xref: /openbmc/linux/fs/dcache.c (revision ca79522c)
1 /*
2  * fs/dcache.c
3  *
4  * Complete reimplementation
5  * (C) 1997 Thomas Schoebel-Theuer,
6  * with heavy changes by Linus Torvalds
7  */
8 
9 /*
10  * Notes on the allocation strategy:
11  *
12  * The dcache is a master of the icache - whenever a dcache entry
13  * exists, the inode will always exist. "iput()" is done either when
14  * the dcache entry is deleted or garbage collected.
15  */
16 
17 #include <linux/syscalls.h>
18 #include <linux/string.h>
19 #include <linux/mm.h>
20 #include <linux/fs.h>
21 #include <linux/fsnotify.h>
22 #include <linux/slab.h>
23 #include <linux/init.h>
24 #include <linux/hash.h>
25 #include <linux/cache.h>
26 #include <linux/export.h>
27 #include <linux/mount.h>
28 #include <linux/file.h>
29 #include <asm/uaccess.h>
30 #include <linux/security.h>
31 #include <linux/seqlock.h>
32 #include <linux/swap.h>
33 #include <linux/bootmem.h>
34 #include <linux/fs_struct.h>
35 #include <linux/hardirq.h>
36 #include <linux/bit_spinlock.h>
37 #include <linux/rculist_bl.h>
38 #include <linux/prefetch.h>
39 #include <linux/ratelimit.h>
40 #include "internal.h"
41 #include "mount.h"
42 
43 /*
44  * Usage:
45  * dcache->d_inode->i_lock protects:
46  *   - i_dentry, d_alias, d_inode of aliases
47  * dcache_hash_bucket lock protects:
48  *   - the dcache hash table
49  * s_anon bl list spinlock protects:
50  *   - the s_anon list (see __d_drop)
51  * dcache_lru_lock protects:
52  *   - the dcache lru lists and counters
53  * d_lock protects:
54  *   - d_flags
55  *   - d_name
56  *   - d_lru
57  *   - d_count
58  *   - d_unhashed()
59  *   - d_parent and d_subdirs
60  *   - childrens' d_child and d_parent
61  *   - d_alias, d_inode
62  *
63  * Ordering:
64  * dentry->d_inode->i_lock
65  *   dentry->d_lock
66  *     dcache_lru_lock
67  *     dcache_hash_bucket lock
68  *     s_anon lock
69  *
70  * If there is an ancestor relationship:
71  * dentry->d_parent->...->d_parent->d_lock
72  *   ...
73  *     dentry->d_parent->d_lock
74  *       dentry->d_lock
75  *
76  * If no ancestor relationship:
77  * if (dentry1 < dentry2)
78  *   dentry1->d_lock
79  *     dentry2->d_lock
80  */
81 int sysctl_vfs_cache_pressure __read_mostly = 100;
82 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
83 
84 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(dcache_lru_lock);
85 __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
86 
87 EXPORT_SYMBOL(rename_lock);
88 
89 static struct kmem_cache *dentry_cache __read_mostly;
90 
91 /*
92  * This is the single most critical data structure when it comes
93  * to the dcache: the hashtable for lookups. Somebody should try
94  * to make this good - I've just made it work.
95  *
96  * This hash-function tries to avoid losing too many bits of hash
97  * information, yet avoid using a prime hash-size or similar.
98  */
99 #define D_HASHBITS     d_hash_shift
100 #define D_HASHMASK     d_hash_mask
101 
102 static unsigned int d_hash_mask __read_mostly;
103 static unsigned int d_hash_shift __read_mostly;
104 
105 static struct hlist_bl_head *dentry_hashtable __read_mostly;
106 
107 static inline struct hlist_bl_head *d_hash(const struct dentry *parent,
108 					unsigned int hash)
109 {
110 	hash += (unsigned long) parent / L1_CACHE_BYTES;
111 	hash = hash + (hash >> D_HASHBITS);
112 	return dentry_hashtable + (hash & D_HASHMASK);
113 }
114 
115 /* Statistics gathering. */
116 struct dentry_stat_t dentry_stat = {
117 	.age_limit = 45,
118 };
119 
120 static DEFINE_PER_CPU(unsigned int, nr_dentry);
121 
122 #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
123 static int get_nr_dentry(void)
124 {
125 	int i;
126 	int sum = 0;
127 	for_each_possible_cpu(i)
128 		sum += per_cpu(nr_dentry, i);
129 	return sum < 0 ? 0 : sum;
130 }
131 
132 int proc_nr_dentry(ctl_table *table, int write, void __user *buffer,
133 		   size_t *lenp, loff_t *ppos)
134 {
135 	dentry_stat.nr_dentry = get_nr_dentry();
136 	return proc_dointvec(table, write, buffer, lenp, ppos);
137 }
138 #endif
139 
140 /*
141  * Compare 2 name strings, return 0 if they match, otherwise non-zero.
142  * The strings are both count bytes long, and count is non-zero.
143  */
144 #ifdef CONFIG_DCACHE_WORD_ACCESS
145 
146 #include <asm/word-at-a-time.h>
147 /*
148  * NOTE! 'cs' and 'scount' come from a dentry, so it has a
149  * aligned allocation for this particular component. We don't
150  * strictly need the load_unaligned_zeropad() safety, but it
151  * doesn't hurt either.
152  *
153  * In contrast, 'ct' and 'tcount' can be from a pathname, and do
154  * need the careful unaligned handling.
155  */
156 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
157 {
158 	unsigned long a,b,mask;
159 
160 	for (;;) {
161 		a = *(unsigned long *)cs;
162 		b = load_unaligned_zeropad(ct);
163 		if (tcount < sizeof(unsigned long))
164 			break;
165 		if (unlikely(a != b))
166 			return 1;
167 		cs += sizeof(unsigned long);
168 		ct += sizeof(unsigned long);
169 		tcount -= sizeof(unsigned long);
170 		if (!tcount)
171 			return 0;
172 	}
173 	mask = ~(~0ul << tcount*8);
174 	return unlikely(!!((a ^ b) & mask));
175 }
176 
177 #else
178 
179 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
180 {
181 	do {
182 		if (*cs != *ct)
183 			return 1;
184 		cs++;
185 		ct++;
186 		tcount--;
187 	} while (tcount);
188 	return 0;
189 }
190 
191 #endif
192 
193 static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount)
194 {
195 	const unsigned char *cs;
196 	/*
197 	 * Be careful about RCU walk racing with rename:
198 	 * use ACCESS_ONCE to fetch the name pointer.
199 	 *
200 	 * NOTE! Even if a rename will mean that the length
201 	 * was not loaded atomically, we don't care. The
202 	 * RCU walk will check the sequence count eventually,
203 	 * and catch it. And we won't overrun the buffer,
204 	 * because we're reading the name pointer atomically,
205 	 * and a dentry name is guaranteed to be properly
206 	 * terminated with a NUL byte.
207 	 *
208 	 * End result: even if 'len' is wrong, we'll exit
209 	 * early because the data cannot match (there can
210 	 * be no NUL in the ct/tcount data)
211 	 */
212 	cs = ACCESS_ONCE(dentry->d_name.name);
213 	smp_read_barrier_depends();
214 	return dentry_string_cmp(cs, ct, tcount);
215 }
216 
217 static void __d_free(struct rcu_head *head)
218 {
219 	struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
220 
221 	WARN_ON(!hlist_unhashed(&dentry->d_alias));
222 	if (dname_external(dentry))
223 		kfree(dentry->d_name.name);
224 	kmem_cache_free(dentry_cache, dentry);
225 }
226 
227 /*
228  * no locks, please.
229  */
230 static void d_free(struct dentry *dentry)
231 {
232 	BUG_ON(dentry->d_count);
233 	this_cpu_dec(nr_dentry);
234 	if (dentry->d_op && dentry->d_op->d_release)
235 		dentry->d_op->d_release(dentry);
236 
237 	/* if dentry was never visible to RCU, immediate free is OK */
238 	if (!(dentry->d_flags & DCACHE_RCUACCESS))
239 		__d_free(&dentry->d_u.d_rcu);
240 	else
241 		call_rcu(&dentry->d_u.d_rcu, __d_free);
242 }
243 
244 /**
245  * dentry_rcuwalk_barrier - invalidate in-progress rcu-walk lookups
246  * @dentry: the target dentry
247  * After this call, in-progress rcu-walk path lookup will fail. This
248  * should be called after unhashing, and after changing d_inode (if
249  * the dentry has not already been unhashed).
250  */
251 static inline void dentry_rcuwalk_barrier(struct dentry *dentry)
252 {
253 	assert_spin_locked(&dentry->d_lock);
254 	/* Go through a barrier */
255 	write_seqcount_barrier(&dentry->d_seq);
256 }
257 
258 /*
259  * Release the dentry's inode, using the filesystem
260  * d_iput() operation if defined. Dentry has no refcount
261  * and is unhashed.
262  */
263 static void dentry_iput(struct dentry * dentry)
264 	__releases(dentry->d_lock)
265 	__releases(dentry->d_inode->i_lock)
266 {
267 	struct inode *inode = dentry->d_inode;
268 	if (inode) {
269 		dentry->d_inode = NULL;
270 		hlist_del_init(&dentry->d_alias);
271 		spin_unlock(&dentry->d_lock);
272 		spin_unlock(&inode->i_lock);
273 		if (!inode->i_nlink)
274 			fsnotify_inoderemove(inode);
275 		if (dentry->d_op && dentry->d_op->d_iput)
276 			dentry->d_op->d_iput(dentry, inode);
277 		else
278 			iput(inode);
279 	} else {
280 		spin_unlock(&dentry->d_lock);
281 	}
282 }
283 
284 /*
285  * Release the dentry's inode, using the filesystem
286  * d_iput() operation if defined. dentry remains in-use.
287  */
288 static void dentry_unlink_inode(struct dentry * dentry)
289 	__releases(dentry->d_lock)
290 	__releases(dentry->d_inode->i_lock)
291 {
292 	struct inode *inode = dentry->d_inode;
293 	dentry->d_inode = NULL;
294 	hlist_del_init(&dentry->d_alias);
295 	dentry_rcuwalk_barrier(dentry);
296 	spin_unlock(&dentry->d_lock);
297 	spin_unlock(&inode->i_lock);
298 	if (!inode->i_nlink)
299 		fsnotify_inoderemove(inode);
300 	if (dentry->d_op && dentry->d_op->d_iput)
301 		dentry->d_op->d_iput(dentry, inode);
302 	else
303 		iput(inode);
304 }
305 
306 /*
307  * dentry_lru_(add|del|prune|move_tail) must be called with d_lock held.
308  */
309 static void dentry_lru_add(struct dentry *dentry)
310 {
311 	if (list_empty(&dentry->d_lru)) {
312 		spin_lock(&dcache_lru_lock);
313 		list_add(&dentry->d_lru, &dentry->d_sb->s_dentry_lru);
314 		dentry->d_sb->s_nr_dentry_unused++;
315 		dentry_stat.nr_unused++;
316 		spin_unlock(&dcache_lru_lock);
317 	}
318 }
319 
320 static void __dentry_lru_del(struct dentry *dentry)
321 {
322 	list_del_init(&dentry->d_lru);
323 	dentry->d_flags &= ~DCACHE_SHRINK_LIST;
324 	dentry->d_sb->s_nr_dentry_unused--;
325 	dentry_stat.nr_unused--;
326 }
327 
328 /*
329  * Remove a dentry with references from the LRU.
330  */
331 static void dentry_lru_del(struct dentry *dentry)
332 {
333 	if (!list_empty(&dentry->d_lru)) {
334 		spin_lock(&dcache_lru_lock);
335 		__dentry_lru_del(dentry);
336 		spin_unlock(&dcache_lru_lock);
337 	}
338 }
339 
340 static void dentry_lru_move_list(struct dentry *dentry, struct list_head *list)
341 {
342 	spin_lock(&dcache_lru_lock);
343 	if (list_empty(&dentry->d_lru)) {
344 		list_add_tail(&dentry->d_lru, list);
345 		dentry->d_sb->s_nr_dentry_unused++;
346 		dentry_stat.nr_unused++;
347 	} else {
348 		list_move_tail(&dentry->d_lru, list);
349 	}
350 	spin_unlock(&dcache_lru_lock);
351 }
352 
353 /**
354  * d_kill - kill dentry and return parent
355  * @dentry: dentry to kill
356  * @parent: parent dentry
357  *
358  * The dentry must already be unhashed and removed from the LRU.
359  *
360  * If this is the root of the dentry tree, return NULL.
361  *
362  * dentry->d_lock and parent->d_lock must be held by caller, and are dropped by
363  * d_kill.
364  */
365 static struct dentry *d_kill(struct dentry *dentry, struct dentry *parent)
366 	__releases(dentry->d_lock)
367 	__releases(parent->d_lock)
368 	__releases(dentry->d_inode->i_lock)
369 {
370 	list_del(&dentry->d_u.d_child);
371 	/*
372 	 * Inform try_to_ascend() that we are no longer attached to the
373 	 * dentry tree
374 	 */
375 	dentry->d_flags |= DCACHE_DENTRY_KILLED;
376 	if (parent)
377 		spin_unlock(&parent->d_lock);
378 	dentry_iput(dentry);
379 	/*
380 	 * dentry_iput drops the locks, at which point nobody (except
381 	 * transient RCU lookups) can reach this dentry.
382 	 */
383 	d_free(dentry);
384 	return parent;
385 }
386 
387 /*
388  * Unhash a dentry without inserting an RCU walk barrier or checking that
389  * dentry->d_lock is locked.  The caller must take care of that, if
390  * appropriate.
