xref: /openbmc/linux/fs/dcache.c (revision d2168146)
1 /*
2  * fs/dcache.c
3  *
4  * Complete reimplementation
5  * (C) 1997 Thomas Schoebel-Theuer,
6  * with heavy changes by Linus Torvalds
7  */
8 
9 /*
10  * Notes on the allocation strategy:
11  *
12  * The dcache is a master of the icache - whenever a dcache entry
13  * exists, the inode will always exist. "iput()" is done either when
14  * the dcache entry is deleted or garbage collected.
15  */
16 
17 #include <linux/syscalls.h>
18 #include <linux/string.h>
19 #include <linux/mm.h>
20 #include <linux/fs.h>
21 #include <linux/fsnotify.h>
22 #include <linux/slab.h>
23 #include <linux/init.h>
24 #include <linux/hash.h>
25 #include <linux/cache.h>
26 #include <linux/export.h>
27 #include <linux/mount.h>
28 #include <linux/file.h>
29 #include <asm/uaccess.h>
30 #include <linux/security.h>
31 #include <linux/seqlock.h>
32 #include <linux/swap.h>
33 #include <linux/bootmem.h>
34 #include <linux/fs_struct.h>
35 #include <linux/hardirq.h>
36 #include <linux/bit_spinlock.h>
37 #include <linux/rculist_bl.h>
38 #include <linux/prefetch.h>
39 #include <linux/ratelimit.h>
40 #include <linux/list_lru.h>
41 #include "internal.h"
42 #include "mount.h"
43 
44 /*
45  * Usage:
46  * dcache->d_inode->i_lock protects:
47  *   - i_dentry, d_alias, d_inode of aliases
48  * dcache_hash_bucket lock protects:
49  *   - the dcache hash table
50  * s_anon bl list spinlock protects:
51  *   - the s_anon list (see __d_drop)
52  * dentry->d_sb->s_dentry_lru_lock protects:
53  *   - the dcache lru lists and counters
54  * d_lock protects:
55  *   - d_flags
56  *   - d_name
57  *   - d_lru
58  *   - d_count
59  *   - d_unhashed()
60  *   - d_parent and d_subdirs
61  *   - childrens' d_child and d_parent
62  *   - d_alias, d_inode
63  *
64  * Ordering:
65  * dentry->d_inode->i_lock
66  *   dentry->d_lock
67  *     dentry->d_sb->s_dentry_lru_lock
68  *     dcache_hash_bucket lock
69  *     s_anon lock
70  *
71  * If there is an ancestor relationship:
72  * dentry->d_parent->...->d_parent->d_lock
73  *   ...
74  *     dentry->d_parent->d_lock
75  *       dentry->d_lock
76  *
77  * If no ancestor relationship:
78  * if (dentry1 < dentry2)
79  *   dentry1->d_lock
80  *     dentry2->d_lock
81  */
82 int sysctl_vfs_cache_pressure __read_mostly = 100;
83 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
84 
85 __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
86 
87 EXPORT_SYMBOL(rename_lock);
88 
89 static struct kmem_cache *dentry_cache __read_mostly;
90 
91 /*
92  * This is the single most critical data structure when it comes
93  * to the dcache: the hashtable for lookups. Somebody should try
94  * to make this good - I've just made it work.
95  *
96  * This hash-function tries to avoid losing too many bits of hash
97  * information, yet avoid using a prime hash-size or similar.
98  */
99 
100 static unsigned int d_hash_mask __read_mostly;
101 static unsigned int d_hash_shift __read_mostly;
102 
103 static struct hlist_bl_head *dentry_hashtable __read_mostly;
104 
105 static inline struct hlist_bl_head *d_hash(const struct dentry *parent,
106 					unsigned int hash)
107 {
108 	hash += (unsigned long) parent / L1_CACHE_BYTES;
109 	hash = hash + (hash >> d_hash_shift);
110 	return dentry_hashtable + (hash & d_hash_mask);
111 }
112 
113 /* Statistics gathering. */
114 struct dentry_stat_t dentry_stat = {
115 	.age_limit = 45,
116 };
117 
118 static DEFINE_PER_CPU(long, nr_dentry);
119 static DEFINE_PER_CPU(long, nr_dentry_unused);
120 
121 #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
122 
123 /*
124  * Here we resort to our own counters instead of using generic per-cpu counters
125  * for consistency with what the vfs inode code does. We are expected to harvest
126  * better code and performance by having our own specialized counters.
127  *
128  * Please note that the loop is done over all possible CPUs, not over all online
129  * CPUs. The reason for this is that we don't want to play games with CPUs going
130  * on and off. If one of them goes off, we will just keep their counters.
131  *
132  * glommer: See cffbc8a for details, and if you ever intend to change this,
133  * please update all vfs counters to match.
134  */
135 static long get_nr_dentry(void)
136 {
137 	int i;
138 	long sum = 0;
139 	for_each_possible_cpu(i)
140 		sum += per_cpu(nr_dentry, i);
141 	return sum < 0 ? 0 : sum;
142 }
143 
144 static long get_nr_dentry_unused(void)
145 {
146 	int i;
147 	long sum = 0;
148 	for_each_possible_cpu(i)
149 		sum += per_cpu(nr_dentry_unused, i);
150 	return sum < 0 ? 0 : sum;
151 }
152 
153 int proc_nr_dentry(struct ctl_table *table, int write, void __user *buffer,
154 		   size_t *lenp, loff_t *ppos)
155 {
156 	dentry_stat.nr_dentry = get_nr_dentry();
157 	dentry_stat.nr_unused = get_nr_dentry_unused();
158 	return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
159 }
160 #endif
161 
162 /*
163  * Compare 2 name strings, return 0 if they match, otherwise non-zero.
164  * The strings are both count bytes long, and count is non-zero.
165  */
166 #ifdef CONFIG_DCACHE_WORD_ACCESS
167 
168 #include <asm/word-at-a-time.h>
169 /*
170  * NOTE! 'cs' and 'scount' come from a dentry, so it has a
171  * aligned allocation for this particular component. We don't
172  * strictly need the load_unaligned_zeropad() safety, but it
173  * doesn't hurt either.
174  *
175  * In contrast, 'ct' and 'tcount' can be from a pathname, and do
176  * need the careful unaligned handling.
177  */
178 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
179 {
180 	unsigned long a,b,mask;
181 
182 	for (;;) {
183 		a = *(unsigned long *)cs;
184 		b = load_unaligned_zeropad(ct);
185 		if (tcount < sizeof(unsigned long))
186 			break;
187 		if (unlikely(a != b))
188 			return 1;
189 		cs += sizeof(unsigned long);
190 		ct += sizeof(unsigned long);
191 		tcount -= sizeof(unsigned long);
192 		if (!tcount)
193 			return 0;
194 	}
195 	mask = bytemask_from_count(tcount);
196 	return unlikely(!!((a ^ b) & mask));
197 }
198 
199 #else
200 
201 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
202 {
203 	do {
204 		if (*cs != *ct)
205 			return 1;
206 		cs++;
207 		ct++;
208 		tcount--;
209 	} while (tcount);
210 	return 0;
211 }
212 
213 #endif
214 
215 static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount)
216 {
217 	const unsigned char *cs;
218 	/*
219 	 * Be careful about RCU walk racing with rename:
220 	 * use ACCESS_ONCE to fetch the name pointer.
221 	 *
222 	 * NOTE! Even if a rename will mean that the length
223 	 * was not loaded atomically, we don't care. The
224 	 * RCU walk will check the sequence count eventually,
225 	 * and catch it. And we won't overrun the buffer,
226 	 * because we're reading the name pointer atomically,
227 	 * and a dentry name is guaranteed to be properly
228 	 * terminated with a NUL byte.
229 	 *
230 	 * End result: even if 'len' is wrong, we'll exit
231 	 * early because the data cannot match (there can
232 	 * be no NUL in the ct/tcount data)
233 	 */
234 	cs = ACCESS_ONCE(dentry->d_name.name);
235 	smp_read_barrier_depends();
236 	return dentry_string_cmp(cs, ct, tcount);
237 }
238 
239 static void __d_free(struct rcu_head *head)
240 {
241 	struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
242 
243 	WARN_ON(!hlist_unhashed(&dentry->d_alias));
244 	if (dname_external(dentry))
245 		kfree(dentry->d_name.name);
246 	kmem_cache_free(dentry_cache, dentry);
247 }
248 
249 static void dentry_free(struct dentry *dentry)
250 {
251 	/* if dentry was never visible to RCU, immediate free is OK */
252 	if (!(dentry->d_flags & DCACHE_RCUACCESS))
253 		__d_free(&dentry->d_u.d_rcu);
254 	else
255 		call_rcu(&dentry->d_u.d_rcu, __d_free);
256 }
257 
258 /**
259  * dentry_rcuwalk_barrier - invalidate in-progress rcu-walk lookups
260  * @dentry: the target dentry
261  * After this call, in-progress rcu-walk path lookup will fail. This
262  * should be called after unhashing, and after changing d_inode (if
263  * the dentry has not already been unhashed).
264  */
265 static inline void dentry_rcuwalk_barrier(struct dentry *dentry)
266 {
267 	assert_spin_locked(&dentry->d_lock);
268 	/* Go through a barrier */
269 	write_seqcount_barrier(&dentry->d_seq);
270 }
271 
272 /*
273  * Release the dentry's inode, using the filesystem
274  * d_iput() operation if defined. Dentry has no refcount
275  * and is unhashed.
276  */
277 static void dentry_iput(struct dentry * dentry)
278 	__releases(dentry->d_lock)
279 	__releases(dentry->d_inode->i_lock)
280 {
281 	struct inode *inode = dentry->d_inode;
282 	if (inode) {
283 		dentry->d_inode = NULL;
284 		hlist_del_init(&dentry->d_alias);
285 		spin_unlock(&dentry->d_lock);
286 		spin_unlock(&inode->i_lock);
287 		if (!inode->i_nlink)
288 			fsnotify_inoderemove(inode);
289 		if (dentry->d_op && dentry->d_op->d_iput)
290 			dentry->d_op->d_iput(dentry, inode);
291 		else
292 			iput(inode);
293 	} else {
294 		spin_unlock(&dentry->d_lock);
295 	}
296 }
297 
298 /*
299  * Release the dentry's inode, using the filesystem
300  * d_iput() operation if defined. dentry remains in-use.
301  */
302 static void dentry_unlink_inode(struct dentry * dentry)
303 	__releases(dentry->d_lock)
304 	__releases(dentry->d_inode->i_lock)
305 {
306 	struct inode *inode = dentry->d_inode;
307 	__d_clear_type(dentry);
308 	dentry->d_inode = NULL;
309 	hlist_del_init(&dentry->d_alias);
310 	dentry_rcuwalk_barrier(dentry);
311 	spin_unlock(&dentry->d_lock);
312 	spin_unlock(&inode->i_lock);
313 	if (!inode->i_nlink)
314 		fsnotify_inoderemove(inode);
315 	if (dentry->d_op && dentry->d_op->d_iput)
316 		dentry->d_op->d_iput(dentry, inode);
317 	else
318 		iput(inode);
319 }
320 
321 /*
322  * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry
323  * is in use - which includes both the "real" per-superblock
324  * LRU list _and_ the DCACHE_SHRINK_LIST use.
325  *
326  * The DCACHE_SHRINK_LIST bit is set whenever the dentry is
327  * on the shrink list (ie not on the superblock LRU list).
328  *
329  * The per-cpu "nr_dentry_unused" counters are updated with
330  * the DCACHE_LRU_LIST bit.
331  *
332  * These helper functions make sure we always follow the
333  * rules. d_lock must be held by the caller.
334  */
335 #define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x))
336 static void d_lru_add(struct dentry *dentry)
337 {
338 	D_FLAG_VERIFY(dentry, 0);
339 	dentry->d_flags |= DCACHE_LRU_LIST;
340 	this_cpu_inc(nr_dentry_unused);
341 	WARN_ON_ONCE(!list_lru_add(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
342 }
343 
344 static void d_lru_del(struct dentry *dentry)
345 {
346 	D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
347 	dentry->d_flags &= ~DCACHE_LRU_LIST;
348 	this_cpu_dec(nr_dentry_unused);
349 	WARN_ON_ONCE(!list_lru_del(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
350 }
351 
352 static void d_shrink_del(struct dentry *dentry)
353 {
354 	D_FLAG_VERIFY(dentry, DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
355 	list_del_init(&dentry->d_lru);
356 	dentry->d_flags &= ~(DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
357 	this_cpu_dec(nr_dentry_unused);
358 }
359 
360 static void d_shrink_add(struct dentry *dentry, struct list_head *list)
361 {
362 	D_FLAG_VERIFY(dentry, 0);
363 	list_add(&dentry->d_lru, list);
364 	dentry->d_flags |= DCACHE_SHRINK_LIST | DCACHE_LRU_LIST;
365 	this_cpu_inc(nr_dentry_unused);
366 }
367 
368 /*
369  * These can only be called under the global LRU lock, ie during the
370  * callback for freeing the LRU list. "isolate" removes it from the
371  * LRU lists entirely, while shrink_move moves it to the indicated
372  * private list.
373  */
374 static void d_lru_isolate(struct dentry *dentry)
375 {
376 	D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
377 	dentry->d_flags &= ~DCACHE_LRU_LIST;
378 	this_cpu_dec(nr_dentry_unused);
379 	list_del_init(&dentry->d_lru);
380 }
381 
382 static void d_lru_shrink_move(struct dentry *dentry, struct list_head *list)
383 {
384 	D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
385 	dentry->d_flags |= DCACHE_SHRINK_LIST;
386 	list_move_tail(&dentry->d_lru, list);
387 }
388 
389 /*
390  * dentry_lru_(add|del)_list) must be called with d_lock held.
391  */
392 static void dentry_lru_add(struct dentry *dentry)
393 {
394 	if (unlikely(!(dentry->d_flags & DCACHE_LRU_LIST)))
395 		d_lru_add(dentry);
396 }
397 
398 /**
399  * d_drop - drop a dentry
400  * @dentry: dentry to drop
401  *
402  * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
403  * be found through a VFS lookup any more. Note that this is different from
404  * deleting the dentry - d_delete will try to mark the dentry negative if
405  * possible, giving a successful _negative_ lookup, while d_drop will
406  * just make the cache lookup fail.
407  *
408  * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
409  * reason (NFS timeouts or autofs deletes).
410  *
411  * __d_drop requires dentry->d_lock.
412  */
413 void __d_drop(struct dentry *dentry)
414 {
415 	if (!d_unhashed(dentry)) {
416 		struct hlist_bl_head *b;
417 		/*
418 		 * Hashed dentries are normally on the dentry hashtable,
419 		 * with the exception of those newly allocated by
420 		 * d_obtain_alias, which are always IS_ROOT:
421 		 */
422 		if (unlikely(IS_ROOT(dentry)))
423 			b = &dentry->d_sb->s_anon;
424 		else
425 			b = d_hash(dentry->d_parent, dentry->d_name.hash);
426 
427 		hlist_bl_lock(b);
428 		__hlist_bl_del(&dentry->d_hash);
429 		dentry->d_hash.pprev = NULL;
430 		hlist_bl_unlock(b);
431 		dentry_rcuwalk_barrier(dentry);
432 	}
433 }
434 EXPORT_SYMBOL(__d_drop);
435 
436 void d_drop(struct dentry *dentry)
437 {
438 	spin_lock(&dentry->d_lock);
439 	__d_drop(dentry);
440 	spin_unlock(&dentry->d_lock);
441 }
442 EXPORT_SYMBOL(d_drop);
443 
444 static void __dentry_kill(struct dentry *dentry)
445 {
446 	struct dentry *parent = NULL;
447 	bool can_free = true;
448 	if (!IS_ROOT(dentry))
449 		parent = dentry->d_parent;
450 
451 	/*
452 	 * The dentry is now unrecoverably dead to the world.
