xref: /openbmc/linux/fs/dcache.c (revision baa7eb025ab14f3cba2e35c0a8648f9c9f01d24f)
1 /*
2  * fs/dcache.c
3  *
4  * Complete reimplementation
5  * (C) 1997 Thomas Schoebel-Theuer,
6  * with heavy changes by Linus Torvalds
7  */
8 
9 /*
10  * Notes on the allocation strategy:
11  *
12  * The dcache is a master of the icache - whenever a dcache entry
13  * exists, the inode will always exist. "iput()" is done either when
14  * the dcache entry is deleted or garbage collected.
15  */
16 
17 #include <linux/syscalls.h>
18 #include <linux/string.h>
19 #include <linux/mm.h>
20 #include <linux/fs.h>
21 #include <linux/fsnotify.h>
22 #include <linux/slab.h>
23 #include <linux/init.h>
24 #include <linux/hash.h>
25 #include <linux/cache.h>
26 #include <linux/module.h>
27 #include <linux/mount.h>
28 #include <linux/file.h>
29 #include <asm/uaccess.h>
30 #include <linux/security.h>
31 #include <linux/seqlock.h>
32 #include <linux/swap.h>
33 #include <linux/bootmem.h>
34 #include <linux/fs_struct.h>
35 #include <linux/hardirq.h>
36 #include "internal.h"
37 
38 int sysctl_vfs_cache_pressure __read_mostly = 100;
39 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
40 
41  __cacheline_aligned_in_smp DEFINE_SPINLOCK(dcache_lock);
42 __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
43 
44 EXPORT_SYMBOL(dcache_lock);
45 
46 static struct kmem_cache *dentry_cache __read_mostly;
47 
48 #define DNAME_INLINE_LEN (sizeof(struct dentry)-offsetof(struct dentry,d_iname))
49 
50 /*
51  * This is the single most critical data structure when it comes
52  * to the dcache: the hashtable for lookups. Somebody should try
53  * to make this good - I've just made it work.
54  *
55  * This hash-function tries to avoid losing too many bits of hash
56  * information, yet avoid using a prime hash-size or similar.
57  */
58 #define D_HASHBITS     d_hash_shift
59 #define D_HASHMASK     d_hash_mask
60 
61 static unsigned int d_hash_mask __read_mostly;
62 static unsigned int d_hash_shift __read_mostly;
63 static struct hlist_head *dentry_hashtable __read_mostly;
64 
65 /* Statistics gathering. */
66 struct dentry_stat_t dentry_stat = {
67 	.age_limit = 45,
68 };
69 
70 static struct percpu_counter nr_dentry __cacheline_aligned_in_smp;
71 static struct percpu_counter nr_dentry_unused __cacheline_aligned_in_smp;
72 
73 #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
74 int proc_nr_dentry(ctl_table *table, int write, void __user *buffer,
75 		   size_t *lenp, loff_t *ppos)
76 {
77 	dentry_stat.nr_dentry = percpu_counter_sum_positive(&nr_dentry);
78 	dentry_stat.nr_unused = percpu_counter_sum_positive(&nr_dentry_unused);
79 	return proc_dointvec(table, write, buffer, lenp, ppos);
80 }
81 #endif
82 
83 static void __d_free(struct rcu_head *head)
84 {
85 	struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
86 
87 	WARN_ON(!list_empty(&dentry->d_alias));
88 	if (dname_external(dentry))
89 		kfree(dentry->d_name.name);
90 	kmem_cache_free(dentry_cache, dentry);
91 }
92 
93 /*
94  * no dcache_lock, please.
95  */
96 static void d_free(struct dentry *dentry)
97 {
98 	percpu_counter_dec(&nr_dentry);
99 	if (dentry->d_op && dentry->d_op->d_release)
100 		dentry->d_op->d_release(dentry);
101 
102 	/* if dentry was never inserted into hash, immediate free is OK */
103 	if (hlist_unhashed(&dentry->d_hash))
104 		__d_free(&dentry->d_u.d_rcu);
105 	else
106 		call_rcu(&dentry->d_u.d_rcu, __d_free);
107 }
108 
109 /*
110  * Release the dentry's inode, using the filesystem
111  * d_iput() operation if defined.
112  */
113 static void dentry_iput(struct dentry * dentry)
114 	__releases(dentry->d_lock)
115 	__releases(dcache_lock)
116 {
117 	struct inode *inode = dentry->d_inode;
118 	if (inode) {
119 		dentry->d_inode = NULL;
120 		list_del_init(&dentry->d_alias);
121 		spin_unlock(&dentry->d_lock);
122 		spin_unlock(&dcache_lock);
123 		if (!inode->i_nlink)
124 			fsnotify_inoderemove(inode);
125 		if (dentry->d_op && dentry->d_op->d_iput)
126 			dentry->d_op->d_iput(dentry, inode);
127 		else
128 			iput(inode);
129 	} else {
130 		spin_unlock(&dentry->d_lock);
131 		spin_unlock(&dcache_lock);
132 	}
133 }
134 
135 /*
136  * dentry_lru_(add|del|move_tail) must be called with dcache_lock held.
137  */
138 static void dentry_lru_add(struct dentry *dentry)
139 {
140 	if (list_empty(&dentry->d_lru)) {
141 		list_add(&dentry->d_lru, &dentry->d_sb->s_dentry_lru);
142 		dentry->d_sb->s_nr_dentry_unused++;
143 		percpu_counter_inc(&nr_dentry_unused);
144 	}
145 }
146 
147 static void dentry_lru_del(struct dentry *dentry)
148 {
149 	if (!list_empty(&dentry->d_lru)) {
150 		list_del_init(&dentry->d_lru);
151 		dentry->d_sb->s_nr_dentry_unused--;
152 		percpu_counter_dec(&nr_dentry_unused);
153 	}
154 }
155 
156 static void dentry_lru_move_tail(struct dentry *dentry)
157 {
158 	if (list_empty(&dentry->d_lru)) {
159 		list_add_tail(&dentry->d_lru, &dentry->d_sb->s_dentry_lru);
160 		dentry->d_sb->s_nr_dentry_unused++;
161 		percpu_counter_inc(&nr_dentry_unused);
162 	} else {
163 		list_move_tail(&dentry->d_lru, &dentry->d_sb->s_dentry_lru);
164 	}
165 }
166 
167 /**
168  * d_kill - kill dentry and return parent
169  * @dentry: dentry to kill
170  *
171  * The dentry must already be unhashed and removed from the LRU.