391  */
392 static void __d_shrink(struct dentry *dentry)
393 {
394 	if (!d_unhashed(dentry)) {
395 		struct hlist_bl_head *b;
396 		if (unlikely(dentry->d_flags & DCACHE_DISCONNECTED))
397 			b = &dentry->d_sb->s_anon;
398 		else
399 			b = d_hash(dentry->d_parent, dentry->d_name.hash);
400 
401 		hlist_bl_lock(b);
402 		__hlist_bl_del(&dentry->d_hash);
403 		dentry->d_hash.pprev = NULL;
404 		hlist_bl_unlock(b);
405 	}
406 }
407 
408 /**
409  * d_drop - drop a dentry
410  * @dentry: dentry to drop
411  *
412  * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
413  * be found through a VFS lookup any more. Note that this is different from
414  * deleting the dentry - d_delete will try to mark the dentry negative if
415  * possible, giving a successful _negative_ lookup, while d_drop will
416  * just make the cache lookup fail.
417  *
418  * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
419  * reason (NFS timeouts or autofs deletes).
420  *
421  * __d_drop requires dentry->d_lock.
422  */
423 void __d_drop(struct dentry *dentry)
424 {
425 	if (!d_unhashed(dentry)) {
426 		__d_shrink(dentry);
427 		dentry_rcuwalk_barrier(dentry);
428 	}
429 }
430 EXPORT_SYMBOL(__d_drop);
431 
432 void d_drop(struct dentry *dentry)
433 {
434 	spin_lock(&dentry->d_lock);
435 	__d_drop(dentry);
436 	spin_unlock(&dentry->d_lock);
437 }
438 EXPORT_SYMBOL(d_drop);
439 
440 /*
441  * Finish off a dentry we've decided to kill.
442  * dentry->d_lock must be held, returns with it unlocked.
443  * If ref is non-zero, then decrement the refcount too.
444  * Returns dentry requiring refcount drop, or NULL if we're done.
445  */
446 static inline struct dentry *dentry_kill(struct dentry *dentry, int ref)
447 	__releases(dentry->d_lock)
448 {
449 	struct inode *inode;
450 	struct dentry *parent;
451 
452 	inode = dentry->d_inode;
453 	if (inode && !spin_trylock(&inode->i_lock)) {
454 relock:
455 		spin_unlock(&dentry->d_lock);
456 		cpu_relax();
457 		return dentry; /* try again with same dentry */
458 	}
459 	if (IS_ROOT(dentry))
460 		parent = NULL;
461 	else
462 		parent = dentry->d_parent;
463 	if (parent && !spin_trylock(&parent->d_lock)) {
464 		if (inode)
465 			spin_unlock(&inode->i_lock);
466 		goto relock;
467 	}
468 
469 	if (ref)
470 		dentry->d_count--;
471 	/*
472 	 * inform the fs via d_prune that this dentry is about to be
473 	 * unhashed and destroyed.
474 	 */
475 	if (dentry->d_flags & DCACHE_OP_PRUNE)
476 		dentry->d_op->d_prune(dentry);
477 
478 	dentry_lru_del(dentry);
479 	/* if it was on the hash then remove it */
480 	__d_drop(dentry);
481 	return d_kill(dentry, parent);
482 }
483 
484 /*
485  * This is dput
486  *
487  * This is complicated by the fact that we do not want to put
488  * dentries that are no longer on any hash chain on the unused
489  * list: we'd much rather just get rid of them immediately.
490  *
491  * However, that implies that we have to traverse the dentry
492  * tree upwards to the parents which might _also_ now be
493  * scheduled for deletion (it may have been only waiting for
494  * its last child to go away).
495  *
496  * This tail recursion is done by hand as we don't want to depend
497  * on the compiler to always get this right (gcc generally doesn't).
498  * Real recursion would eat up our stack space.
499  */
500 
501 /*
502  * dput - release a dentry
503  * @dentry: dentry to release
504  *
505  * Release a dentry. This will drop the usage count and if appropriate
506  * call the dentry unlink method as well as removing it from the queues and
507  * releasing its resources. If the parent dentries were scheduled for release
508  * they too may now get deleted.
509  */
510 void dput(struct dentry *dentry)
511 {
512 	if (!dentry)
513 		return;
514 
515 repeat:
516 	if (dentry->d_count == 1)
517 		might_sleep();
518 	spin_lock(&dentry->d_lock);
519 	BUG_ON(!dentry->d_count);
520 	if (dentry->d_count > 1) {
521 		dentry->d_count--;
522 		spin_unlock(&dentry->d_lock);
523 		return;
524 	}
525 
526 	if (dentry->d_flags & DCACHE_OP_DELETE) {
527 		if (dentry->d_op->d_delete(dentry))
528 			goto kill_it;
529 	}
530 
531 	/* Unreachable? Get rid of it */
532  	if (d_unhashed(dentry))
533 		goto kill_it;
534 
535 	dentry->d_flags |= DCACHE_REFERENCED;
536 	dentry_lru_add(dentry);
537 
538 	dentry->d_count--;
539 	spin_unlock(&dentry->d_lock);
540 	return;
541 
542 kill_it:
543 	dentry = dentry_kill(dentry, 1);
544 	if (dentry)
545 		goto repeat;
546 }
547 EXPORT_SYMBOL(dput);
548 
549 /**
550  * d_invalidate - invalidate a dentry
551  * @dentry: dentry to invalidate
552  *
553  * Try to invalidate the dentry if it turns out to be
554  * possible. If there are other dentries that can be
555  * reached through this one we can't delete it and we
556  * return -EBUSY. On success we return 0.
557  *
558  * no dcache lock.
559  */
560 
561 int d_invalidate(struct dentry * dentry)
562 {
563 	/*
564 	 * If it's already been dropped, return OK.
565 	 */
566 	spin_lock(&dentry->d_lock);
567 	if (d_unhashed(dentry)) {
568 		spin_unlock(&dentry->d_lock);
569 		return 0;
570 	}
571 	/*
572 	 * Check whether to do a partial shrink_dcache
573 	 * to get rid of unused child entries.
574 	 */
575 	if (!list_empty(&dentry->d_subdirs)) {
576 		spin_unlock(&dentry->d_lock);
577 		shrink_dcache_parent(dentry);
578 		spin_lock(&dentry->d_lock);
579 	}
580 
581 	/*
582 	 * Somebody else still using it?
583 	 *
584 	 * If it's a directory, we can't drop it
585 	 * for fear of somebody re-populating it
586 	 * with children (even though dropping it
587 	 * would make it unreachable from the root,
588 	 * we might still populate it if it was a
589 	 * working directory or similar).
590 	 * We also need to leave mountpoints alone,
591 	 * directory or not.
592 	 */
593 	if (dentry->d_count > 1 && dentry->d_inode) {
594 		if (S_ISDIR(dentry->d_inode->i_mode) || d_mountpoint(dentry)) {
595 			spin_unlock(&dentry->d_lock);
596 			return -EBUSY;
597 		}
598 	}
599 
600 	__d_drop(dentry);
601 	spin_unlock(&dentry->d_lock);
602 	return 0;
603 }
604 EXPORT_SYMBOL(d_invalidate);
605 
606 /* This must be called with d_lock held */
607 static inline void __dget_dlock(struct dentry *dentry)
608 {
609 	dentry->d_count++;
610 }
611 
612 static inline void __dget(struct dentry *dentry)
613 {
614 	spin_lock(&dentry->d_lock);
615 	__dget_dlock(dentry);
616 	spin_unlock(&dentry->d_lock);
617 }
618 
619 struct dentry *dget_parent(struct dentry *dentry)
620 {
621 	struct dentry *ret;
622 
623 repeat:
624 	/*
625 	 * Don't need rcu_dereference because we re-check it was correct under
626 	 * the lock.
627 	 */
628 	rcu_read_lock();
629 	ret = dentry->d_parent;
630 	spin_lock(&ret->d_lock);
631 	if (unlikely(ret != dentry->d_parent)) {
632 		spin_unlock(&ret->d_lock);
633 		rcu_read_unlock();
634 		goto repeat;
635 	}
636 	rcu_read_unlock();
637 	BUG_ON(!ret->d_count);
638 	ret->d_count++;
639 	spin_unlock(&ret->d_lock);
640 	return ret;
641 }
642 EXPORT_SYMBOL(dget_parent);
643 
644 /**
645  * d_find_alias - grab a hashed alias of inode
646  * @inode: inode in question
647  * @want_discon:  flag, used by d_splice_alias, to request
648  *          that only a DISCONNECTED alias be returned.
649  *
650  * If inode has a hashed alias, or is a directory and has any alias,
651  * acquire the reference to alias and return it. Otherwise return NULL.
652  * Notice that if inode is a directory there can be only one alias and
653  * it can be unhashed only if it has no children, or if it is the root
654  * of a filesystem.
655  *
656  * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
657  * any other hashed alias over that one unless @want_discon is set,
658  * in which case only return an IS_ROOT, DCACHE_DISCONNECTED alias.
659  */
660 static struct dentry *__d_find_alias(struct inode *inode, int want_discon)
661 {
662 	struct dentry *alias, *discon_alias;
663 
664 again:
665 	discon_alias = NULL;
666 	hlist_for_each_entry(alias, &inode->i_dentry, d_alias) {
667 		spin_lock(&alias->d_lock);
668  		if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
669 			if (IS_ROOT(alias) &&
670 			    (alias->d_flags & DCACHE_DISCONNECTED)) {
671 				discon_alias = alias;
672 			} else if (!want_discon) {
673 				__dget_dlock(alias);
674 				spin_unlock(&alias->d_lock);
675 				return alias;
676 			}
677 		}
678 		spin_unlock(&alias->d_lock);
679 	}
680 	if (discon_alias) {
681 		alias = discon_alias;
682 		spin_lock(&alias->d_lock);
683 		if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
684 			if (IS_ROOT(alias) &&
685 			    (alias->d_flags & DCACHE_DISCONNECTED)) {
686 				__dget_dlock(alias);
687 				spin_unlock(&alias->d_lock);
688 				return alias;
689 			}
690 		}
691 		spin_unlock(&alias->d_lock);
692 		goto again;
693 	}
694 	return NULL;
695 }
696 
697 struct dentry *d_find_alias(struct inode *inode)
698 {
699 	struct dentry *de = NULL;
700 
701 	if (!hlist_empty(&inode->i_dentry)) {
702 		spin_lock(&inode->i_lock);
703 		de = __d_find_alias(inode, 0);
704 		spin_unlock(&inode->i_lock);
705 	}
706 	return de;
707 }
708 EXPORT_SYMBOL(d_find_alias);
709 
710 /*
711  *	Try to kill dentries associated with this inode.
712  * WARNING: you must own a reference to inode.
713  */
714 void d_prune_aliases(struct inode *inode)
715 {
716 	struct dentry *dentry;
717 restart:
718 	spin_lock(&inode->i_lock);
719 	hlist_for_each_entry(dentry, &inode->i_dentry, d_alias) {
720 		spin_lock(&dentry->d_lock);
721 		if (!dentry->d_count) {
722 			__dget_dlock(dentry);
723 			__d_drop(dentry);
724 			spin_unlock(&dentry->d_lock);
725 			spin_unlock(&inode->i_lock);
726 			dput(dentry);
727 			goto restart;
728 		}
729 		spin_unlock(&dentry->d_lock);
730 	}
731 	spin_unlock(&inode->i_lock);
732 }
733 EXPORT_SYMBOL(d_prune_aliases);
734 
735 /*
736  * Try to throw away a dentry - free the inode, dput the parent.
737  * Requires dentry->d_lock is held, and dentry->d_count == 0.
738  * Releases dentry->d_lock.
739  *
740  * This may fail if locks cannot be acquired no problem, just try again.
741  */
742 static void try_prune_one_dentry(struct dentry *dentry)
743 	__releases(dentry->d_lock)
744 {
745 	struct dentry *parent;
746 
747 	parent = dentry_kill(dentry, 0);
748 	/*
749 	 * If dentry_kill returns NULL, we have nothing more to do.
750 	 * if it returns the same dentry, trylocks failed. In either
751 	 * case, just loop again.
752 	 *
753 	 * Otherwise, we need to prune ancestors too. This is necessary
754 	 * to prevent quadratic behavior of shrink_dcache_parent(), but
755 	 * is also expected to be beneficial in reducing dentry cache
756 	 * fragmentation.
757 	 */
758 	if (!parent)
759 		return;
760 	if (parent == dentry)
761 		return;
762 
763 	/* Prune ancestors. */
764 	dentry = parent;
765 	while (dentry) {
766 		spin_lock(&dentry->d_lock);
767 		if (dentry->d_count > 1) {
768 			dentry->d_count--;
769 			spin_unlock(&dentry->d_lock);
770 			return;
771 		}
772 		dentry = dentry_kill(dentry, 1);
773 	}
774 }
775 
776 static void shrink_dentry_list(struct list_head *list)
777 {
778 	struct dentry *dentry;
779 
780 	rcu_read_lock();
781 	for (;;) {
782 		dentry = list_entry_rcu(list->prev, struct dentry, d_lru);
783 		if (&dentry->d_lru == list)
784 			break; /* empty */
785 		spin_lock(&dentry->d_lock);
786 		if (dentry != list_entry(list->prev, struct dentry, d_lru)) {
787 			spin_unlock(&dentry->d_lock);
788 			continue;
789 		}
790 
791 		/*
792 		 * We found an inuse dentry which was not removed from
793 		 * the LRU because of laziness during lookup.  Do not free
794 		 * it - just keep it off the LRU list.
795 		 */
796 		if (dentry->d_count) {
797 			dentry_lru_del(dentry);
798 			spin_unlock(&dentry->d_lock);
799 			continue;
800 		}
801 
802 		rcu_read_unlock();
803 
804 		try_prune_one_dentry(dentry);
805 
806 		rcu_read_lock();
807 	}
808 	rcu_read_unlock();
809 }
810 
811 /**
812  * prune_dcache_sb - shrink the dcache
813  * @sb: superblock
814  * @count: number of entries to try to free
815  *
816  * Attempt to shrink the superblock dcache LRU by @count entries. This is
817  * done when we need more memory an called from the superblock shrinker
818  * function.
