xref: /openbmc/linux/fs/dcache.c (revision d623f60d)
1 /*
2  * fs/dcache.c
3  *
4  * Complete reimplementation
5  * (C) 1997 Thomas Schoebel-Theuer,
6  * with heavy changes by Linus Torvalds
7  */
8 
9 /*
10  * Notes on the allocation strategy:
11  *
12  * The dcache is a master of the icache - whenever a dcache entry
13  * exists, the inode will always exist. "iput()" is done either when
14  * the dcache entry is deleted or garbage collected.
15  */
16 
17 #include <linux/ratelimit.h>
18 #include <linux/string.h>
19 #include <linux/mm.h>
20 #include <linux/fs.h>
21 #include <linux/fsnotify.h>
22 #include <linux/slab.h>
23 #include <linux/init.h>
24 #include <linux/hash.h>
25 #include <linux/cache.h>
26 #include <linux/export.h>
27 #include <linux/security.h>
28 #include <linux/seqlock.h>
29 #include <linux/bootmem.h>
30 #include <linux/bit_spinlock.h>
31 #include <linux/rculist_bl.h>
32 #include <linux/list_lru.h>
33 #include "internal.h"
34 #include "mount.h"
35 
36 /*
37  * Usage:
38  * dcache->d_inode->i_lock protects:
39  *   - i_dentry, d_u.d_alias, d_inode of aliases
40  * dcache_hash_bucket lock protects:
41  *   - the dcache hash table
42  * s_roots bl list spinlock protects:
43  *   - the s_roots list (see __d_drop)
44  * dentry->d_sb->s_dentry_lru_lock protects:
45  *   - the dcache lru lists and counters
46  * d_lock protects:
47  *   - d_flags
48  *   - d_name
49  *   - d_lru
50  *   - d_count
51  *   - d_unhashed()
52  *   - d_parent and d_subdirs
53  *   - childrens' d_child and d_parent
54  *   - d_u.d_alias, d_inode
55  *
56  * Ordering:
57  * dentry->d_inode->i_lock
58  *   dentry->d_lock
59  *     dentry->d_sb->s_dentry_lru_lock
60  *     dcache_hash_bucket lock
61  *     s_roots lock
62  *
63  * If there is an ancestor relationship:
64  * dentry->d_parent->...->d_parent->d_lock
65  *   ...
66  *     dentry->d_parent->d_lock
67  *       dentry->d_lock
68  *
69  * If no ancestor relationship:
70  * arbitrary, since it's serialized on rename_lock
71  */
72 int sysctl_vfs_cache_pressure __read_mostly = 100;
73 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
74 
75 __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
76 
77 EXPORT_SYMBOL(rename_lock);
78 
79 static struct kmem_cache *dentry_cache __read_mostly;
80 
81 const struct qstr empty_name = QSTR_INIT("", 0);
82 EXPORT_SYMBOL(empty_name);
83 const struct qstr slash_name = QSTR_INIT("/", 1);
84 EXPORT_SYMBOL(slash_name);
85 
86 /*
87  * This is the single most critical data structure when it comes
88  * to the dcache: the hashtable for lookups. Somebody should try
89  * to make this good - I've just made it work.
90  *
91  * This hash-function tries to avoid losing too many bits of hash
92  * information, yet avoid using a prime hash-size or similar.
93  */
94 
95 static unsigned int d_hash_shift __read_mostly;
96 
97 static struct hlist_bl_head *dentry_hashtable __read_mostly;
98 
99 static inline struct hlist_bl_head *d_hash(unsigned int hash)
100 {
101 	return dentry_hashtable + (hash >> d_hash_shift);
102 }
103 
104 #define IN_LOOKUP_SHIFT 10
105 static struct hlist_bl_head in_lookup_hashtable[1 << IN_LOOKUP_SHIFT];
106 
107 static inline struct hlist_bl_head *in_lookup_hash(const struct dentry *parent,
108 					unsigned int hash)
109 {
110 	hash += (unsigned long) parent / L1_CACHE_BYTES;
111 	return in_lookup_hashtable + hash_32(hash, IN_LOOKUP_SHIFT);
112 }
113 
114 
115 /* Statistics gathering. */
116 struct dentry_stat_t dentry_stat = {
117 	.age_limit = 45,
118 };
119 
120 static DEFINE_PER_CPU(long, nr_dentry);
121 static DEFINE_PER_CPU(long, nr_dentry_unused);
122 
123 #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
124 
125 /*
126  * Here we resort to our own counters instead of using generic per-cpu counters
127  * for consistency with what the vfs inode code does. We are expected to harvest
128  * better code and performance by having our own specialized counters.
129  *
130  * Please note that the loop is done over all possible CPUs, not over all online
131  * CPUs. The reason for this is that we don't want to play games with CPUs going
132  * on and off. If one of them goes off, we will just keep their counters.
133  *
134  * glommer: See cffbc8a for details, and if you ever intend to change this,
135  * please update all vfs counters to match.
136  */
137 static long get_nr_dentry(void)
138 {
139 	int i;
140 	long sum = 0;
141 	for_each_possible_cpu(i)
142 		sum += per_cpu(nr_dentry, i);
143 	return sum < 0 ? 0 : sum;
144 }
145 
146 static long get_nr_dentry_unused(void)
147 {
148 	int i;
149 	long sum = 0;
150 	for_each_possible_cpu(i)
151 		sum += per_cpu(nr_dentry_unused, i);
152 	return sum < 0 ? 0 : sum;
153 }
154 
155 int proc_nr_dentry(struct ctl_table *table, int write, void __user *buffer,
156 		   size_t *lenp, loff_t *ppos)
157 {
158 	dentry_stat.nr_dentry = get_nr_dentry();
159 	dentry_stat.nr_unused = get_nr_dentry_unused();
160 	return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
161 }
162 #endif
163 
164 /*
165  * Compare 2 name strings, return 0 if they match, otherwise non-zero.
166  * The strings are both count bytes long, and count is non-zero.
167  */
168 #ifdef CONFIG_DCACHE_WORD_ACCESS
169 
170 #include <asm/word-at-a-time.h>
171 /*
172  * NOTE! 'cs' and 'scount' come from a dentry, so it has a
173  * aligned allocation for this particular component. We don't
174  * strictly need the load_unaligned_zeropad() safety, but it
175  * doesn't hurt either.
176  *
177  * In contrast, 'ct' and 'tcount' can be from a pathname, and do
178  * need the careful unaligned handling.
179  */
180 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
181 {
182 	unsigned long a,b,mask;
183 
184 	for (;;) {
185 		a = read_word_at_a_time(cs);
186 		b = load_unaligned_zeropad(ct);
187 		if (tcount < sizeof(unsigned long))
188 			break;
189 		if (unlikely(a != b))
190 			return 1;
191 		cs += sizeof(unsigned long);
192 		ct += sizeof(unsigned long);
193 		tcount -= sizeof(unsigned long);
194 		if (!tcount)
195 			return 0;
196 	}
197 	mask = bytemask_from_count(tcount);
198 	return unlikely(!!((a ^ b) & mask));
199 }
200 
201 #else
202 
203 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
204 {
205 	do {
206 		if (*cs != *ct)
207 			return 1;
208 		cs++;
209 		ct++;
210 		tcount--;
211 	} while (tcount);
212 	return 0;
213 }
214 
215 #endif
216 
217 static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount)
218 {
219 	/*
220 	 * Be careful about RCU walk racing with rename:
221 	 * use 'READ_ONCE' to fetch the name pointer.
222 	 *
223 	 * NOTE! Even if a rename will mean that the length
224 	 * was not loaded atomically, we don't care. The
225 	 * RCU walk will check the sequence count eventually,
226 	 * and catch it. And we won't overrun the buffer,
227 	 * because we're reading the name pointer atomically,
228 	 * and a dentry name is guaranteed to be properly
229 	 * terminated with a NUL byte.
230 	 *
231 	 * End result: even if 'len' is wrong, we'll exit
232 	 * early because the data cannot match (there can
233 	 * be no NUL in the ct/tcount data)
234 	 */
235 	const unsigned char *cs = READ_ONCE(dentry->d_name.name);
236 
237 	return dentry_string_cmp(cs, ct, tcount);
238 }
239 
240 struct external_name {
241 	union {
242 		atomic_t count;
243 		struct rcu_head head;
244 	} u;
245 	unsigned char name[];
246 };
247 
248 static inline struct external_name *external_name(struct dentry *dentry)
249 {
250 	return container_of(dentry->d_name.name, struct external_name, name[0]);
251 }
252 
253 static void __d_free(struct rcu_head *head)
254 {
255 	struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
256 
257 	kmem_cache_free(dentry_cache, dentry);
258 }
259 
260 static void __d_free_external_name(struct rcu_head *head)
261 {
262 	struct external_name *name = container_of(head, struct external_name,
263 						  u.head);
264 
265 	mod_node_page_state(page_pgdat(virt_to_page(name)),
266 			    NR_INDIRECTLY_RECLAIMABLE_BYTES,
267 			    -ksize(name));
268 
269 	kfree(name);
270 }
271 
272 static void __d_free_external(struct rcu_head *head)
273 {
274 	struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
275 
276 	__d_free_external_name(&external_name(dentry)->u.head);
277 
278 	kmem_cache_free(dentry_cache, dentry);
279 }
280 
281 static inline int dname_external(const struct dentry *dentry)
282 {
283 	return dentry->d_name.name != dentry->d_iname;
284 }
285 
286 void take_dentry_name_snapshot(struct name_snapshot *name, struct dentry *dentry)
287 {
288 	spin_lock(&dentry->d_lock);
289 	if (unlikely(dname_external(dentry))) {
290 		struct external_name *p = external_name(dentry);
291 		atomic_inc(&p->u.count);
292 		spin_unlock(&dentry->d_lock);
293 		name->name = p->name;
294 	} else {
295 		memcpy(name->inline_name, dentry->d_iname, DNAME_INLINE_LEN);
296 		spin_unlock(&dentry->d_lock);
297 		name->name = name->inline_name;
298 	}
299 }
300 EXPORT_SYMBOL(take_dentry_name_snapshot);
301 
302 void release_dentry_name_snapshot(struct name_snapshot *name)
303 {
304 	if (unlikely(name->name != name->inline_name)) {
305 		struct external_name *p;
306 		p = container_of(name->name, struct external_name, name[0]);
307 		if (unlikely(atomic_dec_and_test(&p->u.count)))
308 			call_rcu(&p->u.head, __d_free_external_name);
309 	}
310 }
311 EXPORT_SYMBOL(release_dentry_name_snapshot);
312 
313 static inline void __d_set_inode_and_type(struct dentry *dentry,
314 					  struct inode *inode,
315 					  unsigned type_flags)
316 {
317 	unsigned flags;
318 
319 	dentry->d_inode = inode;
320 	flags = READ_ONCE(dentry->d_flags);
321 	flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU);
322 	flags |= type_flags;
323 	WRITE_ONCE(dentry->d_flags, flags);
324 }
325 
326 static inline void __d_clear_type_and_inode(struct dentry *dentry)
327 {
328 	unsigned flags = READ_ONCE(dentry->d_flags);
329 
330 	flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU);
331 	WRITE_ONCE(dentry->d_flags, flags);
332 	dentry->d_inode = NULL;
333 }
334 
335 static void dentry_free(struct dentry *dentry)
336 {
337 	WARN_ON(!hlist_unhashed(&dentry->d_u.d_alias));
338 	if (unlikely(dname_external(dentry))) {
339 		struct external_name *p = external_name(dentry);
340 		if (likely(atomic_dec_and_test(&p->u.count))) {
341 			call_rcu(&dentry->d_u.d_rcu, __d_free_external);
342 			return;
343 		}
344 	}
345 	/* if dentry was never visible to RCU, immediate free is OK */
346 	if (!(dentry->d_flags & DCACHE_RCUACCESS))
347 		__d_free(&dentry->d_u.d_rcu);
348 	else
349 		call_rcu(&dentry->d_u.d_rcu, __d_free);
350 }
351 
352 /*
353  * Release the dentry's inode, using the filesystem
354  * d_iput() operation if defined.
355  */
356 static void dentry_unlink_inode(struct dentry * dentry)
357 	__releases(dentry->d_lock)
358 	__releases(dentry->d_inode->i_lock)
359 {
360 	struct inode *inode = dentry->d_inode;
361 	bool hashed = !d_unhashed(dentry);
362 
363 	if (hashed)
364 		raw_write_seqcount_begin(&dentry->d_seq);
365 	__d_clear_type_and_inode(dentry);
366 	hlist_del_init(&dentry->d_u.d_alias);
367 	if (hashed)
368 		raw_write_seqcount_end(&dentry->d_seq);
369 	spin_unlock(&dentry->d_lock);
370 	spin_unlock(&inode->i_lock);
371 	if (!inode->i_nlink)
372 		fsnotify_inoderemove(inode);
373 	if (dentry->d_op && dentry->d_op->d_iput)
374 		dentry->d_op->d_iput(dentry, inode);
375 	else
376 		iput(inode);
377 }
378 
379 /*
380  * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry
381  * is in use - which includes both the "real" per-superblock
382  * LRU list _and_ the DCACHE_SHRINK_LIST use.
383  *
384  * The DCACHE_SHRINK_LIST bit is set whenever the dentry is
385  * on the shrink list (ie not on the superblock LRU list).
386  *
387  * The per-cpu "nr_dentry_unused" counters are updated with
388  * the DCACHE_LRU_LIST bit.
389  *
390  * These helper functions make sure we always follow the
391  * rules. d_lock must be held by the caller.
392  */
393 #define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x))
394 static void d_lru_add(struct dentry *dentry)
395 {
396 	D_FLAG_VERIFY(dentry, 0);
397 	dentry->d_flags |= DCACHE_LRU_LIST;
398 	this_cpu_inc(nr_dentry_unused);
399 	WARN_ON_ONCE(!list_lru_add(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
400 }
401 
402 static void d_lru_del(struct dentry *dentry)
403 {
404 	D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
405 	dentry->d_flags &= ~DCACHE_LRU_LIST;
406 	this_cpu_dec(nr_dentry_unused);
407 	WARN_ON_ONCE(!list_lru_del(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
408 }
409 
410 static void d_shrink_del(struct dentry *dentry)
411 {
412 	D_FLAG_VERIFY(dentry, DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
413 	list_del_init(&dentry->d_lru);
414 	dentry->d_flags &= ~(DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
415 	this_cpu_dec(nr_dentry_unused);
416 }
417 
418 static void d_shrink_add(struct dentry *dentry, struct list_head *list)
419 {
420 	D_FLAG_VERIFY(dentry, 0);
421 	list_add(&dentry->d_lru, list);
422 	dentry->d_flags |= DCACHE_SHRINK_LIST | DCACHE_LRU_LIST;
423 	this_cpu_inc(nr_dentry_unused);
424 }
425 
426 /*
427  * These can only be called under the global LRU lock, ie during the
428  * callback for freeing the LRU list. "isolate" removes it from the
429  * LRU lists entirely, while shrink_move moves it to the indicated
430  * private list.
