xref: /openbmc/linux/fs/dcache.c (revision ca460cc2)
1 /*
2  * fs/dcache.c
3  *
4  * Complete reimplementation
5  * (C) 1997 Thomas Schoebel-Theuer,
6  * with heavy changes by Linus Torvalds
7  */
8 
9 /*
10  * Notes on the allocation strategy:
11  *
12  * The dcache is a master of the icache - whenever a dcache entry
13  * exists, the inode will always exist. "iput()" is done either when
14  * the dcache entry is deleted or garbage collected.
15  */
16 
17 #include <linux/syscalls.h>
18 #include <linux/string.h>
19 #include <linux/mm.h>
20 #include <linux/fs.h>
21 #include <linux/fsnotify.h>
22 #include <linux/slab.h>
23 #include <linux/init.h>
24 #include <linux/hash.h>
25 #include <linux/cache.h>
26 #include <linux/export.h>
27 #include <linux/mount.h>
28 #include <linux/file.h>
29 #include <asm/uaccess.h>
30 #include <linux/security.h>
31 #include <linux/seqlock.h>
32 #include <linux/swap.h>
33 #include <linux/bootmem.h>
34 #include <linux/fs_struct.h>
35 #include <linux/hardirq.h>
36 #include <linux/bit_spinlock.h>
37 #include <linux/rculist_bl.h>
38 #include <linux/prefetch.h>
39 #include <linux/ratelimit.h>
40 #include <linux/list_lru.h>
41 #include "internal.h"
42 #include "mount.h"
43 
44 /*
45  * Usage:
46  * dcache->d_inode->i_lock protects:
47  *   - i_dentry, d_alias, d_inode of aliases
48  * dcache_hash_bucket lock protects:
49  *   - the dcache hash table
50  * s_anon bl list spinlock protects:
51  *   - the s_anon list (see __d_drop)
52  * dentry->d_sb->s_dentry_lru_lock protects:
53  *   - the dcache lru lists and counters
54  * d_lock protects:
55  *   - d_flags
56  *   - d_name
57  *   - d_lru
58  *   - d_count
59  *   - d_unhashed()
60  *   - d_parent and d_subdirs
61  *   - childrens' d_child and d_parent
62  *   - d_alias, d_inode
63  *
64  * Ordering:
65  * dentry->d_inode->i_lock
66  *   dentry->d_lock
67  *     dentry->d_sb->s_dentry_lru_lock
68  *     dcache_hash_bucket lock
69  *     s_anon lock
70  *
71  * If there is an ancestor relationship:
72  * dentry->d_parent->...->d_parent->d_lock
73  *   ...
74  *     dentry->d_parent->d_lock
75  *       dentry->d_lock
76  *
77  * If no ancestor relationship:
78  * if (dentry1 < dentry2)
79  *   dentry1->d_lock
80  *     dentry2->d_lock
81  */
82 int sysctl_vfs_cache_pressure __read_mostly = 100;
83 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
84 
85 __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
86 
87 EXPORT_SYMBOL(rename_lock);
88 
89 static struct kmem_cache *dentry_cache __read_mostly;
90 
91 /*
92  * This is the single most critical data structure when it comes
93  * to the dcache: the hashtable for lookups. Somebody should try
94  * to make this good - I've just made it work.
95  *
96  * This hash-function tries to avoid losing too many bits of hash
97  * information, yet avoid using a prime hash-size or similar.
98  */
99 
100 static unsigned int d_hash_mask __read_mostly;
101 static unsigned int d_hash_shift __read_mostly;
102 
103 static struct hlist_bl_head *dentry_hashtable __read_mostly;
104 
105 static inline struct hlist_bl_head *d_hash(const struct dentry *parent,
106 					unsigned int hash)
107 {
108 	hash += (unsigned long) parent / L1_CACHE_BYTES;
109 	return dentry_hashtable + hash_32(hash, d_hash_shift);
110 }
111 
112 /* Statistics gathering. */
113 struct dentry_stat_t dentry_stat = {
114 	.age_limit = 45,
115 };
116 
117 static DEFINE_PER_CPU(long, nr_dentry);
118 static DEFINE_PER_CPU(long, nr_dentry_unused);
119 
120 #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
121 
122 /*
123  * Here we resort to our own counters instead of using generic per-cpu counters
124  * for consistency with what the vfs inode code does. We are expected to harvest
125  * better code and performance by having our own specialized counters.
126  *
127  * Please note that the loop is done over all possible CPUs, not over all online
128  * CPUs. The reason for this is that we don't want to play games with CPUs going
129  * on and off. If one of them goes off, we will just keep their counters.
130  *
131  * glommer: See cffbc8a for details, and if you ever intend to change this,
132  * please update all vfs counters to match.
133  */
134 static long get_nr_dentry(void)
135 {
136 	int i;
137 	long sum = 0;
138 	for_each_possible_cpu(i)
139 		sum += per_cpu(nr_dentry, i);
140 	return sum < 0 ? 0 : sum;
141 }
142 
143 static long get_nr_dentry_unused(void)
144 {
145 	int i;
146 	long sum = 0;
147 	for_each_possible_cpu(i)
148 		sum += per_cpu(nr_dentry_unused, i);
149 	return sum < 0 ? 0 : sum;
150 }
151 
152 int proc_nr_dentry(struct ctl_table *table, int write, void __user *buffer,
153 		   size_t *lenp, loff_t *ppos)
154 {
155 	dentry_stat.nr_dentry = get_nr_dentry();
156 	dentry_stat.nr_unused = get_nr_dentry_unused();
157 	return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
158 }
159 #endif
160 
161 /*
162  * Compare 2 name strings, return 0 if they match, otherwise non-zero.
163  * The strings are both count bytes long, and count is non-zero.
164  */
165 #ifdef CONFIG_DCACHE_WORD_ACCESS
166 
167 #include <asm/word-at-a-time.h>
168 /*
169  * NOTE! 'cs' and 'scount' come from a dentry, so it has a
170  * aligned allocation for this particular component. We don't
171  * strictly need the load_unaligned_zeropad() safety, but it
172  * doesn't hurt either.
173  *
174  * In contrast, 'ct' and 'tcount' can be from a pathname, and do
175  * need the careful unaligned handling.
176  */
177 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
178 {
179 	unsigned long a,b,mask;
180 
181 	for (;;) {
182 		a = *(unsigned long *)cs;
183 		b = load_unaligned_zeropad(ct);
184 		if (tcount < sizeof(unsigned long))
185 			break;
186 		if (unlikely(a != b))
187 			return 1;
188 		cs += sizeof(unsigned long);
189 		ct += sizeof(unsigned long);
190 		tcount -= sizeof(unsigned long);
191 		if (!tcount)
192 			return 0;
193 	}
194 	mask = bytemask_from_count(tcount);
195 	return unlikely(!!((a ^ b) & mask));
196 }
197 
198 #else
199 
200 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
201 {
202 	do {
203 		if (*cs != *ct)
204 			return 1;
205 		cs++;
206 		ct++;
207 		tcount--;
208 	} while (tcount);
209 	return 0;
210 }
211 
212 #endif
213 
214 static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount)
215 {
216 	const unsigned char *cs;
217 	/*
218 	 * Be careful about RCU walk racing with rename:
219 	 * use ACCESS_ONCE to fetch the name pointer.
220 	 *
221 	 * NOTE! Even if a rename will mean that the length
222 	 * was not loaded atomically, we don't care. The
223 	 * RCU walk will check the sequence count eventually,
224 	 * and catch it. And we won't overrun the buffer,
225 	 * because we're reading the name pointer atomically,
226 	 * and a dentry name is guaranteed to be properly
227 	 * terminated with a NUL byte.
228 	 *
229 	 * End result: even if 'len' is wrong, we'll exit
230 	 * early because the data cannot match (there can
231 	 * be no NUL in the ct/tcount data)
232 	 */
233 	cs = ACCESS_ONCE(dentry->d_name.name);
234 	smp_read_barrier_depends();
235 	return dentry_string_cmp(cs, ct, tcount);
236 }
237 
238 struct external_name {
239 	union {
240 		atomic_t count;
241 		struct rcu_head head;
242 	} u;
243 	unsigned char name[];
244 };
245 
246 static inline struct external_name *external_name(struct dentry *dentry)
247 {
248 	return container_of(dentry->d_name.name, struct external_name, name[0]);
249 }
250 
251 static void __d_free(struct rcu_head *head)
252 {
253 	struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
254 
255 	WARN_ON(!hlist_unhashed(&dentry->d_alias));
256 	kmem_cache_free(dentry_cache, dentry);
257 }
258 
259 static void __d_free_external(struct rcu_head *head)
260 {
261 	struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
262 	WARN_ON(!hlist_unhashed(&dentry->d_alias));
263 	kfree(external_name(dentry));
264 	kmem_cache_free(dentry_cache, dentry);
265 }
266 
267 static inline int dname_external(const struct dentry *dentry)
268 {
269 	return dentry->d_name.name != dentry->d_iname;
270 }
271 
272 static void dentry_free(struct dentry *dentry)
273 {
274 	if (unlikely(dname_external(dentry))) {
275 		struct external_name *p = external_name(dentry);
276 		if (likely(atomic_dec_and_test(&p->u.count))) {
277 			call_rcu(&dentry->d_u.d_rcu, __d_free_external);
278 			return;
279 		}
280 	}
281 	/* if dentry was never visible to RCU, immediate free is OK */
282 	if (!(dentry->d_flags & DCACHE_RCUACCESS))
283 		__d_free(&dentry->d_u.d_rcu);
284 	else
285 		call_rcu(&dentry->d_u.d_rcu, __d_free);
286 }
287 
288 /**
289  * dentry_rcuwalk_barrier - invalidate in-progress rcu-walk lookups
290  * @dentry: the target dentry
291  * After this call, in-progress rcu-walk path lookup will fail. This
292  * should be called after unhashing, and after changing d_inode (if
293  * the dentry has not already been unhashed).
294  */
295 static inline void dentry_rcuwalk_barrier(struct dentry *dentry)
296 {
297 	assert_spin_locked(&dentry->d_lock);
298 	/* Go through a barrier */
299 	write_seqcount_barrier(&dentry->d_seq);
300 }
301 
302 /*
303  * Release the dentry's inode, using the filesystem
304  * d_iput() operation if defined. Dentry has no refcount
305  * and is unhashed.
306  */
307 static void dentry_iput(struct dentry * dentry)
308 	__releases(dentry->d_lock)
309 	__releases(dentry->d_inode->i_lock)
310 {
311 	struct inode *inode = dentry->d_inode;
312 	if (inode) {
313 		dentry->d_inode = NULL;
314 		hlist_del_init(&dentry->d_alias);
315 		spin_unlock(&dentry->d_lock);
316 		spin_unlock(&inode->i_lock);
317 		if (!inode->i_nlink)
318 			fsnotify_inoderemove(inode);
319 		if (dentry->d_op && dentry->d_op->d_iput)
320 			dentry->d_op->d_iput(dentry, inode);
321 		else
322 			iput(inode);
323 	} else {
324 		spin_unlock(&dentry->d_lock);
325 	}
326 }
327 
328 /*
329  * Release the dentry's inode, using the filesystem
330  * d_iput() operation if defined. dentry remains in-use.
331  */
332 static void dentry_unlink_inode(struct dentry * dentry)
333 	__releases(dentry->d_lock)
334 	__releases(dentry->d_inode->i_lock)
335 {
336 	struct inode *inode = dentry->d_inode;
337 	__d_clear_type(dentry);
338 	dentry->d_inode = NULL;
339 	hlist_del_init(&dentry->d_alias);
340 	dentry_rcuwalk_barrier(dentry);
341 	spin_unlock(&dentry->d_lock);
342 	spin_unlock(&inode->i_lock);
343 	if (!inode->i_nlink)
344 		fsnotify_inoderemove(inode);
345 	if (dentry->d_op && dentry->d_op->d_iput)
346 		dentry->d_op->d_iput(dentry, inode);
347 	else
348 		iput(inode);
349 }
350 
351 /*
352  * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry
353  * is in use - which includes both the "real" per-superblock
354  * LRU list _and_ the DCACHE_SHRINK_LIST use.
355  *
356  * The DCACHE_SHRINK_LIST bit is set whenever the dentry is
357  * on the shrink list (ie not on the superblock LRU list).
358  *
359  * The per-cpu "nr_dentry_unused" counters are updated with
360  * the DCACHE_LRU_LIST bit.
361  *
362  * These helper functions make sure we always follow the
363  * rules. d_lock must be held by the caller.
364  */
365 #define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x))
366 static void d_lru_add(struct dentry *dentry)
367 {
368 	D_FLAG_VERIFY(dentry, 0);
369 	dentry->d_flags |= DCACHE_LRU_LIST;
370 	this_cpu_inc(nr_dentry_unused);
371 	WARN_ON_ONCE(!list_lru_add(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
372 }
373 
374 static void d_lru_del(struct dentry *dentry)
375 {
376 	D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
377 	dentry->d_flags &= ~DCACHE_LRU_LIST;
378 	this_cpu_dec(nr_dentry_unused);
379 	WARN_ON_ONCE(!list_lru_del(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
380 }
381 
382 static void d_shrink_del(struct dentry *dentry)
383 {
384 	D_FLAG_VERIFY(dentry, DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
385 	list_del_init(&dentry->d_lru);
386 	dentry->d_flags &= ~(DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
387 	this_cpu_dec(nr_dentry_unused);
388 }
389 
390 static void d_shrink_add(struct dentry *dentry, struct list_head *list)
391 {
392 	D_FLAG_VERIFY(dentry, 0);
393 	list_add(&dentry->d_lru, list);
394 	dentry->d_flags |= DCACHE_SHRINK_LIST | DCACHE_LRU_LIST;
395 	this_cpu_inc(nr_dentry_unused);
396 }
397 
398 /*
399  * These can only be called under the global LRU lock, ie during the
400  * callback for freeing the LRU list. "isolate" removes it from the
401  * LRU lists entirely, while shrink_move moves it to the indicated
402  * private list.
403  */
404 static void d_lru_isolate(struct dentry *dentry)
405 {
406 	D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
407 	dentry->d_flags &= ~DCACHE_LRU_LIST;
408 	this_cpu_dec(nr_dentry_unused);
409 	list_del_init(&dentry->d_lru);
410 }
411 
412 static void d_lru_shrink_move(struct dentry *dentry, struct list_head *list)
413 {
414 	D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
415 	dentry->d_flags |= DCACHE_SHRINK_LIST;
416 	list_move_tail(&dentry->d_lru, list);
417 }
418 
419 /*
420  * dentry_lru_(add|del)_list) must be called with d_lock held.
421  */
422 static void dentry_lru_add(struct dentry *dentry)
423 {
424 	if (unlikely(!(dentry->d_flags & DCACHE_LRU_LIST)))
425 		d_lru_add(dentry);
426 }
427 
428 /**
429  * d_drop - drop a dentry
430  * @dentry: dentry to drop
431  *
432  * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
433  * be found through a VFS lookup any more. Note that this is different from
434  * deleting the dentry - d_delete will try to mark the dentry negative if
435  * possible, giving a successful _negative_ lookup, while d_drop will
436  * just make the cache lookup fail.
437  *
438  * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
439  * reason (NFS timeouts or autofs deletes).
440  *
441  * __d_drop requires dentry->d_lock.