453 	 */
454 	lockref_mark_dead(&dentry->d_lockref);
455 
456 	/*
457 	 * inform the fs via d_prune that this dentry is about to be
458 	 * unhashed and destroyed.
459 	 */
460 	if ((dentry->d_flags & DCACHE_OP_PRUNE) && !d_unhashed(dentry))
461 		dentry->d_op->d_prune(dentry);
462 
463 	if (dentry->d_flags & DCACHE_LRU_LIST) {
464 		if (!(dentry->d_flags & DCACHE_SHRINK_LIST))
465 			d_lru_del(dentry);
466 	}
467 	/* if it was on the hash then remove it */
468 	__d_drop(dentry);
469 	list_del(&dentry->d_u.d_child);
470 	/*
471 	 * Inform d_walk() that we are no longer attached to the
472 	 * dentry tree
473 	 */
474 	dentry->d_flags |= DCACHE_DENTRY_KILLED;
475 	if (parent)
476 		spin_unlock(&parent->d_lock);
477 	dentry_iput(dentry);
478 	/*
479 	 * dentry_iput drops the locks, at which point nobody (except
480 	 * transient RCU lookups) can reach this dentry.
481 	 */
482 	BUG_ON((int)dentry->d_lockref.count > 0);
483 	this_cpu_dec(nr_dentry);
484 	if (dentry->d_op && dentry->d_op->d_release)
485 		dentry->d_op->d_release(dentry);
486 
487 	spin_lock(&dentry->d_lock);
488 	if (dentry->d_flags & DCACHE_SHRINK_LIST) {
489 		dentry->d_flags |= DCACHE_MAY_FREE;
490 		can_free = false;
491 	}
492 	spin_unlock(&dentry->d_lock);
493 	if (likely(can_free))
494 		dentry_free(dentry);
495 }
496 
497 /*
498  * Finish off a dentry we've decided to kill.
499  * dentry->d_lock must be held, returns with it unlocked.
500  * If ref is non-zero, then decrement the refcount too.
501  * Returns dentry requiring refcount drop, or NULL if we're done.
502  */
503 static struct dentry *dentry_kill(struct dentry *dentry)
504 	__releases(dentry->d_lock)
505 {
506 	struct inode *inode = dentry->d_inode;
507 	struct dentry *parent = NULL;
508 
509 	if (inode && unlikely(!spin_trylock(&inode->i_lock)))
510 		goto failed;
511 
512 	if (!IS_ROOT(dentry)) {
513 		parent = dentry->d_parent;
514 		if (unlikely(!spin_trylock(&parent->d_lock))) {
515 			if (inode)
516 				spin_unlock(&inode->i_lock);
517 			goto failed;
518 		}
519 	}
520 
521 	__dentry_kill(dentry);
522 	return parent;
523 
524 failed:
525 	spin_unlock(&dentry->d_lock);
526 	cpu_relax();
527 	return dentry; /* try again with same dentry */
528 }
529 
530 static inline struct dentry *lock_parent(struct dentry *dentry)
531 {
532 	struct dentry *parent = dentry->d_parent;
533 	if (IS_ROOT(dentry))
534 		return NULL;
535 	if (unlikely((int)dentry->d_lockref.count < 0))
536 		return NULL;
537 	if (likely(spin_trylock(&parent->d_lock)))
538 		return parent;
539 	rcu_read_lock();
540 	spin_unlock(&dentry->d_lock);
541 again:
542 	parent = ACCESS_ONCE(dentry->d_parent);
543 	spin_lock(&parent->d_lock);
544 	/*
545 	 * We can't blindly lock dentry until we are sure
546 	 * that we won't violate the locking order.
547 	 * Any changes of dentry->d_parent must have
548 	 * been done with parent->d_lock held, so
549 	 * spin_lock() above is enough of a barrier
550 	 * for checking if it's still our child.
551 	 */
552 	if (unlikely(parent != dentry->d_parent)) {
553 		spin_unlock(&parent->d_lock);
554 		goto again;
555 	}
556 	rcu_read_unlock();
557 	if (parent != dentry)
558 		spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
559 	else
560 		parent = NULL;
561 	return parent;
562 }
563 
564 /*
565  * This is dput
566  *
567  * This is complicated by the fact that we do not want to put
568  * dentries that are no longer on any hash chain on the unused
569  * list: we'd much rather just get rid of them immediately.
570  *
571  * However, that implies that we have to traverse the dentry
572  * tree upwards to the parents which might _also_ now be
573  * scheduled for deletion (it may have been only waiting for
574  * its last child to go away).
575  *
576  * This tail recursion is done by hand as we don't want to depend
577  * on the compiler to always get this right (gcc generally doesn't).
578  * Real recursion would eat up our stack space.
579  */
580 
581 /*
582  * dput - release a dentry
583  * @dentry: dentry to release
584  *
585  * Release a dentry. This will drop the usage count and if appropriate
586  * call the dentry unlink method as well as removing it from the queues and
587  * releasing its resources. If the parent dentries were scheduled for release
588  * they too may now get deleted.
589  */
590 void dput(struct dentry *dentry)
591 {
592 	if (unlikely(!dentry))
593 		return;
594 
595 repeat:
596 	if (lockref_put_or_lock(&dentry->d_lockref))
597 		return;
598 
599 	/* Unreachable? Get rid of it */
600 	if (unlikely(d_unhashed(dentry)))
601 		goto kill_it;
602 
603 	if (unlikely(dentry->d_flags & DCACHE_OP_DELETE)) {
604 		if (dentry->d_op->d_delete(dentry))
605 			goto kill_it;
606 	}
607 
608 	if (!(dentry->d_flags & DCACHE_REFERENCED))
609 		dentry->d_flags |= DCACHE_REFERENCED;
610 	dentry_lru_add(dentry);
611 
612 	dentry->d_lockref.count--;
613 	spin_unlock(&dentry->d_lock);
614 	return;
615 
616 kill_it:
617 	dentry = dentry_kill(dentry);
618 	if (dentry)
619 		goto repeat;
620 }
621 EXPORT_SYMBOL(dput);
622 
623 /**
624  * d_invalidate - invalidate a dentry
625  * @dentry: dentry to invalidate
626  *
627  * Try to invalidate the dentry if it turns out to be
628  * possible. If there are other dentries that can be
629  * reached through this one we can't delete it and we
630  * return -EBUSY. On success we return 0.
631  *
632  * no dcache lock.
633  */
634 
635 int d_invalidate(struct dentry * dentry)
636 {
637 	/*
638 	 * If it's already been dropped, return OK.
639 	 */
640 	spin_lock(&dentry->d_lock);
641 	if (d_unhashed(dentry)) {
642 		spin_unlock(&dentry->d_lock);
643 		return 0;
644 	}
645 	/*
646 	 * Check whether to do a partial shrink_dcache
647 	 * to get rid of unused child entries.
648 	 */
649 	if (!list_empty(&dentry->d_subdirs)) {
650 		spin_unlock(&dentry->d_lock);
651 		shrink_dcache_parent(dentry);
652 		spin_lock(&dentry->d_lock);
653 	}
654 
655 	/*
656 	 * Somebody else still using it?
657 	 *
658 	 * If it's a directory, we can't drop it
659 	 * for fear of somebody re-populating it
660 	 * with children (even though dropping it
661 	 * would make it unreachable from the root,
662 	 * we might still populate it if it was a
663 	 * working directory or similar).
664 	 * We also need to leave mountpoints alone,
665 	 * directory or not.
666 	 */
667 	if (dentry->d_lockref.count > 1 && dentry->d_inode) {
668 		if (S_ISDIR(dentry->d_inode->i_mode) || d_mountpoint(dentry)) {
669 			spin_unlock(&dentry->d_lock);
670 			return -EBUSY;
671 		}
672 	}
673 
674 	__d_drop(dentry);
675 	spin_unlock(&dentry->d_lock);
676 	return 0;
677 }
678 EXPORT_SYMBOL(d_invalidate);
679 
680 /* This must be called with d_lock held */
681 static inline void __dget_dlock(struct dentry *dentry)
682 {
683 	dentry->d_lockref.count++;
684 }
685 
686 static inline void __dget(struct dentry *dentry)
687 {
688 	lockref_get(&dentry->d_lockref);
689 }
690 
691 struct dentry *dget_parent(struct dentry *dentry)
692 {
693 	int gotref;
694 	struct dentry *ret;
695 
696 	/*
697 	 * Do optimistic parent lookup without any
698 	 * locking.
699 	 */
700 	rcu_read_lock();
701 	ret = ACCESS_ONCE(dentry->d_parent);
702 	gotref = lockref_get_not_zero(&ret->d_lockref);
703 	rcu_read_unlock();
704 	if (likely(gotref)) {
705 		if (likely(ret == ACCESS_ONCE(dentry->d_parent)))
706 			return ret;
707 		dput(ret);
708 	}
709 
710 repeat:
711 	/*
712 	 * Don't need rcu_dereference because we re-check it was correct under
713 	 * the lock.
714 	 */
715 	rcu_read_lock();
716 	ret = dentry->d_parent;
717 	spin_lock(&ret->d_lock);
718 	if (unlikely(ret != dentry->d_parent)) {
719 		spin_unlock(&ret->d_lock);
720 		rcu_read_unlock();
721 		goto repeat;
722 	}
723 	rcu_read_unlock();
724 	BUG_ON(!ret->d_lockref.count);
725 	ret->d_lockref.count++;
726 	spin_unlock(&ret->d_lock);
727 	return ret;
728 }
729 EXPORT_SYMBOL(dget_parent);
730 
731 /**
732  * d_find_alias - grab a hashed alias of inode
733  * @inode: inode in question
734  * @want_discon:  flag, used by d_splice_alias, to request
735  *          that only a DISCONNECTED alias be returned.
736  *
737  * If inode has a hashed alias, or is a directory and has any alias,
738  * acquire the reference to alias and return it. Otherwise return NULL.
739  * Notice that if inode is a directory there can be only one alias and
740  * it can be unhashed only if it has no children, or if it is the root
741  * of a filesystem.
742  *
743  * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
744  * any other hashed alias over that one unless @want_discon is set,
745  * in which case only return an IS_ROOT, DCACHE_DISCONNECTED alias.
746  */
747 static struct dentry *__d_find_alias(struct inode *inode, int want_discon)
748 {
749 	struct dentry *alias, *discon_alias;
750 
751 again:
752 	discon_alias = NULL;
753 	hlist_for_each_entry(alias, &inode->i_dentry, d_alias) {
754 		spin_lock(&alias->d_lock);
755  		if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
756 			if (IS_ROOT(alias) &&
757 			    (alias->d_flags & DCACHE_DISCONNECTED)) {
758 				discon_alias = alias;
759 			} else if (!want_discon) {
760 				__dget_dlock(alias);
761 				spin_unlock(&alias->d_lock);
762 				return alias;
763 			}
764 		}
765 		spin_unlock(&alias->d_lock);
766 	}
767 	if (discon_alias) {
768 		alias = discon_alias;
769 		spin_lock(&alias->d_lock);
770 		if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
771 			if (IS_ROOT(alias) &&
772 			    (alias->d_flags & DCACHE_DISCONNECTED)) {
773 				__dget_dlock(alias);
774 				spin_unlock(&alias->d_lock);
775 				return alias;
776 			}
777 		}
778 		spin_unlock(&alias->d_lock);
779 		goto again;
780 	}
781 	return NULL;
782 }
783 
784 struct dentry *d_find_alias(struct inode *inode)
785 {
786 	struct dentry *de = NULL;
787 
788 	if (!hlist_empty(&inode->i_dentry)) {
789 		spin_lock(&inode->i_lock);
790 		de = __d_find_alias(inode, 0);
791 		spin_unlock(&inode->i_lock);
792 	}
793 	return de;
794 }
795 EXPORT_SYMBOL(d_find_alias);
796 
797 /*
798  *	Try to kill dentries associated with this inode.
799  * WARNING: you must own a reference to inode.
800  */
801 void d_prune_aliases(struct inode *inode)
802 {
803 	struct dentry *dentry;
804 restart:
805 	spin_lock(&inode->i_lock);
806 	hlist_for_each_entry(dentry, &inode->i_dentry, d_alias) {
807 		spin_lock(&dentry->d_lock);
808 		if (!dentry->d_lockref.count) {
809 			/*
810 			 * inform the fs via d_prune that this dentry
811 			 * is about to be unhashed and destroyed.
812 			 */
813 			if ((dentry->d_flags & DCACHE_OP_PRUNE) &&
814 			    !d_unhashed(dentry))
815 				dentry->d_op->d_prune(dentry);
816 
817 			__dget_dlock(dentry);
818 			__d_drop(dentry);
819 			spin_unlock(&dentry->d_lock);
820 			spin_unlock(&inode->i_lock);
821 			dput(dentry);
822 			goto restart;
823 		}
824 		spin_unlock(&dentry->d_lock);
825 	}
826 	spin_unlock(&inode->i_lock);
827 }
828 EXPORT_SYMBOL(d_prune_aliases);
829 
830 static void shrink_dentry_list(struct list_head *list)
831 {
832 	struct dentry *dentry, *parent;
833 
834 	while (!list_empty(list)) {
835 		struct inode *inode;
836 		dentry = list_entry(list->prev, struct dentry, d_lru);
837 		spin_lock(&dentry->d_lock);
838 		parent = lock_parent(dentry);
839 
840 		/*
841 		 * The dispose list is isolated and dentries are not accounted
842 		 * to the LRU here, so we can simply remove it from the list
843 		 * here regardless of whether it is referenced or not.
844 		 */
845 		d_shrink_del(dentry);
846 
847 		/*
848 		 * We found an inuse dentry which was not removed from
849 		 * the LRU because of laziness during lookup. Do not free it.
850 		 */
851 		if ((int)dentry->d_lockref.count > 0) {
852 			spin_unlock(&dentry->d_lock);
853 			if (parent)
854 				spin_unlock(&parent->d_lock);
855 			continue;
856 		}
857 
858 
859 		if (unlikely(dentry->d_flags & DCACHE_DENTRY_KILLED)) {
860 			bool can_free = dentry->d_flags & DCACHE_MAY_FREE;
861 			spin_unlock(&dentry->d_lock);
862 			if (parent)
863 				spin_unlock(&parent->d_lock);
864 			if (can_free)
865 				dentry_free(dentry);
866 			continue;
867 		}
868 
869 		inode = dentry->d_inode;
870 		if (inode && unlikely(!spin_trylock(&inode->i_lock))) {
871 			d_shrink_add(dentry, list);
872 			spin_unlock(&dentry->d_lock);
873 			if (parent)
874 				spin_unlock(&parent->d_lock);
875 			continue;
876 		}
877 
878 		__dentry_kill(dentry);
879 
880 		/*
881 		 * We need to prune ancestors too. This is necessary to prevent
882 		 * quadratic behavior of shrink_dcache_parent(), but is also
883 		 * expected to be beneficial in reducing dentry cache
884 		 * fragmentation.
