 2646 int error; 2647 2648 prepend(&res, &buflen, "\0", 1); 2649 write_seqlock(&rename_lock); 2650 error = prepend_path(path, root, &res, &buflen); 2651 write_sequnlock(&rename_lock); 2652 2653 if (error < 0) 2654 return ERR_PTR(error); 2655 if (error > 0) 2656 return NULL; 2657 return res; 2658 } 2659 2660 char *d_absolute_path(const struct path *path, 2661 char *buf, int buflen) 2662 { 2663 struct path root = {}; 2664 char *res = buf + buflen; 2665 int error; 2666 2667 prepend(&res, &buflen, "\0", 1); 2668 write_seqlock(&rename_lock); 2669 error = prepend_path(path, &root, &res, &buflen); 2670 write_sequnlock(&rename_lock); 2671 2672 if (error > 1) 2673 error = -EINVAL; 2674 if (error < 0) 2675 return ERR_PTR(error); 2676 return res; 2677 } 2678 2679 /* 2680 * same as __d_path but appends "(deleted)" for unlinked files. 2681 */ 2682 static int path_with_deleted(const struct path *path, 2683 const struct path *root, 2684 char **buf, int *buflen) 2685 { 2686 prepend(buf, buflen, "\0", 1); 2687 if (d_unlinked(path->dentry)) { 2688 int error = prepend(buf, buflen, " (deleted)", 10); 2689 if (error) 2690 return error; 2691 } 2692 2693 return prepend_path(path, root, buf, buflen); 2694 } 2695 2696 static int prepend_unreachable(char **buffer, int *buflen) 2697 { 2698 return prepend(buffer, buflen, "(unreachable)", 13); 2699 } 2700 2701 /** 2702 * d_path - return the path of a dentry 2703 * @path: path to report 2704 * @buf: buffer to return value in 2705 * @buflen: buffer length 2706 * 2707 * Convert a dentry into an ASCII path name. If the entry has been deleted 2708 * the string " (deleted)" is appended. Note that this is ambiguous. 2709 * 2710 * Returns a pointer into the buffer or an error code if the path was 2711 * too long. Note: Callers should use the returned pointer, not the passed 2712 * in buffer, to use the name! The implementation often starts at an offset 2713 * into the buffer, and may leave 0 bytes at the start. 2714 * 2715 * "buflen" should be positive. 2716 */ 2717 char *d_path(const struct path *path, char *buf, int buflen) 2718 { 2719 char *res = buf + buflen; 2720 struct path root; 2721 int error; 2722 2723 /* 2724 * We have various synthetic filesystems that never get mounted. On 2725 * these filesystems dentries are never used for lookup purposes, and 2726 * thus don't need to be hashed. They also don't need a name until a 2727 * user wants to identify the object in /proc/pid/fd/. The little hack 2728 * below allows us to generate a name for these objects on demand: 2729 */ 2730 if (path->dentry->d_op && path->dentry->d_op->d_dname) 2731 return path->dentry->d_op->d_dname(path->dentry, buf, buflen); 2732 2733 get_fs_root(current->fs, &root); 2734 write_seqlock(&rename_lock); 2735 error = path_with_deleted(path, &root, &res, &buflen); 2736 if (error < 0) 2737 res = ERR_PTR(error); 2738 write_sequnlock(&rename_lock); 2739 path_put(&root); 2740 return res; 2741 } 2742 EXPORT_SYMBOL(d_path); 2743 2744 /** 2745 * d_path_with_unreachable - return the path of a dentry 2746 * @path: path to report 2747 * @buf: buffer to return value in 2748 * @buflen: buffer length 2749 * 2750 * The difference from d_path() is that this prepends "(unreachable)" 2751 * to paths which are unreachable from the current process' root. 2752 */ 2753 char *d_path_with_unreachable(const struct path *path, char *buf, int buflen) 2754 { 2755 char *res = buf + buflen; 2756 struct path root; 2757 int error; 2758 2759 if (path->dentry->d_op && path->dentry->d_op->d_dname) 2760 return path->dentry->d_op->d_dname(path->dentry, buf, buflen); 2761 2762 get_fs_root(current->fs, &root); 2763 write_seqlock(&rename_lock); 2764 error = path_with_deleted(path, &root, &res, &buflen); 2765 if (error > 0) 2766 error = prepend_unreachable(&res, &buflen); 2767 write_sequnlock(&rename_lock); 2768 path_put(&root); 2769 if (error) 2770 res = ERR_PTR(error); 2771 2772 return res; 2773 } 2774 2775 /* 2776 * Helper function for dentry_operations.d_dname() members 2777 */ 2778 char *dynamic_dname(struct dentry *dentry, char *buffer, int buflen, 2779 const char *fmt, ...) 2780 { 2781 va_list args; 2782 char temp[64]; 2783 int sz; 2784 2785 va_start(args, fmt); 2786 sz = vsnprintf(temp, sizeof(temp), fmt, args) + 1; 2787 va_end(args); 2788 2789 if (sz > sizeof(temp) || sz > buflen) 2790 return ERR_PTR(-ENAMETOOLONG); 2791 2792 buffer += buflen - sz; 2793 return memcpy(buffer, temp, sz); 2794 } 2795 2796 /* 2797 * Write full pathname from the root of the filesystem into the buffer. 2798 */ 2799 static char *__dentry_path(struct dentry *dentry, char *buf, int buflen) 2800 { 2801 char *end = buf + buflen; 2802 char *retval; 2803 2804 prepend(&end, &buflen, "\0", 1); 2805 if (buflen < 1) 2806 goto Elong; 2807 /* Get '/' right */ 2808 retval = end-1; 2809 *retval = '/'; 2810 2811 while (!IS_ROOT(dentry)) { 2812 struct dentry *parent = dentry->d_parent; 2813 int error; 2814 2815 prefetch(parent); 2816 spin_lock(&dentry->d_lock); 2817 error = prepend_name(&end, &buflen, &dentry->d_name); 2818 spin_unlock(&dentry->d_lock); 2819 if (error != 0 || prepend(&end, &buflen, "/", 1) != 0) 2820 goto Elong; 2821 2822 retval = end; 2823 dentry = parent; 2824 } 2825 return retval; 2826 Elong: 2827 return ERR_PTR(-ENAMETOOLONG); 2828 } 2829 2830 char *dentry_path_raw(struct dentry *dentry, char *buf, int buflen) 2831 { 2832 char *retval; 2833 2834 write_seqlock(&rename_lock); 2835 retval = __dentry_path(dentry, buf, buflen); 2836 write_sequnlock(&rename_lock); 2837 2838 return retval; 2839 } 2840 EXPORT_SYMBOL(dentry_path_raw); 2841 2842 char *dentry_path(struct dentry *dentry, char *buf, int buflen) 2843 { 2844 char *p = NULL; 2845 char *retval; 2846 2847 write_seqlock(&rename_lock); 2848 if (d_unlinked(dentry)) { 2849 p = buf + buflen; 2850 if (prepend(&p, &buflen, "//deleted", 10) != 0) 2851 goto Elong; 2852 buflen++; 2853 } 2854 retval = __dentry_path(dentry, buf, buflen); 2855 write_sequnlock(&rename_lock); 2856 if (!IS_ERR(retval) && p) 2857 *p = '/'; /* restore '/' overriden with '\0' */ 2858 return retval; 2859 Elong: 2860 return ERR_PTR(-ENAMETOOLONG); 2861 } 2862 2863 /* 2864 * NOTE! The user-level library version returns a 2865 * character pointer. The kernel system call just 2866 * returns the length of the buffer filled (which 2867 * includes the ending '\0' character), or a negative 2868 * error value. So libc would do something like 2869 * 2870 * char *getcwd(char * buf, size_t size) 2871 * { 2872 * int retval; 2873 * 2874 * retval = sys_getcwd(buf, size); 2875 * if (retval >= 0) 2876 * return buf; 2877 * errno = -retval; 2878 * return NULL; 2879 * } 2880 */ 2881 SYSCALL_DEFINE2(getcwd, char __user *, buf, unsigned long, size) 2882 { 2883 int error; 2884 struct path pwd, root; 2885 char *page = (char *) __get_free_page(GFP_USER); 2886 2887 if (!page) 2888 return -ENOMEM; 2889 2890 get_fs_root_and_pwd(current->fs, &root, &pwd); 2891 2892 error = -ENOENT; 2893 write_seqlock(&rename_lock); 2894 