172  *
173  * If this is the root of the dentry tree, return NULL.
174  */
175 static struct dentry *d_kill(struct dentry *dentry)
176 	__releases(dentry->d_lock)
177 	__releases(dcache_lock)
178 {
179 	struct dentry *parent;
180 
181 	list_del(&dentry->d_u.d_child);
182 	/*drops the locks, at that point nobody can reach this dentry */
183 	dentry_iput(dentry);
184 	if (IS_ROOT(dentry))
185 		parent = NULL;
186 	else
187 		parent = dentry->d_parent;
188 	d_free(dentry);
189 	return parent;
190 }
191 
192 /*
193  * This is dput
194  *
195  * This is complicated by the fact that we do not want to put
196  * dentries that are no longer on any hash chain on the unused
197  * list: we'd much rather just get rid of them immediately.
198  *
199  * However, that implies that we have to traverse the dentry
200  * tree upwards to the parents which might _also_ now be
201  * scheduled for deletion (it may have been only waiting for
202  * its last child to go away).
203  *
204  * This tail recursion is done by hand as we don't want to depend
205  * on the compiler to always get this right (gcc generally doesn't).
206  * Real recursion would eat up our stack space.
207  */
208 
209 /*
210  * dput - release a dentry
211  * @dentry: dentry to release
212  *
213  * Release a dentry. This will drop the usage count and if appropriate
214  * call the dentry unlink method as well as removing it from the queues and
215  * releasing its resources. If the parent dentries were scheduled for release
216  * they too may now get deleted.
217  *
218  * no dcache lock, please.
219  */
220 
221 void dput(struct dentry *dentry)
222 {
223 	if (!dentry)
224 		return;
225 
226 repeat:
227 	if (atomic_read(&dentry->d_count) == 1)
228 		might_sleep();
229 	if (!atomic_dec_and_lock(&dentry->d_count, &dcache_lock))
230 		return;
231 
232 	spin_lock(&dentry->d_lock);
233 	if (atomic_read(&dentry->d_count)) {
234 		spin_unlock(&dentry->d_lock);
235 		spin_unlock(&dcache_lock);
236 		return;
237 	}
238 
239 	/*
240 	 * AV: ->d_delete() is _NOT_ allowed to block now.
241 	 */
242 	if (dentry->d_op && dentry->d_op->d_delete) {
243 		if (dentry->d_op->d_delete(dentry))
244 			goto unhash_it;
245 	}
246 
247 	/* Unreachable? Get rid of it */
248  	if (d_unhashed(dentry))
249 		goto kill_it;
250 
251 	/* Otherwise leave it cached and ensure it's on the LRU */
252 	dentry->d_flags |= DCACHE_REFERENCED;
253 	dentry_lru_add(dentry);
254 
255  	spin_unlock(&dentry->d_lock);
256 	spin_unlock(&dcache_lock);
257 	return;
258 
259 unhash_it:
260 	__d_drop(dentry);
261 kill_it:
262 	/* if dentry was on the d_lru list delete it from there */
263 	dentry_lru_del(dentry);
264 	dentry = d_kill(dentry);
265 	if (dentry)
266 		goto repeat;
267 }
268 EXPORT_SYMBOL(dput);
269 
270 /**
271  * d_invalidate - invalidate a dentry
272  * @dentry: dentry to invalidate
273  *
274  * Try to invalidate the dentry if it turns out to be
275  * possible. If there are other dentries that can be
276  * reached through this one we can't delete it and we
277  * return -EBUSY. On success we return 0.
278  *
279  * no dcache lock.
280  */
281 
282 int d_invalidate(struct dentry * dentry)
283 {
284 	/*
285 	 * If it's already been dropped, return OK.
286 	 */
287 	spin_lock(&dcache_lock);
288 	if (d_unhashed(dentry)) {
289 		spin_unlock(&dcache_lock);
290 		return 0;
291 	}
292 	/*
293 	 * Check whether to do a partial shrink_dcache
294 	 * to get rid of unused child entries.
295 	 */
296 	if (!list_empty(&dentry->d_subdirs)) {
297 		spin_unlock(&dcache_lock);
298 		shrink_dcache_parent(dentry);
299 		spin_lock(&dcache_lock);
300 	}
301 
302 	/*
303 	 * Somebody else still using it?
304 	 *
305 	 * If it's a directory, we can't drop it
306 	 * for fear of somebody re-populating it
307 	 * with children (even though dropping it
308 	 * would make it unreachable from the root,
309 	 * we might still populate it if it was a
310 	 * working directory or similar).
311 	 */
312 	spin_lock(&dentry->d_lock);
313 	if (atomic_read(&dentry->d_count) > 1) {
314 		if (dentry->d_inode && S_ISDIR(dentry->d_inode->i_mode)) {
315 			spin_unlock(&dentry->d_lock);
316 			spin_unlock(&dcache_lock);
317 			return -EBUSY;
318 		}
319 	}
320 
321 	__d_drop(dentry);
322 	spin_unlock(&dentry->d_lock);
323 	spin_unlock(&dcache_lock);
324 	return 0;
325 }
326 EXPORT_SYMBOL(d_invalidate);
327 
328 /* This should be called _only_ with dcache_lock held */
329 static inline struct dentry * __dget_locked(struct dentry *dentry)
330 {
331 	atomic_inc(&dentry->d_count);
332 	dentry_lru_del(dentry);
333 	return dentry;
334 }
335 
336 struct dentry * dget_locked(struct dentry *dentry)
337 {
338 	return __dget_locked(dentry);
339 }
340 EXPORT_SYMBOL(dget_locked);
341 
342 /**
343  * d_find_alias - grab a hashed alias of inode
344  * @inode: inode in question
345  * @want_discon:  flag, used by d_splice_alias, to request
346  *          that only a DISCONNECTED alias be returned.