431  */
432 static void d_lru_isolate(struct list_lru_one *lru, struct dentry *dentry)
433 {
434 	D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
435 	dentry->d_flags &= ~DCACHE_LRU_LIST;
436 	this_cpu_dec(nr_dentry_unused);
437 	list_lru_isolate(lru, &dentry->d_lru);
438 }
439 
440 static void d_lru_shrink_move(struct list_lru_one *lru, struct dentry *dentry,
441 			      struct list_head *list)
442 {
443 	D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
444 	dentry->d_flags |= DCACHE_SHRINK_LIST;
445 	list_lru_isolate_move(lru, &dentry->d_lru, list);
446 }
447 
448 /**
449  * d_drop - drop a dentry
450  * @dentry: dentry to drop
451  *
452  * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
453  * be found through a VFS lookup any more. Note that this is different from
454  * deleting the dentry - d_delete will try to mark the dentry negative if
455  * possible, giving a successful _negative_ lookup, while d_drop will
456  * just make the cache lookup fail.
457  *
458  * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
459  * reason (NFS timeouts or autofs deletes).
460  *
461  * __d_drop requires dentry->d_lock
462  * ___d_drop doesn't mark dentry as "unhashed"
463  *   (dentry->d_hash.pprev will be LIST_POISON2, not NULL).
464  */
465 static void ___d_drop(struct dentry *dentry)
466 {
467 	struct hlist_bl_head *b;
468 	/*
469 	 * Hashed dentries are normally on the dentry hashtable,
470 	 * with the exception of those newly allocated by
471 	 * d_obtain_root, which are always IS_ROOT:
472 	 */
473 	if (unlikely(IS_ROOT(dentry)))
474 		b = &dentry->d_sb->s_roots;
475 	else
476 		b = d_hash(dentry->d_name.hash);
477 
478 	hlist_bl_lock(b);
479 	__hlist_bl_del(&dentry->d_hash);
480 	hlist_bl_unlock(b);
481 }
482 
483 void __d_drop(struct dentry *dentry)
484 {
485 	if (!d_unhashed(dentry)) {
486 		___d_drop(dentry);
487 		dentry->d_hash.pprev = NULL;
488 		write_seqcount_invalidate(&dentry->d_seq);
489 	}
490 }
491 EXPORT_SYMBOL(__d_drop);
492 
493 void d_drop(struct dentry *dentry)
494 {
495 	spin_lock(&dentry->d_lock);
496 	__d_drop(dentry);
497 	spin_unlock(&dentry->d_lock);
498 }
499 EXPORT_SYMBOL(d_drop);
500 
501 static inline void dentry_unlist(struct dentry *dentry, struct dentry *parent)
502 {
503 	struct dentry *next;
504 	/*
505 	 * Inform d_walk() and shrink_dentry_list() that we are no longer
506 	 * attached to the dentry tree
507 	 */
508 	dentry->d_flags |= DCACHE_DENTRY_KILLED;
509 	if (unlikely(list_empty(&dentry->d_child)))
510 		return;
511 	__list_del_entry(&dentry->d_child);
512 	/*
513 	 * Cursors can move around the list of children.  While we'd been
514 	 * a normal list member, it didn't matter - ->d_child.next would've
515 	 * been updated.  However, from now on it won't be and for the
516 	 * things like d_walk() it might end up with a nasty surprise.
517 	 * Normally d_walk() doesn't care about cursors moving around -
518 	 * ->d_lock on parent prevents that and since a cursor has no children
519 	 * of its own, we get through it without ever unlocking the parent.
520 	 * There is one exception, though - if we ascend from a child that
521 	 * gets killed as soon as we unlock it, the next sibling is found
522 	 * using the value left in its ->d_child.next.  And if _that_
523 	 * pointed to a cursor, and cursor got moved (e.g. by lseek())
524 	 * before d_walk() regains parent->d_lock, we'll end up skipping
525 	 * everything the cursor had been moved past.
526 	 *
527 	 * Solution: make sure that the pointer left behind in ->d_child.next
528 	 * points to something that won't be moving around.  I.e. skip the
529 	 * cursors.
530 	 */
531 	while (dentry->d_child.next != &parent->d_subdirs) {
532 		next = list_entry(dentry->d_child.next, struct dentry, d_child);
533 		if (likely(!(next->d_flags & DCACHE_DENTRY_CURSOR)))
534 			break;
535 		dentry->d_child.next = next->d_child.next;
536 	}
537 }
538 
539 static void __dentry_kill(struct dentry *dentry)
540 {
541 	struct dentry *parent = NULL;
542 	bool can_free = true;
543 	if (!IS_ROOT(dentry))
544 		parent = dentry->d_parent;
545 
546 	/*
547 	 * The dentry is now unrecoverably dead to the world.
548 	 */
549 	lockref_mark_dead(&dentry->d_lockref);
550 
551 	/*
552 	 * inform the fs via d_prune that this dentry is about to be
553 	 * unhashed and destroyed.
554 	 */
555 	if (dentry->d_flags & DCACHE_OP_PRUNE)
556 		dentry->d_op->d_prune(dentry);
557 
558 	if (dentry->d_flags & DCACHE_LRU_LIST) {
559 		if (!(dentry->d_flags & DCACHE_SHRINK_LIST))
560 			d_lru_del(dentry);
561 	}
562 	/* if it was on the hash then remove it */
563 	__d_drop(dentry);
564 	dentry_unlist(dentry, parent);
565 	if (parent)
566 		spin_unlock(&parent->d_lock);
567 	if (dentry->d_inode)
568 		dentry_unlink_inode(dentry);
569 	else
570 		spin_unlock(&dentry->d_lock);
571 	this_cpu_dec(nr_dentry);
572 	if (dentry->d_op && dentry->d_op->d_release)
573 		dentry->d_op->d_release(dentry);
574 
575 	spin_lock(&dentry->d_lock);
576 	if (dentry->d_flags & DCACHE_SHRINK_LIST) {
577 		dentry->d_flags |= DCACHE_MAY_FREE;
578 		can_free = false;
579 	}
580 	spin_unlock(&dentry->d_lock);
581 	if (likely(can_free))
582 		dentry_free(dentry);
583 	cond_resched();
584 }
585 
586 static struct dentry *__lock_parent(struct dentry *dentry)
587 {
588 	struct dentry *parent;
589 	rcu_read_lock();
590 	spin_unlock(&dentry->d_lock);
591 again:
592 	parent = READ_ONCE(dentry->d_parent);
593 	spin_lock(&parent->d_lock);
594 	/*
595 	 * We can't blindly lock dentry until we are sure
596 	 * that we won't violate the locking order.
597 	 * Any changes of dentry->d_parent must have
598 	 * been done with parent->d_lock held, so
599 	 * spin_lock() above is enough of a barrier
600 	 * for checking if it's still our child.
601 	 */
602 	if (unlikely(parent != dentry->d_parent)) {
603 		spin_unlock(&parent->d_lock);
604 		goto again;
605 	}
606 	rcu_read_unlock();
607 	if (parent != dentry)
608 		spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
609 	else
610 		parent = NULL;
611 	return parent;
612 }
613 
614 static inline struct dentry *lock_parent(struct dentry *dentry)
615 {
616 	struct dentry *parent = dentry->d_parent;
617 	if (IS_ROOT(dentry))
618 		return NULL;
619 	if (likely(spin_trylock(&parent->d_lock)))
620 		return parent;
621 	return __lock_parent(dentry);
622 }
623 
624 static inline bool retain_dentry(struct dentry *dentry)
625 {
626 	WARN_ON(d_in_lookup(dentry));
627 
628 	/* Unreachable? Get rid of it */
629 	if (unlikely(d_unhashed(dentry)))
630 		return false;
631 
632 	if (unlikely(dentry->d_flags & DCACHE_DISCONNECTED))
633 		return false;
634 
635 	if (unlikely(dentry->d_flags & DCACHE_OP_DELETE)) {
636 		if (dentry->d_op->d_delete(dentry))
637 			return false;
638 	}
639 	/* retain; LRU fodder */
640 	dentry->d_lockref.count--;
641 	if (unlikely(!(dentry->d_flags & DCACHE_LRU_LIST)))
642 		d_lru_add(dentry);
643 	else if (unlikely(!(dentry->d_flags & DCACHE_REFERENCED)))
644 		dentry->d_flags |= DCACHE_REFERENCED;
645 	return true;
646 }
647 
648 /*
649  * Finish off a dentry we've decided to kill.
650  * dentry->d_lock must be held, returns with it unlocked.
651  * Returns dentry requiring refcount drop, or NULL if we're done.
652  */
653 static struct dentry *dentry_kill(struct dentry *dentry)
654 	__releases(dentry->d_lock)
655 {
656 	struct inode *inode = dentry->d_inode;
657 	struct dentry *parent = NULL;
658 
659 	if (inode && unlikely(!spin_trylock(&inode->i_lock)))
660 		goto slow_positive;
661 
662 	if (!IS_ROOT(dentry)) {
663 		parent = dentry->d_parent;
664 		if (unlikely(!spin_trylock(&parent->d_lock))) {
665 			parent = __lock_parent(dentry);
666 			if (likely(inode || !dentry->d_inode))
667 				goto got_locks;
668 			/* negative that became positive */
669 			if (parent)
670 				spin_unlock(&parent->d_lock);
671 			inode = dentry->d_inode;
672 			goto slow_positive;
673 		}
674 	}
675 	__dentry_kill(dentry);
676 	return parent;
677 
678 slow_positive:
679 	spin_unlock(&dentry->d_lock);
680 	spin_lock(&inode->i_lock);
681 	spin_lock(&dentry->d_lock);
682 	parent = lock_parent(dentry);
683 got_locks:
684 	if (unlikely(dentry->d_lockref.count != 1)) {
685 		dentry->d_lockref.count--;
686 	} else if (likely(!retain_dentry(dentry))) {
687 		__dentry_kill(dentry);
688 		return parent;
689 	}
690 	/* we are keeping it, after all */
691 	if (inode)
692 		spin_unlock(&inode->i_lock);
693 	if (parent)
694 		spin_unlock(&parent->d_lock);
695 	spin_unlock(&dentry->d_lock);
696 	return NULL;
697 }
698 
699 /*
700  * Try to do a lockless dput(), and return whether that was successful.
701  *
702  * If unsuccessful, we return false, having already taken the dentry lock.
703  *
704  * The caller needs to hold the RCU read lock, so that the dentry is
705  * guaranteed to stay around even if the refcount goes down to zero!
706  */
707 static inline bool fast_dput(struct dentry *dentry)
708 {
709 	int ret;
710 	unsigned int d_flags;
711 
712 	/*
713 	 * If we have a d_op->d_delete() operation, we sould not
714 	 * let the dentry count go to zero, so use "put_or_lock".
715 	 */
716 	if (unlikely(dentry->d_flags & DCACHE_OP_DELETE))
717 		return lockref_put_or_lock(&dentry->d_lockref);
718 
719 	/*
720 	 * .. otherwise, we can try to just decrement the
721 	 * lockref optimistically.
722 	 */
723 	ret = lockref_put_return(&dentry->d_lockref);
724 
725 	/*
726 	 * If the lockref_put_return() failed due to the lock being held
727 	 * by somebody else, the fast path has failed. We will need to
728 	 * get the lock, and then check the count again.
729 	 */
730 	if (unlikely(ret < 0)) {
731 		spin_lock(&dentry->d_lock);
732 		if (dentry->d_lockref.count > 1) {
733 			dentry->d_lockref.count--;
734 			spin_unlock(&dentry->d_lock);
735 			return 1;
736 		}
737 		return 0;
738 	}
739 
740 	/*
741 	 * If we weren't the last ref, we're done.
742 	 */
743 	if (ret)
744 		return 1;
745 
746 	/*
747 	 * Careful, careful. The reference count went down
748 	 * to zero, but we don't hold the dentry lock, so
749 	 * somebody else could get it again, and do another
750 	 * dput(), and we need to not race with that.
751 	 *
752 	 * However, there is a very special and common case
753 	 * where we don't care, because there is nothing to
754 	 * do: the dentry is still hashed, it does not have
755 	 * a 'delete' op, and it's referenced and already on
756 	 * the LRU list.
757 	 *
758 	 * NOTE! Since we aren't locked, these values are
759 	 * not "stable". However, it is sufficient that at
760 	 * some point after we dropped the reference the
761 	 * dentry was hashed and the flags had the proper
762 	 * value. Other dentry users may have re-gotten
763 	 * a reference to the dentry and change that, but
764 	 * our work is done - we can leave the dentry
765 	 * around with a zero refcount.
766 	 */
767 	smp_rmb();
768 	d_flags = READ_ONCE(dentry->d_flags);
769 	d_flags &= DCACHE_REFERENCED | DCACHE_LRU_LIST | DCACHE_DISCONNECTED;
770 
771 	/* Nothing to do? Dropping the reference was all we needed? */
772 	if (d_flags == (DCACHE_REFERENCED | DCACHE_LRU_LIST) && !d_unhashed(dentry))
773 		return 1;
774 
775 	/*
776 	 * Not the fast normal case? Get the lock. We've already decremented
777 	 * the refcount, but we'll need to re-check the situation after
778 	 * getting the lock.
779 	 */
780 	spin_lock(&dentry->d_lock);
781 
782 	/*
783 	 * Did somebody else grab a reference to it in the meantime, and
784 	 * we're no longer the last user after all? Alternatively, somebody
785 	 * else could have killed it and marked it dead. Either way, we
786 	 * don't need to do anything else.
787 	 */
788 	if (dentry->d_lockref.count) {
789 		spin_unlock(&dentry->d_lock);
790 		return 1;
791 	}
792 
793 	/*
794 	 * Re-get the reference we optimistically dropped. We hold the
795 	 * lock, and we just tested that it was zero, so we can just
796 	 * set it to 1.
797 	 */
798 	dentry->d_lockref.count = 1;
799 	return 0;
800 }
801 
802 
803 /*
804  * This is dput
805  *
806  * This is complicated by the fact that we do not want to put
807  * dentries that are no longer on any hash chain on the unused
808  * list: we'd much rather just get rid of them immediately.
809  *
810  * However, that implies that we have to traverse the dentry
811  * tree upwards to the parents which might _also_ now be
812  * scheduled for deletion (it may have been only waiting for
813  * its last child to go away).
814  *
815  * This tail recursion is done by hand as we don't want to depend
816  * on the compiler to always get this right (gcc generally doesn't).