885 		 */
886 		dentry = parent;
887 		while (dentry && !lockref_put_or_lock(&dentry->d_lockref)) {
888 			parent = lock_parent(dentry);
889 			if (dentry->d_lockref.count != 1) {
890 				dentry->d_lockref.count--;
891 				spin_unlock(&dentry->d_lock);
892 				if (parent)
893 					spin_unlock(&parent->d_lock);
894 				break;
895 			}
896 			inode = dentry->d_inode;	/* can't be NULL */
897 			if (unlikely(!spin_trylock(&inode->i_lock))) {
898 				spin_unlock(&dentry->d_lock);
899 				if (parent)
900 					spin_unlock(&parent->d_lock);
901 				cpu_relax();
902 				continue;
903 			}
904 			__dentry_kill(dentry);
905 			dentry = parent;
906 		}
907 	}
908 }
909 
910 static enum lru_status
911 dentry_lru_isolate(struct list_head *item, spinlock_t *lru_lock, void *arg)
912 {
913 	struct list_head *freeable = arg;
914 	struct dentry	*dentry = container_of(item, struct dentry, d_lru);
915 
916 
917 	/*
918 	 * we are inverting the lru lock/dentry->d_lock here,
919 	 * so use a trylock. If we fail to get the lock, just skip
920 	 * it
921 	 */
922 	if (!spin_trylock(&dentry->d_lock))
923 		return LRU_SKIP;
924 
925 	/*
926 	 * Referenced dentries are still in use. If they have active
927 	 * counts, just remove them from the LRU. Otherwise give them
928 	 * another pass through the LRU.
929 	 */
930 	if (dentry->d_lockref.count) {
931 		d_lru_isolate(dentry);
932 		spin_unlock(&dentry->d_lock);
933 		return LRU_REMOVED;
934 	}
935 
936 	if (dentry->d_flags & DCACHE_REFERENCED) {
937 		dentry->d_flags &= ~DCACHE_REFERENCED;
938 		spin_unlock(&dentry->d_lock);
939 
940 		/*
941 		 * The list move itself will be made by the common LRU code. At
942 		 * this point, we've dropped the dentry->d_lock but keep the
943 		 * lru lock. This is safe to do, since every list movement is
944 		 * protected by the lru lock even if both locks are held.
945 		 *
946 		 * This is guaranteed by the fact that all LRU management
947 		 * functions are intermediated by the LRU API calls like
948 		 * list_lru_add and list_lru_del. List movement in this file
949 		 * only ever occur through this functions or through callbacks
950 		 * like this one, that are called from the LRU API.
951 		 *
952 		 * The only exceptions to this are functions like
953 		 * shrink_dentry_list, and code that first checks for the
954 		 * DCACHE_SHRINK_LIST flag.  Those are guaranteed to be
955 		 * operating only with stack provided lists after they are
956 		 * properly isolated from the main list.  It is thus, always a
957 		 * local access.
958 		 */
959 		return LRU_ROTATE;
960 	}
961 
962 	d_lru_shrink_move(dentry, freeable);
963 	spin_unlock(&dentry->d_lock);
964 
965 	return LRU_REMOVED;
966 }
967 
968 /**
969  * prune_dcache_sb - shrink the dcache
970  * @sb: superblock
971  * @nr_to_scan : number of entries to try to free
972  * @nid: which node to scan for freeable entities
973  *
974  * Attempt to shrink the superblock dcache LRU by @nr_to_scan entries. This is
975  * done when we need more memory an called from the superblock shrinker
976  * function.
977  *
978  * This function may fail to free any resources if all the dentries are in
979  * use.
980  */
981 long prune_dcache_sb(struct super_block *sb, unsigned long nr_to_scan,
982 		     int nid)
983 {
984 	LIST_HEAD(dispose);
985 	long freed;
986 
987 	freed = list_lru_walk_node(&sb->s_dentry_lru, nid, dentry_lru_isolate,
988 				       &dispose, &nr_to_scan);
989 	shrink_dentry_list(&dispose);
990 	return freed;
991 }
992 
993 static enum lru_status dentry_lru_isolate_shrink(struct list_head *item,
994 						spinlock_t *lru_lock, void *arg)
995 {
996 	struct list_head *freeable = arg;
997 	struct dentry	*dentry = container_of(item, struct dentry, d_lru);
998 
999 	/*
1000 	 * we are inverting the lru lock/dentry->d_lock here,
1001 	 * so use a trylock. If we fail to get the lock, just skip
1002 	 * it
1003 	 */
1004 	if (!spin_trylock(&dentry->d_lock))
1005 		return LRU_SKIP;
1006 
1007 	d_lru_shrink_move(dentry, freeable);
1008 	spin_unlock(&dentry->d_lock);
1009 
1010 	return LRU_REMOVED;
1011 }
1012 
1013 
1014 /**
1015  * shrink_dcache_sb - shrink dcache for a superblock
1016  * @sb: superblock
1017  *
1018  * Shrink the dcache for the specified super block. This is used to free
1019  * the dcache before unmounting a file system.
1020  */
1021 void shrink_dcache_sb(struct super_block *sb)
1022 {
1023 	long freed;
1024 
1025 	do {
1026 		LIST_HEAD(dispose);
1027 
1028 		freed = list_lru_walk(&sb->s_dentry_lru,
1029 			dentry_lru_isolate_shrink, &dispose, UINT_MAX);
1030 
1031 		this_cpu_sub(nr_dentry_unused, freed);
1032 		shrink_dentry_list(&dispose);
1033 	} while (freed > 0);
1034 }
1035 EXPORT_SYMBOL(shrink_dcache_sb);
1036 
1037 /**
1038  * enum d_walk_ret - action to talke during tree walk
1039  * @D_WALK_CONTINUE:	contrinue walk
1040  * @D_WALK_QUIT:	quit walk
1041  * @D_WALK_NORETRY:	quit when retry is needed
1042  * @D_WALK_SKIP:	skip this dentry and its children
1043  */
1044 enum d_walk_ret {
1045 	D_WALK_CONTINUE,
1046 	D_WALK_QUIT,
1047 	D_WALK_NORETRY,
1048 	D_WALK_SKIP,
1049 };
1050 
1051 /**
1052  * d_walk - walk the dentry tree
1053  * @parent:	start of walk
1054  * @data:	data passed to @enter() and @finish()
1055  * @enter:	callback when first entering the dentry
1056  * @finish:	callback when successfully finished the walk
1057  *
1058  * The @enter() and @finish() callbacks are called with d_lock held.
1059  */
1060 static void d_walk(struct dentry *parent, void *data,
1061 		   enum d_walk_ret (*enter)(void *, struct dentry *),
1062 		   void (*finish)(void *))
1063 {
1064 	struct dentry *this_parent;
1065 	struct list_head *next;
1066 	unsigned seq = 0;
1067 	enum d_walk_ret ret;
1068 	bool retry = true;
1069 
1070 again:
1071 	read_seqbegin_or_lock(&rename_lock, &seq);
1072 	this_parent = parent;
1073 	spin_lock(&this_parent->d_lock);
1074 
1075 	ret = enter(data, this_parent);
1076 	switch (ret) {
1077 	case D_WALK_CONTINUE:
1078 		break;
1079 	case D_WALK_QUIT:
1080 	case D_WALK_SKIP:
1081 		goto out_unlock;
1082 	case D_WALK_NORETRY:
1083 		retry = false;
1084 		break;
1085 	}
1086 repeat:
1087 	next = this_parent->d_subdirs.next;
1088 resume:
1089 	while (next != &this_parent->d_subdirs) {
1090 		struct list_head *tmp = next;
1091 		struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
1092 		next = tmp->next;
1093 
1094 		spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1095 
1096 		ret = enter(data, dentry);
1097 		switch (ret) {
1098 		case D_WALK_CONTINUE:
1099 			break;
1100 		case D_WALK_QUIT:
1101 			spin_unlock(&dentry->d_lock);
1102 			goto out_unlock;
1103 		case D_WALK_NORETRY:
1104 			retry = false;
1105 			break;
1106 		case D_WALK_SKIP:
1107 			spin_unlock(&dentry->d_lock);
1108 			continue;
1109 		}
1110 
1111 		if (!list_empty(&dentry->d_subdirs)) {
1112 			spin_unlock(&this_parent->d_lock);
1113 			spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1114 			this_parent = dentry;
1115 			spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1116 			goto repeat;
1117 		}
1118 		spin_unlock(&dentry->d_lock);
1119 	}
1120 	/*
1121 	 * All done at this level ... ascend and resume the search.
1122 	 */
1123 	if (this_parent != parent) {
1124 		struct dentry *child = this_parent;
1125 		this_parent = child->d_parent;
1126 
1127 		rcu_read_lock();
1128 		spin_unlock(&child->d_lock);
1129 		spin_lock(&this_parent->d_lock);
1130 
1131 		/*
1132 		 * might go back up the wrong parent if we have had a rename
1133 		 * or deletion
1134 		 */
1135 		if (this_parent != child->d_parent ||
1136 			 (child->d_flags & DCACHE_DENTRY_KILLED) ||
1137 			 need_seqretry(&rename_lock, seq)) {
1138 			spin_unlock(&this_parent->d_lock);
1139 			rcu_read_unlock();
1140 			goto rename_retry;
1141 		}
1142 		rcu_read_unlock();
1143 		next = child->d_u.d_child.next;
1144 		goto resume;
1145 	}
1146 	if (need_seqretry(&rename_lock, seq)) {
1147 		spin_unlock(&this_parent->d_lock);
1148 		goto rename_retry;
1149 	}
1150 	if (finish)
1151 		finish(data);
1152 
1153 out_unlock:
1154 	spin_unlock(&this_parent->d_lock);
1155 	done_seqretry(&rename_lock, seq);
1156 	return;
1157 
1158 rename_retry:
1159 	if (!retry)
1160 		return;
1161 	seq = 1;
1162 	goto again;
1163 }
1164 
1165 /*
1166  * Search for at least 1 mount point in the dentry's subdirs.
1167  * We descend to the next level whenever the d_subdirs
1168  * list is non-empty and continue searching.
1169  */
1170 
1171 static enum d_walk_ret check_mount(void *data, struct dentry *dentry)
1172 {
1173 	int *ret = data;
1174 	if (d_mountpoint(dentry)) {
1175 		*ret = 1;
1176 		return D_WALK_QUIT;
1177 	}
1178 	return D_WALK_CONTINUE;
1179 }
1180 
1181 /**
1182  * have_submounts - check for mounts over a dentry
1183  * @parent: dentry to check.
1184  *
1185  * Return true if the parent or its subdirectories contain
1186  * a mount point
1187  */
1188 int have_submounts(struct dentry *parent)
1189 {
1190 	int ret = 0;
1191 
1192 	d_walk(parent, &ret, check_mount, NULL);
1193 
1194 	return ret;
1195 }
1196 EXPORT_SYMBOL(have_submounts);
1197 
1198 /*
1199  * Called by mount code to set a mountpoint and check if the mountpoint is
1200  * reachable (e.g. NFS can unhash a directory dentry and then the complete
1201  * subtree can become unreachable).
1202  *
1203  * Only one of check_submounts_and_drop() and d_set_mounted() must succeed.  For
1204  * this reason take rename_lock and d_lock on dentry and ancestors.
1205  */
1206 int d_set_mounted(struct dentry *dentry)
1207 {
1208 	struct dentry *p;
1209 	int ret = -ENOENT;
1210 	write_seqlock(&rename_lock);
1211 	for (p = dentry->d_parent; !IS_ROOT(p); p = p->d_parent) {
1212 		/* Need exclusion wrt. check_submounts_and_drop() */
1213 		spin_lock(&p->d_lock);
1214 		if (unlikely(d_unhashed(p))) {
1215 			spin_unlock(&p->d_lock);
1216 			goto out;
1217 		}
1218 		spin_unlock(&p->d_lock);
1219 	}
1220 	spin_lock(&dentry->d_lock);
1221 	if (!d_unlinked(dentry)) {
1222 		dentry->d_flags |= DCACHE_MOUNTED;
1223 		ret = 0;
1224 	}
1225  	spin_unlock(&dentry->d_lock);
1226 out:
1227 	write_sequnlock(&rename_lock);
1228 	return ret;
1229 }
1230 
1231 /*
1232  * Search the dentry child list of the specified parent,
1233  * and move any unused dentries to the end of the unused
1234  * list for prune_dcache(). We descend to the next level
1235  * whenever the d_subdirs list is non-empty and continue
1236  * searching.
1237  *
1238  * It returns zero iff there are no unused children,
1239  * otherwise  it returns the number of children moved to
1240  * the end of the unused list. This may not be the total
1241  * number of unused children, because select_parent can
1242  * drop the lock and return early due to latency
1243  * constraints.
1244  */
1245 
1246 struct select_data {
1247 	struct dentry *start;
1248 	struct list_head dispose;
1249 	int found;
1250 };
1251 
1252 static enum d_walk_ret select_collect(void *_data, struct dentry *dentry)
1253 {
1254 	struct select_data *data = _data;
1255 	enum d_walk_ret ret = D_WALK_CONTINUE;
1256 
1257 	if (data->start == dentry)
1258 		goto out;
1259 
1260 	if (dentry->d_flags & DCACHE_SHRINK_LIST) {
1261 		data->found++;
1262 	} else {
1263 		if (dentry->d_flags & DCACHE_LRU_LIST)
1264 			d_lru_del(dentry);
1265 		if (!dentry->d_lockref.count) {
1266 			d_shrink_add(dentry, &data->dispose);
1267 			data->found++;
1268 		}
1269 	}
1270 	/*
1271 	 * We can return to the caller if we have found some (this
1272 	 * ensures forward progress). We'll be coming back to find
1273 	 * the rest.
1274 	 */
1275 	if (!list_empty(&data->dispose))
1276 		ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY;
1277 out:
1278 	return ret;
1279 }
1280 
1281 /**
1282  * shrink_dcache_parent - prune dcache
1283  * @parent: parent of entries to prune
1284  *
1285  * Prune the dcache to remove unused children of the parent dentry.
1286  */
1287 void shrink_dcache_parent(struct dentry *parent)
1288 {
1289 	for (;;) {
1290 		struct select_data data;
1291 
1292 		INIT_LIST_HEAD(&data.dispose);
1293 		data.start = parent;
1294 		data.found = 0;
1295 
1296 		d_walk(parent, &data, select_collect, NULL);
1297 		if (!data.found)
1298 			break;
1299 
1300 		shrink_dentry_list(&data.dispose);
1301 		cond_resched();
1302 	}
1303 }
1304 EXPORT_SYMBOL(shrink_dcache_parent);
1305 
1306 static enum d_walk_ret umount_check(void *_data, struct dentry *dentry)
1307 {
1308 	/* it has busy descendents; complain about those instead */
1309 	if (!list_empty(&dentry->d_subdirs))
1310 		return D_WALK_CONTINUE;
1311 
1312 	/* root with refcount 1 is fine */
1313 	if (dentry == _data && dentry->d_lockref.count == 1)
1314 		return D_WALK_CONTINUE;
1315 
1316 	printk(KERN_ERR "BUG: Dentry %p{i=%lx,n=%pd} "
1317 			" still in use (%d) [unmount of %s %s]\n",
1318 		       dentry,
1319 		       dentry->d_inode ?
