1 /* 2 * fs/dcache.c 3 * 4 * Complete reimplementation 5 * (C) 1997 Thomas Schoebel-Theuer, 6 * with heavy changes by Linus Torvalds 7 */ 8 9 /* 10 * Notes on the allocation strategy: 11 * 12 * The dcache is a master of the icache - whenever a dcache entry 13 * exists, the inode will always exist. "iput()" is done either when 14 * the dcache entry is deleted or garbage collected. 15 */ 16 17 #include <linux/syscalls.h> 18 #include <linux/string.h> 19 #include <linux/mm.h> 20 #include <linux/fs.h> 21 #include <linux/fsnotify.h> 22 #include <linux/slab.h> 23 #include <linux/init.h> 24 #include <linux/hash.h> 25 #include <linux/cache.h> 26 #include <linux/export.h> 27 #include <linux/mount.h> 28 #include <linux/file.h> 29 #include <asm/uaccess.h> 30 #include <linux/security.h> 31 #include <linux/seqlock.h> 32 #include <linux/swap.h> 33 #include <linux/bootmem.h> 34 #include <linux/fs_struct.h> 35 #include <linux/hardirq.h> 36 #include <linux/bit_spinlock.h> 37 #include <linux/rculist_bl.h> 38 #include <linux/prefetch.h> 39 #include <linux/ratelimit.h> 40 #include <linux/list_lru.h> 41 #include "internal.h" 42 #include "mount.h" 43 44 /* 45 * Usage: 46 * dcache->d_inode->i_lock protects: 47 * - i_dentry, d_alias, d_inode of aliases 48 * dcache_hash_bucket lock protects: 49 * - the dcache hash table 50 * s_anon bl list spinlock protects: 51 * - the s_anon list (see __d_drop) 52 * dentry->d_sb->s_dentry_lru_lock protects: 53 * - the dcache lru lists and counters 54 * d_lock protects: 55 * - d_flags 56 * - d_name 57 * - d_lru 58 * - d_count 59 * - d_unhashed() 60 * - d_parent and d_subdirs 61 * - childrens' d_child and d_parent 62 * - d_alias, d_inode 63 * 64 * Ordering: 65 * dentry->d_inode->i_lock 66 * dentry->d_lock 67 * dentry->d_sb->s_dentry_lru_lock 68 * dcache_hash_bucket lock 69 * s_anon lock 70 * 71 * If there is an ancestor relationship: 72 * dentry->d_parent->...->d_parent->d_lock 73 * ... 74 * dentry->d_parent->d_lock 75 * dentry->d_lock 76 * 77 * If no ancestor relationship: 78 * if (dentry1 < dentry2) 79 * dentry1->d_lock 80 * dentry2->d_lock 81 */ 82 int sysctl_vfs_cache_pressure __read_mostly = 100; 83 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure); 84 85 __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock); 86 87 EXPORT_SYMBOL(rename_lock); 88 89 static struct kmem_cache *dentry_cache __read_mostly; 90 91 /* 92 * This is the single most critical data structure when it comes 93 * to the dcache: the hashtable for lookups. Somebody should try 94 * to make this good - I've just made it work. 95 * 96 * This hash-function tries to avoid losing too many bits of hash 97 * information, yet avoid using a prime hash-size or similar. 98 */ 99 100 static unsigned int d_hash_mask __read_mostly; 101 static unsigned int d_hash_shift __read_mostly; 102 103 static struct hlist_bl_head *dentry_hashtable __read_mostly; 104 105 static inline struct hlist_bl_head *d_hash(const struct dentry *parent, 106 unsigned int hash) 107 { 108 hash += (unsigned long) parent / L1_CACHE_BYTES; 109 return dentry_hashtable + hash_32(hash, d_hash_shift); 110 } 111 112 /* Statistics gathering. */ 113 struct dentry_stat_t dentry_stat = { 114 .age_limit = 45, 115 }; 116 117 static DEFINE_PER_CPU(long, nr_dentry); 118 static DEFINE_PER_CPU(long, nr_dentry_unused); 119 120 #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS) 121 122 /* 123 * Here we resort to our own counters instead of using generic per-cpu counters 124 * for consistency with what the vfs inode code does. We are expected to harvest 125 * better code and performance by having our own specialized counters. 126 * 127 * Please note that the loop is done over all possible CPUs, not over all online 128 * CPUs. The reason for this is that we don't want to play games with CPUs going 129 * on and off. If one of them goes off, we will just keep their counters. 130 * 131 * glommer: See cffbc8a for details, and if you ever intend to change this, 132 * please update all vfs counters to match. 133 */ 134 static long get_nr_dentry(void) 135 { 136 int i; 137 long sum = 0; 138 for_each_possible_cpu(i) 139 sum += per_cpu(nr_dentry, i); 140 return sum < 0 ? 0 : sum; 141 } 142 143 static long get_nr_dentry_unused(void) 144 { 145 int i; 146 long sum = 0; 147 for_each_possible_cpu(i) 148 sum += per_cpu(nr_dentry_unused, i); 149 return sum < 0 ? 0 : sum; 150 } 151 152 int proc_nr_dentry(struct ctl_table *table, int write, void __user *buffer, 153 size_t *lenp, loff_t *ppos) 154 { 155 dentry_stat.nr_dentry = get_nr_dentry(); 156 dentry_stat.nr_unused = get_nr_dentry_unused(); 157 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos); 158 } 159 #endif 160 161 /* 162 * Compare 2 name strings, return 0 if they match, otherwise non-zero. 163 * The strings are both count bytes long, and count is non-zero. 164 */ 165 #ifdef CONFIG_DCACHE_WORD_ACCESS 166 167 #include <asm/word-at-a-time.h> 168 /* 169 * NOTE! 'cs' and 'scount' come from a dentry, so it has a 170 * aligned allocation for this particular component. We don't 171 * strictly need the load_unaligned_zeropad() safety, but it 172 * doesn't hurt either. 173 * 174 * In contrast, 'ct' and 'tcount' can be from a pathname, and do 175 * need the careful unaligned handling. 176 */ 177 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount) 178 { 179 unsigned long a,b,mask; 180 181 for (;;) { 182 a = *(unsigned long *)cs; 183 b = load_unaligned_zeropad(ct); 184 if (tcount < sizeof(unsigned long)) 185 break; 186 if (unlikely(a != b)) 187 return 1; 188 cs += sizeof(unsigned long); 189 ct += sizeof(unsigned long); 190 tcount -= sizeof(unsigned long); 191 if (!tcount) 192 return 0; 193 } 194 mask = bytemask_from_count(tcount); 195 return unlikely(!!((a ^ b) & mask)); 196 } 197 198 #else 199 200 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount) 201 { 202 do { 203 if (*cs != *ct) 204 return 1; 205 cs++; 206 ct++; 207 tcount--; 208 } while (tcount); 209 return 0; 210 } 211 212 #endif 213 214 static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount) 215 { 216 const unsigned char *cs; 217 /* 218 * Be careful about RCU walk racing with rename: 219 * use ACCESS_ONCE to fetch the name pointer. 220 * 221 * NOTE! Even if a rename will mean that the length 222 * was not loaded atomically, we don't care. The 223 * RCU walk will check the sequence count eventually, 224 * and catch it. And we won't overrun the buffer, 225 * because we're reading the name pointer atomically, 226 * and a dentry name is guaranteed to be properly 227 * terminated with a NUL byte. 228 * 229 * End result: even if 'len' is wrong, we'll exit 230 * early because the data cannot match (there can 231 * be no NUL in the ct/tcount data) 232 */ 233 cs = ACCESS_ONCE(dentry->d_name.name); 234 smp_read_barrier_depends(); 235 return dentry_string_cmp(cs, ct, tcount); 236 } 237 238 struct external_name { 239 union { 240 atomic_t count; 241 struct rcu_head head; 242 } u; 243 unsigned char name[]; 244 }; 245 246 static inline struct external_name *external_name(struct dentry *dentry) 247 { 248 return container_of(dentry->d_name.name, struct external_name, name[0]); 249 } 250 251 static void __d_free(struct rcu_head *head) 252 { 253 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu); 254 255 WARN_ON(!hlist_unhashed(&dentry->d_alias)); 256 kmem_cache_free(dentry_cache, dentry); 257 } 258 259 static void __d_free_external(struct rcu_head *head) 260 { 261 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu); 262 WARN_ON(!hlist_unhashed(&dentry->d_alias)); 263 kfree(external_name(dentry)); 264 kmem_cache_free(dentry_cache, dentry); 265 } 266 267 static inline int dname_external(const struct dentry *dentry) 268 { 269 return dentry->d_name.name != dentry->d_iname; 270 } 271 272 static void dentry_free(struct dentry *dentry) 273 { 274 if (unlikely(dname_external(dentry))) { 275 struct external_name *p = external_name(dentry); 276 if (likely(atomic_dec_and_test(&p->u.count))) { 277 call_rcu(&dentry->d_u.d_rcu, __d_free_external); 278 return; 279 } 280 } 281 /* if dentry was never visible to RCU, immediate free is OK */ 282 if (!(dentry->d_flags & DCACHE_RCUACCESS)) 283 __d_free(&dentry->d_u.d_rcu); 284 else 285 call_rcu(&dentry->d_u.d_rcu, __d_free); 286 } 287 288 /** 289 * dentry_rcuwalk_barrier - invalidate in-progress rcu-walk lookups 290 * @dentry: the target dentry 291 * After this call, in-progress rcu-walk path lookup will fail. This 292 * should be called after unhashing, and after changing d_inode (if 293 * the dentry has not already been unhashed). 294 */ 295 static inline void dentry_rcuwalk_barrier(struct dentry *dentry) 296 { 297 assert_spin_locked(&dentry->d_lock); 298 /* Go through a barrier */ 299 write_seqcount_barrier(&dentry->d_seq); 300 } 301 302 /* 303 * Release the dentry's inode, using the filesystem 304 * d_iput() operation if defined. Dentry has no refcount 305 * and is unhashed. 306 */ 307 static void dentry_iput(struct dentry * dentry) 308 __releases(dentry->d_lock) 309 __releases(dentry->d_inode->i_lock) 310 { 311 struct inode *inode = dentry->d_inode; 312 if (inode) { 313 dentry->d_inode = NULL; 314 hlist_del_init(&dentry->d_alias); 315 spin_unlock(&dentry->d_lock); 316 spin_unlock(&inode->i_lock); 317 if (!inode->i_nlink) 318 fsnotify_inoderemove(inode); 319 if (dentry->d_op && dentry->d_op->d_iput) 320 dentry->d_op->d_iput(dentry, inode); 321 else 322 iput(inode); 323 } else { 324 spin_unlock(&dentry->d_lock); 325 } 326 } 327 328 /* 329 * Release the dentry's inode, using the filesystem 330 * d_iput() operation if defined. dentry remains in-use. 331 */ 332 static void dentry_unlink_inode(struct dentry * dentry) 333 __releases(dentry->d_lock) 334 __releases(dentry->d_inode->i_lock) 335 { 336 struct inode *inode = dentry->d_inode; 337 __d_clear_type(dentry); 338 dentry->d_inode = NULL; 339 hlist_del_init(&dentry->d_alias); 340 dentry_rcuwalk_barrier(dentry); 341 spin_unlock(&dentry->d_lock); 342 spin_unlock(&inode->i_lock); 343 if (!inode->i_nlink) 344 fsnotify_inoderemove(inode); 345 if (dentry->d_op && dentry->d_op->d_iput) 346 dentry->d_op->d_iput(dentry, inode); 347 else 348 iput(inode); 349 } 350 351 /* 352 * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry 353 * is in use - which includes both the "real" per-superblock 354 * LRU list _and_ the DCACHE_SHRINK_LIST use. 355 * 356 * The DCACHE_SHRINK_LIST bit is set whenever the dentry is 357 * on the shrink list (ie not on the superblock LRU list). 358 * 359 * The per-cpu "nr_dentry_unused" counters are updated with 360 * the DCACHE_LRU_LIST bit. 361 * 362 * These helper functions make sure we always follow the 363 * rules. d_lock must be held by the caller. 364 */ 365 #define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x)) 366 static void d_lru_add(struct dentry *dentry) 367 { 368 D_FLAG_VERIFY(dentry, 0); 369 dentry->d_flags |= DCACHE_LRU_LIST; 370 this_cpu_inc(nr_dentry_unused); 371 WARN_ON_ONCE(!list_lru_add(&dentry->d_sb->s_dentry_lru, &dentry->d_lru)); 372 } 373 374 static void d_lru_del(struct dentry *dentry) 375 { 376 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST); 377 dentry->d_flags &= ~DCACHE_LRU_LIST; 378 this_cpu_dec(nr_dentry_unused); 379 WARN_ON_ONCE(!list_lru_del(&dentry->d_sb->s_dentry_lru, &dentry->d_lru)); 380 } 381 382 static void d_shrink_del(struct dentry *dentry) 383 { 384 D_FLAG_VERIFY(dentry, DCACHE_SHRINK_LIST | DCACHE_LRU_LIST); 385 list_del_init(&dentry->d_lru); 386 dentry->d_flags &= ~(DCACHE_SHRINK_LIST | DCACHE_LRU_LIST); 387 this_cpu_dec(nr_dentry_unused); 388 } 389 390 static void d_shrink_add(struct dentry *dentry, struct list_head *list) 391 { 392 D_FLAG_VERIFY(dentry, 0); 393 list_add(&dentry->d_lru, list); 394 dentry->d_flags |= DCACHE_SHRINK_LIST | DCACHE_LRU_LIST; 395 this_cpu_inc(nr_dentry_unused); 396 } 397 398 /* 399 * These can only be called under the global LRU lock, ie during the 400 * callback for freeing the LRU list. "isolate" removes it from the 401 * LRU lists entirely, while shrink_move moves it to the indicated 402 * private list. 403 */ 404 static void d_lru_isolate(struct dentry *dentry) 405 { 406 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST); 407 dentry->d_flags &= ~DCACHE_LRU_LIST; 408 this_cpu_dec(nr_dentry_unused); 409 list_del_init(&dentry->d_lru); 410 } 411 412 static void d_lru_shrink_move(struct dentry *dentry, struct list_head *list) 413 { 414 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST); 415 dentry->d_flags |= DCACHE_SHRINK_LIST; 416 list_move_tail(&dentry->d_lru, list); 417 } 418 419 /* 420 * dentry_lru_(add|del)_list) must be called with d_lock held. 421 */ 422 static void dentry_lru_add(struct dentry *dentry) 423 { 424 if (unlikely(!