819  *
820  * This function may fail to free any resources if all the dentries are in
821  * use.
822  */
823 void prune_dcache_sb(struct super_block *sb, int count)
824 {
825 	struct dentry *dentry;
826 	LIST_HEAD(referenced);
827 	LIST_HEAD(tmp);
828 
829 relock:
830 	spin_lock(&dcache_lru_lock);
831 	while (!list_empty(&sb->s_dentry_lru)) {
832 		dentry = list_entry(sb->s_dentry_lru.prev,
833 				struct dentry, d_lru);
834 		BUG_ON(dentry->d_sb != sb);
835 
836 		if (!spin_trylock(&dentry->d_lock)) {
837 			spin_unlock(&dcache_lru_lock);
838 			cpu_relax();
839 			goto relock;
840 		}
841 
842 		if (dentry->d_flags & DCACHE_REFERENCED) {
843 			dentry->d_flags &= ~DCACHE_REFERENCED;
844 			list_move(&dentry->d_lru, &referenced);
845 			spin_unlock(&dentry->d_lock);
846 		} else {
847 			list_move_tail(&dentry->d_lru, &tmp);
848 			dentry->d_flags |= DCACHE_SHRINK_LIST;
849 			spin_unlock(&dentry->d_lock);
850 			if (!--count)
851 				break;
852 		}
853 		cond_resched_lock(&dcache_lru_lock);
854 	}
855 	if (!list_empty(&referenced))
856 		list_splice(&referenced, &sb->s_dentry_lru);
857 	spin_unlock(&dcache_lru_lock);
858 
859 	shrink_dentry_list(&tmp);
860 }
861 
862 /**
863  * shrink_dcache_sb - shrink dcache for a superblock
864  * @sb: superblock
865  *
866  * Shrink the dcache for the specified super block. This is used to free
867  * the dcache before unmounting a file system.
868  */
869 void shrink_dcache_sb(struct super_block *sb)
870 {
871 	LIST_HEAD(tmp);
872 
873 	spin_lock(&dcache_lru_lock);
874 	while (!list_empty(&sb->s_dentry_lru)) {
875 		list_splice_init(&sb->s_dentry_lru, &tmp);
876 		spin_unlock(&dcache_lru_lock);
877 		shrink_dentry_list(&tmp);
878 		spin_lock(&dcache_lru_lock);
879 	}
880 	spin_unlock(&dcache_lru_lock);
881 }
882 EXPORT_SYMBOL(shrink_dcache_sb);
883 
884 /*
885  * destroy a single subtree of dentries for unmount
886  * - see the comments on shrink_dcache_for_umount() for a description of the
887  *   locking
888  */
889 static void shrink_dcache_for_umount_subtree(struct dentry *dentry)
890 {
891 	struct dentry *parent;
892 
893 	BUG_ON(!IS_ROOT(dentry));
894 
895 	for (;;) {
896 		/* descend to the first leaf in the current subtree */
897 		while (!list_empty(&dentry->d_subdirs))
898 			dentry = list_entry(dentry->d_subdirs.next,
899 					    struct dentry, d_u.d_child);
900 
901 		/* consume the dentries from this leaf up through its parents
902 		 * until we find one with children or run out altogether */
903 		do {
904 			struct inode *inode;
905 
906 			/*
907 			 * inform the fs that this dentry is about to be
908 			 * unhashed and destroyed.
909 			 */
910 			if (dentry->d_flags & DCACHE_OP_PRUNE)
911 				dentry->d_op->d_prune(dentry);
912 
913 			dentry_lru_del(dentry);
914 			__d_shrink(dentry);
915 
916 			if (dentry->d_count != 0) {
917 				printk(KERN_ERR
918 				       "BUG: Dentry %p{i=%lx,n=%s}"
919 				       " still in use (%d)"
920 				       " [unmount of %s %s]\n",
921 				       dentry,
922 				       dentry->d_inode ?
923 				       dentry->d_inode->i_ino : 0UL,
924 				       dentry->d_name.name,
925 				       dentry->d_count,
926 				       dentry->d_sb->s_type->name,
927 				       dentry->d_sb->s_id);
928 				BUG();
929 			}
930 
931 			if (IS_ROOT(dentry)) {
932 				parent = NULL;
933 				list_del(&dentry->d_u.d_child);
934 			} else {
935 				parent = dentry->d_parent;
936 				parent->d_count--;
937 				list_del(&dentry->d_u.d_child);
938 			}
939 
940 			inode = dentry->d_inode;
941 			if (inode) {
942 				dentry->d_inode = NULL;
943 				hlist_del_init(&dentry->d_alias);
944 				if (dentry->d_op && dentry->d_op->d_iput)
945 					dentry->d_op->d_iput(dentry, inode);
946 				else
947 					iput(inode);
948 			}
949 
950 			d_free(dentry);
951 
952 			/* finished when we fall off the top of the tree,
953 			 * otherwise we ascend to the parent and move to the
954 			 * next sibling if there is one */
955 			if (!parent)
956 				return;
957 			dentry = parent;
958 		} while (list_empty(&dentry->d_subdirs));
959 
960 		dentry = list_entry(dentry->d_subdirs.next,
961 				    struct dentry, d_u.d_child);
962 	}
963 }
964 
965 /*
966  * destroy the dentries attached to a superblock on unmounting
967  * - we don't need to use dentry->d_lock because:
968  *   - the superblock is detached from all mountings and open files, so the
969  *     dentry trees will not be rearranged by the VFS
970  *   - s_umount is write-locked, so the memory pressure shrinker will ignore
971  *     any dentries belonging to this superblock that it comes across
972  *   - the filesystem itself is no longer permitted to rearrange the dentries
973  *     in this superblock
974  */
975 void shrink_dcache_for_umount(struct super_block *sb)
976 {
977 	struct dentry *dentry;
978 
979 	if (down_read_trylock(&sb->s_umount))
980 		BUG();
981 
982 	dentry = sb->s_root;
983 	sb->s_root = NULL;
984 	dentry->d_count--;
985 	shrink_dcache_for_umount_subtree(dentry);
986 
987 	while (!hlist_bl_empty(&sb->s_anon)) {
988 		dentry = hlist_bl_entry(hlist_bl_first(&sb->s_anon), struct dentry, d_hash);
989 		shrink_dcache_for_umount_subtree(dentry);
990 	}
991 }
992 
993 /*
994  * This tries to ascend one level of parenthood, but
995  * we can race with renaming, so we need to re-check
996  * the parenthood after dropping the lock and check
997  * that the sequence number still matches.
998  */
999 static struct dentry *try_to_ascend(struct dentry *old, int locked, unsigned seq)
1000 {
1001 	struct dentry *new = old->d_parent;
1002 
1003 	rcu_read_lock();
1004 	spin_unlock(&old->d_lock);
1005 	spin_lock(&new->d_lock);
1006 
1007 	/*
1008 	 * might go back up the wrong parent if we have had a rename
1009 	 * or deletion
1010 	 */
1011 	if (new != old->d_parent ||
1012 		 (old->d_flags & DCACHE_DENTRY_KILLED) ||
1013 		 (!locked && read_seqretry(&rename_lock, seq))) {
1014 		spin_unlock(&new->d_lock);
1015 		new = NULL;
1016 	}
1017 	rcu_read_unlock();
1018 	return new;
1019 }
1020 
1021 
1022 /*
1023  * Search for at least 1 mount point in the dentry's subdirs.
1024  * We descend to the next level whenever the d_subdirs
1025  * list is non-empty and continue searching.
1026  */
1027 
1028 /**
1029  * have_submounts - check for mounts over a dentry
1030  * @parent: dentry to check.
1031  *
1032  * Return true if the parent or its subdirectories contain
1033  * a mount point
1034  */
1035 int have_submounts(struct dentry *parent)
1036 {
1037 	struct dentry *this_parent;
1038 	struct list_head *next;
1039 	unsigned seq;
1040 	int locked = 0;
1041 
1042 	seq = read_seqbegin(&rename_lock);
1043 again:
1044 	this_parent = parent;
1045 
1046 	if (d_mountpoint(parent))
1047 		goto positive;
1048 	spin_lock(&this_parent->d_lock);
1049 repeat:
1050 	next = this_parent->d_subdirs.next;
1051 resume:
1052 	while (next != &this_parent->d_subdirs) {
1053 		struct list_head *tmp = next;
1054 		struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
1055 		next = tmp->next;
1056 
1057 		spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1058 		/* Have we found a mount point ? */
1059 		if (d_mountpoint(dentry)) {
1060 			spin_unlock(&dentry->d_lock);
1061 			spin_unlock(&this_parent->d_lock);
1062 			goto positive;
1063 		}
1064 		if (!list_empty(&dentry->d_subdirs)) {
1065 			spin_unlock(&this_parent->d_lock);
1066 			spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1067 			this_parent = dentry;
1068 			spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1069 			goto repeat;
1070 		}
1071 		spin_unlock(&dentry->d_lock);
1072 	}
1073 	/*
1074 	 * All done at this level ... ascend and resume the search.
1075 	 */
1076 	if (this_parent != parent) {
1077 		struct dentry *child = this_parent;
1078 		this_parent = try_to_ascend(this_parent, locked, seq);
1079 		if (!this_parent)
1080 			goto rename_retry;
1081 		next = child->d_u.d_child.next;
1082 		goto resume;
1083 	}
1084 	spin_unlock(&this_parent->d_lock);
1085 	if (!locked && read_seqretry(&rename_lock, seq))
1086 		goto rename_retry;
1087 	if (locked)
1088 		write_sequnlock(&rename_lock);
1089 	return 0; /* No mount points found in tree */
1090 positive:
1091 	if (!locked && read_seqretry(&rename_lock, seq))
1092 		goto rename_retry;
1093 	if (locked)
1094 		write_sequnlock(&rename_lock);
1095 	return 1;
1096 
1097 rename_retry:
1098 	if (locked)
1099 		goto again;
1100 	locked = 1;
1101 	write_seqlock(&rename_lock);
1102 	goto again;
1103 }
1104 EXPORT_SYMBOL(have_submounts);
1105 
1106 /*
1107  * Search the dentry child list of the specified parent,
1108  * and move any unused dentries to the end of the unused
1109  * list for prune_dcache(). We descend to the next level
1110  * whenever the d_subdirs list is non-empty and continue
1111  * searching.
1112  *
1113  * It returns zero iff there are no unused children,
1114  * otherwise  it returns the number of children moved to
1115  * the end of the unused list. This may not be the total
1116  * number of unused children, because select_parent can
1117  * drop the lock and return early due to latency
1118  * constraints.
1119  */
1120 static int select_parent(struct dentry *parent, struct list_head *dispose)
1121 {
1122 	struct dentry *this_parent;
1123 	struct list_head *next;
1124 	unsigned seq;
1125 	int found = 0;
1126 	int locked = 0;
1127 
1128 	seq = read_seqbegin(&rename_lock);
1129 again:
1130 	this_parent = parent;
1131 	spin_lock(&this_parent->d_lock);
1132 repeat:
1133 	next = this_parent->d_subdirs.next;
1134 resume:
1135 	while (next != &this_parent->d_subdirs) {
1136 		struct list_head *tmp = next;
1137 		struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
1138 		next = tmp->next;
1139 
1140 		spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1141 
1142 		/*
1143 		 * move only zero ref count dentries to the dispose list.
1144 		 *
1145 		 * Those which are presently on the shrink list, being processed
1146 		 * by shrink_dentry_list(), shouldn't be moved.  Otherwise the
1147 		 * loop in shrink_dcache_parent() might not make any progress
1148 		 * and loop forever.
1149 		 */
1150 		if (dentry->d_count) {
1151 			dentry_lru_del(dentry);
1152 		} else if (!(dentry->d_flags & DCACHE_SHRINK_LIST)) {
1153 			dentry_lru_move_list(dentry, dispose);
1154 			dentry->d_flags |= DCACHE_SHRINK_LIST;
1155 			found++;
1156 		}
1157 		/*
1158 		 * We can return to the caller if we have found some (this
1159 		 * ensures forward progress). We'll be coming back to find
1160 		 * the rest.
1161 		 */
1162 		if (found && need_resched()) {
1163 			spin_unlock(&dentry->d_lock);
1164 			goto out;
1165 		}
1166 
1167 		/*
1168 		 * Descend a level if the d_subdirs list is non-empty.
1169 		 */
1170 		if (!list_empty(&dentry->d_subdirs)) {
1171 			spin_unlock(&this_parent->d_lock);
1172 			spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1173 			this_parent = dentry;
1174 			spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1175 			goto repeat;
1176 		}
1177 
1178 		spin_unlock(&dentry->d_lock);
1179 	}
1180 	/*
1181 	 * All done at this level ... ascend and resume the search.
1182 	 */
1183 	if (this_parent != parent) {
1184 		struct dentry *child = this_parent;
1185 		this_parent = try_to_ascend(this_parent, locked, seq);
1186 		if (!this_parent)
1187 			goto rename_retry;
1188 		next = child->d_u.d_child.next;
1189 		goto resume;
1190 	}
1191 out:
1192 	spin_unlock(&this_parent->d_lock);
1193 	if (!locked && read_seqretry(&rename_lock, seq))
1194 		goto rename_retry;
1195 	if (locked)
1196 		write_sequnlock(&rename_lock);
1197 	return found;
1198 
1199 rename_retry:
1200 	if (found)
1201 		return found;
1202 	if (locked)
1203 		goto again;
1204 	locked = 1;
1205 	write_seqlock(&rename_lock);
1206 	goto again;
1207 }
1208 
1209 /**
1210  * shrink_dcache_parent - prune dcache
1211  * @parent: parent of entries to prune
1212  *
1213  * Prune the dcache to remove unused children of the parent dentry.
