1 /* 2 * fs/dcache.c 3 * 4 * Complete reimplementation 5 * (C) 1997 Thomas Schoebel-Theuer, 6 * with heavy changes by Linus Torvalds 7 */ 8 9 /* 10 * Notes on the allocation strategy: 11 * 12 * The dcache is a master of the icache - whenever a dcache entry 13 * exists, the inode will always exist. "iput()" is done either when 14 * the dcache entry is deleted or garbage collected. 15 */ 16 17 #include <linux/syscalls.h> 18 #include <linux/string.h> 19 #include <linux/mm.h> 20 #include <linux/fs.h> 21 #include <linux/fsnotify.h> 22 #include <linux/slab.h> 23 #include <linux/init.h> 24 #include <linux/hash.h> 25 #include <linux/cache.h> 26 #include <linux/export.h> 27 #include <linux/mount.h> 28 #include <linux/file.h> 29 #include <asm/uaccess.h> 30 #include <linux/security.h> 31 #include <linux/seqlock.h> 32 #include <linux/swap.h> 33 #include <linux/bootmem.h> 34 #include <linux/fs_struct.h> 35 #include <linux/hardirq.h> 36 #include <linux/bit_spinlock.h> 37 #include <linux/rculist_bl.h> 38 #include <linux/prefetch.h> 39 #include <linux/ratelimit.h> 40 #include <linux/list_lru.h> 41 #include "internal.h" 42 #include "mount.h" 43 44 /* 45 * Usage: 46 * dcache->d_inode->i_lock protects: 47 * - i_dentry, d_alias, d_inode of aliases 48 * dcache_hash_bucket lock protects: 49 * - the dcache hash table 50 * s_anon bl list spinlock protects: 51 * - the s_anon list (see __d_drop) 52 * dentry->d_sb->s_dentry_lru_lock protects: 53 * - the dcache lru lists and counters 54 * d_lock protects: 55 * - d_flags 56 * - d_name 57 * - d_lru 58 * - d_count 59 * - d_unhashed() 60 * - d_parent and d_subdirs 61 * - childrens' d_child and d_parent 62 * - d_alias, d_inode 63 * 64 * Ordering: 65 * dentry->d_inode->i_lock 66 * dentry->d_lock 67 * dentry->d_sb->s_dentry_lru_lock 68 * dcache_hash_bucket lock 69 * s_anon lock 70 * 71 * If there is an ancestor relationship: 72 * dentry->d_parent->...->d_parent->d_lock 73 * ... 74 * dentry->d_parent->d_lock 75 * dentry->d_lock 76 * 77 * If no ancestor relationship: 78 * if (dentry1 < dentry2) 79 * dentry1->d_lock 80 * dentry2->d_lock 81 */ 82 int sysctl_vfs_cache_pressure __read_mostly = 100; 83 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure); 84 85 __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock); 86 87 EXPORT_SYMBOL(rename_lock); 88 89 static struct kmem_cache *dentry_cache __read_mostly; 90 91 /* 92 * This is the single most critical data structure when it comes 93 * to the dcache: the hashtable for lookups. Somebody should try 94 * to make this good - I've just made it work. 95 * 96 * This hash-function tries to avoid losing too many bits of hash 97 * information, yet avoid using a prime hash-size or similar. 98 */ 99 100 static unsigned int d_hash_mask __read_mostly; 101 static unsigned int d_hash_shift __read_mostly; 102 103 static struct hlist_bl_head *dentry_hashtable __read_mostly; 104 105 static inline struct hlist_bl_head *d_hash(const struct dentry *parent, 106 unsigned int hash) 107 { 108 hash += (unsigned long) parent / L1_CACHE_BYTES; 109 hash = hash + (hash >> d_hash_shift); 110 return dentry_hashtable + (hash & d_hash_mask); 111 } 112 113 /* Statistics gathering. */ 114 struct dentry_stat_t dentry_stat = { 115 .age_limit = 45, 116 }; 117 118 static DEFINE_PER_CPU(long, nr_dentry); 119 static DEFINE_PER_CPU(long, nr_dentry_unused); 120 121 #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS) 122 123 /* 124 * Here we resort to our own counters instead of using generic per-cpu counters 125 * for consistency with what the vfs inode code does. We are expected to harvest 126 * better code and performance by having our own specialized counters. 127 * 128 * Please note that the loop is done over all possible CPUs, not over all online 129 * CPUs. The reason for this is that we don't want to play games with CPUs going 130 * on and off. If one of them goes off, we will just keep their counters. 131 * 132 * glommer: See cffbc8a for details, and if you ever intend to change this, 133 * please update all vfs counters to match. 134 */ 135 static long get_nr_dentry(void) 136 { 137 int i; 138 long sum = 0; 139 for_each_possible_cpu(i) 140 sum += per_cpu(nr_dentry, i); 141 return sum < 0 ? 0 : sum; 142 } 143 144 static long get_nr_dentry_unused(void) 145 { 146 int i; 147 long sum = 0; 148 for_each_possible_cpu(i) 149 sum += per_cpu(nr_dentry_unused, i); 150 return sum < 0 ? 0 : sum; 151 } 152 153 int proc_nr_dentry(struct ctl_table *table, int write, void __user *buffer, 154 size_t *lenp, loff_t *ppos) 155 { 156 dentry_stat.nr_dentry = get_nr_dentry(); 157 dentry_stat.nr_unused = get_nr_dentry_unused(); 158 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos); 159 } 160 #endif 161 162 /* 163 * Compare 2 name strings, return 0 if they match, otherwise non-zero. 164 * The strings are both count bytes long, and count is non-zero. 165 */ 166 #ifdef CONFIG_DCACHE_WORD_ACCESS 167 168 #include <asm/word-at-a-time.h> 169 /* 170 * NOTE! 'cs' and 'scount' come from a dentry, so it has a 171 * aligned allocation for this particular component. We don't 172 * strictly need the load_unaligned_zeropad() safety, but it 173 * doesn't hurt either. 174 * 175 * In contrast, 'ct' and 'tcount' can be from a pathname, and do 176 * need the careful unaligned handling. 177 */ 178 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount) 179 { 180 unsigned long a,b,mask; 181 182 for (;;) { 183 a = *(unsigned long *)cs; 184 b = load_unaligned_zeropad(ct); 185 if (tcount < sizeof(unsigned long)) 186 break; 187 if (unlikely(a != b)) 188 return 1; 189 cs += sizeof(unsigned long); 190 ct += sizeof(unsigned long); 191 tcount -= sizeof(unsigned long); 192 if (!tcount) 193 return 0; 194 } 195 mask = bytemask_from_count(tcount); 196 return unlikely(!!((a ^ b) & mask)); 197 } 198 199 #else 200 201 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount) 202 { 203 do { 204 if (*cs != *ct) 205 return 1; 206 cs++; 207 ct++; 208 tcount--; 209 } while (tcount); 210 return 0; 211 } 212 213 #endif 214 215 static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount) 216 { 217 const unsigned char *cs; 218 /* 219 * Be careful about RCU walk racing with rename: 220 * use ACCESS_ONCE to fetch the name pointer. 221 * 222 * NOTE! Even if a rename will mean that the length 223 * was not loaded atomically, we don't care. The 224 * RCU walk will check the sequence count eventually, 225 * and catch it. And we won't overrun the buffer, 226 * because we're reading the name pointer atomically, 227 * and a dentry name is guaranteed to be properly 228 * terminated with a NUL byte. 229 * 230 * End result: even if 'len' is wrong, we'll exit 231 * early because the data cannot match (there can 232 * be no NUL in the ct/tcount data) 233 */ 234 cs = ACCESS_ONCE(dentry->d_name.name); 235 smp_read_barrier_depends(); 236 return dentry_string_cmp(cs, ct, tcount); 237 } 238 239 static void __d_free(struct rcu_head *head) 240 { 241 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu); 242 243 WARN_ON(!hlist_unhashed(&dentry->d_alias)); 244 if (dname_external(dentry)) 245 kfree(dentry->d_name.name); 246 kmem_cache_free(dentry_cache, dentry); 247 } 248 249 static void dentry_free(struct dentry *dentry) 250 { 251 /* if dentry was never visible to RCU, immediate free is OK */ 252 if (!(dentry->d_flags & DCACHE_RCUACCESS)) 253 __d_free(&dentry->d_u.d_rcu); 254 else 255 call_rcu(&dentry->d_u.d_rcu, __d_free); 256 } 257 258 /** 259 * dentry_rcuwalk_barrier - invalidate in-progress rcu-walk lookups 260 * @dentry: the target dentry 261 * After this call, in-progress rcu-walk path lookup will fail. This 262 * should be called after unhashing, and after changing d_inode (if 263 * the dentry has not already been unhashed). 264 */ 265 static inline void dentry_rcuwalk_barrier(struct dentry *dentry) 266 { 267 assert_spin_locked(&dentry->d_lock); 268 /* Go through a barrier */ 269 write_seqcount_barrier(&dentry->d_seq); 270 } 271 272 /* 273 * Release the dentry's inode, using the filesystem 274 * d_iput() operation if defined. Dentry has no refcount 275 * and is unhashed. 276 */ 277 static void dentry_iput(struct dentry * dentry) 278 __releases(dentry->d_lock) 279 __releases(dentry->d_inode->i_lock) 280 { 281 struct inode *inode = dentry->d_inode; 282 if (inode) { 283 dentry->d_inode = NULL; 284 hlist_del_init(&dentry->d_alias); 285 spin_unlock(&dentry->d_lock); 286 spin_unlock(&inode->i_lock); 287 if (!inode->i_nlink) 288 fsnotify_inoderemove(inode); 289 if (dentry->d_op && dentry->d_op->d_iput) 290 dentry->d_op->d_iput(dentry, inode); 291 else 292 iput(inode); 293 } else { 294 spin_unlock(&dentry->d_lock); 295 } 296 } 297 298 /* 299 * Release the dentry's inode, using the filesystem 300 * d_iput() operation if defined. dentry remains in-use. 301 */ 302 static void dentry_unlink_inode(struct dentry * dentry) 303 __releases(dentry->d_lock) 304 __releases(dentry->d_inode->i_lock) 305 { 306 struct inode *inode = dentry->d_inode; 307 __d_clear_type(dentry); 308 dentry->d_inode = NULL; 309 hlist_del_init(&dentry->d_alias); 310 dentry_rcuwalk_barrier(dentry); 311 spin_unlock(&dentry->d_lock); 312 spin_unlock(&inode->i_lock); 313 if (!inode->i_nlink) 314 fsnotify_inoderemove(inode); 315 if (dentry->d_op && dentry->d_op->d_iput) 316 dentry->d_op->d_iput(dentry, inode); 317 else 318 iput(inode); 319 } 320 321 /* 322 * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry 323 * is in use - which includes both the "real" per-superblock 324 * LRU list _and_ the DCACHE_SHRINK_LIST use. 325 * 326 * The DCACHE_SHRINK_LIST bit is set whenever the dentry is 327 * on the shrink list (ie not on the superblock LRU list). 328 * 329 * The per-cpu "nr_dentry_unused" counters are updated with 330 * the DCACHE_LRU_LIST bit. 331 * 332 * These helper functions make sure we always follow the 333 * rules. d_lock must be held by the caller. 334 */ 335 #define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x)) 336 static void d_lru_add(struct dentry *dentry) 337 { 338 D_FLAG_VERIFY(dentry, 0); 339 dentry->d_flags |= DCACHE_LRU_LIST; 340 this_cpu_inc(nr_dentry_unused); 341 WARN_ON_ONCE(!list_lru_add(&dentry->d_sb->s_dentry_lru, &dentry->d_lru)); 342 } 343 344 static void d_lru_del(struct dentry *dentry) 345 { 346 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST); 347 dentry->d_flags &= ~DCACHE_LRU_LIST; 348 this_cpu_dec(nr_dentry_unused); 349 WARN_ON_ONCE(!list_lru_del(&dentry->d_sb->s_dentry_lru, &dentry->d_lru)); 350 } 351 352 static void d_shrink_del(struct dentry *dentry) 353 { 354 D_FLAG_VERIFY(dentry, DCACHE_SHRINK_LIST | DCACHE_LRU_LIST); 355 list_del_init(&dentry->d_lru); 356 dentry->d_flags &= ~(DCACHE_SHRINK_LIST | DCACHE_LRU_LIST); 357 this_cpu_dec(nr_dentry_unused); 358 } 359 360 static void d_shrink_add(struct dentry *dentry, struct list_head *list) 361 { 362 D_FLAG_VERIFY(dentry, 0); 363 list_add(&dentry->d_lru, list); 364 dentry->d_flags |= DCACHE_SHRINK_LIST | DCACHE_LRU_LIST; 365 this_cpu_inc(nr_dentry_unused); 366 } 367 368 /* 369 * These can only be called under the global LRU lock, ie during the 370 * callback for freeing the LRU list. "isolate" removes it from the 371 * LRU lists entirely, while shrink_move moves it to the indicated 372 * private list. 373 */ 374 static void d_lru_isolate(struct dentry *dentry) 375 { 376 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST); 377 dentry->d_flags &= ~DCACHE_LRU_LIST; 378 this_cpu_dec(nr_dentry_unused); 379 list_del_init(&dentry->d_lru); 380 } 381 382 static void d_lru_shrink_move(struct dentry *dentry, struct list_head *list) 383 { 384 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST); 385 dentry->d_flags |= DCACHE_SHRINK_LIST; 386 list_move_tail(&dentry->d_lru, list); 387 } 388 389 /* 390 * dentry_lru_(add|del)_list) must be called with d_lock held. 391 */ 392 static void dentry_lru_add(struct dentry *dentry) 393 { 394 if (unlikely(!(dentry->d_flags & DCACHE_LRU_LIST))) 395 d_lru_add(dentry); 396 } 397 398 /** 399 * d_drop - drop a dentry 400 * @dentry: dentry to drop 401 * 402 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't 403 * be found through a VFS lookup any more. Note that this is different from 404 * deleting the dentry - d_delete will try to mark the dentry negative if 405 * possible, giving a successful _negative_ lookup, while d_drop will 406 * just make the cache lookup fail. 407 * 408 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some 409 * reason (NFS timeouts or autofs deletes). 