(dentry->d_flags & DCACHE_LRU_LIST))) 425 d_lru_add(dentry); 426 } 427 428 /** 429 * d_drop - drop a dentry 430 * @dentry: dentry to drop 431 * 432 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't 433 * be found through a VFS lookup any more. Note that this is different from 434 * deleting the dentry - d_delete will try to mark the dentry negative if 435 * possible, giving a successful _negative_ lookup, while d_drop will 436 * just make the cache lookup fail. 437 * 438 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some 439 * reason (NFS timeouts or autofs deletes). 440 * 441 * __d_drop requires dentry->d_lock. 442 */ 443 void __d_drop(struct dentry *dentry) 444 { 445 if (!d_unhashed(dentry)) { 446 struct hlist_bl_head *b; 447 /* 448 * Hashed dentries are normally on the dentry hashtable, 449 * with the exception of those newly allocated by 450 * d_obtain_alias, which are always IS_ROOT: 451 */ 452 if (unlikely(IS_ROOT(dentry))) 453 b = &dentry->d_sb->s_anon; 454 else 455 b = d_hash(dentry->d_parent, dentry->d_name.hash); 456 457 hlist_bl_lock(b); 458 __hlist_bl_del(&dentry->d_hash); 459 dentry->d_hash.pprev = NULL; 460 hlist_bl_unlock(b); 461 dentry_rcuwalk_barrier(dentry); 462 } 463 } 464 EXPORT_SYMBOL(__d_drop); 465 466 void d_drop(struct dentry *dentry) 467 { 468 spin_lock(&dentry->d_lock); 469 __d_drop(dentry); 470 spin_unlock(&dentry->d_lock); 471 } 472 EXPORT_SYMBOL(d_drop); 473 474 static void __dentry_kill(struct dentry *dentry) 475 { 476 struct dentry *parent = NULL; 477 bool can_free = true; 478 if (!IS_ROOT(dentry)) 479 parent = dentry->d_parent; 480 481 /* 482 * The dentry is now unrecoverably dead to the world. 483 */ 484 lockref_mark_dead(&dentry->d_lockref); 485 486 /* 487 * inform the fs via d_prune that this dentry is about to be 488 * unhashed and destroyed. 489 */ 490 if (dentry->d_flags & DCACHE_OP_PRUNE) 491 dentry->d_op->d_prune(dentry); 492 493 if (dentry->d_flags & DCACHE_LRU_LIST) { 494 if (!(dentry->d_flags & DCACHE_SHRINK_LIST)) 495 d_lru_del(dentry); 496 } 497 /* if it was on the hash then remove it */ 498 __d_drop(dentry); 499 list_del(&dentry->d_u.d_child); 500 /* 501 * Inform d_walk() that we are no longer attached to the 502 * dentry tree 503 */ 504 dentry->d_flags |= DCACHE_DENTRY_KILLED; 505 if (parent) 506 spin_unlock(&parent->d_lock); 507 dentry_iput(dentry); 508 /* 509 * dentry_iput drops the locks, at which point nobody (except 510 * transient RCU lookups) can reach this dentry. 511 */ 512 BUG_ON((int)dentry->d_lockref.count > 0); 513 this_cpu_dec(nr_dentry); 514 if (dentry->d_op && dentry->d_op->d_release) 515 dentry->d_op->d_release(dentry); 516 517 spin_lock(&dentry->d_lock); 518 if (dentry->d_flags & DCACHE_SHRINK_LIST) { 519 dentry->d_flags |= DCACHE_MAY_FREE; 520 can_free = false; 521 } 522 spin_unlock(&dentry->d_lock); 523 if (likely(can_free)) 524 dentry_free(dentry); 525 } 526 527 /* 528 * Finish off a dentry we've decided to kill. 529 * dentry->d_lock must be held, returns with it unlocked. 530 * If ref is non-zero, then decrement the refcount too. 531 * Returns dentry requiring refcount drop, or NULL if we're done. 532 */ 533 static struct dentry *dentry_kill(struct dentry *dentry) 534 __releases(dentry->d_lock) 535 { 536 struct inode *inode = dentry->d_inode; 537 struct dentry *parent = NULL; 538 539 if (inode && unlikely(!spin_trylock(&inode->i_lock))) 540 goto failed; 541 542 if (!IS_ROOT(dentry)) { 543 parent = dentry->d_parent; 544 if (unlikely(!spin_trylock(&parent->d_lock))) { 545 if (inode) 546 spin_unlock(&inode->i_lock); 547 goto failed; 548 } 549 } 550 551 __dentry_kill(dentry); 552 return parent; 553 554 failed: 555 spin_unlock(&dentry->d_lock); 556 cpu_relax(); 557 return dentry; /* try again with same dentry */ 558 } 559 560 static inline struct dentry *lock_parent(struct dentry *dentry) 561 { 562 struct dentry *parent = dentry->d_parent; 563 if (IS_ROOT(dentry)) 564 return NULL; 565 if (unlikely((int)dentry->d_lockref.count < 0)) 566 return NULL; 567 if (likely(spin_trylock(&parent->d_lock))) 568 return parent; 569 rcu_read_lock(); 570 spin_unlock(&dentry->d_lock); 571 again: 572 parent = ACCESS_ONCE(dentry->d_parent); 573 spin_lock(&parent->d_lock); 574 /* 575 * We can't blindly lock dentry until we are sure 576 * that we won't violate the locking order. 577 * Any changes of dentry->d_parent must have 578 * been done with parent->d_lock held, so 579 * spin_lock() above is enough of a barrier 580 * for checking if it's still our child. 581 */ 582 if (unlikely(parent != dentry->d_parent)) { 583 spin_unlock(&parent->d_lock); 584 goto again; 585 } 586 rcu_read_unlock(); 587 if (parent != dentry) 588 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED); 589 else 590 parent = NULL; 591 return parent; 592 } 593 594 /* 595 * This is dput 596 * 597 * This is complicated by the fact that we do not want to put 598 * dentries that are no longer on any hash chain on the unused 599 * list: we'd much rather just get rid of them immediately. 600 * 601 * However, that implies that we have to traverse the dentry 602 * tree upwards to the parents which might _also_ now be 603 * scheduled for deletion (it may have been only waiting for 604 * its last child to go away). 605 * 606 * This tail recursion is done by hand as we don't want to depend 607 * on the compiler to always get this right (gcc generally doesn't). 608 * Real recursion would eat up our stack space. 609 */ 610 611 /* 612 * dput - release a dentry 613 * @dentry: dentry to release 614 * 615 * Release a dentry. This will drop the usage count and if appropriate 616 * call the dentry unlink method as well as removing it from the queues and 617 * releasing its resources. If the parent dentries were scheduled for release 618 * they too may now get deleted. 619 */ 620 void dput(struct dentry *dentry) 621 { 622 if (unlikely(!dentry)) 623 return; 624 625 repeat: 626 if (lockref_put_or_lock(&dentry->d_lockref)) 627 return; 628 629 /* Unreachable? Get rid of it */ 630 if (unlikely(d_unhashed(dentry))) 631 goto kill_it; 632 633 if (unlikely(dentry->d_flags & DCACHE_OP_DELETE)) { 634 if (dentry->d_op->d_delete(dentry)) 635 goto kill_it; 636 } 637 638 if (!(dentry->d_flags & DCACHE_REFERENCED)) 639 dentry->d_flags |= DCACHE_REFERENCED; 640 dentry_lru_add(dentry); 641 642 dentry->d_lockref.count--; 643 spin_unlock(&dentry->d_lock); 644 return; 645 646 kill_it: 647 dentry = dentry_kill(dentry); 648 if (dentry) 649 goto repeat; 650 } 651 EXPORT_SYMBOL(dput); 652 653 654 /* This must be called with d_lock held */ 655 static inline void __dget_dlock(struct dentry *dentry) 656 { 657 dentry->d_lockref.count++; 658 } 659 660 static inline void __dget(struct dentry *dentry) 661 { 662 lockref_get(&dentry->d_lockref); 663 } 664 665 struct dentry *dget_parent(struct dentry *dentry) 666 { 667 int gotref; 668 struct dentry *ret; 669 670 /* 671 * Do optimistic parent lookup without any 672 * locking. 673 */ 674 rcu_read_lock(); 675 ret = ACCESS_ONCE(dentry->d_parent); 676 gotref = lockref_get_not_zero(&ret->d_lockref); 677 rcu_read_unlock(); 678 if (likely(gotref)) { 679 if (likely(ret == ACCESS_ONCE(dentry->d_parent))) 680 return ret; 681 dput(ret); 682 } 683 684 repeat: 685 /* 686 * Don't need rcu_dereference because we re-check it was correct under 687 * the lock. 688 */ 689 rcu_read_lock(); 690 ret = dentry->d_parent; 691 spin_lock(&ret->d_lock); 692 if (unlikely(ret != dentry->d_parent)) { 693 spin_unlock(&ret->d_lock); 694 rcu_read_unlock(); 695 goto repeat; 696 } 697 rcu_read_unlock(); 698 BUG_ON(!ret->d_lockref.count); 699 ret->d_lockref.count++; 700 spin_unlock(&ret->d_lock); 701 return ret; 702 } 703 EXPORT_SYMBOL(dget_parent); 704 705 /** 706 * d_find_alias - grab a hashed alias of inode 707 * @inode: inode in question 708 * 709 * If inode has a hashed alias, or is a directory and has any alias, 710 * acquire the reference to alias and return it. Otherwise return NULL. 711 * Notice that if inode is a directory there can be only one alias and 712 * it can be unhashed only if it has no children, or if it is the root 713 * of a filesystem, or if the directory was renamed and d_revalidate 714 * was the first vfs operation to notice. 715 * 716 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer 717 * any other hashed alias over that one. 718 */ 719 static struct dentry *__d_find_alias(struct inode *inode) 720 { 721 struct dentry *alias, *discon_alias; 722 723 again: 724 discon_alias = NULL; 725 hlist_for_each_entry(alias, &inode->i_dentry, d_alias) { 726 spin_lock(&alias->d_lock); 727 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) { 728 if (IS_ROOT(alias) && 729 (alias->d_flags & DCACHE_DISCONNECTED)) { 730 discon_alias = alias; 731 } else { 732 __dget_dlock(alias); 733 spin_unlock(&alias->d_lock); 734 return alias; 735 } 736 } 737 spin_unlock(&alias->d_lock); 738 } 739 if (discon_alias) { 740 alias = discon_alias; 741 spin_lock(&alias->d_lock); 742 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) { 743 __dget_dlock(alias); 744 spin_unlock(&alias->d_lock); 745 return alias; 746 } 747 spin_unlock(&alias->d_lock); 748 goto again; 749 } 750 return NULL; 751 } 752 753 struct dentry *d_find_alias(struct inode *inode) 754 { 755 struct dentry *de = NULL; 756 757 if (!hlist_empty(&inode->i_dentry)) { 758 spin_lock(&inode->i_lock); 759 de = __d_find_alias(inode); 760 spin_unlock(&inode->i_lock); 761 } 762 return de; 763 } 764 EXPORT_SYMBOL(d_find_alias); 765 766 /* 767 * Try to kill dentries associated with this inode. 768 * WARNING: you must own a reference to inode. 769 */ 770 void d_prune_aliases(struct inode *inode) 771 { 772 struct dentry *dentry; 773 restart: 774 spin_lock(&inode->i_lock); 775 hlist_for_each_entry(dentry, &inode->i_dentry, d_alias) { 776 spin_lock(&dentry->d_lock); 777 if (!dentry->d_lockref.count) { 778 struct dentry *parent = lock_parent(dentry); 779 if (likely(!dentry->d_lockref.count)) { 780 __dentry_kill(dentry); 781 dput(parent); 782 goto restart; 783 } 784 if (parent) 785 spin_unlock(&parent->d_lock); 786 } 787 spin_unlock(&dentry->d_lock); 788 } 789 spin_unlock(&inode->i_lock); 790 } 791 EXPORT_SYMBOL(d_prune_aliases); 792 793 static void shrink_dentry_list(struct list_head *list) 794 { 795 struct dentry *dentry, *parent; 796 797 while (!list_empty(list)) { 798 struct inode *inode; 799 dentry = list_entry(list->prev, struct dentry, d_lru); 800 spin_lock(&dentry->d_lock); 801 parent = lock_parent(dentry); 802 803 /* 804 * The dispose list is isolated and dentries are not accounted 805 * to the LRU here, so we can simply remove it from the list 806 * here regardless of whether it is referenced or not. 807 */ 808 d_shrink_del(dentry); 809 810 /* 811 * We found an inuse dentry which was not removed from 812 * the LRU because of laziness during lookup. Do not free it. 813 */ 814 if ((int)dentry->d_lockref.count > 0) { 815 spin_unlock(&dentry->d_lock); 816 if (parent) 817 spin_unlock(&parent->d_lock); 818 continue; 819 } 820 821 822 if (unlikely(dentry->d_flags & DCACHE_DENTRY_KILLED)) { 823 bool can_free = dentry->d_flags & DCACHE_MAY_FREE; 824 spin_unlock(&dentry->d_lock); 825 if (parent) 826 spin_unlock(&parent->d_lock); 827 if (can_free) 828 dentry_free(dentry); 829 continue; 830 } 831 832 inode = dentry->d_inode; 833 if (inode && unlikely(!spin_trylock(&inode->i_lock))) { 834 d_shrink_add(dentry, list); 835 spin_unlock(&dentry->d_lock); 836 if (parent) 837 spin_unlock(&parent->d_lock); 838 continue; 839 } 840 841 __dentry_kill(dentry); 842 843 /* 844 * We need to prune ancestors too. This is necessary to prevent 845 * quadratic behavior of shrink_dcache_parent(), but is also 846 * expected to be beneficial in reducing dentry cache 847 * fragmentation. 