1214  */
1215 void shrink_dcache_parent(struct dentry * parent)
1216 {
1217 	LIST_HEAD(dispose);
1218 	int found;
1219 
1220 	while ((found = select_parent(parent, &dispose)) != 0) {
1221 		shrink_dentry_list(&dispose);
1222 		cond_resched();
1223 	}
1224 }
1225 EXPORT_SYMBOL(shrink_dcache_parent);
1226 
1227 /**
1228  * __d_alloc	-	allocate a dcache entry
1229  * @sb: filesystem it will belong to
1230  * @name: qstr of the name
1231  *
1232  * Allocates a dentry. It returns %NULL if there is insufficient memory
1233  * available. On a success the dentry is returned. The name passed in is
1234  * copied and the copy passed in may be reused after this call.
1235  */
1236 
1237 struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name)
1238 {
1239 	struct dentry *dentry;
1240 	char *dname;
1241 
1242 	dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
1243 	if (!dentry)
1244 		return NULL;
1245 
1246 	/*
1247 	 * We guarantee that the inline name is always NUL-terminated.
1248 	 * This way the memcpy() done by the name switching in rename
1249 	 * will still always have a NUL at the end, even if we might
1250 	 * be overwriting an internal NUL character
1251 	 */
1252 	dentry->d_iname[DNAME_INLINE_LEN-1] = 0;
1253 	if (name->len > DNAME_INLINE_LEN-1) {
1254 		dname = kmalloc(name->len + 1, GFP_KERNEL);
1255 		if (!dname) {
1256 			kmem_cache_free(dentry_cache, dentry);
1257 			return NULL;
1258 		}
1259 	} else  {
1260 		dname = dentry->d_iname;
1261 	}
1262 
1263 	dentry->d_name.len = name->len;
1264 	dentry->d_name.hash = name->hash;
1265 	memcpy(dname, name->name, name->len);
1266 	dname[name->len] = 0;
1267 
1268 	/* Make sure we always see the terminating NUL character */
1269 	smp_wmb();
1270 	dentry->d_name.name = dname;
1271 
1272 	dentry->d_count = 1;
1273 	dentry->d_flags = 0;
1274 	spin_lock_init(&dentry->d_lock);
1275 	seqcount_init(&dentry->d_seq);
1276 	dentry->d_inode = NULL;
1277 	dentry->d_parent = dentry;
1278 	dentry->d_sb = sb;
1279 	dentry->d_op = NULL;
1280 	dentry->d_fsdata = NULL;
1281 	INIT_HLIST_BL_NODE(&dentry->d_hash);
1282 	INIT_LIST_HEAD(&dentry->d_lru);
1283 	INIT_LIST_HEAD(&dentry->d_subdirs);
1284 	INIT_HLIST_NODE(&dentry->d_alias);
1285 	INIT_LIST_HEAD(&dentry->d_u.d_child);
1286 	d_set_d_op(dentry, dentry->d_sb->s_d_op);
1287 
1288 	this_cpu_inc(nr_dentry);
1289 
1290 	return dentry;
1291 }
1292 
1293 /**
1294  * d_alloc	-	allocate a dcache entry
1295  * @parent: parent of entry to allocate
1296  * @name: qstr of the name
1297  *
1298  * Allocates a dentry. It returns %NULL if there is insufficient memory
1299  * available. On a success the dentry is returned. The name passed in is
1300  * copied and the copy passed in may be reused after this call.
1301  */
1302 struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1303 {
1304 	struct dentry *dentry = __d_alloc(parent->d_sb, name);
1305 	if (!dentry)
1306 		return NULL;
1307 
1308 	spin_lock(&parent->d_lock);
1309 	/*
1310 	 * don't need child lock because it is not subject
1311 	 * to concurrency here
1312 	 */
1313 	__dget_dlock(parent);
1314 	dentry->d_parent = parent;
1315 	list_add(&dentry->d_u.d_child, &parent->d_subdirs);
1316 	spin_unlock(&parent->d_lock);
1317 
1318 	return dentry;
1319 }
1320 EXPORT_SYMBOL(d_alloc);
1321 
1322 struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
1323 {
1324 	struct dentry *dentry = __d_alloc(sb, name);
1325 	if (dentry)
1326 		dentry->d_flags |= DCACHE_DISCONNECTED;
1327 	return dentry;
1328 }
1329 EXPORT_SYMBOL(d_alloc_pseudo);
1330 
1331 struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1332 {
1333 	struct qstr q;
1334 
1335 	q.name = name;
1336 	q.len = strlen(name);
1337 	q.hash = full_name_hash(q.name, q.len);
1338 	return d_alloc(parent, &q);
1339 }
1340 EXPORT_SYMBOL(d_alloc_name);
1341 
1342 void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1343 {
1344 	WARN_ON_ONCE(dentry->d_op);
1345 	WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH	|
1346 				DCACHE_OP_COMPARE	|
1347 				DCACHE_OP_REVALIDATE	|
1348 				DCACHE_OP_WEAK_REVALIDATE	|
1349 				DCACHE_OP_DELETE ));
1350 	dentry->d_op = op;
1351 	if (!op)
1352 		return;
1353 	if (op->d_hash)
1354 		dentry->d_flags |= DCACHE_OP_HASH;
1355 	if (op->d_compare)
1356 		dentry->d_flags |= DCACHE_OP_COMPARE;
1357 	if (op->d_revalidate)
1358 		dentry->d_flags |= DCACHE_OP_REVALIDATE;
1359 	if (op->d_weak_revalidate)
1360 		dentry->d_flags |= DCACHE_OP_WEAK_REVALIDATE;
1361 	if (op->d_delete)
1362 		dentry->d_flags |= DCACHE_OP_DELETE;
1363 	if (op->d_prune)
1364 		dentry->d_flags |= DCACHE_OP_PRUNE;
1365 
1366 }
1367 EXPORT_SYMBOL(d_set_d_op);
1368 
1369 static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1370 {
1371 	spin_lock(&dentry->d_lock);
1372 	if (inode) {
1373 		if (unlikely(IS_AUTOMOUNT(inode)))
1374 			dentry->d_flags |= DCACHE_NEED_AUTOMOUNT;
1375 		hlist_add_head(&dentry->d_alias, &inode->i_dentry);
1376 	}
1377 	dentry->d_inode = inode;
1378 	dentry_rcuwalk_barrier(dentry);
1379 	spin_unlock(&dentry->d_lock);
1380 	fsnotify_d_instantiate(dentry, inode);
1381 }
1382 
1383 /**
1384  * d_instantiate - fill in inode information for a dentry
1385  * @entry: dentry to complete
1386  * @inode: inode to attach to this dentry
1387  *
1388  * Fill in inode information in the entry.
1389  *
1390  * This turns negative dentries into productive full members
1391  * of society.
1392  *
1393  * NOTE! This assumes that the inode count has been incremented
1394  * (or otherwise set) by the caller to indicate that it is now
1395  * in use by the dcache.
1396  */
1397 
1398 void d_instantiate(struct dentry *entry, struct inode * inode)
1399 {
1400 	BUG_ON(!hlist_unhashed(&entry->d_alias));
1401 	if (inode)
1402 		spin_lock(&inode->i_lock);
1403 	__d_instantiate(entry, inode);
1404 	if (inode)
1405 		spin_unlock(&inode->i_lock);
1406 	security_d_instantiate(entry, inode);
1407 }
1408 EXPORT_SYMBOL(d_instantiate);
1409 
1410 /**
1411  * d_instantiate_unique - instantiate a non-aliased dentry
1412  * @entry: dentry to instantiate
1413  * @inode: inode to attach to this dentry
1414  *
1415  * Fill in inode information in the entry. On success, it returns NULL.
1416  * If an unhashed alias of "entry" already exists, then we return the
1417  * aliased dentry instead and drop one reference to inode.
1418  *
1419  * Note that in order to avoid conflicts with rename() etc, the caller
1420  * had better be holding the parent directory semaphore.
1421  *
1422  * This also assumes that the inode count has been incremented
1423  * (or otherwise set) by the caller to indicate that it is now
1424  * in use by the dcache.
1425  */
1426 static struct dentry *__d_instantiate_unique(struct dentry *entry,
1427 					     struct inode *inode)
1428 {
1429 	struct dentry *alias;
1430 	int len = entry->d_name.len;
1431 	const char *name = entry->d_name.name;
1432 	unsigned int hash = entry->d_name.hash;
1433 
1434 	if (!inode) {
1435 		__d_instantiate(entry, NULL);
1436 		return NULL;
1437 	}
1438 
1439 	hlist_for_each_entry(alias, &inode->i_dentry, d_alias) {
1440 		/*
1441 		 * Don't need alias->d_lock here, because aliases with
1442 		 * d_parent == entry->d_parent are not subject to name or
1443 		 * parent changes, because the parent inode i_mutex is held.
1444 		 */
1445 		if (alias->d_name.hash != hash)
1446 			continue;
1447 		if (alias->d_parent != entry->d_parent)
1448 			continue;
1449 		if (alias->d_name.len != len)
1450 			continue;
1451 		if (dentry_cmp(alias, name, len))
1452 			continue;
1453 		__dget(alias);
1454 		return alias;
1455 	}
1456 
1457 	__d_instantiate(entry, inode);
1458 	return NULL;
1459 }
1460 
1461 struct dentry *d_instantiate_unique(struct dentry *entry, struct inode *inode)
1462 {
1463 	struct dentry *result;
1464 
1465 	BUG_ON(!hlist_unhashed(&entry->d_alias));
1466 
1467 	if (inode)
1468 		spin_lock(&inode->i_lock);
1469 	result = __d_instantiate_unique(entry, inode);
1470 	if (inode)
1471 		spin_unlock(&inode->i_lock);
1472 
1473 	if (!result) {
1474 		security_d_instantiate(entry, inode);
1475 		return NULL;
1476 	}
1477 
1478 	BUG_ON(!d_unhashed(result));
1479 	iput(inode);
1480 	return result;
1481 }
1482 
1483 EXPORT_SYMBOL(d_instantiate_unique);
1484 
1485 struct dentry *d_make_root(struct inode *root_inode)
1486 {
1487 	struct dentry *res = NULL;
1488 
1489 	if (root_inode) {
1490 		static const struct qstr name = QSTR_INIT("/", 1);
1491 
1492 		res = __d_alloc(root_inode->i_sb, &name);
1493 		if (res)
1494 			d_instantiate(res, root_inode);
1495 		else
1496 			iput(root_inode);
1497 	}
1498 	return res;
1499 }
1500 EXPORT_SYMBOL(d_make_root);
1501 
1502 static struct dentry * __d_find_any_alias(struct inode *inode)
1503 {
1504 	struct dentry *alias;
1505 
1506 	if (hlist_empty(&inode->i_dentry))
1507 		return NULL;
1508 	alias = hlist_entry(inode->i_dentry.first, struct dentry, d_alias);
1509 	__dget(alias);
1510 	return alias;
1511 }
1512 
1513 /**
1514  * d_find_any_alias - find any alias for a given inode
1515  * @inode: inode to find an alias for
1516  *
1517  * If any aliases exist for the given inode, take and return a
1518  * reference for one of them.  If no aliases exist, return %NULL.
1519  */
1520 struct dentry *d_find_any_alias(struct inode *inode)
1521 {
1522 	struct dentry *de;
1523 
1524 	spin_lock(&inode->i_lock);
1525 	de = __d_find_any_alias(inode);
1526 	spin_unlock(&inode->i_lock);
1527 	return de;
1528 }
1529 EXPORT_SYMBOL(d_find_any_alias);
1530 
1531 /**
1532  * d_obtain_alias - find or allocate a dentry for a given inode
1533  * @inode: inode to allocate the dentry for
1534  *
1535  * Obtain a dentry for an inode resulting from NFS filehandle conversion or
1536  * similar open by handle operations.  The returned dentry may be anonymous,
1537  * or may have a full name (if the inode was already in the cache).
1538  *
1539  * When called on a directory inode, we must ensure that the inode only ever
1540  * has one dentry.  If a dentry is found, that is returned instead of
1541  * allocating a new one.
1542  *
1543  * On successful return, the reference to the inode has been transferred
1544  * to the dentry.  In case of an error the reference on the inode is released.
1545  * To make it easier to use in export operations a %NULL or IS_ERR inode may
1546  * be passed in and will be the error will be propagate to the return value,
1547  * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
1548  */
1549 struct dentry *d_obtain_alias(struct inode *inode)
1550 {
1551 	static const struct qstr anonstring = QSTR_INIT("/", 1);
1552 	struct dentry *tmp;
1553 	struct dentry *res;
1554 
1555 	if (!inode)
1556 		return ERR_PTR(-ESTALE);
1557 	if (IS_ERR(inode))
1558 		return ERR_CAST(inode);
1559 
1560 	res = d_find_any_alias(inode);
1561 	if (res)
1562 		goto out_iput;
1563 
1564 	tmp = __d_alloc(inode->i_sb, &anonstring);
1565 	if (!tmp) {
1566 		res = ERR_PTR(-ENOMEM);
1567 		goto out_iput;
1568 	}
1569 
1570 	spin_lock(&inode->i_lock);
1571 	res = __d_find_any_alias(inode);
1572 	if (res) {
1573 		spin_unlock(&inode->i_lock);
1574 		dput(tmp);
1575 		goto out_iput;
1576 	}
1577 
1578 	/* attach a disconnected dentry */
1579 	spin_lock(&tmp->d_lock);
1580 	tmp->d_inode = inode;
1581 	tmp->d_flags |= DCACHE_DISCONNECTED;
1582 	hlist_add_head(&tmp->d_alias, &inode->i_dentry);
1583 	hlist_bl_lock(&tmp->d_sb->s_anon);
1584 	hlist_bl_add_head(&tmp->d_hash, &tmp->d_sb->s_anon);
1585 	hlist_bl_unlock(&tmp->d_sb->s_anon);
1586 	spin_unlock(&tmp->d_lock);
1587 	spin_unlock(&inode->i_lock);
1588 	security_d_instantiate(tmp, inode);
1589 
1590 	return tmp;
1591 
1592  out_iput:
1593 	if (res && !IS_ERR(res))
1594 		security_d_instantiate(res, inode);
1595 	iput(inode);
1596 	return res;
1597 }
1598 EXPORT_SYMBOL(d_obtain_alias);
1599 
1600 /**
1601  * d_splice_alias - splice a disconnected dentry into the tree if one exists
1602  * @inode:  the inode which may have a disconnected dentry
1603  * @dentry: a negative dentry which we want to point to the inode.
