xref: /openbmc/linux/fs/dcache.c (revision d0b73b48)
1 /*
2  * fs/dcache.c
3  *
4  * Complete reimplementation
5  * (C) 1997 Thomas Schoebel-Theuer,
6  * with heavy changes by Linus Torvalds
7  */
8 
9 /*
10  * Notes on the allocation strategy:
11  *
12  * The dcache is a master of the icache - whenever a dcache entry
13  * exists, the inode will always exist. "iput()" is done either when
14  * the dcache entry is deleted or garbage collected.
15  */
16 
17 #include <linux/syscalls.h>
18 #include <linux/string.h>
19 #include <linux/mm.h>
20 #include <linux/fs.h>
21 #include <linux/fsnotify.h>
22 #include <linux/slab.h>
23 #include <linux/init.h>
24 #include <linux/hash.h>
25 #include <linux/cache.h>
26 #include <linux/export.h>
27 #include <linux/mount.h>
28 #include <linux/file.h>
29 #include <asm/uaccess.h>
30 #include <linux/security.h>
31 #include <linux/seqlock.h>
32 #include <linux/swap.h>
33 #include <linux/bootmem.h>
34 #include <linux/fs_struct.h>
35 #include <linux/hardirq.h>
36 #include <linux/bit_spinlock.h>
37 #include <linux/rculist_bl.h>
38 #include <linux/prefetch.h>
39 #include <linux/ratelimit.h>
40 #include "internal.h"
41 #include "mount.h"
42 
43 /*
44  * Usage:
45  * dcache->d_inode->i_lock protects:
46  *   - i_dentry, d_alias, d_inode of aliases
47  * dcache_hash_bucket lock protects:
48  *   - the dcache hash table
49  * s_anon bl list spinlock protects:
50  *   - the s_anon list (see __d_drop)
51  * dcache_lru_lock protects:
52  *   - the dcache lru lists and counters
53  * d_lock protects:
54  *   - d_flags
55  *   - d_name
56  *   - d_lru
57  *   - d_count
58  *   - d_unhashed()
59  *   - d_parent and d_subdirs
60  *   - childrens' d_child and d_parent
61  *   - d_alias, d_inode
62  *
63  * Ordering:
64  * dentry->d_inode->i_lock
65  *   dentry->d_lock
66  *     dcache_lru_lock
67  *     dcache_hash_bucket lock
68  *     s_anon lock
69  *
70  * If there is an ancestor relationship:
71  * dentry->d_parent->...->d_parent->d_lock
72  *   ...
73  *     dentry->d_parent->d_lock
74  *       dentry->d_lock
75  *
76  * If no ancestor relationship:
77  * if (dentry1 < dentry2)
78  *   dentry1->d_lock
79  *     dentry2->d_lock
80  */
81 int sysctl_vfs_cache_pressure __read_mostly = 100;
82 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
83 
84 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(dcache_lru_lock);
85 __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
86 
87 EXPORT_SYMBOL(rename_lock);
88 
89 static struct kmem_cache *dentry_cache __read_mostly;
90 
91 /*
92  * This is the single most critical data structure when it comes
93  * to the dcache: the hashtable for lookups. Somebody should try
94  * to make this good - I've just made it work.
95  *
96  * This hash-function tries to avoid losing too many bits of hash
97  * information, yet avoid using a prime hash-size or similar.
98  */
99 #define D_HASHBITS     d_hash_shift
100 #define D_HASHMASK     d_hash_mask
101 
102 static unsigned int d_hash_mask __read_mostly;
103 static unsigned int d_hash_shift __read_mostly;
104 
105 static struct hlist_bl_head *dentry_hashtable __read_mostly;
106 
107 static inline struct hlist_bl_head *d_hash(const struct dentry *parent,
108 					unsigned int hash)
109 {
110 	hash += (unsigned long) parent / L1_CACHE_BYTES;
111 	hash = hash + (hash >> D_HASHBITS);
112 	return dentry_hashtable + (hash & D_HASHMASK);
113 }
114 
115 /* Statistics gathering. */
116 struct dentry_stat_t dentry_stat = {
117 	.age_limit = 45,
118 };
119 
120 static DEFINE_PER_CPU(unsigned int, nr_dentry);
121 
122 #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
123 static int get_nr_dentry(void)
124 {
125 	int i;
126 	int sum = 0;
127 	for_each_possible_cpu(i)
128 		sum += per_cpu(nr_dentry, i);
129 	return sum < 0 ? 0 : sum;
130 }
131 
132 int proc_nr_dentry(ctl_table *table, int write, void __user *buffer,
133 		   size_t *lenp, loff_t *ppos)
134 {
135 	dentry_stat.nr_dentry = get_nr_dentry();
136 	return proc_dointvec(table, write, buffer, lenp, ppos);
137 }
138 #endif
139 
140 /*
141  * Compare 2 name strings, return 0 if they match, otherwise non-zero.
142  * The strings are both count bytes long, and count is non-zero.
143  */
144 #ifdef CONFIG_DCACHE_WORD_ACCESS
145 
146 #include <asm/word-at-a-time.h>
147 /*
148  * NOTE! 'cs' and 'scount' come from a dentry, so it has a
149  * aligned allocation for this particular component. We don't
150  * strictly need the load_unaligned_zeropad() safety, but it
151  * doesn't hurt either.
152  *
153  * In contrast, 'ct' and 'tcount' can be from a pathname, and do
154  * need the careful unaligned handling.
155  */
156 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
157 {
158 	unsigned long a,b,mask;
159 
160 	for (;;) {
161 		a = *(unsigned long *)cs;
162 		b = load_unaligned_zeropad(ct);
163 		if (tcount < sizeof(unsigned long))
164 			break;
165 		if (unlikely(a != b))
166 			return 1;
167 		cs += sizeof(unsigned long);
168 		ct += sizeof(unsigned long);
169 		tcount -= sizeof(unsigned long);
170 		if (!tcount)
171 			return 0;
172 	}
173 	mask = ~(~0ul << tcount*8);
174 	return unlikely(!!((a ^ b) & mask));
175 }
176 
177 #else
178 
179 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
180 {
181 	do {
182 		if (*cs != *ct)
183 			return 1;
184 		cs++;
185 		ct++;
186 		tcount--;
187 	} while (tcount);
188 	return 0;
189 }
190 
191 #endif
192 
193 static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount)
194 {
195 	const unsigned char *cs;
196 	/*
197 	 * Be careful about RCU walk racing with rename:
198 	 * use ACCESS_ONCE to fetch the name pointer.
199 	 *
200 	 * NOTE! Even if a rename will mean that the length
201 	 * was not loaded atomically, we don't care. The
202 	 * RCU walk will check the sequence count eventually,
203 	 * and catch it. And we won't overrun the buffer,
204 	 * because we're reading the name pointer atomically,
205 	 * and a dentry name is guaranteed to be properly
206 	 * terminated with a NUL byte.
207 	 *
208 	 * End result: even if 'len' is wrong, we'll exit
209 	 * early because the data cannot match (there can
210 	 * be no NUL in the ct/tcount data)
211 	 */
212 	cs = ACCESS_ONCE(dentry->d_name.name);
213 	smp_read_barrier_depends();
214 	return dentry_string_cmp(cs, ct, tcount);
215 }
216 
217 static void __d_free(struct rcu_head *head)
218 {
219 	struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
220 
221 	WARN_ON(!hlist_unhashed(&dentry->d_alias));
222 	if (dname_external(dentry))
223 		kfree(dentry->d_name.name);
224 	kmem_cache_free(dentry_cache, dentry);
225 }
226 
227 /*
228  * no locks, please.
229  */
230 static void d_free(struct dentry *dentry)
231 {
232 	BUG_ON(dentry->d_count);
233 	this_cpu_dec(nr_dentry);
234 	if (dentry->d_op && dentry->d_op->d_release)
235 		dentry->d_op->d_release(dentry);
236 
237 	/* if dentry was never visible to RCU, immediate free is OK */
238 	if (!(dentry->d_flags & DCACHE_RCUACCESS))
239 		__d_free(&dentry->d_u.d_rcu);
240 	else
241 		call_rcu(&dentry->d_u.d_rcu, __d_free);
242 }
243 
244 /**
245  * dentry_rcuwalk_barrier - invalidate in-progress rcu-walk lookups
246  * @dentry: the target dentry
247  * After this call, in-progress rcu-walk path lookup will fail. This
248  * should be called after unhashing, and after changing d_inode (if
249  * the dentry has not already been unhashed).
250  */
251 static inline void dentry_rcuwalk_barrier(struct dentry *dentry)
252 {
253 	assert_spin_locked(&dentry->d_lock);
254 	/* Go through a barrier */
255 	write_seqcount_barrier(&dentry->d_seq);
256 }
257 
258 /*
259  * Release the dentry's inode, using the filesystem
260  * d_iput() operation if defined. Dentry has no refcount
261  * and is unhashed.
262  */
263 static void dentry_iput(struct dentry * dentry)
264 	__releases(dentry->d_lock)
265 	__releases(dentry->d_inode->i_lock)
266 {
267 	struct inode *inode = dentry->d_inode;
268 	if (inode) {
269 		dentry->d_inode = NULL;
270 		hlist_del_init(&dentry->d_alias);
271 		spin_unlock(&dentry->d_lock);
272 		spin_unlock(&inode->i_lock);
273 		if (!inode->i_nlink)
274 			fsnotify_inoderemove(inode);
275 		if (dentry->d_op && dentry->d_op->d_iput)
276 			dentry->d_op->d_iput(dentry, inode);
277 		else
278 			iput(inode);
279 	} else {
280 		spin_unlock(&dentry->d_lock);
281 	}
282 }
283 
284 /*
285  * Release the dentry's inode, using the filesystem
286  * d_iput() operation if defined. dentry remains in-use.
287  */
288 static void dentry_unlink_inode(struct dentry * dentry)
289 	__releases(dentry->d_lock)
290 	__releases(dentry->d_inode->i_lock)
291 {
292 	struct inode *inode = dentry->d_inode;
293 	dentry->d_inode = NULL;
294 	hlist_del_init(&dentry->d_alias);
295 	dentry_rcuwalk_barrier(dentry);
296 	spin_unlock(&dentry->d_lock);
297 	spin_unlock(&inode->i_lock);
298 	if (!inode->i_nlink)
299 		fsnotify_inoderemove(inode);
300 	if (dentry->d_op && dentry->d_op->d_iput)
301 		dentry->d_op->d_iput(dentry, inode);
302 	else
303 		iput(inode);
304 }
305 
306 /*
307  * dentry_lru_(add|del|prune|move_tail) must be called with d_lock held.
308  */
309 static void dentry_lru_add(struct dentry *dentry)
310 {
311 	if (list_empty(&dentry->d_lru)) {
312 		spin_lock(&dcache_lru_lock);
313 		list_add(&dentry->d_lru, &dentry->d_sb->s_dentry_lru);
314 		dentry->d_sb->s_nr_dentry_unused++;
315 		dentry_stat.nr_unused++;
316 		spin_unlock(&dcache_lru_lock);
317 	}
318 }
319 
320 static void __dentry_lru_del(struct dentry *dentry)
321 {
322 	list_del_init(&dentry->d_lru);
323 	dentry->d_flags &= ~DCACHE_SHRINK_LIST;
324 	dentry->d_sb->s_nr_dentry_unused--;
325 	dentry_stat.nr_unused--;
326 }
327 
328 /*
329  * Remove a dentry with references from the LRU.
330  */
331 static void dentry_lru_del(struct dentry *dentry)
332 {
333 	if (!list_empty(&dentry->d_lru)) {
334 		spin_lock(&dcache_lru_lock);
335 		__dentry_lru_del(dentry);
336 		spin_unlock(&dcache_lru_lock);
337 	}
338 }
339 
340 /*
341  * Remove a dentry that is unreferenced and about to be pruned
342  * (unhashed and destroyed) from the LRU, and inform the file system.
343  * This wrapper should be called _prior_ to unhashing a victim dentry.
344  */
345 static void dentry_lru_prune(struct dentry *dentry)
346 {
347 	if (!list_empty(&dentry->d_lru)) {
348 		if (dentry->d_flags & DCACHE_OP_PRUNE)
349 			dentry->d_op->d_prune(dentry);
350 
351 		spin_lock(&dcache_lru_lock);
352 		__dentry_lru_del(dentry);
353 		spin_unlock(&dcache_lru_lock);
354 	}
355 }
356 
357 static void dentry_lru_move_list(struct dentry *dentry, struct list_head *list)
358 {
359 	spin_lock(&dcache_lru_lock);
360 	if (list_empty(&dentry->d_lru)) {
361 		list_add_tail(&dentry->d_lru, list);
362 		dentry->d_sb->s_nr_dentry_unused++;
363 		dentry_stat.nr_unused++;
364 	} else {
365 		list_move_tail(&dentry->d_lru, list);
366 	}
367 	spin_unlock(&dcache_lru_lock);
368 }
369 
370 /**
371  * d_kill - kill dentry and return parent
372  * @dentry: dentry to kill
373  * @parent: parent dentry
374  *
375  * The dentry must already be unhashed and removed from the LRU.
376  *
377  * If this is the root of the dentry tree, return NULL.
378  *
379  * dentry->d_lock and parent->d_lock must be held by caller, and are dropped by
380  * d_kill.
381  */
382 static struct dentry *d_kill(struct dentry *dentry, struct dentry *parent)
383 	__releases(dentry->d_lock)
384 	__releases(parent->d_lock)
385 	__releases(dentry->d_inode->i_lock)
386 {
387 	list_del(&dentry->d_u.d_child);
388 	/*
389 	 * Inform try_to_ascend() that we are no longer attached to the
390 	 * dentry tree
391 	 */
392 	dentry->d_flags |= DCACHE_DENTRY_KILLED;
393 	if (parent)
394 		spin_unlock(&parent->d_lock);
395 	dentry_iput(dentry);
396 	/*
397 	 * dentry_iput drops the locks, at which point nobody (except
398 	 * transient RCU lookups) can reach this dentry.