848 */ 849 dentry = parent; 850 while (dentry && !lockref_put_or_lock(&dentry->d_lockref)) { 851 parent = lock_parent(dentry); 852 if (dentry->d_lockref.count != 1) { 853 dentry->d_lockref.count--; 854 spin_unlock(&dentry->d_lock); 855 if (parent) 856 spin_unlock(&parent->d_lock); 857 break; 858 } 859 inode = dentry->d_inode; /* can't be NULL */ 860 if (unlikely(!spin_trylock(&inode->i_lock))) { 861 spin_unlock(&dentry->d_lock); 862 if (parent) 863 spin_unlock(&parent->d_lock); 864 cpu_relax(); 865 continue; 866 } 867 __dentry_kill(dentry); 868 dentry = parent; 869 } 870 } 871 } 872 873 static enum lru_status 874 dentry_lru_isolate(struct list_head *item, spinlock_t *lru_lock, void *arg) 875 { 876 struct list_head *freeable = arg; 877 struct dentry *dentry = container_of(item, struct dentry, d_lru); 878 879 880 /* 881 * we are inverting the lru lock/dentry->d_lock here, 882 * so use a trylock. If we fail to get the lock, just skip 883 * it 884 */ 885 if (!spin_trylock(&dentry->d_lock)) 886 return LRU_SKIP; 887 888 /* 889 * Referenced dentries are still in use. If they have active 890 * counts, just remove them from the LRU. Otherwise give them 891 * another pass through the LRU. 892 */ 893 if (dentry->d_lockref.count) { 894 d_lru_isolate(dentry); 895 spin_unlock(&dentry->d_lock); 896 return LRU_REMOVED; 897 } 898 899 if (dentry->d_flags & DCACHE_REFERENCED) { 900 dentry->d_flags &= ~DCACHE_REFERENCED; 901 spin_unlock(&dentry->d_lock); 902 903 /* 904 * The list move itself will be made by the common LRU code. At 905 * this point, we've dropped the dentry->d_lock but keep the 906 * lru lock. This is safe to do, since every list movement is 907 * protected by the lru lock even if both locks are held. 908 * 909 * This is guaranteed by the fact that all LRU management 910 * functions are intermediated by the LRU API calls like 911 * list_lru_add and list_lru_del. List movement in this file 912 * only ever occur through this functions or through callbacks 913 * like this one, that are called from the LRU API. 914 * 915 * The only exceptions to this are functions like 916 * shrink_dentry_list, and code that first checks for the 917 * DCACHE_SHRINK_LIST flag. Those are guaranteed to be 918 * operating only with stack provided lists after they are 919 * properly isolated from the main list. It is thus, always a 920 * local access. 921 */ 922 return LRU_ROTATE; 923 } 924 925 d_lru_shrink_move(dentry, freeable); 926 spin_unlock(&dentry->d_lock); 927 928 return LRU_REMOVED; 929 } 930 931 /** 932 * prune_dcache_sb - shrink the dcache 933 * @sb: superblock 934 * @nr_to_scan : number of entries to try to free 935 * @nid: which node to scan for freeable entities 936 * 937 * Attempt to shrink the superblock dcache LRU by @nr_to_scan entries. This is 938 * done when we need more memory an called from the superblock shrinker 939 * function. 940 * 941 * This function may fail to free any resources if all the dentries are in 942 * use. 943 */ 944 long prune_dcache_sb(struct super_block *sb, unsigned long nr_to_scan, 945 int nid) 946 { 947 LIST_HEAD(dispose); 948 long freed; 949 950 freed = list_lru_walk_node(&sb->s_dentry_lru, nid, dentry_lru_isolate, 951 &dispose, &nr_to_scan); 952 shrink_dentry_list(&dispose); 953 return freed; 954 } 955 956 static enum lru_status dentry_lru_isolate_shrink(struct list_head *item, 957 spinlock_t *lru_lock, void *arg) 958 { 959 struct list_head *freeable = arg; 960 struct dentry *dentry = container_of(item, struct dentry, d_lru); 961 962 /* 963 * we are inverting the lru lock/dentry->d_lock here, 964 * so use a trylock. If we fail to get the lock, just skip 965 * it 966 */ 967 if (!spin_trylock(&dentry->d_lock)) 968 return LRU_SKIP; 969 970 d_lru_shrink_move(dentry, freeable); 971 spin_unlock(&dentry->d_lock); 972 973 return LRU_REMOVED; 974 } 975 976 977 /** 978 * shrink_dcache_sb - shrink dcache for a superblock 979 * @sb: superblock 980 * 981 * Shrink the dcache for the specified super block. This is used to free 982 * the dcache before unmounting a file system. 983 */ 984 void shrink_dcache_sb(struct super_block *sb) 985 { 986 long freed; 987 988 do { 989 LIST_HEAD(dispose); 990 991 freed = list_lru_walk(&sb->s_dentry_lru, 992 dentry_lru_isolate_shrink, &dispose, UINT_MAX); 993 994 this_cpu_sub(nr_dentry_unused, freed); 995 shrink_dentry_list(&dispose); 996 } while (freed > 0); 997 } 998 EXPORT_SYMBOL(shrink_dcache_sb); 999 1000 /** 1001 * enum d_walk_ret - action to talke during tree walk 1002 * @D_WALK_CONTINUE: contrinue walk 1003 * @D_WALK_QUIT: quit walk 1004 * @D_WALK_NORETRY: quit when retry is needed 1005 * @D_WALK_SKIP: skip this dentry and its children 1006 */ 1007 enum d_walk_ret { 1008 D_WALK_CONTINUE, 1009 D_WALK_QUIT, 1010 D_WALK_NORETRY, 1011 D_WALK_SKIP, 1012 }; 1013 1014 /** 1015 * d_walk - walk the dentry tree 1016 * @parent: start of walk 1017 * @data: data passed to @enter() and @finish() 1018 * @enter: callback when first entering the dentry 1019 * @finish: callback when successfully finished the walk 1020 * 1021 * The @enter() and @finish() callbacks are called with d_lock held. 1022 */ 1023 static void d_walk(struct dentry *parent, void *data, 1024 enum d_walk_ret (*enter)(void *, struct dentry *), 1025 void (*finish)(void *)) 1026 { 1027 struct dentry *this_parent; 1028 struct list_head *next; 1029 unsigned seq = 0; 1030 enum d_walk_ret ret; 1031 bool retry = true; 1032 1033 again: 1034 read_seqbegin_or_lock(&rename_lock, &seq); 1035 this_parent = parent; 1036 spin_lock(&this_parent->d_lock); 1037 1038 ret = enter(data, this_parent); 1039 switch (ret) { 1040 case D_WALK_CONTINUE: 1041 break; 1042 case D_WALK_QUIT: 1043 case D_WALK_SKIP: 1044 goto out_unlock; 1045 case D_WALK_NORETRY: 1046 retry = false; 1047 break; 1048 } 1049 repeat: 1050 next = this_parent->d_subdirs.next; 1051 resume: 1052 while (next != &this_parent->d_subdirs) { 1053 struct list_head *tmp = next; 1054 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child); 1055 next = tmp->next; 1056 1057 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED); 1058 1059 ret = enter(data, dentry); 1060 switch (ret) { 1061 case D_WALK_CONTINUE: 1062 break; 1063 case D_WALK_QUIT: 1064 spin_unlock(&dentry->d_lock); 1065 goto out_unlock; 1066 case D_WALK_NORETRY: 1067 retry = false; 1068 break; 1069 case D_WALK_SKIP: 1070 spin_unlock(&dentry->d_lock); 1071 continue; 1072 } 1073 1074 if (!list_empty(&dentry->d_subdirs)) { 1075 spin_unlock(&this_parent->d_lock); 1076 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_); 1077 this_parent = dentry; 1078 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_); 1079 goto repeat; 1080 } 1081 spin_unlock(&dentry->d_lock); 1082 } 1083 /* 1084 * All done at this level ... ascend and resume the search. 1085 */ 1086 if (this_parent != parent) { 1087 struct dentry *child = this_parent; 1088 this_parent = child->d_parent; 1089 1090 rcu_read_lock(); 1091 spin_unlock(&child->d_lock); 1092 spin_lock(&this_parent->d_lock); 1093 1094 /* 1095 * might go back up the wrong parent if we have had a rename 1096 * or deletion 1097 */ 1098 if (this_parent != child->d_parent || 1099 (child->d_flags & DCACHE_DENTRY_KILLED) || 1100 need_seqretry(&rename_lock, seq)) { 1101 spin_unlock(&this_parent->d_lock); 1102 rcu_read_unlock(); 1103 goto rename_retry; 1104 } 1105 rcu_read_unlock(); 1106 next = child->d_u.d_child.next; 1107 goto resume; 1108 } 1109 if (need_seqretry(&rename_lock, seq)) { 1110 spin_unlock(&this_parent->d_lock); 1111 goto rename_retry; 1112 } 1113 if (finish) 1114 finish(data); 1115 1116 out_unlock: 1117 spin_unlock(&this_parent->d_lock); 1118 done_seqretry(&rename_lock, seq); 1119 return; 1120 1121 rename_retry: 1122 if (!retry) 1123 return; 1124 seq = 1; 1125 goto again; 1126 } 1127 1128 /* 1129 * Search for at least 1 mount point in the dentry's subdirs. 1130 * We descend to the next level whenever the d_subdirs 1131 * list is non-empty and continue searching. 1132 */ 1133 1134 static enum d_walk_ret check_mount(void *data, struct dentry *dentry) 1135 { 1136 int *ret = data; 1137 if (d_mountpoint(dentry)) { 1138 *ret = 1; 1139 return D_WALK_QUIT; 1140 } 1141 return D_WALK_CONTINUE; 1142 } 1143 1144 /** 1145 * have_submounts - check for mounts over a dentry 1146 * @parent: dentry to check. 1147 * 1148 * Return true if the parent or its subdirectories contain 1149 * a mount point 1150 */ 1151 int have_submounts(struct dentry *parent) 1152 { 1153 int ret = 0; 1154 1155 d_walk(parent, &ret, check_mount, NULL); 1156 1157 return ret; 1158 } 1159 EXPORT_SYMBOL(have_submounts); 1160 1161 /* 1162 * Called by mount code to set a mountpoint and check if the mountpoint is 1163 * reachable (e.g. NFS can unhash a directory dentry and then the complete 1164 * subtree can become unreachable). 1165 * 1166 * Only one of d_invalidate() and d_set_mounted() must succeed. For 1167 * this reason take rename_lock and d_lock on dentry and ancestors. 1168 */ 1169 int d_set_mounted(struct dentry *dentry) 1170 { 1171 struct dentry *p; 1172 int ret = -ENOENT; 1173 write_seqlock(&rename_lock); 1174 for (p = dentry->d_parent; !IS_ROOT(p); p = p->d_parent) { 1175 /* Need exclusion wrt. d_invalidate() */ 1176 spin_lock(&p->d_lock); 1177 if (unlikely(d_unhashed(p))) { 1178 spin_unlock(&p->d_lock); 1179 goto out; 1180 } 1181 spin_unlock(&p->d_lock); 1182 } 1183 spin_lock(&dentry->d_lock); 1184 if (!d_unlinked(dentry)) { 1185 dentry->d_flags |= DCACHE_MOUNTED; 1186 ret = 0; 1187 } 1188 spin_unlock(&dentry->d_lock); 1189 out: 1190 write_sequnlock(&rename_lock); 1191 return ret; 1192 } 1193 1194 /* 1195 * Search the dentry child list of the specified parent, 1196 * and move any unused dentries to the end of the unused 1197 * list for prune_dcache(). We descend to the next level 1198 * whenever the d_subdirs list is non-empty and continue 1199 * searching. 1200 * 1201 * It returns zero iff there are no unused children, 1202 * otherwise it returns the number of children moved to 1203 * the end of the unused list. This may not be the total 1204 * number of unused children, because select_parent can 1205 * drop the lock and return early due to latency 1206 * constraints. 1207 */ 1208 1209 struct select_data { 1210 struct dentry *start; 1211 struct list_head dispose; 1212 int found; 1213 }; 1214 1215 static enum d_walk_ret select_collect(void *_data, struct dentry *dentry) 1216 { 1217 struct select_data *data = _data; 1218 enum d_walk_ret ret = D_WALK_CONTINUE; 1219 1220 if (data->start == dentry) 1221 goto out; 1222 1223 if (dentry->d_flags & DCACHE_SHRINK_LIST) { 1224 data->found++; 1225 } else { 1226 if (dentry->d_flags & DCACHE_LRU_LIST) 1227 d_lru_del(dentry); 1228 if (!dentry->d_lockref.count) { 1229 d_shrink_add(dentry, &data->dispose); 1230 data->found++; 1231 } 1232 } 1233 /* 1234 * We can return to the caller if we have found some (this 1235 * ensures forward progress). We'll be coming back to find 1236 * the rest. 1237 */ 1238 if (!list_empty(&data->dispose)) 1239 ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY; 1240 out: 1241 return ret; 1242 } 1243 1244 /** 1245 * shrink_dcache_parent - prune dcache 1246 * @parent: parent of entries to prune 1247 * 1248 * Prune the dcache to remove unused children of the parent dentry. 1249 */ 1250 void shrink_dcache_parent(struct dentry *parent) 1251 { 1252 for (;;) { 1253 struct select_data data; 1254 1255 INIT_LIST_HEAD(&data.dispose); 1256 data.start = parent; 1257 data.found = 0; 1258 1259 d_walk(parent, &data, select_collect, NULL); 1260 if (!data.found) 1261 break; 1262 1263 shrink_dentry_list(&data.dispose); 1264 cond_resched(); 1265 } 1266 } 1267 EXPORT_SYMBOL(shrink_dcache_parent); 1268 1269 static enum d_walk_ret umount_check(void *_data, struct dentry *dentry) 1270 { 1271 /* it has busy descendents; complain about those instead */ 1272 if (!list_empty(&dentry->d_subdirs)) 1273 return D_WALK_CONTINUE; 1274 1275 /* root with refcount 1 is fine */ 1276 if (dentry == _data && dentry->d_lockref.count == 1) 1277 return D_WALK_CONTINUE; 1278 1279 printk(KERN_ERR "BUG: Dentry %p{i=%lx,n=%pd} " 1280 " still in use (%d) [unmount of %s %s]\n", 1281 dentry, 1282 dentry->d_inode ? 1283 dentry->d_inode->i_ino : 0UL, 1284 dentry, 1285 dentry->d_lockref.count, 1286 dentry->d_sb->s_type->name, 1287 dentry->d_sb->s_id); 1288 WARN_ON(1); 1289 return D_WALK_CONTINUE; 1290 } 1291 1292 static void do_one_tree(struct dentry *dentry) 1293 { 1294 shrink_dcache_parent(dentry); 1295 d_walk(dentry, dentry, umount_check, NULL); 1296 d_drop(dentry); 1297 dput(dentry); 1298 } 1299 1300 /* 1301 * destroy the dentries attached to a superblock on unmounting 1302 */ 1303 void shrink_dcache_for_umount(struct super_block *sb) 1304 { 1305 struct dentry *dentry; 1306 1307 WARN(down_read_trylock(&sb->s_umount), "s_umount should've been locked"); 1308 1309 dentry = sb->s_root; 1310 sb->s_root = NULL; 1311 do_one_tree(dentry); 1312 1313 while (!hlist_bl_empty(&sb->s_anon)) { 1314 dentry = dget(hlist_bl_entry(hlist_bl_first(&sb->s_anon), struct dentry, d_hash)); 1315 do_one_tree(dentry); 1316 } 1317 } 1318 1319 struct detach_data { 1320 struct select_data select; 1321 struct dentry *mountpoint; 1322 }; 1323 static enum d_walk_ret detach_and_collect(void *_data, struct dentry *dentry) 1324 { 1325 struct detach_data *data = _data; 1326 1327 if (d_mountpoint(dentry)) { 1328 __dget_dlock(dentry); 1329 data->mountpoint = dentry; 1330 return D_WALK_QUIT; 1331 } 1332 1333 return select_collect(&data->select, dentry); 1334 } 1335 1336 static void check_and_drop(void *_data) 1337 { 1338 struct detach_data *data = _data; 1339 1340 if (!data->mountpoint && !data->select.found) 1341 __d_drop(data->select.start); 1342 } 1343 1344 /** 1345 * d_invalidate - detach submounts, prune dcache, and drop 1346 * @dentry: dentry to invalidate (aka detach, prune and drop) 1347 * 1348 * no dcache lock. 1349 * 1350 * The final d_drop is done as an atomic operation relative to 1351 * rename_lock ensuring there are no races with d_set_mounted. This 1352 * ensures there are no unhashed dentries on the path to a mountpoint. 