410 * 411 * __d_drop requires dentry->d_lock. 412 */ 413 void __d_drop(struct dentry *dentry) 414 { 415 if (!d_unhashed(dentry)) { 416 struct hlist_bl_head *b; 417 /* 418 * Hashed dentries are normally on the dentry hashtable, 419 * with the exception of those newly allocated by 420 * d_obtain_alias, which are always IS_ROOT: 421 */ 422 if (unlikely(IS_ROOT(dentry))) 423 b = &dentry->d_sb->s_anon; 424 else 425 b = d_hash(dentry->d_parent, dentry->d_name.hash); 426 427 hlist_bl_lock(b); 428 __hlist_bl_del(&dentry->d_hash); 429 dentry->d_hash.pprev = NULL; 430 hlist_bl_unlock(b); 431 dentry_rcuwalk_barrier(dentry); 432 } 433 } 434 EXPORT_SYMBOL(__d_drop); 435 436 void d_drop(struct dentry *dentry) 437 { 438 spin_lock(&dentry->d_lock); 439 __d_drop(dentry); 440 spin_unlock(&dentry->d_lock); 441 } 442 EXPORT_SYMBOL(d_drop); 443 444 static void __dentry_kill(struct dentry *dentry) 445 { 446 struct dentry *parent = NULL; 447 bool can_free = true; 448 if (!IS_ROOT(dentry)) 449 parent = dentry->d_parent; 450 451 /* 452 * The dentry is now unrecoverably dead to the world. 453 */ 454 lockref_mark_dead(&dentry->d_lockref); 455 456 /* 457 * inform the fs via d_prune that this dentry is about to be 458 * unhashed and destroyed. 459 */ 460 if ((dentry->d_flags & DCACHE_OP_PRUNE) && !d_unhashed(dentry)) 461 dentry->d_op->d_prune(dentry); 462 463 if (dentry->d_flags & DCACHE_LRU_LIST) { 464 if (!(dentry->d_flags & DCACHE_SHRINK_LIST)) 465 d_lru_del(dentry); 466 } 467 /* if it was on the hash then remove it */ 468 __d_drop(dentry); 469 list_del(&dentry->d_u.d_child); 470 /* 471 * Inform d_walk() that we are no longer attached to the 472 * dentry tree 473 */ 474 dentry->d_flags |= DCACHE_DENTRY_KILLED; 475 if (parent) 476 spin_unlock(&parent->d_lock); 477 dentry_iput(dentry); 478 /* 479 * dentry_iput drops the locks, at which point nobody (except 480 * transient RCU lookups) can reach this dentry. 481 */ 482 BUG_ON((int)dentry->d_lockref.count > 0); 483 this_cpu_dec(nr_dentry); 484 if (dentry->d_op && dentry->d_op->d_release) 485 dentry->d_op->d_release(dentry); 486 487 spin_lock(&dentry->d_lock); 488 if (dentry->d_flags & DCACHE_SHRINK_LIST) { 489 dentry->d_flags |= DCACHE_MAY_FREE; 490 can_free = false; 491 } 492 spin_unlock(&dentry->d_lock); 493 if (likely(can_free)) 494 dentry_free(dentry); 495 } 496 497 /* 498 * Finish off a dentry we've decided to kill. 499 * dentry->d_lock must be held, returns with it unlocked. 500 * If ref is non-zero, then decrement the refcount too. 501 * Returns dentry requiring refcount drop, or NULL if we're done. 502 */ 503 static struct dentry *dentry_kill(struct dentry *dentry) 504 __releases(dentry->d_lock) 505 { 506 struct inode *inode = dentry->d_inode; 507 struct dentry *parent = NULL; 508 509 if (inode && unlikely(!spin_trylock(&inode->i_lock))) 510 goto failed; 511 512 if (!IS_ROOT(dentry)) { 513 parent = dentry->d_parent; 514 if (unlikely(!spin_trylock(&parent->d_lock))) { 515 if (inode) 516 spin_unlock(&inode->i_lock); 517 goto failed; 518 } 519 } 520 521 __dentry_kill(dentry); 522 return parent; 523 524 failed: 525 spin_unlock(&dentry->d_lock); 526 cpu_relax(); 527 return dentry; /* try again with same dentry */ 528 } 529 530 static inline struct dentry *lock_parent(struct dentry *dentry) 531 { 532 struct dentry *parent = dentry->d_parent; 533 if (IS_ROOT(dentry)) 534 return NULL; 535 if (unlikely((int)dentry->d_lockref.count < 0)) 536 return NULL; 537 if (likely(spin_trylock(&parent->d_lock))) 538 return parent; 539 rcu_read_lock(); 540 spin_unlock(&dentry->d_lock); 541 again: 542 parent = ACCESS_ONCE(dentry->d_parent); 543 spin_lock(&parent->d_lock); 544 /* 545 * We can't blindly lock dentry until we are sure 546 * that we won't violate the locking order. 547 * Any changes of dentry->d_parent must have 548 * been done with parent->d_lock held, so 549 * spin_lock() above is enough of a barrier 550 * for checking if it's still our child. 551 */ 552 if (unlikely(parent != dentry->d_parent)) { 553 spin_unlock(&parent->d_lock); 554 goto again; 555 } 556 rcu_read_unlock(); 557 if (parent != dentry) 558 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED); 559 else 560 parent = NULL; 561 return parent; 562 } 563 564 /* 565 * This is dput 566 * 567 * This is complicated by the fact that we do not want to put 568 * dentries that are no longer on any hash chain on the unused 569 * list: we'd much rather just get rid of them immediately. 570 * 571 * However, that implies that we have to traverse the dentry 572 * tree upwards to the parents which might _also_ now be 573 * scheduled for deletion (it may have been only waiting for 574 * its last child to go away). 575 * 576 * This tail recursion is done by hand as we don't want to depend 577 * on the compiler to always get this right (gcc generally doesn't). 578 * Real recursion would eat up our stack space. 579 */ 580 581 /* 582 * dput - release a dentry 583 * @dentry: dentry to release 584 * 585 * Release a dentry. This will drop the usage count and if appropriate 586 * call the dentry unlink method as well as removing it from the queues and 587 * releasing its resources. If the parent dentries were scheduled for release 588 * they too may now get deleted. 589 */ 590 void dput(struct dentry *dentry) 591 { 592 if (unlikely(!dentry)) 593 return; 594 595 repeat: 596 if (lockref_put_or_lock(&dentry->d_lockref)) 597 return; 598 599 /* Unreachable? Get rid of it */ 600 if (unlikely(d_unhashed(dentry))) 601 goto kill_it; 602 603 if (unlikely(dentry->d_flags & DCACHE_OP_DELETE)) { 604 if (dentry->d_op->d_delete(dentry)) 605 goto kill_it; 606 } 607 608 if (!(dentry->d_flags & DCACHE_REFERENCED)) 609 dentry->d_flags |= DCACHE_REFERENCED; 610 dentry_lru_add(dentry); 611 612 dentry->d_lockref.count--; 613 spin_unlock(&dentry->d_lock); 614 return; 615 616 kill_it: 617 dentry = dentry_kill(dentry); 618 if (dentry) 619 goto repeat; 620 } 621 EXPORT_SYMBOL(dput); 622 623 /** 624 * d_invalidate - invalidate a dentry 625 * @dentry: dentry to invalidate 626 * 627 * Try to invalidate the dentry if it turns out to be 628 * possible. If there are other dentries that can be 629 * reached through this one we can't delete it and we 630 * return -EBUSY. On success we return 0. 631 * 632 * no dcache lock. 633 */ 634 635 int d_invalidate(struct dentry * dentry) 636 { 637 /* 638 * If it's already been dropped, return OK. 639 */ 640 spin_lock(&dentry->d_lock); 641 if (d_unhashed(dentry)) { 642 spin_unlock(&dentry->d_lock); 643 return 0; 644 } 645 /* 646 * Check whether to do a partial shrink_dcache 647 * to get rid of unused child entries. 648 */ 649 if (!list_empty(&dentry->d_subdirs)) { 650 spin_unlock(&dentry->d_lock); 651 shrink_dcache_parent(dentry); 652 spin_lock(&dentry->d_lock); 653 } 654 655 /* 656 * Somebody else still using it? 657 * 658 * If it's a directory, we can't drop it 659 * for fear of somebody re-populating it 660 * with children (even though dropping it 661 * would make it unreachable from the root, 662 * we might still populate it if it was a 663 * working directory or similar). 664 * We also need to leave mountpoints alone, 665 * directory or not. 666 */ 667 if (dentry->d_lockref.count > 1 && dentry->d_inode) { 668 if (S_ISDIR(dentry->d_inode->i_mode) || d_mountpoint(dentry)) { 669 spin_unlock(&dentry->d_lock); 670 return -EBUSY; 671 } 672 } 673 674 __d_drop(dentry); 675 spin_unlock(&dentry->d_lock); 676 return 0; 677 } 678 EXPORT_SYMBOL(d_invalidate); 679 680 /* This must be called with d_lock held */ 681 static inline void __dget_dlock(struct dentry *dentry) 682 { 683 dentry->d_lockref.count++; 684 } 685 686 static inline void __dget(struct dentry *dentry) 687 { 688 lockref_get(&dentry->d_lockref); 689 } 690 691 struct dentry *dget_parent(struct dentry *dentry) 692 { 693 int gotref; 694 struct dentry *ret; 695 696 /* 697 * Do optimistic parent lookup without any 698 * locking. 699 */ 700 rcu_read_lock(); 701 ret = ACCESS_ONCE(dentry->d_parent); 702 gotref = lockref_get_not_zero(&ret->d_lockref); 703 rcu_read_unlock(); 704 if (likely(gotref)) { 705 if (likely(ret == ACCESS_ONCE(dentry->d_parent))) 706 return ret; 707 dput(ret); 708 } 709 710 repeat: 711 /* 712 * Don't need rcu_dereference because we re-check it was correct under 713 * the lock. 714 */ 715 rcu_read_lock(); 716 ret = dentry->d_parent; 717 spin_lock(&ret->d_lock); 718 if (unlikely(ret != dentry->d_parent)) { 719 spin_unlock(&ret->d_lock); 720 rcu_read_unlock(); 721 goto repeat; 722 } 723 rcu_read_unlock(); 724 BUG_ON(!ret->d_lockref.count); 725 ret->d_lockref.count++; 726 spin_unlock(&ret->d_lock); 727 return ret; 728 } 729 EXPORT_SYMBOL(dget_parent); 730 731 /** 732 * d_find_alias - grab a hashed alias of inode 733 * @inode: inode in question 734 * @want_discon: flag, used by d_splice_alias, to request 735 * that only a DISCONNECTED alias be returned. 736 * 737 * If inode has a hashed alias, or is a directory and has any alias, 738 * acquire the reference to alias and return it. Otherwise return NULL. 739 * Notice that if inode is a directory there can be only one alias and 740 * it can be unhashed only if it has no children, or if it is the root 741 * of a filesystem. 742 * 743 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer 744 * any other hashed alias over that one unless @want_discon is set, 745 * in which case only return an IS_ROOT, DCACHE_DISCONNECTED alias. 746 */ 747 static struct dentry *__d_find_alias(struct inode *inode, int want_discon) 748 { 749 struct dentry *alias, *discon_alias; 750 751 again: 752 discon_alias = NULL; 753 hlist_for_each_entry(alias, &inode->i_dentry, d_alias) { 754 spin_lock(&alias->d_lock); 755 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) { 756 if (IS_ROOT(alias) && 757 (alias->d_flags & DCACHE_DISCONNECTED)) { 758 discon_alias = alias; 759 } else if (!want_discon) { 760 __dget_dlock(alias); 761 spin_unlock(&alias->d_lock); 762 return alias; 763 } 764 } 765 spin_unlock(&alias->d_lock); 766 } 767 if (discon_alias) { 768 alias = discon_alias; 769 spin_lock(&alias->d_lock); 770 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) { 771 if (IS_ROOT(alias) && 772 (alias->d_flags & DCACHE_DISCONNECTED)) { 773 __dget_dlock(alias); 774 spin_unlock(&alias->d_lock); 775 return alias; 776 } 777 } 778 spin_unlock(&alias->d_lock); 779 goto again; 780 } 781 return NULL; 782 } 783 784 struct dentry *d_find_alias(struct inode *inode) 785 { 786 struct dentry *de = NULL; 787 788 if (!hlist_empty(&inode->i_dentry)) { 789 spin_lock(&inode->i_lock); 790 de = __d_find_alias(inode, 0); 791 spin_unlock(&inode->i_lock); 792 } 793 return de; 794 } 795 EXPORT_SYMBOL(d_find_alias); 796 797 /* 798 * Try to kill dentries associated with this inode. 799 * WARNING: you must own a reference to inode. 800 */ 801 void d_prune_aliases(struct inode *inode) 802 { 803 struct dentry *dentry; 804 restart: 805 spin_lock(&inode->i_lock); 806 hlist_for_each_entry(dentry, &inode->i_dentry, d_alias) { 807 spin_lock(&dentry->d_lock); 808 if (!dentry->d_lockref.count) { 809 /* 810 * inform the fs via d_prune that this dentry 811 * is about to be unhashed and destroyed. 812 */ 813 if ((dentry->d_flags & DCACHE_OP_PRUNE) && 814 !d_unhashed(dentry)) 815 dentry->d_op->d_prune(dentry); 816 817 __dget_dlock(dentry); 818 __d_drop(dentry); 819 spin_unlock(&dentry->d_lock); 820 spin_unlock(&inode->i_lock); 821 dput(dentry); 822 goto restart; 823 } 824 spin_unlock(&dentry->d_lock); 825 } 826 spin_unlock(&inode->i_lock); 827 } 828 EXPORT_SYMBOL(d_prune_aliases); 829 830 static void shrink_dentry_list(struct list_head *list) 831 { 832 struct dentry *dentry, *parent; 833 834 while (!list_empty(list)) { 835 struct inode *inode; 836 dentry = list_entry(list->prev, struct dentry, d_lru); 837 spin_lock(&dentry->d_lock); 838 parent = lock_parent(dentry); 839 840 /* 841 * The dispose list is isolated and dentries are not accounted 842 * to the LRU here, so we can simply remove it from the list 843 * here regardless of whether it is referenced or not. 844 */ 845 d_shrink_del(dentry); 846 847 /* 848 * We found an inuse dentry which was not removed from 849 * the LRU because of laziness during lookup. Do not free it. 850 */ 851 if ((int)dentry->d_lockref.count > 0) { 852 spin_unlock(&dentry->d_lock); 853 if (parent) 854 spin_unlock(&parent->d_lock); 855 continue; 856 } 857 858 859 if (unlikely(dentry->d_flags & DCACHE_DENTRY_KILLED)) { 860 bool can_free = dentry->d_flags & DCACHE_MAY_FREE; 861 spin_unlock(&dentry->d_lock); 862 if (parent) 863 spin_unlock(&parent->d_lock); 864 if (can_free) 865 dentry_free(dentry); 866 continue; 867 } 868 869 inode = dentry->d_inode; 870 if (inode && unlikely(!spin_trylock(&inode->i_lock))) { 871 d_shrink_add(dentry, list); 872 spin_unlock(&dentry->d_lock); 873 if (parent) 874 spin_unlock(&parent->d_lock); 875 continue; 876 } 877 878 __dentry_kill(dentry); 879 880 /* 881 * We need to prune ancestors too. This is necessary to prevent 882 * quadratic behavior of shrink_dcache_parent(), but is also 883 * expected to be beneficial in reducing dentry cache 884 * fragmentation. 