442  */
443 void __d_drop(struct dentry *dentry)
444 {
445 	if (!d_unhashed(dentry)) {
446 		struct hlist_bl_head *b;
447 		/*
448 		 * Hashed dentries are normally on the dentry hashtable,
449 		 * with the exception of those newly allocated by
450 		 * d_obtain_alias, which are always IS_ROOT:
451 		 */
452 		if (unlikely(IS_ROOT(dentry)))
453 			b = &dentry->d_sb->s_anon;
454 		else
455 			b = d_hash(dentry->d_parent, dentry->d_name.hash);
456 
457 		hlist_bl_lock(b);
458 		__hlist_bl_del(&dentry->d_hash);
459 		dentry->d_hash.pprev = NULL;
460 		hlist_bl_unlock(b);
461 		dentry_rcuwalk_barrier(dentry);
462 	}
463 }
464 EXPORT_SYMBOL(__d_drop);
465 
466 void d_drop(struct dentry *dentry)
467 {
468 	spin_lock(&dentry->d_lock);
469 	__d_drop(dentry);
470 	spin_unlock(&dentry->d_lock);
471 }
472 EXPORT_SYMBOL(d_drop);
473 
474 static void __dentry_kill(struct dentry *dentry)
475 {
476 	struct dentry *parent = NULL;
477 	bool can_free = true;
478 	if (!IS_ROOT(dentry))
479 		parent = dentry->d_parent;
480 
481 	/*
482 	 * The dentry is now unrecoverably dead to the world.
483 	 */
484 	lockref_mark_dead(&dentry->d_lockref);
485 
486 	/*
487 	 * inform the fs via d_prune that this dentry is about to be
488 	 * unhashed and destroyed.
489 	 */
490 	if (dentry->d_flags & DCACHE_OP_PRUNE)
491 		dentry->d_op->d_prune(dentry);
492 
493 	if (dentry->d_flags & DCACHE_LRU_LIST) {
494 		if (!(dentry->d_flags & DCACHE_SHRINK_LIST))
495 			d_lru_del(dentry);
496 	}
497 	/* if it was on the hash then remove it */
498 	__d_drop(dentry);
499 	list_del(&dentry->d_u.d_child);
500 	/*
501 	 * Inform d_walk() that we are no longer attached to the
502 	 * dentry tree
503 	 */
504 	dentry->d_flags |= DCACHE_DENTRY_KILLED;
505 	if (parent)
506 		spin_unlock(&parent->d_lock);
507 	dentry_iput(dentry);
508 	/*
509 	 * dentry_iput drops the locks, at which point nobody (except
510 	 * transient RCU lookups) can reach this dentry.
511 	 */
512 	BUG_ON((int)dentry->d_lockref.count > 0);
513 	this_cpu_dec(nr_dentry);
514 	if (dentry->d_op && dentry->d_op->d_release)
515 		dentry->d_op->d_release(dentry);
516 
517 	spin_lock(&dentry->d_lock);
518 	if (dentry->d_flags & DCACHE_SHRINK_LIST) {
519 		dentry->d_flags |= DCACHE_MAY_FREE;
520 		can_free = false;
521 	}
522 	spin_unlock(&dentry->d_lock);
523 	if (likely(can_free))
524 		dentry_free(dentry);
525 }
526 
527 /*
528  * Finish off a dentry we've decided to kill.
529  * dentry->d_lock must be held, returns with it unlocked.
530  * If ref is non-zero, then decrement the refcount too.
531  * Returns dentry requiring refcount drop, or NULL if we're done.
532  */
533 static struct dentry *dentry_kill(struct dentry *dentry)
534 	__releases(dentry->d_lock)
535 {
536 	struct inode *inode = dentry->d_inode;
537 	struct dentry *parent = NULL;
538 
539 	if (inode && unlikely(!spin_trylock(&inode->i_lock)))
540 		goto failed;
541 
542 	if (!IS_ROOT(dentry)) {
543 		parent = dentry->d_parent;
544 		if (unlikely(!spin_trylock(&parent->d_lock))) {
545 			if (inode)
546 				spin_unlock(&inode->i_lock);
547 			goto failed;
548 		}
549 	}
550 
551 	__dentry_kill(dentry);
552 	return parent;
553 
554 failed:
555 	spin_unlock(&dentry->d_lock);
556 	cpu_relax();
557 	return dentry; /* try again with same dentry */
558 }
559 
560 static inline struct dentry *lock_parent(struct dentry *dentry)
561 {
562 	struct dentry *parent = dentry->d_parent;
563 	if (IS_ROOT(dentry))
564 		return NULL;
565 	if (unlikely((int)dentry->d_lockref.count < 0))
566 		return NULL;
567 	if (likely(spin_trylock(&parent->d_lock)))
568 		return parent;
569 	rcu_read_lock();
570 	spin_unlock(&dentry->d_lock);
571 again:
572 	parent = ACCESS_ONCE(dentry->d_parent);
573 	spin_lock(&parent->d_lock);
574 	/*
575 	 * We can't blindly lock dentry until we are sure
576 	 * that we won't violate the locking order.
577 	 * Any changes of dentry->d_parent must have
578 	 * been done with parent->d_lock held, so
579 	 * spin_lock() above is enough of a barrier
580 	 * for checking if it's still our child.
581 	 */
582 	if (unlikely(parent != dentry->d_parent)) {
583 		spin_unlock(&parent->d_lock);
584 		goto again;
585 	}
586 	rcu_read_unlock();
587 	if (parent != dentry)
588 		spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
589 	else
590 		parent = NULL;
591 	return parent;
592 }
593 
594 /*
595  * This is dput
596  *
597  * This is complicated by the fact that we do not want to put
598  * dentries that are no longer on any hash chain on the unused
599  * list: we'd much rather just get rid of them immediately.
600  *
601  * However, that implies that we have to traverse the dentry
602  * tree upwards to the parents which might _also_ now be
603  * scheduled for deletion (it may have been only waiting for
604  * its last child to go away).
605  *
606  * This tail recursion is done by hand as we don't want to depend
607  * on the compiler to always get this right (gcc generally doesn't).
608  * Real recursion would eat up our stack space.
609  */
610 
611 /*
612  * dput - release a dentry
613  * @dentry: dentry to release
614  *
615  * Release a dentry. This will drop the usage count and if appropriate
616  * call the dentry unlink method as well as removing it from the queues and
617  * releasing its resources. If the parent dentries were scheduled for release
618  * they too may now get deleted.
619  */
620 void dput(struct dentry *dentry)
621 {
622 	if (unlikely(!dentry))
623 		return;
624 
625 repeat:
626 	if (lockref_put_or_lock(&dentry->d_lockref))
627 		return;
628 
629 	/* Unreachable? Get rid of it */
630 	if (unlikely(d_unhashed(dentry)))
631 		goto kill_it;
632 
633 	if (unlikely(dentry->d_flags & DCACHE_OP_DELETE)) {
634 		if (dentry->d_op->d_delete(dentry))
635 			goto kill_it;
636 	}
637 
638 	if (!(dentry->d_flags & DCACHE_REFERENCED))
639 		dentry->d_flags |= DCACHE_REFERENCED;
640 	dentry_lru_add(dentry);
641 
642 	dentry->d_lockref.count--;
643 	spin_unlock(&dentry->d_lock);
644 	return;
645 
646 kill_it:
647 	dentry = dentry_kill(dentry);
648 	if (dentry)
649 		goto repeat;
650 }
651 EXPORT_SYMBOL(dput);
652 
653 
654 /* This must be called with d_lock held */
655 static inline void __dget_dlock(struct dentry *dentry)
656 {
657 	dentry->d_lockref.count++;
658 }
659 
660 static inline void __dget(struct dentry *dentry)
661 {
662 	lockref_get(&dentry->d_lockref);
663 }
664 
665 struct dentry *dget_parent(struct dentry *dentry)
666 {
667 	int gotref;
668 	struct dentry *ret;
669 
670 	/*
671 	 * Do optimistic parent lookup without any
672 	 * locking.
673 	 */
674 	rcu_read_lock();
675 	ret = ACCESS_ONCE(dentry->d_parent);
676 	gotref = lockref_get_not_zero(&ret->d_lockref);
677 	rcu_read_unlock();
678 	if (likely(gotref)) {
679 		if (likely(ret == ACCESS_ONCE(dentry->d_parent)))
680 			return ret;
681 		dput(ret);
682 	}
683 
684 repeat:
685 	/*
686 	 * Don't need rcu_dereference because we re-check it was correct under
687 	 * the lock.
688 	 */
689 	rcu_read_lock();
690 	ret = dentry->d_parent;
691 	spin_lock(&ret->d_lock);
692 	if (unlikely(ret != dentry->d_parent)) {
693 		spin_unlock(&ret->d_lock);
694 		rcu_read_unlock();
695 		goto repeat;
696 	}
697 	rcu_read_unlock();
698 	BUG_ON(!ret->d_lockref.count);
699 	ret->d_lockref.count++;
700 	spin_unlock(&ret->d_lock);
701 	return ret;
702 }
703 EXPORT_SYMBOL(dget_parent);
704 
705 /**
706  * d_find_alias - grab a hashed alias of inode
707  * @inode: inode in question
708  *
709  * If inode has a hashed alias, or is a directory and has any alias,
710  * acquire the reference to alias and return it. Otherwise return NULL.
711  * Notice that if inode is a directory there can be only one alias and
712  * it can be unhashed only if it has no children, or if it is the root
713  * of a filesystem, or if the directory was renamed and d_revalidate
714  * was the first vfs operation to notice.
715  *
716  * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
717  * any other hashed alias over that one.
718  */
719 static struct dentry *__d_find_alias(struct inode *inode)
720 {
721 	struct dentry *alias, *discon_alias;
722 
723 again:
724 	discon_alias = NULL;
725 	hlist_for_each_entry(alias, &inode->i_dentry, d_alias) {
726 		spin_lock(&alias->d_lock);
727  		if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
728 			if (IS_ROOT(alias) &&
729 			    (alias->d_flags & DCACHE_DISCONNECTED)) {
730 				discon_alias = alias;
731 			} else {
732 				__dget_dlock(alias);
733 				spin_unlock(&alias->d_lock);
734 				return alias;
735 			}
736 		}
737 		spin_unlock(&alias->d_lock);
738 	}
739 	if (discon_alias) {
740 		alias = discon_alias;
741 		spin_lock(&alias->d_lock);
742 		if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
743 			__dget_dlock(alias);
744 			spin_unlock(&alias->d_lock);
745 			return alias;
746 		}
747 		spin_unlock(&alias->d_lock);
748 		goto again;
749 	}
750 	return NULL;
751 }
752 
753 struct dentry *d_find_alias(struct inode *inode)
754 {
755 	struct dentry *de = NULL;
756 
757 	if (!hlist_empty(&inode->i_dentry)) {
758 		spin_lock(&inode->i_lock);
759 		de = __d_find_alias(inode);
760 		spin_unlock(&inode->i_lock);
761 	}
762 	return de;
763 }
764 EXPORT_SYMBOL(d_find_alias);
765 
766 /*
767  *	Try to kill dentries associated with this inode.
768  * WARNING: you must own a reference to inode.
769  */
770 void d_prune_aliases(struct inode *inode)
771 {
772 	struct dentry *dentry;
773 restart:
774 	spin_lock(&inode->i_lock);
775 	hlist_for_each_entry(dentry, &inode->i_dentry, d_alias) {
776 		spin_lock(&dentry->d_lock);
777 		if (!dentry->d_lockref.count) {
778 			struct dentry *parent = lock_parent(dentry);
779 			if (likely(!dentry->d_lockref.count)) {
780 				__dentry_kill(dentry);
781 				dput(parent);
782 				goto restart;
783 			}
784 			if (parent)
785 				spin_unlock(&parent->d_lock);
786 		}
787 		spin_unlock(&dentry->d_lock);
788 	}
789 	spin_unlock(&inode->i_lock);
790 }
791 EXPORT_SYMBOL(d_prune_aliases);
792 
793 static void shrink_dentry_list(struct list_head *list)
794 {
795 	struct dentry *dentry, *parent;
796 
797 	while (!list_empty(list)) {
798 		struct inode *inode;
799 		dentry = list_entry(list->prev, struct dentry, d_lru);
800 		spin_lock(&dentry->d_lock);
801 		parent = lock_parent(dentry);
802 
803 		/*
804 		 * The dispose list is isolated and dentries are not accounted
805 		 * to the LRU here, so we can simply remove it from the list
806 		 * here regardless of whether it is referenced or not.
807 		 */
808 		d_shrink_del(dentry);
809 
810 		/*
811 		 * We found an inuse dentry which was not removed from
812 		 * the LRU because of laziness during lookup. Do not free it.
813 		 */
814 		if ((int)dentry->d_lockref.count > 0) {
815 			spin_unlock(&dentry->d_lock);
816 			if (parent)
817 				spin_unlock(&parent->d_lock);
818 			continue;
819 		}
820 
821 
822 		if (unlikely(dentry->d_flags & DCACHE_DENTRY_KILLED)) {
823 			bool can_free = dentry->d_flags & DCACHE_MAY_FREE;
824 			spin_unlock(&dentry->d_lock);
825 			if (parent)
826 				spin_unlock(&parent->d_lock);
827 			if (can_free)
828 				dentry_free(dentry);
829 			continue;
830 		}
831 
832 		inode = dentry->d_inode;
833 		if (inode && unlikely(!spin_trylock(&inode->i_lock))) {
834 			d_shrink_add(dentry, list);
835 			spin_unlock(&dentry->d_lock);
836 			if (parent)
837 				spin_unlock(&parent->d_lock);
838 			continue;
839 		}
840 
841 		__dentry_kill(dentry);
842 
843 		/*
844 		 * We need to prune ancestors too. This is necessary to prevent
845 		 * quadratic behavior of shrink_dcache_parent(), but is also
846 		 * expected to be beneficial in reducing dentry cache
847 		 * fragmentation.
848 		 */
849 		dentry = parent;
850 		while (dentry && !lockref_put_or_lock(&dentry->d_lockref)) {
851 			parent = lock_parent(dentry);
852 			if (dentry->d_lockref.count != 1) {
853 				dentry->d_lockref.count--;
854 				spin_unlock(&dentry->d_lock);
855 				if (parent)
856 					spin_unlock(&parent->d_lock);
857 				break;
858 			}
859 			inode = dentry->d_inode;	/* can't be NULL */
860 			if (unlikely(!spin_trylock(&inode->i_lock))) {
861 				spin_unlock(&dentry->d_lock);
862 				if (parent)
863 					spin_unlock(&parent->d_lock);
864 				cpu_relax();
865 				continue;
866 			}
867 			__dentry_kill(dentry);
868 			dentry = parent;
869 		}
870 	}
871 }
872 
873 static enum lru_status
874 dentry_lru_isolate(struct list_head *item, spinlock_t *lru_lock, void *arg)
875 {
876 	struct list_head *freeable = arg;
877 	struct dentry	*dentry = container_of(item, struct dentry, d_lru);
878 
879 
880 	/*
881 	 * we are inverting the lru lock/dentry->d_lock here,
882 	 * so use a trylock. If we fail to get the lock, just skip
883 	 * it
884 	 */
885 	if (!spin_trylock(&dentry->d_lock))
886 		return LRU_SKIP;
887 
888 	/*
889 	 * Referenced dentries are still in use. If they have active
890 	 * counts, just remove them from the LRU. Otherwise give them
891 	 * another pass through the LRU.