1353 */ 1354 void d_invalidate(struct dentry *dentry) 1355 { 1356 /* 1357 * If it's already been dropped, return OK. 1358 */ 1359 spin_lock(&dentry->d_lock); 1360 if (d_unhashed(dentry)) { 1361 spin_unlock(&dentry->d_lock); 1362 return; 1363 } 1364 spin_unlock(&dentry->d_lock); 1365 1366 /* Negative dentries can be dropped without further checks */ 1367 if (!dentry->d_inode) { 1368 d_drop(dentry); 1369 return; 1370 } 1371 1372 for (;;) { 1373 struct detach_data data; 1374 1375 data.mountpoint = NULL; 1376 INIT_LIST_HEAD(&data.select.dispose); 1377 data.select.start = dentry; 1378 data.select.found = 0; 1379 1380 d_walk(dentry, &data, detach_and_collect, check_and_drop); 1381 1382 if (data.select.found) 1383 shrink_dentry_list(&data.select.dispose); 1384 1385 if (data.mountpoint) { 1386 detach_mounts(data.mountpoint); 1387 dput(data.mountpoint); 1388 } 1389 1390 if (!data.mountpoint && !data.select.found) 1391 break; 1392 1393 cond_resched(); 1394 } 1395 } 1396 EXPORT_SYMBOL(d_invalidate); 1397 1398 /** 1399 * __d_alloc - allocate a dcache entry 1400 * @sb: filesystem it will belong to 1401 * @name: qstr of the name 1402 * 1403 * Allocates a dentry. It returns %NULL if there is insufficient memory 1404 * available. On a success the dentry is returned. The name passed in is 1405 * copied and the copy passed in may be reused after this call. 1406 */ 1407 1408 struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name) 1409 { 1410 struct dentry *dentry; 1411 char *dname; 1412 1413 dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL); 1414 if (!dentry) 1415 return NULL; 1416 1417 /* 1418 * We guarantee that the inline name is always NUL-terminated. 1419 * This way the memcpy() done by the name switching in rename 1420 * will still always have a NUL at the end, even if we might 1421 * be overwriting an internal NUL character 1422 */ 1423 dentry->d_iname[DNAME_INLINE_LEN-1] = 0; 1424 if (name->len > DNAME_INLINE_LEN-1) { 1425 size_t size = offsetof(struct external_name, name[1]); 1426 struct external_name *p = kmalloc(size + name->len, GFP_KERNEL); 1427 if (!p) { 1428 kmem_cache_free(dentry_cache, dentry); 1429 return NULL; 1430 } 1431 atomic_set(&p->u.count, 1); 1432 dname = p->name; 1433 } else { 1434 dname = dentry->d_iname; 1435 } 1436 1437 dentry->d_name.len = name->len; 1438 dentry->d_name.hash = name->hash; 1439 memcpy(dname, name->name, name->len); 1440 dname[name->len] = 0; 1441 1442 /* Make sure we always see the terminating NUL character */ 1443 smp_wmb(); 1444 dentry->d_name.name = dname; 1445 1446 dentry->d_lockref.count = 1; 1447 dentry->d_flags = 0; 1448 spin_lock_init(&dentry->d_lock); 1449 seqcount_init(&dentry->d_seq); 1450 dentry->d_inode = NULL; 1451 dentry->d_parent = dentry; 1452 dentry->d_sb = sb; 1453 dentry->d_op = NULL; 1454 dentry->d_fsdata = NULL; 1455 INIT_HLIST_BL_NODE(&dentry->d_hash); 1456 INIT_LIST_HEAD(&dentry->d_lru); 1457 INIT_LIST_HEAD(&dentry->d_subdirs); 1458 INIT_HLIST_NODE(&dentry->d_alias); 1459 INIT_LIST_HEAD(&dentry->d_u.d_child); 1460 d_set_d_op(dentry, dentry->d_sb->s_d_op); 1461 1462 this_cpu_inc(nr_dentry); 1463 1464 return dentry; 1465 } 1466 1467 /** 1468 * d_alloc - allocate a dcache entry 1469 * @parent: parent of entry to allocate 1470 * @name: qstr of the name 1471 * 1472 * Allocates a dentry. It returns %NULL if there is insufficient memory 1473 * available. On a success the dentry is returned. The name passed in is 1474 * copied and the copy passed in may be reused after this call. 1475 */ 1476 struct dentry *d_alloc(struct dentry * parent, const struct qstr *name) 1477 { 1478 struct dentry *dentry = __d_alloc(parent->d_sb, name); 1479 if (!dentry) 1480 return NULL; 1481 1482 spin_lock(&parent->d_lock); 1483 /* 1484 * don't need child lock because it is not subject 1485 * to concurrency here 1486 */ 1487 __dget_dlock(parent); 1488 dentry->d_parent = parent; 1489 list_add(&dentry->d_u.d_child, &parent->d_subdirs); 1490 spin_unlock(&parent->d_lock); 1491 1492 return dentry; 1493 } 1494 EXPORT_SYMBOL(d_alloc); 1495 1496 /** 1497 * d_alloc_pseudo - allocate a dentry (for lookup-less filesystems) 1498 * @sb: the superblock 1499 * @name: qstr of the name 1500 * 1501 * For a filesystem that just pins its dentries in memory and never 1502 * performs lookups at all, return an unhashed IS_ROOT dentry. 1503 */ 1504 struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name) 1505 { 1506 return __d_alloc(sb, name); 1507 } 1508 EXPORT_SYMBOL(d_alloc_pseudo); 1509 1510 struct dentry *d_alloc_name(struct dentry *parent, const char *name) 1511 { 1512 struct qstr q; 1513 1514 q.name = name; 1515 q.len = strlen(name); 1516 q.hash = full_name_hash(q.name, q.len); 1517 return d_alloc(parent, &q); 1518 } 1519 EXPORT_SYMBOL(d_alloc_name); 1520 1521 void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op) 1522 { 1523 WARN_ON_ONCE(dentry->d_op); 1524 WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH | 1525 DCACHE_OP_COMPARE | 1526 DCACHE_OP_REVALIDATE | 1527 DCACHE_OP_WEAK_REVALIDATE | 1528 DCACHE_OP_DELETE )); 1529 dentry->d_op = op; 1530 if (!op) 1531 return; 1532 if (op->d_hash) 1533 dentry->d_flags |= DCACHE_OP_HASH; 1534 if (op->d_compare) 1535 dentry->d_flags |= DCACHE_OP_COMPARE; 1536 if (op->d_revalidate) 1537 dentry->d_flags |= DCACHE_OP_REVALIDATE; 1538 if (op->d_weak_revalidate) 1539 dentry->d_flags |= DCACHE_OP_WEAK_REVALIDATE; 1540 if (op->d_delete) 1541 dentry->d_flags |= DCACHE_OP_DELETE; 1542 if (op->d_prune) 1543 dentry->d_flags |= DCACHE_OP_PRUNE; 1544 1545 } 1546 EXPORT_SYMBOL(d_set_d_op); 1547 1548 static unsigned d_flags_for_inode(struct inode *inode) 1549 { 1550 unsigned add_flags = DCACHE_FILE_TYPE; 1551 1552 if (!inode) 1553 return DCACHE_MISS_TYPE; 1554 1555 if (S_ISDIR(inode->i_mode)) { 1556 add_flags = DCACHE_DIRECTORY_TYPE; 1557 if (unlikely(!(inode->i_opflags & IOP_LOOKUP))) { 1558 if (unlikely(!inode->i_op->lookup)) 1559 add_flags = DCACHE_AUTODIR_TYPE; 1560 else 1561 inode->i_opflags |= IOP_LOOKUP; 1562 } 1563 } else if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) { 1564 if (unlikely(inode->i_op->follow_link)) 1565 add_flags = DCACHE_SYMLINK_TYPE; 1566 else 1567 inode->i_opflags |= IOP_NOFOLLOW; 1568 } 1569 1570 if (unlikely(IS_AUTOMOUNT(inode))) 1571 add_flags |= DCACHE_NEED_AUTOMOUNT; 1572 return add_flags; 1573 } 1574 1575 static void __d_instantiate(struct dentry *dentry, struct inode *inode) 1576 { 1577 unsigned add_flags = d_flags_for_inode(inode); 1578 1579 spin_lock(&dentry->d_lock); 1580 __d_set_type(dentry, add_flags); 1581 if (inode) 1582 hlist_add_head(&dentry->d_alias, &inode->i_dentry); 1583 dentry->d_inode = inode; 1584 dentry_rcuwalk_barrier(dentry); 1585 spin_unlock(&dentry->d_lock); 1586 fsnotify_d_instantiate(dentry, inode); 1587 } 1588 1589 /** 1590 * d_instantiate - fill in inode information for a dentry 1591 * @entry: dentry to complete 1592 * @inode: inode to attach to this dentry 1593 * 1594 * Fill in inode information in the entry. 1595 * 1596 * This turns negative dentries into productive full members 1597 * of society. 1598 * 1599 * NOTE! This assumes that the inode count has been incremented 1600 * (or otherwise set) by the caller to indicate that it is now 1601 * in use by the dcache. 1602 */ 1603 1604 void d_instantiate(struct dentry *entry, struct inode * inode) 1605 { 1606 BUG_ON(!hlist_unhashed(&entry->d_alias)); 1607 if (inode) 1608 spin_lock(&inode->i_lock); 1609 __d_instantiate(entry, inode); 1610 if (inode) 1611 spin_unlock(&inode->i_lock); 1612 security_d_instantiate(entry, inode); 1613 } 1614 EXPORT_SYMBOL(d_instantiate); 1615 1616 /** 1617 * d_instantiate_unique - instantiate a non-aliased dentry 1618 * @entry: dentry to instantiate 1619 * @inode: inode to attach to this dentry 1620 * 1621 * Fill in inode information in the entry. On success, it returns NULL. 1622 * If an unhashed alias of "entry" already exists, then we return the 1623 * aliased dentry instead and drop one reference to inode. 1624 * 1625 * Note that in order to avoid conflicts with rename() etc, the caller 1626 * had better be holding the parent directory semaphore. 1627 * 1628 * This also assumes that the inode count has been incremented 1629 * (or otherwise set) by the caller to indicate that it is now 1630 * in use by the dcache. 1631 */ 1632 static struct dentry *__d_instantiate_unique(struct dentry *entry, 1633 struct inode *inode) 1634 { 1635 struct dentry *alias; 1636 int len = entry->d_name.len; 1637 const char *name = entry->d_name.name; 1638 unsigned int hash = entry->d_name.hash; 1639 1640 if (!inode) { 1641 __d_instantiate(entry, NULL); 1642 return NULL; 1643 } 1644 1645 hlist_for_each_entry(alias, &inode->i_dentry, d_alias) { 1646 /* 1647 * Don't need alias->d_lock here, because aliases with 1648 * d_parent == entry->d_parent are not subject to name or 1649 * parent changes, because the parent inode i_mutex is held. 1650 */ 1651 if (alias->d_name.hash != hash) 1652 continue; 1653 if (alias->d_parent != entry->d_parent) 1654 continue; 1655 if (alias->d_name.len != len) 1656 continue; 1657 if (dentry_cmp(alias, name, len)) 1658 continue; 1659 __dget(alias); 1660 return alias; 1661 } 1662 1663 __d_instantiate(entry, inode); 1664 return NULL; 1665 } 1666 1667 struct dentry *d_instantiate_unique(struct dentry *entry, struct inode *inode) 1668 { 1669 struct dentry *result; 1670 1671 BUG_ON(!hlist_unhashed(&entry->d_alias)); 1672 1673 if (inode) 1674 spin_lock(&inode->i_lock); 1675 result = __d_instantiate_unique(entry, inode); 1676 if (inode) 1677 spin_unlock(&inode->i_lock); 1678 1679 if (!result) { 1680 security_d_instantiate(entry, inode); 1681 return NULL; 1682 } 1683 1684 BUG_ON(!d_unhashed(result)); 1685 iput(inode); 1686 return result; 1687 } 1688 1689 EXPORT_SYMBOL(d_instantiate_unique); 1690 1691 /** 1692 * d_instantiate_no_diralias - instantiate a non-aliased dentry 1693 * @entry: dentry to complete 1694 * @inode: inode to attach to this dentry 1695 * 1696 * Fill in inode information in the entry. If a directory alias is found, then 1697 * return an error (and drop inode). Together with d_materialise_unique() this 1698 * guarantees that a directory inode may never have more than one alias. 1699 */ 1700 int d_instantiate_no_diralias(struct dentry *entry, struct inode *inode) 1701 { 1702 BUG_ON(!hlist_unhashed(&entry->d_alias)); 1703 1704 spin_lock(&inode->i_lock); 1705 if (S_ISDIR(inode->i_mode) && !hlist_empty(&inode->i_dentry)) { 1706 spin_unlock(&inode->i_lock); 1707 iput(inode); 1708 return -EBUSY; 1709 } 1710 __d_instantiate(entry, inode); 1711 spin_unlock(&inode->i_lock); 1712 security_d_instantiate(entry, inode); 1713 1714 return 0; 1715 } 1716 EXPORT_SYMBOL(d_instantiate_no_diralias); 1717 1718 struct dentry *d_make_root(struct inode *root_inode) 1719 { 1720 struct dentry *res = NULL; 1721 1722 if (root_inode) { 1723 static const struct qstr name = QSTR_INIT("/", 1); 1724 1725 res = __d_alloc(root_inode->i_sb, &name); 1726 if (res) 1727 d_instantiate(res, root_inode); 1728 else 1729 iput(root_inode); 1730 } 1731 return res; 1732 } 1733 EXPORT_SYMBOL(d_make_root); 1734 1735 static struct dentry * __d_find_any_alias(struct inode *inode) 1736 { 1737 struct dentry *alias; 1738 1739 if (hlist_empty(&inode->i_dentry)) 1740 return NULL; 1741 alias = hlist_entry(inode->i_dentry.first, struct dentry, d_alias); 1742 __dget(alias); 1743 return alias; 1744 } 1745 1746 /** 1747 * d_find_any_alias - find any alias for a given inode 1748 * @inode: inode to find an alias for 1749 * 1750 * If any aliases exist for the given inode, take and return a 1751 * reference for one of them. If no aliases exist, return %NULL. 1752 */ 1753 struct dentry *d_find_any_alias(struct inode *inode) 1754 { 1755 struct dentry *de; 1756 1757 spin_lock(&inode->i_lock); 1758 de = __d_find_any_alias(inode); 1759 spin_unlock(&inode->i_lock); 1760 return de; 1761 } 1762 EXPORT_SYMBOL(d_find_any_alias); 1763 1764 static struct dentry *__d_obtain_alias(struct inode *inode, int disconnected) 1765 { 1766 static const struct qstr anonstring = QSTR_INIT("/", 1); 1767 struct dentry *tmp; 1768 struct dentry *res; 1769 unsigned add_flags; 1770 1771 if (!inode) 1772 return ERR_PTR(-ESTALE); 1773 if (IS_ERR(inode)) 1774 return ERR_CAST(inode); 1775 1776 res = d_find_any_alias(inode); 1777 if (res) 1778 goto out_iput; 1779 1780 tmp = __d_alloc(inode->i_sb, &anonstring); 1781 if (!tmp) { 1782 res = ERR_PTR(-ENOMEM); 1783 goto out_iput; 1784 } 1785 1786 spin_lock(&inode->i_lock); 1787 res = __d_find_any_alias(inode); 1788 if (res) { 1789 spin_unlock(&inode->i_lock); 1790 dput(tmp); 1791 goto out_iput; 1792 } 1793 1794 /* attach a disconnected dentry */ 1795 add_flags = d_flags_for_inode(inode); 1796 1797 if (disconnected) 1798 add_flags |= DCACHE_DISCONNECTED; 1799 1800 spin_lock(&tmp->d_lock); 1801 tmp->d_inode = inode; 1802 tmp->d_flags |= add_flags; 1803 hlist_add_head(&tmp->d_alias, &inode->i_dentry); 1804 hlist_bl_lock(&tmp->d_sb->s_anon); 1805 hlist_bl_add_head(&tmp->d_hash, &tmp->d_sb->s_anon); 1806 hlist_bl_unlock(&tmp->d_sb->s_anon); 1807 spin_unlock(&tmp->d_lock); 1808 spin_unlock(&inode->i_lock); 1809 security_d_instantiate(tmp, inode); 1810 1811 return tmp; 1812 1813 out_iput: 1814 if (res && !IS_ERR(res)) 1815 security_d_instantiate(res, inode); 1816 iput(inode); 1817 return res; 1818 } 1819 1820 /** 1821 * d_obtain_alias - find or allocate a DISCONNECTED dentry for a given inode 1822 * @inode: inode to allocate the dentry for 1823 * 1824 * Obtain a dentry for an inode resulting from NFS filehandle conversion or 1825 * similar open by handle operations. The returned dentry may be anonymous, 1826 * or may have a full name (if the inode was already in the cache). 