347  *
348  * If inode has a hashed alias, or is a directory and has any alias,
349  * acquire the reference to alias and return it. Otherwise return NULL.
350  * Notice that if inode is a directory there can be only one alias and
351  * it can be unhashed only if it has no children, or if it is the root
352  * of a filesystem.
353  *
354  * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
355  * any other hashed alias over that one unless @want_discon is set,
356  * in which case only return an IS_ROOT, DCACHE_DISCONNECTED alias.
357  */
358 
359 static struct dentry * __d_find_alias(struct inode *inode, int want_discon)
360 {
361 	struct list_head *head, *next, *tmp;
362 	struct dentry *alias, *discon_alias=NULL;
363 
364 	head = &inode->i_dentry;
365 	next = inode->i_dentry.next;
366 	while (next != head) {
367 		tmp = next;
368 		next = tmp->next;
369 		prefetch(next);
370 		alias = list_entry(tmp, struct dentry, d_alias);
371  		if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
372 			if (IS_ROOT(alias) &&
373 			    (alias->d_flags & DCACHE_DISCONNECTED))
374 				discon_alias = alias;
375 			else if (!want_discon) {
376 				__dget_locked(alias);
377 				return alias;
378 			}
379 		}
380 	}
381 	if (discon_alias)
382 		__dget_locked(discon_alias);
383 	return discon_alias;
384 }
385 
386 struct dentry * d_find_alias(struct inode *inode)
387 {
388 	struct dentry *de = NULL;
389 
390 	if (!list_empty(&inode->i_dentry)) {
391 		spin_lock(&dcache_lock);
392 		de = __d_find_alias(inode, 0);
393 		spin_unlock(&dcache_lock);
394 	}
395 	return de;
396 }
397 EXPORT_SYMBOL(d_find_alias);
398 
399 /*
400  *	Try to kill dentries associated with this inode.
401  * WARNING: you must own a reference to inode.
402  */
403 void d_prune_aliases(struct inode *inode)
404 {
405 	struct dentry *dentry;
406 restart:
407 	spin_lock(&dcache_lock);
408 	list_for_each_entry(dentry, &inode->i_dentry, d_alias) {
409 		spin_lock(&dentry->d_lock);
410 		if (!atomic_read(&dentry->d_count)) {
411 			__dget_locked(dentry);
412 			__d_drop(dentry);
413 			spin_unlock(&dentry->d_lock);
414 			spin_unlock(&dcache_lock);
415 			dput(dentry);
416 			goto restart;
417 		}
418 		spin_unlock(&dentry->d_lock);
419 	}
420 	spin_unlock(&dcache_lock);
421 }
422 EXPORT_SYMBOL(d_prune_aliases);
423 
424 /*
425  * Throw away a dentry - free the inode, dput the parent.  This requires that
426  * the LRU list has already been removed.
427  *
428  * Try to prune ancestors as well.  This is necessary to prevent
429  * quadratic behavior of shrink_dcache_parent(), but is also expected
430  * to be beneficial in reducing dentry cache fragmentation.
431  */
432 static void prune_one_dentry(struct dentry * dentry)
433 	__releases(dentry->d_lock)
434 	__releases(dcache_lock)
435 	__acquires(dcache_lock)
436 {
437 	__d_drop(dentry);
438 	dentry = d_kill(dentry);
439 
440 	/*
441 	 * Prune ancestors.  Locking is simpler than in dput(),
442 	 * because dcache_lock needs to be taken anyway.
443 	 */
444 	spin_lock(&dcache_lock);
445 	while (dentry) {
446 		if (!atomic_dec_and_lock(&dentry->d_count, &dentry->d_lock))
447 			return;
448 
449 		if (dentry->d_op && dentry->d_op->d_delete)
450 			dentry->d_op->d_delete(dentry);
451 		dentry_lru_del(dentry);
452 		__d_drop(dentry);
453 		dentry = d_kill(dentry);
454 		spin_lock(&dcache_lock);
455 	}
456 }
457 
458 static void shrink_dentry_list(struct list_head *list)
459 {
460 	struct dentry *dentry;
461 
462 	while (!list_empty(list)) {
463 		dentry = list_entry(list->prev, struct dentry, d_lru);
464 		dentry_lru_del(dentry);
465 
466 		/*
467 		 * We found an inuse dentry which was not removed from
468 		 * the LRU because of laziness during lookup.  Do not free
469 		 * it - just keep it off the LRU list.
470 		 */
471 		spin_lock(&dentry->d_lock);
472 		if (atomic_read(&dentry->d_count)) {
473 			spin_unlock(&dentry->d_lock);
474 			continue;
475 		}
476 		prune_one_dentry(dentry);
477 		/* dentry->d_lock was dropped in prune_one_dentry() */
478 		cond_resched_lock(&dcache_lock);
479 	}
480 }
481 
482 /**
483  * __shrink_dcache_sb - shrink the dentry LRU on a given superblock
484  * @sb:		superblock to shrink dentry LRU.
485  * @count:	number of entries to prune
486  * @flags:	flags to control the dentry processing
487  *
488  * If flags contains DCACHE_REFERENCED reference dentries will not be pruned.
489  */
490 static void __shrink_dcache_sb(struct super_block *sb, int *count, int flags)
491 {
492 	/* called from prune_dcache() and shrink_dcache_parent() */
493 	struct dentry *dentry;
494 	LIST_HEAD(referenced);
495 	LIST_HEAD(tmp);
496 	int cnt = *count;
497 
498 	spin_lock(&dcache_lock);
499 	while (!list_empty(&sb->s_dentry_lru)) {
500 		dentry = list_entry(sb->s_dentry_lru.prev,
501 				struct dentry, d_lru);
502 		BUG_ON(dentry->d_sb != sb);
503 
504 		/*
505 		 * If we are honouring the DCACHE_REFERENCED flag and the
506 		 * dentry has this flag set, don't free it.  Clear the flag
507 		 * and put it back on the LRU.