1604  *
1605  * If inode is a directory and has a 'disconnected' dentry (i.e. IS_ROOT and
1606  * DCACHE_DISCONNECTED), then d_move that in place of the given dentry
1607  * and return it, else simply d_add the inode to the dentry and return NULL.
1608  *
1609  * This is needed in the lookup routine of any filesystem that is exportable
1610  * (via knfsd) so that we can build dcache paths to directories effectively.
1611  *
1612  * If a dentry was found and moved, then it is returned.  Otherwise NULL
1613  * is returned.  This matches the expected return value of ->lookup.
1614  *
1615  */
1616 struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
1617 {
1618 	struct dentry *new = NULL;
1619 
1620 	if (IS_ERR(inode))
1621 		return ERR_CAST(inode);
1622 
1623 	if (inode && S_ISDIR(inode->i_mode)) {
1624 		spin_lock(&inode->i_lock);
1625 		new = __d_find_alias(inode, 1);
1626 		if (new) {
1627 			BUG_ON(!(new->d_flags & DCACHE_DISCONNECTED));
1628 			spin_unlock(&inode->i_lock);
1629 			security_d_instantiate(new, inode);
1630 			d_move(new, dentry);
1631 			iput(inode);
1632 		} else {
1633 			/* already taking inode->i_lock, so d_add() by hand */
1634 			__d_instantiate(dentry, inode);
1635 			spin_unlock(&inode->i_lock);
1636 			security_d_instantiate(dentry, inode);
1637 			d_rehash(dentry);
1638 		}
1639 	} else
1640 		d_add(dentry, inode);
1641 	return new;
1642 }
1643 EXPORT_SYMBOL(d_splice_alias);
1644 
1645 /**
1646  * d_add_ci - lookup or allocate new dentry with case-exact name
1647  * @inode:  the inode case-insensitive lookup has found
1648  * @dentry: the negative dentry that was passed to the parent's lookup func
1649  * @name:   the case-exact name to be associated with the returned dentry
1650  *
1651  * This is to avoid filling the dcache with case-insensitive names to the
1652  * same inode, only the actual correct case is stored in the dcache for
1653  * case-insensitive filesystems.
1654  *
1655  * For a case-insensitive lookup match and if the the case-exact dentry
1656  * already exists in in the dcache, use it and return it.
1657  *
1658  * If no entry exists with the exact case name, allocate new dentry with
1659  * the exact case, and return the spliced entry.
1660  */
1661 struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
1662 			struct qstr *name)
1663 {
1664 	struct dentry *found;
1665 	struct dentry *new;
1666 
1667 	/*
1668 	 * First check if a dentry matching the name already exists,
1669 	 * if not go ahead and create it now.
1670 	 */
1671 	found = d_hash_and_lookup(dentry->d_parent, name);
1672 	if (unlikely(IS_ERR(found)))
1673 		goto err_out;
1674 	if (!found) {
1675 		new = d_alloc(dentry->d_parent, name);
1676 		if (!new) {
1677 			found = ERR_PTR(-ENOMEM);
1678 			goto err_out;
1679 		}
1680 
1681 		found = d_splice_alias(inode, new);
1682 		if (found) {
1683 			dput(new);
1684 			return found;
1685 		}
1686 		return new;
1687 	}
1688 
1689 	/*
1690 	 * If a matching dentry exists, and it's not negative use it.
1691 	 *
1692 	 * Decrement the reference count to balance the iget() done
1693 	 * earlier on.
1694 	 */
1695 	if (found->d_inode) {
1696 		if (unlikely(found->d_inode != inode)) {
1697 			/* This can't happen because bad inodes are unhashed. */
1698 			BUG_ON(!is_bad_inode(inode));
1699 			BUG_ON(!is_bad_inode(found->d_inode));
1700 		}
1701 		iput(inode);
1702 		return found;
1703 	}
1704 
1705 	/*
1706 	 * Negative dentry: instantiate it unless the inode is a directory and
1707 	 * already has a dentry.
1708 	 */
1709 	new = d_splice_alias(inode, found);
1710 	if (new) {
1711 		dput(found);
1712 		found = new;
1713 	}
1714 	return found;
1715 
1716 err_out:
1717 	iput(inode);
1718 	return found;
1719 }
1720 EXPORT_SYMBOL(d_add_ci);
1721 
1722 /*
1723  * Do the slow-case of the dentry name compare.
1724  *
1725  * Unlike the dentry_cmp() function, we need to atomically
1726  * load the name, length and inode information, so that the
1727  * filesystem can rely on them, and can use the 'name' and
1728  * 'len' information without worrying about walking off the
1729  * end of memory etc.
1730  *
1731  * Thus the read_seqcount_retry() and the "duplicate" info
1732  * in arguments (the low-level filesystem should not look
1733  * at the dentry inode or name contents directly, since
1734  * rename can change them while we're in RCU mode).
1735  */
1736 enum slow_d_compare {
1737 	D_COMP_OK,
1738 	D_COMP_NOMATCH,
1739 	D_COMP_SEQRETRY,
1740 };
1741 
1742 static noinline enum slow_d_compare slow_dentry_cmp(
1743 		const struct dentry *parent,
1744 		struct inode *inode,
1745 		struct dentry *dentry,
1746 		unsigned int seq,
1747 		const struct qstr *name)
1748 {
1749 	int tlen = dentry->d_name.len;
1750 	const char *tname = dentry->d_name.name;
1751 	struct inode *i = dentry->d_inode;
1752 
1753 	if (read_seqcount_retry(&dentry->d_seq, seq)) {
1754 		cpu_relax();
1755 		return D_COMP_SEQRETRY;
1756 	}
1757 	if (parent->d_op->d_compare(parent, inode,
1758 				dentry, i,
1759 				tlen, tname, name))
1760 		return D_COMP_NOMATCH;
1761 	return D_COMP_OK;
1762 }
1763 
1764 /**
1765  * __d_lookup_rcu - search for a dentry (racy, store-free)
1766  * @parent: parent dentry
1767  * @name: qstr of name we wish to find
1768  * @seqp: returns d_seq value at the point where the dentry was found
1769  * @inode: returns dentry->d_inode when the inode was found valid.
1770  * Returns: dentry, or NULL
1771  *
1772  * __d_lookup_rcu is the dcache lookup function for rcu-walk name
1773  * resolution (store-free path walking) design described in
1774  * Documentation/filesystems/path-lookup.txt.
1775  *
1776  * This is not to be used outside core vfs.
1777  *
1778  * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
1779  * held, and rcu_read_lock held. The returned dentry must not be stored into
1780  * without taking d_lock and checking d_seq sequence count against @seq
1781  * returned here.
1782  *
1783  * A refcount may be taken on the found dentry with the __d_rcu_to_refcount
1784  * function.
1785  *
1786  * Alternatively, __d_lookup_rcu may be called again to look up the child of
1787  * the returned dentry, so long as its parent's seqlock is checked after the
1788  * child is looked up. Thus, an interlocking stepping of sequence lock checks
1789  * is formed, giving integrity down the path walk.
1790  *
1791  * NOTE! The caller *has* to check the resulting dentry against the sequence
1792  * number we've returned before using any of the resulting dentry state!
1793  */
1794 struct dentry *__d_lookup_rcu(const struct dentry *parent,
1795 				const struct qstr *name,
1796 				unsigned *seqp, struct inode *inode)
1797 {
1798 	u64 hashlen = name->hash_len;
1799 	const unsigned char *str = name->name;
1800 	struct hlist_bl_head *b = d_hash(parent, hashlen_hash(hashlen));
1801 	struct hlist_bl_node *node;
1802 	struct dentry *dentry;
1803 
1804 	/*
1805 	 * Note: There is significant duplication with __d_lookup_rcu which is
1806 	 * required to prevent single threaded performance regressions
1807 	 * especially on architectures where smp_rmb (in seqcounts) are costly.
1808 	 * Keep the two functions in sync.
1809 	 */
1810 
1811 	/*
1812 	 * The hash list is protected using RCU.
1813 	 *
1814 	 * Carefully use d_seq when comparing a candidate dentry, to avoid
1815 	 * races with d_move().
1816 	 *
1817 	 * It is possible that concurrent renames can mess up our list
1818 	 * walk here and result in missing our dentry, resulting in the
1819 	 * false-negative result. d_lookup() protects against concurrent
1820 	 * renames using rename_lock seqlock.
1821 	 *
1822 	 * See Documentation/filesystems/path-lookup.txt for more details.
1823 	 */
1824 	hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
1825 		unsigned seq;
1826 
1827 seqretry:
1828 		/*
1829 		 * The dentry sequence count protects us from concurrent
1830 		 * renames, and thus protects inode, parent and name fields.
1831 		 *
1832 		 * The caller must perform a seqcount check in order
1833 		 * to do anything useful with the returned dentry,
1834 		 * including using the 'd_inode' pointer.
1835 		 *
1836 		 * NOTE! We do a "raw" seqcount_begin here. That means that
1837 		 * we don't wait for the sequence count to stabilize if it
1838 		 * is in the middle of a sequence change. If we do the slow
1839 		 * dentry compare, we will do seqretries until it is stable,
1840 		 * and if we end up with a successful lookup, we actually
1841 		 * want to exit RCU lookup anyway.
1842 		 */
1843 		seq = raw_seqcount_begin(&dentry->d_seq);
1844 		if (dentry->d_parent != parent)
1845 			continue;
1846 		if (d_unhashed(dentry))
1847 			continue;
1848 		*seqp = seq;
1849 
1850 		if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) {
1851 			if (dentry->d_name.hash != hashlen_hash(hashlen))
1852 				continue;
1853 			switch (slow_dentry_cmp(parent, inode, dentry, seq, name)) {
1854 			case D_COMP_OK:
1855 				return dentry;
1856 			case D_COMP_NOMATCH:
1857 				continue;
1858 			default:
1859 				goto seqretry;
1860 			}
1861 		}
1862 
1863 		if (dentry->d_name.hash_len != hashlen)
1864 			continue;
1865 		if (!dentry_cmp(dentry, str, hashlen_len(hashlen)))
1866 			return dentry;
1867 	}
1868 	return NULL;
1869 }
1870 
1871 /**
1872  * d_lookup - search for a dentry
1873  * @parent: parent dentry
1874  * @name: qstr of name we wish to find
1875  * Returns: dentry, or NULL
1876  *
1877  * d_lookup searches the children of the parent dentry for the name in
1878  * question. If the dentry is found its reference count is incremented and the
1879  * dentry is returned. The caller must use dput to free the entry when it has
1880  * finished using it. %NULL is returned if the dentry does not exist.
1881  */
1882 struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name)
1883 {
1884 	struct dentry *dentry;
1885 	unsigned seq;
1886 
1887         do {
1888                 seq = read_seqbegin(&rename_lock);
1889                 dentry = __d_lookup(parent, name);
1890                 if (dentry)
1891 			break;
1892 	} while (read_seqretry(&rename_lock, seq));
1893 	return dentry;
1894 }
1895 EXPORT_SYMBOL(d_lookup);
1896 
1897 /**
1898  * __d_lookup - search for a dentry (racy)
1899  * @parent: parent dentry
1900  * @name: qstr of name we wish to find
1901  * Returns: dentry, or NULL
1902  *
1903  * __d_lookup is like d_lookup, however it may (rarely) return a
1904  * false-negative result due to unrelated rename activity.
1905  *
1906  * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
1907  * however it must be used carefully, eg. with a following d_lookup in
1908  * the case of failure.
1909  *
1910  * __d_lookup callers must be commented.
1911  */
1912 struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name)
1913 {
1914 	unsigned int len = name->len;
1915 	unsigned int hash = name->hash;
1916 	const unsigned char *str = name->name;
1917 	struct hlist_bl_head *b = d_hash(parent, hash);
1918 	struct hlist_bl_node *node;
1919 	struct dentry *found = NULL;
1920 	struct dentry *dentry;
1921 
1922 	/*
1923 	 * Note: There is significant duplication with __d_lookup_rcu which is
1924 	 * required to prevent single threaded performance regressions
1925 	 * especially on architectures where smp_rmb (in seqcounts) are costly.
1926 	 * Keep the two functions in sync.
1927 	 */
1928 
1929 	/*
1930 	 * The hash list is protected using RCU.
1931 	 *
1932 	 * Take d_lock when comparing a candidate dentry, to avoid races
1933 	 * with d_move().
1934 	 *
1935 	 * It is possible that concurrent renames can mess up our list
1936 	 * walk here and result in missing our dentry, resulting in the
1937 	 * false-negative result. d_lookup() protects against concurrent
1938 	 * renames using rename_lock seqlock.
1939 	 *
1940 	 * See Documentation/filesystems/path-lookup.txt for more details.