892 	 */
893 	if (dentry->d_lockref.count) {
894 		d_lru_isolate(dentry);
895 		spin_unlock(&dentry->d_lock);
896 		return LRU_REMOVED;
897 	}
898 
899 	if (dentry->d_flags & DCACHE_REFERENCED) {
900 		dentry->d_flags &= ~DCACHE_REFERENCED;
901 		spin_unlock(&dentry->d_lock);
902 
903 		/*
904 		 * The list move itself will be made by the common LRU code. At
905 		 * this point, we've dropped the dentry->d_lock but keep the
906 		 * lru lock. This is safe to do, since every list movement is
907 		 * protected by the lru lock even if both locks are held.
908 		 *
909 		 * This is guaranteed by the fact that all LRU management
910 		 * functions are intermediated by the LRU API calls like
911 		 * list_lru_add and list_lru_del. List movement in this file
912 		 * only ever occur through this functions or through callbacks
913 		 * like this one, that are called from the LRU API.
914 		 *
915 		 * The only exceptions to this are functions like
916 		 * shrink_dentry_list, and code that first checks for the
917 		 * DCACHE_SHRINK_LIST flag.  Those are guaranteed to be
918 		 * operating only with stack provided lists after they are
919 		 * properly isolated from the main list.  It is thus, always a
920 		 * local access.
921 		 */
922 		return LRU_ROTATE;
923 	}
924 
925 	d_lru_shrink_move(dentry, freeable);
926 	spin_unlock(&dentry->d_lock);
927 
928 	return LRU_REMOVED;
929 }
930 
931 /**
932  * prune_dcache_sb - shrink the dcache
933  * @sb: superblock
934  * @nr_to_scan : number of entries to try to free
935  * @nid: which node to scan for freeable entities
936  *
937  * Attempt to shrink the superblock dcache LRU by @nr_to_scan entries. This is
938  * done when we need more memory an called from the superblock shrinker
939  * function.
940  *
941  * This function may fail to free any resources if all the dentries are in
942  * use.
943  */
944 long prune_dcache_sb(struct super_block *sb, unsigned long nr_to_scan,
945 		     int nid)
946 {
947 	LIST_HEAD(dispose);
948 	long freed;
949 
950 	freed = list_lru_walk_node(&sb->s_dentry_lru, nid, dentry_lru_isolate,
951 				       &dispose, &nr_to_scan);
952 	shrink_dentry_list(&dispose);
953 	return freed;
954 }
955 
956 static enum lru_status dentry_lru_isolate_shrink(struct list_head *item,
957 						spinlock_t *lru_lock, void *arg)
958 {
959 	struct list_head *freeable = arg;
960 	struct dentry	*dentry = container_of(item, struct dentry, d_lru);
961 
962 	/*
963 	 * we are inverting the lru lock/dentry->d_lock here,
964 	 * so use a trylock. If we fail to get the lock, just skip
965 	 * it
966 	 */
967 	if (!spin_trylock(&dentry->d_lock))
968 		return LRU_SKIP;
969 
970 	d_lru_shrink_move(dentry, freeable);
971 	spin_unlock(&dentry->d_lock);
972 
973 	return LRU_REMOVED;
974 }
975 
976 
977 /**
978  * shrink_dcache_sb - shrink dcache for a superblock
979  * @sb: superblock
980  *
981  * Shrink the dcache for the specified super block. This is used to free
982  * the dcache before unmounting a file system.
983  */
984 void shrink_dcache_sb(struct super_block *sb)
985 {
986 	long freed;
987 
988 	do {
989 		LIST_HEAD(dispose);
990 
991 		freed = list_lru_walk(&sb->s_dentry_lru,
992 			dentry_lru_isolate_shrink, &dispose, UINT_MAX);
993 
994 		this_cpu_sub(nr_dentry_unused, freed);
995 		shrink_dentry_list(&dispose);
996 	} while (freed > 0);
997 }
998 EXPORT_SYMBOL(shrink_dcache_sb);
999 
1000 /**
1001  * enum d_walk_ret - action to talke during tree walk
1002  * @D_WALK_CONTINUE:	contrinue walk
1003  * @D_WALK_QUIT:	quit walk
1004  * @D_WALK_NORETRY:	quit when retry is needed
1005  * @D_WALK_SKIP:	skip this dentry and its children
1006  */
1007 enum d_walk_ret {
1008 	D_WALK_CONTINUE,
1009 	D_WALK_QUIT,
1010 	D_WALK_NORETRY,
1011 	D_WALK_SKIP,
1012 };
1013 
1014 /**
1015  * d_walk - walk the dentry tree
1016  * @parent:	start of walk
1017  * @data:	data passed to @enter() and @finish()
1018  * @enter:	callback when first entering the dentry
1019  * @finish:	callback when successfully finished the walk
1020  *
1021  * The @enter() and @finish() callbacks are called with d_lock held.
1022  */
1023 static void d_walk(struct dentry *parent, void *data,
1024 		   enum d_walk_ret (*enter)(void *, struct dentry *),
1025 		   void (*finish)(void *))
1026 {
1027 	struct dentry *this_parent;
1028 	struct list_head *next;
1029 	unsigned seq = 0;
1030 	enum d_walk_ret ret;
1031 	bool retry = true;
1032 
1033 again:
1034 	read_seqbegin_or_lock(&rename_lock, &seq);
1035 	this_parent = parent;
1036 	spin_lock(&this_parent->d_lock);
1037 
1038 	ret = enter(data, this_parent);
1039 	switch (ret) {
1040 	case D_WALK_CONTINUE:
1041 		break;
1042 	case D_WALK_QUIT:
1043 	case D_WALK_SKIP:
1044 		goto out_unlock;
1045 	case D_WALK_NORETRY:
1046 		retry = false;
1047 		break;
1048 	}
1049 repeat:
1050 	next = this_parent->d_subdirs.next;
1051 resume:
1052 	while (next != &this_parent->d_subdirs) {
1053 		struct list_head *tmp = next;
1054 		struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
1055 		next = tmp->next;
1056 
1057 		spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1058 
1059 		ret = enter(data, dentry);
1060 		switch (ret) {
1061 		case D_WALK_CONTINUE:
1062 			break;
1063 		case D_WALK_QUIT:
1064 			spin_unlock(&dentry->d_lock);
1065 			goto out_unlock;
1066 		case D_WALK_NORETRY:
1067 			retry = false;
1068 			break;
1069 		case D_WALK_SKIP:
1070 			spin_unlock(&dentry->d_lock);
1071 			continue;
1072 		}
1073 
1074 		if (!list_empty(&dentry->d_subdirs)) {
1075 			spin_unlock(&this_parent->d_lock);
1076 			spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1077 			this_parent = dentry;
1078 			spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1079 			goto repeat;
1080 		}
1081 		spin_unlock(&dentry->d_lock);
1082 	}
1083 	/*
1084 	 * All done at this level ... ascend and resume the search.
1085 	 */
1086 	if (this_parent != parent) {
1087 		struct dentry *child = this_parent;
1088 		this_parent = child->d_parent;
1089 
1090 		rcu_read_lock();
1091 		spin_unlock(&child->d_lock);
1092 		spin_lock(&this_parent->d_lock);
1093 
1094 		/*
1095 		 * might go back up the wrong parent if we have had a rename
1096 		 * or deletion
1097 		 */
1098 		if (this_parent != child->d_parent ||
1099 			 (child->d_flags & DCACHE_DENTRY_KILLED) ||
1100 			 need_seqretry(&rename_lock, seq)) {
1101 			spin_unlock(&this_parent->d_lock);
1102 			rcu_read_unlock();
1103 			goto rename_retry;
1104 		}
1105 		rcu_read_unlock();
1106 		next = child->d_u.d_child.next;
1107 		goto resume;
1108 	}
1109 	if (need_seqretry(&rename_lock, seq)) {
1110 		spin_unlock(&this_parent->d_lock);
1111 		goto rename_retry;
1112 	}
1113 	if (finish)
1114 		finish(data);
1115 
1116 out_unlock:
1117 	spin_unlock(&this_parent->d_lock);
1118 	done_seqretry(&rename_lock, seq);
1119 	return;
1120 
1121 rename_retry:
1122 	if (!retry)
1123 		return;
1124 	seq = 1;
1125 	goto again;
1126 }
1127 
1128 /*
1129  * Search for at least 1 mount point in the dentry's subdirs.
1130  * We descend to the next level whenever the d_subdirs
1131  * list is non-empty and continue searching.
1132  */
1133 
1134 static enum d_walk_ret check_mount(void *data, struct dentry *dentry)
1135 {
1136 	int *ret = data;
1137 	if (d_mountpoint(dentry)) {
1138 		*ret = 1;
1139 		return D_WALK_QUIT;
1140 	}
1141 	return D_WALK_CONTINUE;
1142 }
1143 
1144 /**
1145  * have_submounts - check for mounts over a dentry
1146  * @parent: dentry to check.
1147  *
1148  * Return true if the parent or its subdirectories contain
1149  * a mount point
1150  */
1151 int have_submounts(struct dentry *parent)
1152 {
1153 	int ret = 0;
1154 
1155 	d_walk(parent, &ret, check_mount, NULL);
1156 
1157 	return ret;
1158 }
1159 EXPORT_SYMBOL(have_submounts);
1160 
1161 /*
1162  * Called by mount code to set a mountpoint and check if the mountpoint is
1163  * reachable (e.g. NFS can unhash a directory dentry and then the complete
1164  * subtree can become unreachable).
1165  *
1166  * Only one of d_invalidate() and d_set_mounted() must succeed.  For
1167  * this reason take rename_lock and d_lock on dentry and ancestors.
1168  */
1169 int d_set_mounted(struct dentry *dentry)
1170 {
1171 	struct dentry *p;
1172 	int ret = -ENOENT;
1173 	write_seqlock(&rename_lock);
1174 	for (p = dentry->d_parent; !IS_ROOT(p); p = p->d_parent) {
1175 		/* Need exclusion wrt. d_invalidate() */
1176 		spin_lock(&p->d_lock);
1177 		if (unlikely(d_unhashed(p))) {
1178 			spin_unlock(&p->d_lock);
1179 			goto out;
1180 		}
1181 		spin_unlock(&p->d_lock);
1182 	}
1183 	spin_lock(&dentry->d_lock);
1184 	if (!d_unlinked(dentry)) {
1185 		dentry->d_flags |= DCACHE_MOUNTED;
1186 		ret = 0;
1187 	}
1188  	spin_unlock(&dentry->d_lock);
1189 out:
1190 	write_sequnlock(&rename_lock);
1191 	return ret;
1192 }
1193 
1194 /*
1195  * Search the dentry child list of the specified parent,
1196  * and move any unused dentries to the end of the unused
1197  * list for prune_dcache(). We descend to the next level
1198  * whenever the d_subdirs list is non-empty and continue
1199  * searching.
1200  *
1201  * It returns zero iff there are no unused children,
1202  * otherwise  it returns the number of children moved to
1203  * the end of the unused list. This may not be the total
1204  * number of unused children, because select_parent can
1205  * drop the lock and return early due to latency
1206  * constraints.
1207  */
1208 
1209 struct select_data {
1210 	struct dentry *start;
1211 	struct list_head dispose;
1212 	int found;
1213 };
1214 
1215 static enum d_walk_ret select_collect(void *_data, struct dentry *dentry)
1216 {
1217 	struct select_data *data = _data;
1218 	enum d_walk_ret ret = D_WALK_CONTINUE;
1219 
1220 	if (data->start == dentry)
1221 		goto out;
1222 
1223 	if (dentry->d_flags & DCACHE_SHRINK_LIST) {
1224 		data->found++;
1225 	} else {
1226 		if (dentry->d_flags & DCACHE_LRU_LIST)
1227 			d_lru_del(dentry);
1228 		if (!dentry->d_lockref.count) {
1229 			d_shrink_add(dentry, &data->dispose);
1230 			data->found++;
1231 		}
1232 	}
1233 	/*
1234 	 * We can return to the caller if we have found some (this
1235 	 * ensures forward progress). We'll be coming back to find
1236 	 * the rest.
1237 	 */
1238 	if (!list_empty(&data->dispose))
1239 		ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY;
1240 out:
1241 	return ret;
1242 }
1243 
1244 /**
1245  * shrink_dcache_parent - prune dcache
1246  * @parent: parent of entries to prune
1247  *
1248  * Prune the dcache to remove unused children of the parent dentry.
1249  */
1250 void shrink_dcache_parent(struct dentry *parent)
1251 {
1252 	for (;;) {
1253 		struct select_data data;
1254 
1255 		INIT_LIST_HEAD(&data.dispose);
1256 		data.start = parent;
1257 		data.found = 0;
1258 
1259 		d_walk(parent, &data, select_collect, NULL);
1260 		if (!data.found)
1261 			break;
1262 
1263 		shrink_dentry_list(&data.dispose);
1264 		cond_resched();
1265 	}
1266 }
1267 EXPORT_SYMBOL(shrink_dcache_parent);
1268 
1269 static enum d_walk_ret umount_check(void *_data, struct dentry *dentry)
1270 {
1271 	/* it has busy descendents; complain about those instead */
1272 	if (!list_empty(&dentry->d_subdirs))
1273 		return D_WALK_CONTINUE;
1274 
1275 	/* root with refcount 1 is fine */
1276 	if (dentry == _data && dentry->d_lockref.count == 1)
1277 		return D_WALK_CONTINUE;
1278 
1279 	printk(KERN_ERR "BUG: Dentry %p{i=%lx,n=%pd} "
1280 			" still in use (%d) [unmount of %s %s]\n",
1281 		       dentry,
1282 		       dentry->d_inode ?
1283 		       dentry->d_inode->i_ino : 0UL,
1284 		       dentry,
1285 		       dentry->d_lockref.count,
1286 		       dentry->d_sb->s_type->name,
1287 		       dentry->d_sb->s_id);
1288 	WARN_ON(1);
1289 	return D_WALK_CONTINUE;
1290 }
1291 
1292 static void do_one_tree(struct dentry *dentry)
1293 {
1294 	shrink_dcache_parent(dentry);
1295 	d_walk(dentry, dentry, umount_check, NULL);
1296 	d_drop(dentry);
1297 	dput(dentry);
1298 }
1299 
1300 /*
1301  * destroy the dentries attached to a superblock on unmounting
1302  */
1303 void shrink_dcache_for_umount(struct super_block *sb)
1304 {
1305 	struct dentry *dentry;
1306 
1307 	WARN(down_read_trylock(&sb->s_umount), "s_umount should've been locked");
1308 
1309 	dentry = sb->s_root;
1310 	sb->s_root = NULL;
1311 	do_one_tree(dentry);
1312 
1313 	while (!hlist_bl_empty(&sb->s_anon)) {
1314 		dentry = dget(hlist_bl_entry(hlist_bl_first(&sb->s_anon), struct dentry, d_hash));
1315 		do_one_tree(dentry);
1316 	}
1317 }
1318 
1319 struct detach_data {
1320 	struct select_data select;
1321 	struct dentry *mountpoint;
1322 };
1323 static enum d_walk_ret detach_and_collect(void *_data, struct dentry *dentry)
1324 {
1325 	struct detach_data *data = _data;
1326 
1327 	if (d_mountpoint(dentry)) {
1328 		__dget_dlock(dentry);
1329 		data->mountpoint = dentry;
1330 		return D_WALK_QUIT;
1331 	}
1332 
1333 	return select_collect(&data->select, dentry);
1334 }
1335 
1336 static void check_and_drop(void *_data)
1337 {
1338 	struct detach_data *data = _data;
1339 
1340 	if (!data->mountpoint && !data->select.found)
1341 		__d_drop(data->select.start);
1342 }
1343 
1344 /**
1345  * d_invalidate - detach submounts, prune dcache, and drop
1346  * @dentry: dentry to invalidate (aka detach, prune and drop)
1347  *
1348  * no dcache lock.