885 */ 886 dentry = parent; 887 while (dentry && !lockref_put_or_lock(&dentry->d_lockref)) { 888 parent = lock_parent(dentry); 889 if (dentry->d_lockref.count != 1) { 890 dentry->d_lockref.count--; 891 spin_unlock(&dentry->d_lock); 892 if (parent) 893 spin_unlock(&parent->d_lock); 894 break; 895 } 896 inode = dentry->d_inode; /* can't be NULL */ 897 if (unlikely(!spin_trylock(&inode->i_lock))) { 898 spin_unlock(&dentry->d_lock); 899 if (parent) 900 spin_unlock(&parent->d_lock); 901 cpu_relax(); 902 continue; 903 } 904 __dentry_kill(dentry); 905 dentry = parent; 906 } 907 } 908 } 909 910 static enum lru_status 911 dentry_lru_isolate(struct list_head *item, spinlock_t *lru_lock, void *arg) 912 { 913 struct list_head *freeable = arg; 914 struct dentry *dentry = container_of(item, struct dentry, d_lru); 915 916 917 /* 918 * we are inverting the lru lock/dentry->d_lock here, 919 * so use a trylock. If we fail to get the lock, just skip 920 * it 921 */ 922 if (!spin_trylock(&dentry->d_lock)) 923 return LRU_SKIP; 924 925 /* 926 * Referenced dentries are still in use. If they have active 927 * counts, just remove them from the LRU. Otherwise give them 928 * another pass through the LRU. 929 */ 930 if (dentry->d_lockref.count) { 931 d_lru_isolate(dentry); 932 spin_unlock(&dentry->d_lock); 933 return LRU_REMOVED; 934 } 935 936 if (dentry->d_flags & DCACHE_REFERENCED) { 937 dentry->d_flags &= ~DCACHE_REFERENCED; 938 spin_unlock(&dentry->d_lock); 939 940 /* 941 * The list move itself will be made by the common LRU code. At 942 * this point, we've dropped the dentry->d_lock but keep the 943 * lru lock. This is safe to do, since every list movement is 944 * protected by the lru lock even if both locks are held. 945 * 946 * This is guaranteed by the fact that all LRU management 947 * functions are intermediated by the LRU API calls like 948 * list_lru_add and list_lru_del. List movement in this file 949 * only ever occur through this functions or through callbacks 950 * like this one, that are called from the LRU API. 951 * 952 * The only exceptions to this are functions like 953 * shrink_dentry_list, and code that first checks for the 954 * DCACHE_SHRINK_LIST flag. Those are guaranteed to be 955 * operating only with stack provided lists after they are 956 * properly isolated from the main list. It is thus, always a 957 * local access. 958 */ 959 return LRU_ROTATE; 960 } 961 962 d_lru_shrink_move(dentry, freeable); 963 spin_unlock(&dentry->d_lock); 964 965 return LRU_REMOVED; 966 } 967 968 /** 969 * prune_dcache_sb - shrink the dcache 970 * @sb: superblock 971 * @nr_to_scan : number of entries to try to free 972 * @nid: which node to scan for freeable entities 973 * 974 * Attempt to shrink the superblock dcache LRU by @nr_to_scan entries. This is 975 * done when we need more memory an called from the superblock shrinker 976 * function. 977 * 978 * This function may fail to free any resources if all the dentries are in 979 * use. 980 */ 981 long prune_dcache_sb(struct super_block *sb, unsigned long nr_to_scan, 982 int nid) 983 { 984 LIST_HEAD(dispose); 985 long freed; 986 987 freed = list_lru_walk_node(&sb->s_dentry_lru, nid, dentry_lru_isolate, 988 &dispose, &nr_to_scan); 989 shrink_dentry_list(&dispose); 990 return freed; 991 } 992 993 static enum lru_status dentry_lru_isolate_shrink(struct list_head *item, 994 spinlock_t *lru_lock, void *arg) 995 { 996 struct list_head *freeable = arg; 997 struct dentry *dentry = container_of(item, struct dentry, d_lru); 998 999 /* 1000 * we are inverting the lru lock/dentry->d_lock here, 1001 * so use a trylock. If we fail to get the lock, just skip 1002 * it 1003 */ 1004 if (!spin_trylock(&dentry->d_lock)) 1005 return LRU_SKIP; 1006 1007 d_lru_shrink_move(dentry, freeable); 1008 spin_unlock(&dentry->d_lock); 1009 1010 return LRU_REMOVED; 1011 } 1012 1013 1014 /** 1015 * shrink_dcache_sb - shrink dcache for a superblock 1016 * @sb: superblock 1017 * 1018 * Shrink the dcache for the specified super block. This is used to free 1019 * the dcache before unmounting a file system. 1020 */ 1021 void shrink_dcache_sb(struct super_block *sb) 1022 { 1023 long freed; 1024 1025 do { 1026 LIST_HEAD(dispose); 1027 1028 freed = list_lru_walk(&sb->s_dentry_lru, 1029 dentry_lru_isolate_shrink, &dispose, UINT_MAX); 1030 1031 this_cpu_sub(nr_dentry_unused, freed); 1032 shrink_dentry_list(&dispose); 1033 } while (freed > 0); 1034 } 1035 EXPORT_SYMBOL(shrink_dcache_sb); 1036 1037 /** 1038 * enum d_walk_ret - action to talke during tree walk 1039 * @D_WALK_CONTINUE: contrinue walk 1040 * @D_WALK_QUIT: quit walk 1041 * @D_WALK_NORETRY: quit when retry is needed 1042 * @D_WALK_SKIP: skip this dentry and its children 1043 */ 1044 enum d_walk_ret { 1045 D_WALK_CONTINUE, 1046 D_WALK_QUIT, 1047 D_WALK_NORETRY, 1048 D_WALK_SKIP, 1049 }; 1050 1051 /** 1052 * d_walk - walk the dentry tree 1053 * @parent: start of walk 1054 * @data: data passed to @enter() and @finish() 1055 * @enter: callback when first entering the dentry 1056 * @finish: callback when successfully finished the walk 1057 * 1058 * The @enter() and @finish() callbacks are called with d_lock held. 1059 */ 1060 static void d_walk(struct dentry *parent, void *data, 1061 enum d_walk_ret (*enter)(void *, struct dentry *), 1062 void (*finish)(void *)) 1063 { 1064 struct dentry *this_parent; 1065 struct list_head *next; 1066 unsigned seq = 0; 1067 enum d_walk_ret ret; 1068 bool retry = true; 1069 1070 again: 1071 read_seqbegin_or_lock(&rename_lock, &seq); 1072 this_parent = parent; 1073 spin_lock(&this_parent->d_lock); 1074 1075 ret = enter(data, this_parent); 1076 switch (ret) { 1077 case D_WALK_CONTINUE: 1078 break; 1079 case D_WALK_QUIT: 1080 case D_WALK_SKIP: 1081 goto out_unlock; 1082 case D_WALK_NORETRY: 1083 retry = false; 1084 break; 1085 } 1086 repeat: 1087 next = this_parent->d_subdirs.next; 1088 resume: 1089 while (next != &this_parent->d_subdirs) { 1090 struct list_head *tmp = next; 1091 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child); 1092 next = tmp->next; 1093 1094 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED); 1095 1096 ret = enter(data, dentry); 1097 switch (ret) { 1098 case D_WALK_CONTINUE: 1099 break; 1100 case D_WALK_QUIT: 1101 spin_unlock(&dentry->d_lock); 1102 goto out_unlock; 1103 case D_WALK_NORETRY: 1104 retry = false; 1105 break; 1106 case D_WALK_SKIP: 1107 spin_unlock(&dentry->d_lock); 1108 continue; 1109 } 1110 1111 if (!list_empty(&dentry->d_subdirs)) { 1112 spin_unlock(&this_parent->d_lock); 1113 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_); 1114 this_parent = dentry; 1115 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_); 1116 goto repeat; 1117 } 1118 spin_unlock(&dentry->d_lock); 1119 } 1120 /* 1121 * All done at this level ... ascend and resume the search. 1122 */ 1123 if (this_parent != parent) { 1124 struct dentry *child = this_parent; 1125 this_parent = child->d_parent; 1126 1127 rcu_read_lock(); 1128 spin_unlock(&child->d_lock); 1129 spin_lock(&this_parent->d_lock); 1130 1131 /* 1132 * might go back up the wrong parent if we have had a rename 1133 * or deletion 1134 */ 1135 if (this_parent != child->d_parent || 1136 (child->d_flags & DCACHE_DENTRY_KILLED) || 1137 need_seqretry(&rename_lock, seq)) { 1138 spin_unlock(&this_parent->d_lock); 1139 rcu_read_unlock(); 1140 goto rename_retry; 1141 } 1142 rcu_read_unlock(); 1143 next = child->d_u.d_child.next; 1144 goto resume; 1145 } 1146 if (need_seqretry(&rename_lock, seq)) { 1147 spin_unlock(&this_parent->d_lock); 1148 goto rename_retry; 1149 } 1150 if (finish) 1151 finish(data); 1152 1153 out_unlock: 1154 spin_unlock(&this_parent->d_lock); 1155 done_seqretry(&rename_lock, seq); 1156 return; 1157 1158 rename_retry: 1159 if (!retry) 1160 return; 1161 seq = 1; 1162 goto again; 1163 } 1164 1165 /* 1166 * Search for at least 1 mount point in the dentry's subdirs. 1167 * We descend to the next level whenever the d_subdirs 1168 * list is non-empty and continue searching. 1169 */ 1170 1171 static enum d_walk_ret check_mount(void *data, struct dentry *dentry) 1172 { 1173 int *ret = data; 1174 if (d_mountpoint(dentry)) { 1175 *ret = 1; 1176 return D_WALK_QUIT; 1177 } 1178 return D_WALK_CONTINUE; 1179 } 1180 1181 /** 1182 * have_submounts - check for mounts over a dentry 1183 * @parent: dentry to check. 1184 * 1185 * Return true if the parent or its subdirectories contain 1186 * a mount point 1187 */ 1188 int have_submounts(struct dentry *parent) 1189 { 1190 int ret = 0; 1191 1192 d_walk(parent, &ret, check_mount, NULL); 1193 1194 return ret; 1195 } 1196 EXPORT_SYMBOL(have_submounts); 1197 1198 /* 1199 * Called by mount code to set a mountpoint and check if the mountpoint is 1200 * reachable (e.g. NFS can unhash a directory dentry and then the complete 1201 * subtree can become unreachable). 1202 * 1203 * Only one of check_submounts_and_drop() and d_set_mounted() must succeed. For 1204 * this reason take rename_lock and d_lock on dentry and ancestors. 1205 */ 1206 int d_set_mounted(struct dentry *dentry) 1207 { 1208 struct dentry *p; 1209 int ret = -ENOENT; 1210 write_seqlock(&rename_lock); 1211 for (p = dentry->d_parent; !IS_ROOT(p); p = p->d_parent) { 1212 /* Need exclusion wrt. check_submounts_and_drop() */ 1213 spin_lock(&p->d_lock); 1214 if (unlikely(d_unhashed(p))) { 1215 spin_unlock(&p->d_lock); 1216 goto out; 1217 } 1218 spin_unlock(&p->d_lock); 1219 } 1220 spin_lock(&dentry->d_lock); 1221 if (!d_unlinked(dentry)) { 1222 dentry->d_flags |= DCACHE_MOUNTED; 1223 ret = 0; 1224 } 1225 spin_unlock(&dentry->d_lock); 1226 out: 1227 write_sequnlock(&rename_lock); 1228 return ret; 1229 } 1230 1231 /* 1232 * Search the dentry child list of the specified parent, 1233 * and move any unused dentries to the end of the unused 1234 * list for prune_dcache(). We descend to the next level 1235 * whenever the d_subdirs list is non-empty and continue 1236 * searching. 1237 * 1238 * It returns zero iff there are no unused children, 1239 * otherwise it returns the number of children moved to 1240 * the end of the unused list. This may not be the total 1241 * number of unused children, because select_parent can 1242 * drop the lock and return early due to latency 1243 * constraints. 1244 */ 1245 1246 struct select_data { 1247 struct dentry *start; 1248 struct list_head dispose; 1249 int found; 1250 }; 1251 1252 static enum d_walk_ret select_collect(void *_data, struct dentry *dentry) 1253 { 1254 struct select_data *data = _data; 1255 enum d_walk_ret ret = D_WALK_CONTINUE; 1256 1257 if (data->start == dentry) 1258 goto out; 1259 1260 if (dentry->d_flags & DCACHE_SHRINK_LIST) { 1261 data->found++; 1262 } else { 1263 if (dentry->d_flags & DCACHE_LRU_LIST) 1264 d_lru_del(dentry); 1265 if (!dentry->d_lockref.count) { 1266 d_shrink_add(dentry, &data->dispose); 1267 data->found++; 1268 } 1269 } 1270 /* 1271 * We can return to the caller if we have found some (this 1272 * ensures forward progress). We'll be coming back to find 1273 * the rest. 1274 */ 1275 if (!list_empty(&data->dispose)) 1276 ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY; 1277 out: 1278 return ret; 1279 } 1280 1281 /** 1282 * shrink_dcache_parent - prune dcache 1283 * @parent: parent of entries to prune 1284 * 1285 * Prune the dcache to remove unused children of the parent dentry. 1286 */ 1287 void shrink_dcache_parent(struct dentry *parent) 1288 { 1289 for (;;) { 1290 struct select_data data; 1291 1292 INIT_LIST_HEAD(&data.dispose); 1293 data.start = parent; 1294 data.found = 0; 1295 1296 d_walk(parent, &data, select_collect, NULL); 1297 if (!data.found) 1298 break; 1299 1300 shrink_dentry_list(&data.dispose); 1301 cond_resched(); 1302 } 1303 } 1304 EXPORT_SYMBOL(shrink_dcache_parent); 1305 1306 static enum d_walk_ret umount_check(void *_data, struct dentry *dentry) 1307 { 1308 /* it has busy descendents; complain about those instead */ 1309 if (!list_empty(&dentry->d_subdirs)) 1310 return D_WALK_CONTINUE; 1311 1312 /* root with refcount 1 is fine */ 1313 if (dentry == _data && dentry->d_lockref.count == 1) 1314 return D_WALK_CONTINUE; 1315 1316 printk(KERN_ERR "BUG: Dentry %p{i=%lx,n=%pd} " 1317 " still in use (%d) [unmount of %s %s]\n", 1318 dentry, 1319 dentry->d_inode ? 