399 	 */
400 	d_free(dentry);
401 	return parent;
402 }
403 
404 /*
405  * Unhash a dentry without inserting an RCU walk barrier or checking that
406  * dentry->d_lock is locked.  The caller must take care of that, if
407  * appropriate.
408  */
409 static void __d_shrink(struct dentry *dentry)
410 {
411 	if (!d_unhashed(dentry)) {
412 		struct hlist_bl_head *b;
413 		if (unlikely(dentry->d_flags & DCACHE_DISCONNECTED))
414 			b = &dentry->d_sb->s_anon;
415 		else
416 			b = d_hash(dentry->d_parent, dentry->d_name.hash);
417 
418 		hlist_bl_lock(b);
419 		__hlist_bl_del(&dentry->d_hash);
420 		dentry->d_hash.pprev = NULL;
421 		hlist_bl_unlock(b);
422 	}
423 }
424 
425 /**
426  * d_drop - drop a dentry
427  * @dentry: dentry to drop
428  *
429  * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
430  * be found through a VFS lookup any more. Note that this is different from
431  * deleting the dentry - d_delete will try to mark the dentry negative if
432  * possible, giving a successful _negative_ lookup, while d_drop will
433  * just make the cache lookup fail.
434  *
435  * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
436  * reason (NFS timeouts or autofs deletes).
437  *
438  * __d_drop requires dentry->d_lock.
439  */
440 void __d_drop(struct dentry *dentry)
441 {
442 	if (!d_unhashed(dentry)) {
443 		__d_shrink(dentry);
444 		dentry_rcuwalk_barrier(dentry);
445 	}
446 }
447 EXPORT_SYMBOL(__d_drop);
448 
449 void d_drop(struct dentry *dentry)
450 {
451 	spin_lock(&dentry->d_lock);
452 	__d_drop(dentry);
453 	spin_unlock(&dentry->d_lock);
454 }
455 EXPORT_SYMBOL(d_drop);
456 
457 /*
458  * Finish off a dentry we've decided to kill.
459  * dentry->d_lock must be held, returns with it unlocked.
460  * If ref is non-zero, then decrement the refcount too.
461  * Returns dentry requiring refcount drop, or NULL if we're done.
462  */
463 static inline struct dentry *dentry_kill(struct dentry *dentry, int ref)
464 	__releases(dentry->d_lock)
465 {
466 	struct inode *inode;
467 	struct dentry *parent;
468 
469 	inode = dentry->d_inode;
470 	if (inode && !spin_trylock(&inode->i_lock)) {
471 relock:
472 		spin_unlock(&dentry->d_lock);
473 		cpu_relax();
474 		return dentry; /* try again with same dentry */
475 	}
476 	if (IS_ROOT(dentry))
477 		parent = NULL;
478 	else
479 		parent = dentry->d_parent;
480 	if (parent && !spin_trylock(&parent->d_lock)) {
481 		if (inode)
482 			spin_unlock(&inode->i_lock);
483 		goto relock;
484 	}
485 
486 	if (ref)
487 		dentry->d_count--;
488 	/*
489 	 * if dentry was on the d_lru list delete it from there.
490 	 * inform the fs via d_prune that this dentry is about to be
491 	 * unhashed and destroyed.
492 	 */
493 	dentry_lru_prune(dentry);
494 	/* if it was on the hash then remove it */
495 	__d_drop(dentry);
496 	return d_kill(dentry, parent);
497 }
498 
499 /*
500  * This is dput
501  *
502  * This is complicated by the fact that we do not want to put
503  * dentries that are no longer on any hash chain on the unused
504  * list: we'd much rather just get rid of them immediately.
505  *
506  * However, that implies that we have to traverse the dentry
507  * tree upwards to the parents which might _also_ now be
508  * scheduled for deletion (it may have been only waiting for
509  * its last child to go away).
510  *
511  * This tail recursion is done by hand as we don't want to depend
512  * on the compiler to always get this right (gcc generally doesn't).
513  * Real recursion would eat up our stack space.
514  */
515 
516 /*
517  * dput - release a dentry
518  * @dentry: dentry to release
519  *
520  * Release a dentry. This will drop the usage count and if appropriate
521  * call the dentry unlink method as well as removing it from the queues and
522  * releasing its resources. If the parent dentries were scheduled for release
523  * they too may now get deleted.
524  */
525 void dput(struct dentry *dentry)
526 {
527 	if (!dentry)
528 		return;
529 
530 repeat:
531 	if (dentry->d_count == 1)
532 		might_sleep();
533 	spin_lock(&dentry->d_lock);
534 	BUG_ON(!dentry->d_count);
535 	if (dentry->d_count > 1) {
536 		dentry->d_count--;
537 		spin_unlock(&dentry->d_lock);
538 		return;
539 	}
540 
541 	if (dentry->d_flags & DCACHE_OP_DELETE) {
542 		if (dentry->d_op->d_delete(dentry))
543 			goto kill_it;
544 	}
545 
546 	/* Unreachable? Get rid of it */
547  	if (d_unhashed(dentry))
548 		goto kill_it;
549 
550 	dentry->d_flags |= DCACHE_REFERENCED;
551 	dentry_lru_add(dentry);
552 
553 	dentry->d_count--;
554 	spin_unlock(&dentry->d_lock);
555 	return;
556 
557 kill_it:
558 	dentry = dentry_kill(dentry, 1);
559 	if (dentry)
560 		goto repeat;
561 }
562 EXPORT_SYMBOL(dput);
563 
564 /**
565  * d_invalidate - invalidate a dentry
566  * @dentry: dentry to invalidate
567  *
568  * Try to invalidate the dentry if it turns out to be
569  * possible. If there are other dentries that can be
570  * reached through this one we can't delete it and we
571  * return -EBUSY. On success we return 0.
572  *
573  * no dcache lock.
574  */
575 
576 int d_invalidate(struct dentry * dentry)
577 {
578 	/*
579 	 * If it's already been dropped, return OK.
580 	 */
581 	spin_lock(&dentry->d_lock);
582 	if (d_unhashed(dentry)) {
583 		spin_unlock(&dentry->d_lock);
584 		return 0;
585 	}
586 	/*
587 	 * Check whether to do a partial shrink_dcache
588 	 * to get rid of unused child entries.
589 	 */
590 	if (!list_empty(&dentry->d_subdirs)) {
591 		spin_unlock(&dentry->d_lock);
592 		shrink_dcache_parent(dentry);
593 		spin_lock(&dentry->d_lock);
594 	}
595 
596 	/*
597 	 * Somebody else still using it?
598 	 *
599 	 * If it's a directory, we can't drop it
600 	 * for fear of somebody re-populating it
601 	 * with children (even though dropping it
602 	 * would make it unreachable from the root,
603 	 * we might still populate it if it was a
604 	 * working directory or similar).
605 	 * We also need to leave mountpoints alone,
606 	 * directory or not.
607 	 */
608 	if (dentry->d_count > 1 && dentry->d_inode) {
609 		if (S_ISDIR(dentry->d_inode->i_mode) || d_mountpoint(dentry)) {
610 			spin_unlock(&dentry->d_lock);
611 			return -EBUSY;
612 		}
613 	}
614 
615 	__d_drop(dentry);
616 	spin_unlock(&dentry->d_lock);
617 	return 0;
618 }
619 EXPORT_SYMBOL(d_invalidate);
620 
621 /* This must be called with d_lock held */
622 static inline void __dget_dlock(struct dentry *dentry)
623 {
624 	dentry->d_count++;
625 }
626 
627 static inline void __dget(struct dentry *dentry)
628 {
629 	spin_lock(&dentry->d_lock);
630 	__dget_dlock(dentry);
631 	spin_unlock(&dentry->d_lock);
632 }
633 
634 struct dentry *dget_parent(struct dentry *dentry)
635 {
636 	struct dentry *ret;
637 
638 repeat:
639 	/*
640 	 * Don't need rcu_dereference because we re-check it was correct under
641 	 * the lock.
642 	 */
643 	rcu_read_lock();
644 	ret = dentry->d_parent;
645 	spin_lock(&ret->d_lock);
646 	if (unlikely(ret != dentry->d_parent)) {
647 		spin_unlock(&ret->d_lock);
648 		rcu_read_unlock();
649 		goto repeat;
650 	}
651 	rcu_read_unlock();
652 	BUG_ON(!ret->d_count);
653 	ret->d_count++;
654 	spin_unlock(&ret->d_lock);
655 	return ret;
656 }
657 EXPORT_SYMBOL(dget_parent);
658 
659 /**
660  * d_find_alias - grab a hashed alias of inode
661  * @inode: inode in question
662  * @want_discon:  flag, used by d_splice_alias, to request
663  *          that only a DISCONNECTED alias be returned.
664  *
665  * If inode has a hashed alias, or is a directory and has any alias,
666  * acquire the reference to alias and return it. Otherwise return NULL.
667  * Notice that if inode is a directory there can be only one alias and
668  * it can be unhashed only if it has no children, or if it is the root
669  * of a filesystem.
670  *
671  * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
672  * any other hashed alias over that one unless @want_discon is set,
673  * in which case only return an IS_ROOT, DCACHE_DISCONNECTED alias.
674  */
675 static struct dentry *__d_find_alias(struct inode *inode, int want_discon)
676 {
677 	struct dentry *alias, *discon_alias;
678 	struct hlist_node *p;
679 
680 again:
681 	discon_alias = NULL;
682 	hlist_for_each_entry(alias, p, &inode->i_dentry, d_alias) {
683 		spin_lock(&alias->d_lock);
684  		if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
685 			if (IS_ROOT(alias) &&
686 			    (alias->d_flags & DCACHE_DISCONNECTED)) {
687 				discon_alias = alias;
688 			} else if (!want_discon) {
689 				__dget_dlock(alias);
690 				spin_unlock(&alias->d_lock);
691 				return alias;
692 			}
693 		}
694 		spin_unlock(&alias->d_lock);
695 	}
696 	if (discon_alias) {
697 		alias = discon_alias;
698 		spin_lock(&alias->d_lock);
699 		if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
700 			if (IS_ROOT(alias) &&
701 			    (alias->d_flags & DCACHE_DISCONNECTED)) {
702 				__dget_dlock(alias);
703 				spin_unlock(&alias->d_lock);
704 				return alias;
705 			}
706 		}
707 		spin_unlock(&alias->d_lock);
708 		goto again;
709 	}
710 	return NULL;
711 }
712 
713 struct dentry *d_find_alias(struct inode *inode)
714 {
715 	struct dentry *de = NULL;
716 
717 	if (!hlist_empty(&inode->i_dentry)) {
718 		spin_lock(&inode->i_lock);
719 		de = __d_find_alias(inode, 0);
720 		spin_unlock(&inode->i_lock);
721 	}
722 	return de;
723 }
724 EXPORT_SYMBOL(d_find_alias);
725 
726 /*
727  *	Try to kill dentries associated with this inode.
728  * WARNING: you must own a reference to inode.
729  */
730 void d_prune_aliases(struct inode *inode)
731 {
732 	struct dentry *dentry;
733 	struct hlist_node *p;
734 restart:
735 	spin_lock(&inode->i_lock);
736 	hlist_for_each_entry(dentry, p, &inode->i_dentry, d_alias) {
737 		spin_lock(&dentry->d_lock);
738 		if (!dentry->d_count) {
739 			__dget_dlock(dentry);
740 			__d_drop(dentry);
741 			spin_unlock(&dentry->d_lock);
742 			spin_unlock(&inode->i_lock);
743 			dput(dentry);
744 			goto restart;
745 		}
746 		spin_unlock(&dentry->d_lock);
747 	}
748 	spin_unlock(&inode->i_lock);
749 }
750 EXPORT_SYMBOL(d_prune_aliases);
751 
752 /*
753  * Try to throw away a dentry - free the inode, dput the parent.
754  * Requires dentry->d_lock is held, and dentry->d_count == 0.
755  * Releases dentry->d_lock.
756  *
757  * This may fail if locks cannot be acquired no problem, just try again.
758  */
759 static void try_prune_one_dentry(struct dentry *dentry)
760 	__releases(dentry->d_lock)
761 {
762 	struct dentry *parent;
763 
764 	parent = dentry_kill(dentry, 0);
765 	/*
766 	 * If dentry_kill returns NULL, we have nothing more to do.
767 	 * if it returns the same dentry, trylocks failed. In either
768 	 * case, just loop again.
769 	 *
770 	 * Otherwise, we need to prune ancestors too. This is necessary
771 	 * to prevent quadratic behavior of shrink_dcache_parent(), but
772 	 * is also expected to be beneficial in reducing dentry cache
773 	 * fragmentation.
774 	 */
775 	if (!parent)
776 		return;
777 	if (parent == dentry)
778 		return;
779 
780 	/* Prune ancestors. */
781 	dentry = parent;
782 	while (dentry) {
783 		spin_lock(&dentry->d_lock);
784 		if (dentry->d_count > 1) {
785 			dentry->d_count--;
786 			spin_unlock(&dentry->d_lock);
787 			return;
788 		}
789 		dentry = dentry_kill(dentry, 1);
790 	}
791 }
792 
793 static void shrink_dentry_list(struct list_head *list)
794 {
795 	struct dentry *dentry;
796 
797 	rcu_read_lock();
798 	for (;;) {
799 		dentry = list_entry_rcu(list->prev, struct dentry, d_lru);
800 		if (&dentry->d_lru == list)
801 			break; /* empty */
802 		spin_lock(&dentry->d_lock);
803 		if (dentry != list_entry(list->prev, struct dentry, d_lru)) {
804 			spin_unlock(&dentry->d_lock);
805 			continue;
806 		}
807 
808 		/*
809 		 * We found an inuse dentry which was not removed from
810 		 * the LRU because of laziness during lookup.  Do not free
811 		 * it - just keep it off the LRU list.