817  * Real recursion would eat up our stack space.
818  */
819 
820 /*
821  * dput - release a dentry
822  * @dentry: dentry to release
823  *
824  * Release a dentry. This will drop the usage count and if appropriate
825  * call the dentry unlink method as well as removing it from the queues and
826  * releasing its resources. If the parent dentries were scheduled for release
827  * they too may now get deleted.
828  */
829 void dput(struct dentry *dentry)
830 {
831 	while (dentry) {
832 		might_sleep();
833 
834 		rcu_read_lock();
835 		if (likely(fast_dput(dentry))) {
836 			rcu_read_unlock();
837 			return;
838 		}
839 
840 		/* Slow case: now with the dentry lock held */
841 		rcu_read_unlock();
842 
843 		if (likely(retain_dentry(dentry))) {
844 			spin_unlock(&dentry->d_lock);
845 			return;
846 		}
847 
848 		dentry = dentry_kill(dentry);
849 	}
850 }
851 EXPORT_SYMBOL(dput);
852 
853 
854 /* This must be called with d_lock held */
855 static inline void __dget_dlock(struct dentry *dentry)
856 {
857 	dentry->d_lockref.count++;
858 }
859 
860 static inline void __dget(struct dentry *dentry)
861 {
862 	lockref_get(&dentry->d_lockref);
863 }
864 
865 struct dentry *dget_parent(struct dentry *dentry)
866 {
867 	int gotref;
868 	struct dentry *ret;
869 
870 	/*
871 	 * Do optimistic parent lookup without any
872 	 * locking.
873 	 */
874 	rcu_read_lock();
875 	ret = READ_ONCE(dentry->d_parent);
876 	gotref = lockref_get_not_zero(&ret->d_lockref);
877 	rcu_read_unlock();
878 	if (likely(gotref)) {
879 		if (likely(ret == READ_ONCE(dentry->d_parent)))
880 			return ret;
881 		dput(ret);
882 	}
883 
884 repeat:
885 	/*
886 	 * Don't need rcu_dereference because we re-check it was correct under
887 	 * the lock.
888 	 */
889 	rcu_read_lock();
890 	ret = dentry->d_parent;
891 	spin_lock(&ret->d_lock);
892 	if (unlikely(ret != dentry->d_parent)) {
893 		spin_unlock(&ret->d_lock);
894 		rcu_read_unlock();
895 		goto repeat;
896 	}
897 	rcu_read_unlock();
898 	BUG_ON(!ret->d_lockref.count);
899 	ret->d_lockref.count++;
900 	spin_unlock(&ret->d_lock);
901 	return ret;
902 }
903 EXPORT_SYMBOL(dget_parent);
904 
905 static struct dentry * __d_find_any_alias(struct inode *inode)
906 {
907 	struct dentry *alias;
908 
909 	if (hlist_empty(&inode->i_dentry))
910 		return NULL;
911 	alias = hlist_entry(inode->i_dentry.first, struct dentry, d_u.d_alias);
912 	__dget(alias);
913 	return alias;
914 }
915 
916 /**
917  * d_find_any_alias - find any alias for a given inode
918  * @inode: inode to find an alias for
919  *
920  * If any aliases exist for the given inode, take and return a
921  * reference for one of them.  If no aliases exist, return %NULL.
922  */
923 struct dentry *d_find_any_alias(struct inode *inode)
924 {
925 	struct dentry *de;
926 
927 	spin_lock(&inode->i_lock);
928 	de = __d_find_any_alias(inode);
929 	spin_unlock(&inode->i_lock);
930 	return de;
931 }
932 EXPORT_SYMBOL(d_find_any_alias);
933 
934 /**
935  * d_find_alias - grab a hashed alias of inode
936  * @inode: inode in question
937  *
938  * If inode has a hashed alias, or is a directory and has any alias,
939  * acquire the reference to alias and return it. Otherwise return NULL.
940  * Notice that if inode is a directory there can be only one alias and
941  * it can be unhashed only if it has no children, or if it is the root
942  * of a filesystem, or if the directory was renamed and d_revalidate
943  * was the first vfs operation to notice.
944  *
945  * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
946  * any other hashed alias over that one.
947  */
948 static struct dentry *__d_find_alias(struct inode *inode)
949 {
950 	struct dentry *alias;
951 
952 	if (S_ISDIR(inode->i_mode))
953 		return __d_find_any_alias(inode);
954 
955 	hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
956 		spin_lock(&alias->d_lock);
957  		if (!d_unhashed(alias)) {
958 			__dget_dlock(alias);
959 			spin_unlock(&alias->d_lock);
960 			return alias;
961 		}
962 		spin_unlock(&alias->d_lock);
963 	}
964 	return NULL;
965 }
966 
967 struct dentry *d_find_alias(struct inode *inode)
968 {
969 	struct dentry *de = NULL;
970 
971 	if (!hlist_empty(&inode->i_dentry)) {
972 		spin_lock(&inode->i_lock);
973 		de = __d_find_alias(inode);
974 		spin_unlock(&inode->i_lock);
975 	}
976 	return de;
977 }
978 EXPORT_SYMBOL(d_find_alias);
979 
980 /*
981  *	Try to kill dentries associated with this inode.
982  * WARNING: you must own a reference to inode.
983  */
984 void d_prune_aliases(struct inode *inode)
985 {
986 	struct dentry *dentry;
987 restart:
988 	spin_lock(&inode->i_lock);
989 	hlist_for_each_entry(dentry, &inode->i_dentry, d_u.d_alias) {
990 		spin_lock(&dentry->d_lock);
991 		if (!dentry->d_lockref.count) {
992 			struct dentry *parent = lock_parent(dentry);
993 			if (likely(!dentry->d_lockref.count)) {
994 				__dentry_kill(dentry);
995 				dput(parent);
996 				goto restart;
997 			}
998 			if (parent)
999 				spin_unlock(&parent->d_lock);
1000 		}
1001 		spin_unlock(&dentry->d_lock);
1002 	}
1003 	spin_unlock(&inode->i_lock);
1004 }
1005 EXPORT_SYMBOL(d_prune_aliases);
1006 
1007 /*
1008  * Lock a dentry from shrink list.
1009  * Called under rcu_read_lock() and dentry->d_lock; the former
1010  * guarantees that nothing we access will be freed under us.
1011  * Note that dentry is *not* protected from concurrent dentry_kill(),
1012  * d_delete(), etc.
1013  *
1014  * Return false if dentry has been disrupted or grabbed, leaving
1015  * the caller to kick it off-list.  Otherwise, return true and have
1016  * that dentry's inode and parent both locked.
1017  */
1018 static bool shrink_lock_dentry(struct dentry *dentry)
1019 {
1020 	struct inode *inode;
1021 	struct dentry *parent;
1022 
1023 	if (dentry->d_lockref.count)
1024 		return false;
1025 
1026 	inode = dentry->d_inode;
1027 	if (inode && unlikely(!spin_trylock(&inode->i_lock))) {
1028 		spin_unlock(&dentry->d_lock);
1029 		spin_lock(&inode->i_lock);
1030 		spin_lock(&dentry->d_lock);
1031 		if (unlikely(dentry->d_lockref.count))
1032 			goto out;
1033 		/* changed inode means that somebody had grabbed it */
1034 		if (unlikely(inode != dentry->d_inode))
1035 			goto out;
1036 	}
1037 
1038 	parent = dentry->d_parent;
1039 	if (IS_ROOT(dentry) || likely(spin_trylock(&parent->d_lock)))
1040 		return true;
1041 
1042 	spin_unlock(&dentry->d_lock);
1043 	spin_lock(&parent->d_lock);
1044 	if (unlikely(parent != dentry->d_parent)) {
1045 		spin_unlock(&parent->d_lock);
1046 		spin_lock(&dentry->d_lock);
1047 		goto out;
1048 	}
1049 	spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1050 	if (likely(!dentry->d_lockref.count))
1051 		return true;
1052 	spin_unlock(&parent->d_lock);
1053 out:
1054 	if (inode)
1055 		spin_unlock(&inode->i_lock);
1056 	return false;
1057 }
1058 
1059 static void shrink_dentry_list(struct list_head *list)
1060 {
1061 	while (!list_empty(list)) {
1062 		struct dentry *dentry, *parent;
1063 
1064 		dentry = list_entry(list->prev, struct dentry, d_lru);
1065 		spin_lock(&dentry->d_lock);
1066 		rcu_read_lock();
1067 		if (!shrink_lock_dentry(dentry)) {
1068 			bool can_free = false;
1069 			rcu_read_unlock();
1070 			d_shrink_del(dentry);
1071 			if (dentry->d_lockref.count < 0)
1072 				can_free = dentry->d_flags & DCACHE_MAY_FREE;
1073 			spin_unlock(&dentry->d_lock);
1074 			if (can_free)
1075 				dentry_free(dentry);
1076 			continue;
1077 		}
1078 		rcu_read_unlock();
1079 		d_shrink_del(dentry);
1080 		parent = dentry->d_parent;
1081 		__dentry_kill(dentry);
1082 		if (parent == dentry)
1083 			continue;
1084 		/*
1085 		 * We need to prune ancestors too. This is necessary to prevent
1086 		 * quadratic behavior of shrink_dcache_parent(), but is also
1087 		 * expected to be beneficial in reducing dentry cache
1088 		 * fragmentation.
1089 		 */
1090 		dentry = parent;
1091 		while (dentry && !lockref_put_or_lock(&dentry->d_lockref))
1092 			dentry = dentry_kill(dentry);
1093 	}
1094 }
1095 
1096 static enum lru_status dentry_lru_isolate(struct list_head *item,
1097 		struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
1098 {
1099 	struct list_head *freeable = arg;
1100 	struct dentry	*dentry = container_of(item, struct dentry, d_lru);
1101 
1102 
1103 	/*
1104 	 * we are inverting the lru lock/dentry->d_lock here,
1105 	 * so use a trylock. If we fail to get the lock, just skip
1106 	 * it
1107 	 */
1108 	if (!spin_trylock(&dentry->d_lock))
1109 		return LRU_SKIP;
1110 
1111 	/*
1112 	 * Referenced dentries are still in use. If they have active
1113 	 * counts, just remove them from the LRU. Otherwise give them
1114 	 * another pass through the LRU.
1115 	 */
1116 	if (dentry->d_lockref.count) {
1117 		d_lru_isolate(lru, dentry);
1118 		spin_unlock(&dentry->d_lock);
1119 		return LRU_REMOVED;
1120 	}
1121 
1122 	if (dentry->d_flags & DCACHE_REFERENCED) {
1123 		dentry->d_flags &= ~DCACHE_REFERENCED;
1124 		spin_unlock(&dentry->d_lock);
1125 
1126 		/*
1127 		 * The list move itself will be made by the common LRU code. At
1128 		 * this point, we've dropped the dentry->d_lock but keep the
1129 		 * lru lock. This is safe to do, since every list movement is
1130 		 * protected by the lru lock even if both locks are held.
1131 		 *
1132 		 * This is guaranteed by the fact that all LRU management
1133 		 * functions are intermediated by the LRU API calls like
1134 		 * list_lru_add and list_lru_del. List movement in this file
1135 		 * only ever occur through this functions or through callbacks
1136 		 * like this one, that are called from the LRU API.
1137 		 *
1138 		 * The only exceptions to this are functions like
1139 		 * shrink_dentry_list, and code that first checks for the
1140 		 * DCACHE_SHRINK_LIST flag.  Those are guaranteed to be
1141 		 * operating only with stack provided lists after they are
1142 		 * properly isolated from the main list.  It is thus, always a
1143 		 * local access.
1144 		 */
1145 		return LRU_ROTATE;
1146 	}
1147 
1148 	d_lru_shrink_move(lru, dentry, freeable);
1149 	spin_unlock(&dentry->d_lock);
1150 
1151 	return LRU_REMOVED;
1152 }
1153 
1154 /**
1155  * prune_dcache_sb - shrink the dcache
1156  * @sb: superblock
1157  * @sc: shrink control, passed to list_lru_shrink_walk()
1158  *
1159  * Attempt to shrink the superblock dcache LRU by @sc->nr_to_scan entries. This
1160  * is done when we need more memory and called from the superblock shrinker
1161  * function.
1162  *
1163  * This function may fail to free any resources if all the dentries are in
1164  * use.
1165  */
1166 long prune_dcache_sb(struct super_block *sb, struct shrink_control *sc)
1167 {
1168 	LIST_HEAD(dispose);
1169 	long freed;
1170 
1171 	freed = list_lru_shrink_walk(&sb->s_dentry_lru, sc,
1172 				     dentry_lru_isolate, &dispose);
1173 	shrink_dentry_list(&dispose);
1174 	return freed;
1175 }
1176 
1177 static enum lru_status dentry_lru_isolate_shrink(struct list_head *item,
1178 		struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
1179 {
1180 	struct list_head *freeable = arg;
1181 	struct dentry	*dentry = container_of(item, struct dentry, d_lru);
1182 
1183 	/*
1184 	 * we are inverting the lru lock/dentry->d_lock here,
1185 	 * so use a trylock. If we fail to get the lock, just skip
1186 	 * it
1187 	 */
1188 	if (!spin_trylock(&dentry->d_lock))
1189 		return LRU_SKIP;
1190 
1191 	d_lru_shrink_move(lru, dentry, freeable);
1192 	spin_unlock(&dentry->d_lock);
1193 
1194 	return LRU_REMOVED;
1195 }
1196 
1197 
1198 /**
1199  * shrink_dcache_sb - shrink dcache for a superblock
1200  * @sb: superblock
1201  *
1202  * Shrink the dcache for the specified super block. This is used to free
1203  * the dcache before unmounting a file system.
1204  */
1205 void shrink_dcache_sb(struct super_block *sb)
1206 {
1207 	long freed;
1208 
1209 	do {
1210 		LIST_HEAD(dispose);
1211 
1212 		freed = list_lru_walk(&sb->s_dentry_lru,
1213 			dentry_lru_isolate_shrink, &dispose, 1024);
1214 
1215 		this_cpu_sub(nr_dentry_unused, freed);
1216 		shrink_dentry_list(&dispose);
1217 	} while (list_lru_count(&sb->s_dentry_lru) > 0);
1218 }
1219 EXPORT_SYMBOL(shrink_dcache_sb);
1220 
1221 /**
1222  * enum d_walk_ret - action to talke during tree walk
1223  * @D_WALK_CONTINUE:	contrinue walk
1224  * @D_WALK_QUIT:	quit walk
1225  * @D_WALK_NORETRY:	quit when retry is needed
1226  * @D_WALK_SKIP:	skip this dentry and its children
1227  */
1228 enum d_walk_ret {
1229 	D_WALK_CONTINUE,
1230 	D_WALK_QUIT,
1231 	D_WALK_NORETRY,
1232 	D_WALK_SKIP,
1233 };
1234 
1235 /**
1236  * d_walk - walk the dentry tree
1237  * @parent:	start of walk
1238  * @data:	data passed to @enter() and @finish()
1239  * @enter:	callback when first entering the dentry
1240  *
1241  * The @enter() callbacks are called with d_lock held.