1349  *
1350  * The final d_drop is done as an atomic operation relative to
1351  * rename_lock ensuring there are no races with d_set_mounted.  This
1352  * ensures there are no unhashed dentries on the path to a mountpoint.
1353  */
1354 void d_invalidate(struct dentry *dentry)
1355 {
1356 	/*
1357 	 * If it's already been dropped, return OK.
1358 	 */
1359 	spin_lock(&dentry->d_lock);
1360 	if (d_unhashed(dentry)) {
1361 		spin_unlock(&dentry->d_lock);
1362 		return;
1363 	}
1364 	spin_unlock(&dentry->d_lock);
1365 
1366 	/* Negative dentries can be dropped without further checks */
1367 	if (!dentry->d_inode) {
1368 		d_drop(dentry);
1369 		return;
1370 	}
1371 
1372 	for (;;) {
1373 		struct detach_data data;
1374 
1375 		data.mountpoint = NULL;
1376 		INIT_LIST_HEAD(&data.select.dispose);
1377 		data.select.start = dentry;
1378 		data.select.found = 0;
1379 
1380 		d_walk(dentry, &data, detach_and_collect, check_and_drop);
1381 
1382 		if (data.select.found)
1383 			shrink_dentry_list(&data.select.dispose);
1384 
1385 		if (data.mountpoint) {
1386 			detach_mounts(data.mountpoint);
1387 			dput(data.mountpoint);
1388 		}
1389 
1390 		if (!data.mountpoint && !data.select.found)
1391 			break;
1392 
1393 		cond_resched();
1394 	}
1395 }
1396 EXPORT_SYMBOL(d_invalidate);
1397 
1398 /**
1399  * __d_alloc	-	allocate a dcache entry
1400  * @sb: filesystem it will belong to
1401  * @name: qstr of the name
1402  *
1403  * Allocates a dentry. It returns %NULL if there is insufficient memory
1404  * available. On a success the dentry is returned. The name passed in is
1405  * copied and the copy passed in may be reused after this call.
1406  */
1407 
1408 struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name)
1409 {
1410 	struct dentry *dentry;
1411 	char *dname;
1412 
1413 	dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
1414 	if (!dentry)
1415 		return NULL;
1416 
1417 	/*
1418 	 * We guarantee that the inline name is always NUL-terminated.
1419 	 * This way the memcpy() done by the name switching in rename
1420 	 * will still always have a NUL at the end, even if we might
1421 	 * be overwriting an internal NUL character
1422 	 */
1423 	dentry->d_iname[DNAME_INLINE_LEN-1] = 0;
1424 	if (name->len > DNAME_INLINE_LEN-1) {
1425 		size_t size = offsetof(struct external_name, name[1]);
1426 		struct external_name *p = kmalloc(size + name->len, GFP_KERNEL);
1427 		if (!p) {
1428 			kmem_cache_free(dentry_cache, dentry);
1429 			return NULL;
1430 		}
1431 		atomic_set(&p->u.count, 1);
1432 		dname = p->name;
1433 	} else  {
1434 		dname = dentry->d_iname;
1435 	}
1436 
1437 	dentry->d_name.len = name->len;
1438 	dentry->d_name.hash = name->hash;
1439 	memcpy(dname, name->name, name->len);
1440 	dname[name->len] = 0;
1441 
1442 	/* Make sure we always see the terminating NUL character */
1443 	smp_wmb();
1444 	dentry->d_name.name = dname;
1445 
1446 	dentry->d_lockref.count = 1;
1447 	dentry->d_flags = 0;
1448 	spin_lock_init(&dentry->d_lock);
1449 	seqcount_init(&dentry->d_seq);
1450 	dentry->d_inode = NULL;
1451 	dentry->d_parent = dentry;
1452 	dentry->d_sb = sb;
1453 	dentry->d_op = NULL;
1454 	dentry->d_fsdata = NULL;
1455 	INIT_HLIST_BL_NODE(&dentry->d_hash);
1456 	INIT_LIST_HEAD(&dentry->d_lru);
1457 	INIT_LIST_HEAD(&dentry->d_subdirs);
1458 	INIT_HLIST_NODE(&dentry->d_alias);
1459 	INIT_LIST_HEAD(&dentry->d_u.d_child);
1460 	d_set_d_op(dentry, dentry->d_sb->s_d_op);
1461 
1462 	this_cpu_inc(nr_dentry);
1463 
1464 	return dentry;
1465 }
1466 
1467 /**
1468  * d_alloc	-	allocate a dcache entry
1469  * @parent: parent of entry to allocate
1470  * @name: qstr of the name
1471  *
1472  * Allocates a dentry. It returns %NULL if there is insufficient memory
1473  * available. On a success the dentry is returned. The name passed in is
1474  * copied and the copy passed in may be reused after this call.
1475  */
1476 struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1477 {
1478 	struct dentry *dentry = __d_alloc(parent->d_sb, name);
1479 	if (!dentry)
1480 		return NULL;
1481 
1482 	spin_lock(&parent->d_lock);
1483 	/*
1484 	 * don't need child lock because it is not subject
1485 	 * to concurrency here
1486 	 */
1487 	__dget_dlock(parent);
1488 	dentry->d_parent = parent;
1489 	list_add(&dentry->d_u.d_child, &parent->d_subdirs);
1490 	spin_unlock(&parent->d_lock);
1491 
1492 	return dentry;
1493 }
1494 EXPORT_SYMBOL(d_alloc);
1495 
1496 /**
1497  * d_alloc_pseudo - allocate a dentry (for lookup-less filesystems)
1498  * @sb: the superblock
1499  * @name: qstr of the name
1500  *
1501  * For a filesystem that just pins its dentries in memory and never
1502  * performs lookups at all, return an unhashed IS_ROOT dentry.
1503  */
1504 struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
1505 {
1506 	return __d_alloc(sb, name);
1507 }
1508 EXPORT_SYMBOL(d_alloc_pseudo);
1509 
1510 struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1511 {
1512 	struct qstr q;
1513 
1514 	q.name = name;
1515 	q.len = strlen(name);
1516 	q.hash = full_name_hash(q.name, q.len);
1517 	return d_alloc(parent, &q);
1518 }
1519 EXPORT_SYMBOL(d_alloc_name);
1520 
1521 void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1522 {
1523 	WARN_ON_ONCE(dentry->d_op);
1524 	WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH	|
1525 				DCACHE_OP_COMPARE	|
1526 				DCACHE_OP_REVALIDATE	|
1527 				DCACHE_OP_WEAK_REVALIDATE	|
1528 				DCACHE_OP_DELETE ));
1529 	dentry->d_op = op;
1530 	if (!op)
1531 		return;
1532 	if (op->d_hash)
1533 		dentry->d_flags |= DCACHE_OP_HASH;
1534 	if (op->d_compare)
1535 		dentry->d_flags |= DCACHE_OP_COMPARE;
1536 	if (op->d_revalidate)
1537 		dentry->d_flags |= DCACHE_OP_REVALIDATE;
1538 	if (op->d_weak_revalidate)
1539 		dentry->d_flags |= DCACHE_OP_WEAK_REVALIDATE;
1540 	if (op->d_delete)
1541 		dentry->d_flags |= DCACHE_OP_DELETE;
1542 	if (op->d_prune)
1543 		dentry->d_flags |= DCACHE_OP_PRUNE;
1544 
1545 }
1546 EXPORT_SYMBOL(d_set_d_op);
1547 
1548 static unsigned d_flags_for_inode(struct inode *inode)
1549 {
1550 	unsigned add_flags = DCACHE_FILE_TYPE;
1551 
1552 	if (!inode)
1553 		return DCACHE_MISS_TYPE;
1554 
1555 	if (S_ISDIR(inode->i_mode)) {
1556 		add_flags = DCACHE_DIRECTORY_TYPE;
1557 		if (unlikely(!(inode->i_opflags & IOP_LOOKUP))) {
1558 			if (unlikely(!inode->i_op->lookup))
1559 				add_flags = DCACHE_AUTODIR_TYPE;
1560 			else
1561 				inode->i_opflags |= IOP_LOOKUP;
1562 		}
1563 	} else if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) {
1564 		if (unlikely(inode->i_op->follow_link))
1565 			add_flags = DCACHE_SYMLINK_TYPE;
1566 		else
1567 			inode->i_opflags |= IOP_NOFOLLOW;
1568 	}
1569 
1570 	if (unlikely(IS_AUTOMOUNT(inode)))
1571 		add_flags |= DCACHE_NEED_AUTOMOUNT;
1572 	return add_flags;
1573 }
1574 
1575 static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1576 {
1577 	unsigned add_flags = d_flags_for_inode(inode);
1578 
1579 	spin_lock(&dentry->d_lock);
1580 	__d_set_type(dentry, add_flags);
1581 	if (inode)
1582 		hlist_add_head(&dentry->d_alias, &inode->i_dentry);
1583 	dentry->d_inode = inode;
1584 	dentry_rcuwalk_barrier(dentry);
1585 	spin_unlock(&dentry->d_lock);
1586 	fsnotify_d_instantiate(dentry, inode);
1587 }
1588 
1589 /**
1590  * d_instantiate - fill in inode information for a dentry
1591  * @entry: dentry to complete
1592  * @inode: inode to attach to this dentry
1593  *
1594  * Fill in inode information in the entry.
1595  *
1596  * This turns negative dentries into productive full members
1597  * of society.
1598  *
1599  * NOTE! This assumes that the inode count has been incremented
1600  * (or otherwise set) by the caller to indicate that it is now
1601  * in use by the dcache.
1602  */
1603 
1604 void d_instantiate(struct dentry *entry, struct inode * inode)
1605 {
1606 	BUG_ON(!hlist_unhashed(&entry->d_alias));
1607 	if (inode)
1608 		spin_lock(&inode->i_lock);
1609 	__d_instantiate(entry, inode);
1610 	if (inode)
1611 		spin_unlock(&inode->i_lock);
1612 	security_d_instantiate(entry, inode);
1613 }
1614 EXPORT_SYMBOL(d_instantiate);
1615 
1616 /**
1617  * d_instantiate_unique - instantiate a non-aliased dentry
1618  * @entry: dentry to instantiate
1619  * @inode: inode to attach to this dentry
1620  *
1621  * Fill in inode information in the entry. On success, it returns NULL.
1622  * If an unhashed alias of "entry" already exists, then we return the
1623  * aliased dentry instead and drop one reference to inode.
1624  *
1625  * Note that in order to avoid conflicts with rename() etc, the caller
1626  * had better be holding the parent directory semaphore.
1627  *
1628  * This also assumes that the inode count has been incremented
1629  * (or otherwise set) by the caller to indicate that it is now
1630  * in use by the dcache.
1631  */
1632 static struct dentry *__d_instantiate_unique(struct dentry *entry,
1633 					     struct inode *inode)
1634 {
1635 	struct dentry *alias;
1636 	int len = entry->d_name.len;
1637 	const char *name = entry->d_name.name;
1638 	unsigned int hash = entry->d_name.hash;
1639 
1640 	if (!inode) {
1641 		__d_instantiate(entry, NULL);
1642 		return NULL;
1643 	}
1644 
1645 	hlist_for_each_entry(alias, &inode->i_dentry, d_alias) {
1646 		/*
1647 		 * Don't need alias->d_lock here, because aliases with
1648 		 * d_parent == entry->d_parent are not subject to name or
1649 		 * parent changes, because the parent inode i_mutex is held.
1650 		 */
1651 		if (alias->d_name.hash != hash)
1652 			continue;
1653 		if (alias->d_parent != entry->d_parent)
1654 			continue;
1655 		if (alias->d_name.len != len)
1656 			continue;
1657 		if (dentry_cmp(alias, name, len))
1658 			continue;
1659 		__dget(alias);
1660 		return alias;
1661 	}
1662 
1663 	__d_instantiate(entry, inode);
1664 	return NULL;
1665 }
1666 
1667 struct dentry *d_instantiate_unique(struct dentry *entry, struct inode *inode)
1668 {
1669 	struct dentry *result;
1670 
1671 	BUG_ON(!hlist_unhashed(&entry->d_alias));
1672 
1673 	if (inode)
1674 		spin_lock(&inode->i_lock);
1675 	result = __d_instantiate_unique(entry, inode);
1676 	if (inode)
1677 		spin_unlock(&inode->i_lock);
1678 
1679 	if (!result) {
1680 		security_d_instantiate(entry, inode);
1681 		return NULL;
1682 	}
1683 
1684 	BUG_ON(!d_unhashed(result));
1685 	iput(inode);
1686 	return result;
1687 }
1688 
1689 EXPORT_SYMBOL(d_instantiate_unique);
1690 
1691 /**
1692  * d_instantiate_no_diralias - instantiate a non-aliased dentry
1693  * @entry: dentry to complete
1694  * @inode: inode to attach to this dentry
1695  *
1696  * Fill in inode information in the entry.  If a directory alias is found, then
1697  * return an error (and drop inode).  Together with d_materialise_unique() this
1698  * guarantees that a directory inode may never have more than one alias.
1699  */
1700 int d_instantiate_no_diralias(struct dentry *entry, struct inode *inode)
1701 {
1702 	BUG_ON(!hlist_unhashed(&entry->d_alias));
1703 
1704 	spin_lock(&inode->i_lock);
1705 	if (S_ISDIR(inode->i_mode) && !hlist_empty(&inode->i_dentry)) {
1706 		spin_unlock(&inode->i_lock);
1707 		iput(inode);
1708 		return -EBUSY;
1709 	}
1710 	__d_instantiate(entry, inode);
1711 	spin_unlock(&inode->i_lock);
1712 	security_d_instantiate(entry, inode);
1713 
1714 	return 0;
1715 }
1716 EXPORT_SYMBOL(d_instantiate_no_diralias);
1717 
1718 struct dentry *d_make_root(struct inode *root_inode)
1719 {
1720 	struct dentry *res = NULL;
1721 
1722 	if (root_inode) {
1723 		static const struct qstr name = QSTR_INIT("/", 1);
1724 
1725 		res = __d_alloc(root_inode->i_sb, &name);
1726 		if (res)
1727 			d_instantiate(res, root_inode);
1728 		else
1729 			iput(root_inode);
1730 	}
1731 	return res;
1732 }
1733 EXPORT_SYMBOL(d_make_root);
1734 
1735 static struct dentry * __d_find_any_alias(struct inode *inode)
1736 {
1737 	struct dentry *alias;
1738 
1739 	if (hlist_empty(&inode->i_dentry))
1740 		return NULL;
1741 	alias = hlist_entry(inode->i_dentry.first, struct dentry, d_alias);
1742 	__dget(alias);
1743 	return alias;
1744 }
1745 
1746 /**
1747  * d_find_any_alias - find any alias for a given inode
1748  * @inode: inode to find an alias for
1749  *
1750  * If any aliases exist for the given inode, take and return a
1751  * reference for one of them.  If no aliases exist, return %NULL.