812 		 */
813 		if (dentry->d_count) {
814 			dentry_lru_del(dentry);
815 			spin_unlock(&dentry->d_lock);
816 			continue;
817 		}
818 
819 		rcu_read_unlock();
820 
821 		try_prune_one_dentry(dentry);
822 
823 		rcu_read_lock();
824 	}
825 	rcu_read_unlock();
826 }
827 
828 /**
829  * prune_dcache_sb - shrink the dcache
830  * @sb: superblock
831  * @count: number of entries to try to free
832  *
833  * Attempt to shrink the superblock dcache LRU by @count entries. This is
834  * done when we need more memory an called from the superblock shrinker
835  * function.
836  *
837  * This function may fail to free any resources if all the dentries are in
838  * use.
839  */
840 void prune_dcache_sb(struct super_block *sb, int count)
841 {
842 	struct dentry *dentry;
843 	LIST_HEAD(referenced);
844 	LIST_HEAD(tmp);
845 
846 relock:
847 	spin_lock(&dcache_lru_lock);
848 	while (!list_empty(&sb->s_dentry_lru)) {
849 		dentry = list_entry(sb->s_dentry_lru.prev,
850 				struct dentry, d_lru);
851 		BUG_ON(dentry->d_sb != sb);
852 
853 		if (!spin_trylock(&dentry->d_lock)) {
854 			spin_unlock(&dcache_lru_lock);
855 			cpu_relax();
856 			goto relock;
857 		}
858 
859 		if (dentry->d_flags & DCACHE_REFERENCED) {
860 			dentry->d_flags &= ~DCACHE_REFERENCED;
861 			list_move(&dentry->d_lru, &referenced);
862 			spin_unlock(&dentry->d_lock);
863 		} else {
864 			list_move_tail(&dentry->d_lru, &tmp);
865 			dentry->d_flags |= DCACHE_SHRINK_LIST;
866 			spin_unlock(&dentry->d_lock);
867 			if (!--count)
868 				break;
869 		}
870 		cond_resched_lock(&dcache_lru_lock);
871 	}
872 	if (!list_empty(&referenced))
873 		list_splice(&referenced, &sb->s_dentry_lru);
874 	spin_unlock(&dcache_lru_lock);
875 
876 	shrink_dentry_list(&tmp);
877 }
878 
879 /**
880  * shrink_dcache_sb - shrink dcache for a superblock
881  * @sb: superblock
882  *
883  * Shrink the dcache for the specified super block. This is used to free
884  * the dcache before unmounting a file system.
885  */
886 void shrink_dcache_sb(struct super_block *sb)
887 {
888 	LIST_HEAD(tmp);
889 
890 	spin_lock(&dcache_lru_lock);
891 	while (!list_empty(&sb->s_dentry_lru)) {
892 		list_splice_init(&sb->s_dentry_lru, &tmp);
893 		spin_unlock(&dcache_lru_lock);
894 		shrink_dentry_list(&tmp);
895 		spin_lock(&dcache_lru_lock);
896 	}
897 	spin_unlock(&dcache_lru_lock);
898 }
899 EXPORT_SYMBOL(shrink_dcache_sb);
900 
901 /*
902  * destroy a single subtree of dentries for unmount
903  * - see the comments on shrink_dcache_for_umount() for a description of the
904  *   locking
905  */
906 static void shrink_dcache_for_umount_subtree(struct dentry *dentry)
907 {
908 	struct dentry *parent;
909 
910 	BUG_ON(!IS_ROOT(dentry));
911 
912 	for (;;) {
913 		/* descend to the first leaf in the current subtree */
914 		while (!list_empty(&dentry->d_subdirs))
915 			dentry = list_entry(dentry->d_subdirs.next,
916 					    struct dentry, d_u.d_child);
917 
918 		/* consume the dentries from this leaf up through its parents
919 		 * until we find one with children or run out altogether */
920 		do {
921 			struct inode *inode;
922 
923 			/*
924 			 * remove the dentry from the lru, and inform
925 			 * the fs that this dentry is about to be
926 			 * unhashed and destroyed.
927 			 */
928 			dentry_lru_prune(dentry);
929 			__d_shrink(dentry);
930 
931 			if (dentry->d_count != 0) {
932 				printk(KERN_ERR
933 				       "BUG: Dentry %p{i=%lx,n=%s}"
934 				       " still in use (%d)"
935 				       " [unmount of %s %s]\n",
936 				       dentry,
937 				       dentry->d_inode ?
938 				       dentry->d_inode->i_ino : 0UL,
939 				       dentry->d_name.name,
940 				       dentry->d_count,
941 				       dentry->d_sb->s_type->name,
942 				       dentry->d_sb->s_id);
943 				BUG();
944 			}
945 
946 			if (IS_ROOT(dentry)) {
947 				parent = NULL;
948 				list_del(&dentry->d_u.d_child);
949 			} else {
950 				parent = dentry->d_parent;
951 				parent->d_count--;
952 				list_del(&dentry->d_u.d_child);
953 			}
954 
955 			inode = dentry->d_inode;
956 			if (inode) {
957 				dentry->d_inode = NULL;
958 				hlist_del_init(&dentry->d_alias);
959 				if (dentry->d_op && dentry->d_op->d_iput)
960 					dentry->d_op->d_iput(dentry, inode);
961 				else
962 					iput(inode);
963 			}
964 
965 			d_free(dentry);
966 
967 			/* finished when we fall off the top of the tree,
968 			 * otherwise we ascend to the parent and move to the
969 			 * next sibling if there is one */
970 			if (!parent)
971 				return;
972 			dentry = parent;
973 		} while (list_empty(&dentry->d_subdirs));
974 
975 		dentry = list_entry(dentry->d_subdirs.next,
976 				    struct dentry, d_u.d_child);
977 	}
978 }
979 
980 /*
981  * destroy the dentries attached to a superblock on unmounting
982  * - we don't need to use dentry->d_lock because:
983  *   - the superblock is detached from all mountings and open files, so the
984  *     dentry trees will not be rearranged by the VFS
985  *   - s_umount is write-locked, so the memory pressure shrinker will ignore
986  *     any dentries belonging to this superblock that it comes across
987  *   - the filesystem itself is no longer permitted to rearrange the dentries
988  *     in this superblock
989  */
990 void shrink_dcache_for_umount(struct super_block *sb)
991 {
992 	struct dentry *dentry;
993 
994 	if (down_read_trylock(&sb->s_umount))
995 		BUG();
996 
997 	dentry = sb->s_root;
998 	sb->s_root = NULL;
999 	dentry->d_count--;
1000 	shrink_dcache_for_umount_subtree(dentry);
1001 
1002 	while (!hlist_bl_empty(&sb->s_anon)) {
1003 		dentry = hlist_bl_entry(hlist_bl_first(&sb->s_anon), struct dentry, d_hash);
1004 		shrink_dcache_for_umount_subtree(dentry);
1005 	}
1006 }
1007 
1008 /*
1009  * This tries to ascend one level of parenthood, but
1010  * we can race with renaming, so we need to re-check
1011  * the parenthood after dropping the lock and check
1012  * that the sequence number still matches.
1013  */
1014 static struct dentry *try_to_ascend(struct dentry *old, int locked, unsigned seq)
1015 {
1016 	struct dentry *new = old->d_parent;
1017 
1018 	rcu_read_lock();
1019 	spin_unlock(&old->d_lock);
1020 	spin_lock(&new->d_lock);
1021 
1022 	/*
1023 	 * might go back up the wrong parent if we have had a rename
1024 	 * or deletion
1025 	 */
1026 	if (new != old->d_parent ||
1027 		 (old->d_flags & DCACHE_DENTRY_KILLED) ||
1028 		 (!locked && read_seqretry(&rename_lock, seq))) {
1029 		spin_unlock(&new->d_lock);
1030 		new = NULL;
1031 	}
1032 	rcu_read_unlock();
1033 	return new;
1034 }
1035 
1036 
1037 /*
1038  * Search for at least 1 mount point in the dentry's subdirs.
1039  * We descend to the next level whenever the d_subdirs
1040  * list is non-empty and continue searching.
1041  */
1042 
1043 /**
1044  * have_submounts - check for mounts over a dentry
1045  * @parent: dentry to check.
1046  *
1047  * Return true if the parent or its subdirectories contain
1048  * a mount point
1049  */
1050 int have_submounts(struct dentry *parent)
1051 {
1052 	struct dentry *this_parent;
1053 	struct list_head *next;
1054 	unsigned seq;
1055 	int locked = 0;
1056 
1057 	seq = read_seqbegin(&rename_lock);
1058 again:
1059 	this_parent = parent;
1060 
1061 	if (d_mountpoint(parent))
1062 		goto positive;
1063 	spin_lock(&this_parent->d_lock);
1064 repeat:
1065 	next = this_parent->d_subdirs.next;
1066 resume:
1067 	while (next != &this_parent->d_subdirs) {
1068 		struct list_head *tmp = next;
1069 		struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
1070 		next = tmp->next;
1071 
1072 		spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1073 		/* Have we found a mount point ? */
1074 		if (d_mountpoint(dentry)) {
1075 			spin_unlock(&dentry->d_lock);
1076 			spin_unlock(&this_parent->d_lock);
1077 			goto positive;
1078 		}
1079 		if (!list_empty(&dentry->d_subdirs)) {
1080 			spin_unlock(&this_parent->d_lock);
1081 			spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1082 			this_parent = dentry;
1083 			spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1084 			goto repeat;
1085 		}
1086 		spin_unlock(&dentry->d_lock);
1087 	}
1088 	/*
1089 	 * All done at this level ... ascend and resume the search.
1090 	 */
1091 	if (this_parent != parent) {
1092 		struct dentry *child = this_parent;
1093 		this_parent = try_to_ascend(this_parent, locked, seq);
1094 		if (!this_parent)
1095 			goto rename_retry;
1096 		next = child->d_u.d_child.next;
1097 		goto resume;
1098 	}
1099 	spin_unlock(&this_parent->d_lock);
1100 	if (!locked && read_seqretry(&rename_lock, seq))
1101 		goto rename_retry;
1102 	if (locked)
1103 		write_sequnlock(&rename_lock);
1104 	return 0; /* No mount points found in tree */
1105 positive:
1106 	if (!locked && read_seqretry(&rename_lock, seq))
1107 		goto rename_retry;
1108 	if (locked)
1109 		write_sequnlock(&rename_lock);
1110 	return 1;
1111 
1112 rename_retry:
1113 	if (locked)
1114 		goto again;
1115 	locked = 1;
1116 	write_seqlock(&rename_lock);
1117 	goto again;
1118 }
1119 EXPORT_SYMBOL(have_submounts);
1120 
1121 /*
1122  * Search the dentry child list of the specified parent,
1123  * and move any unused dentries to the end of the unused
1124  * list for prune_dcache(). We descend to the next level
1125  * whenever the d_subdirs list is non-empty and continue
1126  * searching.
1127  *
1128  * It returns zero iff there are no unused children,
1129  * otherwise  it returns the number of children moved to
1130  * the end of the unused list. This may not be the total
1131  * number of unused children, because select_parent can
1132  * drop the lock and return early due to latency
1133  * constraints.
1134  */
1135 static int select_parent(struct dentry *parent, struct list_head *dispose)
1136 {
1137 	struct dentry *this_parent;
1138 	struct list_head *next;
1139 	unsigned seq;
1140 	int found = 0;
1141 	int locked = 0;
1142 
1143 	seq = read_seqbegin(&rename_lock);
1144 again:
1145 	this_parent = parent;
1146 	spin_lock(&this_parent->d_lock);
1147 repeat:
1148 	next = this_parent->d_subdirs.next;
1149 resume:
1150 	while (next != &this_parent->d_subdirs) {
1151 		struct list_head *tmp = next;
1152 		struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
1153 		next = tmp->next;
1154 
1155 		spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1156 
1157 		/*
1158 		 * move only zero ref count dentries to the dispose list.
1159 		 *
1160 		 * Those which are presently on the shrink list, being processed
1161 		 * by shrink_dentry_list(), shouldn't be moved.  Otherwise the
1162 		 * loop in shrink_dcache_parent() might not make any progress
1163 		 * and loop forever.
1164 		 */
1165 		if (dentry->d_count) {
1166 			dentry_lru_del(dentry);
1167 		} else if (!(dentry->d_flags & DCACHE_SHRINK_LIST)) {
1168 			dentry_lru_move_list(dentry, dispose);
1169 			dentry->d_flags |= DCACHE_SHRINK_LIST;
1170 			found++;
1171 		}
1172 		/*
1173 		 * We can return to the caller if we have found some (this
1174 		 * ensures forward progress). We'll be coming back to find
1175 		 * the rest.
1176 		 */
1177 		if (found && need_resched()) {
1178 			spin_unlock(&dentry->d_lock);
1179 			goto out;
1180 		}
1181 
1182 		/*
1183 		 * Descend a level if the d_subdirs list is non-empty.
1184 		 */
1185 		if (!list_empty(&dentry->d_subdirs)) {
1186 			spin_unlock(&this_parent->d_lock);
1187 			spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1188 			this_parent = dentry;
1189 			spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1190 			goto repeat;
1191 		}
1192 
1193 		spin_unlock(&dentry->d_lock);
1194 	}
1195 	/*
1196 	 * All done at this level ... ascend and resume the search.
1197 	 */
1198 	if (this_parent != parent) {
1199 		struct dentry *child = this_parent;
1200 		this_parent = try_to_ascend(this_parent, locked, seq);
1201 		if (!this_parent)
1202 			goto rename_retry;
1203 		next = child->d_u.d_child.next;
1204 		goto resume;
1205 	}
1206 out:
1207 	spin_unlock(&this_parent->d_lock);
1208 	if (!locked && read_seqretry(&rename_lock, seq))
1209 		goto rename_retry;
1210 	if (locked)
1211 		write_sequnlock(&rename_lock);
1212 	return found;
1213 
1214 rename_retry:
1215 	if (found)
1216 		return found;
1217 	if (locked)
1218 		goto again;
1219 	locked = 1;
1220 	write_seqlock(&rename_lock);
1221 	goto again;
1222 }
1223 
1224 /**
1225  * shrink_dcache_parent - prune dcache
1226  * @parent: parent of entries to prune
1227  *
1228  * Prune the dcache to remove unused children of the parent dentry.