1320 dentry->d_inode->i_ino : 0UL, 1321 dentry, 1322 dentry->d_lockref.count, 1323 dentry->d_sb->s_type->name, 1324 dentry->d_sb->s_id); 1325 WARN_ON(1); 1326 return D_WALK_CONTINUE; 1327 } 1328 1329 static void do_one_tree(struct dentry *dentry) 1330 { 1331 shrink_dcache_parent(dentry); 1332 d_walk(dentry, dentry, umount_check, NULL); 1333 d_drop(dentry); 1334 dput(dentry); 1335 } 1336 1337 /* 1338 * destroy the dentries attached to a superblock on unmounting 1339 */ 1340 void shrink_dcache_for_umount(struct super_block *sb) 1341 { 1342 struct dentry *dentry; 1343 1344 WARN(down_read_trylock(&sb->s_umount), "s_umount should've been locked"); 1345 1346 dentry = sb->s_root; 1347 sb->s_root = NULL; 1348 do_one_tree(dentry); 1349 1350 while (!hlist_bl_empty(&sb->s_anon)) { 1351 dentry = dget(hlist_bl_entry(hlist_bl_first(&sb->s_anon), struct dentry, d_hash)); 1352 do_one_tree(dentry); 1353 } 1354 } 1355 1356 static enum d_walk_ret check_and_collect(void *_data, struct dentry *dentry) 1357 { 1358 struct select_data *data = _data; 1359 1360 if (d_mountpoint(dentry)) { 1361 data->found = -EBUSY; 1362 return D_WALK_QUIT; 1363 } 1364 1365 return select_collect(_data, dentry); 1366 } 1367 1368 static void check_and_drop(void *_data) 1369 { 1370 struct select_data *data = _data; 1371 1372 if (d_mountpoint(data->start)) 1373 data->found = -EBUSY; 1374 if (!data->found) 1375 __d_drop(data->start); 1376 } 1377 1378 /** 1379 * check_submounts_and_drop - prune dcache, check for submounts and drop 1380 * 1381 * All done as a single atomic operation relative to has_unlinked_ancestor(). 1382 * Returns 0 if successfully unhashed @parent. If there were submounts then 1383 * return -EBUSY. 1384 * 1385 * @dentry: dentry to prune and drop 1386 */ 1387 int check_submounts_and_drop(struct dentry *dentry) 1388 { 1389 int ret = 0; 1390 1391 /* Negative dentries can be dropped without further checks */ 1392 if (!dentry->d_inode) { 1393 d_drop(dentry); 1394 goto out; 1395 } 1396 1397 for (;;) { 1398 struct select_data data; 1399 1400 INIT_LIST_HEAD(&data.dispose); 1401 data.start = dentry; 1402 data.found = 0; 1403 1404 d_walk(dentry, &data, check_and_collect, check_and_drop); 1405 ret = data.found; 1406 1407 if (!list_empty(&data.dispose)) 1408 shrink_dentry_list(&data.dispose); 1409 1410 if (ret <= 0) 1411 break; 1412 1413 cond_resched(); 1414 } 1415 1416 out: 1417 return ret; 1418 } 1419 EXPORT_SYMBOL(check_submounts_and_drop); 1420 1421 /** 1422 * __d_alloc - allocate a dcache entry 1423 * @sb: filesystem it will belong to 1424 * @name: qstr of the name 1425 * 1426 * Allocates a dentry. It returns %NULL if there is insufficient memory 1427 * available. On a success the dentry is returned. The name passed in is 1428 * copied and the copy passed in may be reused after this call. 1429 */ 1430 1431 struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name) 1432 { 1433 struct dentry *dentry; 1434 char *dname; 1435 1436 dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL); 1437 if (!dentry) 1438 return NULL; 1439 1440 /* 1441 * We guarantee that the inline name is always NUL-terminated. 1442 * This way the memcpy() done by the name switching in rename 1443 * will still always have a NUL at the end, even if we might 1444 * be overwriting an internal NUL character 1445 */ 1446 dentry->d_iname[DNAME_INLINE_LEN-1] = 0; 1447 if (name->len > DNAME_INLINE_LEN-1) { 1448 dname = kmalloc(name->len + 1, GFP_KERNEL); 1449 if (!dname) { 1450 kmem_cache_free(dentry_cache, dentry); 1451 return NULL; 1452 } 1453 } else { 1454 dname = dentry->d_iname; 1455 } 1456 1457 dentry->d_name.len = name->len; 1458 dentry->d_name.hash = name->hash; 1459 memcpy(dname, name->name, name->len); 1460 dname[name->len] = 0; 1461 1462 /* Make sure we always see the terminating NUL character */ 1463 smp_wmb(); 1464 dentry->d_name.name = dname; 1465 1466 dentry->d_lockref.count = 1; 1467 dentry->d_flags = 0; 1468 spin_lock_init(&dentry->d_lock); 1469 seqcount_init(&dentry->d_seq); 1470 dentry->d_inode = NULL; 1471 dentry->d_parent = dentry; 1472 dentry->d_sb = sb; 1473 dentry->d_op = NULL; 1474 dentry->d_fsdata = NULL; 1475 INIT_HLIST_BL_NODE(&dentry->d_hash); 1476 INIT_LIST_HEAD(&dentry->d_lru); 1477 INIT_LIST_HEAD(&dentry->d_subdirs); 1478 INIT_HLIST_NODE(&dentry->d_alias); 1479 INIT_LIST_HEAD(&dentry->d_u.d_child); 1480 d_set_d_op(dentry, dentry->d_sb->s_d_op); 1481 1482 this_cpu_inc(nr_dentry); 1483 1484 return dentry; 1485 } 1486 1487 /** 1488 * d_alloc - allocate a dcache entry 1489 * @parent: parent of entry to allocate 1490 * @name: qstr of the name 1491 * 1492 * Allocates a dentry. It returns %NULL if there is insufficient memory 1493 * available. On a success the dentry is returned. The name passed in is 1494 * copied and the copy passed in may be reused after this call. 1495 */ 1496 struct dentry *d_alloc(struct dentry * parent, const struct qstr *name) 1497 { 1498 struct dentry *dentry = __d_alloc(parent->d_sb, name); 1499 if (!dentry) 1500 return NULL; 1501 1502 spin_lock(&parent->d_lock); 1503 /* 1504 * don't need child lock because it is not subject 1505 * to concurrency here 1506 */ 1507 __dget_dlock(parent); 1508 dentry->d_parent = parent; 1509 list_add(&dentry->d_u.d_child, &parent->d_subdirs); 1510 spin_unlock(&parent->d_lock); 1511 1512 return dentry; 1513 } 1514 EXPORT_SYMBOL(d_alloc); 1515 1516 /** 1517 * d_alloc_pseudo - allocate a dentry (for lookup-less filesystems) 1518 * @sb: the superblock 1519 * @name: qstr of the name 1520 * 1521 * For a filesystem that just pins its dentries in memory and never 1522 * performs lookups at all, return an unhashed IS_ROOT dentry. 1523 */ 1524 struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name) 1525 { 1526 return __d_alloc(sb, name); 1527 } 1528 EXPORT_SYMBOL(d_alloc_pseudo); 1529 1530 struct dentry *d_alloc_name(struct dentry *parent, const char *name) 1531 { 1532 struct qstr q; 1533 1534 q.name = name; 1535 q.len = strlen(name); 1536 q.hash = full_name_hash(q.name, q.len); 1537 return d_alloc(parent, &q); 1538 } 1539 EXPORT_SYMBOL(d_alloc_name); 1540 1541 void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op) 1542 { 1543 WARN_ON_ONCE(dentry->d_op); 1544 WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH | 1545 DCACHE_OP_COMPARE | 1546 DCACHE_OP_REVALIDATE | 1547 DCACHE_OP_WEAK_REVALIDATE | 1548 DCACHE_OP_DELETE )); 1549 dentry->d_op = op; 1550 if (!op) 1551 return; 1552 if (op->d_hash) 1553 dentry->d_flags |= DCACHE_OP_HASH; 1554 if (op->d_compare) 1555 dentry->d_flags |= DCACHE_OP_COMPARE; 1556 if (op->d_revalidate) 1557 dentry->d_flags |= DCACHE_OP_REVALIDATE; 1558 if (op->d_weak_revalidate) 1559 dentry->d_flags |= DCACHE_OP_WEAK_REVALIDATE; 1560 if (op->d_delete) 1561 dentry->d_flags |= DCACHE_OP_DELETE; 1562 if (op->d_prune) 1563 dentry->d_flags |= DCACHE_OP_PRUNE; 1564 1565 } 1566 EXPORT_SYMBOL(d_set_d_op); 1567 1568 static unsigned d_flags_for_inode(struct inode *inode) 1569 { 1570 unsigned add_flags = DCACHE_FILE_TYPE; 1571 1572 if (!inode) 1573 return DCACHE_MISS_TYPE; 1574 1575 if (S_ISDIR(inode->i_mode)) { 1576 add_flags = DCACHE_DIRECTORY_TYPE; 1577 if (unlikely(!(inode->i_opflags & IOP_LOOKUP))) { 1578 if (unlikely(!inode->i_op->lookup)) 1579 add_flags = DCACHE_AUTODIR_TYPE; 1580 else 1581 inode->i_opflags |= IOP_LOOKUP; 1582 } 1583 } else if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) { 1584 if (unlikely(inode->i_op->follow_link)) 1585 add_flags = DCACHE_SYMLINK_TYPE; 1586 else 1587 inode->i_opflags |= IOP_NOFOLLOW; 1588 } 1589 1590 if (unlikely(IS_AUTOMOUNT(inode))) 1591 add_flags |= DCACHE_NEED_AUTOMOUNT; 1592 return add_flags; 1593 } 1594 1595 static void __d_instantiate(struct dentry *dentry, struct inode *inode) 1596 { 1597 unsigned add_flags = d_flags_for_inode(inode); 1598 1599 spin_lock(&dentry->d_lock); 1600 __d_set_type(dentry, add_flags); 1601 if (inode) 1602 hlist_add_head(&dentry->d_alias, &inode->i_dentry); 1603 dentry->d_inode = inode; 1604 dentry_rcuwalk_barrier(dentry); 1605 spin_unlock(&dentry->d_lock); 1606 fsnotify_d_instantiate(dentry, inode); 1607 } 1608 1609 /** 1610 * d_instantiate - fill in inode information for a dentry 1611 * @entry: dentry to complete 1612 * @inode: inode to attach to this dentry 1613 * 1614 * Fill in inode information in the entry. 1615 * 1616 * This turns negative dentries into productive full members 1617 * of society. 1618 * 1619 * NOTE! This assumes that the inode count has been incremented 1620 * (or otherwise set) by the caller to indicate that it is now 1621 * in use by the dcache. 1622 */ 1623 1624 void d_instantiate(struct dentry *entry, struct inode * inode) 1625 { 1626 BUG_ON(!hlist_unhashed(&entry->d_alias)); 1627 if (inode) 1628 spin_lock(&inode->i_lock); 1629 __d_instantiate(entry, inode); 1630 if (inode) 1631 spin_unlock(&inode->i_lock); 1632 security_d_instantiate(entry, inode); 1633 } 1634 EXPORT_SYMBOL(d_instantiate); 1635 1636 /** 1637 * d_instantiate_unique - instantiate a non-aliased dentry 1638 * @entry: dentry to instantiate 1639 * @inode: inode to attach to this dentry 1640 * 1641 * Fill in inode information in the entry. On success, it returns NULL. 1642 * If an unhashed alias of "entry" already exists, then we return the 1643 * aliased dentry instead and drop one reference to inode. 1644 * 1645 * Note that in order to avoid conflicts with rename() etc, the caller 1646 * had better be holding the parent directory semaphore. 1647 * 1648 * This also assumes that the inode count has been incremented 1649 * (or otherwise set) by the caller to indicate that it is now 1650 * in use by the dcache. 1651 */ 1652 static struct dentry *__d_instantiate_unique(struct dentry *entry, 1653 struct inode *inode) 1654 { 1655 struct dentry *alias; 1656 int len = entry->d_name.len; 1657 const char *name = entry->d_name.name; 1658 unsigned int hash = entry->d_name.hash; 1659 1660 if (!inode) { 1661 __d_instantiate(entry, NULL); 1662 return NULL; 1663 } 1664 1665 hlist_for_each_entry(alias, &inode->i_dentry, d_alias) { 1666 /* 1667 * Don't need alias->d_lock here, because aliases with 1668 * d_parent == entry->d_parent are not subject to name or 1669 * parent changes, because the parent inode i_mutex is held. 1670 */ 1671 if (alias->d_name.hash != hash) 1672 continue; 1673 if (alias->d_parent != entry->d_parent) 1674 continue; 1675 if (alias->d_name.len != len) 1676 continue; 1677 if (dentry_cmp(alias, name, len)) 1678 continue; 1679 __dget(alias); 1680 return alias; 1681 } 1682 1683 __d_instantiate(entry, inode); 1684 return NULL; 1685 } 1686 1687 struct dentry *d_instantiate_unique(struct dentry *entry, struct inode *inode) 1688 { 1689 struct dentry *result; 1690 1691 BUG_ON(!hlist_unhashed(&entry->d_alias)); 1692 1693 if (inode) 1694 spin_lock(&inode->i_lock); 1695 result = __d_instantiate_unique(entry, inode); 1696 if (inode) 1697 spin_unlock(&inode->i_lock); 1698 1699 if (!result) { 1700 security_d_instantiate(entry, inode); 1701 return NULL; 1702 } 1703 1704 BUG_ON(!d_unhashed(result)); 1705 iput(inode); 1706 return result; 1707 } 1708 1709 EXPORT_SYMBOL(d_instantiate_unique); 1710 1711 /** 1712 * d_instantiate_no_diralias - instantiate a non-aliased dentry 1713 * @entry: dentry to complete 1714 * @inode: inode to attach to this dentry 1715 * 1716 * Fill in inode information in the entry. If a directory alias is found, then 1717 * return an error (and drop inode). Together with d_materialise_unique() this 1718 * guarantees that a directory inode may never have more than one alias. 