1320 		       dentry->d_inode->i_ino : 0UL,
1321 		       dentry,
1322 		       dentry->d_lockref.count,
1323 		       dentry->d_sb->s_type->name,
1324 		       dentry->d_sb->s_id);
1325 	WARN_ON(1);
1326 	return D_WALK_CONTINUE;
1327 }
1328 
1329 static void do_one_tree(struct dentry *dentry)
1330 {
1331 	shrink_dcache_parent(dentry);
1332 	d_walk(dentry, dentry, umount_check, NULL);
1333 	d_drop(dentry);
1334 	dput(dentry);
1335 }
1336 
1337 /*
1338  * destroy the dentries attached to a superblock on unmounting
1339  */
1340 void shrink_dcache_for_umount(struct super_block *sb)
1341 {
1342 	struct dentry *dentry;
1343 
1344 	WARN(down_read_trylock(&sb->s_umount), "s_umount should've been locked");
1345 
1346 	dentry = sb->s_root;
1347 	sb->s_root = NULL;
1348 	do_one_tree(dentry);
1349 
1350 	while (!hlist_bl_empty(&sb->s_anon)) {
1351 		dentry = dget(hlist_bl_entry(hlist_bl_first(&sb->s_anon), struct dentry, d_hash));
1352 		do_one_tree(dentry);
1353 	}
1354 }
1355 
1356 static enum d_walk_ret check_and_collect(void *_data, struct dentry *dentry)
1357 {
1358 	struct select_data *data = _data;
1359 
1360 	if (d_mountpoint(dentry)) {
1361 		data->found = -EBUSY;
1362 		return D_WALK_QUIT;
1363 	}
1364 
1365 	return select_collect(_data, dentry);
1366 }
1367 
1368 static void check_and_drop(void *_data)
1369 {
1370 	struct select_data *data = _data;
1371 
1372 	if (d_mountpoint(data->start))
1373 		data->found = -EBUSY;
1374 	if (!data->found)
1375 		__d_drop(data->start);
1376 }
1377 
1378 /**
1379  * check_submounts_and_drop - prune dcache, check for submounts and drop
1380  *
1381  * All done as a single atomic operation relative to has_unlinked_ancestor().
1382  * Returns 0 if successfully unhashed @parent.  If there were submounts then
1383  * return -EBUSY.
1384  *
1385  * @dentry: dentry to prune and drop
1386  */
1387 int check_submounts_and_drop(struct dentry *dentry)
1388 {
1389 	int ret = 0;
1390 
1391 	/* Negative dentries can be dropped without further checks */
1392 	if (!dentry->d_inode) {
1393 		d_drop(dentry);
1394 		goto out;
1395 	}
1396 
1397 	for (;;) {
1398 		struct select_data data;
1399 
1400 		INIT_LIST_HEAD(&data.dispose);
1401 		data.start = dentry;
1402 		data.found = 0;
1403 
1404 		d_walk(dentry, &data, check_and_collect, check_and_drop);
1405 		ret = data.found;
1406 
1407 		if (!list_empty(&data.dispose))
1408 			shrink_dentry_list(&data.dispose);
1409 
1410 		if (ret <= 0)
1411 			break;
1412 
1413 		cond_resched();
1414 	}
1415 
1416 out:
1417 	return ret;
1418 }
1419 EXPORT_SYMBOL(check_submounts_and_drop);
1420 
1421 /**
1422  * __d_alloc	-	allocate a dcache entry
1423  * @sb: filesystem it will belong to
1424  * @name: qstr of the name
1425  *
1426  * Allocates a dentry. It returns %NULL if there is insufficient memory
1427  * available. On a success the dentry is returned. The name passed in is
1428  * copied and the copy passed in may be reused after this call.
1429  */
1430 
1431 struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name)
1432 {
1433 	struct dentry *dentry;
1434 	char *dname;
1435 
1436 	dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
1437 	if (!dentry)
1438 		return NULL;
1439 
1440 	/*
1441 	 * We guarantee that the inline name is always NUL-terminated.
1442 	 * This way the memcpy() done by the name switching in rename
1443 	 * will still always have a NUL at the end, even if we might
1444 	 * be overwriting an internal NUL character
1445 	 */
1446 	dentry->d_iname[DNAME_INLINE_LEN-1] = 0;
1447 	if (name->len > DNAME_INLINE_LEN-1) {
1448 		dname = kmalloc(name->len + 1, GFP_KERNEL);
1449 		if (!dname) {
1450 			kmem_cache_free(dentry_cache, dentry);
1451 			return NULL;
1452 		}
1453 	} else  {
1454 		dname = dentry->d_iname;
1455 	}
1456 
1457 	dentry->d_name.len = name->len;
1458 	dentry->d_name.hash = name->hash;
1459 	memcpy(dname, name->name, name->len);
1460 	dname[name->len] = 0;
1461 
1462 	/* Make sure we always see the terminating NUL character */
1463 	smp_wmb();
1464 	dentry->d_name.name = dname;
1465 
1466 	dentry->d_lockref.count = 1;
1467 	dentry->d_flags = 0;
1468 	spin_lock_init(&dentry->d_lock);
1469 	seqcount_init(&dentry->d_seq);
1470 	dentry->d_inode = NULL;
1471 	dentry->d_parent = dentry;
1472 	dentry->d_sb = sb;
1473 	dentry->d_op = NULL;
1474 	dentry->d_fsdata = NULL;
1475 	INIT_HLIST_BL_NODE(&dentry->d_hash);
1476 	INIT_LIST_HEAD(&dentry->d_lru);
1477 	INIT_LIST_HEAD(&dentry->d_subdirs);
1478 	INIT_HLIST_NODE(&dentry->d_alias);
1479 	INIT_LIST_HEAD(&dentry->d_u.d_child);
1480 	d_set_d_op(dentry, dentry->d_sb->s_d_op);
1481 
1482 	this_cpu_inc(nr_dentry);
1483 
1484 	return dentry;
1485 }
1486 
1487 /**
1488  * d_alloc	-	allocate a dcache entry
1489  * @parent: parent of entry to allocate
1490  * @name: qstr of the name
1491  *
1492  * Allocates a dentry. It returns %NULL if there is insufficient memory
1493  * available. On a success the dentry is returned. The name passed in is
1494  * copied and the copy passed in may be reused after this call.
1495  */
1496 struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1497 {
1498 	struct dentry *dentry = __d_alloc(parent->d_sb, name);
1499 	if (!dentry)
1500 		return NULL;
1501 
1502 	spin_lock(&parent->d_lock);
1503 	/*
1504 	 * don't need child lock because it is not subject
1505 	 * to concurrency here
1506 	 */
1507 	__dget_dlock(parent);
1508 	dentry->d_parent = parent;
1509 	list_add(&dentry->d_u.d_child, &parent->d_subdirs);
1510 	spin_unlock(&parent->d_lock);
1511 
1512 	return dentry;
1513 }
1514 EXPORT_SYMBOL(d_alloc);
1515 
1516 /**
1517  * d_alloc_pseudo - allocate a dentry (for lookup-less filesystems)
1518  * @sb: the superblock
1519  * @name: qstr of the name
1520  *
1521  * For a filesystem that just pins its dentries in memory and never
1522  * performs lookups at all, return an unhashed IS_ROOT dentry.
1523  */
1524 struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
1525 {
1526 	return __d_alloc(sb, name);
1527 }
1528 EXPORT_SYMBOL(d_alloc_pseudo);
1529 
1530 struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1531 {
1532 	struct qstr q;
1533 
1534 	q.name = name;
1535 	q.len = strlen(name);
1536 	q.hash = full_name_hash(q.name, q.len);
1537 	return d_alloc(parent, &q);
1538 }
1539 EXPORT_SYMBOL(d_alloc_name);
1540 
1541 void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1542 {
1543 	WARN_ON_ONCE(dentry->d_op);
1544 	WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH	|
1545 				DCACHE_OP_COMPARE	|
1546 				DCACHE_OP_REVALIDATE	|
1547 				DCACHE_OP_WEAK_REVALIDATE	|
1548 				DCACHE_OP_DELETE ));
1549 	dentry->d_op = op;
1550 	if (!op)
1551 		return;
1552 	if (op->d_hash)
1553 		dentry->d_flags |= DCACHE_OP_HASH;
1554 	if (op->d_compare)
1555 		dentry->d_flags |= DCACHE_OP_COMPARE;
1556 	if (op->d_revalidate)
1557 		dentry->d_flags |= DCACHE_OP_REVALIDATE;
1558 	if (op->d_weak_revalidate)
1559 		dentry->d_flags |= DCACHE_OP_WEAK_REVALIDATE;
1560 	if (op->d_delete)
1561 		dentry->d_flags |= DCACHE_OP_DELETE;
1562 	if (op->d_prune)
1563 		dentry->d_flags |= DCACHE_OP_PRUNE;
1564 
1565 }
1566 EXPORT_SYMBOL(d_set_d_op);
1567 
1568 static unsigned d_flags_for_inode(struct inode *inode)
1569 {
1570 	unsigned add_flags = DCACHE_FILE_TYPE;
1571 
1572 	if (!inode)
1573 		return DCACHE_MISS_TYPE;
1574 
1575 	if (S_ISDIR(inode->i_mode)) {
1576 		add_flags = DCACHE_DIRECTORY_TYPE;
1577 		if (unlikely(!(inode->i_opflags & IOP_LOOKUP))) {
1578 			if (unlikely(!inode->i_op->lookup))
1579 				add_flags = DCACHE_AUTODIR_TYPE;
1580 			else
1581 				inode->i_opflags |= IOP_LOOKUP;
1582 		}
1583 	} else if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) {
1584 		if (unlikely(inode->i_op->follow_link))
1585 			add_flags = DCACHE_SYMLINK_TYPE;
1586 		else
1587 			inode->i_opflags |= IOP_NOFOLLOW;
1588 	}
1589 
1590 	if (unlikely(IS_AUTOMOUNT(inode)))
1591 		add_flags |= DCACHE_NEED_AUTOMOUNT;
1592 	return add_flags;
1593 }
1594 
1595 static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1596 {
1597 	unsigned add_flags = d_flags_for_inode(inode);
1598 
1599 	spin_lock(&dentry->d_lock);
1600 	__d_set_type(dentry, add_flags);
1601 	if (inode)
1602 		hlist_add_head(&dentry->d_alias, &inode->i_dentry);
1603 	dentry->d_inode = inode;
1604 	dentry_rcuwalk_barrier(dentry);
1605 	spin_unlock(&dentry->d_lock);
1606 	fsnotify_d_instantiate(dentry, inode);
1607 }
1608 
1609 /**
1610  * d_instantiate - fill in inode information for a dentry
1611  * @entry: dentry to complete
1612  * @inode: inode to attach to this dentry
1613  *
1614  * Fill in inode information in the entry.
1615  *
1616  * This turns negative dentries into productive full members
1617  * of society.
1618  *
1619  * NOTE! This assumes that the inode count has been incremented
1620  * (or otherwise set) by the caller to indicate that it is now
1621  * in use by the dcache.
1622  */
1623 
1624 void d_instantiate(struct dentry *entry, struct inode * inode)
1625 {
1626 	BUG_ON(!hlist_unhashed(&entry->d_alias));
1627 	if (inode)
1628 		spin_lock(&inode->i_lock);
1629 	__d_instantiate(entry, inode);
1630 	if (inode)
1631 		spin_unlock(&inode->i_lock);
1632 	security_d_instantiate(entry, inode);
1633 }
1634 EXPORT_SYMBOL(d_instantiate);
1635 
1636 /**
1637  * d_instantiate_unique - instantiate a non-aliased dentry
1638  * @entry: dentry to instantiate
1639  * @inode: inode to attach to this dentry
1640  *
1641  * Fill in inode information in the entry. On success, it returns NULL.
1642  * If an unhashed alias of "entry" already exists, then we return the
1643  * aliased dentry instead and drop one reference to inode.
1644  *
1645  * Note that in order to avoid conflicts with rename() etc, the caller
1646  * had better be holding the parent directory semaphore.
1647  *
1648  * This also assumes that the inode count has been incremented
1649  * (or otherwise set) by the caller to indicate that it is now
1650  * in use by the dcache.
1651  */
1652 static struct dentry *__d_instantiate_unique(struct dentry *entry,
1653 					     struct inode *inode)
1654 {
1655 	struct dentry *alias;
1656 	int len = entry->d_name.len;
1657 	const char *name = entry->d_name.name;
1658 	unsigned int hash = entry->d_name.hash;
1659 
1660 	if (!inode) {
1661 		__d_instantiate(entry, NULL);
1662 		return NULL;
1663 	}
1664 
1665 	hlist_for_each_entry(alias, &inode->i_dentry, d_alias) {
1666 		/*
1667 		 * Don't need alias->d_lock here, because aliases with
1668 		 * d_parent == entry->d_parent are not subject to name or
1669 		 * parent changes, because the parent inode i_mutex is held.
1670 		 */
1671 		if (alias->d_name.hash != hash)
1672 			continue;
1673 		if (alias->d_parent != entry->d_parent)
1674 			continue;
1675 		if (alias->d_name.len != len)
1676 			continue;
1677 		if (dentry_cmp(alias, name, len))
1678 			continue;
1679 		__dget(alias);
1680 		return alias;
1681 	}
1682 
1683 	__d_instantiate(entry, inode);
1684 	return NULL;
1685 }
1686 
1687 struct dentry *d_instantiate_unique(struct dentry *entry, struct inode *inode)
1688 {
1689 	struct dentry *result;
1690 
1691 	BUG_ON(!hlist_unhashed(&entry->d_alias));
1692 
1693 	if (inode)
1694 		spin_lock(&inode->i_lock);
1695 	result = __d_instantiate_unique(entry, inode);
1696 	if (inode)
1697 		spin_unlock(&inode->i_lock);
1698 
1699 	if (!result) {
1700 		security_d_instantiate(entry, inode);
1701 		return NULL;
1702 	}
1703 
1704 	BUG_ON(!d_unhashed(result));
1705 	iput(inode);
1706 	return result;
1707 }
1708 
1709 EXPORT_SYMBOL(d_instantiate_unique);
1710 
1711 /**
1712  * d_instantiate_no_diralias - instantiate a non-aliased dentry
1713  * @entry: dentry to complete
1714  * @inode: inode to attach to this dentry
1715  *
1716  * Fill in inode information in the entry.  If a directory alias is found, then
1717  * return an error (and drop inode).  Together with d_materialise_unique() this
1718  * guarantees that a directory inode may never have more than one alias.