508 		 */
509 		if (flags & DCACHE_REFERENCED) {
510 			spin_lock(&dentry->d_lock);
511 			if (dentry->d_flags & DCACHE_REFERENCED) {
512 				dentry->d_flags &= ~DCACHE_REFERENCED;
513 				list_move(&dentry->d_lru, &referenced);
514 				spin_unlock(&dentry->d_lock);
515 				cond_resched_lock(&dcache_lock);
516 				continue;
517 			}
518 			spin_unlock(&dentry->d_lock);
519 		}
520 
521 		list_move_tail(&dentry->d_lru, &tmp);
522 		if (!--cnt)
523 			break;
524 		cond_resched_lock(&dcache_lock);
525 	}
526 
527 	*count = cnt;
528 	shrink_dentry_list(&tmp);
529 
530 	if (!list_empty(&referenced))
531 		list_splice(&referenced, &sb->s_dentry_lru);
532 	spin_unlock(&dcache_lock);
533 
534 }
535 
536 /**
537  * prune_dcache - shrink the dcache
538  * @count: number of entries to try to free
539  *
540  * Shrink the dcache. This is done when we need more memory, or simply when we
541  * need to unmount something (at which point we need to unuse all dentries).
542  *
543  * This function may fail to free any resources if all the dentries are in use.
544  */
545 static void prune_dcache(int count)
546 {
547 	struct super_block *sb, *p = NULL;
548 	int w_count;
549 	int unused = percpu_counter_sum_positive(&nr_dentry_unused);
550 	int prune_ratio;
551 	int pruned;
552 
553 	if (unused == 0 || count == 0)
554 		return;
555 	spin_lock(&dcache_lock);
556 	if (count >= unused)
557 		prune_ratio = 1;
558 	else
559 		prune_ratio = unused / count;
560 	spin_lock(&sb_lock);
561 	list_for_each_entry(sb, &super_blocks, s_list) {
562 		if (list_empty(&sb->s_instances))
563 			continue;
564 		if (sb->s_nr_dentry_unused == 0)
565 			continue;
566 		sb->s_count++;
567 		/* Now, we reclaim unused dentrins with fairness.
568 		 * We reclaim them same percentage from each superblock.
569 		 * We calculate number of dentries to scan on this sb
570 		 * as follows, but the implementation is arranged to avoid
571 		 * overflows:
572 		 * number of dentries to scan on this sb =
573 		 * count * (number of dentries on this sb /
574 		 * number of dentries in the machine)
575 		 */
576 		spin_unlock(&sb_lock);
577 		if (prune_ratio != 1)
578 			w_count = (sb->s_nr_dentry_unused / prune_ratio) + 1;
579 		else
580 			w_count = sb->s_nr_dentry_unused;
581 		pruned = w_count;
582 		/*
583 		 * We need to be sure this filesystem isn't being unmounted,
584 		 * otherwise we could race with generic_shutdown_super(), and
585 		 * end up holding a reference to an inode while the filesystem
586 		 * is unmounted.  So we try to get s_umount, and make sure
587 		 * s_root isn't NULL.
588 		 */
589 		if (down_read_trylock(&sb->s_umount)) {
590 			if ((sb->s_root != NULL) &&
591 			    (!list_empty(&sb->s_dentry_lru))) {
592 				spin_unlock(&dcache_lock);
593 				__shrink_dcache_sb(sb, &w_count,
594 						DCACHE_REFERENCED);
595 				pruned -= w_count;
596 				spin_lock(&dcache_lock);
597 			}
598 			up_read(&sb->s_umount);
599 		}
600 		spin_lock(&sb_lock);
601 		if (p)
602 			__put_super(p);
603 		count -= pruned;
604 		p = sb;
605 		/* more work left to do? */
606 		if (count <= 0)
607 			break;
608 	}
609 	if (p)
610 		__put_super(p);
611 	spin_unlock(&sb_lock);
612 	spin_unlock(&dcache_lock);
613 }
614 
615 /**
616  * shrink_dcache_sb - shrink dcache for a superblock
617  * @sb: superblock
618  *
619  * Shrink the dcache for the specified super block. This is used to free
620  * the dcache before unmounting a file system.
621  */
622 void shrink_dcache_sb(struct super_block *sb)
623 {
624 	LIST_HEAD(tmp);
625 
626 	spin_lock(&dcache_lock);
627 	while (!list_empty(&sb->s_dentry_lru)) {
628 		list_splice_init(&sb->s_dentry_lru, &tmp);
629 		shrink_dentry_list(&tmp);
630 	}
631 	spin_unlock(&dcache_lock);
632 }
633 EXPORT_SYMBOL(shrink_dcache_sb);
634 
635 /*
636  * destroy a single subtree of dentries for unmount
637  * - see the comments on shrink_dcache_for_umount() for a description of the
638  *   locking
639  */
640 static void shrink_dcache_for_umount_subtree(struct dentry *dentry)
641 {
642 	struct dentry *parent;
643 	unsigned detached = 0;
644 
645 	BUG_ON(!IS_ROOT(dentry));
646 
647 	/* detach this root from the system */
648 	spin_lock(&dcache_lock);
649 	dentry_lru_del(dentry);
650 	__d_drop(dentry);
651 	spin_unlock(&dcache_lock);
652 
653 	for (;;) {
654 		/* descend to the first leaf in the current subtree */
655 		while (!list_empty(&dentry->d_subdirs)) {
656 			struct dentry *loop;
657 
658 			/* this is a branch with children - detach all of them
659 			 * from the system in one go */
660 			spin_lock(&dcache_lock);
661 			list_for_each_entry(loop, &dentry->d_subdirs,
662 					    d_u.d_child) {
663 				dentry_lru_del(loop);
664 				__d_drop(loop);
665 				cond_resched_lock(&dcache_lock);
666 			}
667 			spin_unlock(&dcache_lock);
668 
669 			/* move to the first child */
670 			dentry = list_entry(dentry->d_subdirs.next,
671 					    struct dentry, d_u.d_child);
672 		}
673 
674 		/* consume the dentries from this leaf up through its parents
675 		 * until we find one with children or run out altogether */
676 		do {
677 			struct inode *inode;
678 
679 			if (atomic_read(&dentry->d_count) != 0) {
680 				printk(KERN_ERR
681 				       "BUG: Dentry %p{i=%lx,n=%s}"
682 				       " still in use (%d)"
683 				       " [unmount of %s %s]\n",
684 				       dentry,
685 				       dentry->d_inode ?