1242  */
1243 static void d_walk(struct dentry *parent, void *data,
1244 		   enum d_walk_ret (*enter)(void *, struct dentry *))
1245 {
1246 	struct dentry *this_parent;
1247 	struct list_head *next;
1248 	unsigned seq = 0;
1249 	enum d_walk_ret ret;
1250 	bool retry = true;
1251 
1252 again:
1253 	read_seqbegin_or_lock(&rename_lock, &seq);
1254 	this_parent = parent;
1255 	spin_lock(&this_parent->d_lock);
1256 
1257 	ret = enter(data, this_parent);
1258 	switch (ret) {
1259 	case D_WALK_CONTINUE:
1260 		break;
1261 	case D_WALK_QUIT:
1262 	case D_WALK_SKIP:
1263 		goto out_unlock;
1264 	case D_WALK_NORETRY:
1265 		retry = false;
1266 		break;
1267 	}
1268 repeat:
1269 	next = this_parent->d_subdirs.next;
1270 resume:
1271 	while (next != &this_parent->d_subdirs) {
1272 		struct list_head *tmp = next;
1273 		struct dentry *dentry = list_entry(tmp, struct dentry, d_child);
1274 		next = tmp->next;
1275 
1276 		if (unlikely(dentry->d_flags & DCACHE_DENTRY_CURSOR))
1277 			continue;
1278 
1279 		spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1280 
1281 		ret = enter(data, dentry);
1282 		switch (ret) {
1283 		case D_WALK_CONTINUE:
1284 			break;
1285 		case D_WALK_QUIT:
1286 			spin_unlock(&dentry->d_lock);
1287 			goto out_unlock;
1288 		case D_WALK_NORETRY:
1289 			retry = false;
1290 			break;
1291 		case D_WALK_SKIP:
1292 			spin_unlock(&dentry->d_lock);
1293 			continue;
1294 		}
1295 
1296 		if (!list_empty(&dentry->d_subdirs)) {
1297 			spin_unlock(&this_parent->d_lock);
1298 			spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1299 			this_parent = dentry;
1300 			spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1301 			goto repeat;
1302 		}
1303 		spin_unlock(&dentry->d_lock);
1304 	}
1305 	/*
1306 	 * All done at this level ... ascend and resume the search.
1307 	 */
1308 	rcu_read_lock();
1309 ascend:
1310 	if (this_parent != parent) {
1311 		struct dentry *child = this_parent;
1312 		this_parent = child->d_parent;
1313 
1314 		spin_unlock(&child->d_lock);
1315 		spin_lock(&this_parent->d_lock);
1316 
1317 		/* might go back up the wrong parent if we have had a rename. */
1318 		if (need_seqretry(&rename_lock, seq))
1319 			goto rename_retry;
1320 		/* go into the first sibling still alive */
1321 		do {
1322 			next = child->d_child.next;
1323 			if (next == &this_parent->d_subdirs)
1324 				goto ascend;
1325 			child = list_entry(next, struct dentry, d_child);
1326 		} while (unlikely(child->d_flags & DCACHE_DENTRY_KILLED));
1327 		rcu_read_unlock();
1328 		goto resume;
1329 	}
1330 	if (need_seqretry(&rename_lock, seq))
1331 		goto rename_retry;
1332 	rcu_read_unlock();
1333 
1334 out_unlock:
1335 	spin_unlock(&this_parent->d_lock);
1336 	done_seqretry(&rename_lock, seq);
1337 	return;
1338 
1339 rename_retry:
1340 	spin_unlock(&this_parent->d_lock);
1341 	rcu_read_unlock();
1342 	BUG_ON(seq & 1);
1343 	if (!retry)
1344 		return;
1345 	seq = 1;
1346 	goto again;
1347 }
1348 
1349 struct check_mount {
1350 	struct vfsmount *mnt;
1351 	unsigned int mounted;
1352 };
1353 
1354 static enum d_walk_ret path_check_mount(void *data, struct dentry *dentry)
1355 {
1356 	struct check_mount *info = data;
1357 	struct path path = { .mnt = info->mnt, .dentry = dentry };
1358 
1359 	if (likely(!d_mountpoint(dentry)))
1360 		return D_WALK_CONTINUE;
1361 	if (__path_is_mountpoint(&path)) {
1362 		info->mounted = 1;
1363 		return D_WALK_QUIT;
1364 	}
1365 	return D_WALK_CONTINUE;
1366 }
1367 
1368 /**
1369  * path_has_submounts - check for mounts over a dentry in the
1370  *                      current namespace.
1371  * @parent: path to check.
1372  *
1373  * Return true if the parent or its subdirectories contain
1374  * a mount point in the current namespace.
1375  */
1376 int path_has_submounts(const struct path *parent)
1377 {
1378 	struct check_mount data = { .mnt = parent->mnt, .mounted = 0 };
1379 
1380 	read_seqlock_excl(&mount_lock);
1381 	d_walk(parent->dentry, &data, path_check_mount);
1382 	read_sequnlock_excl(&mount_lock);
1383 
1384 	return data.mounted;
1385 }
1386 EXPORT_SYMBOL(path_has_submounts);
1387 
1388 /*
1389  * Called by mount code to set a mountpoint and check if the mountpoint is
1390  * reachable (e.g. NFS can unhash a directory dentry and then the complete
1391  * subtree can become unreachable).
1392  *
1393  * Only one of d_invalidate() and d_set_mounted() must succeed.  For
1394  * this reason take rename_lock and d_lock on dentry and ancestors.
1395  */
1396 int d_set_mounted(struct dentry *dentry)
1397 {
1398 	struct dentry *p;
1399 	int ret = -ENOENT;
1400 	write_seqlock(&rename_lock);
1401 	for (p = dentry->d_parent; !IS_ROOT(p); p = p->d_parent) {
1402 		/* Need exclusion wrt. d_invalidate() */
1403 		spin_lock(&p->d_lock);
1404 		if (unlikely(d_unhashed(p))) {
1405 			spin_unlock(&p->d_lock);
1406 			goto out;
1407 		}
1408 		spin_unlock(&p->d_lock);
1409 	}
1410 	spin_lock(&dentry->d_lock);
1411 	if (!d_unlinked(dentry)) {
1412 		ret = -EBUSY;
1413 		if (!d_mountpoint(dentry)) {
1414 			dentry->d_flags |= DCACHE_MOUNTED;
1415 			ret = 0;
1416 		}
1417 	}
1418  	spin_unlock(&dentry->d_lock);
1419 out:
1420 	write_sequnlock(&rename_lock);
1421 	return ret;
1422 }
1423 
1424 /*
1425  * Search the dentry child list of the specified parent,
1426  * and move any unused dentries to the end of the unused
1427  * list for prune_dcache(). We descend to the next level
1428  * whenever the d_subdirs list is non-empty and continue
1429  * searching.
1430  *
1431  * It returns zero iff there are no unused children,
1432  * otherwise  it returns the number of children moved to
1433  * the end of the unused list. This may not be the total
1434  * number of unused children, because select_parent can
1435  * drop the lock and return early due to latency
1436  * constraints.
1437  */
1438 
1439 struct select_data {
1440 	struct dentry *start;
1441 	struct list_head dispose;
1442 	int found;
1443 };
1444 
1445 static enum d_walk_ret select_collect(void *_data, struct dentry *dentry)
1446 {
1447 	struct select_data *data = _data;
1448 	enum d_walk_ret ret = D_WALK_CONTINUE;
1449 
1450 	if (data->start == dentry)
1451 		goto out;
1452 
1453 	if (dentry->d_flags & DCACHE_SHRINK_LIST) {
1454 		data->found++;
1455 	} else {
1456 		if (dentry->d_flags & DCACHE_LRU_LIST)
1457 			d_lru_del(dentry);
1458 		if (!dentry->d_lockref.count) {
1459 			d_shrink_add(dentry, &data->dispose);
1460 			data->found++;
1461 		}
1462 	}
1463 	/*
1464 	 * We can return to the caller if we have found some (this
1465 	 * ensures forward progress). We'll be coming back to find
1466 	 * the rest.
1467 	 */
1468 	if (!list_empty(&data->dispose))
1469 		ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY;
1470 out:
1471 	return ret;
1472 }
1473 
1474 /**
1475  * shrink_dcache_parent - prune dcache
1476  * @parent: parent of entries to prune
1477  *
1478  * Prune the dcache to remove unused children of the parent dentry.
1479  */
1480 void shrink_dcache_parent(struct dentry *parent)
1481 {
1482 	for (;;) {
1483 		struct select_data data;
1484 
1485 		INIT_LIST_HEAD(&data.dispose);
1486 		data.start = parent;
1487 		data.found = 0;
1488 
1489 		d_walk(parent, &data, select_collect);
1490 
1491 		if (!list_empty(&data.dispose)) {
1492 			shrink_dentry_list(&data.dispose);
1493 			continue;
1494 		}
1495 
1496 		cond_resched();
1497 		if (!data.found)
1498 			break;
1499 	}
1500 }
1501 EXPORT_SYMBOL(shrink_dcache_parent);
1502 
1503 static enum d_walk_ret umount_check(void *_data, struct dentry *dentry)
1504 {
1505 	/* it has busy descendents; complain about those instead */
1506 	if (!list_empty(&dentry->d_subdirs))
1507 		return D_WALK_CONTINUE;
1508 
1509 	/* root with refcount 1 is fine */
1510 	if (dentry == _data && dentry->d_lockref.count == 1)
1511 		return D_WALK_CONTINUE;
1512 
1513 	printk(KERN_ERR "BUG: Dentry %p{i=%lx,n=%pd} "
1514 			" still in use (%d) [unmount of %s %s]\n",
1515 		       dentry,
1516 		       dentry->d_inode ?
1517 		       dentry->d_inode->i_ino : 0UL,
1518 		       dentry,
1519 		       dentry->d_lockref.count,
1520 		       dentry->d_sb->s_type->name,
1521 		       dentry->d_sb->s_id);
1522 	WARN_ON(1);
1523 	return D_WALK_CONTINUE;
1524 }
1525 
1526 static void do_one_tree(struct dentry *dentry)
1527 {
1528 	shrink_dcache_parent(dentry);
1529 	d_walk(dentry, dentry, umount_check);
1530 	d_drop(dentry);
1531 	dput(dentry);
1532 }
1533 
1534 /*
1535  * destroy the dentries attached to a superblock on unmounting
1536  */
1537 void shrink_dcache_for_umount(struct super_block *sb)
1538 {
1539 	struct dentry *dentry;
1540 
1541 	WARN(down_read_trylock(&sb->s_umount), "s_umount should've been locked");
1542 
1543 	dentry = sb->s_root;
1544 	sb->s_root = NULL;
1545 	do_one_tree(dentry);
1546 
1547 	while (!hlist_bl_empty(&sb->s_roots)) {
1548 		dentry = dget(hlist_bl_entry(hlist_bl_first(&sb->s_roots), struct dentry, d_hash));
1549 		do_one_tree(dentry);
1550 	}
1551 }
1552 
1553 static enum d_walk_ret find_submount(void *_data, struct dentry *dentry)
1554 {
1555 	struct dentry **victim = _data;
1556 	if (d_mountpoint(dentry)) {
1557 		__dget_dlock(dentry);
1558 		*victim = dentry;
1559 		return D_WALK_QUIT;
1560 	}
1561 	return D_WALK_CONTINUE;
1562 }
1563 
1564 /**
1565  * d_invalidate - detach submounts, prune dcache, and drop
1566  * @dentry: dentry to invalidate (aka detach, prune and drop)
1567  */
1568 void d_invalidate(struct dentry *dentry)
1569 {
1570 	bool had_submounts = false;
1571 	spin_lock(&dentry->d_lock);
1572 	if (d_unhashed(dentry)) {
1573 		spin_unlock(&dentry->d_lock);
1574 		return;
1575 	}
1576 	__d_drop(dentry);
1577 	spin_unlock(&dentry->d_lock);
1578 
1579 	/* Negative dentries can be dropped without further checks */
1580 	if (!dentry->d_inode)
1581 		return;
1582 
1583 	shrink_dcache_parent(dentry);
1584 	for (;;) {
1585 		struct dentry *victim = NULL;
1586 		d_walk(dentry, &victim, find_submount);
1587 		if (!victim) {
1588 			if (had_submounts)
1589 				shrink_dcache_parent(dentry);
1590 			return;
1591 		}
1592 		had_submounts = true;
1593 		detach_mounts(victim);
1594 		dput(victim);
1595 	}
1596 }
1597 EXPORT_SYMBOL(d_invalidate);
1598 
1599 /**
1600  * __d_alloc	-	allocate a dcache entry
1601  * @sb: filesystem it will belong to
1602  * @name: qstr of the name
1603  *
1604  * Allocates a dentry. It returns %NULL if there is insufficient memory
1605  * available. On a success the dentry is returned. The name passed in is
1606  * copied and the copy passed in may be reused after this call.
1607  */
1608 
1609 struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name)
1610 {
1611 	struct external_name *ext = NULL;
1612 	struct dentry *dentry;
1613 	char *dname;
1614 	int err;
1615 
1616 	dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
1617 	if (!dentry)
1618 		return NULL;
1619 
1620 	/*
1621 	 * We guarantee that the inline name is always NUL-terminated.