1827 * 1828 * When called on a directory inode, we must ensure that the inode only ever 1829 * has one dentry. If a dentry is found, that is returned instead of 1830 * allocating a new one. 1831 * 1832 * On successful return, the reference to the inode has been transferred 1833 * to the dentry. In case of an error the reference on the inode is released. 1834 * To make it easier to use in export operations a %NULL or IS_ERR inode may 1835 * be passed in and the error will be propagated to the return value, 1836 * with a %NULL @inode replaced by ERR_PTR(-ESTALE). 1837 */ 1838 struct dentry *d_obtain_alias(struct inode *inode) 1839 { 1840 return __d_obtain_alias(inode, 1); 1841 } 1842 EXPORT_SYMBOL(d_obtain_alias); 1843 1844 /** 1845 * d_obtain_root - find or allocate a dentry for a given inode 1846 * @inode: inode to allocate the dentry for 1847 * 1848 * Obtain an IS_ROOT dentry for the root of a filesystem. 1849 * 1850 * We must ensure that directory inodes only ever have one dentry. If a 1851 * dentry is found, that is returned instead of allocating a new one. 1852 * 1853 * On successful return, the reference to the inode has been transferred 1854 * to the dentry. In case of an error the reference on the inode is 1855 * released. A %NULL or IS_ERR inode may be passed in and will be the 1856 * error will be propagate to the return value, with a %NULL @inode 1857 * replaced by ERR_PTR(-ESTALE). 1858 */ 1859 struct dentry *d_obtain_root(struct inode *inode) 1860 { 1861 return __d_obtain_alias(inode, 0); 1862 } 1863 EXPORT_SYMBOL(d_obtain_root); 1864 1865 /** 1866 * d_add_ci - lookup or allocate new dentry with case-exact name 1867 * @inode: the inode case-insensitive lookup has found 1868 * @dentry: the negative dentry that was passed to the parent's lookup func 1869 * @name: the case-exact name to be associated with the returned dentry 1870 * 1871 * This is to avoid filling the dcache with case-insensitive names to the 1872 * same inode, only the actual correct case is stored in the dcache for 1873 * case-insensitive filesystems. 1874 * 1875 * For a case-insensitive lookup match and if the the case-exact dentry 1876 * already exists in in the dcache, use it and return it. 1877 * 1878 * If no entry exists with the exact case name, allocate new dentry with 1879 * the exact case, and return the spliced entry. 1880 */ 1881 struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode, 1882 struct qstr *name) 1883 { 1884 struct dentry *found; 1885 struct dentry *new; 1886 1887 /* 1888 * First check if a dentry matching the name already exists, 1889 * if not go ahead and create it now. 1890 */ 1891 found = d_hash_and_lookup(dentry->d_parent, name); 1892 if (unlikely(IS_ERR(found))) 1893 goto err_out; 1894 if (!found) { 1895 new = d_alloc(dentry->d_parent, name); 1896 if (!new) { 1897 found = ERR_PTR(-ENOMEM); 1898 goto err_out; 1899 } 1900 1901 found = d_splice_alias(inode, new); 1902 if (found) { 1903 dput(new); 1904 return found; 1905 } 1906 return new; 1907 } 1908 1909 /* 1910 * If a matching dentry exists, and it's not negative use it. 1911 * 1912 * Decrement the reference count to balance the iget() done 1913 * earlier on. 1914 */ 1915 if (found->d_inode) { 1916 if (unlikely(found->d_inode != inode)) { 1917 /* This can't happen because bad inodes are unhashed. */ 1918 BUG_ON(!is_bad_inode(inode)); 1919 BUG_ON(!is_bad_inode(found->d_inode)); 1920 } 1921 iput(inode); 1922 return found; 1923 } 1924 1925 /* 1926 * Negative dentry: instantiate it unless the inode is a directory and 1927 * already has a dentry. 1928 */ 1929 new = d_splice_alias(inode, found); 1930 if (new) { 1931 dput(found); 1932 found = new; 1933 } 1934 return found; 1935 1936 err_out: 1937 iput(inode); 1938 return found; 1939 } 1940 EXPORT_SYMBOL(d_add_ci); 1941 1942 /* 1943 * Do the slow-case of the dentry name compare. 1944 * 1945 * Unlike the dentry_cmp() function, we need to atomically 1946 * load the name and length information, so that the 1947 * filesystem can rely on them, and can use the 'name' and 1948 * 'len' information without worrying about walking off the 1949 * end of memory etc. 1950 * 1951 * Thus the read_seqcount_retry() and the "duplicate" info 1952 * in arguments (the low-level filesystem should not look 1953 * at the dentry inode or name contents directly, since 1954 * rename can change them while we're in RCU mode). 1955 */ 1956 enum slow_d_compare { 1957 D_COMP_OK, 1958 D_COMP_NOMATCH, 1959 D_COMP_SEQRETRY, 1960 }; 1961 1962 static noinline enum slow_d_compare slow_dentry_cmp( 1963 const struct dentry *parent, 1964 struct dentry *dentry, 1965 unsigned int seq, 1966 const struct qstr *name) 1967 { 1968 int tlen = dentry->d_name.len; 1969 const char *tname = dentry->d_name.name; 1970 1971 if (read_seqcount_retry(&dentry->d_seq, seq)) { 1972 cpu_relax(); 1973 return D_COMP_SEQRETRY; 1974 } 1975 if (parent->d_op->d_compare(parent, dentry, tlen, tname, name)) 1976 return D_COMP_NOMATCH; 1977 return D_COMP_OK; 1978 } 1979 1980 /** 1981 * __d_lookup_rcu - search for a dentry (racy, store-free) 1982 * @parent: parent dentry 1983 * @name: qstr of name we wish to find 1984 * @seqp: returns d_seq value at the point where the dentry was found 1985 * Returns: dentry, or NULL 1986 * 1987 * __d_lookup_rcu is the dcache lookup function for rcu-walk name 1988 * resolution (store-free path walking) design described in 1989 * Documentation/filesystems/path-lookup.txt. 1990 * 1991 * This is not to be used outside core vfs. 1992 * 1993 * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock 1994 * held, and rcu_read_lock held. The returned dentry must not be stored into 1995 * without taking d_lock and checking d_seq sequence count against @seq 1996 * returned here. 1997 * 1998 * A refcount may be taken on the found dentry with the d_rcu_to_refcount 1999 * function. 2000 * 2001 * Alternatively, __d_lookup_rcu may be called again to look up the child of 2002 * the returned dentry, so long as its parent's seqlock is checked after the 2003 * child is looked up. Thus, an interlocking stepping of sequence lock checks 2004 * is formed, giving integrity down the path walk. 2005 * 2006 * NOTE! The caller *has* to check the resulting dentry against the sequence 2007 * number we've returned before using any of the resulting dentry state! 2008 */ 2009 struct dentry *__d_lookup_rcu(const struct dentry *parent, 2010 const struct qstr *name, 2011 unsigned *seqp) 2012 { 2013 u64 hashlen = name->hash_len; 2014 const unsigned char *str = name->name; 2015 struct hlist_bl_head *b = d_hash(parent, hashlen_hash(hashlen)); 2016 struct hlist_bl_node *node; 2017 struct dentry *dentry; 2018 2019 /* 2020 * Note: There is significant duplication with __d_lookup_rcu which is 2021 * required to prevent single threaded performance regressions 2022 * especially on architectures where smp_rmb (in seqcounts) are costly. 2023 * Keep the two functions in sync. 2024 */ 2025 2026 /* 2027 * The hash list is protected using RCU. 2028 * 2029 * Carefully use d_seq when comparing a candidate dentry, to avoid 2030 * races with d_move(). 2031 * 2032 * It is possible that concurrent renames can mess up our list 2033 * walk here and result in missing our dentry, resulting in the 2034 * false-negative result. d_lookup() protects against concurrent 2035 * renames using rename_lock seqlock. 2036 * 2037 * See Documentation/filesystems/path-lookup.txt for more details. 2038 */ 2039 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) { 2040 unsigned seq; 2041 2042 seqretry: 2043 /* 2044 * The dentry sequence count protects us from concurrent 2045 * renames, and thus protects parent and name fields. 2046 * 2047 * The caller must perform a seqcount check in order 2048 * to do anything useful with the returned dentry. 2049 * 2050 * NOTE! We do a "raw" seqcount_begin here. That means that 2051 * we don't wait for the sequence count to stabilize if it 2052 * is in the middle of a sequence change. If we do the slow 2053 * dentry compare, we will do seqretries until it is stable, 2054 * and if we end up with a successful lookup, we actually 2055 * want to exit RCU lookup anyway. 2056 */ 2057 seq = raw_seqcount_begin(&dentry->d_seq); 2058 if (dentry->d_parent != parent) 2059 continue; 2060 if (d_unhashed(dentry)) 2061 continue; 2062 2063 if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) { 2064 if (dentry->d_name.hash != hashlen_hash(hashlen)) 2065 continue; 2066 *seqp = seq; 2067 switch (slow_dentry_cmp(parent, dentry, seq, name)) { 2068 case D_COMP_OK: 2069 return dentry; 2070 case D_COMP_NOMATCH: 2071 continue; 2072 default: 2073 goto seqretry; 2074 } 2075 } 2076 2077 if (dentry->d_name.hash_len != hashlen) 2078 continue; 2079 *seqp = seq; 2080 if (!dentry_cmp(dentry, str, hashlen_len(hashlen))) 2081 return dentry; 2082 } 2083 return NULL; 2084 } 2085 2086 /** 2087 * d_lookup - search for a dentry 2088 * @parent: parent dentry 2089 * @name: qstr of name we wish to find 2090 * Returns: dentry, or NULL 2091 * 2092 * d_lookup searches the children of the parent dentry for the name in 2093 * question. If the dentry is found its reference count is incremented and the 2094 * dentry is returned. The caller must use dput to free the entry when it has 2095 * finished using it. %NULL is returned if the dentry does not exist. 2096 */ 2097 struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name) 2098 { 2099 struct dentry *dentry; 2100 unsigned seq; 2101 2102 do { 2103 seq = read_seqbegin(&rename_lock); 2104 dentry = __d_lookup(parent, name); 2105 if (dentry) 2106 break; 2107 } while (read_seqretry(&rename_lock, seq)); 2108 return dentry; 2109 } 2110 EXPORT_SYMBOL(d_lookup); 2111 2112 /** 2113 * __d_lookup - search for a dentry (racy) 2114 * @parent: parent dentry 2115 * @name: qstr of name we wish to find 2116 * Returns: dentry, or NULL 2117 * 2118 * __d_lookup is like d_lookup, however it may (rarely) return a 2119 * false-negative result due to unrelated rename activity. 2120 * 2121 * __d_lookup is slightly faster by avoiding rename_lock read seqlock, 2122 * however it must be used carefully, eg. with a following d_lookup in 2123 * the case of failure. 2124 * 2125 * __d_lookup callers must be commented. 2126 */ 2127 struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name) 2128 { 2129 unsigned int len = name->len; 2130 unsigned int hash = name->hash; 2131 const unsigned char *str = name->name; 2132 struct hlist_bl_head *b = d_hash(parent, hash); 2133 struct hlist_bl_node *node; 2134 struct dentry *found = NULL; 2135 struct dentry *dentry; 2136 2137 /* 2138 * Note: There is significant duplication with __d_lookup_rcu which is 2139 * required to prevent single threaded performance regressions 2140 * especially on architectures where smp_rmb (in seqcounts) are costly. 2141 * Keep the two functions in sync. 2142 */ 2143 2144 /* 2145 * The hash list is protected using RCU. 2146 * 2147 * Take d_lock when comparing a candidate dentry, to avoid races 2148 * with d_move(). 