1719 */ 1720 int d_instantiate_no_diralias(struct dentry *entry, struct inode *inode) 1721 { 1722 BUG_ON(!hlist_unhashed(&entry->d_alias)); 1723 1724 spin_lock(&inode->i_lock); 1725 if (S_ISDIR(inode->i_mode) && !hlist_empty(&inode->i_dentry)) { 1726 spin_unlock(&inode->i_lock); 1727 iput(inode); 1728 return -EBUSY; 1729 } 1730 __d_instantiate(entry, inode); 1731 spin_unlock(&inode->i_lock); 1732 security_d_instantiate(entry, inode); 1733 1734 return 0; 1735 } 1736 EXPORT_SYMBOL(d_instantiate_no_diralias); 1737 1738 struct dentry *d_make_root(struct inode *root_inode) 1739 { 1740 struct dentry *res = NULL; 1741 1742 if (root_inode) { 1743 static const struct qstr name = QSTR_INIT("/", 1); 1744 1745 res = __d_alloc(root_inode->i_sb, &name); 1746 if (res) 1747 d_instantiate(res, root_inode); 1748 else 1749 iput(root_inode); 1750 } 1751 return res; 1752 } 1753 EXPORT_SYMBOL(d_make_root); 1754 1755 static struct dentry * __d_find_any_alias(struct inode *inode) 1756 { 1757 struct dentry *alias; 1758 1759 if (hlist_empty(&inode->i_dentry)) 1760 return NULL; 1761 alias = hlist_entry(inode->i_dentry.first, struct dentry, d_alias); 1762 __dget(alias); 1763 return alias; 1764 } 1765 1766 /** 1767 * d_find_any_alias - find any alias for a given inode 1768 * @inode: inode to find an alias for 1769 * 1770 * If any aliases exist for the given inode, take and return a 1771 * reference for one of them. If no aliases exist, return %NULL. 1772 */ 1773 struct dentry *d_find_any_alias(struct inode *inode) 1774 { 1775 struct dentry *de; 1776 1777 spin_lock(&inode->i_lock); 1778 de = __d_find_any_alias(inode); 1779 spin_unlock(&inode->i_lock); 1780 return de; 1781 } 1782 EXPORT_SYMBOL(d_find_any_alias); 1783 1784 /** 1785 * d_obtain_alias - find or allocate a dentry for a given inode 1786 * @inode: inode to allocate the dentry for 1787 * 1788 * Obtain a dentry for an inode resulting from NFS filehandle conversion or 1789 * similar open by handle operations. The returned dentry may be anonymous, 1790 * or may have a full name (if the inode was already in the cache). 1791 * 1792 * When called on a directory inode, we must ensure that the inode only ever 1793 * has one dentry. If a dentry is found, that is returned instead of 1794 * allocating a new one. 1795 * 1796 * On successful return, the reference to the inode has been transferred 1797 * to the dentry. In case of an error the reference on the inode is released. 1798 * To make it easier to use in export operations a %NULL or IS_ERR inode may 1799 * be passed in and will be the error will be propagate to the return value, 1800 * with a %NULL @inode replaced by ERR_PTR(-ESTALE). 1801 */ 1802 struct dentry *d_obtain_alias(struct inode *inode) 1803 { 1804 static const struct qstr anonstring = QSTR_INIT("/", 1); 1805 struct dentry *tmp; 1806 struct dentry *res; 1807 unsigned add_flags; 1808 1809 if (!inode) 1810 return ERR_PTR(-ESTALE); 1811 if (IS_ERR(inode)) 1812 return ERR_CAST(inode); 1813 1814 res = d_find_any_alias(inode); 1815 if (res) 1816 goto out_iput; 1817 1818 tmp = __d_alloc(inode->i_sb, &anonstring); 1819 if (!tmp) { 1820 res = ERR_PTR(-ENOMEM); 1821 goto out_iput; 1822 } 1823 1824 spin_lock(&inode->i_lock); 1825 res = __d_find_any_alias(inode); 1826 if (res) { 1827 spin_unlock(&inode->i_lock); 1828 dput(tmp); 1829 goto out_iput; 1830 } 1831 1832 /* attach a disconnected dentry */ 1833 add_flags = d_flags_for_inode(inode) | DCACHE_DISCONNECTED; 1834 1835 spin_lock(&tmp->d_lock); 1836 tmp->d_inode = inode; 1837 tmp->d_flags |= add_flags; 1838 hlist_add_head(&tmp->d_alias, &inode->i_dentry); 1839 hlist_bl_lock(&tmp->d_sb->s_anon); 1840 hlist_bl_add_head(&tmp->d_hash, &tmp->d_sb->s_anon); 1841 hlist_bl_unlock(&tmp->d_sb->s_anon); 1842 spin_unlock(&tmp->d_lock); 1843 spin_unlock(&inode->i_lock); 1844 security_d_instantiate(tmp, inode); 1845 1846 return tmp; 1847 1848 out_iput: 1849 if (res && !IS_ERR(res)) 1850 security_d_instantiate(res, inode); 1851 iput(inode); 1852 return res; 1853 } 1854 EXPORT_SYMBOL(d_obtain_alias); 1855 1856 /** 1857 * d_splice_alias - splice a disconnected dentry into the tree if one exists 1858 * @inode: the inode which may have a disconnected dentry 1859 * @dentry: a negative dentry which we want to point to the inode. 1860 * 1861 * If inode is a directory and has a 'disconnected' dentry (i.e. IS_ROOT and 1862 * DCACHE_DISCONNECTED), then d_move that in place of the given dentry 1863 * and return it, else simply d_add the inode to the dentry and return NULL. 1864 * 1865 * This is needed in the lookup routine of any filesystem that is exportable 1866 * (via knfsd) so that we can build dcache paths to directories effectively. 1867 * 1868 * If a dentry was found and moved, then it is returned. Otherwise NULL 1869 * is returned. This matches the expected return value of ->lookup. 1870 * 1871 * Cluster filesystems may call this function with a negative, hashed dentry. 1872 * In that case, we know that the inode will be a regular file, and also this 1873 * will only occur during atomic_open. So we need to check for the dentry 1874 * being already hashed only in the final case. 1875 */ 1876 struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry) 1877 { 1878 struct dentry *new = NULL; 1879 1880 if (IS_ERR(inode)) 1881 return ERR_CAST(inode); 1882 1883 if (inode && S_ISDIR(inode->i_mode)) { 1884 spin_lock(&inode->i_lock); 1885 new = __d_find_alias(inode, 1); 1886 if (new) { 1887 BUG_ON(!(new->d_flags & DCACHE_DISCONNECTED)); 1888 spin_unlock(&inode->i_lock); 1889 security_d_instantiate(new, inode); 1890 d_move(new, dentry); 1891 iput(inode); 1892 } else { 1893 /* already taking inode->i_lock, so d_add() by hand */ 1894 __d_instantiate(dentry, inode); 1895 spin_unlock(&inode->i_lock); 1896 security_d_instantiate(dentry, inode); 1897 d_rehash(dentry); 1898 } 1899 } else { 1900 d_instantiate(dentry, inode); 1901 if (d_unhashed(dentry)) 1902 d_rehash(dentry); 1903 } 1904 return new; 1905 } 1906 EXPORT_SYMBOL(d_splice_alias); 1907 1908 /** 1909 * d_add_ci - lookup or allocate new dentry with case-exact name 1910 * @inode: the inode case-insensitive lookup has found 1911 * @dentry: the negative dentry that was passed to the parent's lookup func 1912 * @name: the case-exact name to be associated with the returned dentry 1913 * 1914 * This is to avoid filling the dcache with case-insensitive names to the 1915 * same inode, only the actual correct case is stored in the dcache for 1916 * case-insensitive filesystems. 1917 * 1918 * For a case-insensitive lookup match and if the the case-exact dentry 1919 * already exists in in the dcache, use it and return it. 1920 * 1921 * If no entry exists with the exact case name, allocate new dentry with 1922 * the exact case, and return the spliced entry. 1923 */ 1924 struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode, 1925 struct qstr *name) 1926 { 1927 struct dentry *found; 1928 struct dentry *new; 1929 1930 /* 1931 * First check if a dentry matching the name already exists, 1932 * if not go ahead and create it now. 1933 */ 1934 found = d_hash_and_lookup(dentry->d_parent, name); 1935 if (unlikely(IS_ERR(found))) 1936 goto err_out; 1937 if (!found) { 1938 new = d_alloc(dentry->d_parent, name); 1939 if (!new) { 1940 found = ERR_PTR(-ENOMEM); 1941 goto err_out; 1942 } 1943 1944 found = d_splice_alias(inode, new); 1945 if (found) { 1946 dput(new); 1947 return found; 1948 } 1949 return new; 1950 } 1951 1952 /* 1953 * If a matching dentry exists, and it's not negative use it. 1954 * 1955 * Decrement the reference count to balance the iget() done 1956 * earlier on. 1957 */ 1958 if (found->d_inode) { 1959 if (unlikely(found->d_inode != inode)) { 1960 /* This can't happen because bad inodes are unhashed. */ 1961 BUG_ON(!is_bad_inode(inode)); 1962 BUG_ON(!is_bad_inode(found->d_inode)); 1963 } 1964 iput(inode); 1965 return found; 1966 } 1967 1968 /* 1969 * Negative dentry: instantiate it unless the inode is a directory and 1970 * already has a dentry. 1971 */ 1972 new = d_splice_alias(inode, found); 1973 if (new) { 1974 dput(found); 1975 found = new; 1976 } 1977 return found; 1978 1979 err_out: 1980 iput(inode); 1981 return found; 1982 } 1983 EXPORT_SYMBOL(d_add_ci); 1984 1985 /* 1986 * Do the slow-case of the dentry name compare. 1987 * 1988 * Unlike the dentry_cmp() function, we need to atomically 1989 * load the name and length information, so that the 1990 * filesystem can rely on them, and can use the 'name' and 1991 * 'len' information without worrying about walking off the 1992 * end of memory etc. 1993 * 1994 * Thus the read_seqcount_retry() and the "duplicate" info 1995 * in arguments (the low-level filesystem should not look 1996 * at the dentry inode or name contents directly, since 1997 * rename can change them while we're in RCU mode). 1998 */ 1999 enum slow_d_compare { 2000 D_COMP_OK, 2001 D_COMP_NOMATCH, 2002 D_COMP_SEQRETRY, 2003 }; 2004 2005 static noinline enum slow_d_compare slow_dentry_cmp( 2006 const struct dentry *parent, 2007 struct dentry *dentry, 2008 unsigned int seq, 2009 const struct qstr *name) 2010 { 2011 int tlen = dentry->d_name.len; 2012 const char *tname = dentry->d_name.name; 2013 2014 if (read_seqcount_retry(&dentry->d_seq, seq)) { 2015 cpu_relax(); 2016 return D_COMP_SEQRETRY; 2017 } 2018 if (parent->d_op->d_compare(parent, dentry, tlen, tname, name)) 2019 return D_COMP_NOMATCH; 2020 return D_COMP_OK; 2021 } 2022 2023 /** 2024 * __d_lookup_rcu - search for a dentry (racy, store-free) 2025 * @parent: parent dentry 2026 * @name: qstr of name we wish to find 2027 * @seqp: returns d_seq value at the point where the dentry was found 2028 * Returns: dentry, or NULL 2029 * 2030 * __d_lookup_rcu is the dcache lookup function for rcu-walk name 2031 * resolution (store-free path walking) design described in 2032 * Documentation/filesystems/path-lookup.txt. 2033 * 2034 * This is not to be used outside core vfs. 2035 * 2036 * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock 2037 * held, and rcu_read_lock held. The returned dentry must not be stored into 2038 * without taking d_lock and checking d_seq sequence count against @seq 2039 * returned here. 2040 * 2041 * A refcount may be taken on the found dentry with the d_rcu_to_refcount 2042 * function. 2043 * 2044 * Alternatively, __d_lookup_rcu may be called again to look up the child of 2045 * the returned dentry, so long as its parent's seqlock is checked after the 2046 * child is looked up. Thus, an interlocking stepping of sequence lock checks 2047 * is formed, giving integrity down the path walk. 2048 * 2049 * NOTE! The caller *has* to check the resulting dentry against the sequence 2050 * number we've returned before using any of the resulting dentry state! 2051 */ 2052 struct dentry *__d_lookup_rcu(const struct dentry *parent, 2053 const struct qstr *name, 2054 unsigned *seqp) 2055 { 2056 u64 hashlen = name->hash_len; 2057 const unsigned char *str = name->name; 2058 struct hlist_bl_head *b = d_hash(parent, hashlen_hash(hashlen)); 2059 struct hlist_bl_node *node; 2060 struct dentry *dentry; 2061 2062 /* 2063 * Note: There is significant duplication with __d_lookup_rcu which is 2064 * required to prevent single threaded performance regressions 2065 * especially on architectures where smp_rmb (in seqcounts) are costly. 2066 * Keep the two functions in sync. 2067 */ 2068 2069 /* 2070 * The hash list is protected using RCU. 2071 * 2072 * Carefully use d_seq when comparing a candidate dentry, to avoid 2073 * races with d_move(). 2074 * 2075 * It is possible that concurrent renames can mess up our list 2076 * walk here and result in missing our dentry, resulting in the 2077 * false-negative result. d_lookup() protects against concurrent 2078 * renames using rename_lock seqlock. 2079 * 2080 * See Documentation/filesystems/path-lookup.txt for more details. 2081 */ 2082 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) { 2083 unsigned seq; 2084 2085 seqretry: 2086 /* 2087 * The dentry sequence count protects us from concurrent 2088 * renames, and thus protects parent and name fields. 2089 * 2090 * The caller must perform a seqcount check in order 2091 * to do anything useful with the returned dentry. 2092 * 2093 * NOTE! We do a "raw" seqcount_begin here. That means that 2094 * we don't wait for the sequence count to stabilize if it 2095 * is in the middle of a sequence change. If we do the slow 2096 * dentry compare, we will do seqretries until it is stable, 2097 * and if we end up with a successful lookup, we actually 2098 * want to exit RCU lookup anyway. 2099 */ 2100 seq = raw_seqcount_begin(&dentry->d_seq); 2101 if (dentry->d_parent != parent) 2102 continue; 2103 if (d_unhashed(dentry)) 2104 continue; 2105 2106 if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) { 2107 if (dentry->d_name.hash != hashlen_hash(hashlen)) 2108 continue; 2109 *seqp = seq; 2110 switch (slow_dentry_cmp(parent, dentry, seq, name)) { 2111 case D_COMP_OK: 2112 return dentry; 2113 case D_COMP_NOMATCH: 2114 continue; 2115 default: 2116 goto seqretry; 2117 } 2118 } 2119 2120 if (dentry->d_name.hash_len != hashlen) 2121 continue; 2122 *seqp = seq; 2123 if (!dentry_cmp(dentry, str, hashlen_len(hashlen))) 2124 return dentry; 2125 } 2126 return NULL; 2127 } 2128 2129 /** 2130 * d_lookup - search for a dentry 2131 * @parent: parent dentry 2132 * @name: qstr of name we wish to find 2133 * Returns: dentry, or NULL 2134 * 2135 * d_lookup searches the children of the parent dentry for the name in 2136 * question. If the dentry is found its reference count is incremented and the 2137 * dentry is returned. The caller must use dput to free the entry when it has 2138 * finished using it. %NULL is returned if the dentry does not exist. 