686 				       dentry->d_inode->i_ino : 0UL,
687 				       dentry->d_name.name,
688 				       atomic_read(&dentry->d_count),
689 				       dentry->d_sb->s_type->name,
690 				       dentry->d_sb->s_id);
691 				BUG();
692 			}
693 
694 			if (IS_ROOT(dentry))
695 				parent = NULL;
696 			else {
697 				parent = dentry->d_parent;
698 				atomic_dec(&parent->d_count);
699 			}
700 
701 			list_del(&dentry->d_u.d_child);
702 			detached++;
703 
704 			inode = dentry->d_inode;
705 			if (inode) {
706 				dentry->d_inode = NULL;
707 				list_del_init(&dentry->d_alias);
708 				if (dentry->d_op && dentry->d_op->d_iput)
709 					dentry->d_op->d_iput(dentry, inode);
710 				else
711 					iput(inode);
712 			}
713 
714 			d_free(dentry);
715 
716 			/* finished when we fall off the top of the tree,
717 			 * otherwise we ascend to the parent and move to the
718 			 * next sibling if there is one */
719 			if (!parent)
720 				return;
721 			dentry = parent;
722 		} while (list_empty(&dentry->d_subdirs));
723 
724 		dentry = list_entry(dentry->d_subdirs.next,
725 				    struct dentry, d_u.d_child);
726 	}
727 }
728 
729 /*
730  * destroy the dentries attached to a superblock on unmounting
731  * - we don't need to use dentry->d_lock, and only need dcache_lock when
732  *   removing the dentry from the system lists and hashes because:
733  *   - the superblock is detached from all mountings and open files, so the
734  *     dentry trees will not be rearranged by the VFS
735  *   - s_umount is write-locked, so the memory pressure shrinker will ignore
736  *     any dentries belonging to this superblock that it comes across
737  *   - the filesystem itself is no longer permitted to rearrange the dentries
738  *     in this superblock
739  */
740 void shrink_dcache_for_umount(struct super_block *sb)
741 {
742 	struct dentry *dentry;
743 
744 	if (down_read_trylock(&sb->s_umount))
745 		BUG();
746 
747 	dentry = sb->s_root;
748 	sb->s_root = NULL;
749 	atomic_dec(&dentry->d_count);
750 	shrink_dcache_for_umount_subtree(dentry);
751 
752 	while (!hlist_empty(&sb->s_anon)) {
753 		dentry = hlist_entry(sb->s_anon.first, struct dentry, d_hash);
754 		shrink_dcache_for_umount_subtree(dentry);
755 	}
756 }
757 
758 /*
759  * Search for at least 1 mount point in the dentry's subdirs.
760  * We descend to the next level whenever the d_subdirs
761  * list is non-empty and continue searching.
762  */
763 
764 /**
765  * have_submounts - check for mounts over a dentry
766  * @parent: dentry to check.
767  *
768  * Return true if the parent or its subdirectories contain
769  * a mount point
770  */
771 
772 int have_submounts(struct dentry *parent)
773 {
774 	struct dentry *this_parent = parent;
775 	struct list_head *next;
776 
777 	spin_lock(&dcache_lock);
778 	if (d_mountpoint(parent))
779 		goto positive;
780 repeat:
781 	next = this_parent->d_subdirs.next;
782 resume:
783 	while (next != &this_parent->d_subdirs) {
784 		struct list_head *tmp = next;
785 		struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
786 		next = tmp->next;
787 		/* Have we found a mount point ? */
788 		if (d_mountpoint(dentry))
789 			goto positive;
790 		if (!list_empty(&dentry->d_subdirs)) {
791 			this_parent = dentry;
792 			goto repeat;
793 		}
794 	}
795 	/*
796 	 * All done at this level ... ascend and resume the search.
797 	 */
798 	if (this_parent != parent) {
799 		next = this_parent->d_u.d_child.next;
800 		this_parent = this_parent->d_parent;
801 		goto resume;
802 	}
803 	spin_unlock(&dcache_lock);
804 	return 0; /* No mount points found in tree */
805 positive:
806 	spin_unlock(&dcache_lock);
807 	return 1;
808 }
809 EXPORT_SYMBOL(have_submounts);
810 
811 /*
812  * Search the dentry child list for the specified parent,
813  * and move any unused dentries to the end of the unused
814  * list for prune_dcache(). We descend to the next level
815  * whenever the d_subdirs list is non-empty and continue
816  * searching.
817  *
818  * It returns zero iff there are no unused children,
819  * otherwise  it returns the number of children moved to
820  * the end of the unused list. This may not be the total
821  * number of unused children, because select_parent can
822  * drop the lock and return early due to latency
823  * constraints.
824  */
825 static int select_parent(struct dentry * parent)
826 {
827 	struct dentry *this_parent = parent;
828 	struct list_head *next;
829 	int found = 0;
830 
831 	spin_lock(&dcache_lock);
832 repeat:
833 	next = this_parent->d_subdirs.next;
834 resume:
835 	while (next != &this_parent->d_subdirs) {
836 		struct list_head *tmp = next;
837 		struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
838 		next = tmp->next;
839 
840 		/*
841 		 * move only zero ref count dentries to the end
842 		 * of the unused list for prune_dcache
843 		 */
844 		if (!atomic_read(&dentry->d_count)) {
845 			dentry_lru_move_tail(dentry);
846 			found++;
847 		} else {
848 			dentry_lru_del(dentry);
849 		}
850 
851 		/*
852 		 * We can return to the caller if we have found some (this
853 		 * ensures forward progress). We'll be coming back to find
854 		 * the rest.
855 		 */
856 		if (found && need_resched())
857 			goto out;
858 
859 		/*
860 		 * Descend a level if the d_subdirs list is non-empty.