1752  */
1753 struct dentry *d_find_any_alias(struct inode *inode)
1754 {
1755 	struct dentry *de;
1756 
1757 	spin_lock(&inode->i_lock);
1758 	de = __d_find_any_alias(inode);
1759 	spin_unlock(&inode->i_lock);
1760 	return de;
1761 }
1762 EXPORT_SYMBOL(d_find_any_alias);
1763 
1764 static struct dentry *__d_obtain_alias(struct inode *inode, int disconnected)
1765 {
1766 	static const struct qstr anonstring = QSTR_INIT("/", 1);
1767 	struct dentry *tmp;
1768 	struct dentry *res;
1769 	unsigned add_flags;
1770 
1771 	if (!inode)
1772 		return ERR_PTR(-ESTALE);
1773 	if (IS_ERR(inode))
1774 		return ERR_CAST(inode);
1775 
1776 	res = d_find_any_alias(inode);
1777 	if (res)
1778 		goto out_iput;
1779 
1780 	tmp = __d_alloc(inode->i_sb, &anonstring);
1781 	if (!tmp) {
1782 		res = ERR_PTR(-ENOMEM);
1783 		goto out_iput;
1784 	}
1785 
1786 	spin_lock(&inode->i_lock);
1787 	res = __d_find_any_alias(inode);
1788 	if (res) {
1789 		spin_unlock(&inode->i_lock);
1790 		dput(tmp);
1791 		goto out_iput;
1792 	}
1793 
1794 	/* attach a disconnected dentry */
1795 	add_flags = d_flags_for_inode(inode);
1796 
1797 	if (disconnected)
1798 		add_flags |= DCACHE_DISCONNECTED;
1799 
1800 	spin_lock(&tmp->d_lock);
1801 	tmp->d_inode = inode;
1802 	tmp->d_flags |= add_flags;
1803 	hlist_add_head(&tmp->d_alias, &inode->i_dentry);
1804 	hlist_bl_lock(&tmp->d_sb->s_anon);
1805 	hlist_bl_add_head(&tmp->d_hash, &tmp->d_sb->s_anon);
1806 	hlist_bl_unlock(&tmp->d_sb->s_anon);
1807 	spin_unlock(&tmp->d_lock);
1808 	spin_unlock(&inode->i_lock);
1809 	security_d_instantiate(tmp, inode);
1810 
1811 	return tmp;
1812 
1813  out_iput:
1814 	if (res && !IS_ERR(res))
1815 		security_d_instantiate(res, inode);
1816 	iput(inode);
1817 	return res;
1818 }
1819 
1820 /**
1821  * d_obtain_alias - find or allocate a DISCONNECTED dentry for a given inode
1822  * @inode: inode to allocate the dentry for
1823  *
1824  * Obtain a dentry for an inode resulting from NFS filehandle conversion or
1825  * similar open by handle operations.  The returned dentry may be anonymous,
1826  * or may have a full name (if the inode was already in the cache).
1827  *
1828  * When called on a directory inode, we must ensure that the inode only ever
1829  * has one dentry.  If a dentry is found, that is returned instead of
1830  * allocating a new one.
1831  *
1832  * On successful return, the reference to the inode has been transferred
1833  * to the dentry.  In case of an error the reference on the inode is released.
1834  * To make it easier to use in export operations a %NULL or IS_ERR inode may
1835  * be passed in and the error will be propagated to the return value,
1836  * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
1837  */
1838 struct dentry *d_obtain_alias(struct inode *inode)
1839 {
1840 	return __d_obtain_alias(inode, 1);
1841 }
1842 EXPORT_SYMBOL(d_obtain_alias);
1843 
1844 /**
1845  * d_obtain_root - find or allocate a dentry for a given inode
1846  * @inode: inode to allocate the dentry for
1847  *
1848  * Obtain an IS_ROOT dentry for the root of a filesystem.
1849  *
1850  * We must ensure that directory inodes only ever have one dentry.  If a
1851  * dentry is found, that is returned instead of allocating a new one.
1852  *
1853  * On successful return, the reference to the inode has been transferred
1854  * to the dentry.  In case of an error the reference on the inode is
1855  * released.  A %NULL or IS_ERR inode may be passed in and will be the
1856  * error will be propagate to the return value, with a %NULL @inode
1857  * replaced by ERR_PTR(-ESTALE).
1858  */
1859 struct dentry *d_obtain_root(struct inode *inode)
1860 {
1861 	return __d_obtain_alias(inode, 0);
1862 }
1863 EXPORT_SYMBOL(d_obtain_root);
1864 
1865 /**
1866  * d_add_ci - lookup or allocate new dentry with case-exact name
1867  * @inode:  the inode case-insensitive lookup has found
1868  * @dentry: the negative dentry that was passed to the parent's lookup func
1869  * @name:   the case-exact name to be associated with the returned dentry
1870  *
1871  * This is to avoid filling the dcache with case-insensitive names to the
1872  * same inode, only the actual correct case is stored in the dcache for
1873  * case-insensitive filesystems.
1874  *
1875  * For a case-insensitive lookup match and if the the case-exact dentry
1876  * already exists in in the dcache, use it and return it.
1877  *
1878  * If no entry exists with the exact case name, allocate new dentry with
1879  * the exact case, and return the spliced entry.
1880  */
1881 struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
1882 			struct qstr *name)
1883 {
1884 	struct dentry *found;
1885 	struct dentry *new;
1886 
1887 	/*
1888 	 * First check if a dentry matching the name already exists,
1889 	 * if not go ahead and create it now.
1890 	 */
1891 	found = d_hash_and_lookup(dentry->d_parent, name);
1892 	if (unlikely(IS_ERR(found)))
1893 		goto err_out;
1894 	if (!found) {
1895 		new = d_alloc(dentry->d_parent, name);
1896 		if (!new) {
1897 			found = ERR_PTR(-ENOMEM);
1898 			goto err_out;
1899 		}
1900 
1901 		found = d_splice_alias(inode, new);
1902 		if (found) {
1903 			dput(new);
1904 			return found;
1905 		}
1906 		return new;
1907 	}
1908 
1909 	/*
1910 	 * If a matching dentry exists, and it's not negative use it.
1911 	 *
1912 	 * Decrement the reference count to balance the iget() done
1913 	 * earlier on.
1914 	 */
1915 	if (found->d_inode) {
1916 		if (unlikely(found->d_inode != inode)) {
1917 			/* This can't happen because bad inodes are unhashed. */
1918 			BUG_ON(!is_bad_inode(inode));
1919 			BUG_ON(!is_bad_inode(found->d_inode));
1920 		}
1921 		iput(inode);
1922 		return found;
1923 	}
1924 
1925 	/*
1926 	 * Negative dentry: instantiate it unless the inode is a directory and
1927 	 * already has a dentry.
1928 	 */
1929 	new = d_splice_alias(inode, found);
1930 	if (new) {
1931 		dput(found);
1932 		found = new;
1933 	}
1934 	return found;
1935 
1936 err_out:
1937 	iput(inode);
1938 	return found;
1939 }
1940 EXPORT_SYMBOL(d_add_ci);
1941 
1942 /*
1943  * Do the slow-case of the dentry name compare.
1944  *
1945  * Unlike the dentry_cmp() function, we need to atomically
1946  * load the name and length information, so that the
1947  * filesystem can rely on them, and can use the 'name' and
1948  * 'len' information without worrying about walking off the
1949  * end of memory etc.
1950  *
1951  * Thus the read_seqcount_retry() and the "duplicate" info
1952  * in arguments (the low-level filesystem should not look
1953  * at the dentry inode or name contents directly, since
1954  * rename can change them while we're in RCU mode).
1955  */
1956 enum slow_d_compare {
1957 	D_COMP_OK,
1958 	D_COMP_NOMATCH,
1959 	D_COMP_SEQRETRY,
1960 };
1961 
1962 static noinline enum slow_d_compare slow_dentry_cmp(
1963 		const struct dentry *parent,
1964 		struct dentry *dentry,
1965 		unsigned int seq,
1966 		const struct qstr *name)
1967 {
1968 	int tlen = dentry->d_name.len;
1969 	const char *tname = dentry->d_name.name;
1970 
1971 	if (read_seqcount_retry(&dentry->d_seq, seq)) {
1972 		cpu_relax();
1973 		return D_COMP_SEQRETRY;
1974 	}
1975 	if (parent->d_op->d_compare(parent, dentry, tlen, tname, name))
1976 		return D_COMP_NOMATCH;
1977 	return D_COMP_OK;
1978 }
1979 
1980 /**
1981  * __d_lookup_rcu - search for a dentry (racy, store-free)
1982  * @parent: parent dentry
1983  * @name: qstr of name we wish to find
1984  * @seqp: returns d_seq value at the point where the dentry was found
1985  * Returns: dentry, or NULL
1986  *
1987  * __d_lookup_rcu is the dcache lookup function for rcu-walk name
1988  * resolution (store-free path walking) design described in
1989  * Documentation/filesystems/path-lookup.txt.
1990  *
1991  * This is not to be used outside core vfs.
1992  *
1993  * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
1994  * held, and rcu_read_lock held. The returned dentry must not be stored into
1995  * without taking d_lock and checking d_seq sequence count against @seq
1996  * returned here.
1997  *
1998  * A refcount may be taken on the found dentry with the d_rcu_to_refcount
1999  * function.
2000  *
2001  * Alternatively, __d_lookup_rcu may be called again to look up the child of
2002  * the returned dentry, so long as its parent's seqlock is checked after the
2003  * child is looked up. Thus, an interlocking stepping of sequence lock checks
2004  * is formed, giving integrity down the path walk.
2005  *
2006  * NOTE! The caller *has* to check the resulting dentry against the sequence
2007  * number we've returned before using any of the resulting dentry state!
2008  */
2009 struct dentry *__d_lookup_rcu(const struct dentry *parent,
2010 				const struct qstr *name,
2011 				unsigned *seqp)
2012 {
2013 	u64 hashlen = name->hash_len;
2014 	const unsigned char *str = name->name;
2015 	struct hlist_bl_head *b = d_hash(parent, hashlen_hash(hashlen));
2016 	struct hlist_bl_node *node;
2017 	struct dentry *dentry;
2018 
2019 	/*
2020 	 * Note: There is significant duplication with __d_lookup_rcu which is
2021 	 * required to prevent single threaded performance regressions
2022 	 * especially on architectures where smp_rmb (in seqcounts) are costly.
2023 	 * Keep the two functions in sync.
2024 	 */
2025 
2026 	/*
2027 	 * The hash list is protected using RCU.
2028 	 *
2029 	 * Carefully use d_seq when comparing a candidate dentry, to avoid
2030 	 * races with d_move().
2031 	 *
2032 	 * It is possible that concurrent renames can mess up our list
2033 	 * walk here and result in missing our dentry, resulting in the
2034 	 * false-negative result. d_lookup() protects against concurrent
2035 	 * renames using rename_lock seqlock.
2036 	 *
2037 	 * See Documentation/filesystems/path-lookup.txt for more details.
2038 	 */
2039 	hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2040 		unsigned seq;
2041 
2042 seqretry:
2043 		/*
2044 		 * The dentry sequence count protects us from concurrent
2045 		 * renames, and thus protects parent and name fields.
2046 		 *
2047 		 * The caller must perform a seqcount check in order
2048 		 * to do anything useful with the returned dentry.
2049 		 *
2050 		 * NOTE! We do a "raw" seqcount_begin here. That means that
2051 		 * we don't wait for the sequence count to stabilize if it
2052 		 * is in the middle of a sequence change. If we do the slow
2053 		 * dentry compare, we will do seqretries until it is stable,
2054 		 * and if we end up with a successful lookup, we actually
2055 		 * want to exit RCU lookup anyway.
2056 		 */
2057 		seq = raw_seqcount_begin(&dentry->d_seq);
2058 		if (dentry->d_parent != parent)
2059 			continue;
2060 		if (d_unhashed(dentry))
2061 			continue;
2062 
2063 		if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) {
2064 			if (dentry->d_name.hash != hashlen_hash(hashlen))
2065 				continue;
2066 			*seqp = seq;
2067 			switch (slow_dentry_cmp(parent, dentry, seq, name)) {
2068 			case D_COMP_OK:
2069 				return dentry;
2070 			case D_COMP_NOMATCH:
2071 				continue;
2072 			default:
2073 				goto seqretry;
2074 			}
2075 		}
2076 
2077 		if (dentry->d_name.hash_len != hashlen)
2078 			continue;
2079 		*seqp = seq;
2080 		if (!dentry_cmp(dentry, str, hashlen_len(hashlen)))
2081 			return dentry;
2082 	}
2083 	return NULL;
2084 }
2085 
2086 /**
2087  * d_lookup - search for a dentry
2088  * @parent: parent dentry
2089  * @name: qstr of name we wish to find
2090  * Returns: dentry, or NULL
2091  *
2092  * d_lookup searches the children of the parent dentry for the name in
2093  * question. If the dentry is found its reference count is incremented and the
2094  * dentry is returned. The caller must use dput to free the entry when it has
2095  * finished using it. %NULL is returned if the dentry does not exist.
2096  */
2097 struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name)
2098 {
2099 	struct dentry *dentry;
2100 	unsigned seq;
2101 
2102 	do {
2103 		seq = read_seqbegin(&rename_lock);
2104 		dentry = __d_lookup(parent, name);
2105 		if (dentry)
2106 			break;
2107 	} while (read_seqretry(&rename_lock, seq));
2108 	return dentry;
2109 }
2110 EXPORT_SYMBOL(d_lookup);
2111 
2112 /**
2113  * __d_lookup - search for a dentry (racy)
2114  * @parent: parent dentry
2115  * @name: qstr of name we wish to find
2116  * Returns: dentry, or NULL
2117  *
2118  * __d_lookup is like d_lookup, however it may (rarely) return a
2119  * false-negative result due to unrelated rename activity.
2120  *
2121  * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
2122  * however it must be used carefully, eg. with a following d_lookup in
2123  * the case of failure.
2124  *
2125  * __d_lookup callers must be commented.
2126  */
2127 struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name)
2128 {
2129 	unsigned int len = name->len;
2130 	unsigned int hash = name->hash;
2131 	const unsigned char *str = name->name;
2132 	struct hlist_bl_head *b = d_hash(parent, hash);
2133 	struct hlist_bl_node *node;
2134 	struct dentry *found = NULL;
2135 	struct dentry *dentry;
2136 
2137 	/*
2138 	 * Note: There is significant duplication with __d_lookup_rcu which is
2139 	 * required to prevent single threaded performance regressions
2140 	 * especially on architectures where smp_rmb (in seqcounts) are costly.
2141 	 * Keep the two functions in sync.
2142 	 */
2143 
2144 	/*
2145 	 * The hash list is protected using RCU.
2146 	 *
2147 	 * Take d_lock when comparing a candidate dentry, to avoid races
2148 	 * with d_move().
2149 	 *
2150 	 * It is possible that concurrent renames can mess up our list
2151 	 * walk here and result in missing our dentry, resulting in the
2152 	 * false-negative result. d_lookup() protects against concurrent
2153 	 * renames using rename_lock seqlock.
2154 	 *
2155 	 * See Documentation/filesystems/path-lookup.txt for more details.
2156 	 */
2157 	rcu_read_lock();
2158 
2159 	hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2160 
2161 		if (dentry->d_name.hash != hash)
2162 			continue;
2163 
2164 		spin_lock(&dentry->d_lock);
2165 		if (dentry->d_parent != parent)
2166 			goto next;
2167 		if (d_unhashed(dentry))
2168 			goto next;
2169 
2170 		/*
2171 		 * It is safe to compare names since d_move() cannot
2172 		 * change the qstr (protected by d_lock).