1719  */
1720 int d_instantiate_no_diralias(struct dentry *entry, struct inode *inode)
1721 {
1722 	BUG_ON(!hlist_unhashed(&entry->d_alias));
1723 
1724 	spin_lock(&inode->i_lock);
1725 	if (S_ISDIR(inode->i_mode) && !hlist_empty(&inode->i_dentry)) {
1726 		spin_unlock(&inode->i_lock);
1727 		iput(inode);
1728 		return -EBUSY;
1729 	}
1730 	__d_instantiate(entry, inode);
1731 	spin_unlock(&inode->i_lock);
1732 	security_d_instantiate(entry, inode);
1733 
1734 	return 0;
1735 }
1736 EXPORT_SYMBOL(d_instantiate_no_diralias);
1737 
1738 struct dentry *d_make_root(struct inode *root_inode)
1739 {
1740 	struct dentry *res = NULL;
1741 
1742 	if (root_inode) {
1743 		static const struct qstr name = QSTR_INIT("/", 1);
1744 
1745 		res = __d_alloc(root_inode->i_sb, &name);
1746 		if (res)
1747 			d_instantiate(res, root_inode);
1748 		else
1749 			iput(root_inode);
1750 	}
1751 	return res;
1752 }
1753 EXPORT_SYMBOL(d_make_root);
1754 
1755 static struct dentry * __d_find_any_alias(struct inode *inode)
1756 {
1757 	struct dentry *alias;
1758 
1759 	if (hlist_empty(&inode->i_dentry))
1760 		return NULL;
1761 	alias = hlist_entry(inode->i_dentry.first, struct dentry, d_alias);
1762 	__dget(alias);
1763 	return alias;
1764 }
1765 
1766 /**
1767  * d_find_any_alias - find any alias for a given inode
1768  * @inode: inode to find an alias for
1769  *
1770  * If any aliases exist for the given inode, take and return a
1771  * reference for one of them.  If no aliases exist, return %NULL.
1772  */
1773 struct dentry *d_find_any_alias(struct inode *inode)
1774 {
1775 	struct dentry *de;
1776 
1777 	spin_lock(&inode->i_lock);
1778 	de = __d_find_any_alias(inode);
1779 	spin_unlock(&inode->i_lock);
1780 	return de;
1781 }
1782 EXPORT_SYMBOL(d_find_any_alias);
1783 
1784 /**
1785  * d_obtain_alias - find or allocate a dentry for a given inode
1786  * @inode: inode to allocate the dentry for
1787  *
1788  * Obtain a dentry for an inode resulting from NFS filehandle conversion or
1789  * similar open by handle operations.  The returned dentry may be anonymous,
1790  * or may have a full name (if the inode was already in the cache).
1791  *
1792  * When called on a directory inode, we must ensure that the inode only ever
1793  * has one dentry.  If a dentry is found, that is returned instead of
1794  * allocating a new one.
1795  *
1796  * On successful return, the reference to the inode has been transferred
1797  * to the dentry.  In case of an error the reference on the inode is released.
1798  * To make it easier to use in export operations a %NULL or IS_ERR inode may
1799  * be passed in and will be the error will be propagate to the return value,
1800  * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
1801  */
1802 struct dentry *d_obtain_alias(struct inode *inode)
1803 {
1804 	static const struct qstr anonstring = QSTR_INIT("/", 1);
1805 	struct dentry *tmp;
1806 	struct dentry *res;
1807 	unsigned add_flags;
1808 
1809 	if (!inode)
1810 		return ERR_PTR(-ESTALE);
1811 	if (IS_ERR(inode))
1812 		return ERR_CAST(inode);
1813 
1814 	res = d_find_any_alias(inode);
1815 	if (res)
1816 		goto out_iput;
1817 
1818 	tmp = __d_alloc(inode->i_sb, &anonstring);
1819 	if (!tmp) {
1820 		res = ERR_PTR(-ENOMEM);
1821 		goto out_iput;
1822 	}
1823 
1824 	spin_lock(&inode->i_lock);
1825 	res = __d_find_any_alias(inode);
1826 	if (res) {
1827 		spin_unlock(&inode->i_lock);
1828 		dput(tmp);
1829 		goto out_iput;
1830 	}
1831 
1832 	/* attach a disconnected dentry */
1833 	add_flags = d_flags_for_inode(inode) | DCACHE_DISCONNECTED;
1834 
1835 	spin_lock(&tmp->d_lock);
1836 	tmp->d_inode = inode;
1837 	tmp->d_flags |= add_flags;
1838 	hlist_add_head(&tmp->d_alias, &inode->i_dentry);
1839 	hlist_bl_lock(&tmp->d_sb->s_anon);
1840 	hlist_bl_add_head(&tmp->d_hash, &tmp->d_sb->s_anon);
1841 	hlist_bl_unlock(&tmp->d_sb->s_anon);
1842 	spin_unlock(&tmp->d_lock);
1843 	spin_unlock(&inode->i_lock);
1844 	security_d_instantiate(tmp, inode);
1845 
1846 	return tmp;
1847 
1848  out_iput:
1849 	if (res && !IS_ERR(res))
1850 		security_d_instantiate(res, inode);
1851 	iput(inode);
1852 	return res;
1853 }
1854 EXPORT_SYMBOL(d_obtain_alias);
1855 
1856 /**
1857  * d_splice_alias - splice a disconnected dentry into the tree if one exists
1858  * @inode:  the inode which may have a disconnected dentry
1859  * @dentry: a negative dentry which we want to point to the inode.
1860  *
1861  * If inode is a directory and has a 'disconnected' dentry (i.e. IS_ROOT and
1862  * DCACHE_DISCONNECTED), then d_move that in place of the given dentry
1863  * and return it, else simply d_add the inode to the dentry and return NULL.
1864  *
1865  * This is needed in the lookup routine of any filesystem that is exportable
1866  * (via knfsd) so that we can build dcache paths to directories effectively.
1867  *
1868  * If a dentry was found and moved, then it is returned.  Otherwise NULL
1869  * is returned.  This matches the expected return value of ->lookup.
1870  *
1871  * Cluster filesystems may call this function with a negative, hashed dentry.
1872  * In that case, we know that the inode will be a regular file, and also this
1873  * will only occur during atomic_open. So we need to check for the dentry
1874  * being already hashed only in the final case.
1875  */
1876 struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
1877 {
1878 	struct dentry *new = NULL;
1879 
1880 	if (IS_ERR(inode))
1881 		return ERR_CAST(inode);
1882 
1883 	if (inode && S_ISDIR(inode->i_mode)) {
1884 		spin_lock(&inode->i_lock);
1885 		new = __d_find_alias(inode, 1);
1886 		if (new) {
1887 			BUG_ON(!(new->d_flags & DCACHE_DISCONNECTED));
1888 			spin_unlock(&inode->i_lock);
1889 			security_d_instantiate(new, inode);
1890 			d_move(new, dentry);
1891 			iput(inode);
1892 		} else {
1893 			/* already taking inode->i_lock, so d_add() by hand */
1894 			__d_instantiate(dentry, inode);
1895 			spin_unlock(&inode->i_lock);
1896 			security_d_instantiate(dentry, inode);
1897 			d_rehash(dentry);
1898 		}
1899 	} else {
1900 		d_instantiate(dentry, inode);
1901 		if (d_unhashed(dentry))
1902 			d_rehash(dentry);
1903 	}
1904 	return new;
1905 }
1906 EXPORT_SYMBOL(d_splice_alias);
1907 
1908 /**
1909  * d_add_ci - lookup or allocate new dentry with case-exact name
1910  * @inode:  the inode case-insensitive lookup has found
1911  * @dentry: the negative dentry that was passed to the parent's lookup func
1912  * @name:   the case-exact name to be associated with the returned dentry
1913  *
1914  * This is to avoid filling the dcache with case-insensitive names to the
1915  * same inode, only the actual correct case is stored in the dcache for
1916  * case-insensitive filesystems.
1917  *
1918  * For a case-insensitive lookup match and if the the case-exact dentry
1919  * already exists in in the dcache, use it and return it.
1920  *
1921  * If no entry exists with the exact case name, allocate new dentry with
1922  * the exact case, and return the spliced entry.
1923  */
1924 struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
1925 			struct qstr *name)
1926 {
1927 	struct dentry *found;
1928 	struct dentry *new;
1929 
1930 	/*
1931 	 * First check if a dentry matching the name already exists,
1932 	 * if not go ahead and create it now.
1933 	 */
1934 	found = d_hash_and_lookup(dentry->d_parent, name);
1935 	if (unlikely(IS_ERR(found)))
1936 		goto err_out;
1937 	if (!found) {
1938 		new = d_alloc(dentry->d_parent, name);
1939 		if (!new) {
1940 			found = ERR_PTR(-ENOMEM);
1941 			goto err_out;
1942 		}
1943 
1944 		found = d_splice_alias(inode, new);
1945 		if (found) {
1946 			dput(new);
1947 			return found;
1948 		}
1949 		return new;
1950 	}
1951 
1952 	/*
1953 	 * If a matching dentry exists, and it's not negative use it.
1954 	 *
1955 	 * Decrement the reference count to balance the iget() done
1956 	 * earlier on.
1957 	 */
1958 	if (found->d_inode) {
1959 		if (unlikely(found->d_inode != inode)) {
1960 			/* This can't happen because bad inodes are unhashed. */
1961 			BUG_ON(!is_bad_inode(inode));
1962 			BUG_ON(!is_bad_inode(found->d_inode));
1963 		}
1964 		iput(inode);
1965 		return found;
1966 	}
1967 
1968 	/*
1969 	 * Negative dentry: instantiate it unless the inode is a directory and
1970 	 * already has a dentry.
1971 	 */
1972 	new = d_splice_alias(inode, found);
1973 	if (new) {
1974 		dput(found);
1975 		found = new;
1976 	}
1977 	return found;
1978 
1979 err_out:
1980 	iput(inode);
1981 	return found;
1982 }
1983 EXPORT_SYMBOL(d_add_ci);
1984 
1985 /*
1986  * Do the slow-case of the dentry name compare.
1987  *
1988  * Unlike the dentry_cmp() function, we need to atomically
1989  * load the name and length information, so that the
1990  * filesystem can rely on them, and can use the 'name' and
1991  * 'len' information without worrying about walking off the
1992  * end of memory etc.
1993  *
1994  * Thus the read_seqcount_retry() and the "duplicate" info
1995  * in arguments (the low-level filesystem should not look
1996  * at the dentry inode or name contents directly, since
1997  * rename can change them while we're in RCU mode).
1998  */
1999 enum slow_d_compare {
2000 	D_COMP_OK,
2001 	D_COMP_NOMATCH,
2002 	D_COMP_SEQRETRY,
2003 };
2004 
2005 static noinline enum slow_d_compare slow_dentry_cmp(
2006 		const struct dentry *parent,
2007 		struct dentry *dentry,
2008 		unsigned int seq,
2009 		const struct qstr *name)
2010 {
2011 	int tlen = dentry->d_name.len;
2012 	const char *tname = dentry->d_name.name;
2013 
2014 	if (read_seqcount_retry(&dentry->d_seq, seq)) {
2015 		cpu_relax();
2016 		return D_COMP_SEQRETRY;
2017 	}
2018 	if (parent->d_op->d_compare(parent, dentry, tlen, tname, name))
2019 		return D_COMP_NOMATCH;
2020 	return D_COMP_OK;
2021 }
2022 
2023 /**
2024  * __d_lookup_rcu - search for a dentry (racy, store-free)
2025  * @parent: parent dentry
2026  * @name: qstr of name we wish to find
2027  * @seqp: returns d_seq value at the point where the dentry was found
2028  * Returns: dentry, or NULL
2029  *
2030  * __d_lookup_rcu is the dcache lookup function for rcu-walk name
2031  * resolution (store-free path walking) design described in
2032  * Documentation/filesystems/path-lookup.txt.
2033  *
2034  * This is not to be used outside core vfs.
2035  *
2036  * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
2037  * held, and rcu_read_lock held. The returned dentry must not be stored into
2038  * without taking d_lock and checking d_seq sequence count against @seq
2039  * returned here.
2040  *
2041  * A refcount may be taken on the found dentry with the d_rcu_to_refcount
2042  * function.
2043  *
2044  * Alternatively, __d_lookup_rcu may be called again to look up the child of
2045  * the returned dentry, so long as its parent's seqlock is checked after the
2046  * child is looked up. Thus, an interlocking stepping of sequence lock checks
2047  * is formed, giving integrity down the path walk.
2048  *
2049  * NOTE! The caller *has* to check the resulting dentry against the sequence
2050  * number we've returned before using any of the resulting dentry state!
2051  */
2052 struct dentry *__d_lookup_rcu(const struct dentry *parent,
2053 				const struct qstr *name,
2054 				unsigned *seqp)
2055 {
2056 	u64 hashlen = name->hash_len;
2057 	const unsigned char *str = name->name;
2058 	struct hlist_bl_head *b = d_hash(parent, hashlen_hash(hashlen));
2059 	struct hlist_bl_node *node;
2060 	struct dentry *dentry;
2061 
2062 	/*
2063 	 * Note: There is significant duplication with __d_lookup_rcu which is
2064 	 * required to prevent single threaded performance regressions
2065 	 * especially on architectures where smp_rmb (in seqcounts) are costly.
2066 	 * Keep the two functions in sync.
2067 	 */
2068 
2069 	/*
2070 	 * The hash list is protected using RCU.
2071 	 *
2072 	 * Carefully use d_seq when comparing a candidate dentry, to avoid
2073 	 * races with d_move().
2074 	 *
2075 	 * It is possible that concurrent renames can mess up our list
2076 	 * walk here and result in missing our dentry, resulting in the
2077 	 * false-negative result. d_lookup() protects against concurrent
2078 	 * renames using rename_lock seqlock.
2079 	 *
2080 	 * See Documentation/filesystems/path-lookup.txt for more details.
2081 	 */
2082 	hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2083 		unsigned seq;
2084 
2085 seqretry:
2086 		/*
2087 		 * The dentry sequence count protects us from concurrent
2088 		 * renames, and thus protects parent and name fields.
2089 		 *
2090 		 * The caller must perform a seqcount check in order
2091 		 * to do anything useful with the returned dentry.
2092 		 *
2093 		 * NOTE! We do a "raw" seqcount_begin here. That means that
2094 		 * we don't wait for the sequence count to stabilize if it
2095 		 * is in the middle of a sequence change. If we do the slow
2096 		 * dentry compare, we will do seqretries until it is stable,
2097 		 * and if we end up with a successful lookup, we actually
2098 		 * want to exit RCU lookup anyway.
2099 		 */
2100 		seq = raw_seqcount_begin(&dentry->d_seq);
2101 		if (dentry->d_parent != parent)
2102 			continue;
2103 		if (d_unhashed(dentry))
2104 			continue;
2105 
2106 		if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) {
2107 			if (dentry->d_name.hash != hashlen_hash(hashlen))
2108 				continue;
2109 			*seqp = seq;
2110 			switch (slow_dentry_cmp(parent, dentry, seq, name)) {
2111 			case D_COMP_OK:
2112 				return dentry;
2113 			case D_COMP_NOMATCH:
2114 				continue;
2115 			default:
2116 				goto seqretry;
2117 			}
2118 		}
2119 
2120 		if (dentry->d_name.hash_len != hashlen)
2121 			continue;
2122 		*seqp = seq;
2123 		if (!dentry_cmp(dentry, str, hashlen_len(hashlen)))
2124 			return dentry;
2125 	}
2126 	return NULL;
2127 }
2128 
2129 /**
2130  * d_lookup - search for a dentry
2131  * @parent: parent dentry
2132  * @name: qstr of name we wish to find
2133  * Returns: dentry, or NULL
2134  *
2135  * d_lookup searches the children of the parent dentry for the name in
2136  * question. If the dentry is found its reference count is incremented and the
2137  * dentry is returned. The caller must use dput to free the entry when it has
2138  * finished using it. %NULL is returned if the dentry does not exist.