2139 */ 2140 struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name) 2141 { 2142 struct dentry *dentry; 2143 unsigned seq; 2144 2145 do { 2146 seq = read_seqbegin(&rename_lock); 2147 dentry = __d_lookup(parent, name); 2148 if (dentry) 2149 break; 2150 } while (read_seqretry(&rename_lock, seq)); 2151 return dentry; 2152 } 2153 EXPORT_SYMBOL(d_lookup); 2154 2155 /** 2156 * __d_lookup - search for a dentry (racy) 2157 * @parent: parent dentry 2158 * @name: qstr of name we wish to find 2159 * Returns: dentry, or NULL 2160 * 2161 * __d_lookup is like d_lookup, however it may (rarely) return a 2162 * false-negative result due to unrelated rename activity. 2163 * 2164 * __d_lookup is slightly faster by avoiding rename_lock read seqlock, 2165 * however it must be used carefully, eg. with a following d_lookup in 2166 * the case of failure. 2167 * 2168 * __d_lookup callers must be commented. 2169 */ 2170 struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name) 2171 { 2172 unsigned int len = name->len; 2173 unsigned int hash = name->hash; 2174 const unsigned char *str = name->name; 2175 struct hlist_bl_head *b = d_hash(parent, hash); 2176 struct hlist_bl_node *node; 2177 struct dentry *found = NULL; 2178 struct dentry *dentry; 2179 2180 /* 2181 * Note: There is significant duplication with __d_lookup_rcu which is 2182 * required to prevent single threaded performance regressions 2183 * especially on architectures where smp_rmb (in seqcounts) are costly. 2184 * Keep the two functions in sync. 2185 */ 2186 2187 /* 2188 * The hash list is protected using RCU. 2189 * 2190 * Take d_lock when comparing a candidate dentry, to avoid races 2191 * with d_move(). 2192 * 2193 * It is possible that concurrent renames can mess up our list 2194 * walk here and result in missing our dentry, resulting in the 2195 * false-negative result. d_lookup() protects against concurrent 2196 * renames using rename_lock seqlock. 2197 * 2198 * See Documentation/filesystems/path-lookup.txt for more details. 2199 */ 2200 rcu_read_lock(); 2201 2202 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) { 2203 2204 if (dentry->d_name.hash != hash) 2205 continue; 2206 2207 spin_lock(&dentry->d_lock); 2208 if (dentry->d_parent != parent) 2209 goto next; 2210 if (d_unhashed(dentry)) 2211 goto next; 2212 2213 /* 2214 * It is safe to compare names since d_move() cannot 2215 * change the qstr (protected by d_lock). 2216 */ 2217 if (parent->d_flags & DCACHE_OP_COMPARE) { 2218 int tlen = dentry->d_name.len; 2219 const char *tname = dentry->d_name.name; 2220 if (parent->d_op->d_compare(parent, dentry, tlen, tname, name)) 2221 goto next; 2222 } else { 2223 if (dentry->d_name.len != len) 2224 goto next; 2225 if (dentry_cmp(dentry, str, len)) 2226 goto next; 2227 } 2228 2229 dentry->d_lockref.count++; 2230 found = dentry; 2231 spin_unlock(&dentry->d_lock); 2232 break; 2233 next: 2234 spin_unlock(&dentry->d_lock); 2235 } 2236 rcu_read_unlock(); 2237 2238 return found; 2239 } 2240 2241 /** 2242 * d_hash_and_lookup - hash the qstr then search for a dentry 2243 * @dir: Directory to search in 2244 * @name: qstr of name we wish to find 2245 * 2246 * On lookup failure NULL is returned; on bad name - ERR_PTR(-error) 2247 */ 2248 struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name) 2249 { 2250 /* 2251 * Check for a fs-specific hash function. Note that we must 2252 * calculate the standard hash first, as the d_op->d_hash() 2253 * routine may choose to leave the hash value unchanged. 2254 */ 2255 name->hash = full_name_hash(name->name, name->len); 2256 if (dir->d_flags & DCACHE_OP_HASH) { 2257 int err = dir->d_op->d_hash(dir, name); 2258 if (unlikely(err < 0)) 2259 return ERR_PTR(err); 2260 } 2261 return d_lookup(dir, name); 2262 } 2263 EXPORT_SYMBOL(d_hash_and_lookup); 2264 2265 /** 2266 * d_validate - verify dentry provided from insecure source (deprecated) 2267 * @dentry: The dentry alleged to be valid child of @dparent 2268 * @dparent: The parent dentry (known to be valid) 2269 * 2270 * An insecure source has sent us a dentry, here we verify it and dget() it. 2271 * This is used by ncpfs in its readdir implementation. 2272 * Zero is returned in the dentry is invalid. 2273 * 2274 * This function is slow for big directories, and deprecated, do not use it. 2275 */ 2276 int d_validate(struct dentry *dentry, struct dentry *dparent) 2277 { 2278 struct dentry *child; 2279 2280 spin_lock(&dparent->d_lock); 2281 list_for_each_entry(child, &dparent->d_subdirs, d_u.d_child) { 2282 if (dentry == child) { 2283 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED); 2284 __dget_dlock(dentry); 2285 spin_unlock(&dentry->d_lock); 2286 spin_unlock(&dparent->d_lock); 2287 return 1; 2288 } 2289 } 2290 spin_unlock(&dparent->d_lock); 2291 2292 return 0; 2293 } 2294 EXPORT_SYMBOL(d_validate); 2295 2296 /* 2297 * When a file is deleted, we have two options: 2298 * - turn this dentry into a negative dentry 2299 * - unhash this dentry and free it. 2300 * 2301 * Usually, we want to just turn this into 2302 * a negative dentry, but if anybody else is 2303 * currently using the dentry or the inode 2304 * we can't do that and we fall back on removing 2305 * it from the hash queues and waiting for 2306 * it to be deleted later when it has no users 2307 */ 2308 2309 /** 2310 * d_delete - delete a dentry 2311 * @dentry: The dentry to delete 2312 * 2313 * Turn the dentry into a negative dentry if possible, otherwise 2314 * remove it from the hash queues so it can be deleted later 2315 */ 2316 2317 void d_delete(struct dentry * dentry) 2318 { 2319 struct inode *inode; 2320 int isdir = 0; 2321 /* 2322 * Are we the only user? 2323 */ 2324 again: 2325 spin_lock(&dentry->d_lock); 2326 inode = dentry->d_inode; 2327 isdir = S_ISDIR(inode->i_mode); 2328 if (dentry->d_lockref.count == 1) { 2329 if (!spin_trylock(&inode->i_lock)) { 2330 spin_unlock(&dentry->d_lock); 2331 cpu_relax(); 2332 goto again; 2333 } 2334 dentry->d_flags &= ~DCACHE_CANT_MOUNT; 2335 dentry_unlink_inode(dentry); 2336 fsnotify_nameremove(dentry, isdir); 2337 return; 2338 } 2339 2340 if (!d_unhashed(dentry)) 2341 __d_drop(dentry); 2342 2343 spin_unlock(&dentry->d_lock); 2344 2345 fsnotify_nameremove(dentry, isdir); 2346 } 2347 EXPORT_SYMBOL(d_delete); 2348 2349 static void __d_rehash(struct dentry * entry, struct hlist_bl_head *b) 2350 { 2351 BUG_ON(!d_unhashed(entry)); 2352 hlist_bl_lock(b); 2353 entry->d_flags |= DCACHE_RCUACCESS; 2354 hlist_bl_add_head_rcu(&entry->d_hash, b); 2355 hlist_bl_unlock(b); 2356 } 2357 2358 static void _d_rehash(struct dentry * entry) 2359 { 2360 __d_rehash(entry, d_hash(entry->d_parent, entry->d_name.hash)); 2361 } 2362 2363 /** 2364 * d_rehash - add an entry back to the hash 2365 * @entry: dentry to add to the hash 2366 * 2367 * Adds a dentry to the hash according to its name. 2368 */ 2369 2370 void d_rehash(struct dentry * entry) 2371 { 2372 spin_lock(&entry->d_lock); 2373 _d_rehash(entry); 2374 spin_unlock(&entry->d_lock); 2375 } 2376 EXPORT_SYMBOL(d_rehash); 2377 2378 /** 2379 * dentry_update_name_case - update case insensitive dentry with a new name 2380 * @dentry: dentry to be updated 2381 * @name: new name 2382 * 2383 * Update a case insensitive dentry with new case of name. 2384 * 2385 * dentry must have been returned by d_lookup with name @name. Old and new 2386 * name lengths must match (ie. no d_compare which allows mismatched name 2387 * lengths). 2388 * 2389 * Parent inode i_mutex must be held over d_lookup and into this call (to 2390 * keep renames and concurrent inserts, and readdir(2) away). 2391 */ 2392 void dentry_update_name_case(struct dentry *dentry, struct qstr *name) 2393 { 2394 BUG_ON(!mutex_is_locked(&dentry->d_parent->d_inode->i_mutex)); 2395 BUG_ON(dentry->d_name.len != name->len); /* d_lookup gives this */ 2396 2397 spin_lock(&dentry->d_lock); 2398 write_seqcount_begin(&dentry->d_seq); 2399 memcpy((unsigned char *)dentry->d_name.name, name->name, name->len); 2400 write_seqcount_end(&dentry->d_seq); 2401 spin_unlock(&dentry->d_lock); 2402 } 2403 EXPORT_SYMBOL(dentry_update_name_case); 2404 2405 static void switch_names(struct dentry *dentry, struct dentry *target) 2406 { 2407 if (dname_external(target)) { 2408 if (dname_external(dentry)) { 2409 /* 2410 * Both external: swap the pointers 2411 */ 2412 swap(target->d_name.name, dentry->d_name.name); 2413 } else { 2414 /* 2415 * dentry:internal, target:external. Steal target's 2416 * storage and make target internal. 2417 */ 2418 memcpy(target->d_iname, dentry->d_name.name, 2419 dentry->d_name.len + 1); 2420 dentry->d_name.name = target->d_name.name; 2421 target->d_name.name = target->d_iname; 2422 } 2423 } else { 2424 if (dname_external(dentry)) { 2425 /* 2426 * dentry:external, target:internal. Give dentry's 2427 * storage to target and make dentry internal 2428 */ 2429 memcpy(dentry->d_iname, target->d_name.name, 2430 target->d_name.len + 1); 2431 target->d_name.name = dentry->d_name.name; 2432 dentry->d_name.name = dentry->d_iname; 2433 } else { 2434 /* 2435 * Both are internal. 2436 */ 2437 unsigned int i; 2438 BUILD_BUG_ON(!IS_ALIGNED(DNAME_INLINE_LEN, sizeof(long))); 2439 for (i = 0; i < DNAME_INLINE_LEN / sizeof(long); i++) { 2440 swap(((long *) &dentry->d_iname)[i], 2441 ((long *) &target->d_iname)[i]); 2442 } 2443 } 2444 } 2445 swap(dentry->d_name.len, target->d_name.len); 2446 } 2447 2448 static void dentry_lock_for_move(struct dentry *dentry, struct dentry *target) 2449 { 2450 /* 2451 * XXXX: do we really need to take target->d_lock? 2452 */ 2453 if (IS_ROOT(dentry) || dentry->d_parent == target->d_parent) 2454 spin_lock(&target->d_parent->d_lock); 2455 else { 2456 if (d_ancestor(dentry->d_parent, target->d_parent)) { 2457 spin_lock(&dentry->d_parent->d_lock); 2458 spin_lock_nested(&target->d_parent->d_lock, 2459 DENTRY_D_LOCK_NESTED); 2460 } else { 2461 spin_lock(&target->d_parent->d_lock); 2462 spin_lock_nested(&dentry->d_parent->d_lock, 2463 DENTRY_D_LOCK_NESTED); 2464 } 2465 } 2466 if (target < dentry) { 2467 spin_lock_nested(&target->d_lock, 2); 2468 spin_lock_nested(&dentry->d_lock, 3); 2469 } else { 2470 spin_lock_nested(&dentry->d_lock, 2); 2471 spin_lock_nested(&target->d_lock, 3); 2472 } 2473 } 2474 2475 static void dentry_unlock_parents_for_move(struct dentry *dentry, 2476 struct dentry *target) 2477 { 2478 if (target->d_parent != dentry->d_parent) 2479 spin_unlock(&dentry->d_parent->d_lock); 2480 if (target->d_parent != target) 2481 spin_unlock(&target->d_parent->d_lock); 2482 } 2483 2484 /* 2485 * When switching names, the actual string doesn't strictly have to 2486 * be preserved in the target - because we're dropping the target 2487 * anyway. As such, we can just do a simple memcpy() to copy over 2488 * the new name before we switch. 2489 * 2490 * Note that we have to be a lot more careful about getting the hash 2491 * switched - we have to switch the hash value properly even if it 2492 * then no longer matches the actual (corrupted) string of the target. 2493 * The hash value has to match the hash queue that the dentry is on.. 2494 */ 2495 /* 2496 * __d_move - move a dentry 2497 * @dentry: entry to move 2498 * @target: new dentry 2499 * @exchange: exchange the two dentries 2500 * 2501 * Update the dcache to reflect the move of a file name. Negative 2502 * dcache entries should not be moved in this way. Caller must hold 2503 * rename_lock, the i_mutex of the source and target directories, 2504 * and the sb->s_vfs_rename_mutex if they differ. See lock_rename(). 2505 */ 2506 static void __d_move(struct dentry *dentry, struct dentry *target, 2507 bool exchange) 2508 { 2509 if (!dentry->d_inode) 2510 printk(KERN_WARNING "VFS: moving negative dcache entry\n"); 2511 2512 BUG_ON(d_ancestor(dentry, target)); 2513 BUG_ON(d_ancestor(target, dentry)); 2514 2515 dentry_lock_for_move(dentry, target); 2516 2517 write_seqcount_begin(&dentry->d_seq); 2518 write_seqcount_begin_nested(&target->d_seq, DENTRY_D_LOCK_NESTED); 2519 2520 /* __d_drop does write_seqcount_barrier, but they're OK to nest. */ 2521 2522 /* 2523 * Move the dentry to the target hash queue. Don't bother checking 2524 * for the same hash queue because of how unlikely it is. 2525 */ 2526 __d_drop(dentry); 2527 __d_rehash(dentry, d_hash(target->d_parent, target->d_name.hash)); 2528 2529 /* 2530 * Unhash the target (d_delete() is not usable here). If exchanging 2531 * the two dentries, then rehash onto the other's hash queue. 