1941 	 */
1942 	rcu_read_lock();
1943 
1944 	hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
1945 
1946 		if (dentry->d_name.hash != hash)
1947 			continue;
1948 
1949 		spin_lock(&dentry->d_lock);
1950 		if (dentry->d_parent != parent)
1951 			goto next;
1952 		if (d_unhashed(dentry))
1953 			goto next;
1954 
1955 		/*
1956 		 * It is safe to compare names since d_move() cannot
1957 		 * change the qstr (protected by d_lock).
1958 		 */
1959 		if (parent->d_flags & DCACHE_OP_COMPARE) {
1960 			int tlen = dentry->d_name.len;
1961 			const char *tname = dentry->d_name.name;
1962 			if (parent->d_op->d_compare(parent, parent->d_inode,
1963 						dentry, dentry->d_inode,
1964 						tlen, tname, name))
1965 				goto next;
1966 		} else {
1967 			if (dentry->d_name.len != len)
1968 				goto next;
1969 			if (dentry_cmp(dentry, str, len))
1970 				goto next;
1971 		}
1972 
1973 		dentry->d_count++;
1974 		found = dentry;
1975 		spin_unlock(&dentry->d_lock);
1976 		break;
1977 next:
1978 		spin_unlock(&dentry->d_lock);
1979  	}
1980  	rcu_read_unlock();
1981 
1982  	return found;
1983 }
1984 
1985 /**
1986  * d_hash_and_lookup - hash the qstr then search for a dentry
1987  * @dir: Directory to search in
1988  * @name: qstr of name we wish to find
1989  *
1990  * On lookup failure NULL is returned; on bad name - ERR_PTR(-error)
1991  */
1992 struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
1993 {
1994 	/*
1995 	 * Check for a fs-specific hash function. Note that we must
1996 	 * calculate the standard hash first, as the d_op->d_hash()
1997 	 * routine may choose to leave the hash value unchanged.
1998 	 */
1999 	name->hash = full_name_hash(name->name, name->len);
2000 	if (dir->d_flags & DCACHE_OP_HASH) {
2001 		int err = dir->d_op->d_hash(dir, dir->d_inode, name);
2002 		if (unlikely(err < 0))
2003 			return ERR_PTR(err);
2004 	}
2005 	return d_lookup(dir, name);
2006 }
2007 EXPORT_SYMBOL(d_hash_and_lookup);
2008 
2009 /**
2010  * d_validate - verify dentry provided from insecure source (deprecated)
2011  * @dentry: The dentry alleged to be valid child of @dparent
2012  * @dparent: The parent dentry (known to be valid)
2013  *
2014  * An insecure source has sent us a dentry, here we verify it and dget() it.
2015  * This is used by ncpfs in its readdir implementation.
2016  * Zero is returned in the dentry is invalid.
2017  *
2018  * This function is slow for big directories, and deprecated, do not use it.
2019  */
2020 int d_validate(struct dentry *dentry, struct dentry *dparent)
2021 {
2022 	struct dentry *child;
2023 
2024 	spin_lock(&dparent->d_lock);
2025 	list_for_each_entry(child, &dparent->d_subdirs, d_u.d_child) {
2026 		if (dentry == child) {
2027 			spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
2028 			__dget_dlock(dentry);
2029 			spin_unlock(&dentry->d_lock);
2030 			spin_unlock(&dparent->d_lock);
2031 			return 1;
2032 		}
2033 	}
2034 	spin_unlock(&dparent->d_lock);
2035 
2036 	return 0;
2037 }
2038 EXPORT_SYMBOL(d_validate);
2039 
2040 /*
2041  * When a file is deleted, we have two options:
2042  * - turn this dentry into a negative dentry
2043  * - unhash this dentry and free it.
2044  *
2045  * Usually, we want to just turn this into
2046  * a negative dentry, but if anybody else is
2047  * currently using the dentry or the inode
2048  * we can't do that and we fall back on removing
2049  * it from the hash queues and waiting for
2050  * it to be deleted later when it has no users
2051  */
2052 
2053 /**
2054  * d_delete - delete a dentry
2055  * @dentry: The dentry to delete
2056  *
2057  * Turn the dentry into a negative dentry if possible, otherwise
2058  * remove it from the hash queues so it can be deleted later
2059  */
2060 
2061 void d_delete(struct dentry * dentry)
2062 {
2063 	struct inode *inode;
2064 	int isdir = 0;
2065 	/*
2066 	 * Are we the only user?
2067 	 */
2068 again:
2069 	spin_lock(&dentry->d_lock);
2070 	inode = dentry->d_inode;
2071 	isdir = S_ISDIR(inode->i_mode);
2072 	if (dentry->d_count == 1) {
2073 		if (!spin_trylock(&inode->i_lock)) {
2074 			spin_unlock(&dentry->d_lock);
2075 			cpu_relax();
2076 			goto again;
2077 		}
2078 		dentry->d_flags &= ~DCACHE_CANT_MOUNT;
2079 		dentry_unlink_inode(dentry);
2080 		fsnotify_nameremove(dentry, isdir);
2081 		return;
2082 	}
2083 
2084 	if (!d_unhashed(dentry))
2085 		__d_drop(dentry);
2086 
2087 	spin_unlock(&dentry->d_lock);
2088 
2089 	fsnotify_nameremove(dentry, isdir);
2090 }
2091 EXPORT_SYMBOL(d_delete);
2092 
2093 static void __d_rehash(struct dentry * entry, struct hlist_bl_head *b)
2094 {
2095 	BUG_ON(!d_unhashed(entry));
2096 	hlist_bl_lock(b);
2097 	entry->d_flags |= DCACHE_RCUACCESS;
2098 	hlist_bl_add_head_rcu(&entry->d_hash, b);
2099 	hlist_bl_unlock(b);
2100 }
2101 
2102 static void _d_rehash(struct dentry * entry)
2103 {
2104 	__d_rehash(entry, d_hash(entry->d_parent, entry->d_name.hash));
2105 }
2106 
2107 /**
2108  * d_rehash	- add an entry back to the hash
2109  * @entry: dentry to add to the hash
2110  *
2111  * Adds a dentry to the hash according to its name.
2112  */
2113 
2114 void d_rehash(struct dentry * entry)
2115 {
2116 	spin_lock(&entry->d_lock);
2117 	_d_rehash(entry);
2118 	spin_unlock(&entry->d_lock);
2119 }
2120 EXPORT_SYMBOL(d_rehash);
2121 
2122 /**
2123  * dentry_update_name_case - update case insensitive dentry with a new name
2124  * @dentry: dentry to be updated
2125  * @name: new name
2126  *
2127  * Update a case insensitive dentry with new case of name.
2128  *
2129  * dentry must have been returned by d_lookup with name @name. Old and new
2130  * name lengths must match (ie. no d_compare which allows mismatched name
2131  * lengths).
2132  *
2133  * Parent inode i_mutex must be held over d_lookup and into this call (to
2134  * keep renames and concurrent inserts, and readdir(2) away).
2135  */
2136 void dentry_update_name_case(struct dentry *dentry, struct qstr *name)
2137 {
2138 	BUG_ON(!mutex_is_locked(&dentry->d_parent->d_inode->i_mutex));
2139 	BUG_ON(dentry->d_name.len != name->len); /* d_lookup gives this */
2140 
2141 	spin_lock(&dentry->d_lock);
2142 	write_seqcount_begin(&dentry->d_seq);
2143 	memcpy((unsigned char *)dentry->d_name.name, name->name, name->len);
2144 	write_seqcount_end(&dentry->d_seq);
2145 	spin_unlock(&dentry->d_lock);
2146 }
2147 EXPORT_SYMBOL(dentry_update_name_case);
2148 
2149 static void switch_names(struct dentry *dentry, struct dentry *target)
2150 {
2151 	if (dname_external(target)) {
2152 		if (dname_external(dentry)) {
2153 			/*
2154 			 * Both external: swap the pointers
2155 			 */
2156 			swap(target->d_name.name, dentry->d_name.name);
2157 		} else {
2158 			/*
2159 			 * dentry:internal, target:external.  Steal target's
2160 			 * storage and make target internal.
2161 			 */
2162 			memcpy(target->d_iname, dentry->d_name.name,
2163 					dentry->d_name.len + 1);
2164 			dentry->d_name.name = target->d_name.name;
2165 			target->d_name.name = target->d_iname;
2166 		}
2167 	} else {
2168 		if (dname_external(dentry)) {
2169 			/*
2170 			 * dentry:external, target:internal.  Give dentry's
2171 			 * storage to target and make dentry internal
2172 			 */
2173 			memcpy(dentry->d_iname, target->d_name.name,
2174 					target->d_name.len + 1);
2175 			target->d_name.name = dentry->d_name.name;
2176 			dentry->d_name.name = dentry->d_iname;
2177 		} else {
2178 			/*
2179 			 * Both are internal.  Just copy target to dentry
2180 			 */
2181 			memcpy(dentry->d_iname, target->d_name.name,
2182 					target->d_name.len + 1);
2183 			dentry->d_name.len = target->d_name.len;
2184 			return;
2185 		}
2186 	}
2187 	swap(dentry->d_name.len, target->d_name.len);
2188 }
2189 
2190 static void dentry_lock_for_move(struct dentry *dentry, struct dentry *target)
2191 {
2192 	/*
2193 	 * XXXX: do we really need to take target->d_lock?
2194 	 */
2195 	if (IS_ROOT(dentry) || dentry->d_parent == target->d_parent)
2196 		spin_lock(&target->d_parent->d_lock);
2197 	else {
2198 		if (d_ancestor(dentry->d_parent, target->d_parent)) {
2199 			spin_lock(&dentry->d_parent->d_lock);
2200 			spin_lock_nested(&target->d_parent->d_lock,
2201 						DENTRY_D_LOCK_NESTED);
2202 		} else {
2203 			spin_lock(&target->d_parent->d_lock);
2204 			spin_lock_nested(&dentry->d_parent->d_lock,
2205 						DENTRY_D_LOCK_NESTED);
2206 		}
2207 	}
2208 	if (target < dentry) {
2209 		spin_lock_nested(&target->d_lock, 2);
2210 		spin_lock_nested(&dentry->d_lock, 3);
2211 	} else {
2212 		spin_lock_nested(&dentry->d_lock, 2);
2213 		spin_lock_nested(&target->d_lock, 3);
2214 	}
2215 }
2216 
2217 static void dentry_unlock_parents_for_move(struct dentry *dentry,
2218 					struct dentry *target)
2219 {
2220 	if (target->d_parent != dentry->d_parent)
2221 		spin_unlock(&dentry->d_parent->d_lock);
2222 	if (target->d_parent != target)
2223 		spin_unlock(&target->d_parent->d_lock);
2224 }
2225 
2226 /*
2227  * When switching names, the actual string doesn't strictly have to
2228  * be preserved in the target - because we're dropping the target
2229  * anyway. As such, we can just do a simple memcpy() to copy over
2230  * the new name before we switch.
2231  *
2232  * Note that we have to be a lot more careful about getting the hash
2233  * switched - we have to switch the hash value properly even if it
2234  * then no longer matches the actual (corrupted) string of the target.
2235  * The hash value has to match the hash queue that the dentry is on..
2236  */
2237 /*
2238  * __d_move - move a dentry
2239  * @dentry: entry to move
2240  * @target: new dentry
2241  *
2242  * Update the dcache to reflect the move of a file name. Negative
2243  * dcache entries should not be moved in this way. Caller must hold
2244  * rename_lock, the i_mutex of the source and target directories,
2245  * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
2246  */
2247 static void __d_move(struct dentry * dentry, struct dentry * target)
2248 {
2249 	if (!dentry->d_inode)
2250 		printk(KERN_WARNING "VFS: moving negative dcache entry\n");
2251 
2252 	BUG_ON(d_ancestor(dentry, target));
2253 	BUG_ON(d_ancestor(target, dentry));
2254 
2255 	dentry_lock_for_move(dentry, target);
2256 
2257 	write_seqcount_begin(&dentry->d_seq);
2258 	write_seqcount_begin(&target->d_seq);
2259 
2260 	/* __d_drop does write_seqcount_barrier, but they're OK to nest. */
2261 
2262 	/*
2263 	 * Move the dentry to the target hash queue. Don't bother checking
2264 	 * for the same hash queue because of how unlikely it is.
2265 	 */
2266 	__d_drop(dentry);
2267 	__d_rehash(dentry, d_hash(target->d_parent, target->d_name.hash));
2268 
2269 	/* Unhash the target: dput() will then get rid of it */
2270 	__d_drop(target);
2271 
2272 	list_del(&dentry->d_u.d_child);
2273 	list_del(&target->d_u.d_child);
2274 
2275 	/* Switch the names.. */
2276 	switch_names(dentry, target);
2277 	swap(dentry->d_name.hash, target->d_name.hash);
2278 
2279 	/* ... and switch the parents */
2280 	if (IS_ROOT(dentry)) {
2281 		dentry->d_parent = target->d_parent;
2282 		target->d_parent = target;
2283 		INIT_LIST_HEAD(&target->d_u.d_child);
2284 	} else {
2285 		swap(dentry->d_parent, target->d_parent);
2286 
2287 		/* And add them back to the (new) parent lists */
2288 		list_add(&target->d_u.d_child, &target->d_parent->d_subdirs);
2289 	}
2290 
2291 	list_add(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs);
2292 
2293 	write_seqcount_end(&target->d_seq);
2294 	write_seqcount_end(&dentry->d_seq);
2295 
2296 	dentry_unlock_parents_for_move(dentry, target);
2297 	spin_unlock(&target->d_lock);
2298 	fsnotify_d_move(dentry);
2299 	spin_unlock(&dentry->d_lock);
2300 }
2301 
2302 /*
2303  * d_move - move a dentry
2304  * @dentry: entry to move
2305  * @target: new dentry
2306  *
2307  * Update the dcache to reflect the move of a file name. Negative
2308  * dcache entries should not be moved in this way. See the locking
2309  * requirements for __d_move.