2139  */
2140 struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name)
2141 {
2142 	struct dentry *dentry;
2143 	unsigned seq;
2144 
2145         do {
2146                 seq = read_seqbegin(&rename_lock);
2147                 dentry = __d_lookup(parent, name);
2148                 if (dentry)
2149 			break;
2150 	} while (read_seqretry(&rename_lock, seq));
2151 	return dentry;
2152 }
2153 EXPORT_SYMBOL(d_lookup);
2154 
2155 /**
2156  * __d_lookup - search for a dentry (racy)
2157  * @parent: parent dentry
2158  * @name: qstr of name we wish to find
2159  * Returns: dentry, or NULL
2160  *
2161  * __d_lookup is like d_lookup, however it may (rarely) return a
2162  * false-negative result due to unrelated rename activity.
2163  *
2164  * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
2165  * however it must be used carefully, eg. with a following d_lookup in
2166  * the case of failure.
2167  *
2168  * __d_lookup callers must be commented.
2169  */
2170 struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name)
2171 {
2172 	unsigned int len = name->len;
2173 	unsigned int hash = name->hash;
2174 	const unsigned char *str = name->name;
2175 	struct hlist_bl_head *b = d_hash(parent, hash);
2176 	struct hlist_bl_node *node;
2177 	struct dentry *found = NULL;
2178 	struct dentry *dentry;
2179 
2180 	/*
2181 	 * Note: There is significant duplication with __d_lookup_rcu which is
2182 	 * required to prevent single threaded performance regressions
2183 	 * especially on architectures where smp_rmb (in seqcounts) are costly.
2184 	 * Keep the two functions in sync.
2185 	 */
2186 
2187 	/*
2188 	 * The hash list is protected using RCU.
2189 	 *
2190 	 * Take d_lock when comparing a candidate dentry, to avoid races
2191 	 * with d_move().
2192 	 *
2193 	 * It is possible that concurrent renames can mess up our list
2194 	 * walk here and result in missing our dentry, resulting in the
2195 	 * false-negative result. d_lookup() protects against concurrent
2196 	 * renames using rename_lock seqlock.
2197 	 *
2198 	 * See Documentation/filesystems/path-lookup.txt for more details.
2199 	 */
2200 	rcu_read_lock();
2201 
2202 	hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2203 
2204 		if (dentry->d_name.hash != hash)
2205 			continue;
2206 
2207 		spin_lock(&dentry->d_lock);
2208 		if (dentry->d_parent != parent)
2209 			goto next;
2210 		if (d_unhashed(dentry))
2211 			goto next;
2212 
2213 		/*
2214 		 * It is safe to compare names since d_move() cannot
2215 		 * change the qstr (protected by d_lock).
2216 		 */
2217 		if (parent->d_flags & DCACHE_OP_COMPARE) {
2218 			int tlen = dentry->d_name.len;
2219 			const char *tname = dentry->d_name.name;
2220 			if (parent->d_op->d_compare(parent, dentry, tlen, tname, name))
2221 				goto next;
2222 		} else {
2223 			if (dentry->d_name.len != len)
2224 				goto next;
2225 			if (dentry_cmp(dentry, str, len))
2226 				goto next;
2227 		}
2228 
2229 		dentry->d_lockref.count++;
2230 		found = dentry;
2231 		spin_unlock(&dentry->d_lock);
2232 		break;
2233 next:
2234 		spin_unlock(&dentry->d_lock);
2235  	}
2236  	rcu_read_unlock();
2237 
2238  	return found;
2239 }
2240 
2241 /**
2242  * d_hash_and_lookup - hash the qstr then search for a dentry
2243  * @dir: Directory to search in
2244  * @name: qstr of name we wish to find
2245  *
2246  * On lookup failure NULL is returned; on bad name - ERR_PTR(-error)
2247  */
2248 struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
2249 {
2250 	/*
2251 	 * Check for a fs-specific hash function. Note that we must
2252 	 * calculate the standard hash first, as the d_op->d_hash()
2253 	 * routine may choose to leave the hash value unchanged.
2254 	 */
2255 	name->hash = full_name_hash(name->name, name->len);
2256 	if (dir->d_flags & DCACHE_OP_HASH) {
2257 		int err = dir->d_op->d_hash(dir, name);
2258 		if (unlikely(err < 0))
2259 			return ERR_PTR(err);
2260 	}
2261 	return d_lookup(dir, name);
2262 }
2263 EXPORT_SYMBOL(d_hash_and_lookup);
2264 
2265 /**
2266  * d_validate - verify dentry provided from insecure source (deprecated)
2267  * @dentry: The dentry alleged to be valid child of @dparent
2268  * @dparent: The parent dentry (known to be valid)
2269  *
2270  * An insecure source has sent us a dentry, here we verify it and dget() it.
2271  * This is used by ncpfs in its readdir implementation.
2272  * Zero is returned in the dentry is invalid.
2273  *
2274  * This function is slow for big directories, and deprecated, do not use it.
2275  */
2276 int d_validate(struct dentry *dentry, struct dentry *dparent)
2277 {
2278 	struct dentry *child;
2279 
2280 	spin_lock(&dparent->d_lock);
2281 	list_for_each_entry(child, &dparent->d_subdirs, d_u.d_child) {
2282 		if (dentry == child) {
2283 			spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
2284 			__dget_dlock(dentry);
2285 			spin_unlock(&dentry->d_lock);
2286 			spin_unlock(&dparent->d_lock);
2287 			return 1;
2288 		}
2289 	}
2290 	spin_unlock(&dparent->d_lock);
2291 
2292 	return 0;
2293 }
2294 EXPORT_SYMBOL(d_validate);
2295 
2296 /*
2297  * When a file is deleted, we have two options:
2298  * - turn this dentry into a negative dentry
2299  * - unhash this dentry and free it.
2300  *
2301  * Usually, we want to just turn this into
2302  * a negative dentry, but if anybody else is
2303  * currently using the dentry or the inode
2304  * we can't do that and we fall back on removing
2305  * it from the hash queues and waiting for
2306  * it to be deleted later when it has no users
2307  */
2308 
2309 /**
2310  * d_delete - delete a dentry
2311  * @dentry: The dentry to delete
2312  *
2313  * Turn the dentry into a negative dentry if possible, otherwise
2314  * remove it from the hash queues so it can be deleted later
2315  */
2316 
2317 void d_delete(struct dentry * dentry)
2318 {
2319 	struct inode *inode;
2320 	int isdir = 0;
2321 	/*
2322 	 * Are we the only user?
2323 	 */
2324 again:
2325 	spin_lock(&dentry->d_lock);
2326 	inode = dentry->d_inode;
2327 	isdir = S_ISDIR(inode->i_mode);
2328 	if (dentry->d_lockref.count == 1) {
2329 		if (!spin_trylock(&inode->i_lock)) {
2330 			spin_unlock(&dentry->d_lock);
2331 			cpu_relax();
2332 			goto again;
2333 		}
2334 		dentry->d_flags &= ~DCACHE_CANT_MOUNT;
2335 		dentry_unlink_inode(dentry);
2336 		fsnotify_nameremove(dentry, isdir);
2337 		return;
2338 	}
2339 
2340 	if (!d_unhashed(dentry))
2341 		__d_drop(dentry);
2342 
2343 	spin_unlock(&dentry->d_lock);
2344 
2345 	fsnotify_nameremove(dentry, isdir);
2346 }
2347 EXPORT_SYMBOL(d_delete);
2348 
2349 static void __d_rehash(struct dentry * entry, struct hlist_bl_head *b)
2350 {
2351 	BUG_ON(!d_unhashed(entry));
2352 	hlist_bl_lock(b);
2353 	entry->d_flags |= DCACHE_RCUACCESS;
2354 	hlist_bl_add_head_rcu(&entry->d_hash, b);
2355 	hlist_bl_unlock(b);
2356 }
2357 
2358 static void _d_rehash(struct dentry * entry)
2359 {
2360 	__d_rehash(entry, d_hash(entry->d_parent, entry->d_name.hash));
2361 }
2362 
2363 /**
2364  * d_rehash	- add an entry back to the hash
2365  * @entry: dentry to add to the hash
2366  *
2367  * Adds a dentry to the hash according to its name.
2368  */
2369 
2370 void d_rehash(struct dentry * entry)
2371 {
2372 	spin_lock(&entry->d_lock);
2373 	_d_rehash(entry);
2374 	spin_unlock(&entry->d_lock);
2375 }
2376 EXPORT_SYMBOL(d_rehash);
2377 
2378 /**
2379  * dentry_update_name_case - update case insensitive dentry with a new name
2380  * @dentry: dentry to be updated
2381  * @name: new name
2382  *
2383  * Update a case insensitive dentry with new case of name.
2384  *
2385  * dentry must have been returned by d_lookup with name @name. Old and new
2386  * name lengths must match (ie. no d_compare which allows mismatched name
2387  * lengths).
2388  *
2389  * Parent inode i_mutex must be held over d_lookup and into this call (to
2390  * keep renames and concurrent inserts, and readdir(2) away).
2391  */
2392 void dentry_update_name_case(struct dentry *dentry, struct qstr *name)
2393 {
2394 	BUG_ON(!mutex_is_locked(&dentry->d_parent->d_inode->i_mutex));
2395 	BUG_ON(dentry->d_name.len != name->len); /* d_lookup gives this */
2396 
2397 	spin_lock(&dentry->d_lock);
2398 	write_seqcount_begin(&dentry->d_seq);
2399 	memcpy((unsigned char *)dentry->d_name.name, name->name, name->len);
2400 	write_seqcount_end(&dentry->d_seq);
2401 	spin_unlock(&dentry->d_lock);
2402 }
2403 EXPORT_SYMBOL(dentry_update_name_case);
2404 
2405 static void switch_names(struct dentry *dentry, struct dentry *target)
2406 {
2407 	if (dname_external(target)) {
2408 		if (dname_external(dentry)) {
2409 			/*
2410 			 * Both external: swap the pointers
2411 			 */
2412 			swap(target->d_name.name, dentry->d_name.name);
2413 		} else {
2414 			/*
2415 			 * dentry:internal, target:external.  Steal target's
2416 			 * storage and make target internal.
2417 			 */
2418 			memcpy(target->d_iname, dentry->d_name.name,
2419 					dentry->d_name.len + 1);
2420 			dentry->d_name.name = target->d_name.name;
2421 			target->d_name.name = target->d_iname;
2422 		}
2423 	} else {
2424 		if (dname_external(dentry)) {
2425 			/*
2426 			 * dentry:external, target:internal.  Give dentry's
2427 			 * storage to target and make dentry internal
2428 			 */
2429 			memcpy(dentry->d_iname, target->d_name.name,
2430 					target->d_name.len + 1);
2431 			target->d_name.name = dentry->d_name.name;
2432 			dentry->d_name.name = dentry->d_iname;
2433 		} else {
2434 			/*
2435 			 * Both are internal.
2436 			 */
2437 			unsigned int i;
2438 			BUILD_BUG_ON(!IS_ALIGNED(DNAME_INLINE_LEN, sizeof(long)));
2439 			for (i = 0; i < DNAME_INLINE_LEN / sizeof(long); i++) {
2440 				swap(((long *) &dentry->d_iname)[i],
2441 				     ((long *) &target->d_iname)[i]);
2442 			}
2443 		}
2444 	}
2445 	swap(dentry->d_name.len, target->d_name.len);
2446 }
2447 
2448 static void dentry_lock_for_move(struct dentry *dentry, struct dentry *target)
2449 {
2450 	/*
2451 	 * XXXX: do we really need to take target->d_lock?
2452 	 */
2453 	if (IS_ROOT(dentry) || dentry->d_parent == target->d_parent)
2454 		spin_lock(&target->d_parent->d_lock);
2455 	else {
2456 		if (d_ancestor(dentry->d_parent, target->d_parent)) {
2457 			spin_lock(&dentry->d_parent->d_lock);
2458 			spin_lock_nested(&target->d_parent->d_lock,
2459 						DENTRY_D_LOCK_NESTED);
2460 		} else {
2461 			spin_lock(&target->d_parent->d_lock);
2462 			spin_lock_nested(&dentry->d_parent->d_lock,
2463 						DENTRY_D_LOCK_NESTED);
2464 		}
2465 	}
2466 	if (target < dentry) {
2467 		spin_lock_nested(&target->d_lock, 2);
2468 		spin_lock_nested(&dentry->d_lock, 3);
2469 	} else {
2470 		spin_lock_nested(&dentry->d_lock, 2);
2471 		spin_lock_nested(&target->d_lock, 3);
2472 	}
2473 }
2474 
2475 static void dentry_unlock_parents_for_move(struct dentry *dentry,
2476 					struct dentry *target)
2477 {
2478 	if (target->d_parent != dentry->d_parent)
2479 		spin_unlock(&dentry->d_parent->d_lock);
2480 	if (target->d_parent != target)
2481 		spin_unlock(&target->d_parent->d_lock);
2482 }
2483 
2484 /*
2485  * When switching names, the actual string doesn't strictly have to
2486  * be preserved in the target - because we're dropping the target
2487  * anyway. As such, we can just do a simple memcpy() to copy over
2488  * the new name before we switch.
2489  *
2490  * Note that we have to be a lot more careful about getting the hash
2491  * switched - we have to switch the hash value properly even if it
2492  * then no longer matches the actual (corrupted) string of the target.
2493  * The hash value has to match the hash queue that the dentry is on..
2494  */
2495 /*
2496  * __d_move - move a dentry
2497  * @dentry: entry to move
2498  * @target: new dentry
2499  * @exchange: exchange the two dentries
2500  *
2501  * Update the dcache to reflect the move of a file name. Negative
2502  * dcache entries should not be moved in this way. Caller must hold
2503  * rename_lock, the i_mutex of the source and target directories,
2504  * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
2505  */
2506 static void __d_move(struct dentry *dentry, struct dentry *target,
2507 		     bool exchange)
2508 {
2509 	if (!dentry->d_inode)
2510 		printk(KERN_WARNING "VFS: moving negative dcache entry\n");
2511 
2512 	BUG_ON(d_ancestor(dentry, target));
2513 	BUG_ON(d_ancestor(target, dentry));
2514 
2515 	dentry_lock_for_move(dentry, target);
2516 
2517 	write_seqcount_begin(&dentry->d_seq);
2518 	write_seqcount_begin_nested(&target->d_seq, DENTRY_D_LOCK_NESTED);
2519 
2520 	/* __d_drop does write_seqcount_barrier, but they're OK to nest. */
2521 
2522 	/*
2523 	 * Move the dentry to the target hash queue. Don't bother checking
2524 	 * for the same hash queue because of how unlikely it is.
2525 	 */
2526 	__d_drop(dentry);
2527 	__d_rehash(dentry, d_hash(target->d_parent, target->d_name.hash));
2528 
2529 	/*
2530 	 * Unhash the target (d_delete() is not usable here).  If exchanging
2531 	 * the two dentries, then rehash onto the other's hash queue.