1229  */
1230 void shrink_dcache_parent(struct dentry * parent)
1231 {
1232 	LIST_HEAD(dispose);
1233 	int found;
1234 
1235 	while ((found = select_parent(parent, &dispose)) != 0)
1236 		shrink_dentry_list(&dispose);
1237 }
1238 EXPORT_SYMBOL(shrink_dcache_parent);
1239 
1240 /**
1241  * __d_alloc	-	allocate a dcache entry
1242  * @sb: filesystem it will belong to
1243  * @name: qstr of the name
1244  *
1245  * Allocates a dentry. It returns %NULL if there is insufficient memory
1246  * available. On a success the dentry is returned. The name passed in is
1247  * copied and the copy passed in may be reused after this call.
1248  */
1249 
1250 struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name)
1251 {
1252 	struct dentry *dentry;
1253 	char *dname;
1254 
1255 	dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
1256 	if (!dentry)
1257 		return NULL;
1258 
1259 	/*
1260 	 * We guarantee that the inline name is always NUL-terminated.
1261 	 * This way the memcpy() done by the name switching in rename
1262 	 * will still always have a NUL at the end, even if we might
1263 	 * be overwriting an internal NUL character
1264 	 */
1265 	dentry->d_iname[DNAME_INLINE_LEN-1] = 0;
1266 	if (name->len > DNAME_INLINE_LEN-1) {
1267 		dname = kmalloc(name->len + 1, GFP_KERNEL);
1268 		if (!dname) {
1269 			kmem_cache_free(dentry_cache, dentry);
1270 			return NULL;
1271 		}
1272 	} else  {
1273 		dname = dentry->d_iname;
1274 	}
1275 
1276 	dentry->d_name.len = name->len;
1277 	dentry->d_name.hash = name->hash;
1278 	memcpy(dname, name->name, name->len);
1279 	dname[name->len] = 0;
1280 
1281 	/* Make sure we always see the terminating NUL character */
1282 	smp_wmb();
1283 	dentry->d_name.name = dname;
1284 
1285 	dentry->d_count = 1;
1286 	dentry->d_flags = 0;
1287 	spin_lock_init(&dentry->d_lock);
1288 	seqcount_init(&dentry->d_seq);
1289 	dentry->d_inode = NULL;
1290 	dentry->d_parent = dentry;
1291 	dentry->d_sb = sb;
1292 	dentry->d_op = NULL;
1293 	dentry->d_fsdata = NULL;
1294 	INIT_HLIST_BL_NODE(&dentry->d_hash);
1295 	INIT_LIST_HEAD(&dentry->d_lru);
1296 	INIT_LIST_HEAD(&dentry->d_subdirs);
1297 	INIT_HLIST_NODE(&dentry->d_alias);
1298 	INIT_LIST_HEAD(&dentry->d_u.d_child);
1299 	d_set_d_op(dentry, dentry->d_sb->s_d_op);
1300 
1301 	this_cpu_inc(nr_dentry);
1302 
1303 	return dentry;
1304 }
1305 
1306 /**
1307  * d_alloc	-	allocate a dcache entry
1308  * @parent: parent of entry to allocate
1309  * @name: qstr of the name
1310  *
1311  * Allocates a dentry. It returns %NULL if there is insufficient memory
1312  * available. On a success the dentry is returned. The name passed in is
1313  * copied and the copy passed in may be reused after this call.
1314  */
1315 struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1316 {
1317 	struct dentry *dentry = __d_alloc(parent->d_sb, name);
1318 	if (!dentry)
1319 		return NULL;
1320 
1321 	spin_lock(&parent->d_lock);
1322 	/*
1323 	 * don't need child lock because it is not subject
1324 	 * to concurrency here
1325 	 */
1326 	__dget_dlock(parent);
1327 	dentry->d_parent = parent;
1328 	list_add(&dentry->d_u.d_child, &parent->d_subdirs);
1329 	spin_unlock(&parent->d_lock);
1330 
1331 	return dentry;
1332 }
1333 EXPORT_SYMBOL(d_alloc);
1334 
1335 struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
1336 {
1337 	struct dentry *dentry = __d_alloc(sb, name);
1338 	if (dentry)
1339 		dentry->d_flags |= DCACHE_DISCONNECTED;
1340 	return dentry;
1341 }
1342 EXPORT_SYMBOL(d_alloc_pseudo);
1343 
1344 struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1345 {
1346 	struct qstr q;
1347 
1348 	q.name = name;
1349 	q.len = strlen(name);
1350 	q.hash = full_name_hash(q.name, q.len);
1351 	return d_alloc(parent, &q);
1352 }
1353 EXPORT_SYMBOL(d_alloc_name);
1354 
1355 void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1356 {
1357 	WARN_ON_ONCE(dentry->d_op);
1358 	WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH	|
1359 				DCACHE_OP_COMPARE	|
1360 				DCACHE_OP_REVALIDATE	|
1361 				DCACHE_OP_DELETE ));
1362 	dentry->d_op = op;
1363 	if (!op)
1364 		return;
1365 	if (op->d_hash)
1366 		dentry->d_flags |= DCACHE_OP_HASH;
1367 	if (op->d_compare)
1368 		dentry->d_flags |= DCACHE_OP_COMPARE;
1369 	if (op->d_revalidate)
1370 		dentry->d_flags |= DCACHE_OP_REVALIDATE;
1371 	if (op->d_delete)
1372 		dentry->d_flags |= DCACHE_OP_DELETE;
1373 	if (op->d_prune)
1374 		dentry->d_flags |= DCACHE_OP_PRUNE;
1375 
1376 }
1377 EXPORT_SYMBOL(d_set_d_op);
1378 
1379 static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1380 {
1381 	spin_lock(&dentry->d_lock);
1382 	if (inode) {
1383 		if (unlikely(IS_AUTOMOUNT(inode)))
1384 			dentry->d_flags |= DCACHE_NEED_AUTOMOUNT;
1385 		hlist_add_head(&dentry->d_alias, &inode->i_dentry);
1386 	}
1387 	dentry->d_inode = inode;
1388 	dentry_rcuwalk_barrier(dentry);
1389 	spin_unlock(&dentry->d_lock);
1390 	fsnotify_d_instantiate(dentry, inode);
1391 }
1392 
1393 /**
1394  * d_instantiate - fill in inode information for a dentry
1395  * @entry: dentry to complete
1396  * @inode: inode to attach to this dentry
1397  *
1398  * Fill in inode information in the entry.
1399  *
1400  * This turns negative dentries into productive full members
1401  * of society.
1402  *
1403  * NOTE! This assumes that the inode count has been incremented
1404  * (or otherwise set) by the caller to indicate that it is now
1405  * in use by the dcache.
1406  */
1407 
1408 void d_instantiate(struct dentry *entry, struct inode * inode)
1409 {
1410 	BUG_ON(!hlist_unhashed(&entry->d_alias));
1411 	if (inode)
1412 		spin_lock(&inode->i_lock);
1413 	__d_instantiate(entry, inode);
1414 	if (inode)
1415 		spin_unlock(&inode->i_lock);
1416 	security_d_instantiate(entry, inode);
1417 }
1418 EXPORT_SYMBOL(d_instantiate);
1419 
1420 /**
1421  * d_instantiate_unique - instantiate a non-aliased dentry
1422  * @entry: dentry to instantiate
1423  * @inode: inode to attach to this dentry
1424  *
1425  * Fill in inode information in the entry. On success, it returns NULL.
1426  * If an unhashed alias of "entry" already exists, then we return the
1427  * aliased dentry instead and drop one reference to inode.
1428  *
1429  * Note that in order to avoid conflicts with rename() etc, the caller
1430  * had better be holding the parent directory semaphore.
1431  *
1432  * This also assumes that the inode count has been incremented
1433  * (or otherwise set) by the caller to indicate that it is now
1434  * in use by the dcache.
1435  */
1436 static struct dentry *__d_instantiate_unique(struct dentry *entry,
1437 					     struct inode *inode)
1438 {
1439 	struct dentry *alias;
1440 	int len = entry->d_name.len;
1441 	const char *name = entry->d_name.name;
1442 	unsigned int hash = entry->d_name.hash;
1443 	struct hlist_node *p;
1444 
1445 	if (!inode) {
1446 		__d_instantiate(entry, NULL);
1447 		return NULL;
1448 	}
1449 
1450 	hlist_for_each_entry(alias, p, &inode->i_dentry, d_alias) {
1451 		/*
1452 		 * Don't need alias->d_lock here, because aliases with
1453 		 * d_parent == entry->d_parent are not subject to name or
1454 		 * parent changes, because the parent inode i_mutex is held.
1455 		 */
1456 		if (alias->d_name.hash != hash)
1457 			continue;
1458 		if (alias->d_parent != entry->d_parent)
1459 			continue;
1460 		if (alias->d_name.len != len)
1461 			continue;
1462 		if (dentry_cmp(alias, name, len))
1463 			continue;
1464 		__dget(alias);
1465 		return alias;
1466 	}
1467 
1468 	__d_instantiate(entry, inode);
1469 	return NULL;
1470 }
1471 
1472 struct dentry *d_instantiate_unique(struct dentry *entry, struct inode *inode)
1473 {
1474 	struct dentry *result;
1475 
1476 	BUG_ON(!hlist_unhashed(&entry->d_alias));
1477 
1478 	if (inode)
1479 		spin_lock(&inode->i_lock);
1480 	result = __d_instantiate_unique(entry, inode);
1481 	if (inode)
1482 		spin_unlock(&inode->i_lock);
1483 
1484 	if (!result) {
1485 		security_d_instantiate(entry, inode);
1486 		return NULL;
1487 	}
1488 
1489 	BUG_ON(!d_unhashed(result));
1490 	iput(inode);
1491 	return result;
1492 }
1493 
1494 EXPORT_SYMBOL(d_instantiate_unique);
1495 
1496 struct dentry *d_make_root(struct inode *root_inode)
1497 {
1498 	struct dentry *res = NULL;
1499 
1500 	if (root_inode) {
1501 		static const struct qstr name = QSTR_INIT("/", 1);
1502 
1503 		res = __d_alloc(root_inode->i_sb, &name);
1504 		if (res)
1505 			d_instantiate(res, root_inode);
1506 		else
1507 			iput(root_inode);
1508 	}
1509 	return res;
1510 }
1511 EXPORT_SYMBOL(d_make_root);
1512 
1513 static struct dentry * __d_find_any_alias(struct inode *inode)
1514 {
1515 	struct dentry *alias;
1516 
1517 	if (hlist_empty(&inode->i_dentry))
1518 		return NULL;
1519 	alias = hlist_entry(inode->i_dentry.first, struct dentry, d_alias);
1520 	__dget(alias);
1521 	return alias;
1522 }
1523 
1524 /**
1525  * d_find_any_alias - find any alias for a given inode
1526  * @inode: inode to find an alias for
1527  *
1528  * If any aliases exist for the given inode, take and return a
1529  * reference for one of them.  If no aliases exist, return %NULL.
1530  */
1531 struct dentry *d_find_any_alias(struct inode *inode)
1532 {
1533 	struct dentry *de;
1534 
1535 	spin_lock(&inode->i_lock);
1536 	de = __d_find_any_alias(inode);
1537 	spin_unlock(&inode->i_lock);
1538 	return de;
1539 }
1540 EXPORT_SYMBOL(d_find_any_alias);
1541 
1542 /**
1543  * d_obtain_alias - find or allocate a dentry for a given inode
1544  * @inode: inode to allocate the dentry for
1545  *
1546  * Obtain a dentry for an inode resulting from NFS filehandle conversion or
1547  * similar open by handle operations.  The returned dentry may be anonymous,
1548  * or may have a full name (if the inode was already in the cache).
1549  *
1550  * When called on a directory inode, we must ensure that the inode only ever
1551  * has one dentry.  If a dentry is found, that is returned instead of
1552  * allocating a new one.
1553  *
1554  * On successful return, the reference to the inode has been transferred
1555  * to the dentry.  In case of an error the reference on the inode is released.
1556  * To make it easier to use in export operations a %NULL or IS_ERR inode may
1557  * be passed in and will be the error will be propagate to the return value,
1558  * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
1559  */
1560 struct dentry *d_obtain_alias(struct inode *inode)
1561 {
1562 	static const struct qstr anonstring = QSTR_INIT("/", 1);
1563 	struct dentry *tmp;
1564 	struct dentry *res;
1565 
1566 	if (!inode)
1567 		return ERR_PTR(-ESTALE);
1568 	if (IS_ERR(inode))
1569 		return ERR_CAST(inode);
1570 
1571 	res = d_find_any_alias(inode);
1572 	if (res)
1573 		goto out_iput;
1574 
1575 	tmp = __d_alloc(inode->i_sb, &anonstring);
1576 	if (!tmp) {
1577 		res = ERR_PTR(-ENOMEM);
1578 		goto out_iput;
1579 	}
1580 
1581 	spin_lock(&inode->i_lock);
1582 	res = __d_find_any_alias(inode);
1583 	if (res) {
1584 		spin_unlock(&inode->i_lock);
1585 		dput(tmp);
1586 		goto out_iput;
1587 	}
1588 
1589 	/* attach a disconnected dentry */
1590 	spin_lock(&tmp->d_lock);
1591 	tmp->d_inode = inode;
1592 	tmp->d_flags |= DCACHE_DISCONNECTED;
1593 	hlist_add_head(&tmp->d_alias, &inode->i_dentry);
1594 	hlist_bl_lock(&tmp->d_sb->s_anon);
1595 	hlist_bl_add_head(&tmp->d_hash, &tmp->d_sb->s_anon);
1596 	hlist_bl_unlock(&tmp->d_sb->s_anon);
1597 	spin_unlock(&tmp->d_lock);
1598 	spin_unlock(&inode->i_lock);
1599 	security_d_instantiate(tmp, inode);
1600 
1601 	return tmp;
1602 
1603  out_iput:
1604 	if (res && !IS_ERR(res))
1605 		security_d_instantiate(res, inode);
1606 	iput(inode);
1607 	return res;
1608 }
1609 EXPORT_SYMBOL(d_obtain_alias);
1610 
1611 /**
1612  * d_splice_alias - splice a disconnected dentry into the tree if one exists
1613  * @inode:  the inode which may have a disconnected dentry
1614  * @dentry: a negative dentry which we want to point to the inode.