2310  */
2311 void d_move(struct dentry *dentry, struct dentry *target)
2312 {
2313 	write_seqlock(&rename_lock);
2314 	__d_move(dentry, target);
2315 	write_sequnlock(&rename_lock);
2316 }
2317 EXPORT_SYMBOL(d_move);
2318 
2319 /**
2320  * d_ancestor - search for an ancestor
2321  * @p1: ancestor dentry
2322  * @p2: child dentry
2323  *
2324  * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2325  * an ancestor of p2, else NULL.
2326  */
2327 struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
2328 {
2329 	struct dentry *p;
2330 
2331 	for (p = p2; !IS_ROOT(p); p = p->d_parent) {
2332 		if (p->d_parent == p1)
2333 			return p;
2334 	}
2335 	return NULL;
2336 }
2337 
2338 /*
2339  * This helper attempts to cope with remotely renamed directories
2340  *
2341  * It assumes that the caller is already holding
2342  * dentry->d_parent->d_inode->i_mutex, inode->i_lock and rename_lock
2343  *
2344  * Note: If ever the locking in lock_rename() changes, then please
2345  * remember to update this too...
2346  */
2347 static struct dentry *__d_unalias(struct inode *inode,
2348 		struct dentry *dentry, struct dentry *alias)
2349 {
2350 	struct mutex *m1 = NULL, *m2 = NULL;
2351 	struct dentry *ret = ERR_PTR(-EBUSY);
2352 
2353 	/* If alias and dentry share a parent, then no extra locks required */
2354 	if (alias->d_parent == dentry->d_parent)
2355 		goto out_unalias;
2356 
2357 	/* See lock_rename() */
2358 	if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
2359 		goto out_err;
2360 	m1 = &dentry->d_sb->s_vfs_rename_mutex;
2361 	if (!mutex_trylock(&alias->d_parent->d_inode->i_mutex))
2362 		goto out_err;
2363 	m2 = &alias->d_parent->d_inode->i_mutex;
2364 out_unalias:
2365 	if (likely(!d_mountpoint(alias))) {
2366 		__d_move(alias, dentry);
2367 		ret = alias;
2368 	}
2369 out_err:
2370 	spin_unlock(&inode->i_lock);
2371 	if (m2)
2372 		mutex_unlock(m2);
2373 	if (m1)
2374 		mutex_unlock(m1);
2375 	return ret;
2376 }
2377 
2378 /*
2379  * Prepare an anonymous dentry for life in the superblock's dentry tree as a
2380  * named dentry in place of the dentry to be replaced.
2381  * returns with anon->d_lock held!
2382  */
2383 static void __d_materialise_dentry(struct dentry *dentry, struct dentry *anon)
2384 {
2385 	struct dentry *dparent;
2386 
2387 	dentry_lock_for_move(anon, dentry);
2388 
2389 	write_seqcount_begin(&dentry->d_seq);
2390 	write_seqcount_begin(&anon->d_seq);
2391 
2392 	dparent = dentry->d_parent;
2393 
2394 	switch_names(dentry, anon);
2395 	swap(dentry->d_name.hash, anon->d_name.hash);
2396 
2397 	dentry->d_parent = dentry;
2398 	list_del_init(&dentry->d_u.d_child);
2399 	anon->d_parent = dparent;
2400 	list_move(&anon->d_u.d_child, &dparent->d_subdirs);
2401 
2402 	write_seqcount_end(&dentry->d_seq);
2403 	write_seqcount_end(&anon->d_seq);
2404 
2405 	dentry_unlock_parents_for_move(anon, dentry);
2406 	spin_unlock(&dentry->d_lock);
2407 
2408 	/* anon->d_lock still locked, returns locked */
2409 	anon->d_flags &= ~DCACHE_DISCONNECTED;
2410 }
2411 
2412 /**
2413  * d_materialise_unique - introduce an inode into the tree
2414  * @dentry: candidate dentry
2415  * @inode: inode to bind to the dentry, to which aliases may be attached
2416  *
2417  * Introduces an dentry into the tree, substituting an extant disconnected
2418  * root directory alias in its place if there is one. Caller must hold the
2419  * i_mutex of the parent directory.
2420  */
2421 struct dentry *d_materialise_unique(struct dentry *dentry, struct inode *inode)
2422 {
2423 	struct dentry *actual;
2424 
2425 	BUG_ON(!d_unhashed(dentry));
2426 
2427 	if (!inode) {
2428 		actual = dentry;
2429 		__d_instantiate(dentry, NULL);
2430 		d_rehash(actual);
2431 		goto out_nolock;
2432 	}
2433 
2434 	spin_lock(&inode->i_lock);
2435 
2436 	if (S_ISDIR(inode->i_mode)) {
2437 		struct dentry *alias;
2438 
2439 		/* Does an aliased dentry already exist? */
2440 		alias = __d_find_alias(inode, 0);
2441 		if (alias) {
2442 			actual = alias;
2443 			write_seqlock(&rename_lock);
2444 
2445 			if (d_ancestor(alias, dentry)) {
2446 				/* Check for loops */
2447 				actual = ERR_PTR(-ELOOP);
2448 				spin_unlock(&inode->i_lock);
2449 			} else if (IS_ROOT(alias)) {
2450 				/* Is this an anonymous mountpoint that we
2451 				 * could splice into our tree? */
2452 				__d_materialise_dentry(dentry, alias);
2453 				write_sequnlock(&rename_lock);
2454 				__d_drop(alias);
2455 				goto found;
2456 			} else {
2457 				/* Nope, but we must(!) avoid directory
2458 				 * aliasing. This drops inode->i_lock */
2459 				actual = __d_unalias(inode, dentry, alias);
2460 			}
2461 			write_sequnlock(&rename_lock);
2462 			if (IS_ERR(actual)) {
2463 				if (PTR_ERR(actual) == -ELOOP)
2464 					pr_warn_ratelimited(
2465 						"VFS: Lookup of '%s' in %s %s"
2466 						" would have caused loop\n",
2467 						dentry->d_name.name,
2468 						inode->i_sb->s_type->name,
2469 						inode->i_sb->s_id);
2470 				dput(alias);
2471 			}
2472 			goto out_nolock;
2473 		}
2474 	}
2475 
2476 	/* Add a unique reference */
2477 	actual = __d_instantiate_unique(dentry, inode);
2478 	if (!actual)
2479 		actual = dentry;
2480 	else
2481 		BUG_ON(!d_unhashed(actual));
2482 
2483 	spin_lock(&actual->d_lock);
2484 found:
2485 	_d_rehash(actual);
2486 	spin_unlock(&actual->d_lock);
2487 	spin_unlock(&inode->i_lock);
2488 out_nolock:
2489 	if (actual == dentry) {
2490 		security_d_instantiate(dentry, inode);
2491 		return NULL;
2492 	}
2493 
2494 	iput(inode);
2495 	return actual;
2496 }
2497 EXPORT_SYMBOL_GPL(d_materialise_unique);
2498 
2499 static int prepend(char **buffer, int *buflen, const char *str, int namelen)
2500 {
2501 	*buflen -= namelen;
2502 	if (*buflen < 0)
2503 		return -ENAMETOOLONG;
2504 	*buffer -= namelen;
2505 	memcpy(*buffer, str, namelen);
2506 	return 0;
2507 }
2508 
2509 static int prepend_name(char **buffer, int *buflen, struct qstr *name)
2510 {
2511 	return prepend(buffer, buflen, name->name, name->len);
2512 }
2513 
2514 /**
2515  * prepend_path - Prepend path string to a buffer
2516  * @path: the dentry/vfsmount to report
2517  * @root: root vfsmnt/dentry
2518  * @buffer: pointer to the end of the buffer
2519  * @buflen: pointer to buffer length
2520  *
2521  * Caller holds the rename_lock.
2522  */
2523 static int prepend_path(const struct path *path,
2524 			const struct path *root,
2525 			char **buffer, int *buflen)
2526 {
2527 	struct dentry *dentry = path->dentry;
2528 	struct vfsmount *vfsmnt = path->mnt;
2529 	struct mount *mnt = real_mount(vfsmnt);
2530 	bool slash = false;
2531 	int error = 0;
2532 
2533 	while (dentry != root->dentry || vfsmnt != root->mnt) {
2534 		struct dentry * parent;
2535 
2536 		if (dentry == vfsmnt->mnt_root || IS_ROOT(dentry)) {
2537 			/* Global root? */
2538 			if (!mnt_has_parent(mnt))
2539 				goto global_root;
2540 			dentry = mnt->mnt_mountpoint;
2541 			mnt = mnt->mnt_parent;
2542 			vfsmnt = &mnt->mnt;
2543 			continue;
2544 		}
2545 		parent = dentry->d_parent;
2546 		prefetch(parent);
2547 		spin_lock(&dentry->d_lock);
2548 		error = prepend_name(buffer, buflen, &dentry->d_name);
2549 		spin_unlock(&dentry->d_lock);
2550 		if (!error)
2551 			error = prepend(buffer, buflen, "/", 1);
2552 		if (error)
2553 			break;
2554 
2555 		slash = true;
2556 		dentry = parent;
2557 	}
2558 
2559 	if (!error && !slash)
2560 		error = prepend(buffer, buflen, "/", 1);
2561 
2562 	return error;
2563 
2564 global_root:
2565 	/*
2566 	 * Filesystems needing to implement special "root names"
2567 	 * should do so with ->d_dname()
2568 	 */
2569 	if (IS_ROOT(dentry) &&
2570 	    (dentry->d_name.len != 1 || dentry->d_name.name[0] != '/')) {
2571 		WARN(1, "Root dentry has weird name <%.*s>\n",
2572 		     (int) dentry->d_name.len, dentry->d_name.name);
2573 	}
2574 	if (!slash)
2575 		error = prepend(buffer, buflen, "/", 1);
2576 	if (!error)
2577 		error = is_mounted(vfsmnt) ? 1 : 2;
2578 	return error;
2579 }
2580 
2581 /**
2582  * __d_path - return the path of a dentry
2583  * @path: the dentry/vfsmount to report
2584  * @root: root vfsmnt/dentry
2585  * @buf: buffer to return value in
2586  * @buflen: buffer length
2587  *
2588  * Convert a dentry into an ASCII path name.
2589  *
2590  * Returns a pointer into the buffer or an error code if the
2591  * path was too long.
2592  *
2593  * "buflen" should be positive.
2594  *
2595  * If the path is not reachable from the supplied root, return %NULL.
2596  */
2597 char *__d_path(const struct path *path,
2598 	       const struct path *root,
2599 	       char *buf, int buflen)
2600 {
2601 	char *res = buf + buflen;
2602 	int error;
2603 
2604 	prepend(&res, &buflen, "\0", 1);
2605 	br_read_lock(&vfsmount_lock);
2606 	write_seqlock(&rename_lock);
2607 	error = prepend_path(path, root, &res, &buflen);
2608 	write_sequnlock(&rename_lock);
2609 	br_read_unlock(&vfsmount_lock);
2610 
2611 	if (error < 0)
2612 		return ERR_PTR(error);
2613 	if (error > 0)
2614 		return NULL;
2615 	return res;
2616 }
2617 
2618 char *d_absolute_path(const struct path *path,
2619 	       char *buf, int buflen)
2620 {
2621 	struct path root = {};
2622 	char *res = buf + buflen;
2623 	int error;
2624 
2625 	prepend(&res, &buflen, "\0", 1);
2626 	br_read_lock(&vfsmount_lock);
2627 	write_seqlock(&rename_lock);
2628 	error = prepend_path(path, &root, &res, &buflen);
2629 	write_sequnlock(&rename_lock);
2630 	br_read_unlock(&vfsmount_lock);
2631 
2632 	if (error > 1)
2633 		error = -EINVAL;
2634 	if (error < 0)
2635 		return ERR_PTR(error);
2636 	return res;
2637 }
2638 
2639 /*
2640  * same as __d_path but appends "(deleted)" for unlinked files.
2641  */
2642 static int path_with_deleted(const struct path *path,
2643 			     const struct path *root,
2644 			     char **buf, int *buflen)
2645 {
2646 	prepend(buf, buflen, "\0", 1);
2647 	if (d_unlinked(path->dentry)) {
2648 		int error = prepend(buf, buflen, " (deleted)", 10);
2649 		if (error)
2650 			return error;
2651 	}
2652 
2653 	return prepend_path(path, root, buf, buflen);
2654 }
2655 
2656 static int prepend_unreachable(char **buffer, int *buflen)
2657 {
2658 	return prepend(buffer, buflen, "(unreachable)", 13);
2659 }
2660 
2661 /**
2662  * d_path - return the path of a dentry
2663  * @path: path to report
2664  * @buf: buffer to return value in
2665  * @buflen: buffer length
2666  *
2667  * Convert a dentry into an ASCII path name. If the entry has been deleted
2668  * the string " (deleted)" is appended. Note that this is ambiguous.
2669  *
2670  * Returns a pointer into the buffer or an error code if the path was
2671  * too long. Note: Callers should use the returned pointer, not the passed
2672  * in buffer, to use the name! The implementation often starts at an offset
2673  * into the buffer, and may leave 0 bytes at the start.
2674  *
2675  * "buflen" should be positive.