861 		 */
862 		if (!list_empty(&dentry->d_subdirs)) {
863 			this_parent = dentry;
864 			goto repeat;
865 		}
866 	}
867 	/*
868 	 * All done at this level ... ascend and resume the search.
869 	 */
870 	if (this_parent != parent) {
871 		next = this_parent->d_u.d_child.next;
872 		this_parent = this_parent->d_parent;
873 		goto resume;
874 	}
875 out:
876 	spin_unlock(&dcache_lock);
877 	return found;
878 }
879 
880 /**
881  * shrink_dcache_parent - prune dcache
882  * @parent: parent of entries to prune
883  *
884  * Prune the dcache to remove unused children of the parent dentry.
885  */
886 
887 void shrink_dcache_parent(struct dentry * parent)
888 {
889 	struct super_block *sb = parent->d_sb;
890 	int found;
891 
892 	while ((found = select_parent(parent)) != 0)
893 		__shrink_dcache_sb(sb, &found, 0);
894 }
895 EXPORT_SYMBOL(shrink_dcache_parent);
896 
897 /*
898  * Scan `nr' dentries and return the number which remain.
899  *
900  * We need to avoid reentering the filesystem if the caller is performing a
901  * GFP_NOFS allocation attempt.  One example deadlock is:
902  *
903  * ext2_new_block->getblk->GFP->shrink_dcache_memory->prune_dcache->
904  * prune_one_dentry->dput->dentry_iput->iput->inode->i_sb->s_op->put_inode->
905  * ext2_discard_prealloc->ext2_free_blocks->lock_super->DEADLOCK.
906  *
907  * In this case we return -1 to tell the caller that we baled.
908  */
909 static int shrink_dcache_memory(struct shrinker *shrink, int nr, gfp_t gfp_mask)
910 {
911 	int nr_unused;
912 
913 	if (nr) {
914 		if (!(gfp_mask & __GFP_FS))
915 			return -1;
916 		prune_dcache(nr);
917 	}
918 
919 	nr_unused = percpu_counter_sum_positive(&nr_dentry_unused);
920 	return (nr_unused / 100) * sysctl_vfs_cache_pressure;
921 }
922 
923 static struct shrinker dcache_shrinker = {
924 	.shrink = shrink_dcache_memory,
925 	.seeks = DEFAULT_SEEKS,
926 };
927 
928 /**
929  * d_alloc	-	allocate a dcache entry
930  * @parent: parent of entry to allocate
931  * @name: qstr of the name
932  *
933  * Allocates a dentry. It returns %NULL if there is insufficient memory
934  * available. On a success the dentry is returned. The name passed in is
935  * copied and the copy passed in may be reused after this call.
936  */
937 
938 struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
939 {
940 	struct dentry *dentry;
941 	char *dname;
942 
943 	dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
944 	if (!dentry)
945 		return NULL;
946 
947 	if (name->len > DNAME_INLINE_LEN-1) {
948 		dname = kmalloc(name->len + 1, GFP_KERNEL);
949 		if (!dname) {
950 			kmem_cache_free(dentry_cache, dentry);
951 			return NULL;
952 		}
953 	} else  {
954 		dname = dentry->d_iname;
955 	}
956 	dentry->d_name.name = dname;
957 
958 	dentry->d_name.len = name->len;
959 	dentry->d_name.hash = name->hash;
960 	memcpy(dname, name->name, name->len);
961 	dname[name->len] = 0;
962 
963 	atomic_set(&dentry->d_count, 1);
964 	dentry->d_flags = DCACHE_UNHASHED;
965 	spin_lock_init(&dentry->d_lock);
966 	dentry->d_inode = NULL;
967 	dentry->d_parent = NULL;
968 	dentry->d_sb = NULL;
969 	dentry->d_op = NULL;
970 	dentry->d_fsdata = NULL;
971 	dentry->d_mounted = 0;
972 	INIT_HLIST_NODE(&dentry->d_hash);
973 	INIT_LIST_HEAD(&dentry->d_lru);
974 	INIT_LIST_HEAD(&dentry->d_subdirs);
975 	INIT_LIST_HEAD(&dentry->d_alias);
976 
977 	if (parent) {
978 		dentry->d_parent = dget(parent);
979 		dentry->d_sb = parent->d_sb;
980 	} else {
981 		INIT_LIST_HEAD(&dentry->d_u.d_child);
982 	}
983 
984 	spin_lock(&dcache_lock);
985 	if (parent)
986 		list_add(&dentry->d_u.d_child, &parent->d_subdirs);
987 	spin_unlock(&dcache_lock);
988 
989 	percpu_counter_inc(&nr_dentry);
990 
991 	return dentry;
992 }
993 EXPORT_SYMBOL(d_alloc);
994 
995 struct dentry *d_alloc_name(struct dentry *parent, const char *name)
996 {
997 	struct qstr q;
998 
999 	q.name = name;
1000 	q.len = strlen(name);
1001 	q.hash = full_name_hash(q.name, q.len);
1002 	return d_alloc(parent, &q);
1003 }
1004 EXPORT_SYMBOL(d_alloc_name);
1005 
1006 /* the caller must hold dcache_lock */
1007 static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1008 {
1009 	if (inode)
1010 		list_add(&dentry->d_alias, &inode->i_dentry);
1011 	dentry->d_inode = inode;
1012 	fsnotify_d_instantiate(dentry, inode);
1013 }
1014 
1015 /**
1016  * d_instantiate - fill in inode information for a dentry
1017  * @entry: dentry to complete
1018  * @inode: inode to attach to this dentry
1019  *
1020  * Fill in inode information in the entry.
1021  *
1022  * This turns negative dentries into productive full members
1023  * of society.
1024  *
1025  * NOTE! This assumes that the inode count has been incremented
1026  * (or otherwise set) by the caller to indicate that it is now
1027  * in use by the dcache.
1028  */
1029 
1030 void d_instantiate(struct dentry *entry, struct inode * inode)
1031 {
1032 	BUG_ON(!list_empty(&entry->d_alias));
1033 	spin_lock(&dcache_lock);
1034 	__d_instantiate(entry, inode);
1035 	spin_unlock(&dcache_lock);
1036 	security_d_instantiate(entry, inode);
1037 }
1038 EXPORT_SYMBOL(d_instantiate);
1039 
1040 /**
1041  * d_instantiate_unique - instantiate a non-aliased dentry
1042  * @entry: dentry to instantiate
1043  * @inode: inode to attach to this dentry
1044  *
1045  * Fill in inode information in the entry. On success, it returns NULL.