if (!d_unlinked(pwd.dentry)) { 2895 unsigned long len; 2896 char *cwd = page + PAGE_SIZE; 2897 int buflen = PAGE_SIZE; 2898 2899 prepend(&cwd, &buflen, "\0", 1); 2900 error = prepend_path(&pwd, &root, &cwd, &buflen); 2901 write_sequnlock(&rename_lock); 2902 2903 if (error < 0) 2904 goto out; 2905 2906 /* Unreachable from current root */ 2907 if (error > 0) { 2908 error = prepend_unreachable(&cwd, &buflen); 2909 if (error) 2910 goto out; 2911 } 2912 2913 error = -ERANGE; 2914 len = PAGE_SIZE + page - cwd; 2915 if (len <= size) { 2916 error = len; 2917 if (copy_to_user(buf, cwd, len)) 2918 error = -EFAULT; 2919 } 2920 } else { 2921 write_sequnlock(&rename_lock); 2922 } 2923 2924 out: 2925 path_put(&pwd); 2926 path_put(&root); 2927 free_page((unsigned long) page); 2928 return error; 2929 } 2930 2931 /* 2932 * Test whether new_dentry is a subdirectory of old_dentry. 2933 * 2934 * Trivially implemented using the dcache structure 2935 */ 2936 2937 /** 2938 * is_subdir - is new dentry a subdirectory of old_dentry 2939 * @new_dentry: new dentry 2940 * @old_dentry: old dentry 2941 * 2942 * Returns 1 if new_dentry is a subdirectory of the parent (at any depth). 2943 * Returns 0 otherwise. 2944 * Caller must ensure that "new_dentry" is pinned before calling is_subdir() 2945 */ 2946 2947 int is_subdir(struct dentry *new_dentry, struct dentry *old_dentry) 2948 { 2949 int result; 2950 unsigned seq; 2951 2952 if (new_dentry == old_dentry) 2953 return 1; 2954 2955 do { 2956 /* for restarting inner loop in case of seq retry */ 2957 seq = read_seqbegin(&rename_lock); 2958 /* 2959 * Need rcu_readlock to protect against the d_parent trashing 2960 * due to d_move 2961 */ 2962 rcu_read_lock(); 2963 if (d_ancestor(old_dentry, new_dentry)) 2964 result = 1; 2965 else 2966 result = 0; 2967 rcu_read_unlock(); 2968 } while (read_seqretry(&rename_lock, seq)); 2969 2970 return result; 2971 } 2972 2973 void d_genocide(struct dentry *root) 2974 { 2975 struct dentry *this_parent; 2976 struct list_head *next; 2977 unsigned seq; 2978 int locked = 0; 2979 2980 seq = read_seqbegin(&rename_lock); 2981 again: 2982 this_parent = root; 2983 spin_lock(&this_parent->d_lock); 2984 repeat: 2985 next = this_parent->d_subdirs.next; 2986 resume: 2987 while (next != &this_parent->d_subdirs) { 2988 struct list_head *tmp = next; 2989 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child); 2990 next = tmp->next; 2991 2992 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED); 2993 if (d_unhashed(dentry) || !dentry->d_inode) { 2994 spin_unlock(&dentry->d_lock); 2995 continue; 2996 } 2997 if (!list_empty(&dentry->d_subdirs)) { 2998 spin_unlock(&this_parent->d_lock); 2999 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_); 3000 this_parent = dentry; 3001 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_); 3002 goto repeat; 3003 } 3004 if (!(dentry->d_flags & DCACHE_GENOCIDE)) { 3005 dentry->d_flags |= DCACHE_GENOCIDE; 3006 dentry->d_count--; 3007 } 3008 spin_unlock(&dentry->d_lock); 3009 } 3010 if (this_parent != root) { 3011 struct dentry *child = this_parent; 3012 if (!