1615  *
1616  * If inode is a directory and has a 'disconnected' dentry (i.e. IS_ROOT and
1617  * DCACHE_DISCONNECTED), then d_move that in place of the given dentry
1618  * and return it, else simply d_add the inode to the dentry and return NULL.
1619  *
1620  * This is needed in the lookup routine of any filesystem that is exportable
1621  * (via knfsd) so that we can build dcache paths to directories effectively.
1622  *
1623  * If a dentry was found and moved, then it is returned.  Otherwise NULL
1624  * is returned.  This matches the expected return value of ->lookup.
1625  *
1626  */
1627 struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
1628 {
1629 	struct dentry *new = NULL;
1630 
1631 	if (IS_ERR(inode))
1632 		return ERR_CAST(inode);
1633 
1634 	if (inode && S_ISDIR(inode->i_mode)) {
1635 		spin_lock(&inode->i_lock);
1636 		new = __d_find_alias(inode, 1);
1637 		if (new) {
1638 			BUG_ON(!(new->d_flags & DCACHE_DISCONNECTED));
1639 			spin_unlock(&inode->i_lock);
1640 			security_d_instantiate(new, inode);
1641 			d_move(new, dentry);
1642 			iput(inode);
1643 		} else {
1644 			/* already taking inode->i_lock, so d_add() by hand */
1645 			__d_instantiate(dentry, inode);
1646 			spin_unlock(&inode->i_lock);
1647 			security_d_instantiate(dentry, inode);
1648 			d_rehash(dentry);
1649 		}
1650 	} else
1651 		d_add(dentry, inode);
1652 	return new;
1653 }
1654 EXPORT_SYMBOL(d_splice_alias);
1655 
1656 /**
1657  * d_add_ci - lookup or allocate new dentry with case-exact name
1658  * @inode:  the inode case-insensitive lookup has found
1659  * @dentry: the negative dentry that was passed to the parent's lookup func
1660  * @name:   the case-exact name to be associated with the returned dentry
1661  *
1662  * This is to avoid filling the dcache with case-insensitive names to the
1663  * same inode, only the actual correct case is stored in the dcache for
1664  * case-insensitive filesystems.
1665  *
1666  * For a case-insensitive lookup match and if the the case-exact dentry
1667  * already exists in in the dcache, use it and return it.
1668  *
1669  * If no entry exists with the exact case name, allocate new dentry with
1670  * the exact case, and return the spliced entry.
1671  */
1672 struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
1673 			struct qstr *name)
1674 {
1675 	int error;
1676 	struct dentry *found;
1677 	struct dentry *new;
1678 
1679 	/*
1680 	 * First check if a dentry matching the name already exists,
1681 	 * if not go ahead and create it now.
1682 	 */
1683 	found = d_hash_and_lookup(dentry->d_parent, name);
1684 	if (!found) {
1685 		new = d_alloc(dentry->d_parent, name);
1686 		if (!new) {
1687 			error = -ENOMEM;
1688 			goto err_out;
1689 		}
1690 
1691 		found = d_splice_alias(inode, new);
1692 		if (found) {
1693 			dput(new);
1694 			return found;
1695 		}
1696 		return new;
1697 	}
1698 
1699 	/*
1700 	 * If a matching dentry exists, and it's not negative use it.
1701 	 *
1702 	 * Decrement the reference count to balance the iget() done
1703 	 * earlier on.
1704 	 */
1705 	if (found->d_inode) {
1706 		if (unlikely(found->d_inode != inode)) {
1707 			/* This can't happen because bad inodes are unhashed. */
1708 			BUG_ON(!is_bad_inode(inode));
1709 			BUG_ON(!is_bad_inode(found->d_inode));
1710 		}
1711 		iput(inode);
1712 		return found;
1713 	}
1714 
1715 	/*
1716 	 * Negative dentry: instantiate it unless the inode is a directory and
1717 	 * already has a dentry.
1718 	 */
1719 	new = d_splice_alias(inode, found);
1720 	if (new) {
1721 		dput(found);
1722 		found = new;
1723 	}
1724 	return found;
1725 
1726 err_out:
1727 	iput(inode);
1728 	return ERR_PTR(error);
1729 }
1730 EXPORT_SYMBOL(d_add_ci);
1731 
1732 /*
1733  * Do the slow-case of the dentry name compare.
1734  *
1735  * Unlike the dentry_cmp() function, we need to atomically
1736  * load the name, length and inode information, so that the
1737  * filesystem can rely on them, and can use the 'name' and
1738  * 'len' information without worrying about walking off the
1739  * end of memory etc.
1740  *
1741  * Thus the read_seqcount_retry() and the "duplicate" info
1742  * in arguments (the low-level filesystem should not look
1743  * at the dentry inode or name contents directly, since
1744  * rename can change them while we're in RCU mode).
1745  */
1746 enum slow_d_compare {
1747 	D_COMP_OK,
1748 	D_COMP_NOMATCH,
1749 	D_COMP_SEQRETRY,
1750 };
1751 
1752 static noinline enum slow_d_compare slow_dentry_cmp(
1753 		const struct dentry *parent,
1754 		struct inode *inode,
1755 		struct dentry *dentry,
1756 		unsigned int seq,
1757 		const struct qstr *name)
1758 {
1759 	int tlen = dentry->d_name.len;
1760 	const char *tname = dentry->d_name.name;
1761 	struct inode *i = dentry->d_inode;
1762 
1763 	if (read_seqcount_retry(&dentry->d_seq, seq)) {
1764 		cpu_relax();
1765 		return D_COMP_SEQRETRY;
1766 	}
1767 	if (parent->d_op->d_compare(parent, inode,
1768 				dentry, i,
1769 				tlen, tname, name))
1770 		return D_COMP_NOMATCH;
1771 	return D_COMP_OK;
1772 }
1773 
1774 /**
1775  * __d_lookup_rcu - search for a dentry (racy, store-free)
1776  * @parent: parent dentry
1777  * @name: qstr of name we wish to find
1778  * @seqp: returns d_seq value at the point where the dentry was found
1779  * @inode: returns dentry->d_inode when the inode was found valid.
1780  * Returns: dentry, or NULL
1781  *
1782  * __d_lookup_rcu is the dcache lookup function for rcu-walk name
1783  * resolution (store-free path walking) design described in
1784  * Documentation/filesystems/path-lookup.txt.
1785  *
1786  * This is not to be used outside core vfs.
1787  *
1788  * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
1789  * held, and rcu_read_lock held. The returned dentry must not be stored into
1790  * without taking d_lock and checking d_seq sequence count against @seq
1791  * returned here.
1792  *
1793  * A refcount may be taken on the found dentry with the __d_rcu_to_refcount
1794  * function.
1795  *
1796  * Alternatively, __d_lookup_rcu may be called again to look up the child of
1797  * the returned dentry, so long as its parent's seqlock is checked after the
1798  * child is looked up. Thus, an interlocking stepping of sequence lock checks
1799  * is formed, giving integrity down the path walk.
1800  *
1801  * NOTE! The caller *has* to check the resulting dentry against the sequence
1802  * number we've returned before using any of the resulting dentry state!
1803  */
1804 struct dentry *__d_lookup_rcu(const struct dentry *parent,
1805 				const struct qstr *name,
1806 				unsigned *seqp, struct inode *inode)
1807 {
1808 	u64 hashlen = name->hash_len;
1809 	const unsigned char *str = name->name;
1810 	struct hlist_bl_head *b = d_hash(parent, hashlen_hash(hashlen));
1811 	struct hlist_bl_node *node;
1812 	struct dentry *dentry;
1813 
1814 	/*
1815 	 * Note: There is significant duplication with __d_lookup_rcu which is
1816 	 * required to prevent single threaded performance regressions
1817 	 * especially on architectures where smp_rmb (in seqcounts) are costly.
1818 	 * Keep the two functions in sync.
1819 	 */
1820 
1821 	/*
1822 	 * The hash list is protected using RCU.
1823 	 *
1824 	 * Carefully use d_seq when comparing a candidate dentry, to avoid
1825 	 * races with d_move().
1826 	 *
1827 	 * It is possible that concurrent renames can mess up our list
1828 	 * walk here and result in missing our dentry, resulting in the
1829 	 * false-negative result. d_lookup() protects against concurrent
1830 	 * renames using rename_lock seqlock.
1831 	 *
1832 	 * See Documentation/filesystems/path-lookup.txt for more details.
1833 	 */
1834 	hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
1835 		unsigned seq;
1836 
1837 seqretry:
1838 		/*
1839 		 * The dentry sequence count protects us from concurrent
1840 		 * renames, and thus protects inode, parent and name fields.
1841 		 *
1842 		 * The caller must perform a seqcount check in order
1843 		 * to do anything useful with the returned dentry,
1844 		 * including using the 'd_inode' pointer.
1845 		 *
1846 		 * NOTE! We do a "raw" seqcount_begin here. That means that
1847 		 * we don't wait for the sequence count to stabilize if it
1848 		 * is in the middle of a sequence change. If we do the slow
1849 		 * dentry compare, we will do seqretries until it is stable,
1850 		 * and if we end up with a successful lookup, we actually
1851 		 * want to exit RCU lookup anyway.
1852 		 */
1853 		seq = raw_seqcount_begin(&dentry->d_seq);
1854 		if (dentry->d_parent != parent)
1855 			continue;
1856 		if (d_unhashed(dentry))
1857 			continue;
1858 		*seqp = seq;
1859 
1860 		if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) {
1861 			if (dentry->d_name.hash != hashlen_hash(hashlen))
1862 				continue;
1863 			switch (slow_dentry_cmp(parent, inode, dentry, seq, name)) {
1864 			case D_COMP_OK:
1865 				return dentry;
1866 			case D_COMP_NOMATCH:
1867 				continue;
1868 			default:
1869 				goto seqretry;
1870 			}
1871 		}
1872 
1873 		if (dentry->d_name.hash_len != hashlen)
1874 			continue;
1875 		if (!dentry_cmp(dentry, str, hashlen_len(hashlen)))
1876 			return dentry;
1877 	}
1878 	return NULL;
1879 }
1880 
1881 /**
1882  * d_lookup - search for a dentry
1883  * @parent: parent dentry
1884  * @name: qstr of name we wish to find
1885  * Returns: dentry, or NULL
1886  *
1887  * d_lookup searches the children of the parent dentry for the name in
1888  * question. If the dentry is found its reference count is incremented and the
1889  * dentry is returned. The caller must use dput to free the entry when it has
1890  * finished using it. %NULL is returned if the dentry does not exist.
1891  */
1892 struct dentry *d_lookup(struct dentry *parent, struct qstr *name)
1893 {
1894 	struct dentry *dentry;
1895 	unsigned seq;
1896 
1897         do {
1898                 seq = read_seqbegin(&rename_lock);
1899                 dentry = __d_lookup(parent, name);
1900                 if (dentry)
1901 			break;
1902 	} while (read_seqretry(&rename_lock, seq));
1903 	return dentry;
1904 }
1905 EXPORT_SYMBOL(d_lookup);
1906 
1907 /**
1908  * __d_lookup - search for a dentry (racy)
1909  * @parent: parent dentry
1910  * @name: qstr of name we wish to find
1911  * Returns: dentry, or NULL
1912  *
1913  * __d_lookup is like d_lookup, however it may (rarely) return a
1914  * false-negative result due to unrelated rename activity.
1915  *
1916  * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
1917  * however it must be used carefully, eg. with a following d_lookup in
1918  * the case of failure.
1919  *
1920  * __d_lookup callers must be commented.
1921  */
1922 struct dentry *__d_lookup(struct dentry *parent, struct qstr *name)
1923 {
1924 	unsigned int len = name->len;
1925 	unsigned int hash = name->hash;
1926 	const unsigned char *str = name->name;
1927 	struct hlist_bl_head *b = d_hash(parent, hash);
1928 	struct hlist_bl_node *node;
1929 	struct dentry *found = NULL;
1930 	struct dentry *dentry;
1931 
1932 	/*
1933 	 * Note: There is significant duplication with __d_lookup_rcu which is
1934 	 * required to prevent single threaded performance regressions
1935 	 * especially on architectures where smp_rmb (in seqcounts) are costly.
1936 	 * Keep the two functions in sync.
1937 	 */
1938 
1939 	/*
1940 	 * The hash list is protected using RCU.
1941 	 *
1942 	 * Take d_lock when comparing a candidate dentry, to avoid races
1943 	 * with d_move().
1944 	 *
1945 	 * It is possible that concurrent renames can mess up our list
1946 	 * walk here and result in missing our dentry, resulting in the
1947 	 * false-negative result. d_lookup() protects against concurrent
1948 	 * renames using rename_lock seqlock.
1949 	 *
1950 	 * See Documentation/filesystems/path-lookup.txt for more details.
1951 	 */
1952 	rcu_read_lock();
1953 
1954 	hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
1955 
1956 		if (dentry->d_name.hash != hash)
1957 			continue;
1958 
1959 		spin_lock(&dentry->d_lock);
1960 		if (dentry->d_parent != parent)
1961 			goto next;
1962 		if (d_unhashed(dentry))
1963 			goto next;
1964 
1965 		/*
1966 		 * It is safe to compare names since d_move() cannot
1967 		 * change the qstr (protected by d_lock).