1046  * If an unhashed alias of "entry" already exists, then we return the
1047  * aliased dentry instead and drop one reference to inode.
1048  *
1049  * Note that in order to avoid conflicts with rename() etc, the caller
1050  * had better be holding the parent directory semaphore.
1051  *
1052  * This also assumes that the inode count has been incremented
1053  * (or otherwise set) by the caller to indicate that it is now
1054  * in use by the dcache.
1055  */
1056 static struct dentry *__d_instantiate_unique(struct dentry *entry,
1057 					     struct inode *inode)
1058 {
1059 	struct dentry *alias;
1060 	int len = entry->d_name.len;
1061 	const char *name = entry->d_name.name;
1062 	unsigned int hash = entry->d_name.hash;
1063 
1064 	if (!inode) {
1065 		__d_instantiate(entry, NULL);
1066 		return NULL;
1067 	}
1068 
1069 	list_for_each_entry(alias, &inode->i_dentry, d_alias) {
1070 		struct qstr *qstr = &alias->d_name;
1071 
1072 		if (qstr->hash != hash)
1073 			continue;
1074 		if (alias->d_parent != entry->d_parent)
1075 			continue;
1076 		if (qstr->len != len)
1077 			continue;
1078 		if (memcmp(qstr->name, name, len))
1079 			continue;
1080 		dget_locked(alias);
1081 		return alias;
1082 	}
1083 
1084 	__d_instantiate(entry, inode);
1085 	return NULL;
1086 }
1087 
1088 struct dentry *d_instantiate_unique(struct dentry *entry, struct inode *inode)
1089 {
1090 	struct dentry *result;
1091 
1092 	BUG_ON(!list_empty(&entry->d_alias));
1093 
1094 	spin_lock(&dcache_lock);
1095 	result = __d_instantiate_unique(entry, inode);
1096 	spin_unlock(&dcache_lock);
1097 
1098 	if (!result) {
1099 		security_d_instantiate(entry, inode);
1100 		return NULL;
1101 	}
1102 
1103 	BUG_ON(!d_unhashed(result));
1104 	iput(inode);
1105 	return result;
1106 }
1107 
1108 EXPORT_SYMBOL(d_instantiate_unique);
1109 
1110 /**
1111  * d_alloc_root - allocate root dentry
1112  * @root_inode: inode to allocate the root for
1113  *
1114  * Allocate a root ("/") dentry for the inode given. The inode is
1115  * instantiated and returned. %NULL is returned if there is insufficient
1116  * memory or the inode passed is %NULL.
1117  */
1118 
1119 struct dentry * d_alloc_root(struct inode * root_inode)
1120 {
1121 	struct dentry *res = NULL;
1122 
1123 	if (root_inode) {
1124 		static const struct qstr name = { .name = "/", .len = 1 };
1125 
1126 		res = d_alloc(NULL, &name);
1127 		if (res) {
1128 			res->d_sb = root_inode->i_sb;
1129 			res->d_parent = res;
1130 			d_instantiate(res, root_inode);
1131 		}
1132 	}
1133 	return res;
1134 }
1135 EXPORT_SYMBOL(d_alloc_root);
1136 
1137 static inline struct hlist_head *d_hash(struct dentry *parent,
1138 					unsigned long hash)
1139 {
1140 	hash += ((unsigned long) parent ^ GOLDEN_RATIO_PRIME) / L1_CACHE_BYTES;
1141 	hash = hash ^ ((hash ^ GOLDEN_RATIO_PRIME) >> D_HASHBITS);
1142 	return dentry_hashtable + (hash & D_HASHMASK);
1143 }
1144 
1145 /**
1146  * d_obtain_alias - find or allocate a dentry for a given inode
1147  * @inode: inode to allocate the dentry for
1148  *
1149  * Obtain a dentry for an inode resulting from NFS filehandle conversion or
1150  * similar open by handle operations.  The returned dentry may be anonymous,
1151  * or may have a full name (if the inode was already in the cache).
1152  *
1153  * When called on a directory inode, we must ensure that the inode only ever
1154  * has one dentry.  If a dentry is found, that is returned instead of
1155  * allocating a new one.
1156  *
1157  * On successful return, the reference to the inode has been transferred
1158  * to the dentry.  In case of an error the reference on the inode is released.
1159  * To make it easier to use in export operations a %NULL or IS_ERR inode may
1160  * be passed in and will be the error will be propagate to the return value,
1161  * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
1162  */
1163 struct dentry *d_obtain_alias(struct inode *inode)
1164 {
1165 	static const struct qstr anonstring = { .name = "" };
1166 	struct dentry *tmp;
1167 	struct dentry *res;
1168 
1169 	if (!inode)
1170 		return ERR_PTR(-ESTALE);
1171 	if (IS_ERR(inode))
1172 		return ERR_CAST(inode);
1173 
1174 	res = d_find_alias(inode);
1175 	if (res)
1176 		goto out_iput;
1177 
1178 	tmp = d_alloc(NULL, &anonstring);
1179 	if (!tmp) {
1180 		res = ERR_PTR(-ENOMEM);
1181 		goto out_iput;
1182 	}
1183 	tmp->d_parent = tmp; /* make sure dput doesn't croak */
1184 
1185 	spin_lock(&dcache_lock);
1186 	res = __d_find_alias(inode, 0);
1187 	if (res) {
1188 		spin_unlock(&dcache_lock);
1189 		dput(tmp);
1190 		goto out_iput;
1191 	}
1192 
1193 	/* attach a disconnected dentry */
1194 	spin_lock(&tmp->d_lock);
1195 	tmp->d_sb = inode->i_sb;
1196 	tmp->d_inode = inode;
1197 	tmp->d_flags |= DCACHE_DISCONNECTED;
1198 	tmp->d_flags &= ~DCACHE_UNHASHED;
1199 	list_add(&tmp->d_alias, &inode->i_dentry);
1200 	hlist_add_head(&tmp->d_hash, &inode->i_sb->s_anon);
1201 	spin_unlock(&tmp->d_lock);
1202 
1203 	spin_unlock(&dcache_lock);
1204 	return tmp;
1205 
1206  out_iput:
1207 	iput(inode);
1208 	return res;
1209 }
1210 EXPORT_SYMBOL(d_obtain_alias);
1211 
1212 /**
1213  * d_splice_alias - splice a disconnected dentry into the tree if one exists
1214  * @inode:  the inode which may have a disconnected dentry
1215  * @dentry: a negative dentry which we want to point to the inode.