2173 		 */
2174 		if (parent->d_flags & DCACHE_OP_COMPARE) {
2175 			int tlen = dentry->d_name.len;
2176 			const char *tname = dentry->d_name.name;
2177 			if (parent->d_op->d_compare(parent, dentry, tlen, tname, name))
2178 				goto next;
2179 		} else {
2180 			if (dentry->d_name.len != len)
2181 				goto next;
2182 			if (dentry_cmp(dentry, str, len))
2183 				goto next;
2184 		}
2185 
2186 		dentry->d_lockref.count++;
2187 		found = dentry;
2188 		spin_unlock(&dentry->d_lock);
2189 		break;
2190 next:
2191 		spin_unlock(&dentry->d_lock);
2192  	}
2193  	rcu_read_unlock();
2194 
2195  	return found;
2196 }
2197 
2198 /**
2199  * d_hash_and_lookup - hash the qstr then search for a dentry
2200  * @dir: Directory to search in
2201  * @name: qstr of name we wish to find
2202  *
2203  * On lookup failure NULL is returned; on bad name - ERR_PTR(-error)
2204  */
2205 struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
2206 {
2207 	/*
2208 	 * Check for a fs-specific hash function. Note that we must
2209 	 * calculate the standard hash first, as the d_op->d_hash()
2210 	 * routine may choose to leave the hash value unchanged.
2211 	 */
2212 	name->hash = full_name_hash(name->name, name->len);
2213 	if (dir->d_flags & DCACHE_OP_HASH) {
2214 		int err = dir->d_op->d_hash(dir, name);
2215 		if (unlikely(err < 0))
2216 			return ERR_PTR(err);
2217 	}
2218 	return d_lookup(dir, name);
2219 }
2220 EXPORT_SYMBOL(d_hash_and_lookup);
2221 
2222 /**
2223  * d_validate - verify dentry provided from insecure source (deprecated)
2224  * @dentry: The dentry alleged to be valid child of @dparent
2225  * @dparent: The parent dentry (known to be valid)
2226  *
2227  * An insecure source has sent us a dentry, here we verify it and dget() it.
2228  * This is used by ncpfs in its readdir implementation.
2229  * Zero is returned in the dentry is invalid.
2230  *
2231  * This function is slow for big directories, and deprecated, do not use it.
2232  */
2233 int d_validate(struct dentry *dentry, struct dentry *dparent)
2234 {
2235 	struct dentry *child;
2236 
2237 	spin_lock(&dparent->d_lock);
2238 	list_for_each_entry(child, &dparent->d_subdirs, d_u.d_child) {
2239 		if (dentry == child) {
2240 			spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
2241 			__dget_dlock(dentry);
2242 			spin_unlock(&dentry->d_lock);
2243 			spin_unlock(&dparent->d_lock);
2244 			return 1;
2245 		}
2246 	}
2247 	spin_unlock(&dparent->d_lock);
2248 
2249 	return 0;
2250 }
2251 EXPORT_SYMBOL(d_validate);
2252 
2253 /*
2254  * When a file is deleted, we have two options:
2255  * - turn this dentry into a negative dentry
2256  * - unhash this dentry and free it.
2257  *
2258  * Usually, we want to just turn this into
2259  * a negative dentry, but if anybody else is
2260  * currently using the dentry or the inode
2261  * we can't do that and we fall back on removing
2262  * it from the hash queues and waiting for
2263  * it to be deleted later when it has no users
2264  */
2265 
2266 /**
2267  * d_delete - delete a dentry
2268  * @dentry: The dentry to delete
2269  *
2270  * Turn the dentry into a negative dentry if possible, otherwise
2271  * remove it from the hash queues so it can be deleted later
2272  */
2273 
2274 void d_delete(struct dentry * dentry)
2275 {
2276 	struct inode *inode;
2277 	int isdir = 0;
2278 	/*
2279 	 * Are we the only user?
2280 	 */
2281 again:
2282 	spin_lock(&dentry->d_lock);
2283 	inode = dentry->d_inode;
2284 	isdir = S_ISDIR(inode->i_mode);
2285 	if (dentry->d_lockref.count == 1) {
2286 		if (!spin_trylock(&inode->i_lock)) {
2287 			spin_unlock(&dentry->d_lock);
2288 			cpu_relax();
2289 			goto again;
2290 		}
2291 		dentry->d_flags &= ~DCACHE_CANT_MOUNT;
2292 		dentry_unlink_inode(dentry);
2293 		fsnotify_nameremove(dentry, isdir);
2294 		return;
2295 	}
2296 
2297 	if (!d_unhashed(dentry))
2298 		__d_drop(dentry);
2299 
2300 	spin_unlock(&dentry->d_lock);
2301 
2302 	fsnotify_nameremove(dentry, isdir);
2303 }
2304 EXPORT_SYMBOL(d_delete);
2305 
2306 static void __d_rehash(struct dentry * entry, struct hlist_bl_head *b)
2307 {
2308 	BUG_ON(!d_unhashed(entry));
2309 	hlist_bl_lock(b);
2310 	entry->d_flags |= DCACHE_RCUACCESS;
2311 	hlist_bl_add_head_rcu(&entry->d_hash, b);
2312 	hlist_bl_unlock(b);
2313 }
2314 
2315 static void _d_rehash(struct dentry * entry)
2316 {
2317 	__d_rehash(entry, d_hash(entry->d_parent, entry->d_name.hash));
2318 }
2319 
2320 /**
2321  * d_rehash	- add an entry back to the hash
2322  * @entry: dentry to add to the hash
2323  *
2324  * Adds a dentry to the hash according to its name.
2325  */
2326 
2327 void d_rehash(struct dentry * entry)
2328 {
2329 	spin_lock(&entry->d_lock);
2330 	_d_rehash(entry);
2331 	spin_unlock(&entry->d_lock);
2332 }
2333 EXPORT_SYMBOL(d_rehash);
2334 
2335 /**
2336  * dentry_update_name_case - update case insensitive dentry with a new name
2337  * @dentry: dentry to be updated
2338  * @name: new name
2339  *
2340  * Update a case insensitive dentry with new case of name.
2341  *
2342  * dentry must have been returned by d_lookup with name @name. Old and new
2343  * name lengths must match (ie. no d_compare which allows mismatched name
2344  * lengths).
2345  *
2346  * Parent inode i_mutex must be held over d_lookup and into this call (to
2347  * keep renames and concurrent inserts, and readdir(2) away).
2348  */
2349 void dentry_update_name_case(struct dentry *dentry, struct qstr *name)
2350 {
2351 	BUG_ON(!mutex_is_locked(&dentry->d_parent->d_inode->i_mutex));
2352 	BUG_ON(dentry->d_name.len != name->len); /* d_lookup gives this */
2353 
2354 	spin_lock(&dentry->d_lock);
2355 	write_seqcount_begin(&dentry->d_seq);
2356 	memcpy((unsigned char *)dentry->d_name.name, name->name, name->len);
2357 	write_seqcount_end(&dentry->d_seq);
2358 	spin_unlock(&dentry->d_lock);
2359 }
2360 EXPORT_SYMBOL(dentry_update_name_case);
2361 
2362 static void swap_names(struct dentry *dentry, struct dentry *target)
2363 {
2364 	if (unlikely(dname_external(target))) {
2365 		if (unlikely(dname_external(dentry))) {
2366 			/*
2367 			 * Both external: swap the pointers
2368 			 */
2369 			swap(target->d_name.name, dentry->d_name.name);
2370 		} else {
2371 			/*
2372 			 * dentry:internal, target:external.  Steal target's
2373 			 * storage and make target internal.
2374 			 */
2375 			memcpy(target->d_iname, dentry->d_name.name,
2376 					dentry->d_name.len + 1);
2377 			dentry->d_name.name = target->d_name.name;
2378 			target->d_name.name = target->d_iname;
2379 		}
2380 	} else {
2381 		if (unlikely(dname_external(dentry))) {
2382 			/*
2383 			 * dentry:external, target:internal.  Give dentry's
2384 			 * storage to target and make dentry internal
2385 			 */
2386 			memcpy(dentry->d_iname, target->d_name.name,
2387 					target->d_name.len + 1);
2388 			target->d_name.name = dentry->d_name.name;
2389 			dentry->d_name.name = dentry->d_iname;
2390 		} else {
2391 			/*
2392 			 * Both are internal.
2393 			 */
2394 			unsigned int i;
2395 			BUILD_BUG_ON(!IS_ALIGNED(DNAME_INLINE_LEN, sizeof(long)));
2396 			for (i = 0; i < DNAME_INLINE_LEN / sizeof(long); i++) {
2397 				swap(((long *) &dentry->d_iname)[i],
2398 				     ((long *) &target->d_iname)[i]);
2399 			}
2400 		}
2401 	}
2402 	swap(dentry->d_name.hash_len, target->d_name.hash_len);
2403 }
2404 
2405 static void copy_name(struct dentry *dentry, struct dentry *target)
2406 {
2407 	struct external_name *old_name = NULL;
2408 	if (unlikely(dname_external(dentry)))
2409 		old_name = external_name(dentry);
2410 	if (unlikely(dname_external(target))) {
2411 		atomic_inc(&external_name(target)->u.count);
2412 		dentry->d_name = target->d_name;
2413 	} else {
2414 		memcpy(dentry->d_iname, target->d_name.name,
2415 				target->d_name.len + 1);
2416 		dentry->d_name.name = dentry->d_iname;
2417 		dentry->d_name.hash_len = target->d_name.hash_len;
2418 	}
2419 	if (old_name && likely(atomic_dec_and_test(&old_name->u.count)))
2420 		kfree_rcu(old_name, u.head);
2421 }
2422 
2423 static void dentry_lock_for_move(struct dentry *dentry, struct dentry *target)
2424 {
2425 	/*
2426 	 * XXXX: do we really need to take target->d_lock?
2427 	 */
2428 	if (IS_ROOT(dentry) || dentry->d_parent == target->d_parent)
2429 		spin_lock(&target->d_parent->d_lock);
2430 	else {
2431 		if (d_ancestor(dentry->d_parent, target->d_parent)) {
2432 			spin_lock(&dentry->d_parent->d_lock);
2433 			spin_lock_nested(&target->d_parent->d_lock,
2434 						DENTRY_D_LOCK_NESTED);
2435 		} else {
2436 			spin_lock(&target->d_parent->d_lock);
2437 			spin_lock_nested(&dentry->d_parent->d_lock,
2438 						DENTRY_D_LOCK_NESTED);
2439 		}
2440 	}
2441 	if (target < dentry) {
2442 		spin_lock_nested(&target->d_lock, 2);
2443 		spin_lock_nested(&dentry->d_lock, 3);
2444 	} else {
2445 		spin_lock_nested(&dentry->d_lock, 2);
2446 		spin_lock_nested(&target->d_lock, 3);
2447 	}
2448 }
2449 
2450 static void dentry_unlock_for_move(struct dentry *dentry, struct dentry *target)
2451 {
2452 	if (target->d_parent != dentry->d_parent)
2453 		spin_unlock(&dentry->d_parent->d_lock);
2454 	if (target->d_parent != target)
2455 		spin_unlock(&target->d_parent->d_lock);
2456 	spin_unlock(&target->d_lock);
2457 	spin_unlock(&dentry->d_lock);
2458 }
2459 
2460 /*
2461  * When switching names, the actual string doesn't strictly have to
2462  * be preserved in the target - because we're dropping the target
2463  * anyway. As such, we can just do a simple memcpy() to copy over
2464  * the new name before we switch, unless we are going to rehash
2465  * it.  Note that if we *do* unhash the target, we are not allowed
2466  * to rehash it without giving it a new name/hash key - whether
2467  * we swap or overwrite the names here, resulting name won't match
2468  * the reality in filesystem; it's only there for d_path() purposes.
2469  * Note that all of this is happening under rename_lock, so the
2470  * any hash lookup seeing it in the middle of manipulations will
2471  * be discarded anyway.  So we do not care what happens to the hash
2472  * key in that case.
2473  */
2474 /*
2475  * __d_move - move a dentry
2476  * @dentry: entry to move
2477  * @target: new dentry
2478  * @exchange: exchange the two dentries
2479  *
2480  * Update the dcache to reflect the move of a file name. Negative
2481  * dcache entries should not be moved in this way. Caller must hold
2482  * rename_lock, the i_mutex of the source and target directories,
2483  * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
2484  */
2485 static void __d_move(struct dentry *dentry, struct dentry *target,
2486 		     bool exchange)
2487 {
2488 	if (!dentry->d_inode)
2489 		printk(KERN_WARNING "VFS: moving negative dcache entry\n");
2490 
2491 	BUG_ON(d_ancestor(dentry, target));
2492 	BUG_ON(d_ancestor(target, dentry));
2493 
2494 	dentry_lock_for_move(dentry, target);
2495 
2496 	write_seqcount_begin(&dentry->d_seq);
2497 	write_seqcount_begin_nested(&target->d_seq, DENTRY_D_LOCK_NESTED);
2498 
2499 	/* __d_drop does write_seqcount_barrier, but they're OK to nest. */
2500 
2501 	/*
2502 	 * Move the dentry to the target hash queue. Don't bother checking
2503 	 * for the same hash queue because of how unlikely it is.
2504 	 */
2505 	__d_drop(dentry);
2506 	__d_rehash(dentry, d_hash(target->d_parent, target->d_name.hash));
2507 
2508 	/*
2509 	 * Unhash the target (d_delete() is not usable here).  If exchanging
2510 	 * the two dentries, then rehash onto the other's hash queue.
2511 	 */
2512 	__d_drop(target);
2513 	if (exchange) {
2514 		__d_rehash(target,
2515 			   d_hash(dentry->d_parent, dentry->d_name.hash));
2516 	}
2517 
2518 	/* Switch the names.. */
2519 	if (exchange)
2520 		swap_names(dentry, target);
2521 	else
2522 		copy_name(dentry, target);
2523 
2524 	/* ... and switch them in the tree */
2525 	if (IS_ROOT(dentry)) {
2526 		/* splicing a tree */
2527 		dentry->d_parent = target->d_parent;
2528 		target->d_parent = target;
2529 		list_del_init(&target->d_u.d_child);
2530 		list_move(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs);
2531 	} else {
2532 		/* swapping two dentries */
2533 		swap(dentry->d_parent, target->d_parent);
2534 		list_move(&target->d_u.d_child, &target->d_parent->d_subdirs);
2535 		list_move(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs);
2536 		if (exchange)
2537 			fsnotify_d_move(target);
2538 		fsnotify_d_move(dentry);
2539 	}
2540 
2541 	write_seqcount_end(&target->d_seq);
2542 	write_seqcount_end(&dentry->d_seq);
2543 
2544 	dentry_unlock_for_move(dentry, target);
2545 }
2546 
2547 /*
2548  * d_move - move a dentry
2549  * @dentry: entry to move
2550  * @target: new dentry
2551  *
2552  * Update the dcache to reflect the move of a file name. Negative
2553  * dcache entries should not be moved in this way. See the locking
2554  * requirements for __d_move.