(this_parent->d_flags & DCACHE_GENOCIDE)) { 3013 this_parent->d_flags |= DCACHE_GENOCIDE; 3014 this_parent->d_count--; 3015 } 3016 this_parent = try_to_ascend(this_parent, locked, seq); 3017 if (!this_parent) 3018 goto rename_retry; 3019 next = child->d_u.d_child.next; 3020 goto resume; 3021 } 3022 spin_unlock(&this_parent->d_lock); 3023 if (!locked && read_seqretry(&rename_lock, seq)) 3024 goto rename_retry; 3025 if (locked) 3026 write_sequnlock(&rename_lock); 3027 return; 3028 3029 rename_retry: 3030 locked = 1; 3031 write_seqlock(&rename_lock); 3032 goto again; 3033 } 3034 3035 /** 3036 * find_inode_number - check for dentry with name 3037 * @dir: directory to check 3038 * @name: Name to find. 3039 * 3040 * Check whether a dentry already exists for the given name, 3041 * and return the inode number if it has an inode. Otherwise 3042 * 0 is returned. 3043 * 3044 * This routine is used to post-process directory listings for 3045 * filesystems using synthetic inode numbers, and is necessary 3046 * to keep getcwd() working. 3047 */ 3048 3049 ino_t find_inode_number(struct dentry *dir, struct qstr *name) 3050 { 3051 struct dentry * dentry; 3052 ino_t ino = 0; 3053 3054 dentry = d_hash_and_lookup(dir, name); 3055 if (dentry) { 3056 if (dentry->d_inode) 3057 ino = dentry->d_inode->i_ino; 3058 dput(dentry); 3059 } 3060 return ino; 3061 } 3062 EXPORT_SYMBOL(find_inode_number); 3063 3064 static __initdata unsigned long dhash_entries; 3065 static int __init set_dhash_entries(char *str) 3066 { 3067 if (!str) 3068 return 0; 3069 dhash_entries = simple_strtoul(str, &str, 0); 3070 return 1; 3071 } 3072 __setup("dhash_entries=", set_dhash_entries); 3073 3074 static void __init dcache_init_early(void) 3075 { 3076 unsigned int loop; 3077 3078 /* If hashes are distributed across NUMA nodes, defer 3079 * hash allocation until vmalloc space is available. 3080 */ 3081 if (hashdist) 3082 return; 3083 3084 dentry_hashtable = 3085 alloc_large_system_hash("Dentry cache", 3086 sizeof(struct hlist_bl_head), 3087 dhash_entries, 3088 13, 3089 HASH_EARLY, 3090 &d_hash_shift, 3091 &d_hash_mask, 3092 0, 3093 0); 3094 3095 for (loop = 0; loop < (1U << d_hash_shift); loop++) 3096 INIT_HLIST_BL_HEAD(dentry_hashtable + loop); 3097 } 3098 3099 static void __init dcache_init(void) 3100 { 3101 unsigned int loop; 3102 3103 /* 3104 * A constructor could be added for stable state like the lists, 3105 * but it is probably not worth it because of the cache nature 3106 * of the dcache. 3107 */ 3108 dentry_cache = KMEM_CACHE(dentry, 3109 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD); 3110 3111 /* Hash may have been set up in dcache_init_early */ 3112 if (!hashdist) 3113 return; 3114 3115 dentry_hashtable = 3116 alloc_large_system_hash("Dentry cache", 3117 sizeof(struct hlist_bl_head), 3118 dhash_entries, 3119 13, 3120 0, 3121 &d_hash_shift, 3122 &d_hash_mask, 3123 0, 3124 0); 3125 3126 for (loop = 0; loop < (1U << d_hash_shift); loop++) 3127 INIT_HLIST_BL_HEAD(dentry_hashtable + loop); 3128 } 3129 3130 /* SLAB cache for __getname() consumers */ 3131 struct kmem_cache *names_cachep __read_mostly; 3132 EXPORT_SYMBOL(names_cachep); 3133 3134 EXPORT_SYMBOL(d_genocide); 3135 3136 void __init vfs_caches_init_early(void) 3137 { 3138 dcache_init_early(); 3139 inode_init_early(); 3140 } 3141 3142 void __init vfs_caches_init(unsigned long mempages) 3143 { 3144 unsigned long reserve; 3145 3146 /* Base hash sizes on available memory, with a reserve equal to 3147 150% of current kernel size */ 3148 3149 reserve = min((mempages - nr_free_pages()) * 3/2, mempages - 1); 3150 mempages -= reserve; 3151 3152 names_cachep = kmem_cache_create("names_cache", PATH_MAX, 0, 3153 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL); 3154 3155 dcache_init(); 3156 inode_init(); 3157 files_init(mempages); 3158 mnt_init(); 3159 bdev_cache_init(); 3160 chrdev_init(); 3161 } 3162