1622 	 * This way the memcpy() done by the name switching in rename
1623 	 * will still always have a NUL at the end, even if we might
1624 	 * be overwriting an internal NUL character
1625 	 */
1626 	dentry->d_iname[DNAME_INLINE_LEN-1] = 0;
1627 	if (unlikely(!name)) {
1628 		name = &slash_name;
1629 		dname = dentry->d_iname;
1630 	} else if (name->len > DNAME_INLINE_LEN-1) {
1631 		size_t size = offsetof(struct external_name, name[1]);
1632 
1633 		ext = kmalloc(size + name->len, GFP_KERNEL_ACCOUNT);
1634 		if (!ext) {
1635 			kmem_cache_free(dentry_cache, dentry);
1636 			return NULL;
1637 		}
1638 		atomic_set(&ext->u.count, 1);
1639 		dname = ext->name;
1640 	} else  {
1641 		dname = dentry->d_iname;
1642 	}
1643 
1644 	dentry->d_name.len = name->len;
1645 	dentry->d_name.hash = name->hash;
1646 	memcpy(dname, name->name, name->len);
1647 	dname[name->len] = 0;
1648 
1649 	/* Make sure we always see the terminating NUL character */
1650 	smp_store_release(&dentry->d_name.name, dname); /* ^^^ */
1651 
1652 	dentry->d_lockref.count = 1;
1653 	dentry->d_flags = 0;
1654 	spin_lock_init(&dentry->d_lock);
1655 	seqcount_init(&dentry->d_seq);
1656 	dentry->d_inode = NULL;
1657 	dentry->d_parent = dentry;
1658 	dentry->d_sb = sb;
1659 	dentry->d_op = NULL;
1660 	dentry->d_fsdata = NULL;
1661 	INIT_HLIST_BL_NODE(&dentry->d_hash);
1662 	INIT_LIST_HEAD(&dentry->d_lru);
1663 	INIT_LIST_HEAD(&dentry->d_subdirs);
1664 	INIT_HLIST_NODE(&dentry->d_u.d_alias);
1665 	INIT_LIST_HEAD(&dentry->d_child);
1666 	d_set_d_op(dentry, dentry->d_sb->s_d_op);
1667 
1668 	if (dentry->d_op && dentry->d_op->d_init) {
1669 		err = dentry->d_op->d_init(dentry);
1670 		if (err) {
1671 			if (dname_external(dentry))
1672 				kfree(external_name(dentry));
1673 			kmem_cache_free(dentry_cache, dentry);
1674 			return NULL;
1675 		}
1676 	}
1677 
1678 	if (unlikely(ext)) {
1679 		pg_data_t *pgdat = page_pgdat(virt_to_page(ext));
1680 		mod_node_page_state(pgdat, NR_INDIRECTLY_RECLAIMABLE_BYTES,
1681 				    ksize(ext));
1682 	}
1683 
1684 	this_cpu_inc(nr_dentry);
1685 
1686 	return dentry;
1687 }
1688 
1689 /**
1690  * d_alloc	-	allocate a dcache entry
1691  * @parent: parent of entry to allocate
1692  * @name: qstr of the name
1693  *
1694  * Allocates a dentry. It returns %NULL if there is insufficient memory
1695  * available. On a success the dentry is returned. The name passed in is
1696  * copied and the copy passed in may be reused after this call.
1697  */
1698 struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1699 {
1700 	struct dentry *dentry = __d_alloc(parent->d_sb, name);
1701 	if (!dentry)
1702 		return NULL;
1703 	dentry->d_flags |= DCACHE_RCUACCESS;
1704 	spin_lock(&parent->d_lock);
1705 	/*
1706 	 * don't need child lock because it is not subject
1707 	 * to concurrency here
1708 	 */
1709 	__dget_dlock(parent);
1710 	dentry->d_parent = parent;
1711 	list_add(&dentry->d_child, &parent->d_subdirs);
1712 	spin_unlock(&parent->d_lock);
1713 
1714 	return dentry;
1715 }
1716 EXPORT_SYMBOL(d_alloc);
1717 
1718 struct dentry *d_alloc_anon(struct super_block *sb)
1719 {
1720 	return __d_alloc(sb, NULL);
1721 }
1722 EXPORT_SYMBOL(d_alloc_anon);
1723 
1724 struct dentry *d_alloc_cursor(struct dentry * parent)
1725 {
1726 	struct dentry *dentry = d_alloc_anon(parent->d_sb);
1727 	if (dentry) {
1728 		dentry->d_flags |= DCACHE_RCUACCESS | DCACHE_DENTRY_CURSOR;
1729 		dentry->d_parent = dget(parent);
1730 	}
1731 	return dentry;
1732 }
1733 
1734 /**
1735  * d_alloc_pseudo - allocate a dentry (for lookup-less filesystems)
1736  * @sb: the superblock
1737  * @name: qstr of the name
1738  *
1739  * For a filesystem that just pins its dentries in memory and never
1740  * performs lookups at all, return an unhashed IS_ROOT dentry.
1741  */
1742 struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
1743 {
1744 	return __d_alloc(sb, name);
1745 }
1746 EXPORT_SYMBOL(d_alloc_pseudo);
1747 
1748 struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1749 {
1750 	struct qstr q;
1751 
1752 	q.name = name;
1753 	q.hash_len = hashlen_string(parent, name);
1754 	return d_alloc(parent, &q);
1755 }
1756 EXPORT_SYMBOL(d_alloc_name);
1757 
1758 void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1759 {
1760 	WARN_ON_ONCE(dentry->d_op);
1761 	WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH	|
1762 				DCACHE_OP_COMPARE	|
1763 				DCACHE_OP_REVALIDATE	|
1764 				DCACHE_OP_WEAK_REVALIDATE	|
1765 				DCACHE_OP_DELETE	|
1766 				DCACHE_OP_REAL));
1767 	dentry->d_op = op;
1768 	if (!op)
1769 		return;
1770 	if (op->d_hash)
1771 		dentry->d_flags |= DCACHE_OP_HASH;
1772 	if (op->d_compare)
1773 		dentry->d_flags |= DCACHE_OP_COMPARE;
1774 	if (op->d_revalidate)
1775 		dentry->d_flags |= DCACHE_OP_REVALIDATE;
1776 	if (op->d_weak_revalidate)
1777 		dentry->d_flags |= DCACHE_OP_WEAK_REVALIDATE;
1778 	if (op->d_delete)
1779 		dentry->d_flags |= DCACHE_OP_DELETE;
1780 	if (op->d_prune)
1781 		dentry->d_flags |= DCACHE_OP_PRUNE;
1782 	if (op->d_real)
1783 		dentry->d_flags |= DCACHE_OP_REAL;
1784 
1785 }
1786 EXPORT_SYMBOL(d_set_d_op);
1787 
1788 
1789 /*
1790  * d_set_fallthru - Mark a dentry as falling through to a lower layer
1791  * @dentry - The dentry to mark
1792  *
1793  * Mark a dentry as falling through to the lower layer (as set with
1794  * d_pin_lower()).  This flag may be recorded on the medium.
1795  */
1796 void d_set_fallthru(struct dentry *dentry)
1797 {
1798 	spin_lock(&dentry->d_lock);
1799 	dentry->d_flags |= DCACHE_FALLTHRU;
1800 	spin_unlock(&dentry->d_lock);
1801 }
1802 EXPORT_SYMBOL(d_set_fallthru);
1803 
1804 static unsigned d_flags_for_inode(struct inode *inode)
1805 {
1806 	unsigned add_flags = DCACHE_REGULAR_TYPE;
1807 
1808 	if (!inode)
1809 		return DCACHE_MISS_TYPE;
1810 
1811 	if (S_ISDIR(inode->i_mode)) {
1812 		add_flags = DCACHE_DIRECTORY_TYPE;
1813 		if (unlikely(!(inode->i_opflags & IOP_LOOKUP))) {
1814 			if (unlikely(!inode->i_op->lookup))
1815 				add_flags = DCACHE_AUTODIR_TYPE;
1816 			else
1817 				inode->i_opflags |= IOP_LOOKUP;
1818 		}
1819 		goto type_determined;
1820 	}
1821 
1822 	if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) {
1823 		if (unlikely(inode->i_op->get_link)) {
1824 			add_flags = DCACHE_SYMLINK_TYPE;
1825 			goto type_determined;
1826 		}
1827 		inode->i_opflags |= IOP_NOFOLLOW;
1828 	}
1829 
1830 	if (unlikely(!S_ISREG(inode->i_mode)))
1831 		add_flags = DCACHE_SPECIAL_TYPE;
1832 
1833 type_determined:
1834 	if (unlikely(IS_AUTOMOUNT(inode)))
1835 		add_flags |= DCACHE_NEED_AUTOMOUNT;
1836 	return add_flags;
1837 }
1838 
1839 static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1840 {
1841 	unsigned add_flags = d_flags_for_inode(inode);
1842 	WARN_ON(d_in_lookup(dentry));
1843 
1844 	spin_lock(&dentry->d_lock);
1845 	hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
1846 	raw_write_seqcount_begin(&dentry->d_seq);
1847 	__d_set_inode_and_type(dentry, inode, add_flags);
1848 	raw_write_seqcount_end(&dentry->d_seq);
1849 	fsnotify_update_flags(dentry);
1850 	spin_unlock(&dentry->d_lock);
1851 }
1852 
1853 /**
1854  * d_instantiate - fill in inode information for a dentry
1855  * @entry: dentry to complete
1856  * @inode: inode to attach to this dentry
1857  *
1858  * Fill in inode information in the entry.
1859  *
1860  * This turns negative dentries into productive full members
1861  * of society.
1862  *
1863  * NOTE! This assumes that the inode count has been incremented
1864  * (or otherwise set) by the caller to indicate that it is now
1865  * in use by the dcache.
1866  */
1867 
1868 void d_instantiate(struct dentry *entry, struct inode * inode)
1869 {
1870 	BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
1871 	if (inode) {
1872 		security_d_instantiate(entry, inode);
1873 		spin_lock(&inode->i_lock);
1874 		__d_instantiate(entry, inode);
1875 		spin_unlock(&inode->i_lock);
1876 	}
1877 }
1878 EXPORT_SYMBOL(d_instantiate);
1879 
1880 /*
1881  * This should be equivalent to d_instantiate() + unlock_new_inode(),
1882  * with lockdep-related part of unlock_new_inode() done before
1883  * anything else.  Use that instead of open-coding d_instantiate()/
1884  * unlock_new_inode() combinations.
1885  */
1886 void d_instantiate_new(struct dentry *entry, struct inode *inode)
1887 {
1888 	BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
1889 	BUG_ON(!inode);
1890 	lockdep_annotate_inode_mutex_key(inode);
1891 	security_d_instantiate(entry, inode);
1892 	spin_lock(&inode->i_lock);
1893 	__d_instantiate(entry, inode);
1894 	WARN_ON(!(inode->i_state & I_NEW));
1895 	inode->i_state &= ~I_NEW;
1896 	smp_mb();
1897 	wake_up_bit(&inode->i_state, __I_NEW);
1898 	spin_unlock(&inode->i_lock);
1899 }
1900 EXPORT_SYMBOL(d_instantiate_new);
1901 
1902 /**
1903  * d_instantiate_no_diralias - instantiate a non-aliased dentry
1904  * @entry: dentry to complete
1905  * @inode: inode to attach to this dentry
1906  *
1907  * Fill in inode information in the entry.  If a directory alias is found, then
1908  * return an error (and drop inode).  Together with d_materialise_unique() this
1909  * guarantees that a directory inode may never have more than one alias.
1910  */
1911 int d_instantiate_no_diralias(struct dentry *entry, struct inode *inode)
1912 {
1913 	BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
1914 
1915 	security_d_instantiate(entry, inode);
1916 	spin_lock(&inode->i_lock);
1917 	if (S_ISDIR(inode->i_mode) && !hlist_empty(&inode->i_dentry)) {
1918 		spin_unlock(&inode->i_lock);
1919 		iput(inode);
1920 		return -EBUSY;
1921 	}
1922 	__d_instantiate(entry, inode);
1923 	spin_unlock(&inode->i_lock);
1924 
1925 	return 0;
1926 }
1927 EXPORT_SYMBOL(d_instantiate_no_diralias);
1928 
1929 struct dentry *d_make_root(struct inode *root_inode)
1930 {
1931 	struct dentry *res = NULL;
1932 
1933 	if (root_inode) {
1934 		res = d_alloc_anon(root_inode->i_sb);
1935 		if (res)
1936 			d_instantiate(res, root_inode);
1937 		else
1938 			iput(root_inode);
1939 	}
1940 	return res;
1941 }
1942 EXPORT_SYMBOL(d_make_root);
1943 
1944 static struct dentry *__d_instantiate_anon(struct dentry *dentry,
1945 					   struct inode *inode,
1946 					   bool disconnected)
1947 {
1948 	struct dentry *res;
1949 	unsigned add_flags;
1950 
1951 	security_d_instantiate(dentry, inode);
1952 	spin_lock(&inode->i_lock);
1953 	res = __d_find_any_alias(inode);
1954 	if (res) {
1955 		spin_unlock(&inode->i_lock);
1956 		dput(dentry);
1957 		goto out_iput;
1958 	}
1959 
1960 	/* attach a disconnected dentry */
1961 	add_flags = d_flags_for_inode(inode);
1962 
1963 	if (disconnected)
1964 		add_flags |= DCACHE_DISCONNECTED;
1965 
1966 	spin_lock(&dentry->d_lock);
1967 	__d_set_inode_and_type(dentry, inode, add_flags);
1968 	hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
1969 	if (!disconnected) {
1970 		hlist_bl_lock(&dentry->d_sb->s_roots);
1971 		hlist_bl_add_head(&dentry->d_hash, &dentry->d_sb->s_roots);
1972 		hlist_bl_unlock(&dentry->d_sb->s_roots);
1973 	}
1974 	spin_unlock(&dentry->d_lock);
1975 	spin_unlock(&inode->i_lock);
1976 
1977 	return dentry;
1978 
1979  out_iput:
1980 	iput(inode);
1981 	return res;
1982 }
1983 
1984 struct dentry *d_instantiate_anon(struct dentry *dentry, struct inode *inode)
1985 {
1986 	return __d_instantiate_anon(dentry, inode, true);
1987 }
1988 EXPORT_SYMBOL(d_instantiate_anon);
1989 
1990 static struct dentry *__d_obtain_alias(struct inode *inode, bool disconnected)
1991 {
1992 	struct dentry *tmp;
1993 	struct dentry *res;
1994 
1995 	if (!inode)
1996 		return ERR_PTR(-ESTALE);
1997 	if (IS_ERR(inode))
1998 		return ERR_CAST(inode);
1999 
2000 	res = d_find_any_alias(inode);
2001 	if (res)
2002 		goto out_iput;
2003 
2004 	tmp = d_alloc_anon(inode->i_sb);
2005 	if (!tmp) {
2006 		res = ERR_PTR(-ENOMEM);
2007 		goto out_iput;
2008 	}
2009 
2010 	return __d_instantiate_anon(tmp, inode, disconnected);
2011 
2012 out_iput:
2013 	iput(inode);
2014 	return res;
2015 }
2016 
2017 /**
2018  * d_obtain_alias - find or allocate a DISCONNECTED dentry for a given inode
2019  * @inode: inode to allocate the dentry for
2020  *
2021  * Obtain a dentry for an inode resulting from NFS filehandle conversion or
2022  * similar open by handle operations.  The returned dentry may be anonymous,
2023  * or may have a full name (if the inode was already in the cache).
2024  *
2025  * When called on a directory inode, we must ensure that the inode only ever
2026  * has one dentry.  If a dentry is found, that is returned instead of
2027  * allocating a new one.