2149 * 2150 * It is possible that concurrent renames can mess up our list 2151 * walk here and result in missing our dentry, resulting in the 2152 * false-negative result. d_lookup() protects against concurrent 2153 * renames using rename_lock seqlock. 2154 * 2155 * See Documentation/filesystems/path-lookup.txt for more details. 2156 */ 2157 rcu_read_lock(); 2158 2159 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) { 2160 2161 if (dentry->d_name.hash != hash) 2162 continue; 2163 2164 spin_lock(&dentry->d_lock); 2165 if (dentry->d_parent != parent) 2166 goto next; 2167 if (d_unhashed(dentry)) 2168 goto next; 2169 2170 /* 2171 * It is safe to compare names since d_move() cannot 2172 * change the qstr (protected by d_lock). 2173 */ 2174 if (parent->d_flags & DCACHE_OP_COMPARE) { 2175 int tlen = dentry->d_name.len; 2176 const char *tname = dentry->d_name.name; 2177 if (parent->d_op->d_compare(parent, dentry, tlen, tname, name)) 2178 goto next; 2179 } else { 2180 if (dentry->d_name.len != len) 2181 goto next; 2182 if (dentry_cmp(dentry, str, len)) 2183 goto next; 2184 } 2185 2186 dentry->d_lockref.count++; 2187 found = dentry; 2188 spin_unlock(&dentry->d_lock); 2189 break; 2190 next: 2191 spin_unlock(&dentry->d_lock); 2192 } 2193 rcu_read_unlock(); 2194 2195 return found; 2196 } 2197 2198 /** 2199 * d_hash_and_lookup - hash the qstr then search for a dentry 2200 * @dir: Directory to search in 2201 * @name: qstr of name we wish to find 2202 * 2203 * On lookup failure NULL is returned; on bad name - ERR_PTR(-error) 2204 */ 2205 struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name) 2206 { 2207 /* 2208 * Check for a fs-specific hash function. Note that we must 2209 * calculate the standard hash first, as the d_op->d_hash() 2210 * routine may choose to leave the hash value unchanged. 2211 */ 2212 name->hash = full_name_hash(name->name, name->len); 2213 if (dir->d_flags & DCACHE_OP_HASH) { 2214 int err = dir->d_op->d_hash(dir, name); 2215 if (unlikely(err < 0)) 2216 return ERR_PTR(err); 2217 } 2218 return d_lookup(dir, name); 2219 } 2220 EXPORT_SYMBOL(d_hash_and_lookup); 2221 2222 /** 2223 * d_validate - verify dentry provided from insecure source (deprecated) 2224 * @dentry: The dentry alleged to be valid child of @dparent 2225 * @dparent: The parent dentry (known to be valid) 2226 * 2227 * An insecure source has sent us a dentry, here we verify it and dget() it. 2228 * This is used by ncpfs in its readdir implementation. 2229 * Zero is returned in the dentry is invalid. 2230 * 2231 * This function is slow for big directories, and deprecated, do not use it. 2232 */ 2233 int d_validate(struct dentry *dentry, struct dentry *dparent) 2234 { 2235 struct dentry *child; 2236 2237 spin_lock(&dparent->d_lock); 2238 list_for_each_entry(child, &dparent->d_subdirs, d_u.d_child) { 2239 if (dentry == child) { 2240 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED); 2241 __dget_dlock(dentry); 2242 spin_unlock(&dentry->d_lock); 2243 spin_unlock(&dparent->d_lock); 2244 return 1; 2245 } 2246 } 2247 spin_unlock(&dparent->d_lock); 2248 2249 return 0; 2250 } 2251 EXPORT_SYMBOL(d_validate); 2252 2253 /* 2254 * When a file is deleted, we have two options: 2255 * - turn this dentry into a negative dentry 2256 * - unhash this dentry and free it. 2257 * 2258 * Usually, we want to just turn this into 2259 * a negative dentry, but if anybody else is 2260 * currently using the dentry or the inode 2261 * we can't do that and we fall back on removing 2262 * it from the hash queues and waiting for 2263 * it to be deleted later when it has no users 2264 */ 2265 2266 /** 2267 * d_delete - delete a dentry 2268 * @dentry: The dentry to delete 2269 * 2270 * Turn the dentry into a negative dentry if possible, otherwise 2271 * remove it from the hash queues so it can be deleted later 2272 */ 2273 2274 void d_delete(struct dentry * dentry) 2275 { 2276 struct inode *inode; 2277 int isdir = 0; 2278 /* 2279 * Are we the only user? 2280 */ 2281 again: 2282 spin_lock(&dentry->d_lock); 2283 inode = dentry->d_inode; 2284 isdir = S_ISDIR(inode->i_mode); 2285 if (dentry->d_lockref.count == 1) { 2286 if (!spin_trylock(&inode->i_lock)) { 2287 spin_unlock(&dentry->d_lock); 2288 cpu_relax(); 2289 goto again; 2290 } 2291 dentry->d_flags &= ~DCACHE_CANT_MOUNT; 2292 dentry_unlink_inode(dentry); 2293 fsnotify_nameremove(dentry, isdir); 2294 return; 2295 } 2296 2297 if (!d_unhashed(dentry)) 2298 __d_drop(dentry); 2299 2300 spin_unlock(&dentry->d_lock); 2301 2302 fsnotify_nameremove(dentry, isdir); 2303 } 2304 EXPORT_SYMBOL(d_delete); 2305 2306 static void __d_rehash(struct dentry * entry, struct hlist_bl_head *b) 2307 { 2308 BUG_ON(!d_unhashed(entry)); 2309 hlist_bl_lock(b); 2310 entry->d_flags |= DCACHE_RCUACCESS; 2311 hlist_bl_add_head_rcu(&entry->d_hash, b); 2312 hlist_bl_unlock(b); 2313 } 2314 2315 static void _d_rehash(struct dentry * entry) 2316 { 2317 __d_rehash(entry, d_hash(entry->d_parent, entry->d_name.hash)); 2318 } 2319 2320 /** 2321 * d_rehash - add an entry back to the hash 2322 * @entry: dentry to add to the hash 2323 * 2324 * Adds a dentry to the hash according to its name. 2325 */ 2326 2327 void d_rehash(struct dentry * entry) 2328 { 2329 spin_lock(&entry->d_lock); 2330 _d_rehash(entry); 2331 spin_unlock(&entry->d_lock); 2332 } 2333 EXPORT_SYMBOL(d_rehash); 2334 2335 /** 2336 * dentry_update_name_case - update case insensitive dentry with a new name 2337 * @dentry: dentry to be updated 2338 * @name: new name 2339 * 2340 * Update a case insensitive dentry with new case of name. 2341 * 2342 * dentry must have been returned by d_lookup with name @name. Old and new 2343 * name lengths must match (ie. no d_compare which allows mismatched name 2344 * lengths). 2345 * 2346 * Parent inode i_mutex must be held over d_lookup and into this call (to 2347 * keep renames and concurrent inserts, and readdir(2) away). 2348 */ 2349 void dentry_update_name_case(struct dentry *dentry, struct qstr *name) 2350 { 2351 BUG_ON(!mutex_is_locked(&dentry->d_parent->d_inode->i_mutex)); 2352 BUG_ON(dentry->d_name.len != name->len); /* d_lookup gives this */ 2353 2354 spin_lock(&dentry->d_lock); 2355 write_seqcount_begin(&dentry->d_seq); 2356 memcpy((unsigned char *)dentry->d_name.name, name->name, name->len); 2357 write_seqcount_end(&dentry->d_seq); 2358 spin_unlock(&dentry->d_lock); 2359 } 2360 EXPORT_SYMBOL(dentry_update_name_case); 2361 2362 static void swap_names(struct dentry *dentry, struct dentry *target) 2363 { 2364 if (unlikely(dname_external(target))) { 2365 if (unlikely(dname_external(dentry))) { 2366 /* 2367 * Both external: swap the pointers 2368 */ 2369 swap(target->d_name.name, dentry->d_name.name); 2370 } else { 2371 /* 2372 * dentry:internal, target:external. Steal target's 2373 * storage and make target internal. 2374 */ 2375 memcpy(target->d_iname, dentry->d_name.name, 2376 dentry->d_name.len + 1); 2377 dentry->d_name.name = target->d_name.name; 2378 target->d_name.name = target->d_iname; 2379 } 2380 } else { 2381 if (unlikely(dname_external(dentry))) { 2382 /* 2383 * dentry:external, target:internal. Give dentry's 2384 * storage to target and make dentry internal 2385 */ 2386 memcpy(dentry->d_iname, target->d_name.name, 2387 target->d_name.len + 1); 2388 target->d_name.name = dentry->d_name.name; 2389 dentry->d_name.name = dentry->d_iname; 2390 } else { 2391 /* 2392 * Both are internal. 2393 */ 2394 unsigned int i; 2395 BUILD_BUG_ON(!IS_ALIGNED(DNAME_INLINE_LEN, sizeof(long))); 2396 for (i = 0; i < DNAME_INLINE_LEN / sizeof(long); i++) { 2397 swap(((long *) &dentry->d_iname)[i], 2398 ((long *) &target->d_iname)[i]); 2399 } 2400 } 2401 } 2402 swap(dentry->d_name.hash_len, target->d_name.hash_len); 2403 } 2404 2405 static void copy_name(struct dentry *dentry, struct dentry *target) 2406 { 2407 struct external_name *old_name = NULL; 2408 if (unlikely(dname_external(dentry))) 2409 old_name = external_name(dentry); 2410 if (unlikely(dname_external(target))) { 2411 atomic_inc(&external_name(target)->u.count); 2412 dentry->d_name = target->d_name; 2413 } else { 2414 memcpy(dentry->d_iname, target->d_name.name, 2415 target->d_name.len + 1); 2416 dentry->d_name.name = dentry->d_iname; 2417 dentry->d_name.hash_len = target->d_name.hash_len; 2418 } 2419 if (old_name && likely(atomic_dec_and_test(&old_name->u.count))) 2420 kfree_rcu(old_name, u.head); 2421 } 2422 2423 static void dentry_lock_for_move(struct dentry *dentry, struct dentry *target) 2424 { 2425 /* 2426 * XXXX: do we really need to take target->d_lock? 2427 */ 2428 if (IS_ROOT(dentry) || dentry->d_parent == target->d_parent) 2429 spin_lock(&target->d_parent->d_lock); 2430 else { 2431 if (d_ancestor(dentry->d_parent, target->d_parent)) { 2432 spin_lock(&dentry->d_parent->d_lock); 2433 spin_lock_nested(&target->d_parent->d_lock, 2434 DENTRY_D_LOCK_NESTED); 2435 } else { 2436 spin_lock(&target->d_parent->d_lock); 2437 spin_lock_nested(&dentry->d_parent->d_lock, 2438 DENTRY_D_LOCK_NESTED); 2439 } 2440 } 2441 if (target < dentry) { 2442 spin_lock_nested(&target->d_lock, 2); 2443 spin_lock_nested(&dentry->d_lock, 3); 2444 } else { 2445 spin_lock_nested(&dentry->d_lock, 2); 2446 spin_lock_nested(&target->d_lock, 3); 2447 } 2448 } 2449 2450 static void dentry_unlock_for_move(struct dentry *dentry, struct dentry *target) 2451 { 2452 if (target->d_parent != dentry->d_parent) 2453 spin_unlock(&dentry->d_parent->d_lock); 2454 if (target->d_parent != target) 2455 spin_unlock(&target->d_parent->d_lock); 2456 spin_unlock(&target->d_lock); 2457 spin_unlock(&dentry->d_lock); 2458 } 2459 2460 /* 2461 * When switching names, the actual string doesn't strictly have to 2462 * be preserved in the target - because we're dropping the target 2463 * anyway. As such, we can just do a simple memcpy() to copy over 2464 * the new name before we switch, unless we are going to rehash 2465 * it. Note that if we *do* unhash the target, we are not allowed 2466 * to rehash it without giving it a new name/hash key - whether 2467 * we swap or overwrite the names here, resulting name won't match 2468 * the reality in filesystem; it's only there for d_path() purposes. 2469 * Note that all of this is happening under rename_lock, so the 2470 * any hash lookup seeing it in the middle of manipulations will 2471 * be discarded anyway. So we do not care what happens to the hash 2472 * key in that case. 2473 */ 2474 /* 2475 * __d_move - move a dentry 2476 * @dentry: entry to move 2477 * @target: new dentry 2478 * @exchange: exchange the two dentries 2479 * 2480 * Update the dcache to reflect the move of a file name. Negative 2481 * dcache entries should not be moved in this way. Caller must hold 2482 * rename_lock, the i_mutex of the source and target directories, 2483 * and the sb->s_vfs_rename_mutex if they differ. See lock_rename(). 2484 */ 2485 static void __d_move(struct dentry *dentry, struct dentry *target, 2486 bool exchange) 2487 { 2488 if (!dentry->d_inode) 2489 printk(KERN_WARNING "VFS: moving negative dcache entry\n"); 2490 2491 BUG_ON(d_ancestor(dentry, target)); 2492 BUG_ON(d_ancestor(target, dentry)); 2493 2494 dentry_lock_for_move(dentry, target); 2495 2496 write_seqcount_begin(&dentry->d_seq); 2497 write_seqcount_begin_nested(&target->d_seq, DENTRY_D_LOCK_NESTED); 2498 2499 /* __d_drop does write_seqcount_barrier, but they're OK to nest. */ 2500 2501 /* 2502 * Move the dentry to the target hash queue. Don't bother checking 2503 * for the same hash queue because of how unlikely it is. 2504 */ 2505 __d_drop(dentry); 2506 __d_rehash(dentry, d_hash(target->d_parent, target->d_name.hash)); 2507 2508 /* 2509 * Unhash the target (d_delete() is not usable here). If exchanging 2510 * the two dentries, then rehash onto the other's hash queue. 