2676  */
2677 char *d_path(const struct path *path, char *buf, int buflen)
2678 {
2679 	char *res = buf + buflen;
2680 	struct path root;
2681 	int error;
2682 
2683 	/*
2684 	 * We have various synthetic filesystems that never get mounted.  On
2685 	 * these filesystems dentries are never used for lookup purposes, and
2686 	 * thus don't need to be hashed.  They also don't need a name until a
2687 	 * user wants to identify the object in /proc/pid/fd/.  The little hack
2688 	 * below allows us to generate a name for these objects on demand:
2689 	 */
2690 	if (path->dentry->d_op && path->dentry->d_op->d_dname)
2691 		return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
2692 
2693 	get_fs_root(current->fs, &root);
2694 	br_read_lock(&vfsmount_lock);
2695 	write_seqlock(&rename_lock);
2696 	error = path_with_deleted(path, &root, &res, &buflen);
2697 	write_sequnlock(&rename_lock);
2698 	br_read_unlock(&vfsmount_lock);
2699 	if (error < 0)
2700 		res = ERR_PTR(error);
2701 	path_put(&root);
2702 	return res;
2703 }
2704 EXPORT_SYMBOL(d_path);
2705 
2706 /*
2707  * Helper function for dentry_operations.d_dname() members
2708  */
2709 char *dynamic_dname(struct dentry *dentry, char *buffer, int buflen,
2710 			const char *fmt, ...)
2711 {
2712 	va_list args;
2713 	char temp[64];
2714 	int sz;
2715 
2716 	va_start(args, fmt);
2717 	sz = vsnprintf(temp, sizeof(temp), fmt, args) + 1;
2718 	va_end(args);
2719 
2720 	if (sz > sizeof(temp) || sz > buflen)
2721 		return ERR_PTR(-ENAMETOOLONG);
2722 
2723 	buffer += buflen - sz;
2724 	return memcpy(buffer, temp, sz);
2725 }
2726 
2727 /*
2728  * Write full pathname from the root of the filesystem into the buffer.
2729  */
2730 static char *__dentry_path(struct dentry *dentry, char *buf, int buflen)
2731 {
2732 	char *end = buf + buflen;
2733 	char *retval;
2734 
2735 	prepend(&end, &buflen, "\0", 1);
2736 	if (buflen < 1)
2737 		goto Elong;
2738 	/* Get '/' right */
2739 	retval = end-1;
2740 	*retval = '/';
2741 
2742 	while (!IS_ROOT(dentry)) {
2743 		struct dentry *parent = dentry->d_parent;
2744 		int error;
2745 
2746 		prefetch(parent);
2747 		spin_lock(&dentry->d_lock);
2748 		error = prepend_name(&end, &buflen, &dentry->d_name);
2749 		spin_unlock(&dentry->d_lock);
2750 		if (error != 0 || prepend(&end, &buflen, "/", 1) != 0)
2751 			goto Elong;
2752 
2753 		retval = end;
2754 		dentry = parent;
2755 	}
2756 	return retval;
2757 Elong:
2758 	return ERR_PTR(-ENAMETOOLONG);
2759 }
2760 
2761 char *dentry_path_raw(struct dentry *dentry, char *buf, int buflen)
2762 {
2763 	char *retval;
2764 
2765 	write_seqlock(&rename_lock);
2766 	retval = __dentry_path(dentry, buf, buflen);
2767 	write_sequnlock(&rename_lock);
2768 
2769 	return retval;
2770 }
2771 EXPORT_SYMBOL(dentry_path_raw);
2772 
2773 char *dentry_path(struct dentry *dentry, char *buf, int buflen)
2774 {
2775 	char *p = NULL;
2776 	char *retval;
2777 
2778 	write_seqlock(&rename_lock);
2779 	if (d_unlinked(dentry)) {
2780 		p = buf + buflen;
2781 		if (prepend(&p, &buflen, "//deleted", 10) != 0)
2782 			goto Elong;
2783 		buflen++;
2784 	}
2785 	retval = __dentry_path(dentry, buf, buflen);
2786 	write_sequnlock(&rename_lock);
2787 	if (!IS_ERR(retval) && p)
2788 		*p = '/';	/* restore '/' overriden with '\0' */
2789 	return retval;
2790 Elong:
2791 	return ERR_PTR(-ENAMETOOLONG);
2792 }
2793 
2794 /*
2795  * NOTE! The user-level library version returns a
2796  * character pointer. The kernel system call just
2797  * returns the length of the buffer filled (which
2798  * includes the ending '\0' character), or a negative
2799  * error value. So libc would do something like
2800  *
2801  *	char *getcwd(char * buf, size_t size)
2802  *	{
2803  *		int retval;
2804  *
2805  *		retval = sys_getcwd(buf, size);
2806  *		if (retval >= 0)
2807  *			return buf;
2808  *		errno = -retval;
2809  *		return NULL;
2810  *	}
2811  */
2812 SYSCALL_DEFINE2(getcwd, char __user *, buf, unsigned long, size)
2813 {
2814 	int error;
2815 	struct path pwd, root;
2816 	char *page = (char *) __get_free_page(GFP_USER);
2817 
2818 	if (!page)
2819 		return -ENOMEM;
2820 
2821 	get_fs_root_and_pwd(current->fs, &root, &pwd);
2822 
2823 	error = -ENOENT;
2824 	br_read_lock(&vfsmount_lock);
2825 	write_seqlock(&rename_lock);
2826 	if (!d_unlinked(pwd.dentry)) {
2827 		unsigned long len;
2828 		char *cwd = page + PAGE_SIZE;
2829 		int buflen = PAGE_SIZE;
2830 
2831 		prepend(&cwd, &buflen, "\0", 1);
2832 		error = prepend_path(&pwd, &root, &cwd, &buflen);
2833 		write_sequnlock(&rename_lock);
2834 		br_read_unlock(&vfsmount_lock);
2835 
2836 		if (error < 0)
2837 			goto out;
2838 
2839 		/* Unreachable from current root */
2840 		if (error > 0) {
2841 			error = prepend_unreachable(&cwd, &buflen);
2842 			if (error)
2843 				goto out;
2844 		}
2845 
2846 		error = -ERANGE;
2847 		len = PAGE_SIZE + page - cwd;
2848 		if (len <= size) {
2849 			error = len;
2850 			if (copy_to_user(buf, cwd, len))
2851 				error = -EFAULT;
2852 		}
2853 	} else {
2854 		write_sequnlock(&rename_lock);
2855 		br_read_unlock(&vfsmount_lock);
2856 	}
2857 
2858 out:
2859 	path_put(&pwd);
2860 	path_put(&root);
2861 	free_page((unsigned long) page);
2862 	return error;
2863 }
2864 
2865 /*
2866  * Test whether new_dentry is a subdirectory of old_dentry.
2867  *
2868  * Trivially implemented using the dcache structure
2869  */
2870 
2871 /**
2872  * is_subdir - is new dentry a subdirectory of old_dentry
2873  * @new_dentry: new dentry
2874  * @old_dentry: old dentry
2875  *
2876  * Returns 1 if new_dentry is a subdirectory of the parent (at any depth).
2877  * Returns 0 otherwise.
2878  * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
2879  */
2880 
2881 int is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
2882 {
2883 	int result;
2884 	unsigned seq;
2885 
2886 	if (new_dentry == old_dentry)
2887 		return 1;
2888 
2889 	do {
2890 		/* for restarting inner loop in case of seq retry */
2891 		seq = read_seqbegin(&rename_lock);
2892 		/*
2893 		 * Need rcu_readlock to protect against the d_parent trashing
2894 		 * due to d_move
2895 		 */
2896 		rcu_read_lock();
2897 		if (d_ancestor(old_dentry, new_dentry))
2898 			result = 1;
2899 		else
2900 			result = 0;
2901 		rcu_read_unlock();
2902 	} while (read_seqretry(&rename_lock, seq));
2903 
2904 	return result;
2905 }
2906 
2907 void d_genocide(struct dentry *root)
2908 {
2909 	struct dentry *this_parent;
2910 	struct list_head *next;
2911 	unsigned seq;
2912 	int locked = 0;
2913 
2914 	seq = read_seqbegin(&rename_lock);
2915 again:
2916 	this_parent = root;
2917 	spin_lock(&this_parent->d_lock);
2918 repeat:
2919 	next = this_parent->d_subdirs.next;
2920 resume:
2921 	while (next != &this_parent->d_subdirs) {
2922 		struct list_head *tmp = next;
2923 		struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
2924 		next = tmp->next;
2925 
2926 		spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
2927 		if (d_unhashed(dentry) || !dentry->d_inode) {
2928 			spin_unlock(&dentry->d_lock);
2929 			continue;
2930 		}
2931 		if (!list_empty(&dentry->d_subdirs)) {
2932 			spin_unlock(&this_parent->d_lock);
2933 			spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
2934 			this_parent = dentry;
2935 			spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
2936 			goto repeat;
2937 		}
2938 		if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
2939 			dentry->d_flags |= DCACHE_GENOCIDE;
2940 			dentry->d_count--;
2941 		}
2942 		spin_unlock(&dentry->d_lock);
2943 	}
2944 	if (this_parent != root) {
2945 		struct dentry *child = this_parent;
2946 		if (!(this_parent->d_flags & DCACHE_GENOCIDE)) {
2947 			this_parent->d_flags |= DCACHE_GENOCIDE;
2948 			this_parent->d_count--;
2949 		}
2950 		this_parent = try_to_ascend(this_parent, locked, seq);
2951 		if (!this_parent)
2952 			goto rename_retry;
2953 		next = child->d_u.d_child.next;
2954 		goto resume;
2955 	}
2956 	spin_unlock(&this_parent->d_lock);
2957 	if (!locked && read_seqretry(&rename_lock, seq))
2958 		goto rename_retry;
2959 	if (locked)
2960 		write_sequnlock(&rename_lock);
2961 	return;
2962 
2963 rename_retry:
2964 	if (locked)
2965 		goto again;
2966 	locked = 1;
2967 	write_seqlock(&rename_lock);
2968 	goto again;
2969 }
2970 
2971 /**
2972  * find_inode_number - check for dentry with name
2973  * @dir: directory to check
2974  * @name: Name to find.
2975  *
2976  * Check whether a dentry already exists for the given name,
2977  * and return the inode number if it has an inode. Otherwise
2978  * 0 is returned.
2979  *
2980  * This routine is used to post-process directory listings for
2981  * filesystems using synthetic inode numbers, and is necessary
2982  * to keep getcwd() working.
2983  */
2984 
2985 ino_t find_inode_number(struct dentry *dir, struct qstr *name)
2986 {
2987 	struct dentry * dentry;
2988 	ino_t ino = 0;
2989 
2990 	dentry = d_hash_and_lookup(dir, name);
2991 	if (!IS_ERR_OR_NULL(dentry)) {
2992 		if (dentry->d_inode)
2993 			ino = dentry->d_inode->i_ino;
2994 		dput(dentry);
2995 	}
2996 	return ino;
2997 }
2998 EXPORT_SYMBOL(find_inode_number);
2999 
3000 static __initdata unsigned long dhash_entries;
3001 static int __init set_dhash_entries(char *str)
3002 {
3003 	if (!str)
3004 		return 0;
3005 	dhash_entries = simple_strtoul(str, &str, 0);
3006 	return 1;
3007 }
3008 __setup("dhash_entries=", set_dhash_entries);
3009 
3010 static void __init dcache_init_early(void)
3011 {
3012 	unsigned int loop;
3013 
3014 	/* If hashes are distributed across NUMA nodes, defer
3015 	 * hash allocation until vmalloc space is available.
3016 	 */
3017 	if (hashdist)
3018 		return;
3019 
3020 	dentry_hashtable =
3021 		alloc_large_system_hash("Dentry cache",
3022 					sizeof(struct hlist_bl_head),
3023 					dhash_entries,
3024 					13,
3025 					HASH_EARLY,
3026 					&d_hash_shift,
3027 					&d_hash_mask,
3028 					0,
3029 					0);
3030 
3031 	for (loop = 0; loop < (1U << d_hash_shift); loop++)
3032 		INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
3033 }
3034 
3035 static void __init dcache_init(void)
3036 {
3037 	unsigned int loop;
3038 
3039 	/*
3040 	 * A constructor could be added for stable state like the lists,
3041 	 * but it is probably not worth it because of the cache nature
3042 	 * of the dcache.
3043 	 */
3044 	dentry_cache = KMEM_CACHE(dentry,
3045 		SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD);
3046 
3047 	/* Hash may have been set up in dcache_init_early */
3048 	if (!hashdist)
3049 		return;
3050 
3051 	dentry_hashtable =
3052 		alloc_large_system_hash("Dentry cache",
3053 					sizeof(struct hlist_bl_head),
3054 					dhash_entries,
3055 					13,
3056 					0,
3057 					&d_hash_shift,
3058 					&d_hash_mask,
3059 					0,
3060 					0);
3061 
3062 	for (loop = 0; loop < (1U << d_hash_shift); loop++)
3063 		INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
3064 }
3065 
3066 /* SLAB cache for __getname() consumers */
3067 struct kmem_cache *names_cachep __read_mostly;
3068 EXPORT_SYMBOL(names_cachep);
3069 
3070 EXPORT_SYMBOL(d_genocide);
3071 
3072 void __init vfs_caches_init_early(void)
3073 {
3074 	dcache_init_early();
3075 	inode_init_early();
3076 }
3077 
3078 void __init vfs_caches_init(unsigned long mempages)
3079 {
3080 	unsigned long reserve;
3081 
3082 	/* Base hash sizes on available memory, with a reserve equal to
3083            150% of current kernel size */
3084 
3085 	reserve = min((mempages - nr_free_pages()) * 3/2, mempages - 1);
3086 	mempages -= reserve;
3087 
3088 	names_cachep = kmem_cache_create("names_cache", PATH_MAX, 0,
3089 			SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
3090 
3091 	dcache_init();
3092 	inode_init();
3093 	files_init(mempages);
3094 	mnt_init();
3095 	bdev_cache_init();
3096 	chrdev_init();
3097 }
3098