2028  *
2029  * On successful return, the reference to the inode has been transferred
2030  * to the dentry.  In case of an error the reference on the inode is released.
2031  * To make it easier to use in export operations a %NULL or IS_ERR inode may
2032  * be passed in and the error will be propagated to the return value,
2033  * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
2034  */
2035 struct dentry *d_obtain_alias(struct inode *inode)
2036 {
2037 	return __d_obtain_alias(inode, true);
2038 }
2039 EXPORT_SYMBOL(d_obtain_alias);
2040 
2041 /**
2042  * d_obtain_root - find or allocate a dentry for a given inode
2043  * @inode: inode to allocate the dentry for
2044  *
2045  * Obtain an IS_ROOT dentry for the root of a filesystem.
2046  *
2047  * We must ensure that directory inodes only ever have one dentry.  If a
2048  * dentry is found, that is returned instead of allocating a new one.
2049  *
2050  * On successful return, the reference to the inode has been transferred
2051  * to the dentry.  In case of an error the reference on the inode is
2052  * released.  A %NULL or IS_ERR inode may be passed in and will be the
2053  * error will be propagate to the return value, with a %NULL @inode
2054  * replaced by ERR_PTR(-ESTALE).
2055  */
2056 struct dentry *d_obtain_root(struct inode *inode)
2057 {
2058 	return __d_obtain_alias(inode, false);
2059 }
2060 EXPORT_SYMBOL(d_obtain_root);
2061 
2062 /**
2063  * d_add_ci - lookup or allocate new dentry with case-exact name
2064  * @inode:  the inode case-insensitive lookup has found
2065  * @dentry: the negative dentry that was passed to the parent's lookup func
2066  * @name:   the case-exact name to be associated with the returned dentry
2067  *
2068  * This is to avoid filling the dcache with case-insensitive names to the
2069  * same inode, only the actual correct case is stored in the dcache for
2070  * case-insensitive filesystems.
2071  *
2072  * For a case-insensitive lookup match and if the the case-exact dentry
2073  * already exists in in the dcache, use it and return it.
2074  *
2075  * If no entry exists with the exact case name, allocate new dentry with
2076  * the exact case, and return the spliced entry.
2077  */
2078 struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
2079 			struct qstr *name)
2080 {
2081 	struct dentry *found, *res;
2082 
2083 	/*
2084 	 * First check if a dentry matching the name already exists,
2085 	 * if not go ahead and create it now.
2086 	 */
2087 	found = d_hash_and_lookup(dentry->d_parent, name);
2088 	if (found) {
2089 		iput(inode);
2090 		return found;
2091 	}
2092 	if (d_in_lookup(dentry)) {
2093 		found = d_alloc_parallel(dentry->d_parent, name,
2094 					dentry->d_wait);
2095 		if (IS_ERR(found) || !d_in_lookup(found)) {
2096 			iput(inode);
2097 			return found;
2098 		}
2099 	} else {
2100 		found = d_alloc(dentry->d_parent, name);
2101 		if (!found) {
2102 			iput(inode);
2103 			return ERR_PTR(-ENOMEM);
2104 		}
2105 	}
2106 	res = d_splice_alias(inode, found);
2107 	if (res) {
2108 		dput(found);
2109 		return res;
2110 	}
2111 	return found;
2112 }
2113 EXPORT_SYMBOL(d_add_ci);
2114 
2115 
2116 static inline bool d_same_name(const struct dentry *dentry,
2117 				const struct dentry *parent,
2118 				const struct qstr *name)
2119 {
2120 	if (likely(!(parent->d_flags & DCACHE_OP_COMPARE))) {
2121 		if (dentry->d_name.len != name->len)
2122 			return false;
2123 		return dentry_cmp(dentry, name->name, name->len) == 0;
2124 	}
2125 	return parent->d_op->d_compare(dentry,
2126 				       dentry->d_name.len, dentry->d_name.name,
2127 				       name) == 0;
2128 }
2129 
2130 /**
2131  * __d_lookup_rcu - search for a dentry (racy, store-free)
2132  * @parent: parent dentry
2133  * @name: qstr of name we wish to find
2134  * @seqp: returns d_seq value at the point where the dentry was found
2135  * Returns: dentry, or NULL
2136  *
2137  * __d_lookup_rcu is the dcache lookup function for rcu-walk name
2138  * resolution (store-free path walking) design described in
2139  * Documentation/filesystems/path-lookup.txt.
2140  *
2141  * This is not to be used outside core vfs.
2142  *
2143  * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
2144  * held, and rcu_read_lock held. The returned dentry must not be stored into
2145  * without taking d_lock and checking d_seq sequence count against @seq
2146  * returned here.
2147  *
2148  * A refcount may be taken on the found dentry with the d_rcu_to_refcount
2149  * function.
2150  *
2151  * Alternatively, __d_lookup_rcu may be called again to look up the child of
2152  * the returned dentry, so long as its parent's seqlock is checked after the
2153  * child is looked up. Thus, an interlocking stepping of sequence lock checks
2154  * is formed, giving integrity down the path walk.
2155  *
2156  * NOTE! The caller *has* to check the resulting dentry against the sequence
2157  * number we've returned before using any of the resulting dentry state!
2158  */
2159 struct dentry *__d_lookup_rcu(const struct dentry *parent,
2160 				const struct qstr *name,
2161 				unsigned *seqp)
2162 {
2163 	u64 hashlen = name->hash_len;
2164 	const unsigned char *str = name->name;
2165 	struct hlist_bl_head *b = d_hash(hashlen_hash(hashlen));
2166 	struct hlist_bl_node *node;
2167 	struct dentry *dentry;
2168 
2169 	/*
2170 	 * Note: There is significant duplication with __d_lookup_rcu which is
2171 	 * required to prevent single threaded performance regressions
2172 	 * especially on architectures where smp_rmb (in seqcounts) are costly.
2173 	 * Keep the two functions in sync.
2174 	 */
2175 
2176 	/*
2177 	 * The hash list is protected using RCU.
2178 	 *
2179 	 * Carefully use d_seq when comparing a candidate dentry, to avoid
2180 	 * races with d_move().
2181 	 *
2182 	 * It is possible that concurrent renames can mess up our list
2183 	 * walk here and result in missing our dentry, resulting in the
2184 	 * false-negative result. d_lookup() protects against concurrent
2185 	 * renames using rename_lock seqlock.
2186 	 *
2187 	 * See Documentation/filesystems/path-lookup.txt for more details.
2188 	 */
2189 	hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2190 		unsigned seq;
2191 
2192 seqretry:
2193 		/*
2194 		 * The dentry sequence count protects us from concurrent
2195 		 * renames, and thus protects parent and name fields.
2196 		 *
2197 		 * The caller must perform a seqcount check in order
2198 		 * to do anything useful with the returned dentry.
2199 		 *
2200 		 * NOTE! We do a "raw" seqcount_begin here. That means that
2201 		 * we don't wait for the sequence count to stabilize if it
2202 		 * is in the middle of a sequence change. If we do the slow
2203 		 * dentry compare, we will do seqretries until it is stable,
2204 		 * and if we end up with a successful lookup, we actually
2205 		 * want to exit RCU lookup anyway.
2206 		 *
2207 		 * Note that raw_seqcount_begin still *does* smp_rmb(), so
2208 		 * we are still guaranteed NUL-termination of ->d_name.name.
2209 		 */
2210 		seq = raw_seqcount_begin(&dentry->d_seq);
2211 		if (dentry->d_parent != parent)
2212 			continue;
2213 		if (d_unhashed(dentry))
2214 			continue;
2215 
2216 		if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) {
2217 			int tlen;
2218 			const char *tname;
2219 			if (dentry->d_name.hash != hashlen_hash(hashlen))
2220 				continue;
2221 			tlen = dentry->d_name.len;
2222 			tname = dentry->d_name.name;
2223 			/* we want a consistent (name,len) pair */
2224 			if (read_seqcount_retry(&dentry->d_seq, seq)) {
2225 				cpu_relax();
2226 				goto seqretry;
2227 			}
2228 			if (parent->d_op->d_compare(dentry,
2229 						    tlen, tname, name) != 0)
2230 				continue;
2231 		} else {
2232 			if (dentry->d_name.hash_len != hashlen)
2233 				continue;
2234 			if (dentry_cmp(dentry, str, hashlen_len(hashlen)) != 0)
2235 				continue;
2236 		}
2237 		*seqp = seq;
2238 		return dentry;
2239 	}
2240 	return NULL;
2241 }
2242 
2243 /**
2244  * d_lookup - search for a dentry
2245  * @parent: parent dentry
2246  * @name: qstr of name we wish to find
2247  * Returns: dentry, or NULL
2248  *
2249  * d_lookup searches the children of the parent dentry for the name in
2250  * question. If the dentry is found its reference count is incremented and the
2251  * dentry is returned. The caller must use dput to free the entry when it has
2252  * finished using it. %NULL is returned if the dentry does not exist.
2253  */
2254 struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name)
2255 {
2256 	struct dentry *dentry;
2257 	unsigned seq;
2258 
2259 	do {
2260 		seq = read_seqbegin(&rename_lock);
2261 		dentry = __d_lookup(parent, name);
2262 		if (dentry)
2263 			break;
2264 	} while (read_seqretry(&rename_lock, seq));
2265 	return dentry;
2266 }
2267 EXPORT_SYMBOL(d_lookup);
2268 
2269 /**
2270  * __d_lookup - search for a dentry (racy)
2271  * @parent: parent dentry
2272  * @name: qstr of name we wish to find
2273  * Returns: dentry, or NULL
2274  *
2275  * __d_lookup is like d_lookup, however it may (rarely) return a
2276  * false-negative result due to unrelated rename activity.
2277  *
2278  * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
2279  * however it must be used carefully, eg. with a following d_lookup in
2280  * the case of failure.
2281  *
2282  * __d_lookup callers must be commented.
2283  */
2284 struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name)
2285 {
2286 	unsigned int hash = name->hash;
2287 	struct hlist_bl_head *b = d_hash(hash);
2288 	struct hlist_bl_node *node;
2289 	struct dentry *found = NULL;
2290 	struct dentry *dentry;
2291 
2292 	/*
2293 	 * Note: There is significant duplication with __d_lookup_rcu which is
2294 	 * required to prevent single threaded performance regressions
2295 	 * especially on architectures where smp_rmb (in seqcounts) are costly.
2296 	 * Keep the two functions in sync.
2297 	 */
2298 
2299 	/*
2300 	 * The hash list is protected using RCU.
2301 	 *
2302 	 * Take d_lock when comparing a candidate dentry, to avoid races
2303 	 * with d_move().
2304 	 *
2305 	 * It is possible that concurrent renames can mess up our list
2306 	 * walk here and result in missing our dentry, resulting in the
2307 	 * false-negative result. d_lookup() protects against concurrent
2308 	 * renames using rename_lock seqlock.
2309 	 *
2310 	 * See Documentation/filesystems/path-lookup.txt for more details.
2311 	 */
2312 	rcu_read_lock();
2313 
2314 	hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2315 
2316 		if (dentry->d_name.hash != hash)
2317 			continue;
2318 
2319 		spin_lock(&dentry->d_lock);
2320 		if (dentry->d_parent != parent)
2321 			goto next;
2322 		if (d_unhashed(dentry))
2323 			goto next;
2324 
2325 		if (!d_same_name(dentry, parent, name))
2326 			goto next;
2327 
2328 		dentry->d_lockref.count++;
2329 		found = dentry;
2330 		spin_unlock(&dentry->d_lock);
2331 		break;
2332 next:
2333 		spin_unlock(&dentry->d_lock);
2334  	}
2335  	rcu_read_unlock();
2336 
2337  	return found;
2338 }
2339 
2340 /**
2341  * d_hash_and_lookup - hash the qstr then search for a dentry
2342  * @dir: Directory to search in
2343  * @name: qstr of name we wish to find
2344  *
2345  * On lookup failure NULL is returned; on bad name - ERR_PTR(-error)
2346  */
2347 struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
2348 {
2349 	/*
2350 	 * Check for a fs-specific hash function. Note that we must
2351 	 * calculate the standard hash first, as the d_op->d_hash()
2352 	 * routine may choose to leave the hash value unchanged.
2353 	 */
2354 	name->hash = full_name_hash(dir, name->name, name->len);
2355 	if (dir->d_flags & DCACHE_OP_HASH) {
2356 		int err = dir->d_op->d_hash(dir, name);
2357 		if (unlikely(err < 0))
2358 			return ERR_PTR(err);
2359 	}
2360 	return d_lookup(dir, name);
2361 }
2362 EXPORT_SYMBOL(d_hash_and_lookup);
2363 
2364 /*
2365  * When a file is deleted, we have two options:
2366  * - turn this dentry into a negative dentry
2367  * - unhash this dentry and free it.
2368  *
2369  * Usually, we want to just turn this into
2370  * a negative dentry, but if anybody else is
2371  * currently using the dentry or the inode
2372  * we can't do that and we fall back on removing
2373  * it from the hash queues and waiting for
2374  * it to be deleted later when it has no users
2375  */
2376 
2377 /**
2378  * d_delete - delete a dentry
2379  * @dentry: The dentry to delete
2380  *
2381  * Turn the dentry into a negative dentry if possible, otherwise
2382  * remove it from the hash queues so it can be deleted later
2383  */
2384 
2385 void d_delete(struct dentry * dentry)
2386 {
2387 	struct inode *inode = dentry->d_inode;
2388 	int isdir = d_is_dir(dentry);
2389 
2390 	spin_lock(&inode->i_lock);
2391 	spin_lock(&dentry->d_lock);
2392 	/*
2393 	 * Are we the only user?
2394 	 */
2395 	if (dentry->d_lockref.count == 1) {
2396 		dentry->d_flags &= ~DCACHE_CANT_MOUNT;
2397 		dentry_unlink_inode(dentry);
2398 	} else {
2399 		__d_drop(dentry);
2400 		spin_unlock(&dentry->d_lock);
2401 		spin_unlock(&inode->i_lock);
2402 	}
2403 	fsnotify_nameremove(dentry, isdir);
2404 }
2405 EXPORT_SYMBOL(d_delete);
2406 
2407 static void __d_rehash(struct dentry *entry)
2408 {
2409 	struct hlist_bl_head *b = d_hash(entry->d_name.hash);
2410 
2411 	hlist_bl_lock(b);
2412 	hlist_bl_add_head_rcu(&entry->d_hash, b);
2413 	hlist_bl_unlock(b);
2414 }
2415 
2416 /**
2417  * d_rehash	- add an entry back to the hash
2418  * @entry: dentry to add to the hash
2419  *
2420  * Adds a dentry to the hash according to its name.