2511 */ 2512 __d_drop(target); 2513 if (exchange) { 2514 __d_rehash(target, 2515 d_hash(dentry->d_parent, dentry->d_name.hash)); 2516 } 2517 2518 /* Switch the names.. */ 2519 if (exchange) 2520 swap_names(dentry, target); 2521 else 2522 copy_name(dentry, target); 2523 2524 /* ... and switch them in the tree */ 2525 if (IS_ROOT(dentry)) { 2526 /* splicing a tree */ 2527 dentry->d_parent = target->d_parent; 2528 target->d_parent = target; 2529 list_del_init(&target->d_u.d_child); 2530 list_move(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs); 2531 } else { 2532 /* swapping two dentries */ 2533 swap(dentry->d_parent, target->d_parent); 2534 list_move(&target->d_u.d_child, &target->d_parent->d_subdirs); 2535 list_move(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs); 2536 if (exchange) 2537 fsnotify_d_move(target); 2538 fsnotify_d_move(dentry); 2539 } 2540 2541 write_seqcount_end(&target->d_seq); 2542 write_seqcount_end(&dentry->d_seq); 2543 2544 dentry_unlock_for_move(dentry, target); 2545 } 2546 2547 /* 2548 * d_move - move a dentry 2549 * @dentry: entry to move 2550 * @target: new dentry 2551 * 2552 * Update the dcache to reflect the move of a file name. Negative 2553 * dcache entries should not be moved in this way. See the locking 2554 * requirements for __d_move. 2555 */ 2556 void d_move(struct dentry *dentry, struct dentry *target) 2557 { 2558 write_seqlock(&rename_lock); 2559 __d_move(dentry, target, false); 2560 write_sequnlock(&rename_lock); 2561 } 2562 EXPORT_SYMBOL(d_move); 2563 2564 /* 2565 * d_exchange - exchange two dentries 2566 * @dentry1: first dentry 2567 * @dentry2: second dentry 2568 */ 2569 void d_exchange(struct dentry *dentry1, struct dentry *dentry2) 2570 { 2571 write_seqlock(&rename_lock); 2572 2573 WARN_ON(!dentry1->d_inode); 2574 WARN_ON(!dentry2->d_inode); 2575 WARN_ON(IS_ROOT(dentry1)); 2576 WARN_ON(IS_ROOT(dentry2)); 2577 2578 __d_move(dentry1, dentry2, true); 2579 2580 write_sequnlock(&rename_lock); 2581 } 2582 2583 /** 2584 * d_ancestor - search for an ancestor 2585 * @p1: ancestor dentry 2586 * @p2: child dentry 2587 * 2588 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is 2589 * an ancestor of p2, else NULL. 2590 */ 2591 struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2) 2592 { 2593 struct dentry *p; 2594 2595 for (p = p2; !IS_ROOT(p); p = p->d_parent) { 2596 if (p->d_parent == p1) 2597 return p; 2598 } 2599 return NULL; 2600 } 2601 2602 /* 2603 * This helper attempts to cope with remotely renamed directories 2604 * 2605 * It assumes that the caller is already holding 2606 * dentry->d_parent->d_inode->i_mutex, inode->i_lock and rename_lock 2607 * 2608 * Note: If ever the locking in lock_rename() changes, then please 2609 * remember to update this too... 2610 */ 2611 static struct dentry *__d_unalias(struct inode *inode, 2612 struct dentry *dentry, struct dentry *alias) 2613 { 2614 struct mutex *m1 = NULL, *m2 = NULL; 2615 struct dentry *ret = ERR_PTR(-EBUSY); 2616 2617 /* If alias and dentry share a parent, then no extra locks required */ 2618 if (alias->d_parent == dentry->d_parent) 2619 goto out_unalias; 2620 2621 /* See lock_rename() */ 2622 if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex)) 2623 goto out_err; 2624 m1 = &dentry->d_sb->s_vfs_rename_mutex; 2625 if (!mutex_trylock(&alias->d_parent->d_inode->i_mutex)) 2626 goto out_err; 2627 m2 = &alias->d_parent->d_inode->i_mutex; 2628 out_unalias: 2629 __d_move(alias, dentry, false); 2630 ret = alias; 2631 out_err: 2632 spin_unlock(&inode->i_lock); 2633 if (m2) 2634 mutex_unlock(m2); 2635 if (m1) 2636 mutex_unlock(m1); 2637 return ret; 2638 } 2639 2640 /** 2641 * d_splice_alias - splice a disconnected dentry into the tree if one exists 2642 * @inode: the inode which may have a disconnected dentry 2643 * @dentry: a negative dentry which we want to point to the inode. 2644 * 2645 * If inode is a directory and has an IS_ROOT alias, then d_move that in 2646 * place of the given dentry and return it, else simply d_add the inode 2647 * to the dentry and return NULL. 2648 * 2649 * If a non-IS_ROOT directory is found, the filesystem is corrupt, and 2650 * we should error out: directories can't have multiple aliases. 2651 * 2652 * This is needed in the lookup routine of any filesystem that is exportable 2653 * (via knfsd) so that we can build dcache paths to directories effectively. 2654 * 2655 * If a dentry was found and moved, then it is returned. Otherwise NULL 2656 * is returned. This matches the expected return value of ->lookup. 2657 * 2658 * Cluster filesystems may call this function with a negative, hashed dentry. 2659 * In that case, we know that the inode will be a regular file, and also this 2660 * will only occur during atomic_open. So we need to check for the dentry 2661 * being already hashed only in the final case. 2662 */ 2663 struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry) 2664 { 2665 struct dentry *new = NULL; 2666 2667 if (IS_ERR(inode)) 2668 return ERR_CAST(inode); 2669 2670 if (inode && S_ISDIR(inode->i_mode)) { 2671 spin_lock(&inode->i_lock); 2672 new = __d_find_any_alias(inode); 2673 if (new) { 2674 if (!IS_ROOT(new)) { 2675 spin_unlock(&inode->i_lock); 2676 dput(new); 2677 iput(inode); 2678 return ERR_PTR(-EIO); 2679 } 2680 if (d_ancestor(new, dentry)) { 2681 spin_unlock(&inode->i_lock); 2682 dput(new); 2683 iput(inode); 2684 return ERR_PTR(-EIO); 2685 } 2686 write_seqlock(&rename_lock); 2687 __d_move(new, dentry, false); 2688 write_sequnlock(&rename_lock); 2689 spin_unlock(&inode->i_lock); 2690 security_d_instantiate(new, inode); 2691 iput(inode); 2692 } else { 2693 /* already taking inode->i_lock, so d_add() by hand */ 2694 __d_instantiate(dentry, inode); 2695 spin_unlock(&inode->i_lock); 2696 security_d_instantiate(dentry, inode); 2697 d_rehash(dentry); 2698 } 2699 } else { 2700 d_instantiate(dentry, inode); 2701 if (d_unhashed(dentry)) 2702 d_rehash(dentry); 2703 } 2704 return new; 2705 } 2706 EXPORT_SYMBOL(d_splice_alias); 2707 2708 /** 2709 * d_materialise_unique - introduce an inode into the tree 2710 * @dentry: candidate dentry 2711 * @inode: inode to bind to the dentry, to which aliases may be attached 2712 * 2713 * Introduces an dentry into the tree, substituting an extant disconnected 2714 * root directory alias in its place if there is one. Caller must hold the 2715 * i_mutex of the parent directory. 2716 */ 2717 struct dentry *d_materialise_unique(struct dentry *dentry, struct inode *inode) 2718 { 2719 struct dentry *actual; 2720 2721 BUG_ON(!d_unhashed(dentry)); 2722 2723 if (!inode) { 2724 actual = dentry; 2725 __d_instantiate(dentry, NULL); 2726 d_rehash(actual); 2727 goto out_nolock; 2728 } 2729 2730 spin_lock(&inode->i_lock); 2731 2732 if (S_ISDIR(inode->i_mode)) { 2733 struct dentry *alias; 2734 2735 /* Does an aliased dentry already exist? */ 2736 alias = __d_find_alias(inode); 2737 if (alias) { 2738 actual = alias; 2739 write_seqlock(&rename_lock); 2740 2741 if (d_ancestor(alias, dentry)) { 2742 /* Check for loops */ 2743 actual = ERR_PTR(-ELOOP); 2744 spin_unlock(&inode->i_lock); 2745 } else if (IS_ROOT(alias)) { 2746 /* Is this an anonymous mountpoint that we 2747 * could splice into our tree? */ 2748 __d_move(alias, dentry, false); 2749 write_sequnlock(&rename_lock); 2750 goto found; 2751 } else { 2752 /* Nope, but we must(!) avoid directory 2753 * aliasing. This drops inode->i_lock */ 2754 actual = __d_unalias(inode, dentry, alias); 2755 } 2756 write_sequnlock(&rename_lock); 2757 if (IS_ERR(actual)) { 2758 if (PTR_ERR(actual) == -ELOOP) 2759 pr_warn_ratelimited( 2760 "VFS: Lookup of '%s' in %s %s" 2761 " would have caused loop\n", 2762 dentry->d_name.name, 2763 inode->i_sb->s_type->name, 2764 inode->i_sb->s_id); 2765 dput(alias); 2766 } 2767 goto out_nolock; 2768 } 2769 } 2770 2771 /* Add a unique reference */ 2772 actual = __d_instantiate_unique(dentry, inode); 2773 if (!actual) 2774 actual = dentry; 2775 2776 d_rehash(actual); 2777 found: 2778 spin_unlock(&inode->i_lock); 2779 out_nolock: 2780 if (actual == dentry) { 2781 security_d_instantiate(dentry, inode); 2782 return NULL; 2783 } 2784 2785 iput(inode); 2786 return actual; 2787 } 2788 EXPORT_SYMBOL_GPL(d_materialise_unique); 2789 2790 static int prepend(char **buffer, int *buflen, const char *str, int namelen) 2791 { 2792 *buflen -= namelen; 2793 if (*buflen < 0) 2794 return -ENAMETOOLONG; 2795 *buffer -= namelen; 2796 memcpy(*buffer, str, namelen); 2797 return 0; 2798 } 2799 2800 /** 2801 * prepend_name - prepend a pathname in front of current buffer pointer 2802 * @buffer: buffer pointer 2803 * @buflen: allocated length of the buffer 2804 * @name: name string and length qstr structure 2805 * 2806 * With RCU path tracing, it may race with d_move(). Use ACCESS_ONCE() to 2807 * make sure that either the old or the new name pointer and length are 2808 * fetched. However, there may be mismatch between length and pointer. 2809 * The length cannot be trusted, we need to copy it byte-by-byte until 2810 * the length is reached or a null byte is found. It also prepends "/" at 2811 * the beginning of the name. The sequence number check at the caller will 2812 * retry it again when a d_move() does happen. So any garbage in the buffer 2813 * due to mismatched pointer and length will be discarded. 2814 * 2815 * Data dependency barrier is needed to make sure that we see that terminating 2816 * NUL. Alpha strikes again, film at 11... 2817 */ 2818 static int prepend_name(char **buffer, int *buflen, struct qstr *name) 2819 { 2820 const char *dname = ACCESS_ONCE(name->name); 2821 u32 dlen = ACCESS_ONCE(name->len); 2822 char *p; 2823 2824 smp_read_barrier_depends(); 2825 2826 *buflen -= dlen + 1; 2827 if (*buflen < 0) 2828 return -ENAMETOOLONG; 2829 p = *buffer -= dlen + 1; 2830 *p++ = '/'; 2831 while (dlen--) { 2832 char c = *dname++; 2833 if (!c) 2834 break; 2835 *p++ = c; 2836 } 2837 return 0; 2838 } 2839 2840 /** 2841 * prepend_path - Prepend path string to a buffer 2842 * @path: the dentry/vfsmount to report 2843 * @root: root vfsmnt/dentry 2844 * @buffer: pointer to the end of the buffer 2845 * @buflen: pointer to buffer length 2846 * 2847 * The function will first try to write out the pathname without taking any 2848 * lock other than the RCU read lock to make sure that dentries won't go away. 2849 * It only checks the sequence number of the global rename_lock as any change 2850 * in the dentry's d_seq will be preceded by changes in the rename_lock 2851 * sequence number. If the sequence number had been changed, it will restart 2852 * the whole pathname back-tracing sequence again by taking the rename_lock. 2853 * In this case, there is no need to take the RCU read lock as the recursive 2854 * parent pointer references will keep the dentry chain alive as long as no 2855 * rename operation is performed. 2856 */ 2857 static int prepend_path(const struct path *path, 2858 const struct path *root, 2859 char **buffer, int *buflen) 2860 { 2861 struct dentry *dentry; 2862 struct vfsmount *vfsmnt; 2863 struct mount *mnt; 2864 int error = 0; 2865 unsigned seq, m_seq = 0; 2866 char *bptr; 2867 int blen; 2868 2869 rcu_read_lock(); 2870 restart_mnt: 2871 read_seqbegin_or_lock(&mount_lock, &m_seq); 2872 seq = 0; 2873 rcu_read_lock(); 2874 restart: 2875 bptr = *buffer; 2876 blen = *buflen; 2877 error = 0; 2878 dentry = path->dentry; 2879 vfsmnt = path->mnt; 2880 mnt = real_mount(vfsmnt); 2881 read_seqbegin_or_lock(&rename_lock, &seq); 2882 while (dentry != root->dentry || vfsmnt != root->mnt) { 2883 struct dentry * parent; 2884 2885 if (dentry == vfsmnt->mnt_root || IS_ROOT(dentry)) { 2886 struct mount *parent = ACCESS_ONCE(mnt->mnt_parent); 2887 /* Global root? */ 2888 if (mnt != parent) { 2889 dentry = ACCESS_ONCE(mnt->mnt_mountpoint); 2890 mnt = parent; 2891 vfsmnt = &mnt->mnt; 2892 continue; 2893 } 2894 /* 2895 * Filesystems needing to implement special "root names" 2896 * should do so with ->d_dname() 2897 */ 2898 if (IS_ROOT(dentry) && 2899 (dentry->d_name.len != 1 || 2900 dentry->d_name.name[0] != '/')) { 2901 WARN(1, "Root dentry has weird name <%.*s>\n", 2902 (int) dentry->d_name.len, 2903 dentry->d_name.name); 2904 } 2905 if (!error) 2906 error = is_mounted(vfsmnt) ? 1 : 2; 2907 break; 2908 } 2909 parent = dentry->d_parent; 2910 prefetch(parent); 2911 error = prepend_name(&bptr, &blen, &dentry->d_name); 2912 if (error) 2913 break; 2914 2915 dentry = parent; 2916 } 2917 if (!(seq & 1)) 2918 rcu_read_unlock(); 2919 if (need_seqretry(&rename_lock, seq)) { 2920 seq = 1; 2921 goto restart; 2922 } 2923 done_seqretry(&rename_lock, seq); 2924 2925 if (!(m_seq & 1)) 2926 rcu_read_unlock(); 2927 if (need_seqretry(&mount_lock, m_seq)) { 2928 m_seq = 1; 2929 goto restart_mnt; 2930 } 2931 done_seqretry(&mount_lock, m_seq); 2932 2933 if (error >= 0 && bptr == *buffer) { 2934 if (--blen < 0) 2935 error = -ENAMETOOLONG; 2936 else 2937 *--bptr = '/'; 2938 } 2939 *buffer = bptr; 2940 *buflen = blen; 2941 return error; 2942 } 2943 2944 /** 2945 * __d_path - return the path of a dentry 2946 * @path: the dentry/vfsmount to report 2947 * @root: root vfsmnt/dentry 2948 * @buf: buffer to return value in 2949 * @buflen: buffer length 2950 * 2951 * Convert a dentry into an ASCII path name. 2952 * 2953 * Returns a pointer into the buffer or an error code if the 2954 * path was too long. 2955 * 2956 * "buflen" should be positive. 