2555  */
2556 void d_move(struct dentry *dentry, struct dentry *target)
2557 {
2558 	write_seqlock(&rename_lock);
2559 	__d_move(dentry, target, false);
2560 	write_sequnlock(&rename_lock);
2561 }
2562 EXPORT_SYMBOL(d_move);
2563 
2564 /*
2565  * d_exchange - exchange two dentries
2566  * @dentry1: first dentry
2567  * @dentry2: second dentry
2568  */
2569 void d_exchange(struct dentry *dentry1, struct dentry *dentry2)
2570 {
2571 	write_seqlock(&rename_lock);
2572 
2573 	WARN_ON(!dentry1->d_inode);
2574 	WARN_ON(!dentry2->d_inode);
2575 	WARN_ON(IS_ROOT(dentry1));
2576 	WARN_ON(IS_ROOT(dentry2));
2577 
2578 	__d_move(dentry1, dentry2, true);
2579 
2580 	write_sequnlock(&rename_lock);
2581 }
2582 
2583 /**
2584  * d_ancestor - search for an ancestor
2585  * @p1: ancestor dentry
2586  * @p2: child dentry
2587  *
2588  * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2589  * an ancestor of p2, else NULL.
2590  */
2591 struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
2592 {
2593 	struct dentry *p;
2594 
2595 	for (p = p2; !IS_ROOT(p); p = p->d_parent) {
2596 		if (p->d_parent == p1)
2597 			return p;
2598 	}
2599 	return NULL;
2600 }
2601 
2602 /*
2603  * This helper attempts to cope with remotely renamed directories
2604  *
2605  * It assumes that the caller is already holding
2606  * dentry->d_parent->d_inode->i_mutex, inode->i_lock and rename_lock
2607  *
2608  * Note: If ever the locking in lock_rename() changes, then please
2609  * remember to update this too...
2610  */
2611 static struct dentry *__d_unalias(struct inode *inode,
2612 		struct dentry *dentry, struct dentry *alias)
2613 {
2614 	struct mutex *m1 = NULL, *m2 = NULL;
2615 	struct dentry *ret = ERR_PTR(-EBUSY);
2616 
2617 	/* If alias and dentry share a parent, then no extra locks required */
2618 	if (alias->d_parent == dentry->d_parent)
2619 		goto out_unalias;
2620 
2621 	/* See lock_rename() */
2622 	if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
2623 		goto out_err;
2624 	m1 = &dentry->d_sb->s_vfs_rename_mutex;
2625 	if (!mutex_trylock(&alias->d_parent->d_inode->i_mutex))
2626 		goto out_err;
2627 	m2 = &alias->d_parent->d_inode->i_mutex;
2628 out_unalias:
2629 	__d_move(alias, dentry, false);
2630 	ret = alias;
2631 out_err:
2632 	spin_unlock(&inode->i_lock);
2633 	if (m2)
2634 		mutex_unlock(m2);
2635 	if (m1)
2636 		mutex_unlock(m1);
2637 	return ret;
2638 }
2639 
2640 /**
2641  * d_splice_alias - splice a disconnected dentry into the tree if one exists
2642  * @inode:  the inode which may have a disconnected dentry
2643  * @dentry: a negative dentry which we want to point to the inode.
2644  *
2645  * If inode is a directory and has an IS_ROOT alias, then d_move that in
2646  * place of the given dentry and return it, else simply d_add the inode
2647  * to the dentry and return NULL.
2648  *
2649  * If a non-IS_ROOT directory is found, the filesystem is corrupt, and
2650  * we should error out: directories can't have multiple aliases.
2651  *
2652  * This is needed in the lookup routine of any filesystem that is exportable
2653  * (via knfsd) so that we can build dcache paths to directories effectively.
2654  *
2655  * If a dentry was found and moved, then it is returned.  Otherwise NULL
2656  * is returned.  This matches the expected return value of ->lookup.
2657  *
2658  * Cluster filesystems may call this function with a negative, hashed dentry.
2659  * In that case, we know that the inode will be a regular file, and also this
2660  * will only occur during atomic_open. So we need to check for the dentry
2661  * being already hashed only in the final case.
2662  */
2663 struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
2664 {
2665 	struct dentry *new = NULL;
2666 
2667 	if (IS_ERR(inode))
2668 		return ERR_CAST(inode);
2669 
2670 	if (inode && S_ISDIR(inode->i_mode)) {
2671 		spin_lock(&inode->i_lock);
2672 		new = __d_find_any_alias(inode);
2673 		if (new) {
2674 			if (!IS_ROOT(new)) {
2675 				spin_unlock(&inode->i_lock);
2676 				dput(new);
2677 				iput(inode);
2678 				return ERR_PTR(-EIO);
2679 			}
2680 			if (d_ancestor(new, dentry)) {
2681 				spin_unlock(&inode->i_lock);
2682 				dput(new);
2683 				iput(inode);
2684 				return ERR_PTR(-EIO);
2685 			}
2686 			write_seqlock(&rename_lock);
2687 			__d_move(new, dentry, false);
2688 			write_sequnlock(&rename_lock);
2689 			spin_unlock(&inode->i_lock);
2690 			security_d_instantiate(new, inode);
2691 			iput(inode);
2692 		} else {
2693 			/* already taking inode->i_lock, so d_add() by hand */
2694 			__d_instantiate(dentry, inode);
2695 			spin_unlock(&inode->i_lock);
2696 			security_d_instantiate(dentry, inode);
2697 			d_rehash(dentry);
2698 		}
2699 	} else {
2700 		d_instantiate(dentry, inode);
2701 		if (d_unhashed(dentry))
2702 			d_rehash(dentry);
2703 	}
2704 	return new;
2705 }
2706 EXPORT_SYMBOL(d_splice_alias);
2707 
2708 /**
2709  * d_materialise_unique - introduce an inode into the tree
2710  * @dentry: candidate dentry
2711  * @inode: inode to bind to the dentry, to which aliases may be attached
2712  *
2713  * Introduces an dentry into the tree, substituting an extant disconnected
2714  * root directory alias in its place if there is one. Caller must hold the
2715  * i_mutex of the parent directory.
2716  */
2717 struct dentry *d_materialise_unique(struct dentry *dentry, struct inode *inode)
2718 {
2719 	struct dentry *actual;
2720 
2721 	BUG_ON(!d_unhashed(dentry));
2722 
2723 	if (!inode) {
2724 		actual = dentry;
2725 		__d_instantiate(dentry, NULL);
2726 		d_rehash(actual);
2727 		goto out_nolock;
2728 	}
2729 
2730 	spin_lock(&inode->i_lock);
2731 
2732 	if (S_ISDIR(inode->i_mode)) {
2733 		struct dentry *alias;
2734 
2735 		/* Does an aliased dentry already exist? */
2736 		alias = __d_find_alias(inode);
2737 		if (alias) {
2738 			actual = alias;
2739 			write_seqlock(&rename_lock);
2740 
2741 			if (d_ancestor(alias, dentry)) {
2742 				/* Check for loops */
2743 				actual = ERR_PTR(-ELOOP);
2744 				spin_unlock(&inode->i_lock);
2745 			} else if (IS_ROOT(alias)) {
2746 				/* Is this an anonymous mountpoint that we
2747 				 * could splice into our tree? */
2748 				__d_move(alias, dentry, false);
2749 				write_sequnlock(&rename_lock);
2750 				goto found;
2751 			} else {
2752 				/* Nope, but we must(!) avoid directory
2753 				 * aliasing. This drops inode->i_lock */
2754 				actual = __d_unalias(inode, dentry, alias);
2755 			}
2756 			write_sequnlock(&rename_lock);
2757 			if (IS_ERR(actual)) {
2758 				if (PTR_ERR(actual) == -ELOOP)
2759 					pr_warn_ratelimited(
2760 						"VFS: Lookup of '%s' in %s %s"
2761 						" would have caused loop\n",
2762 						dentry->d_name.name,
2763 						inode->i_sb->s_type->name,
2764 						inode->i_sb->s_id);
2765 				dput(alias);
2766 			}
2767 			goto out_nolock;
2768 		}
2769 	}
2770 
2771 	/* Add a unique reference */
2772 	actual = __d_instantiate_unique(dentry, inode);
2773 	if (!actual)
2774 		actual = dentry;
2775 
2776 	d_rehash(actual);
2777 found:
2778 	spin_unlock(&inode->i_lock);
2779 out_nolock:
2780 	if (actual == dentry) {
2781 		security_d_instantiate(dentry, inode);
2782 		return NULL;
2783 	}
2784 
2785 	iput(inode);
2786 	return actual;
2787 }
2788 EXPORT_SYMBOL_GPL(d_materialise_unique);
2789 
2790 static int prepend(char **buffer, int *buflen, const char *str, int namelen)
2791 {
2792 	*buflen -= namelen;
2793 	if (*buflen < 0)
2794 		return -ENAMETOOLONG;
2795 	*buffer -= namelen;
2796 	memcpy(*buffer, str, namelen);
2797 	return 0;
2798 }
2799 
2800 /**
2801  * prepend_name - prepend a pathname in front of current buffer pointer
2802  * @buffer: buffer pointer
2803  * @buflen: allocated length of the buffer
2804  * @name:   name string and length qstr structure
2805  *
2806  * With RCU path tracing, it may race with d_move(). Use ACCESS_ONCE() to
2807  * make sure that either the old or the new name pointer and length are
2808  * fetched. However, there may be mismatch between length and pointer.
2809  * The length cannot be trusted, we need to copy it byte-by-byte until
2810  * the length is reached or a null byte is found. It also prepends "/" at
2811  * the beginning of the name. The sequence number check at the caller will
2812  * retry it again when a d_move() does happen. So any garbage in the buffer
2813  * due to mismatched pointer and length will be discarded.
2814  *
2815  * Data dependency barrier is needed to make sure that we see that terminating
2816  * NUL.  Alpha strikes again, film at 11...
2817  */
2818 static int prepend_name(char **buffer, int *buflen, struct qstr *name)
2819 {
2820 	const char *dname = ACCESS_ONCE(name->name);
2821 	u32 dlen = ACCESS_ONCE(name->len);
2822 	char *p;
2823 
2824 	smp_read_barrier_depends();
2825 
2826 	*buflen -= dlen + 1;
2827 	if (*buflen < 0)
2828 		return -ENAMETOOLONG;
2829 	p = *buffer -= dlen + 1;
2830 	*p++ = '/';
2831 	while (dlen--) {
2832 		char c = *dname++;
2833 		if (!c)
2834 			break;
2835 		*p++ = c;
2836 	}
2837 	return 0;
2838 }
2839 
2840 /**
2841  * prepend_path - Prepend path string to a buffer
2842  * @path: the dentry/vfsmount to report
2843  * @root: root vfsmnt/dentry
2844  * @buffer: pointer to the end of the buffer
2845  * @buflen: pointer to buffer length
2846  *
2847  * The function will first try to write out the pathname without taking any
2848  * lock other than the RCU read lock to make sure that dentries won't go away.
2849  * It only checks the sequence number of the global rename_lock as any change
2850  * in the dentry's d_seq will be preceded by changes in the rename_lock
2851  * sequence number. If the sequence number had been changed, it will restart
2852  * the whole pathname back-tracing sequence again by taking the rename_lock.
2853  * In this case, there is no need to take the RCU read lock as the recursive
2854  * parent pointer references will keep the dentry chain alive as long as no
2855  * rename operation is performed.
2856  */
2857 static int prepend_path(const struct path *path,
2858 			const struct path *root,
2859 			char **buffer, int *buflen)
2860 {
2861 	struct dentry *dentry;
2862 	struct vfsmount *vfsmnt;
2863 	struct mount *mnt;
2864 	int error = 0;
2865 	unsigned seq, m_seq = 0;
2866 	char *bptr;
2867 	int blen;
2868 
2869 	rcu_read_lock();
2870 restart_mnt:
2871 	read_seqbegin_or_lock(&mount_lock, &m_seq);
2872 	seq = 0;
2873 	rcu_read_lock();
2874 restart:
2875 	bptr = *buffer;
2876 	blen = *buflen;
2877 	error = 0;
2878 	dentry = path->dentry;
2879 	vfsmnt = path->mnt;
2880 	mnt = real_mount(vfsmnt);
2881 	read_seqbegin_or_lock(&rename_lock, &seq);
2882 	while (dentry != root->dentry || vfsmnt != root->mnt) {
2883 		struct dentry * parent;
2884 
2885 		if (dentry == vfsmnt->mnt_root || IS_ROOT(dentry)) {
2886 			struct mount *parent = ACCESS_ONCE(mnt->mnt_parent);
2887 			/* Global root? */
2888 			if (mnt != parent) {
2889 				dentry = ACCESS_ONCE(mnt->mnt_mountpoint);
2890 				mnt = parent;
2891 				vfsmnt = &mnt->mnt;
2892 				continue;
2893 			}
2894 			/*
2895 			 * Filesystems needing to implement special "root names"
2896 			 * should do so with ->d_dname()
2897 			 */
2898 			if (IS_ROOT(dentry) &&
2899 			   (dentry->d_name.len != 1 ||
2900 			    dentry->d_name.name[0] != '/')) {
2901 				WARN(1, "Root dentry has weird name <%.*s>\n",
2902 				     (int) dentry->d_name.len,
2903 				     dentry->d_name.name);
2904 			}
2905 			if (!error)
2906 				error = is_mounted(vfsmnt) ? 1 : 2;
2907 			break;
2908 		}
2909 		parent = dentry->d_parent;
2910 		prefetch(parent);
2911 		error = prepend_name(&bptr, &blen, &dentry->d_name);
2912 		if (error)
2913 			break;
2914 
2915 		dentry = parent;
2916 	}
2917 	if (!(seq & 1))
2918 		rcu_read_unlock();
2919 	if (need_seqretry(&rename_lock, seq)) {
2920 		seq = 1;
2921 		goto restart;
2922 	}
2923 	done_seqretry(&rename_lock, seq);
2924 
2925 	if (!(m_seq & 1))
2926 		rcu_read_unlock();
2927 	if (need_seqretry(&mount_lock, m_seq)) {
2928 		m_seq = 1;
2929 		goto restart_mnt;
2930 	}
2931 	done_seqretry(&mount_lock, m_seq);
2932 
2933 	if (error >= 0 && bptr == *buffer) {
2934 		if (--blen < 0)
2935 			error = -ENAMETOOLONG;
2936 		else
2937 			*--bptr = '/';
2938 	}
2939 	*buffer = bptr;
2940 	*buflen = blen;
2941 	return error;
2942 }
2943 
2944 /**
2945  * __d_path - return the path of a dentry
2946  * @path: the dentry/vfsmount to report
2947  * @root: root vfsmnt/dentry
2948  * @buf: buffer to return value in
2949  * @buflen: buffer length
2950  *
2951  * Convert a dentry into an ASCII path name.
2952  *
2953  * Returns a pointer into the buffer or an error code if the
2954  * path was too long.
2955  *
2956  * "buflen" should be positive.
2957  *
2958  * If the path is not reachable from the supplied root, return %NULL.
2959  */
2960 char *__d_path(const struct path *path,
2961 	       const struct path *root,
2962 	       char *buf, int buflen)
2963 {
2964 	char *res = buf + buflen;
2965 	int error;
2966 
2967 	prepend(&res, &buflen, "\0", 1);
2968 	error = prepend_path(path, root, &res, &buflen);
2969 
2970 	if (error < 0)
2971 		return ERR_PTR(error);
2972 	if (error > 0)
2973 		return NULL;
2974 	return res;
2975 }
2976 
2977 char *d_absolute_path(const struct path *path,
2978 	       char *buf, int buflen)
2979 {
2980 	struct path root = {};
2981 	char *res = buf + buflen;
2982 	int error;
2983 
2984 	prepend(&res, &buflen, "\0", 1);
2985 	error = prepend_path(path, &root, &res, &buflen);
2986 
2987 	if (error > 1)
2988 		error = -EINVAL;
2989 	if (error < 0)
2990 		return ERR_PTR(error);
2991 	return res;
2992 }
2993 
2994 /*
2995  * same as __d_path but appends "(deleted)" for unlinked files.