2532 */ 2533 __d_drop(target); 2534 if (exchange) { 2535 __d_rehash(target, 2536 d_hash(dentry->d_parent, dentry->d_name.hash)); 2537 } 2538 2539 list_del(&dentry->d_u.d_child); 2540 list_del(&target->d_u.d_child); 2541 2542 /* Switch the names.. */ 2543 switch_names(dentry, target); 2544 swap(dentry->d_name.hash, target->d_name.hash); 2545 2546 /* ... and switch the parents */ 2547 if (IS_ROOT(dentry)) { 2548 dentry->d_parent = target->d_parent; 2549 target->d_parent = target; 2550 INIT_LIST_HEAD(&target->d_u.d_child); 2551 } else { 2552 swap(dentry->d_parent, target->d_parent); 2553 2554 /* And add them back to the (new) parent lists */ 2555 list_add(&target->d_u.d_child, &target->d_parent->d_subdirs); 2556 } 2557 2558 list_add(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs); 2559 2560 write_seqcount_end(&target->d_seq); 2561 write_seqcount_end(&dentry->d_seq); 2562 2563 dentry_unlock_parents_for_move(dentry, target); 2564 if (exchange) 2565 fsnotify_d_move(target); 2566 spin_unlock(&target->d_lock); 2567 fsnotify_d_move(dentry); 2568 spin_unlock(&dentry->d_lock); 2569 } 2570 2571 /* 2572 * d_move - move a dentry 2573 * @dentry: entry to move 2574 * @target: new dentry 2575 * 2576 * Update the dcache to reflect the move of a file name. Negative 2577 * dcache entries should not be moved in this way. See the locking 2578 * requirements for __d_move. 2579 */ 2580 void d_move(struct dentry *dentry, struct dentry *target) 2581 { 2582 write_seqlock(&rename_lock); 2583 __d_move(dentry, target, false); 2584 write_sequnlock(&rename_lock); 2585 } 2586 EXPORT_SYMBOL(d_move); 2587 2588 /* 2589 * d_exchange - exchange two dentries 2590 * @dentry1: first dentry 2591 * @dentry2: second dentry 2592 */ 2593 void d_exchange(struct dentry *dentry1, struct dentry *dentry2) 2594 { 2595 write_seqlock(&rename_lock); 2596 2597 WARN_ON(!dentry1->d_inode); 2598 WARN_ON(!dentry2->d_inode); 2599 WARN_ON(IS_ROOT(dentry1)); 2600 WARN_ON(IS_ROOT(dentry2)); 2601 2602 __d_move(dentry1, dentry2, true); 2603 2604 write_sequnlock(&rename_lock); 2605 } 2606 2607 /** 2608 * d_ancestor - search for an ancestor 2609 * @p1: ancestor dentry 2610 * @p2: child dentry 2611 * 2612 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is 2613 * an ancestor of p2, else NULL. 2614 */ 2615 struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2) 2616 { 2617 struct dentry *p; 2618 2619 for (p = p2; !IS_ROOT(p); p = p->d_parent) { 2620 if (p->d_parent == p1) 2621 return p; 2622 } 2623 return NULL; 2624 } 2625 2626 /* 2627 * This helper attempts to cope with remotely renamed directories 2628 * 2629 * It assumes that the caller is already holding 2630 * dentry->d_parent->d_inode->i_mutex, inode->i_lock and rename_lock 2631 * 2632 * Note: If ever the locking in lock_rename() changes, then please 2633 * remember to update this too... 2634 */ 2635 static struct dentry *__d_unalias(struct inode *inode, 2636 struct dentry *dentry, struct dentry *alias) 2637 { 2638 struct mutex *m1 = NULL, *m2 = NULL; 2639 struct dentry *ret = ERR_PTR(-EBUSY); 2640 2641 /* If alias and dentry share a parent, then no extra locks required */ 2642 if (alias->d_parent == dentry->d_parent) 2643 goto out_unalias; 2644 2645 /* See lock_rename() */ 2646 if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex)) 2647 goto out_err; 2648 m1 = &dentry->d_sb->s_vfs_rename_mutex; 2649 if (!mutex_trylock(&alias->d_parent->d_inode->i_mutex)) 2650 goto out_err; 2651 m2 = &alias->d_parent->d_inode->i_mutex; 2652 out_unalias: 2653 if (likely(!d_mountpoint(alias))) { 2654 __d_move(alias, dentry, false); 2655 ret = alias; 2656 } 2657 out_err: 2658 spin_unlock(&inode->i_lock); 2659 if (m2) 2660 mutex_unlock(m2); 2661 if (m1) 2662 mutex_unlock(m1); 2663 return ret; 2664 } 2665 2666 /* 2667 * Prepare an anonymous dentry for life in the superblock's dentry tree as a 2668 * named dentry in place of the dentry to be replaced. 2669 * returns with anon->d_lock held! 2670 */ 2671 static void __d_materialise_dentry(struct dentry *dentry, struct dentry *anon) 2672 { 2673 struct dentry *dparent; 2674 2675 dentry_lock_for_move(anon, dentry); 2676 2677 write_seqcount_begin(&dentry->d_seq); 2678 write_seqcount_begin_nested(&anon->d_seq, DENTRY_D_LOCK_NESTED); 2679 2680 dparent = dentry->d_parent; 2681 2682 switch_names(dentry, anon); 2683 swap(dentry->d_name.hash, anon->d_name.hash); 2684 2685 dentry->d_parent = dentry; 2686 list_del_init(&dentry->d_u.d_child); 2687 anon->d_parent = dparent; 2688 list_move(&anon->d_u.d_child, &dparent->d_subdirs); 2689 2690 write_seqcount_end(&dentry->d_seq); 2691 write_seqcount_end(&anon->d_seq); 2692 2693 dentry_unlock_parents_for_move(anon, dentry); 2694 spin_unlock(&dentry->d_lock); 2695 2696 /* anon->d_lock still locked, returns locked */ 2697 } 2698 2699 /** 2700 * d_materialise_unique - introduce an inode into the tree 2701 * @dentry: candidate dentry 2702 * @inode: inode to bind to the dentry, to which aliases may be attached 2703 * 2704 * Introduces an dentry into the tree, substituting an extant disconnected 2705 * root directory alias in its place if there is one. Caller must hold the 2706 * i_mutex of the parent directory. 2707 */ 2708 struct dentry *d_materialise_unique(struct dentry *dentry, struct inode *inode) 2709 { 2710 struct dentry *actual; 2711 2712 BUG_ON(!d_unhashed(dentry)); 2713 2714 if (!inode) { 2715 actual = dentry; 2716 __d_instantiate(dentry, NULL); 2717 d_rehash(actual); 2718 goto out_nolock; 2719 } 2720 2721 spin_lock(&inode->i_lock); 2722 2723 if (S_ISDIR(inode->i_mode)) { 2724 struct dentry *alias; 2725 2726 /* Does an aliased dentry already exist? */ 2727 alias = __d_find_alias(inode, 0); 2728 if (alias) { 2729 actual = alias; 2730 write_seqlock(&rename_lock); 2731 2732 if (d_ancestor(alias, dentry)) { 2733 /* Check for loops */ 2734 actual = ERR_PTR(-ELOOP); 2735 spin_unlock(&inode->i_lock); 2736 } else if (IS_ROOT(alias)) { 2737 /* Is this an anonymous mountpoint that we 2738 * could splice into our tree? */ 2739 __d_materialise_dentry(dentry, alias); 2740 write_sequnlock(&rename_lock); 2741 __d_drop(alias); 2742 goto found; 2743 } else { 2744 /* Nope, but we must(!) avoid directory 2745 * aliasing. This drops inode->i_lock */ 2746 actual = __d_unalias(inode, dentry, alias); 2747 } 2748 write_sequnlock(&rename_lock); 2749 if (IS_ERR(actual)) { 2750 if (PTR_ERR(actual) == -ELOOP) 2751 pr_warn_ratelimited( 2752 "VFS: Lookup of '%s' in %s %s" 2753 " would have caused loop\n", 2754 dentry->d_name.name, 2755 inode->i_sb->s_type->name, 2756 inode->i_sb->s_id); 2757 dput(alias); 2758 } 2759 goto out_nolock; 2760 } 2761 } 2762 2763 /* Add a unique reference */ 2764 actual = __d_instantiate_unique(dentry, inode); 2765 if (!actual) 2766 actual = dentry; 2767 else 2768 BUG_ON(!d_unhashed(actual)); 2769 2770 spin_lock(&actual->d_lock); 2771 found: 2772 _d_rehash(actual); 2773 spin_unlock(&actual->d_lock); 2774 spin_unlock(&inode->i_lock); 2775 out_nolock: 2776 if (actual == dentry) { 2777 security_d_instantiate(dentry, inode); 2778 return NULL; 2779 } 2780 2781 iput(inode); 2782 return actual; 2783 } 2784 EXPORT_SYMBOL_GPL(d_materialise_unique); 2785 2786 static int prepend(char **buffer, int *buflen, const char *str, int namelen) 2787 { 2788 *buflen -= namelen; 2789 if (*buflen < 0) 2790 return -ENAMETOOLONG; 2791 *buffer -= namelen; 2792 memcpy(*buffer, str, namelen); 2793 return 0; 2794 } 2795 2796 /** 2797 * prepend_name - prepend a pathname in front of current buffer pointer 2798 * @buffer: buffer pointer 2799 * @buflen: allocated length of the buffer 2800 * @name: name string and length qstr structure 2801 * 2802 * With RCU path tracing, it may race with d_move(). Use ACCESS_ONCE() to 2803 * make sure that either the old or the new name pointer and length are 2804 * fetched. However, there may be mismatch between length and pointer. 2805 * The length cannot be trusted, we need to copy it byte-by-byte until 2806 * the length is reached or a null byte is found. It also prepends "/" at 2807 * the beginning of the name. The sequence number check at the caller will 2808 * retry it again when a d_move() does happen. So any garbage in the buffer 2809 * due to mismatched pointer and length will be discarded. 2810 */ 2811 static int prepend_name(char **buffer, int *buflen, struct qstr *name) 2812 { 2813 const char *dname = ACCESS_ONCE(name->name); 2814 u32 dlen = ACCESS_ONCE(name->len); 2815 char *p; 2816 2817 *buflen -= dlen + 1; 2818 if (*buflen < 0) 2819 return -ENAMETOOLONG; 2820 p = *buffer -= dlen + 1; 2821 *p++ = '/'; 2822 while (dlen--) { 2823 char c = *dname++; 2824 if (!c) 2825 break; 2826 *p++ = c; 2827 } 2828 return 0; 2829 } 2830 2831 /** 2832 * prepend_path - Prepend path string to a buffer 2833 * @path: the dentry/vfsmount to report 2834 * @root: root vfsmnt/dentry 2835 * @buffer: pointer to the end of the buffer 2836 * @buflen: pointer to buffer length 2837 * 2838 * The function will first try to write out the pathname without taking any 2839 * lock other than the RCU read lock to make sure that dentries won't go away. 2840 * It only checks the sequence number of the global rename_lock as any change 2841 * in the dentry's d_seq will be preceded by changes in the rename_lock 2842 * sequence number. If the sequence number had been changed, it will restart 2843 * the whole pathname back-tracing sequence again by taking the rename_lock. 2844 * In this case, there is no need to take the RCU read lock as the recursive 2845 * parent pointer references will keep the dentry chain alive as long as no 2846 * rename operation is performed. 2847 */ 2848 static int prepend_path(const struct path *path, 2849 const struct path *root, 2850 char **buffer, int *buflen) 2851 { 2852 struct dentry *dentry; 2853 struct vfsmount *vfsmnt; 2854 struct mount *mnt; 2855 int error = 0; 2856 unsigned seq, m_seq = 0; 2857 char *bptr; 2858 int blen; 2859 2860 rcu_read_lock(); 2861 restart_mnt: 2862 read_seqbegin_or_lock(&mount_lock, &m_seq); 2863 seq = 0; 2864 rcu_read_lock(); 2865 restart: 2866 bptr = *buffer; 2867 blen = *buflen; 2868 error = 0; 2869 dentry = path->dentry; 2870 vfsmnt = path->mnt; 2871 mnt = real_mount(vfsmnt); 2872 read_seqbegin_or_lock(&rename_lock, &seq); 2873 while (dentry != root->dentry || vfsmnt != root->mnt) { 2874 struct dentry * parent; 2875 2876 if (dentry == vfsmnt->mnt_root || IS_ROOT(dentry)) { 2877 struct mount *parent = ACCESS_ONCE(mnt->mnt_parent); 2878 /* Global root? */ 2879 if (mnt != parent) { 2880 dentry = ACCESS_ONCE(mnt->mnt_mountpoint); 2881 mnt = parent; 2882 vfsmnt = &mnt->mnt; 2883 continue; 2884 } 2885 /* 2886 * Filesystems needing to implement special "root names" 2887 * should do so with ->d_dname() 2888 */ 2889 if (IS_ROOT(dentry) && 2890 (dentry->d_name.len != 1 || 2891 dentry->d_name.name[0] != '/')) { 2892 WARN(1, "Root dentry has weird name <%.*s>\n", 2893 (int) dentry->d_name.len, 2894 dentry->d_name.name); 2895 } 2896 if (!error) 2897 error = is_mounted(vfsmnt) ? 1 : 2; 2898 break; 2899 } 2900 parent = dentry->d_parent; 2901 prefetch(parent); 2902 error = prepend_name(&bptr, &blen, &dentry->d_name); 2903 if (error) 2904 break; 2905 2906 dentry = parent; 2907 } 2908 if (!(seq & 1)) 2909 rcu_read_unlock(); 2910 if (need_seqretry(&rename_lock, seq)) { 2911 seq = 1; 2912 goto restart; 2913 } 2914 done_seqretry(&rename_lock, seq); 2915 2916 if (!(m_seq & 1)) 2917 rcu_read_unlock(); 2918 if (need_seqretry(&mount_lock, m_seq)) { 2919 m_seq = 1; 2920 goto restart_mnt; 2921 } 2922 done_seqretry(&mount_lock, m_seq); 2923 2924 if (error >= 0 && bptr == *buffer) { 2925 if (--blen < 0) 2926 error = -ENAMETOOLONG; 2927 else 2928 *--bptr = '/'; 2929 } 2930 *buffer = bptr; 2931 *buflen = blen; 2932 return error; 2933 } 2934 2935 /** 2936 * __d_path - return the path of a dentry 2937 * @path: the dentry/vfsmount to report 2938 * @root: root vfsmnt/dentry 2939 * @buf: buffer to return value in 2940 * @buflen: buffer length 2941 * 2942 * Convert a dentry into an ASCII path name. 2943 * 2944 * Returns a pointer into the buffer or an error code if the 2945 * path was too long. 2946 * 2947 * "buflen" should be positive. 