2957 * 2958 * If the path is not reachable from the supplied root, return %NULL. 2959 */ 2960 char *__d_path(const struct path *path, 2961 const struct path *root, 2962 char *buf, int buflen) 2963 { 2964 char *res = buf + buflen; 2965 int error; 2966 2967 prepend(&res, &buflen, "\0", 1); 2968 error = prepend_path(path, root, &res, &buflen); 2969 2970 if (error < 0) 2971 return ERR_PTR(error); 2972 if (error > 0) 2973 return NULL; 2974 return res; 2975 } 2976 2977 char *d_absolute_path(const struct path *path, 2978 char *buf, int buflen) 2979 { 2980 struct path root = {}; 2981 char *res = buf + buflen; 2982 int error; 2983 2984 prepend(&res, &buflen, "\0", 1); 2985 error = prepend_path(path, &root, &res, &buflen); 2986 2987 if (error > 1) 2988 error = -EINVAL; 2989 if (error < 0) 2990 return ERR_PTR(error); 2991 return res; 2992 } 2993 2994 /* 2995 * same as __d_path but appends "(deleted)" for unlinked files. 2996 */ 2997 static int path_with_deleted(const struct path *path, 2998 const struct path *root, 2999 char **buf, int *buflen) 3000 { 3001 prepend(buf, buflen, "\0", 1); 3002 if (d_unlinked(path->dentry)) { 3003 int error = prepend(buf, buflen, " (deleted)", 10); 3004 if (error) 3005 return error; 3006 } 3007 3008 return prepend_path(path, root, buf, buflen); 3009 } 3010 3011 static int prepend_unreachable(char **buffer, int *buflen) 3012 { 3013 return prepend(buffer, buflen, "(unreachable)", 13); 3014 } 3015 3016 static void get_fs_root_rcu(struct fs_struct *fs, struct path *root) 3017 { 3018 unsigned seq; 3019 3020 do { 3021 seq = read_seqcount_begin(&fs->seq); 3022 *root = fs->root; 3023 } while (read_seqcount_retry(&fs->seq, seq)); 3024 } 3025 3026 /** 3027 * d_path - return the path of a dentry 3028 * @path: path to report 3029 * @buf: buffer to return value in 3030 * @buflen: buffer length 3031 * 3032 * Convert a dentry into an ASCII path name. If the entry has been deleted 3033 * the string " (deleted)" is appended. Note that this is ambiguous. 3034 * 3035 * Returns a pointer into the buffer or an error code if the path was 3036 * too long. Note: Callers should use the returned pointer, not the passed 3037 * in buffer, to use the name! The implementation often starts at an offset 3038 * into the buffer, and may leave 0 bytes at the start. 3039 * 3040 * "buflen" should be positive. 3041 */ 3042 char *d_path(const struct path *path, char *buf, int buflen) 3043 { 3044 char *res = buf + buflen; 3045 struct path root; 3046 int error; 3047 3048 /* 3049 * We have various synthetic filesystems that never get mounted. On 3050 * these filesystems dentries are never used for lookup purposes, and 3051 * thus don't need to be hashed. They also don't need a name until a 3052 * user wants to identify the object in /proc/pid/fd/. The little hack 3053 * below allows us to generate a name for these objects on demand: 3054 * 3055 * Some pseudo inodes are mountable. When they are mounted 3056 * path->dentry == path->mnt->mnt_root. In that case don't call d_dname 3057 * and instead have d_path return the mounted path. 3058 */ 3059 if (path->dentry->d_op && path->dentry->d_op->d_dname && 3060 (!IS_ROOT(path->dentry) || path->dentry != path->mnt->mnt_root)) 3061 return path->dentry->d_op->d_dname(path->dentry, buf, buflen); 3062 3063 rcu_read_lock(); 3064 get_fs_root_rcu(current->fs, &root); 3065 error = path_with_deleted(path, &root, &res, &buflen); 3066 rcu_read_unlock(); 3067 3068 if (error < 0) 3069 res = ERR_PTR(error); 3070 return res; 3071 } 3072 EXPORT_SYMBOL(d_path); 3073 3074 /* 3075 * Helper function for dentry_operations.d_dname() members 3076 */ 3077 char *dynamic_dname(struct dentry *dentry, char *buffer, int buflen, 3078 const char *fmt, ...) 3079 { 3080 va_list args; 3081 char temp[64]; 3082 int sz; 3083 3084 va_start(args, fmt); 3085 sz = vsnprintf(temp, sizeof(temp), fmt, args) + 1; 3086 va_end(args); 3087 3088 if (sz > sizeof(temp) || sz > buflen) 3089 return ERR_PTR(-ENAMETOOLONG); 3090 3091 buffer += buflen - sz; 3092 return memcpy(buffer, temp, sz); 3093 } 3094 3095 char *simple_dname(struct dentry *dentry, char *buffer, int buflen) 3096 { 3097 char *end = buffer + buflen; 3098 /* these dentries are never renamed, so d_lock is not needed */ 3099 if (prepend(&end, &buflen, " (deleted)", 11) || 3100 prepend(&end, &buflen, dentry->d_name.name, dentry->d_name.len) || 3101 prepend(&end, &buflen, "/", 1)) 3102 end = ERR_PTR(-ENAMETOOLONG); 3103 return end; 3104 } 3105 EXPORT_SYMBOL(simple_dname); 3106 3107 /* 3108 * Write full pathname from the root of the filesystem into the buffer. 3109 */ 3110 static char *__dentry_path(struct dentry *d, char *buf, int buflen) 3111 { 3112 struct dentry *dentry; 3113 char *end, *retval; 3114 int len, seq = 0; 3115 int error = 0; 3116 3117 if (buflen < 2) 3118 goto Elong; 3119 3120 rcu_read_lock(); 3121 restart: 3122 dentry = d; 3123 end = buf + buflen; 3124 len = buflen; 3125 prepend(&end, &len, "\0", 1); 3126 /* Get '/' right */ 3127 retval = end-1; 3128 *retval = '/'; 3129 read_seqbegin_or_lock(&rename_lock, &seq); 3130 while (!IS_ROOT(dentry)) { 3131 struct dentry *parent = dentry->d_parent; 3132 3133 prefetch(parent); 3134 error = prepend_name(&end, &len, &dentry->d_name); 3135 if (error) 3136 break; 3137 3138 retval = end; 3139 dentry = parent; 3140 } 3141 if (!(seq & 1)) 3142 rcu_read_unlock(); 3143 if (need_seqretry(&rename_lock, seq)) { 3144 seq = 1; 3145 goto restart; 3146 } 3147 done_seqretry(&rename_lock, seq); 3148 if (error) 3149 goto Elong; 3150 return retval; 3151 Elong: 3152 return ERR_PTR(-ENAMETOOLONG); 3153 } 3154 3155 char *dentry_path_raw(struct dentry *dentry, char *buf, int buflen) 3156 { 3157 return __dentry_path(dentry, buf, buflen); 3158 } 3159 EXPORT_SYMBOL(dentry_path_raw); 3160 3161 char *dentry_path(struct dentry *dentry, char *buf, int buflen) 3162 { 3163 char *p = NULL; 3164 char *retval; 3165 3166 if (d_unlinked(dentry)) { 3167 p = buf + buflen; 3168 if (prepend(&p, &buflen, "//deleted", 10) != 0) 3169 goto Elong; 3170 buflen++; 3171 } 3172 retval = __dentry_path(dentry, buf, buflen); 3173 if (!IS_ERR(retval) && p) 3174 *p = '/'; /* restore '/' overriden with '\0' */ 3175 return retval; 3176 Elong: 3177 return ERR_PTR(-ENAMETOOLONG); 3178 } 3179 3180 static void get_fs_root_and_pwd_rcu(struct fs_struct *fs, struct path *root, 3181 struct path *pwd) 3182 { 3183 unsigned seq; 3184 3185 do { 3186 seq = read_seqcount_begin(&fs->seq); 3187 *root = fs->root; 3188 *pwd = fs->pwd; 3189 } while (read_seqcount_retry(&fs->seq, seq)); 3190 } 3191 3192 /* 3193 * NOTE! The user-level library version returns a 3194 * character pointer. The kernel system call just 3195 * returns the length of the buffer filled (which 3196 * includes the ending '\0' character), or a negative 3197 * error value. So libc would do something like 3198 * 3199 * char *getcwd(char * buf, size_t size) 3200 * { 3201 * int retval; 3202 * 3203 * retval = sys_getcwd(buf, size); 3204 * if (retval >= 0) 3205 * return buf; 3206 * errno = -retval; 3207 * return NULL; 3208 * } 3209 */ 3210 SYSCALL_DEFINE2(getcwd, char __user *, buf, unsigned long, size) 3211 { 3212 int error; 3213 struct path pwd, root; 3214 char *page = __getname(); 3215 3216 if (!page) 3217 return -ENOMEM; 3218 3219 rcu_read_lock(); 3220 get_fs_root_and_pwd_rcu(current->fs, &root, &pwd); 3221 3222 error = -ENOENT; 3223 if (!d_unlinked(pwd.dentry)) { 3224 unsigned long len; 3225 char *cwd = page + PATH_MAX; 3226 int buflen = PATH_MAX; 3227 3228 prepend(&cwd, &buflen, "\0", 1); 3229 error = prepend_path(&pwd, &root, &cwd, &buflen); 3230 rcu_read_unlock(); 3231 3232 if (error < 0) 3233 goto out; 3234 3235 /* Unreachable from current root */ 3236 if (error > 0) { 3237 error = prepend_unreachable(&cwd, &buflen); 3238 if (error) 3239 goto out; 3240 } 3241 3242 error = -ERANGE; 3243 len = PATH_MAX + page - cwd; 3244 if (len <= size) { 3245 error = len; 3246 if (copy_to_user(buf, cwd, len)) 3247 error = -EFAULT; 3248 } 3249 } else { 3250 rcu_read_unlock(); 3251 } 3252 3253 out: 3254 __putname(page); 3255 return error; 3256 } 3257 3258 /* 3259 * Test whether new_dentry is a subdirectory of old_dentry. 3260 * 3261 * Trivially implemented using the dcache structure 3262 */ 3263 3264 /** 3265 * is_subdir - is new dentry a subdirectory of old_dentry 3266 * @new_dentry: new dentry 3267 * @old_dentry: old dentry 3268 * 3269 * Returns 1 if new_dentry is a subdirectory of the parent (at any depth). 3270 * Returns 0 otherwise. 3271 * Caller must ensure that "new_dentry" is pinned before calling is_subdir() 3272 */ 3273 3274 int is_subdir(struct dentry *new_dentry, struct dentry *old_dentry) 3275 { 3276 int result; 3277 unsigned seq; 3278 3279 if (new_dentry == old_dentry) 3280 return 1; 3281 3282 do { 3283 /* for restarting inner loop in case of seq retry */ 3284 seq = read_seqbegin(&rename_lock); 3285 /* 3286 * Need rcu_readlock to protect against the d_parent trashing 3287 * due to d_move 3288 */ 3289 rcu_read_lock(); 3290 if (d_ancestor(old_dentry, new_dentry)) 3291 result = 1; 3292 else 3293 result = 0; 3294 rcu_read_unlock(); 3295 } while (read_seqretry(&rename_lock, seq)); 3296 3297 return result; 3298 } 3299 3300 static enum d_walk_ret d_genocide_kill(void *data, struct dentry *dentry) 3301 { 3302 struct dentry *root = data; 3303 if (dentry != root) { 3304 if (d_unhashed(dentry) || !dentry->d_inode) 3305 return D_WALK_SKIP; 3306 3307 if (!(dentry->d_flags & DCACHE_GENOCIDE)) { 3308 dentry->d_flags |= DCACHE_GENOCIDE; 3309 dentry->d_lockref.count--; 3310 } 3311 } 3312 return D_WALK_CONTINUE; 3313 } 3314 3315 void d_genocide(struct dentry *parent) 3316 { 3317 d_walk(parent, parent, d_genocide_kill, NULL); 3318 } 3319 3320 void d_tmpfile(struct dentry *dentry, struct inode *inode) 3321 { 3322 inode_dec_link_count(inode); 3323 BUG_ON(dentry->d_name.name != dentry->d_iname || 3324 !hlist_unhashed(&dentry->d_alias) || 3325 !d_unlinked(dentry)); 3326 spin_lock(&dentry->d_parent->d_lock); 3327 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED); 3328 dentry->d_name.len = sprintf(dentry->d_iname, "#%llu", 3329 (unsigned long long)inode->i_ino); 3330 spin_unlock(&dentry->d_lock); 3331 spin_unlock(&dentry->d_parent->d_lock); 3332 d_instantiate(dentry, inode); 3333 } 3334 EXPORT_SYMBOL(d_tmpfile); 3335 3336 static __initdata unsigned long dhash_entries; 3337 static int __init set_dhash_entries(char *str) 3338 { 3339 if (!str) 3340 return 0; 3341 dhash_entries = simple_strtoul(str, &str, 0); 3342 return 1; 3343 } 3344 __setup("dhash_entries=", set_dhash_entries); 3345 3346 static void __init dcache_init_early(void) 3347 { 3348 unsigned int loop; 3349 3350 /* If hashes are distributed across NUMA nodes, defer 3351 * hash allocation until vmalloc space is available. 3352 */ 3353 if (hashdist) 3354 return; 3355 3356 dentry_hashtable = 3357 alloc_large_system_hash("Dentry cache", 3358 sizeof(struct hlist_bl_head), 3359 dhash_entries, 3360 13, 3361 HASH_EARLY, 3362 &d_hash_shift, 3363 &d_hash_mask, 3364 0, 3365 0); 3366 3367 for (loop = 0; loop < (1U << d_hash_shift); loop++) 3368 INIT_HLIST_BL_HEAD(dentry_hashtable + loop); 3369 } 3370 3371 static void __init dcache_init(void) 3372 { 3373 unsigned int loop; 3374 3375 /* 3376 * A constructor could be added for stable state like the lists, 3377 * but it is probably not worth it because of the cache nature 3378 * of the dcache. 3379 */ 3380 dentry_cache = KMEM_CACHE(dentry, 3381 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD); 3382 3383 /* Hash may have been set up in dcache_init_early */ 3384 if (!hashdist) 3385 return; 3386 3387 dentry_hashtable = 3388 alloc_large_system_hash("Dentry cache", 3389 sizeof(struct hlist_bl_head), 3390 dhash_entries, 3391 13, 3392 0, 3393 &d_hash_shift, 3394 &d_hash_mask, 3395 0, 3396 0); 3397 3398 for (loop = 0; loop < (1U << d_hash_shift); loop++) 3399 INIT_HLIST_BL_HEAD(dentry_hashtable + loop); 3400 } 3401 3402 /* SLAB cache for __getname() consumers */ 3403 struct kmem_cache *names_cachep __read_mostly; 3404 EXPORT_SYMBOL(names_cachep); 3405 3406 EXPORT_SYMBOL(d_genocide); 3407 3408 void __init vfs_caches_init_early(void) 3409 { 3410 dcache_init_early(); 3411 inode_init_early(); 3412 } 3413 3414 void __init vfs_caches_init(unsigned long mempages) 3415 { 3416 unsigned long reserve; 3417 3418 /* Base hash sizes on available memory, with a reserve equal to 3419 150% of current kernel size */ 3420 3421 reserve = min((mempages - nr_free_pages()) * 3/2, mempages - 1); 3422 mempages -= reserve; 3423 3424 names_cachep = kmem_cache_create("names_cache", PATH_MAX, 0, 3425 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL); 3426 3427 dcache_init(); 3428 inode_init(); 3429 files_init(mempages); 3430 mnt_init(); 3431 bdev_cache_init(); 3432 chrdev_init(); 3433 } 3434