2532 	 */
2533 	__d_drop(target);
2534 	if (exchange) {
2535 		__d_rehash(target,
2536 			   d_hash(dentry->d_parent, dentry->d_name.hash));
2537 	}
2538 
2539 	list_del(&dentry->d_u.d_child);
2540 	list_del(&target->d_u.d_child);
2541 
2542 	/* Switch the names.. */
2543 	switch_names(dentry, target);
2544 	swap(dentry->d_name.hash, target->d_name.hash);
2545 
2546 	/* ... and switch the parents */
2547 	if (IS_ROOT(dentry)) {
2548 		dentry->d_parent = target->d_parent;
2549 		target->d_parent = target;
2550 		INIT_LIST_HEAD(&target->d_u.d_child);
2551 	} else {
2552 		swap(dentry->d_parent, target->d_parent);
2553 
2554 		/* And add them back to the (new) parent lists */
2555 		list_add(&target->d_u.d_child, &target->d_parent->d_subdirs);
2556 	}
2557 
2558 	list_add(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs);
2559 
2560 	write_seqcount_end(&target->d_seq);
2561 	write_seqcount_end(&dentry->d_seq);
2562 
2563 	dentry_unlock_parents_for_move(dentry, target);
2564 	if (exchange)
2565 		fsnotify_d_move(target);
2566 	spin_unlock(&target->d_lock);
2567 	fsnotify_d_move(dentry);
2568 	spin_unlock(&dentry->d_lock);
2569 }
2570 
2571 /*
2572  * d_move - move a dentry
2573  * @dentry: entry to move
2574  * @target: new dentry
2575  *
2576  * Update the dcache to reflect the move of a file name. Negative
2577  * dcache entries should not be moved in this way. See the locking
2578  * requirements for __d_move.
2579  */
2580 void d_move(struct dentry *dentry, struct dentry *target)
2581 {
2582 	write_seqlock(&rename_lock);
2583 	__d_move(dentry, target, false);
2584 	write_sequnlock(&rename_lock);
2585 }
2586 EXPORT_SYMBOL(d_move);
2587 
2588 /*
2589  * d_exchange - exchange two dentries
2590  * @dentry1: first dentry
2591  * @dentry2: second dentry
2592  */
2593 void d_exchange(struct dentry *dentry1, struct dentry *dentry2)
2594 {
2595 	write_seqlock(&rename_lock);
2596 
2597 	WARN_ON(!dentry1->d_inode);
2598 	WARN_ON(!dentry2->d_inode);
2599 	WARN_ON(IS_ROOT(dentry1));
2600 	WARN_ON(IS_ROOT(dentry2));
2601 
2602 	__d_move(dentry1, dentry2, true);
2603 
2604 	write_sequnlock(&rename_lock);
2605 }
2606 
2607 /**
2608  * d_ancestor - search for an ancestor
2609  * @p1: ancestor dentry
2610  * @p2: child dentry
2611  *
2612  * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2613  * an ancestor of p2, else NULL.
2614  */
2615 struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
2616 {
2617 	struct dentry *p;
2618 
2619 	for (p = p2; !IS_ROOT(p); p = p->d_parent) {
2620 		if (p->d_parent == p1)
2621 			return p;
2622 	}
2623 	return NULL;
2624 }
2625 
2626 /*
2627  * This helper attempts to cope with remotely renamed directories
2628  *
2629  * It assumes that the caller is already holding
2630  * dentry->d_parent->d_inode->i_mutex, inode->i_lock and rename_lock
2631  *
2632  * Note: If ever the locking in lock_rename() changes, then please
2633  * remember to update this too...
2634  */
2635 static struct dentry *__d_unalias(struct inode *inode,
2636 		struct dentry *dentry, struct dentry *alias)
2637 {
2638 	struct mutex *m1 = NULL, *m2 = NULL;
2639 	struct dentry *ret = ERR_PTR(-EBUSY);
2640 
2641 	/* If alias and dentry share a parent, then no extra locks required */
2642 	if (alias->d_parent == dentry->d_parent)
2643 		goto out_unalias;
2644 
2645 	/* See lock_rename() */
2646 	if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
2647 		goto out_err;
2648 	m1 = &dentry->d_sb->s_vfs_rename_mutex;
2649 	if (!mutex_trylock(&alias->d_parent->d_inode->i_mutex))
2650 		goto out_err;
2651 	m2 = &alias->d_parent->d_inode->i_mutex;
2652 out_unalias:
2653 	if (likely(!d_mountpoint(alias))) {
2654 		__d_move(alias, dentry, false);
2655 		ret = alias;
2656 	}
2657 out_err:
2658 	spin_unlock(&inode->i_lock);
2659 	if (m2)
2660 		mutex_unlock(m2);
2661 	if (m1)
2662 		mutex_unlock(m1);
2663 	return ret;
2664 }
2665 
2666 /*
2667  * Prepare an anonymous dentry for life in the superblock's dentry tree as a
2668  * named dentry in place of the dentry to be replaced.
2669  * returns with anon->d_lock held!
2670  */
2671 static void __d_materialise_dentry(struct dentry *dentry, struct dentry *anon)
2672 {
2673 	struct dentry *dparent;
2674 
2675 	dentry_lock_for_move(anon, dentry);
2676 
2677 	write_seqcount_begin(&dentry->d_seq);
2678 	write_seqcount_begin_nested(&anon->d_seq, DENTRY_D_LOCK_NESTED);
2679 
2680 	dparent = dentry->d_parent;
2681 
2682 	switch_names(dentry, anon);
2683 	swap(dentry->d_name.hash, anon->d_name.hash);
2684 
2685 	dentry->d_parent = dentry;
2686 	list_del_init(&dentry->d_u.d_child);
2687 	anon->d_parent = dparent;
2688 	list_move(&anon->d_u.d_child, &dparent->d_subdirs);
2689 
2690 	write_seqcount_end(&dentry->d_seq);
2691 	write_seqcount_end(&anon->d_seq);
2692 
2693 	dentry_unlock_parents_for_move(anon, dentry);
2694 	spin_unlock(&dentry->d_lock);
2695 
2696 	/* anon->d_lock still locked, returns locked */
2697 }
2698 
2699 /**
2700  * d_materialise_unique - introduce an inode into the tree
2701  * @dentry: candidate dentry
2702  * @inode: inode to bind to the dentry, to which aliases may be attached
2703  *
2704  * Introduces an dentry into the tree, substituting an extant disconnected
2705  * root directory alias in its place if there is one. Caller must hold the
2706  * i_mutex of the parent directory.
2707  */
2708 struct dentry *d_materialise_unique(struct dentry *dentry, struct inode *inode)
2709 {
2710 	struct dentry *actual;
2711 
2712 	BUG_ON(!d_unhashed(dentry));
2713 
2714 	if (!inode) {
2715 		actual = dentry;
2716 		__d_instantiate(dentry, NULL);
2717 		d_rehash(actual);
2718 		goto out_nolock;
2719 	}
2720 
2721 	spin_lock(&inode->i_lock);
2722 
2723 	if (S_ISDIR(inode->i_mode)) {
2724 		struct dentry *alias;
2725 
2726 		/* Does an aliased dentry already exist? */
2727 		alias = __d_find_alias(inode, 0);
2728 		if (alias) {
2729 			actual = alias;
2730 			write_seqlock(&rename_lock);
2731 
2732 			if (d_ancestor(alias, dentry)) {
2733 				/* Check for loops */
2734 				actual = ERR_PTR(-ELOOP);
2735 				spin_unlock(&inode->i_lock);
2736 			} else if (IS_ROOT(alias)) {
2737 				/* Is this an anonymous mountpoint that we
2738 				 * could splice into our tree? */
2739 				__d_materialise_dentry(dentry, alias);
2740 				write_sequnlock(&rename_lock);
2741 				__d_drop(alias);
2742 				goto found;
2743 			} else {
2744 				/* Nope, but we must(!) avoid directory
2745 				 * aliasing. This drops inode->i_lock */
2746 				actual = __d_unalias(inode, dentry, alias);
2747 			}
2748 			write_sequnlock(&rename_lock);
2749 			if (IS_ERR(actual)) {
2750 				if (PTR_ERR(actual) == -ELOOP)
2751 					pr_warn_ratelimited(
2752 						"VFS: Lookup of '%s' in %s %s"
2753 						" would have caused loop\n",
2754 						dentry->d_name.name,
2755 						inode->i_sb->s_type->name,
2756 						inode->i_sb->s_id);
2757 				dput(alias);
2758 			}
2759 			goto out_nolock;
2760 		}
2761 	}
2762 
2763 	/* Add a unique reference */
2764 	actual = __d_instantiate_unique(dentry, inode);
2765 	if (!actual)
2766 		actual = dentry;
2767 	else
2768 		BUG_ON(!d_unhashed(actual));
2769 
2770 	spin_lock(&actual->d_lock);
2771 found:
2772 	_d_rehash(actual);
2773 	spin_unlock(&actual->d_lock);
2774 	spin_unlock(&inode->i_lock);
2775 out_nolock:
2776 	if (actual == dentry) {
2777 		security_d_instantiate(dentry, inode);
2778 		return NULL;
2779 	}
2780 
2781 	iput(inode);
2782 	return actual;
2783 }
2784 EXPORT_SYMBOL_GPL(d_materialise_unique);
2785 
2786 static int prepend(char **buffer, int *buflen, const char *str, int namelen)
2787 {
2788 	*buflen -= namelen;
2789 	if (*buflen < 0)
2790 		return -ENAMETOOLONG;
2791 	*buffer -= namelen;
2792 	memcpy(*buffer, str, namelen);
2793 	return 0;
2794 }
2795 
2796 /**
2797  * prepend_name - prepend a pathname in front of current buffer pointer
2798  * @buffer: buffer pointer
2799  * @buflen: allocated length of the buffer
2800  * @name:   name string and length qstr structure
2801  *
2802  * With RCU path tracing, it may race with d_move(). Use ACCESS_ONCE() to
2803  * make sure that either the old or the new name pointer and length are
2804  * fetched. However, there may be mismatch between length and pointer.
2805  * The length cannot be trusted, we need to copy it byte-by-byte until
2806  * the length is reached or a null byte is found. It also prepends "/" at
2807  * the beginning of the name. The sequence number check at the caller will
2808  * retry it again when a d_move() does happen. So any garbage in the buffer
2809  * due to mismatched pointer and length will be discarded.
2810  */
2811 static int prepend_name(char **buffer, int *buflen, struct qstr *name)
2812 {
2813 	const char *dname = ACCESS_ONCE(name->name);
2814 	u32 dlen = ACCESS_ONCE(name->len);
2815 	char *p;
2816 
2817 	*buflen -= dlen + 1;
2818 	if (*buflen < 0)
2819 		return -ENAMETOOLONG;
2820 	p = *buffer -= dlen + 1;
2821 	*p++ = '/';
2822 	while (dlen--) {
2823 		char c = *dname++;
2824 		if (!c)
2825 			break;
2826 		*p++ = c;
2827 	}
2828 	return 0;
2829 }
2830 
2831 /**
2832  * prepend_path - Prepend path string to a buffer
2833  * @path: the dentry/vfsmount to report
2834  * @root: root vfsmnt/dentry
2835  * @buffer: pointer to the end of the buffer
2836  * @buflen: pointer to buffer length
2837  *
2838  * The function will first try to write out the pathname without taking any
2839  * lock other than the RCU read lock to make sure that dentries won't go away.
2840  * It only checks the sequence number of the global rename_lock as any change
2841  * in the dentry's d_seq will be preceded by changes in the rename_lock
2842  * sequence number. If the sequence number had been changed, it will restart
2843  * the whole pathname back-tracing sequence again by taking the rename_lock.
2844  * In this case, there is no need to take the RCU read lock as the recursive
2845  * parent pointer references will keep the dentry chain alive as long as no
2846  * rename operation is performed.
2847  */
2848 static int prepend_path(const struct path *path,
2849 			const struct path *root,
2850 			char **buffer, int *buflen)
2851 {
2852 	struct dentry *dentry;
2853 	struct vfsmount *vfsmnt;
2854 	struct mount *mnt;
2855 	int error = 0;
2856 	unsigned seq, m_seq = 0;
2857 	char *bptr;
2858 	int blen;
2859 
2860 	rcu_read_lock();
2861 restart_mnt:
2862 	read_seqbegin_or_lock(&mount_lock, &m_seq);
2863 	seq = 0;
2864 	rcu_read_lock();
2865 restart:
2866 	bptr = *buffer;
2867 	blen = *buflen;
2868 	error = 0;
2869 	dentry = path->dentry;
2870 	vfsmnt = path->mnt;
2871 	mnt = real_mount(vfsmnt);
2872 	read_seqbegin_or_lock(&rename_lock, &seq);
2873 	while (dentry != root->dentry || vfsmnt != root->mnt) {
2874 		struct dentry * parent;
2875 
2876 		if (dentry == vfsmnt->mnt_root || IS_ROOT(dentry)) {
2877 			struct mount *parent = ACCESS_ONCE(mnt->mnt_parent);
2878 			/* Global root? */
2879 			if (mnt != parent) {
2880 				dentry = ACCESS_ONCE(mnt->mnt_mountpoint);
2881 				mnt = parent;
2882 				vfsmnt = &mnt->mnt;
2883 				continue;
2884 			}
2885 			/*
2886 			 * Filesystems needing to implement special "root names"
2887 			 * should do so with ->d_dname()
2888 			 */
2889 			if (IS_ROOT(dentry) &&
2890 			   (dentry->d_name.len != 1 ||
2891 			    dentry->d_name.name[0] != '/')) {
2892 				WARN(1, "Root dentry has weird name <%.*s>\n",
2893 				     (int) dentry->d_name.len,
2894 				     dentry->d_name.name);
2895 			}
2896 			if (!error)
2897 				error = is_mounted(vfsmnt) ? 1 : 2;
2898 			break;
2899 		}
2900 		parent = dentry->d_parent;
2901 		prefetch(parent);
2902 		error = prepend_name(&bptr, &blen, &dentry->d_name);
2903 		if (error)
2904 			break;
2905 
2906 		dentry = parent;
2907 	}
2908 	if (!(seq & 1))
2909 		rcu_read_unlock();
2910 	if (need_seqretry(&rename_lock, seq)) {
2911 		seq = 1;
2912 		goto restart;
2913 	}
2914 	done_seqretry(&rename_lock, seq);
2915 
2916 	if (!(m_seq & 1))
2917 		rcu_read_unlock();
2918 	if (need_seqretry(&mount_lock, m_seq)) {
2919 		m_seq = 1;
2920 		goto restart_mnt;
2921 	}
2922 	done_seqretry(&mount_lock, m_seq);
2923 
2924 	if (error >= 0 && bptr == *buffer) {
2925 		if (--blen < 0)
2926 			error = -ENAMETOOLONG;
2927 		else
2928 			*--bptr = '/';
2929 	}
2930 	*buffer = bptr;
2931 	*buflen = blen;
2932 	return error;
2933 }
2934 
2935 /**
2936  * __d_path - return the path of a dentry
2937  * @path: the dentry/vfsmount to report
2938  * @root: root vfsmnt/dentry
2939  * @buf: buffer to return value in
2940  * @buflen: buffer length
2941  *
2942  * Convert a dentry into an ASCII path name.
2943  *
2944  * Returns a pointer into the buffer or an error code if the
2945  * path was too long.
2946  *
2947  * "buflen" should be positive.
2948  *
2949  * If the path is not reachable from the supplied root, return %NULL.
2950  */
2951 char *__d_path(const struct path *path,
2952 	       const struct path *root,
2953 	       char *buf, int buflen)
2954 {
2955 	char *res = buf + buflen;
2956 	int error;
2957 
2958 	prepend(&res, &buflen, "\0", 1);
2959 	error = prepend_path(path, root, &res, &buflen);
2960 
2961 	if (error < 0)
2962 		return ERR_PTR(error);
2963 	if (error > 0)
2964 		return NULL;
2965 	return res;
2966 }
2967 
2968 char *d_absolute_path(const struct path *path,
2969 	       char *buf, int buflen)
2970 {
2971 	struct path root = {};
2972 	char *res = buf + buflen;
2973 	int error;
2974 
2975 	prepend(&res, &buflen, "\0", 1);
2976 	error = prepend_path(path, &root, &res, &buflen);
2977 
2978 	if (error > 1)
2979 		error = -EINVAL;
2980 	if (error < 0)
2981 		return ERR_PTR(error);
2982 	return res;
2983 }
2984 
2985 /*
2986  * same as __d_path but appends "(deleted)" for unlinked files.