1968 		 */
1969 		if (parent->d_flags & DCACHE_OP_COMPARE) {
1970 			int tlen = dentry->d_name.len;
1971 			const char *tname = dentry->d_name.name;
1972 			if (parent->d_op->d_compare(parent, parent->d_inode,
1973 						dentry, dentry->d_inode,
1974 						tlen, tname, name))
1975 				goto next;
1976 		} else {
1977 			if (dentry->d_name.len != len)
1978 				goto next;
1979 			if (dentry_cmp(dentry, str, len))
1980 				goto next;
1981 		}
1982 
1983 		dentry->d_count++;
1984 		found = dentry;
1985 		spin_unlock(&dentry->d_lock);
1986 		break;
1987 next:
1988 		spin_unlock(&dentry->d_lock);
1989  	}
1990  	rcu_read_unlock();
1991 
1992  	return found;
1993 }
1994 
1995 /**
1996  * d_hash_and_lookup - hash the qstr then search for a dentry
1997  * @dir: Directory to search in
1998  * @name: qstr of name we wish to find
1999  *
2000  * On hash failure or on lookup failure NULL is returned.
2001  */
2002 struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
2003 {
2004 	struct dentry *dentry = NULL;
2005 
2006 	/*
2007 	 * Check for a fs-specific hash function. Note that we must
2008 	 * calculate the standard hash first, as the d_op->d_hash()
2009 	 * routine may choose to leave the hash value unchanged.
2010 	 */
2011 	name->hash = full_name_hash(name->name, name->len);
2012 	if (dir->d_flags & DCACHE_OP_HASH) {
2013 		if (dir->d_op->d_hash(dir, dir->d_inode, name) < 0)
2014 			goto out;
2015 	}
2016 	dentry = d_lookup(dir, name);
2017 out:
2018 	return dentry;
2019 }
2020 
2021 /**
2022  * d_validate - verify dentry provided from insecure source (deprecated)
2023  * @dentry: The dentry alleged to be valid child of @dparent
2024  * @dparent: The parent dentry (known to be valid)
2025  *
2026  * An insecure source has sent us a dentry, here we verify it and dget() it.
2027  * This is used by ncpfs in its readdir implementation.
2028  * Zero is returned in the dentry is invalid.
2029  *
2030  * This function is slow for big directories, and deprecated, do not use it.
2031  */
2032 int d_validate(struct dentry *dentry, struct dentry *dparent)
2033 {
2034 	struct dentry *child;
2035 
2036 	spin_lock(&dparent->d_lock);
2037 	list_for_each_entry(child, &dparent->d_subdirs, d_u.d_child) {
2038 		if (dentry == child) {
2039 			spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
2040 			__dget_dlock(dentry);
2041 			spin_unlock(&dentry->d_lock);
2042 			spin_unlock(&dparent->d_lock);
2043 			return 1;
2044 		}
2045 	}
2046 	spin_unlock(&dparent->d_lock);
2047 
2048 	return 0;
2049 }
2050 EXPORT_SYMBOL(d_validate);
2051 
2052 /*
2053  * When a file is deleted, we have two options:
2054  * - turn this dentry into a negative dentry
2055  * - unhash this dentry and free it.
2056  *
2057  * Usually, we want to just turn this into
2058  * a negative dentry, but if anybody else is
2059  * currently using the dentry or the inode
2060  * we can't do that and we fall back on removing
2061  * it from the hash queues and waiting for
2062  * it to be deleted later when it has no users
2063  */
2064 
2065 /**
2066  * d_delete - delete a dentry
2067  * @dentry: The dentry to delete
2068  *
2069  * Turn the dentry into a negative dentry if possible, otherwise
2070  * remove it from the hash queues so it can be deleted later
2071  */
2072 
2073 void d_delete(struct dentry * dentry)
2074 {
2075 	struct inode *inode;
2076 	int isdir = 0;
2077 	/*
2078 	 * Are we the only user?
2079 	 */
2080 again:
2081 	spin_lock(&dentry->d_lock);
2082 	inode = dentry->d_inode;
2083 	isdir = S_ISDIR(inode->i_mode);
2084 	if (dentry->d_count == 1) {
2085 		if (!spin_trylock(&inode->i_lock)) {
2086 			spin_unlock(&dentry->d_lock);
2087 			cpu_relax();
2088 			goto again;
2089 		}
2090 		dentry->d_flags &= ~DCACHE_CANT_MOUNT;
2091 		dentry_unlink_inode(dentry);
2092 		fsnotify_nameremove(dentry, isdir);
2093 		return;
2094 	}
2095 
2096 	if (!d_unhashed(dentry))
2097 		__d_drop(dentry);
2098 
2099 	spin_unlock(&dentry->d_lock);
2100 
2101 	fsnotify_nameremove(dentry, isdir);
2102 }
2103 EXPORT_SYMBOL(d_delete);
2104 
2105 static void __d_rehash(struct dentry * entry, struct hlist_bl_head *b)
2106 {
2107 	BUG_ON(!d_unhashed(entry));
2108 	hlist_bl_lock(b);
2109 	entry->d_flags |= DCACHE_RCUACCESS;
2110 	hlist_bl_add_head_rcu(&entry->d_hash, b);
2111 	hlist_bl_unlock(b);
2112 }
2113 
2114 static void _d_rehash(struct dentry * entry)
2115 {
2116 	__d_rehash(entry, d_hash(entry->d_parent, entry->d_name.hash));
2117 }
2118 
2119 /**
2120  * d_rehash	- add an entry back to the hash
2121  * @entry: dentry to add to the hash
2122  *
2123  * Adds a dentry to the hash according to its name.
2124  */
2125 
2126 void d_rehash(struct dentry * entry)
2127 {
2128 	spin_lock(&entry->d_lock);
2129 	_d_rehash(entry);
2130 	spin_unlock(&entry->d_lock);
2131 }
2132 EXPORT_SYMBOL(d_rehash);
2133 
2134 /**
2135  * dentry_update_name_case - update case insensitive dentry with a new name
2136  * @dentry: dentry to be updated
2137  * @name: new name
2138  *
2139  * Update a case insensitive dentry with new case of name.
2140  *
2141  * dentry must have been returned by d_lookup with name @name. Old and new
2142  * name lengths must match (ie. no d_compare which allows mismatched name
2143  * lengths).
2144  *
2145  * Parent inode i_mutex must be held over d_lookup and into this call (to
2146  * keep renames and concurrent inserts, and readdir(2) away).
2147  */
2148 void dentry_update_name_case(struct dentry *dentry, struct qstr *name)
2149 {
2150 	BUG_ON(!mutex_is_locked(&dentry->d_parent->d_inode->i_mutex));
2151 	BUG_ON(dentry->d_name.len != name->len); /* d_lookup gives this */
2152 
2153 	spin_lock(&dentry->d_lock);
2154 	write_seqcount_begin(&dentry->d_seq);
2155 	memcpy((unsigned char *)dentry->d_name.name, name->name, name->len);
2156 	write_seqcount_end(&dentry->d_seq);
2157 	spin_unlock(&dentry->d_lock);
2158 }
2159 EXPORT_SYMBOL(dentry_update_name_case);
2160 
2161 static void switch_names(struct dentry *dentry, struct dentry *target)
2162 {
2163 	if (dname_external(target)) {
2164 		if (dname_external(dentry)) {
2165 			/*
2166 			 * Both external: swap the pointers
2167 			 */
2168 			swap(target->d_name.name, dentry->d_name.name);
2169 		} else {
2170 			/*
2171 			 * dentry:internal, target:external.  Steal target's
2172 			 * storage and make target internal.
2173 			 */
2174 			memcpy(target->d_iname, dentry->d_name.name,
2175 					dentry->d_name.len + 1);
2176 			dentry->d_name.name = target->d_name.name;
2177 			target->d_name.name = target->d_iname;
2178 		}
2179 	} else {
2180 		if (dname_external(dentry)) {
2181 			/*
2182 			 * dentry:external, target:internal.  Give dentry's
2183 			 * storage to target and make dentry internal
2184 			 */
2185 			memcpy(dentry->d_iname, target->d_name.name,
2186 					target->d_name.len + 1);
2187 			target->d_name.name = dentry->d_name.name;
2188 			dentry->d_name.name = dentry->d_iname;
2189 		} else {
2190 			/*
2191 			 * Both are internal.  Just copy target to dentry
2192 			 */
2193 			memcpy(dentry->d_iname, target->d_name.name,
2194 					target->d_name.len + 1);
2195 			dentry->d_name.len = target->d_name.len;
2196 			return;
2197 		}
2198 	}
2199 	swap(dentry->d_name.len, target->d_name.len);
2200 }
2201 
2202 static void dentry_lock_for_move(struct dentry *dentry, struct dentry *target)
2203 {
2204 	/*
2205 	 * XXXX: do we really need to take target->d_lock?
2206 	 */
2207 	if (IS_ROOT(dentry) || dentry->d_parent == target->d_parent)
2208 		spin_lock(&target->d_parent->d_lock);
2209 	else {
2210 		if (d_ancestor(dentry->d_parent, target->d_parent)) {
2211 			spin_lock(&dentry->d_parent->d_lock);
2212 			spin_lock_nested(&target->d_parent->d_lock,
2213 						DENTRY_D_LOCK_NESTED);
2214 		} else {
2215 			spin_lock(&target->d_parent->d_lock);
2216 			spin_lock_nested(&dentry->d_parent->d_lock,
2217 						DENTRY_D_LOCK_NESTED);
2218 		}
2219 	}
2220 	if (target < dentry) {
2221 		spin_lock_nested(&target->d_lock, 2);
2222 		spin_lock_nested(&dentry->d_lock, 3);
2223 	} else {
2224 		spin_lock_nested(&dentry->d_lock, 2);
2225 		spin_lock_nested(&target->d_lock, 3);
2226 	}
2227 }
2228 
2229 static void dentry_unlock_parents_for_move(struct dentry *dentry,
2230 					struct dentry *target)
2231 {
2232 	if (target->d_parent != dentry->d_parent)
2233 		spin_unlock(&dentry->d_parent->d_lock);
2234 	if (target->d_parent != target)
2235 		spin_unlock(&target->d_parent->d_lock);
2236 }
2237 
2238 /*
2239  * When switching names, the actual string doesn't strictly have to
2240  * be preserved in the target - because we're dropping the target
2241  * anyway. As such, we can just do a simple memcpy() to copy over
2242  * the new name before we switch.
2243  *
2244  * Note that we have to be a lot more careful about getting the hash
2245  * switched - we have to switch the hash value properly even if it
2246  * then no longer matches the actual (corrupted) string of the target.
2247  * The hash value has to match the hash queue that the dentry is on..
2248  */
2249 /*
2250  * __d_move - move a dentry
2251  * @dentry: entry to move
2252  * @target: new dentry
2253  *
2254  * Update the dcache to reflect the move of a file name. Negative
2255  * dcache entries should not be moved in this way. Caller must hold
2256  * rename_lock, the i_mutex of the source and target directories,
2257  * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
2258  */
2259 static void __d_move(struct dentry * dentry, struct dentry * target)
2260 {
2261 	if (!dentry->d_inode)
2262 		printk(KERN_WARNING "VFS: moving negative dcache entry\n");
2263 
2264 	BUG_ON(d_ancestor(dentry, target));
2265 	BUG_ON(d_ancestor(target, dentry));
2266 
2267 	dentry_lock_for_move(dentry, target);
2268 
2269 	write_seqcount_begin(&dentry->d_seq);
2270 	write_seqcount_begin(&target->d_seq);
2271 
2272 	/* __d_drop does write_seqcount_barrier, but they're OK to nest. */
2273 
2274 	/*
2275 	 * Move the dentry to the target hash queue. Don't bother checking
2276 	 * for the same hash queue because of how unlikely it is.
2277 	 */
2278 	__d_drop(dentry);
2279 	__d_rehash(dentry, d_hash(target->d_parent, target->d_name.hash));
2280 
2281 	/* Unhash the target: dput() will then get rid of it */
2282 	__d_drop(target);
2283 
2284 	list_del(&dentry->d_u.d_child);
2285 	list_del(&target->d_u.d_child);
2286 
2287 	/* Switch the names.. */
2288 	switch_names(dentry, target);
2289 	swap(dentry->d_name.hash, target->d_name.hash);
2290 
2291 	/* ... and switch the parents */
2292 	if (IS_ROOT(dentry)) {
2293 		dentry->d_parent = target->d_parent;
2294 		target->d_parent = target;
2295 		INIT_LIST_HEAD(&target->d_u.d_child);
2296 	} else {
2297 		swap(dentry->d_parent, target->d_parent);
2298 
2299 		/* And add them back to the (new) parent lists */
2300 		list_add(&target->d_u.d_child, &target->d_parent->d_subdirs);
2301 	}
2302 
2303 	list_add(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs);
2304 
2305 	write_seqcount_end(&target->d_seq);
2306 	write_seqcount_end(&dentry->d_seq);
2307 
2308 	dentry_unlock_parents_for_move(dentry, target);
2309 	spin_unlock(&target->d_lock);
2310 	fsnotify_d_move(dentry);
2311 	spin_unlock(&dentry->d_lock);
2312 }
2313 
2314 /*
2315  * d_move - move a dentry
2316  * @dentry: entry to move
2317  * @target: new dentry
2318  *
2319  * Update the dcache to reflect the move of a file name. Negative
2320  * dcache entries should not be moved in this way. See the locking
2321  * requirements for __d_move.
2322  */
2323 void d_move(struct dentry *dentry, struct dentry *target)
2324 {
2325 	write_seqlock(&rename_lock);
2326 	__d_move(dentry, target);
2327 	write_sequnlock(&rename_lock);
2328 }
2329 EXPORT_SYMBOL(d_move);
2330 
2331 /**
2332  * d_ancestor - search for an ancestor
2333  * @p1: ancestor dentry
2334  * @p2: child dentry
2335  *
2336  * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2337  * an ancestor of p2, else NULL.