2948 * 2949 * If the path is not reachable from the supplied root, return %NULL. 2950 */ 2951 char *__d_path(const struct path *path, 2952 const struct path *root, 2953 char *buf, int buflen) 2954 { 2955 char *res = buf + buflen; 2956 int error; 2957 2958 prepend(&res, &buflen, "\0", 1); 2959 error = prepend_path(path, root, &res, &buflen); 2960 2961 if (error < 0) 2962 return ERR_PTR(error); 2963 if (error > 0) 2964 return NULL; 2965 return res; 2966 } 2967 2968 char *d_absolute_path(const struct path *path, 2969 char *buf, int buflen) 2970 { 2971 struct path root = {}; 2972 char *res = buf + buflen; 2973 int error; 2974 2975 prepend(&res, &buflen, "\0", 1); 2976 error = prepend_path(path, &root, &res, &buflen); 2977 2978 if (error > 1) 2979 error = -EINVAL; 2980 if (error < 0) 2981 return ERR_PTR(error); 2982 return res; 2983 } 2984 2985 /* 2986 * same as __d_path but appends "(deleted)" for unlinked files. 2987 */ 2988 static int path_with_deleted(const struct path *path, 2989 const struct path *root, 2990 char **buf, int *buflen) 2991 { 2992 prepend(buf, buflen, "\0", 1); 2993 if (d_unlinked(path->dentry)) { 2994 int error = prepend(buf, buflen, " (deleted)", 10); 2995 if (error) 2996 return error; 2997 } 2998 2999 return prepend_path(path, root, buf, buflen); 3000 } 3001 3002 static int prepend_unreachable(char **buffer, int *buflen) 3003 { 3004 return prepend(buffer, buflen, "(unreachable)", 13); 3005 } 3006 3007 static void get_fs_root_rcu(struct fs_struct *fs, struct path *root) 3008 { 3009 unsigned seq; 3010 3011 do { 3012 seq = read_seqcount_begin(&fs->seq); 3013 *root = fs->root; 3014 } while (read_seqcount_retry(&fs->seq, seq)); 3015 } 3016 3017 /** 3018 * d_path - return the path of a dentry 3019 * @path: path to report 3020 * @buf: buffer to return value in 3021 * @buflen: buffer length 3022 * 3023 * Convert a dentry into an ASCII path name. If the entry has been deleted 3024 * the string " (deleted)" is appended. Note that this is ambiguous. 3025 * 3026 * Returns a pointer into the buffer or an error code if the path was 3027 * too long. Note: Callers should use the returned pointer, not the passed 3028 * in buffer, to use the name! The implementation often starts at an offset 3029 * into the buffer, and may leave 0 bytes at the start. 3030 * 3031 * "buflen" should be positive. 3032 */ 3033 char *d_path(const struct path *path, char *buf, int buflen) 3034 { 3035 char *res = buf + buflen; 3036 struct path root; 3037 int error; 3038 3039 /* 3040 * We have various synthetic filesystems that never get mounted. On 3041 * these filesystems dentries are never used for lookup purposes, and 3042 * thus don't need to be hashed. They also don't need a name until a 3043 * user wants to identify the object in /proc/pid/fd/. The little hack 3044 * below allows us to generate a name for these objects on demand: 3045 * 3046 * Some pseudo inodes are mountable. When they are mounted 3047 * path->dentry == path->mnt->mnt_root. In that case don't call d_dname 3048 * and instead have d_path return the mounted path. 3049 */ 3050 if (path->dentry->d_op && path->dentry->d_op->d_dname && 3051 (!IS_ROOT(path->dentry) || path->dentry != path->mnt->mnt_root)) 3052 return path->dentry->d_op->d_dname(path->dentry, buf, buflen); 3053 3054 rcu_read_lock(); 3055 get_fs_root_rcu(current->fs, &root); 3056 error = path_with_deleted(path, &root, &res, &buflen); 3057 rcu_read_unlock(); 3058 3059 if (error < 0) 3060 res = ERR_PTR(error); 3061 return res; 3062 } 3063 EXPORT_SYMBOL(d_path); 3064 3065 /* 3066 * Helper function for dentry_operations.d_dname() members 3067 */ 3068 char *dynamic_dname(struct dentry *dentry, char *buffer, int buflen, 3069 const char *fmt, ...) 3070 { 3071 va_list args; 3072 char temp[64]; 3073 int sz; 3074 3075 va_start(args, fmt); 3076 sz = vsnprintf(temp, sizeof(temp), fmt, args) + 1; 3077 va_end(args); 3078 3079 if (sz > sizeof(temp) || sz > buflen) 3080 return ERR_PTR(-ENAMETOOLONG); 3081 3082 buffer += buflen - sz; 3083 return memcpy(buffer, temp, sz); 3084 } 3085 3086 char *simple_dname(struct dentry *dentry, char *buffer, int buflen) 3087 { 3088 char *end = buffer + buflen; 3089 /* these dentries are never renamed, so d_lock is not needed */ 3090 if (prepend(&end, &buflen, " (deleted)", 11) || 3091 prepend(&end, &buflen, dentry->d_name.name, dentry->d_name.len) || 3092 prepend(&end, &buflen, "/", 1)) 3093 end = ERR_PTR(-ENAMETOOLONG); 3094 return end; 3095 } 3096 EXPORT_SYMBOL(simple_dname); 3097 3098 /* 3099 * Write full pathname from the root of the filesystem into the buffer. 3100 */ 3101 static char *__dentry_path(struct dentry *d, char *buf, int buflen) 3102 { 3103 struct dentry *dentry; 3104 char *end, *retval; 3105 int len, seq = 0; 3106 int error = 0; 3107 3108 if (buflen < 2) 3109 goto Elong; 3110 3111 rcu_read_lock(); 3112 restart: 3113 dentry = d; 3114 end = buf + buflen; 3115 len = buflen; 3116 prepend(&end, &len, "\0", 1); 3117 /* Get '/' right */ 3118 retval = end-1; 3119 *retval = '/'; 3120 read_seqbegin_or_lock(&rename_lock, &seq); 3121 while (!IS_ROOT(dentry)) { 3122 struct dentry *parent = dentry->d_parent; 3123 3124 prefetch(parent); 3125 error = prepend_name(&end, &len, &dentry->d_name); 3126 if (error) 3127 break; 3128 3129 retval = end; 3130 dentry = parent; 3131 } 3132 if (!(seq & 1)) 3133 rcu_read_unlock(); 3134 if (need_seqretry(&rename_lock, seq)) { 3135 seq = 1; 3136 goto restart; 3137 } 3138 done_seqretry(&rename_lock, seq); 3139 if (error) 3140 goto Elong; 3141 return retval; 3142 Elong: 3143 return ERR_PTR(-ENAMETOOLONG); 3144 } 3145 3146 char *dentry_path_raw(struct dentry *dentry, char *buf, int buflen) 3147 { 3148 return __dentry_path(dentry, buf, buflen); 3149 } 3150 EXPORT_SYMBOL(dentry_path_raw); 3151 3152 char *dentry_path(struct dentry *dentry, char *buf, int buflen) 3153 { 3154 char *p = NULL; 3155 char *retval; 3156 3157 if (d_unlinked(dentry)) { 3158 p = buf + buflen; 3159 if (prepend(&p, &buflen, "//deleted", 10) != 0) 3160 goto Elong; 3161 buflen++; 3162 } 3163 retval = __dentry_path(dentry, buf, buflen); 3164 if (!IS_ERR(retval) && p) 3165 *p = '/'; /* restore '/' overriden with '\0' */ 3166 return retval; 3167 Elong: 3168 return ERR_PTR(-ENAMETOOLONG); 3169 } 3170 3171 static void get_fs_root_and_pwd_rcu(struct fs_struct *fs, struct path *root, 3172 struct path *pwd) 3173 { 3174 unsigned seq; 3175 3176 do { 3177 seq = read_seqcount_begin(&fs->seq); 3178 *root = fs->root; 3179 *pwd = fs->pwd; 3180 } while (read_seqcount_retry(&fs->seq, seq)); 3181 } 3182 3183 /* 3184 * NOTE! The user-level library version returns a 3185 * character pointer. The kernel system call just 3186 * returns the length of the buffer filled (which 3187 * includes the ending '\0' character), or a negative 3188 * error value. So libc would do something like 3189 * 3190 * char *getcwd(char * buf, size_t size) 3191 * { 3192 * int retval; 3193 * 3194 * retval = sys_getcwd(buf, size); 3195 * if (retval >= 0) 3196 * return buf; 3197 * errno = -retval; 3198 * return NULL; 3199 * } 3200 */ 3201 SYSCALL_DEFINE2(getcwd, char __user *, buf, unsigned long, size) 3202 { 3203 int error; 3204 struct path pwd, root; 3205 char *page = __getname(); 3206 3207 if (!page) 3208 return -ENOMEM; 3209 3210 rcu_read_lock(); 3211 get_fs_root_and_pwd_rcu(current->fs, &root, &pwd); 3212 3213 error = -ENOENT; 3214 if (!d_unlinked(pwd.dentry)) { 3215 unsigned long len; 3216 char *cwd = page + PATH_MAX; 3217 int buflen = PATH_MAX; 3218 3219 prepend(&cwd, &buflen, "\0", 1); 3220 error = prepend_path(&pwd, &root, &cwd, &buflen); 3221 rcu_read_unlock(); 3222 3223 if (error < 0) 3224 goto out; 3225 3226 /* Unreachable from current root */ 3227 if (error > 0) { 3228 error = prepend_unreachable(&cwd, &buflen); 3229 if (error) 3230 goto out; 3231 } 3232 3233 error = -ERANGE; 3234 len = PATH_MAX + page - cwd; 3235 if (len <= size) { 3236 error = len; 3237 if (copy_to_user(buf, cwd, len)) 3238 error = -EFAULT; 3239 } 3240 } else { 3241 rcu_read_unlock(); 3242 } 3243 3244 out: 3245 __putname(page); 3246 return error; 3247 } 3248 3249 /* 3250 * Test whether new_dentry is a subdirectory of old_dentry. 3251 * 3252 * Trivially implemented using the dcache structure 3253 */ 3254 3255 /** 3256 * is_subdir - is new dentry a subdirectory of old_dentry 3257 * @new_dentry: new dentry 3258 * @old_dentry: old dentry 3259 * 3260 * Returns 1 if new_dentry is a subdirectory of the parent (at any depth). 3261 * Returns 0 otherwise. 3262 * Caller must ensure that "new_dentry" is pinned before calling is_subdir() 3263 */ 3264 3265 int is_subdir(struct dentry *new_dentry, struct dentry *old_dentry) 3266 { 3267 int result; 3268 unsigned seq; 3269 3270 if (new_dentry == old_dentry) 3271 return 1; 3272 3273 do { 3274 /* for restarting inner loop in case of seq retry */ 3275 seq = read_seqbegin(&rename_lock); 3276 /* 3277 * Need rcu_readlock to protect against the d_parent trashing 3278 * due to d_move 3279 */ 3280 rcu_read_lock(); 3281 if (d_ancestor(old_dentry, new_dentry)) 3282 result = 1; 3283 else 3284 result = 0; 3285 rcu_read_unlock(); 3286 } while (read_seqretry(&rename_lock, seq)); 3287 3288 return result; 3289 } 3290 3291 static enum d_walk_ret d_genocide_kill(void *data, struct dentry *dentry) 3292 { 3293 struct dentry *root = data; 3294 if (dentry != root) { 3295 if (d_unhashed(dentry) || !dentry->d_inode) 3296 return D_WALK_SKIP; 3297 3298 if (!(dentry->d_flags & DCACHE_GENOCIDE)) { 3299 dentry->d_flags |= DCACHE_GENOCIDE; 3300 dentry->d_lockref.count--; 3301 } 3302 } 3303 return D_WALK_CONTINUE; 3304 } 3305 3306 void d_genocide(struct dentry *parent) 3307 { 3308 d_walk(parent, parent, d_genocide_kill, NULL); 3309 } 3310 3311 void d_tmpfile(struct dentry *dentry, struct inode *inode) 3312 { 3313 inode_dec_link_count(inode); 3314 BUG_ON(dentry->d_name.name != dentry->d_iname || 3315 !hlist_unhashed(&dentry->d_alias) || 3316 !d_unlinked(dentry)); 3317 spin_lock(&dentry->d_parent->d_lock); 3318 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED); 3319 dentry->d_name.len = sprintf(dentry->d_iname, "#%llu", 3320 (unsigned long long)inode->i_ino); 3321 spin_unlock(&dentry->d_lock); 3322 spin_unlock(&dentry->d_parent->d_lock); 3323 d_instantiate(dentry, inode); 3324 } 3325 EXPORT_SYMBOL(d_tmpfile); 3326 3327 static __initdata unsigned long dhash_entries; 3328 static int __init set_dhash_entries(char *str) 3329 { 3330 if (!str) 3331 return 0; 3332 dhash_entries = simple_strtoul(str, &str, 0); 3333 return 1; 3334 } 3335 __setup("dhash_entries=", set_dhash_entries); 3336 3337 static void __init dcache_init_early(void) 3338 { 3339 unsigned int loop; 3340 3341 /* If hashes are distributed across NUMA nodes, defer 3342 * hash allocation until vmalloc space is available. 3343 */ 3344 if (hashdist) 3345 return; 3346 3347 dentry_hashtable = 3348 alloc_large_system_hash("Dentry cache", 3349 sizeof(struct hlist_bl_head), 3350 dhash_entries, 3351 13, 3352 HASH_EARLY, 3353 &d_hash_shift, 3354 &d_hash_mask, 3355 0, 3356 0); 3357 3358 for (loop = 0; loop < (1U << d_hash_shift); loop++) 3359 INIT_HLIST_BL_HEAD(dentry_hashtable + loop); 3360 } 3361 3362 static void __init dcache_init(void) 3363 { 3364 unsigned int loop; 3365 3366 /* 3367 * A constructor could be added for stable state like the lists, 3368 * but it is probably not worth it because of the cache nature 3369 * of the dcache. 3370 */ 3371 dentry_cache = KMEM_CACHE(dentry, 3372 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD); 3373 3374 /* Hash may have been set up in dcache_init_early */ 3375 if (!hashdist) 3376 return; 3377 3378 dentry_hashtable = 3379 alloc_large_system_hash("Dentry cache", 3380 sizeof(struct hlist_bl_head), 3381 dhash_entries, 3382 13, 3383 0, 3384 &d_hash_shift, 3385 &d_hash_mask, 3386 0, 3387 0); 3388 3389 for (loop = 0; loop < (1U << d_hash_shift); loop++) 3390 INIT_HLIST_BL_HEAD(dentry_hashtable + loop); 3391 } 3392 3393 /* SLAB cache for __getname() consumers */ 3394 struct kmem_cache *names_cachep __read_mostly; 3395 EXPORT_SYMBOL(names_cachep); 3396 3397 EXPORT_SYMBOL(d_genocide); 3398 3399 void __init vfs_caches_init_early(void) 3400 { 3401 dcache_init_early(); 3402 inode_init_early(); 3403 } 3404 3405 void __init vfs_caches_init(unsigned long mempages) 3406 { 3407 unsigned long reserve; 3408 3409 /* Base hash sizes on available memory, with a reserve equal to 3410 150% of current kernel size */ 3411 3412 reserve = min((mempages - nr_free_pages()) * 3/2, mempages - 1); 3413 mempages -= reserve; 3414 3415 names_cachep = kmem_cache_create("names_cache", PATH_MAX, 0, 3416 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL); 3417 3418 dcache_init(); 3419 inode_init(); 3420 files_init(mempages); 3421 mnt_init(); 3422 bdev_cache_init(); 3423 chrdev_init(); 3424 } 3425