2421  */
2422 
2423 void d_rehash(struct dentry * entry)
2424 {
2425 	spin_lock(&entry->d_lock);
2426 	__d_rehash(entry);
2427 	spin_unlock(&entry->d_lock);
2428 }
2429 EXPORT_SYMBOL(d_rehash);
2430 
2431 static inline unsigned start_dir_add(struct inode *dir)
2432 {
2433 
2434 	for (;;) {
2435 		unsigned n = dir->i_dir_seq;
2436 		if (!(n & 1) && cmpxchg(&dir->i_dir_seq, n, n + 1) == n)
2437 			return n;
2438 		cpu_relax();
2439 	}
2440 }
2441 
2442 static inline void end_dir_add(struct inode *dir, unsigned n)
2443 {
2444 	smp_store_release(&dir->i_dir_seq, n + 2);
2445 }
2446 
2447 static void d_wait_lookup(struct dentry *dentry)
2448 {
2449 	if (d_in_lookup(dentry)) {
2450 		DECLARE_WAITQUEUE(wait, current);
2451 		add_wait_queue(dentry->d_wait, &wait);
2452 		do {
2453 			set_current_state(TASK_UNINTERRUPTIBLE);
2454 			spin_unlock(&dentry->d_lock);
2455 			schedule();
2456 			spin_lock(&dentry->d_lock);
2457 		} while (d_in_lookup(dentry));
2458 	}
2459 }
2460 
2461 struct dentry *d_alloc_parallel(struct dentry *parent,
2462 				const struct qstr *name,
2463 				wait_queue_head_t *wq)
2464 {
2465 	unsigned int hash = name->hash;
2466 	struct hlist_bl_head *b = in_lookup_hash(parent, hash);
2467 	struct hlist_bl_node *node;
2468 	struct dentry *new = d_alloc(parent, name);
2469 	struct dentry *dentry;
2470 	unsigned seq, r_seq, d_seq;
2471 
2472 	if (unlikely(!new))
2473 		return ERR_PTR(-ENOMEM);
2474 
2475 retry:
2476 	rcu_read_lock();
2477 	seq = smp_load_acquire(&parent->d_inode->i_dir_seq);
2478 	r_seq = read_seqbegin(&rename_lock);
2479 	dentry = __d_lookup_rcu(parent, name, &d_seq);
2480 	if (unlikely(dentry)) {
2481 		if (!lockref_get_not_dead(&dentry->d_lockref)) {
2482 			rcu_read_unlock();
2483 			goto retry;
2484 		}
2485 		if (read_seqcount_retry(&dentry->d_seq, d_seq)) {
2486 			rcu_read_unlock();
2487 			dput(dentry);
2488 			goto retry;
2489 		}
2490 		rcu_read_unlock();
2491 		dput(new);
2492 		return dentry;
2493 	}
2494 	if (unlikely(read_seqretry(&rename_lock, r_seq))) {
2495 		rcu_read_unlock();
2496 		goto retry;
2497 	}
2498 
2499 	if (unlikely(seq & 1)) {
2500 		rcu_read_unlock();
2501 		goto retry;
2502 	}
2503 
2504 	hlist_bl_lock(b);
2505 	if (unlikely(READ_ONCE(parent->d_inode->i_dir_seq) != seq)) {
2506 		hlist_bl_unlock(b);
2507 		rcu_read_unlock();
2508 		goto retry;
2509 	}
2510 	/*
2511 	 * No changes for the parent since the beginning of d_lookup().
2512 	 * Since all removals from the chain happen with hlist_bl_lock(),
2513 	 * any potential in-lookup matches are going to stay here until
2514 	 * we unlock the chain.  All fields are stable in everything
2515 	 * we encounter.
2516 	 */
2517 	hlist_bl_for_each_entry(dentry, node, b, d_u.d_in_lookup_hash) {
2518 		if (dentry->d_name.hash != hash)
2519 			continue;
2520 		if (dentry->d_parent != parent)
2521 			continue;
2522 		if (!d_same_name(dentry, parent, name))
2523 			continue;
2524 		hlist_bl_unlock(b);
2525 		/* now we can try to grab a reference */
2526 		if (!lockref_get_not_dead(&dentry->d_lockref)) {
2527 			rcu_read_unlock();
2528 			goto retry;
2529 		}
2530 
2531 		rcu_read_unlock();
2532 		/*
2533 		 * somebody is likely to be still doing lookup for it;
2534 		 * wait for them to finish
2535 		 */
2536 		spin_lock(&dentry->d_lock);
2537 		d_wait_lookup(dentry);
2538 		/*
2539 		 * it's not in-lookup anymore; in principle we should repeat
2540 		 * everything from dcache lookup, but it's likely to be what
2541 		 * d_lookup() would've found anyway.  If it is, just return it;
2542 		 * otherwise we really have to repeat the whole thing.
2543 		 */
2544 		if (unlikely(dentry->d_name.hash != hash))
2545 			goto mismatch;
2546 		if (unlikely(dentry->d_parent != parent))
2547 			goto mismatch;
2548 		if (unlikely(d_unhashed(dentry)))
2549 			goto mismatch;
2550 		if (unlikely(!d_same_name(dentry, parent, name)))
2551 			goto mismatch;
2552 		/* OK, it *is* a hashed match; return it */
2553 		spin_unlock(&dentry->d_lock);
2554 		dput(new);
2555 		return dentry;
2556 	}
2557 	rcu_read_unlock();
2558 	/* we can't take ->d_lock here; it's OK, though. */
2559 	new->d_flags |= DCACHE_PAR_LOOKUP;
2560 	new->d_wait = wq;
2561 	hlist_bl_add_head_rcu(&new->d_u.d_in_lookup_hash, b);
2562 	hlist_bl_unlock(b);
2563 	return new;
2564 mismatch:
2565 	spin_unlock(&dentry->d_lock);
2566 	dput(dentry);
2567 	goto retry;
2568 }
2569 EXPORT_SYMBOL(d_alloc_parallel);
2570 
2571 void __d_lookup_done(struct dentry *dentry)
2572 {
2573 	struct hlist_bl_head *b = in_lookup_hash(dentry->d_parent,
2574 						 dentry->d_name.hash);
2575 	hlist_bl_lock(b);
2576 	dentry->d_flags &= ~DCACHE_PAR_LOOKUP;
2577 	__hlist_bl_del(&dentry->d_u.d_in_lookup_hash);
2578 	wake_up_all(dentry->d_wait);
2579 	dentry->d_wait = NULL;
2580 	hlist_bl_unlock(b);
2581 	INIT_HLIST_NODE(&dentry->d_u.d_alias);
2582 	INIT_LIST_HEAD(&dentry->d_lru);
2583 }
2584 EXPORT_SYMBOL(__d_lookup_done);
2585 
2586 /* inode->i_lock held if inode is non-NULL */
2587 
2588 static inline void __d_add(struct dentry *dentry, struct inode *inode)
2589 {
2590 	struct inode *dir = NULL;
2591 	unsigned n;
2592 	spin_lock(&dentry->d_lock);
2593 	if (unlikely(d_in_lookup(dentry))) {
2594 		dir = dentry->d_parent->d_inode;
2595 		n = start_dir_add(dir);
2596 		__d_lookup_done(dentry);
2597 	}
2598 	if (inode) {
2599 		unsigned add_flags = d_flags_for_inode(inode);
2600 		hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
2601 		raw_write_seqcount_begin(&dentry->d_seq);
2602 		__d_set_inode_and_type(dentry, inode, add_flags);
2603 		raw_write_seqcount_end(&dentry->d_seq);
2604 		fsnotify_update_flags(dentry);
2605 	}
2606 	__d_rehash(dentry);
2607 	if (dir)
2608 		end_dir_add(dir, n);
2609 	spin_unlock(&dentry->d_lock);
2610 	if (inode)
2611 		spin_unlock(&inode->i_lock);
2612 }
2613 
2614 /**
2615  * d_add - add dentry to hash queues
2616  * @entry: dentry to add
2617  * @inode: The inode to attach to this dentry
2618  *
2619  * This adds the entry to the hash queues and initializes @inode.
2620  * The entry was actually filled in earlier during d_alloc().
2621  */
2622 
2623 void d_add(struct dentry *entry, struct inode *inode)
2624 {
2625 	if (inode) {
2626 		security_d_instantiate(entry, inode);
2627 		spin_lock(&inode->i_lock);
2628 	}
2629 	__d_add(entry, inode);
2630 }
2631 EXPORT_SYMBOL(d_add);
2632 
2633 /**
2634  * d_exact_alias - find and hash an exact unhashed alias
2635  * @entry: dentry to add
2636  * @inode: The inode to go with this dentry
2637  *
2638  * If an unhashed dentry with the same name/parent and desired
2639  * inode already exists, hash and return it.  Otherwise, return
2640  * NULL.
2641  *
2642  * Parent directory should be locked.
2643  */
2644 struct dentry *d_exact_alias(struct dentry *entry, struct inode *inode)
2645 {
2646 	struct dentry *alias;
2647 	unsigned int hash = entry->d_name.hash;
2648 
2649 	spin_lock(&inode->i_lock);
2650 	hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
2651 		/*
2652 		 * Don't need alias->d_lock here, because aliases with
2653 		 * d_parent == entry->d_parent are not subject to name or
2654 		 * parent changes, because the parent inode i_mutex is held.
2655 		 */
2656 		if (alias->d_name.hash != hash)
2657 			continue;
2658 		if (alias->d_parent != entry->d_parent)
2659 			continue;
2660 		if (!d_same_name(alias, entry->d_parent, &entry->d_name))
2661 			continue;
2662 		spin_lock(&alias->d_lock);
2663 		if (!d_unhashed(alias)) {
2664 			spin_unlock(&alias->d_lock);
2665 			alias = NULL;
2666 		} else {
2667 			__dget_dlock(alias);
2668 			__d_rehash(alias);
2669 			spin_unlock(&alias->d_lock);
2670 		}
2671 		spin_unlock(&inode->i_lock);
2672 		return alias;
2673 	}
2674 	spin_unlock(&inode->i_lock);
2675 	return NULL;
2676 }
2677 EXPORT_SYMBOL(d_exact_alias);
2678 
2679 /**
2680  * dentry_update_name_case - update case insensitive dentry with a new name
2681  * @dentry: dentry to be updated
2682  * @name: new name
2683  *
2684  * Update a case insensitive dentry with new case of name.
2685  *
2686  * dentry must have been returned by d_lookup with name @name. Old and new
2687  * name lengths must match (ie. no d_compare which allows mismatched name
2688  * lengths).
2689  *
2690  * Parent inode i_mutex must be held over d_lookup and into this call (to
2691  * keep renames and concurrent inserts, and readdir(2) away).
2692  */
2693 void dentry_update_name_case(struct dentry *dentry, const struct qstr *name)
2694 {
2695 	BUG_ON(!inode_is_locked(dentry->d_parent->d_inode));
2696 	BUG_ON(dentry->d_name.len != name->len); /* d_lookup gives this */
2697 
2698 	spin_lock(&dentry->d_lock);
2699 	write_seqcount_begin(&dentry->d_seq);
2700 	memcpy((unsigned char *)dentry->d_name.name, name->name, name->len);
2701 	write_seqcount_end(&dentry->d_seq);
2702 	spin_unlock(&dentry->d_lock);
2703 }
2704 EXPORT_SYMBOL(dentry_update_name_case);
2705 
2706 static void swap_names(struct dentry *dentry, struct dentry *target)
2707 {
2708 	if (unlikely(dname_external(target))) {
2709 		if (unlikely(dname_external(dentry))) {
2710 			/*
2711 			 * Both external: swap the pointers
2712 			 */
2713 			swap(target->d_name.name, dentry->d_name.name);
2714 		} else {
2715 			/*
2716 			 * dentry:internal, target:external.  Steal target's
2717 			 * storage and make target internal.
2718 			 */
2719 			memcpy(target->d_iname, dentry->d_name.name,
2720 					dentry->d_name.len + 1);
2721 			dentry->d_name.name = target->d_name.name;
2722 			target->d_name.name = target->d_iname;
2723 		}
2724 	} else {
2725 		if (unlikely(dname_external(dentry))) {
2726 			/*
2727 			 * dentry:external, target:internal.  Give dentry's
2728 			 * storage to target and make dentry internal
2729 			 */
2730 			memcpy(dentry->d_iname, target->d_name.name,
2731 					target->d_name.len + 1);
2732 			target->d_name.name = dentry->d_name.name;
2733 			dentry->d_name.name = dentry->d_iname;
2734 		} else {
2735 			/*
2736 			 * Both are internal.