2987  */
2988 static int path_with_deleted(const struct path *path,
2989 			     const struct path *root,
2990 			     char **buf, int *buflen)
2991 {
2992 	prepend(buf, buflen, "\0", 1);
2993 	if (d_unlinked(path->dentry)) {
2994 		int error = prepend(buf, buflen, " (deleted)", 10);
2995 		if (error)
2996 			return error;
2997 	}
2998 
2999 	return prepend_path(path, root, buf, buflen);
3000 }
3001 
3002 static int prepend_unreachable(char **buffer, int *buflen)
3003 {
3004 	return prepend(buffer, buflen, "(unreachable)", 13);
3005 }
3006 
3007 static void get_fs_root_rcu(struct fs_struct *fs, struct path *root)
3008 {
3009 	unsigned seq;
3010 
3011 	do {
3012 		seq = read_seqcount_begin(&fs->seq);
3013 		*root = fs->root;
3014 	} while (read_seqcount_retry(&fs->seq, seq));
3015 }
3016 
3017 /**
3018  * d_path - return the path of a dentry
3019  * @path: path to report
3020  * @buf: buffer to return value in
3021  * @buflen: buffer length
3022  *
3023  * Convert a dentry into an ASCII path name. If the entry has been deleted
3024  * the string " (deleted)" is appended. Note that this is ambiguous.
3025  *
3026  * Returns a pointer into the buffer or an error code if the path was
3027  * too long. Note: Callers should use the returned pointer, not the passed
3028  * in buffer, to use the name! The implementation often starts at an offset
3029  * into the buffer, and may leave 0 bytes at the start.
3030  *
3031  * "buflen" should be positive.
3032  */
3033 char *d_path(const struct path *path, char *buf, int buflen)
3034 {
3035 	char *res = buf + buflen;
3036 	struct path root;
3037 	int error;
3038 
3039 	/*
3040 	 * We have various synthetic filesystems that never get mounted.  On
3041 	 * these filesystems dentries are never used for lookup purposes, and
3042 	 * thus don't need to be hashed.  They also don't need a name until a
3043 	 * user wants to identify the object in /proc/pid/fd/.  The little hack
3044 	 * below allows us to generate a name for these objects on demand:
3045 	 *
3046 	 * Some pseudo inodes are mountable.  When they are mounted
3047 	 * path->dentry == path->mnt->mnt_root.  In that case don't call d_dname
3048 	 * and instead have d_path return the mounted path.
3049 	 */
3050 	if (path->dentry->d_op && path->dentry->d_op->d_dname &&
3051 	    (!IS_ROOT(path->dentry) || path->dentry != path->mnt->mnt_root))
3052 		return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
3053 
3054 	rcu_read_lock();
3055 	get_fs_root_rcu(current->fs, &root);
3056 	error = path_with_deleted(path, &root, &res, &buflen);
3057 	rcu_read_unlock();
3058 
3059 	if (error < 0)
3060 		res = ERR_PTR(error);
3061 	return res;
3062 }
3063 EXPORT_SYMBOL(d_path);
3064 
3065 /*
3066  * Helper function for dentry_operations.d_dname() members
3067  */
3068 char *dynamic_dname(struct dentry *dentry, char *buffer, int buflen,
3069 			const char *fmt, ...)
3070 {
3071 	va_list args;
3072 	char temp[64];
3073 	int sz;
3074 
3075 	va_start(args, fmt);
3076 	sz = vsnprintf(temp, sizeof(temp), fmt, args) + 1;
3077 	va_end(args);
3078 
3079 	if (sz > sizeof(temp) || sz > buflen)
3080 		return ERR_PTR(-ENAMETOOLONG);
3081 
3082 	buffer += buflen - sz;
3083 	return memcpy(buffer, temp, sz);
3084 }
3085 
3086 char *simple_dname(struct dentry *dentry, char *buffer, int buflen)
3087 {
3088 	char *end = buffer + buflen;
3089 	/* these dentries are never renamed, so d_lock is not needed */
3090 	if (prepend(&end, &buflen, " (deleted)", 11) ||
3091 	    prepend(&end, &buflen, dentry->d_name.name, dentry->d_name.len) ||
3092 	    prepend(&end, &buflen, "/", 1))
3093 		end = ERR_PTR(-ENAMETOOLONG);
3094 	return end;
3095 }
3096 EXPORT_SYMBOL(simple_dname);
3097 
3098 /*
3099  * Write full pathname from the root of the filesystem into the buffer.
3100  */
3101 static char *__dentry_path(struct dentry *d, char *buf, int buflen)
3102 {
3103 	struct dentry *dentry;
3104 	char *end, *retval;
3105 	int len, seq = 0;
3106 	int error = 0;
3107 
3108 	if (buflen < 2)
3109 		goto Elong;
3110 
3111 	rcu_read_lock();
3112 restart:
3113 	dentry = d;
3114 	end = buf + buflen;
3115 	len = buflen;
3116 	prepend(&end, &len, "\0", 1);
3117 	/* Get '/' right */
3118 	retval = end-1;
3119 	*retval = '/';
3120 	read_seqbegin_or_lock(&rename_lock, &seq);
3121 	while (!IS_ROOT(dentry)) {
3122 		struct dentry *parent = dentry->d_parent;
3123 
3124 		prefetch(parent);
3125 		error = prepend_name(&end, &len, &dentry->d_name);
3126 		if (error)
3127 			break;
3128 
3129 		retval = end;
3130 		dentry = parent;
3131 	}
3132 	if (!(seq & 1))
3133 		rcu_read_unlock();
3134 	if (need_seqretry(&rename_lock, seq)) {
3135 		seq = 1;
3136 		goto restart;
3137 	}
3138 	done_seqretry(&rename_lock, seq);
3139 	if (error)
3140 		goto Elong;
3141 	return retval;
3142 Elong:
3143 	return ERR_PTR(-ENAMETOOLONG);
3144 }
3145 
3146 char *dentry_path_raw(struct dentry *dentry, char *buf, int buflen)
3147 {
3148 	return __dentry_path(dentry, buf, buflen);
3149 }
3150 EXPORT_SYMBOL(dentry_path_raw);
3151 
3152 char *dentry_path(struct dentry *dentry, char *buf, int buflen)
3153 {
3154 	char *p = NULL;
3155 	char *retval;
3156 
3157 	if (d_unlinked(dentry)) {
3158 		p = buf + buflen;
3159 		if (prepend(&p, &buflen, "//deleted", 10) != 0)
3160 			goto Elong;
3161 		buflen++;
3162 	}
3163 	retval = __dentry_path(dentry, buf, buflen);
3164 	if (!IS_ERR(retval) && p)
3165 		*p = '/';	/* restore '/' overriden with '\0' */
3166 	return retval;
3167 Elong:
3168 	return ERR_PTR(-ENAMETOOLONG);
3169 }
3170 
3171 static void get_fs_root_and_pwd_rcu(struct fs_struct *fs, struct path *root,
3172 				    struct path *pwd)
3173 {
3174 	unsigned seq;
3175 
3176 	do {
3177 		seq = read_seqcount_begin(&fs->seq);
3178 		*root = fs->root;
3179 		*pwd = fs->pwd;
3180 	} while (read_seqcount_retry(&fs->seq, seq));
3181 }
3182 
3183 /*
3184  * NOTE! The user-level library version returns a
3185  * character pointer. The kernel system call just
3186  * returns the length of the buffer filled (which
3187  * includes the ending '\0' character), or a negative
3188  * error value. So libc would do something like
3189  *
3190  *	char *getcwd(char * buf, size_t size)
3191  *	{
3192  *		int retval;
3193  *
3194  *		retval = sys_getcwd(buf, size);
3195  *		if (retval >= 0)
3196  *			return buf;
3197  *		errno = -retval;
3198  *		return NULL;
3199  *	}
3200  */
3201 SYSCALL_DEFINE2(getcwd, char __user *, buf, unsigned long, size)
3202 {
3203 	int error;
3204 	struct path pwd, root;
3205 	char *page = __getname();
3206 
3207 	if (!page)
3208 		return -ENOMEM;
3209 
3210 	rcu_read_lock();
3211 	get_fs_root_and_pwd_rcu(current->fs, &root, &pwd);
3212 
3213 	error = -ENOENT;
3214 	if (!d_unlinked(pwd.dentry)) {
3215 		unsigned long len;
3216 		char *cwd = page + PATH_MAX;
3217 		int buflen = PATH_MAX;
3218 
3219 		prepend(&cwd, &buflen, "\0", 1);
3220 		error = prepend_path(&pwd, &root, &cwd, &buflen);
3221 		rcu_read_unlock();
3222 
3223 		if (error < 0)
3224 			goto out;
3225 
3226 		/* Unreachable from current root */
3227 		if (error > 0) {
3228 			error = prepend_unreachable(&cwd, &buflen);
3229 			if (error)
3230 				goto out;
3231 		}
3232 
3233 		error = -ERANGE;
3234 		len = PATH_MAX + page - cwd;
3235 		if (len <= size) {
3236 			error = len;
3237 			if (copy_to_user(buf, cwd, len))
3238 				error = -EFAULT;
3239 		}
3240 	} else {
3241 		rcu_read_unlock();
3242 	}
3243 
3244 out:
3245 	__putname(page);
3246 	return error;
3247 }
3248 
3249 /*
3250  * Test whether new_dentry is a subdirectory of old_dentry.
3251  *
3252  * Trivially implemented using the dcache structure
3253  */
3254 
3255 /**
3256  * is_subdir - is new dentry a subdirectory of old_dentry
3257  * @new_dentry: new dentry
3258  * @old_dentry: old dentry
3259  *
3260  * Returns 1 if new_dentry is a subdirectory of the parent (at any depth).
3261  * Returns 0 otherwise.
3262  * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
3263  */
3264 
3265 int is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
3266 {
3267 	int result;
3268 	unsigned seq;
3269 
3270 	if (new_dentry == old_dentry)
3271 		return 1;
3272 
3273 	do {
3274 		/* for restarting inner loop in case of seq retry */
3275 		seq = read_seqbegin(&rename_lock);
3276 		/*
3277 		 * Need rcu_readlock to protect against the d_parent trashing
3278 		 * due to d_move
3279 		 */
3280 		rcu_read_lock();
3281 		if (d_ancestor(old_dentry, new_dentry))
3282 			result = 1;
3283 		else
3284 			result = 0;
3285 		rcu_read_unlock();
3286 	} while (read_seqretry(&rename_lock, seq));
3287 
3288 	return result;
3289 }
3290 
3291 static enum d_walk_ret d_genocide_kill(void *data, struct dentry *dentry)
3292 {
3293 	struct dentry *root = data;
3294 	if (dentry != root) {
3295 		if (d_unhashed(dentry) || !dentry->d_inode)
3296 			return D_WALK_SKIP;
3297 
3298 		if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
3299 			dentry->d_flags |= DCACHE_GENOCIDE;
3300 			dentry->d_lockref.count--;
3301 		}
3302 	}
3303 	return D_WALK_CONTINUE;
3304 }
3305 
3306 void d_genocide(struct dentry *parent)
3307 {
3308 	d_walk(parent, parent, d_genocide_kill, NULL);
3309 }
3310 
3311 void d_tmpfile(struct dentry *dentry, struct inode *inode)
3312 {
3313 	inode_dec_link_count(inode);
3314 	BUG_ON(dentry->d_name.name != dentry->d_iname ||
3315 		!hlist_unhashed(&dentry->d_alias) ||
3316 		!d_unlinked(dentry));
3317 	spin_lock(&dentry->d_parent->d_lock);
3318 	spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
3319 	dentry->d_name.len = sprintf(dentry->d_iname, "#%llu",
3320 				(unsigned long long)inode->i_ino);
3321 	spin_unlock(&dentry->d_lock);
3322 	spin_unlock(&dentry->d_parent->d_lock);
3323 	d_instantiate(dentry, inode);
3324 }
3325 EXPORT_SYMBOL(d_tmpfile);
3326 
3327 static __initdata unsigned long dhash_entries;
3328 static int __init set_dhash_entries(char *str)
3329 {
3330 	if (!str)
3331 		return 0;
3332 	dhash_entries = simple_strtoul(str, &str, 0);
3333 	return 1;
3334 }
3335 __setup("dhash_entries=", set_dhash_entries);
3336 
3337 static void __init dcache_init_early(void)
3338 {
3339 	unsigned int loop;
3340 
3341 	/* If hashes are distributed across NUMA nodes, defer
3342 	 * hash allocation until vmalloc space is available.
3343 	 */
3344 	if (hashdist)
3345 		return;
3346 
3347 	dentry_hashtable =
3348 		alloc_large_system_hash("Dentry cache",
3349 					sizeof(struct hlist_bl_head),
3350 					dhash_entries,
3351 					13,
3352 					HASH_EARLY,
3353 					&d_hash_shift,
3354 					&d_hash_mask,
3355 					0,
3356 					0);
3357 
3358 	for (loop = 0; loop < (1U << d_hash_shift); loop++)
3359 		INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
3360 }
3361 
3362 static void __init dcache_init(void)
3363 {
3364 	unsigned int loop;
3365 
3366 	/*
3367 	 * A constructor could be added for stable state like the lists,
3368 	 * but it is probably not worth it because of the cache nature
3369 	 * of the dcache.
3370 	 */
3371 	dentry_cache = KMEM_CACHE(dentry,
3372 		SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD);
3373 
3374 	/* Hash may have been set up in dcache_init_early */
3375 	if (!hashdist)
3376 		return;
3377 
3378 	dentry_hashtable =
3379 		alloc_large_system_hash("Dentry cache",
3380 					sizeof(struct hlist_bl_head),
3381 					dhash_entries,
3382 					13,
3383 					0,
3384 					&d_hash_shift,
3385 					&d_hash_mask,
3386 					0,
3387 					0);
3388 
3389 	for (loop = 0; loop < (1U << d_hash_shift); loop++)
3390 		INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
3391 }
3392 
3393 /* SLAB cache for __getname() consumers */
3394 struct kmem_cache *names_cachep __read_mostly;
3395 EXPORT_SYMBOL(names_cachep);
3396 
3397 EXPORT_SYMBOL(d_genocide);
3398 
3399 void __init vfs_caches_init_early(void)
3400 {
3401 	dcache_init_early();
3402 	inode_init_early();
3403 }
3404 
3405 void __init vfs_caches_init(unsigned long mempages)
3406 {
3407 	unsigned long reserve;
3408 
3409 	/* Base hash sizes on available memory, with a reserve equal to
3410            150% of current kernel size */
3411 
3412 	reserve = min((mempages - nr_free_pages()) * 3/2, mempages - 1);
3413 	mempages -= reserve;
3414 
3415 	names_cachep = kmem_cache_create("names_cache", PATH_MAX, 0,
3416 			SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
3417 
3418 	dcache_init();
3419 	inode_init();
3420 	files_init(mempages);
3421 	mnt_init();
3422 	bdev_cache_init();
3423 	chrdev_init();
3424 }
3425