2996  */
2997 static int path_with_deleted(const struct path *path,
2998 			     const struct path *root,
2999 			     char **buf, int *buflen)
3000 {
3001 	prepend(buf, buflen, "\0", 1);
3002 	if (d_unlinked(path->dentry)) {
3003 		int error = prepend(buf, buflen, " (deleted)", 10);
3004 		if (error)
3005 			return error;
3006 	}
3007 
3008 	return prepend_path(path, root, buf, buflen);
3009 }
3010 
3011 static int prepend_unreachable(char **buffer, int *buflen)
3012 {
3013 	return prepend(buffer, buflen, "(unreachable)", 13);
3014 }
3015 
3016 static void get_fs_root_rcu(struct fs_struct *fs, struct path *root)
3017 {
3018 	unsigned seq;
3019 
3020 	do {
3021 		seq = read_seqcount_begin(&fs->seq);
3022 		*root = fs->root;
3023 	} while (read_seqcount_retry(&fs->seq, seq));
3024 }
3025 
3026 /**
3027  * d_path - return the path of a dentry
3028  * @path: path to report
3029  * @buf: buffer to return value in
3030  * @buflen: buffer length
3031  *
3032  * Convert a dentry into an ASCII path name. If the entry has been deleted
3033  * the string " (deleted)" is appended. Note that this is ambiguous.
3034  *
3035  * Returns a pointer into the buffer or an error code if the path was
3036  * too long. Note: Callers should use the returned pointer, not the passed
3037  * in buffer, to use the name! The implementation often starts at an offset
3038  * into the buffer, and may leave 0 bytes at the start.
3039  *
3040  * "buflen" should be positive.
3041  */
3042 char *d_path(const struct path *path, char *buf, int buflen)
3043 {
3044 	char *res = buf + buflen;
3045 	struct path root;
3046 	int error;
3047 
3048 	/*
3049 	 * We have various synthetic filesystems that never get mounted.  On
3050 	 * these filesystems dentries are never used for lookup purposes, and
3051 	 * thus don't need to be hashed.  They also don't need a name until a
3052 	 * user wants to identify the object in /proc/pid/fd/.  The little hack
3053 	 * below allows us to generate a name for these objects on demand:
3054 	 *
3055 	 * Some pseudo inodes are mountable.  When they are mounted
3056 	 * path->dentry == path->mnt->mnt_root.  In that case don't call d_dname
3057 	 * and instead have d_path return the mounted path.
3058 	 */
3059 	if (path->dentry->d_op && path->dentry->d_op->d_dname &&
3060 	    (!IS_ROOT(path->dentry) || path->dentry != path->mnt->mnt_root))
3061 		return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
3062 
3063 	rcu_read_lock();
3064 	get_fs_root_rcu(current->fs, &root);
3065 	error = path_with_deleted(path, &root, &res, &buflen);
3066 	rcu_read_unlock();
3067 
3068 	if (error < 0)
3069 		res = ERR_PTR(error);
3070 	return res;
3071 }
3072 EXPORT_SYMBOL(d_path);
3073 
3074 /*
3075  * Helper function for dentry_operations.d_dname() members
3076  */
3077 char *dynamic_dname(struct dentry *dentry, char *buffer, int buflen,
3078 			const char *fmt, ...)
3079 {
3080 	va_list args;
3081 	char temp[64];
3082 	int sz;
3083 
3084 	va_start(args, fmt);
3085 	sz = vsnprintf(temp, sizeof(temp), fmt, args) + 1;
3086 	va_end(args);
3087 
3088 	if (sz > sizeof(temp) || sz > buflen)
3089 		return ERR_PTR(-ENAMETOOLONG);
3090 
3091 	buffer += buflen - sz;
3092 	return memcpy(buffer, temp, sz);
3093 }
3094 
3095 char *simple_dname(struct dentry *dentry, char *buffer, int buflen)
3096 {
3097 	char *end = buffer + buflen;
3098 	/* these dentries are never renamed, so d_lock is not needed */
3099 	if (prepend(&end, &buflen, " (deleted)", 11) ||
3100 	    prepend(&end, &buflen, dentry->d_name.name, dentry->d_name.len) ||
3101 	    prepend(&end, &buflen, "/", 1))
3102 		end = ERR_PTR(-ENAMETOOLONG);
3103 	return end;
3104 }
3105 EXPORT_SYMBOL(simple_dname);
3106 
3107 /*
3108  * Write full pathname from the root of the filesystem into the buffer.
3109  */
3110 static char *__dentry_path(struct dentry *d, char *buf, int buflen)
3111 {
3112 	struct dentry *dentry;
3113 	char *end, *retval;
3114 	int len, seq = 0;
3115 	int error = 0;
3116 
3117 	if (buflen < 2)
3118 		goto Elong;
3119 
3120 	rcu_read_lock();
3121 restart:
3122 	dentry = d;
3123 	end = buf + buflen;
3124 	len = buflen;
3125 	prepend(&end, &len, "\0", 1);
3126 	/* Get '/' right */
3127 	retval = end-1;
3128 	*retval = '/';
3129 	read_seqbegin_or_lock(&rename_lock, &seq);
3130 	while (!IS_ROOT(dentry)) {
3131 		struct dentry *parent = dentry->d_parent;
3132 
3133 		prefetch(parent);
3134 		error = prepend_name(&end, &len, &dentry->d_name);
3135 		if (error)
3136 			break;
3137 
3138 		retval = end;
3139 		dentry = parent;
3140 	}
3141 	if (!(seq & 1))
3142 		rcu_read_unlock();
3143 	if (need_seqretry(&rename_lock, seq)) {
3144 		seq = 1;
3145 		goto restart;
3146 	}
3147 	done_seqretry(&rename_lock, seq);
3148 	if (error)
3149 		goto Elong;
3150 	return retval;
3151 Elong:
3152 	return ERR_PTR(-ENAMETOOLONG);
3153 }
3154 
3155 char *dentry_path_raw(struct dentry *dentry, char *buf, int buflen)
3156 {
3157 	return __dentry_path(dentry, buf, buflen);
3158 }
3159 EXPORT_SYMBOL(dentry_path_raw);
3160 
3161 char *dentry_path(struct dentry *dentry, char *buf, int buflen)
3162 {
3163 	char *p = NULL;
3164 	char *retval;
3165 
3166 	if (d_unlinked(dentry)) {
3167 		p = buf + buflen;
3168 		if (prepend(&p, &buflen, "//deleted", 10) != 0)
3169 			goto Elong;
3170 		buflen++;
3171 	}
3172 	retval = __dentry_path(dentry, buf, buflen);
3173 	if (!IS_ERR(retval) && p)
3174 		*p = '/';	/* restore '/' overriden with '\0' */
3175 	return retval;
3176 Elong:
3177 	return ERR_PTR(-ENAMETOOLONG);
3178 }
3179 
3180 static void get_fs_root_and_pwd_rcu(struct fs_struct *fs, struct path *root,
3181 				    struct path *pwd)
3182 {
3183 	unsigned seq;
3184 
3185 	do {
3186 		seq = read_seqcount_begin(&fs->seq);
3187 		*root = fs->root;
3188 		*pwd = fs->pwd;
3189 	} while (read_seqcount_retry(&fs->seq, seq));
3190 }
3191 
3192 /*
3193  * NOTE! The user-level library version returns a
3194  * character pointer. The kernel system call just
3195  * returns the length of the buffer filled (which
3196  * includes the ending '\0' character), or a negative
3197  * error value. So libc would do something like
3198  *
3199  *	char *getcwd(char * buf, size_t size)
3200  *	{
3201  *		int retval;
3202  *
3203  *		retval = sys_getcwd(buf, size);
3204  *		if (retval >= 0)
3205  *			return buf;
3206  *		errno = -retval;
3207  *		return NULL;
3208  *	}
3209  */
3210 SYSCALL_DEFINE2(getcwd, char __user *, buf, unsigned long, size)
3211 {
3212 	int error;
3213 	struct path pwd, root;
3214 	char *page = __getname();
3215 
3216 	if (!page)
3217 		return -ENOMEM;
3218 
3219 	rcu_read_lock();
3220 	get_fs_root_and_pwd_rcu(current->fs, &root, &pwd);
3221 
3222 	error = -ENOENT;
3223 	if (!d_unlinked(pwd.dentry)) {
3224 		unsigned long len;
3225 		char *cwd = page + PATH_MAX;
3226 		int buflen = PATH_MAX;
3227 
3228 		prepend(&cwd, &buflen, "\0", 1);
3229 		error = prepend_path(&pwd, &root, &cwd, &buflen);
3230 		rcu_read_unlock();
3231 
3232 		if (error < 0)
3233 			goto out;
3234 
3235 		/* Unreachable from current root */
3236 		if (error > 0) {
3237 			error = prepend_unreachable(&cwd, &buflen);
3238 			if (error)
3239 				goto out;
3240 		}
3241 
3242 		error = -ERANGE;
3243 		len = PATH_MAX + page - cwd;
3244 		if (len <= size) {
3245 			error = len;
3246 			if (copy_to_user(buf, cwd, len))
3247 				error = -EFAULT;
3248 		}
3249 	} else {
3250 		rcu_read_unlock();
3251 	}
3252 
3253 out:
3254 	__putname(page);
3255 	return error;
3256 }
3257 
3258 /*
3259  * Test whether new_dentry is a subdirectory of old_dentry.
3260  *
3261  * Trivially implemented using the dcache structure
3262  */
3263 
3264 /**
3265  * is_subdir - is new dentry a subdirectory of old_dentry
3266  * @new_dentry: new dentry
3267  * @old_dentry: old dentry
3268  *
3269  * Returns 1 if new_dentry is a subdirectory of the parent (at any depth).
3270  * Returns 0 otherwise.
3271  * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
3272  */
3273 
3274 int is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
3275 {
3276 	int result;
3277 	unsigned seq;
3278 
3279 	if (new_dentry == old_dentry)
3280 		return 1;
3281 
3282 	do {
3283 		/* for restarting inner loop in case of seq retry */
3284 		seq = read_seqbegin(&rename_lock);
3285 		/*
3286 		 * Need rcu_readlock to protect against the d_parent trashing
3287 		 * due to d_move
3288 		 */
3289 		rcu_read_lock();
3290 		if (d_ancestor(old_dentry, new_dentry))
3291 			result = 1;
3292 		else
3293 			result = 0;
3294 		rcu_read_unlock();
3295 	} while (read_seqretry(&rename_lock, seq));
3296 
3297 	return result;
3298 }
3299 
3300 static enum d_walk_ret d_genocide_kill(void *data, struct dentry *dentry)
3301 {
3302 	struct dentry *root = data;
3303 	if (dentry != root) {
3304 		if (d_unhashed(dentry) || !dentry->d_inode)
3305 			return D_WALK_SKIP;
3306 
3307 		if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
3308 			dentry->d_flags |= DCACHE_GENOCIDE;
3309 			dentry->d_lockref.count--;
3310 		}
3311 	}
3312 	return D_WALK_CONTINUE;
3313 }
3314 
3315 void d_genocide(struct dentry *parent)
3316 {
3317 	d_walk(parent, parent, d_genocide_kill, NULL);
3318 }
3319 
3320 void d_tmpfile(struct dentry *dentry, struct inode *inode)
3321 {
3322 	inode_dec_link_count(inode);
3323 	BUG_ON(dentry->d_name.name != dentry->d_iname ||
3324 		!hlist_unhashed(&dentry->d_alias) ||
3325 		!d_unlinked(dentry));
3326 	spin_lock(&dentry->d_parent->d_lock);
3327 	spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
3328 	dentry->d_name.len = sprintf(dentry->d_iname, "#%llu",
3329 				(unsigned long long)inode->i_ino);
3330 	spin_unlock(&dentry->d_lock);
3331 	spin_unlock(&dentry->d_parent->d_lock);
3332 	d_instantiate(dentry, inode);
3333 }
3334 EXPORT_SYMBOL(d_tmpfile);
3335 
3336 static __initdata unsigned long dhash_entries;
3337 static int __init set_dhash_entries(char *str)
3338 {
3339 	if (!str)
3340 		return 0;
3341 	dhash_entries = simple_strtoul(str, &str, 0);
3342 	return 1;
3343 }
3344 __setup("dhash_entries=", set_dhash_entries);
3345 
3346 static void __init dcache_init_early(void)
3347 {
3348 	unsigned int loop;
3349 
3350 	/* If hashes are distributed across NUMA nodes, defer
3351 	 * hash allocation until vmalloc space is available.
3352 	 */
3353 	if (hashdist)
3354 		return;
3355 
3356 	dentry_hashtable =
3357 		alloc_large_system_hash("Dentry cache",
3358 					sizeof(struct hlist_bl_head),
3359 					dhash_entries,
3360 					13,
3361 					HASH_EARLY,
3362 					&d_hash_shift,
3363 					&d_hash_mask,
3364 					0,
3365 					0);
3366 
3367 	for (loop = 0; loop < (1U << d_hash_shift); loop++)
3368 		INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
3369 }
3370 
3371 static void __init dcache_init(void)
3372 {
3373 	unsigned int loop;
3374 
3375 	/*
3376 	 * A constructor could be added for stable state like the lists,
3377 	 * but it is probably not worth it because of the cache nature
3378 	 * of the dcache.
3379 	 */
3380 	dentry_cache = KMEM_CACHE(dentry,
3381 		SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD);
3382 
3383 	/* Hash may have been set up in dcache_init_early */
3384 	if (!hashdist)
3385 		return;
3386 
3387 	dentry_hashtable =
3388 		alloc_large_system_hash("Dentry cache",
3389 					sizeof(struct hlist_bl_head),
3390 					dhash_entries,
3391 					13,
3392 					0,
3393 					&d_hash_shift,
3394 					&d_hash_mask,
3395 					0,
3396 					0);
3397 
3398 	for (loop = 0; loop < (1U << d_hash_shift); loop++)
3399 		INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
3400 }
3401 
3402 /* SLAB cache for __getname() consumers */
3403 struct kmem_cache *names_cachep __read_mostly;
3404 EXPORT_SYMBOL(names_cachep);
3405 
3406 EXPORT_SYMBOL(d_genocide);
3407 
3408 void __init vfs_caches_init_early(void)
3409 {
3410 	dcache_init_early();
3411 	inode_init_early();
3412 }
3413 
3414 void __init vfs_caches_init(unsigned long mempages)
3415 {
3416 	unsigned long reserve;
3417 
3418 	/* Base hash sizes on available memory, with a reserve equal to
3419            150% of current kernel size */
3420 
3421 	reserve = min((mempages - nr_free_pages()) * 3/2, mempages - 1);
3422 	mempages -= reserve;
3423 
3424 	names_cachep = kmem_cache_create("names_cache", PATH_MAX, 0,
3425 			SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
3426 
3427 	dcache_init();
3428 	inode_init();
3429 	files_init(mempages);
3430 	mnt_init();
3431 	bdev_cache_init();
3432 	chrdev_init();
3433 }
3434