2737 			 */
2738 			unsigned int i;
2739 			BUILD_BUG_ON(!IS_ALIGNED(DNAME_INLINE_LEN, sizeof(long)));
2740 			for (i = 0; i < DNAME_INLINE_LEN / sizeof(long); i++) {
2741 				swap(((long *) &dentry->d_iname)[i],
2742 				     ((long *) &target->d_iname)[i]);
2743 			}
2744 		}
2745 	}
2746 	swap(dentry->d_name.hash_len, target->d_name.hash_len);
2747 }
2748 
2749 static void copy_name(struct dentry *dentry, struct dentry *target)
2750 {
2751 	struct external_name *old_name = NULL;
2752 	if (unlikely(dname_external(dentry)))
2753 		old_name = external_name(dentry);
2754 	if (unlikely(dname_external(target))) {
2755 		atomic_inc(&external_name(target)->u.count);
2756 		dentry->d_name = target->d_name;
2757 	} else {
2758 		memcpy(dentry->d_iname, target->d_name.name,
2759 				target->d_name.len + 1);
2760 		dentry->d_name.name = dentry->d_iname;
2761 		dentry->d_name.hash_len = target->d_name.hash_len;
2762 	}
2763 	if (old_name && likely(atomic_dec_and_test(&old_name->u.count)))
2764 		call_rcu(&old_name->u.head, __d_free_external_name);
2765 }
2766 
2767 /*
2768  * __d_move - move a dentry
2769  * @dentry: entry to move
2770  * @target: new dentry
2771  * @exchange: exchange the two dentries
2772  *
2773  * Update the dcache to reflect the move of a file name. Negative
2774  * dcache entries should not be moved in this way. Caller must hold
2775  * rename_lock, the i_mutex of the source and target directories,
2776  * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
2777  */
2778 static void __d_move(struct dentry *dentry, struct dentry *target,
2779 		     bool exchange)
2780 {
2781 	struct dentry *old_parent, *p;
2782 	struct inode *dir = NULL;
2783 	unsigned n;
2784 
2785 	WARN_ON(!dentry->d_inode);
2786 	if (WARN_ON(dentry == target))
2787 		return;
2788 
2789 	BUG_ON(d_ancestor(target, dentry));
2790 	old_parent = dentry->d_parent;
2791 	p = d_ancestor(old_parent, target);
2792 	if (IS_ROOT(dentry)) {
2793 		BUG_ON(p);
2794 		spin_lock(&target->d_parent->d_lock);
2795 	} else if (!p) {
2796 		/* target is not a descendent of dentry->d_parent */
2797 		spin_lock(&target->d_parent->d_lock);
2798 		spin_lock_nested(&old_parent->d_lock, DENTRY_D_LOCK_NESTED);
2799 	} else {
2800 		BUG_ON(p == dentry);
2801 		spin_lock(&old_parent->d_lock);
2802 		if (p != target)
2803 			spin_lock_nested(&target->d_parent->d_lock,
2804 					DENTRY_D_LOCK_NESTED);
2805 	}
2806 	spin_lock_nested(&dentry->d_lock, 2);
2807 	spin_lock_nested(&target->d_lock, 3);
2808 
2809 	if (unlikely(d_in_lookup(target))) {
2810 		dir = target->d_parent->d_inode;
2811 		n = start_dir_add(dir);
2812 		__d_lookup_done(target);
2813 	}
2814 
2815 	write_seqcount_begin(&dentry->d_seq);
2816 	write_seqcount_begin_nested(&target->d_seq, DENTRY_D_LOCK_NESTED);
2817 
2818 	/* unhash both */
2819 	if (!d_unhashed(dentry))
2820 		___d_drop(dentry);
2821 	if (!d_unhashed(target))
2822 		___d_drop(target);
2823 
2824 	/* ... and switch them in the tree */
2825 	dentry->d_parent = target->d_parent;
2826 	if (!exchange) {
2827 		copy_name(dentry, target);
2828 		target->d_hash.pprev = NULL;
2829 		dentry->d_parent->d_lockref.count++;
2830 		if (dentry == old_parent)
2831 			dentry->d_flags |= DCACHE_RCUACCESS;
2832 		else
2833 			WARN_ON(!--old_parent->d_lockref.count);
2834 	} else {
2835 		target->d_parent = old_parent;
2836 		swap_names(dentry, target);
2837 		list_move(&target->d_child, &target->d_parent->d_subdirs);
2838 		__d_rehash(target);
2839 		fsnotify_update_flags(target);
2840 	}
2841 	list_move(&dentry->d_child, &dentry->d_parent->d_subdirs);
2842 	__d_rehash(dentry);
2843 	fsnotify_update_flags(dentry);
2844 
2845 	write_seqcount_end(&target->d_seq);
2846 	write_seqcount_end(&dentry->d_seq);
2847 
2848 	if (dir)
2849 		end_dir_add(dir, n);
2850 
2851 	if (dentry->d_parent != old_parent)
2852 		spin_unlock(&dentry->d_parent->d_lock);
2853 	if (dentry != old_parent)
2854 		spin_unlock(&old_parent->d_lock);
2855 	spin_unlock(&target->d_lock);
2856 	spin_unlock(&dentry->d_lock);
2857 }
2858 
2859 /*
2860  * d_move - move a dentry
2861  * @dentry: entry to move
2862  * @target: new dentry
2863  *
2864  * Update the dcache to reflect the move of a file name. Negative
2865  * dcache entries should not be moved in this way. See the locking
2866  * requirements for __d_move.
2867  */
2868 void d_move(struct dentry *dentry, struct dentry *target)
2869 {
2870 	write_seqlock(&rename_lock);
2871 	__d_move(dentry, target, false);
2872 	write_sequnlock(&rename_lock);
2873 }
2874 EXPORT_SYMBOL(d_move);
2875 
2876 /*
2877  * d_exchange - exchange two dentries
2878  * @dentry1: first dentry
2879  * @dentry2: second dentry
2880  */
2881 void d_exchange(struct dentry *dentry1, struct dentry *dentry2)
2882 {
2883 	write_seqlock(&rename_lock);
2884 
2885 	WARN_ON(!dentry1->d_inode);
2886 	WARN_ON(!dentry2->d_inode);
2887 	WARN_ON(IS_ROOT(dentry1));
2888 	WARN_ON(IS_ROOT(dentry2));
2889 
2890 	__d_move(dentry1, dentry2, true);
2891 
2892 	write_sequnlock(&rename_lock);
2893 }
2894 
2895 /**
2896  * d_ancestor - search for an ancestor
2897  * @p1: ancestor dentry
2898  * @p2: child dentry
2899  *
2900  * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2901  * an ancestor of p2, else NULL.
2902  */
2903 struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
2904 {
2905 	struct dentry *p;
2906 
2907 	for (p = p2; !IS_ROOT(p); p = p->d_parent) {
2908 		if (p->d_parent == p1)
2909 			return p;
2910 	}
2911 	return NULL;
2912 }
2913 
2914 /*
2915  * This helper attempts to cope with remotely renamed directories
2916  *
2917  * It assumes that the caller is already holding
2918  * dentry->d_parent->d_inode->i_mutex, and rename_lock
2919  *
2920  * Note: If ever the locking in lock_rename() changes, then please
2921  * remember to update this too...
2922  */
2923 static int __d_unalias(struct inode *inode,
2924 		struct dentry *dentry, struct dentry *alias)
2925 {
2926 	struct mutex *m1 = NULL;
2927 	struct rw_semaphore *m2 = NULL;
2928 	int ret = -ESTALE;
2929 
2930 	/* If alias and dentry share a parent, then no extra locks required */
2931 	if (alias->d_parent == dentry->d_parent)
2932 		goto out_unalias;
2933 
2934 	/* See lock_rename() */
2935 	if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
2936 		goto out_err;
2937 	m1 = &dentry->d_sb->s_vfs_rename_mutex;
2938 	if (!inode_trylock_shared(alias->d_parent->d_inode))
2939 		goto out_err;
2940 	m2 = &alias->d_parent->d_inode->i_rwsem;
2941 out_unalias:
2942 	__d_move(alias, dentry, false);
2943 	ret = 0;
2944 out_err:
2945 	if (m2)
2946 		up_read(m2);
2947 	if (m1)
2948 		mutex_unlock(m1);
2949 	return ret;
2950 }
2951 
2952 /**
2953  * d_splice_alias - splice a disconnected dentry into the tree if one exists
2954  * @inode:  the inode which may have a disconnected dentry
2955  * @dentry: a negative dentry which we want to point to the inode.
2956  *
2957  * If inode is a directory and has an IS_ROOT alias, then d_move that in
2958  * place of the given dentry and return it, else simply d_add the inode
2959  * to the dentry and return NULL.
2960  *
2961  * If a non-IS_ROOT directory is found, the filesystem is corrupt, and
2962  * we should error out: directories can't have multiple aliases.
2963  *
2964  * This is needed in the lookup routine of any filesystem that is exportable
2965  * (via knfsd) so that we can build dcache paths to directories effectively.
2966  *
2967  * If a dentry was found and moved, then it is returned.  Otherwise NULL
2968  * is returned.  This matches the expected return value of ->lookup.
2969  *
2970  * Cluster filesystems may call this function with a negative, hashed dentry.
2971  * In that case, we know that the inode will be a regular file, and also this
2972  * will only occur during atomic_open. So we need to check for the dentry
2973  * being already hashed only in the final case.
2974  */
2975 struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
2976 {
2977 	if (IS_ERR(inode))
2978 		return ERR_CAST(inode);
2979 
2980 	BUG_ON(!d_unhashed(dentry));
2981 
2982 	if (!inode)
2983 		goto out;
2984 
2985 	security_d_instantiate(dentry, inode);
2986 	spin_lock(&inode->i_lock);
2987 	if (S_ISDIR(inode->i_mode)) {
2988 		struct dentry *new = __d_find_any_alias(inode);
2989 		if (unlikely(new)) {
2990 			/* The reference to new ensures it remains an alias */
2991 			spin_unlock(&inode->i_lock);
2992 			write_seqlock(&rename_lock);
2993 			if (unlikely(d_ancestor(new, dentry))) {
2994 				write_sequnlock(&rename_lock);
2995 				dput(new);
2996 				new = ERR_PTR(-ELOOP);
2997 				pr_warn_ratelimited(
2998 					"VFS: Lookup of '%s' in %s %s"
2999 					" would have caused loop\n",
3000 					dentry->d_name.name,
3001 					inode->i_sb->s_type->name,
3002 					inode->i_sb->s_id);
3003 			} else if (!IS_ROOT(new)) {
3004 				struct dentry *old_parent = dget(new->d_parent);
3005 				int err = __d_unalias(inode, dentry, new);
3006 				write_sequnlock(&rename_lock);
3007 				if (err) {
3008 					dput(new);
3009 					new = ERR_PTR(err);
3010 				}
3011 				dput(old_parent);
3012 			} else {
3013 				__d_move(new, dentry, false);
3014 				write_sequnlock(&rename_lock);
3015 			}
3016 			iput(inode);
3017 			return new;
3018 		}
3019 	}
3020 out:
3021 	__d_add(dentry, inode);
3022 	return NULL;
3023 }
3024 EXPORT_SYMBOL(d_splice_alias);
3025 
3026 /*
3027  * Test whether new_dentry is a subdirectory of old_dentry.
3028  *
3029  * Trivially implemented using the dcache structure
3030  */
3031 
3032 /**
3033  * is_subdir - is new dentry a subdirectory of old_dentry
3034  * @new_dentry: new dentry
3035  * @old_dentry: old dentry
3036  *
3037  * Returns true if new_dentry is a subdirectory of the parent (at any depth).
3038  * Returns false otherwise.
3039  * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
3040  */
3041 
3042 bool is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
3043 {
3044 	bool result;
3045 	unsigned seq;
3046 
3047 	if (new_dentry == old_dentry)
3048 		return true;
3049 
3050 	do {
3051 		/* for restarting inner loop in case of seq retry */
3052 		seq = read_seqbegin(&rename_lock);
3053 		/*
3054 		 * Need rcu_readlock to protect against the d_parent trashing
3055 		 * due to d_move
3056 		 */
3057 		rcu_read_lock();
3058 		if (d_ancestor(old_dentry, new_dentry))
3059 			result = true;
3060 		else
3061 			result = false;
3062 		rcu_read_unlock();
3063 	} while (read_seqretry(&rename_lock, seq));
3064 
3065 	return result;
3066 }
3067 EXPORT_SYMBOL(is_subdir);
3068 
3069 static enum d_walk_ret d_genocide_kill(void *data, struct dentry *dentry)
3070 {
3071 	struct dentry *root = data;
3072 	if (dentry != root) {
3073 		if (d_unhashed(dentry) || !dentry->d_inode)
3074 			return D_WALK_SKIP;
3075 
3076 		if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
3077 			dentry->d_flags |= DCACHE_GENOCIDE;
3078 			dentry->d_lockref.count--;
3079 		}
3080 	}
3081 	return D_WALK_CONTINUE;
3082 }
3083 
3084 void d_genocide(struct dentry *parent)
3085 {
3086 	d_walk(parent, parent, d_genocide_kill);
3087 }
3088 
3089 EXPORT_SYMBOL(d_genocide);
3090 
3091 void d_tmpfile(struct dentry *dentry, struct inode *inode)
3092 {
3093 	inode_dec_link_count(inode);
3094 	BUG_ON(dentry->d_name.name != dentry->d_iname ||
3095 		!hlist_unhashed(&dentry->d_u.d_alias) ||
3096 		!d_unlinked(dentry));
3097 	spin_lock(&dentry->d_parent->d_lock);
3098 	spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
3099 	dentry->d_name.len = sprintf(dentry->d_iname, "#%llu",
3100 				(unsigned long long)inode->i_ino);
3101 	spin_unlock(&dentry->d_lock);
3102 	spin_unlock(&dentry->d_parent->d_lock);
3103 	d_instantiate(dentry, inode);
3104 }
3105 EXPORT_SYMBOL(d_tmpfile);
3106 
3107 static __initdata unsigned long dhash_entries;
3108 static int __init set_dhash_entries(char *str)
3109 {
3110 	if (!str)
3111 		return 0;
3112 	dhash_entries = simple_strtoul(str, &str, 0);
3113 	return 1;
3114 }
3115 __setup("dhash_entries=", set_dhash_entries);
3116 
3117 static void __init dcache_init_early(void)
3118 {
3119 	/* If hashes are distributed across NUMA nodes, defer
3120 	 * hash allocation until vmalloc space is available.
3121 	 */
3122 	if (hashdist)
3123 		return;
3124 
3125 	dentry_hashtable =
3126 		alloc_large_system_hash("Dentry cache",
3127 					sizeof(struct hlist_bl_head),
3128 					dhash_entries,
3129 					13,
3130 					HASH_EARLY | HASH_ZERO,
3131 					&d_hash_shift,
3132 					NULL,
3133 					0,
3134 					0);
3135 	d_hash_shift = 32 - d_hash_shift;
3136 }
3137 
3138 static void __init dcache_init(void)
3139 {
3140 	/*
3141 	 * A constructor could be added for stable state like the lists,
3142 	 * but it is probably not worth it because of the cache nature
3143 	 * of the dcache.
3144 	 */
3145 	dentry_cache = KMEM_CACHE_USERCOPY(dentry,
3146 		SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD|SLAB_ACCOUNT,
3147 		d_iname);
3148 
3149 	/* Hash may have been set up in dcache_init_early */
3150 	if (!hashdist)
3151 		return;
3152 
3153 	dentry_hashtable =
3154 		alloc_large_system_hash("Dentry cache",
3155 					sizeof(struct hlist_bl_head),
3156 					dhash_entries,
3157 					13,
3158 					HASH_ZERO,
3159 					&d_hash_shift,
3160 					NULL,
3161 					0,
3162 					0);
3163 	d_hash_shift = 32 - d_hash_shift;
3164 }
3165 
3166 /* SLAB cache for __getname() consumers */
3167 struct kmem_cache *names_cachep __read_mostly;
3168 EXPORT_SYMBOL(names_cachep);
3169 
3170 void __init vfs_caches_init_early(void)
3171 {
3172 	int i;
3173 
3174 	for (i = 0; i < ARRAY_SIZE(in_lookup_hashtable); i++)
3175 		INIT_HLIST_BL_HEAD(&in_lookup_hashtable[i]);
3176 
3177 	dcache_init_early();
3178 	inode_init_early();
3179 }
3180 
3181 void __init vfs_caches_init(void)
3182 {
3183 	names_cachep = kmem_cache_create_usercopy("names_cache", PATH_MAX, 0,
3184 			SLAB_HWCACHE_ALIGN|SLAB_PANIC, 0, PATH_MAX, NULL);
3185 
3186 	dcache_init();
3187 	inode_init();
3188 	files_init();
3189 	files_maxfiles_init();
3190 	mnt_init();
3191 	bdev_cache_init();
3192 	chrdev_init();
3193 }
3194