2338  */
2339 struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
2340 {
2341 	struct dentry *p;
2342 
2343 	for (p = p2; !IS_ROOT(p); p = p->d_parent) {
2344 		if (p->d_parent == p1)
2345 			return p;
2346 	}
2347 	return NULL;
2348 }
2349 
2350 /*
2351  * This helper attempts to cope with remotely renamed directories
2352  *
2353  * It assumes that the caller is already holding
2354  * dentry->d_parent->d_inode->i_mutex, inode->i_lock and rename_lock
2355  *
2356  * Note: If ever the locking in lock_rename() changes, then please
2357  * remember to update this too...
2358  */
2359 static struct dentry *__d_unalias(struct inode *inode,
2360 		struct dentry *dentry, struct dentry *alias)
2361 {
2362 	struct mutex *m1 = NULL, *m2 = NULL;
2363 	struct dentry *ret = ERR_PTR(-EBUSY);
2364 
2365 	/* If alias and dentry share a parent, then no extra locks required */
2366 	if (alias->d_parent == dentry->d_parent)
2367 		goto out_unalias;
2368 
2369 	/* See lock_rename() */
2370 	if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
2371 		goto out_err;
2372 	m1 = &dentry->d_sb->s_vfs_rename_mutex;
2373 	if (!mutex_trylock(&alias->d_parent->d_inode->i_mutex))
2374 		goto out_err;
2375 	m2 = &alias->d_parent->d_inode->i_mutex;
2376 out_unalias:
2377 	if (likely(!d_mountpoint(alias))) {
2378 		__d_move(alias, dentry);
2379 		ret = alias;
2380 	}
2381 out_err:
2382 	spin_unlock(&inode->i_lock);
2383 	if (m2)
2384 		mutex_unlock(m2);
2385 	if (m1)
2386 		mutex_unlock(m1);
2387 	return ret;
2388 }
2389 
2390 /*
2391  * Prepare an anonymous dentry for life in the superblock's dentry tree as a
2392  * named dentry in place of the dentry to be replaced.
2393  * returns with anon->d_lock held!
2394  */
2395 static void __d_materialise_dentry(struct dentry *dentry, struct dentry *anon)
2396 {
2397 	struct dentry *dparent, *aparent;
2398 
2399 	dentry_lock_for_move(anon, dentry);
2400 
2401 	write_seqcount_begin(&dentry->d_seq);
2402 	write_seqcount_begin(&anon->d_seq);
2403 
2404 	dparent = dentry->d_parent;
2405 	aparent = anon->d_parent;
2406 
2407 	switch_names(dentry, anon);
2408 	swap(dentry->d_name.hash, anon->d_name.hash);
2409 
2410 	dentry->d_parent = (aparent == anon) ? dentry : aparent;
2411 	list_del(&dentry->d_u.d_child);
2412 	if (!IS_ROOT(dentry))
2413 		list_add(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs);
2414 	else
2415 		INIT_LIST_HEAD(&dentry->d_u.d_child);
2416 
2417 	anon->d_parent = (dparent == dentry) ? anon : dparent;
2418 	list_del(&anon->d_u.d_child);
2419 	if (!IS_ROOT(anon))
2420 		list_add(&anon->d_u.d_child, &anon->d_parent->d_subdirs);
2421 	else
2422 		INIT_LIST_HEAD(&anon->d_u.d_child);
2423 
2424 	write_seqcount_end(&dentry->d_seq);
2425 	write_seqcount_end(&anon->d_seq);
2426 
2427 	dentry_unlock_parents_for_move(anon, dentry);
2428 	spin_unlock(&dentry->d_lock);
2429 
2430 	/* anon->d_lock still locked, returns locked */
2431 	anon->d_flags &= ~DCACHE_DISCONNECTED;
2432 }
2433 
2434 /**
2435  * d_materialise_unique - introduce an inode into the tree
2436  * @dentry: candidate dentry
2437  * @inode: inode to bind to the dentry, to which aliases may be attached
2438  *
2439  * Introduces an dentry into the tree, substituting an extant disconnected
2440  * root directory alias in its place if there is one. Caller must hold the
2441  * i_mutex of the parent directory.
2442  */
2443 struct dentry *d_materialise_unique(struct dentry *dentry, struct inode *inode)
2444 {
2445 	struct dentry *actual;
2446 
2447 	BUG_ON(!d_unhashed(dentry));
2448 
2449 	if (!inode) {
2450 		actual = dentry;
2451 		__d_instantiate(dentry, NULL);
2452 		d_rehash(actual);
2453 		goto out_nolock;
2454 	}
2455 
2456 	spin_lock(&inode->i_lock);
2457 
2458 	if (S_ISDIR(inode->i_mode)) {
2459 		struct dentry *alias;
2460 
2461 		/* Does an aliased dentry already exist? */
2462 		alias = __d_find_alias(inode, 0);
2463 		if (alias) {
2464 			actual = alias;
2465 			write_seqlock(&rename_lock);
2466 
2467 			if (d_ancestor(alias, dentry)) {
2468 				/* Check for loops */
2469 				actual = ERR_PTR(-ELOOP);
2470 				spin_unlock(&inode->i_lock);
2471 			} else if (IS_ROOT(alias)) {
2472 				/* Is this an anonymous mountpoint that we
2473 				 * could splice into our tree? */
2474 				__d_materialise_dentry(dentry, alias);
2475 				write_sequnlock(&rename_lock);
2476 				__d_drop(alias);
2477 				goto found;
2478 			} else {
2479 				/* Nope, but we must(!) avoid directory
2480 				 * aliasing. This drops inode->i_lock */
2481 				actual = __d_unalias(inode, dentry, alias);
2482 			}
2483 			write_sequnlock(&rename_lock);
2484 			if (IS_ERR(actual)) {
2485 				if (PTR_ERR(actual) == -ELOOP)
2486 					pr_warn_ratelimited(
2487 						"VFS: Lookup of '%s' in %s %s"
2488 						" would have caused loop\n",
2489 						dentry->d_name.name,
2490 						inode->i_sb->s_type->name,
2491 						inode->i_sb->s_id);
2492 				dput(alias);
2493 			}
2494 			goto out_nolock;
2495 		}
2496 	}
2497 
2498 	/* Add a unique reference */
2499 	actual = __d_instantiate_unique(dentry, inode);
2500 	if (!actual)
2501 		actual = dentry;
2502 	else
2503 		BUG_ON(!d_unhashed(actual));
2504 
2505 	spin_lock(&actual->d_lock);
2506 found:
2507 	_d_rehash(actual);
2508 	spin_unlock(&actual->d_lock);
2509 	spin_unlock(&inode->i_lock);
2510 out_nolock:
2511 	if (actual == dentry) {
2512 		security_d_instantiate(dentry, inode);
2513 		return NULL;
2514 	}
2515 
2516 	iput(inode);
2517 	return actual;
2518 }
2519 EXPORT_SYMBOL_GPL(d_materialise_unique);
2520 
2521 static int prepend(char **buffer, int *buflen, const char *str, int namelen)
2522 {
2523 	*buflen -= namelen;
2524 	if (*buflen < 0)
2525 		return -ENAMETOOLONG;
2526 	*buffer -= namelen;
2527 	memcpy(*buffer, str, namelen);
2528 	return 0;
2529 }
2530 
2531 static int prepend_name(char **buffer, int *buflen, struct qstr *name)
2532 {
2533 	return prepend(buffer, buflen, name->name, name->len);
2534 }
2535 
2536 /**
2537  * prepend_path - Prepend path string to a buffer
2538  * @path: the dentry/vfsmount to report
2539  * @root: root vfsmnt/dentry
2540  * @buffer: pointer to the end of the buffer
2541  * @buflen: pointer to buffer length
2542  *
2543  * Caller holds the rename_lock.
2544  */
2545 static int prepend_path(const struct path *path,
2546 			const struct path *root,
2547 			char **buffer, int *buflen)
2548 {
2549 	struct dentry *dentry = path->dentry;
2550 	struct vfsmount *vfsmnt = path->mnt;
2551 	struct mount *mnt = real_mount(vfsmnt);
2552 	bool slash = false;
2553 	int error = 0;
2554 
2555 	br_read_lock(&vfsmount_lock);
2556 	while (dentry != root->dentry || vfsmnt != root->mnt) {
2557 		struct dentry * parent;
2558 
2559 		if (dentry == vfsmnt->mnt_root || IS_ROOT(dentry)) {
2560 			/* Global root? */
2561 			if (!mnt_has_parent(mnt))
2562 				goto global_root;
2563 			dentry = mnt->mnt_mountpoint;
2564 			mnt = mnt->mnt_parent;
2565 			vfsmnt = &mnt->mnt;
2566 			continue;
2567 		}
2568 		parent = dentry->d_parent;
2569 		prefetch(parent);
2570 		spin_lock(&dentry->d_lock);
2571 		error = prepend_name(buffer, buflen, &dentry->d_name);
2572 		spin_unlock(&dentry->d_lock);
2573 		if (!error)
2574 			error = prepend(buffer, buflen, "/", 1);
2575 		if (error)
2576 			break;
2577 
2578 		slash = true;
2579 		dentry = parent;
2580 	}
2581 
2582 	if (!error && !slash)
2583 		error = prepend(buffer, buflen, "/", 1);
2584 
2585 out:
2586 	br_read_unlock(&vfsmount_lock);
2587 	return error;
2588 
2589 global_root:
2590 	/*
2591 	 * Filesystems needing to implement special "root names"
2592 	 * should do so with ->d_dname()
2593 	 */
2594 	if (IS_ROOT(dentry) &&
2595 	    (dentry->d_name.len != 1 || dentry->d_name.name[0] != '/')) {
2596 		WARN(1, "Root dentry has weird name <%.*s>\n",
2597 		     (int) dentry->d_name.len, dentry->d_name.name);
2598 	}
2599 	if (!slash)
2600 		error = prepend(buffer, buflen, "/", 1);
2601 	if (!error)
2602 		error = is_mounted(vfsmnt) ? 1 : 2;
2603 	goto out;
2604 }
2605 
2606 /**
2607  * __d_path - return the path of a dentry
2608  * @path: the dentry/vfsmount to report
2609  * @root: root vfsmnt/dentry
2610  * @buf: buffer to return value in
2611  * @buflen: buffer length
2612  *
2613  * Convert a dentry into an ASCII path name.
2614  *
2615  * Returns a pointer into the buffer or an error code if the
2616  * path was too long.
2617  *
2618  * "buflen" should be positive.
2619  *
2620  * If the path is not reachable from the supplied root, return %NULL.
2621  */
2622 char *__d_path(const struct path *path,
2623 	       const struct path *root,
2624 	       char *buf, int buflen)
2625 {
2626 	char *res = buf + buflen;
2627 	int error;
2628 
2629 	prepend(&res, &buflen, "\0", 1);
2630 	write_seqlock(&rename_lock);
2631 	error = prepend_path(path, root, &res, &buflen);
2632 	write_sequnlock(&rename_lock);
2633 
2634 	if (error < 0)
2635 		return ERR_PTR(error);
2636 	if (error > 0)
2637 		return NULL;
2638 	return res;
2639 }
2640 
2641 char *d_absolute_path(const struct path *path,
2642 	       char *buf, int buflen)
2643 {
2644 	struct path root = {};
2645 	char *res = buf + buflen;
2646 	int error;
2647 
2648 	prepend(&res, &buflen, "\0", 1);
2649 	write_seqlock(&rename_lock);
2650 	error = prepend_path(path, &root, &res, &buflen);
2651 	write_sequnlock(&rename_lock);
2652 
2653 	if (error > 1)
2654 		error = -EINVAL;
2655 	if (error < 0)
2656 		return ERR_PTR(error);
2657 	return res;
2658 }
2659 
2660 /*
2661  * same as __d_path but appends "(deleted)" for unlinked files.
2662  */
2663 static int path_with_deleted(const struct path *path,
2664 			     const struct path *root,
2665 			     char **buf, int *buflen)
2666 {
2667 	prepend(buf, buflen, "\0", 1);
2668 	if (d_unlinked(path->dentry)) {
2669 		int error = prepend(buf, buflen, " (deleted)", 10);
2670 		if (error)
2671 			return error;
2672 	}
2673 
2674 	return prepend_path(path, root, buf, buflen);
2675 }
2676 
2677 static int prepend_unreachable(char **buffer, int *buflen)
2678 {
2679 	return prepend(buffer, buflen, "(unreachable)", 13);
2680 }
2681 
2682 /**
2683  * d_path - return the path of a dentry
2684  * @path: path to report
2685  * @buf: buffer to return value in
2686  * @buflen: buffer length
2687  *
2688  * Convert a dentry into an ASCII path name. If the entry has been deleted
2689  * the string " (deleted)" is appended. Note that this is ambiguous.
2690  *
2691  * Returns a pointer into the buffer or an error code if the path was
2692  * too long. Note: Callers should use the returned pointer, not the passed
2693  * in buffer, to use the name! The implementation often starts at an offset
2694  * into the buffer, and may leave 0 bytes at the start.
2695  *
2696  * "buflen" should be positive.
2697  */
2698 char *d_path(const struct path *path, char *buf, int buflen)
2699 {
2700 	char *res = buf + buflen;
2701 	struct path root;
2702 	int error;
2703 
2704 	/*
2705 	 * We have various synthetic filesystems that never get mounted.  On
2706 	 * these filesystems dentries are never used for lookup purposes, and
2707 	 * thus don't need to be hashed.  They also don't need a name until a
2708 	 * user wants to identify the object in /proc/pid/fd/.  The little hack
2709 	 * below allows us to generate a name for these objects on demand:
2710 	 */
2711 	if (path->dentry->d_op && path->dentry->d_op->d_dname)
2712 		return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
2713 
2714 	get_fs_root(current->fs, &root);
2715 	write_seqlock(&rename_lock);
2716 	error = path_with_deleted(path, &root, &res, &buflen);
2717 	if (error < 0)
2718 		res = ERR_PTR(error);
2719 	write_sequnlock(&rename_lock);
2720 	path_put(&root);
2721 	return res;
2722 }
2723 EXPORT_SYMBOL(d_path);
2724 
2725 /**
2726  * d_path_with_unreachable - return the path of a dentry
2727  * @path: path to report
2728  * @buf: buffer to return value in
2729  * @buflen: buffer length
2730  *
2731  * The difference from d_path() is that this prepends "(unreachable)"
2732  * to paths which are unreachable from the current process' root.
2733  */
2734 char *d_path_with_unreachable(const struct path *path, char *buf, int buflen)
2735 {
2736 	char *res = buf + buflen;
2737 	struct path root;
2738 	int error;
2739 
2740 	if (path->dentry->d_op && path->dentry->d_op->d_dname)
2741 		return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
2742 
2743 	get_fs_root(current->fs, &root);
2744 	write_seqlock(&rename_lock);
2745 	error = path_with_deleted(path, &root, &res, &buflen);
2746 	if (error > 0)
2747 		error = prepend_unreachable(&res, &buflen);
2748 	write_sequnlock(&rename_lock);
2749 	path_put(&root);
2750 	if (error)
2751 		res =  ERR_PTR(error);
2752 
2753 	return res;
2754 }
2755 
2756 /*
2757  * Helper function for dentry_operations.d_dname() members
2758  */
2759 char *dynamic_dname(struct dentry *dentry, char *buffer, int buflen,
2760 			const char *fmt, ...)
2761 {
2762 	va_list args;
2763 	char temp[64];
2764 	int sz;
2765 
2766 	va_start(args, fmt);
2767 	sz = vsnprintf(temp, sizeof(temp), fmt, args) + 1;
2768 	va_end(args);
2769 
2770 	if (sz > sizeof(temp) || sz > buflen)
2771 		return ERR_PTR(-ENAMETOOLONG);
2772 
2773 	buffer += buflen - sz;
2774 	return memcpy(buffer, temp, sz);
2775 }
2776 
2777 /*
2778  * Write full pathname from the root of the filesystem into the buffer.
2779  */
2780 static char *__dentry_path(struct dentry *dentry, char *buf, int buflen)
2781 {
2782 	char *end = buf + buflen;
2783 	char *retval;
2784 
2785 	prepend(&end, &buflen, "\0", 1);
2786 	if (buflen < 1)
2787 		goto Elong;
2788 	/* Get '/' right */
2789 	retval = end-1;
2790 	*retval = '/';
2791 
2792 	while (!IS_ROOT(dentry)) {
2793 		struct dentry *parent = dentry->d_parent;
2794 		int error;
2795 
2796 		prefetch(parent);
2797 		spin_lock(&dentry->d_lock);
2798 		error = prepend_name(&end, &buflen, &dentry->d_name);
2799 		spin_unlock(&dentry->d_lock);
2800 		if (error != 0 || prepend(&end, &buflen, "/", 1) != 0)
2801 			goto Elong;
2802 
2803 		retval = end;
2804 		dentry = parent;
2805 	}
2806 	return retval;
2807 Elong:
2808 	return ERR_PTR(-ENAMETOOLONG);
2809 }
2810 
2811 char *dentry_path_raw(struct dentry *dentry, char *buf, int buflen)
2812 {
2813 	char *retval;
2814 
2815 	write_seqlock(&rename_lock);
2816 	retval = __dentry_path(dentry, buf, buflen);
2817 	write_sequnlock(&rename_lock);
2818 
2819 	return retval;
2820 }
2821 EXPORT_SYMBOL(dentry_path_raw);
2822 
2823 char *dentry_path(struct dentry *dentry, char *buf, int buflen)
2824 {
2825 	char *p = NULL;
2826 	char *retval;
2827 
2828 	write_seqlock(&rename_lock);
2829 	if (d_unlinked(dentry)) {
2830 		p = buf + buflen;
2831 		if (prepend(&p, &buflen, "//deleted", 10) != 0)
2832 			goto Elong;
2833 		buflen++;
2834 	}
2835 	retval = __dentry_path(dentry, buf, buflen);
2836 	write_sequnlock(&rename_lock);
2837 	if (!IS_ERR(retval) && p)
2838 		*p = '/';	/* restore '/' overriden with '\0' */
2839 	return retval;
2840 Elong:
2841 	return ERR_PTR(-ENAMETOOLONG);
2842 }
2843 
2844 /*
2845  * NOTE! The user-level library version returns a
2846  * character pointer. The kernel system call just
2847  * returns the length of the buffer filled (which
2848  * includes the ending '\0' character), or a negative
2849  * error value. So libc would do something like
2850  *
2851  *	char *getcwd(char * buf, size_t size)
2852  *	{
2853  *		int retval;
2854  *
2855  *		retval = sys_getcwd(buf, size);
2856  *		if (retval >= 0)
2857  *			return buf;
2858  *		errno = -retval;
2859  *		return NULL;
2860  *	}
2861  */
2862 SYSCALL_DEFINE2(getcwd, char __user *, buf, unsigned long, size)
2863 {
2864 	int error;
2865 	struct path pwd, root;
2866 	char *page = (char *) __get_free_page(GFP_USER);
2867 
2868 	if (!page)
2869 		return -ENOMEM;
2870 
2871 	get_fs_root_and_pwd(current->fs, &root, &pwd);
2872 
2873 	error = -ENOENT;
2874 	write_seqlock(&rename_lock);
2875 	if (!d_unlinked(pwd.dentry)) {
2876 		unsigned long len;
2877 		char *cwd = page + PAGE_SIZE;
2878 		int buflen = PAGE_SIZE;
2879 
2880 		prepend(&cwd, &buflen, "\0", 1);
2881 		error = prepend_path(&pwd, &root, &cwd, &buflen);
2882 		write_sequnlock(&rename_lock);
2883 
2884 		if (error < 0)
2885 			goto out;
2886 
2887 		/* Unreachable from current root */
2888 		if (error > 0) {
2889 			error = prepend_unreachable(&cwd, &buflen);
2890 			if (error)
2891 				goto out;
2892 		}
2893 
2894 		error = -ERANGE;
2895 		len = PAGE_SIZE + page - cwd;
2896 		if (len <= size) {
2897 			error = len;
2898 			if (copy_to_user(buf, cwd, len))
2899 				error = -EFAULT;
2900 		}
2901 	} else {
2902 		write_sequnlock(&rename_lock);
2903 	}
2904 
2905 out:
2906 	path_put(&pwd);
2907 	path_put(&root);
2908 	free_page((unsigned long) page);
2909 	return error;
2910 }
2911 
2912 /*
2913  * Test whether new_dentry is a subdirectory of old_dentry.
2914  *
2915  * Trivially implemented using the dcache structure
2916  */
2917 
2918 /**
2919  * is_subdir - is new dentry a subdirectory of old_dentry
2920  * @new_dentry: new dentry
2921  * @old_dentry: old dentry
2922  *
2923  * Returns 1 if new_dentry is a subdirectory of the parent (at any depth).
2924  * Returns 0 otherwise.
2925  * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
2926  */
2927 
2928 int is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
2929 {
2930 	int result;
2931 	unsigned seq;
2932 
2933 	if (new_dentry == old_dentry)
2934 		return 1;
2935 
2936 	do {
2937 		/* for restarting inner loop in case of seq retry */
2938 		seq = read_seqbegin(&rename_lock);
2939 		/*
2940 		 * Need rcu_readlock to protect against the d_parent trashing
2941 		 * due to d_move
2942 		 */
2943 		rcu_read_lock();
2944 		if (d_ancestor(old_dentry, new_dentry))
2945 			result = 1;
2946 		else
2947 			result = 0;
2948 		rcu_read_unlock();
2949 	} while (read_seqretry(&rename_lock, seq));
2950 
2951 	return result;
2952 }
2953 
2954 void d_genocide(struct dentry *root)
2955 {
2956 	struct dentry *this_parent;
2957 	struct list_head *next;
2958 	unsigned seq;
2959 	int locked = 0;
2960 
2961 	seq = read_seqbegin(&rename_lock);
2962 again:
2963 	this_parent = root;
2964 	spin_lock(&this_parent->d_lock);
2965 repeat:
2966 	next = this_parent->d_subdirs.next;
2967 resume:
2968 	while (next != &this_parent->d_subdirs) {
2969 		struct list_head *tmp = next;
2970 		struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
2971 		next = tmp->next;
2972 
2973 		spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
2974 		if (d_unhashed(dentry) || !dentry->d_inode) {
2975 			spin_unlock(&dentry->d_lock);
2976 			continue;
2977 		}
2978 		if (!list_empty(&dentry->d_subdirs)) {
2979 			spin_unlock(&this_parent->d_lock);
2980 			spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
2981 			this_parent = dentry;
2982 			spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
2983 			goto repeat;
2984 		}
2985 		if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
2986 			dentry->d_flags |= DCACHE_GENOCIDE;
2987 			dentry->d_count--;
2988 		}
2989 		spin_unlock(&dentry->d_lock);
2990 	}
2991 	if (this_parent != root) {
2992 		struct dentry *child = this_parent;
2993 		if (!(this_parent->d_flags & DCACHE_GENOCIDE)) {
2994 			this_parent->d_flags |= DCACHE_GENOCIDE;
2995 			this_parent->d_count--;
2996 		}
2997 		this_parent = try_to_ascend(this_parent, locked, seq);
2998 		if (!this_parent)
2999 			goto rename_retry;
3000 		next = child->d_u.d_child.next;
3001 		goto resume;
3002 	}
3003 	spin_unlock(&this_parent->d_lock);
3004 	if (!locked && read_seqretry(&rename_lock, seq))
3005 		goto rename_retry;
3006 	if (locked)
3007 		write_sequnlock(&rename_lock);
3008 	return;
3009 
3010 rename_retry:
3011 	if (locked)
3012 		goto again;
3013 	locked = 1;
3014 	write_seqlock(&rename_lock);
3015 	goto again;
3016 }
3017 
3018 /**
3019  * find_inode_number - check for dentry with name
3020  * @dir: directory to check
3021  * @name: Name to find.
3022  *
3023  * Check whether a dentry already exists for the given name,
3024  * and return the inode number if it has an inode. Otherwise
3025  * 0 is returned.
3026  *
3027  * This routine is used to post-process directory listings for
3028  * filesystems using synthetic inode numbers, and is necessary
3029  * to keep getcwd() working.
3030  */
3031 
3032 ino_t find_inode_number(struct dentry *dir, struct qstr *name)
3033 {
3034 	struct dentry * dentry;
3035 	ino_t ino = 0;
3036 
3037 	dentry = d_hash_and_lookup(dir, name);
3038 	if (dentry) {
3039 		if (dentry->d_inode)
3040 			ino = dentry->d_inode->i_ino;
3041 		dput(dentry);
3042 	}
3043 	return ino;
3044 }
3045 EXPORT_SYMBOL(find_inode_number);
3046 
3047 static __initdata unsigned long dhash_entries;
3048 static int __init set_dhash_entries(char *str)
3049 {
3050 	if (!str)
3051 		return 0;
3052 	dhash_entries = simple_strtoul(str, &str, 0);
3053 	return 1;
3054 }
3055 __setup("dhash_entries=", set_dhash_entries);
3056 
3057 static void __init dcache_init_early(void)
3058 {
3059 	unsigned int loop;
3060 
3061 	/* If hashes are distributed across NUMA nodes, defer
3062 	 * hash allocation until vmalloc space is available.
3063 	 */
3064 	if (hashdist)
3065 		return;
3066 
3067 	dentry_hashtable =
3068 		alloc_large_system_hash("Dentry cache",
3069 					sizeof(struct hlist_bl_head),
3070 					dhash_entries,
3071 					13,
3072 					HASH_EARLY,
3073 					&d_hash_shift,
3074 					&d_hash_mask,
3075 					0,
3076 					0);
3077 
3078 	for (loop = 0; loop < (1U << d_hash_shift); loop++)
3079 		INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
3080 }
3081 
3082 static void __init dcache_init(void)
3083 {
3084 	unsigned int loop;
3085 
3086 	/*
3087 	 * A constructor could be added for stable state like the lists,
3088 	 * but it is probably not worth it because of the cache nature
3089 	 * of the dcache.
3090 	 */
3091 	dentry_cache = KMEM_CACHE(dentry,
3092 		SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD);
3093 
3094 	/* Hash may have been set up in dcache_init_early */
3095 	if (!hashdist)
3096 		return;
3097 
3098 	dentry_hashtable =
3099 		alloc_large_system_hash("Dentry cache",
3100 					sizeof(struct hlist_bl_head),
3101 					dhash_entries,
3102 					13,
3103 					0,
3104 					&d_hash_shift,
3105 					&d_hash_mask,
3106 					0,
3107 					0);
3108 
3109 	for (loop = 0; loop < (1U << d_hash_shift); loop++)
3110 		INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
3111 }
3112 
3113 /* SLAB cache for __getname() consumers */
3114 struct kmem_cache *names_cachep __read_mostly;
3115 EXPORT_SYMBOL(names_cachep);
3116 
3117 EXPORT_SYMBOL(d_genocide);
3118 
3119 void __init vfs_caches_init_early(void)
3120 {
3121 	dcache_init_early();
3122 	inode_init_early();
3123 }
3124 
3125 void __init vfs_caches_init(unsigned long mempages)
3126 {
3127 	unsigned long reserve;
3128 
3129 	/* Base hash sizes on available memory, with a reserve equal to
3130            150% of current kernel size */
3131 
3132 	reserve = min((mempages - nr_free_pages()) * 3/2, mempages - 1);
3133 	mempages -= reserve;
3134 
3135 	names_cachep = kmem_cache_create("names_cache", PATH_MAX, 0,
3136 			SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
3137 
3138 	dcache_init();
3139 	inode_init();
3140 	files_init(mempages);
3141 	mnt_init();
3142 	bdev_cache_init();
3143 	chrdev_init();
3144 }
3145