1216  *
1217  * If inode is a directory and has a 'disconnected' dentry (i.e. IS_ROOT and
1218  * DCACHE_DISCONNECTED), then d_move that in place of the given dentry
1219  * and return it, else simply d_add the inode to the dentry and return NULL.
1220  *
1221  * This is needed in the lookup routine of any filesystem that is exportable
1222  * (via knfsd) so that we can build dcache paths to directories effectively.
1223  *
1224  * If a dentry was found and moved, then it is returned.  Otherwise NULL
1225  * is returned.  This matches the expected return value of ->lookup.
1226  *
1227  */
1228 struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
1229 {
1230 	struct dentry *new = NULL;
1231 
1232 	if (inode && S_ISDIR(inode->i_mode)) {
1233 		spin_lock(&dcache_lock);
1234 		new = __d_find_alias(inode, 1);
1235 		if (new) {
1236 			BUG_ON(!(new->d_flags & DCACHE_DISCONNECTED));
1237 			spin_unlock(&dcache_lock);
1238 			security_d_instantiate(new, inode);
1239 			d_move(new, dentry);
1240 			iput(inode);
1241 		} else {
1242 			/* already taking dcache_lock, so d_add() by hand */
1243 			__d_instantiate(dentry, inode);
1244 			spin_unlock(&dcache_lock);
1245 			security_d_instantiate(dentry, inode);
1246 			d_rehash(dentry);
1247 		}
1248 	} else
1249 		d_add(dentry, inode);
1250 	return new;
1251 }
1252 EXPORT_SYMBOL(d_splice_alias);
1253 
1254 /**
1255  * d_add_ci - lookup or allocate new dentry with case-exact name
1256  * @inode:  the inode case-insensitive lookup has found
1257  * @dentry: the negative dentry that was passed to the parent's lookup func
1258  * @name:   the case-exact name to be associated with the returned dentry
1259  *
1260  * This is to avoid filling the dcache with case-insensitive names to the
1261  * same inode, only the actual correct case is stored in the dcache for
1262  * case-insensitive filesystems.
1263  *
1264  * For a case-insensitive lookup match and if the the case-exact dentry
1265  * already exists in in the dcache, use it and return it.
1266  *
1267  * If no entry exists with the exact case name, allocate new dentry with
1268  * the exact case, and return the spliced entry.
1269  */
1270 struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
1271 			struct qstr *name)
1272 {
1273 	int error;
1274 	struct dentry *found;
1275 	struct dentry *new;
1276 
1277 	/*
1278 	 * First check if a dentry matching the name already exists,
1279 	 * if not go ahead and create it now.
1280 	 */
1281 	found = d_hash_and_lookup(dentry->d_parent, name);
1282 	if (!found) {
1283 		new = d_alloc(dentry->d_parent, name);
1284 		if (!new) {
1285 			error = -ENOMEM;
1286 			goto err_out;
1287 		}
1288 
1289 		found = d_splice_alias(inode, new);
1290 		if (found) {
1291 			dput(new);
1292 			return found;
1293 		}
1294 		return new;
1295 	}
1296 
1297 	/*
1298 	 * If a matching dentry exists, and it's not negative use it.
1299 	 *
1300 	 * Decrement the reference count to balance the iget() done
1301 	 * earlier on.
1302 	 */
1303 	if (found->d_inode) {
1304 		if (unlikely(found->d_inode != inode)) {
1305 			/* This can't happen because bad inodes are unhashed. */
1306 			BUG_ON(!is_bad_inode(inode));
1307 			BUG_ON(!is_bad_inode(found->d_inode));
1308 		}
1309 		iput(inode);
1310 		return found;
1311 	}
1312 
1313 	/*
1314 	 * Negative dentry: instantiate it unless the inode is a directory and
1315 	 * already has a dentry.
1316 	 */
1317 	spin_lock(&dcache_lock);
1318 	if (!S_ISDIR(inode->i_mode) || list_empty(&inode->i_dentry)) {
1319 		__d_instantiate(found, inode);
1320 		spin_unlock(&dcache_lock);
1321 		security_d_instantiate(found, inode);
1322 		return found;
1323 	}
1324 
1325 	/*
1326 	 * In case a directory already has a (disconnected) entry grab a
1327 	 * reference to it, move it in place and use it.
1328 	 */
1329 	new = list_entry(inode->i_dentry.next, struct dentry, d_alias);
1330 	dget_locked(new);
1331 	spin_unlock(&dcache_lock);
1332 	security_d_instantiate(found, inode);
1333 	d_move(new, found);
1334 	iput(inode);
1335 	dput(found);
1336 	return new;
1337 
1338 err_out:
1339 	iput(inode);
1340 	return ERR_PTR(error);
1341 }
1342 EXPORT_SYMBOL(d_add_ci);
1343 
1344 /**
1345  * d_lookup - search for a dentry
1346  * @parent: parent dentry
1347  * @name: qstr of name we wish to find
1348  * Returns: dentry, or NULL
1349  *
1350  * d_lookup searches the children of the parent dentry for the name in
1351  * question. If the dentry is found its reference count is incremented and the
1352  * dentry is returned. The caller must use dput to free the entry when it has
1353  * finished using it. %NULL is returned if the dentry does not exist.
1354  */
1355 struct dentry * d_lookup(struct dentry * parent, struct qstr * name)
1356 {
1357 	struct dentry * dentry = NULL;
1358 	unsigned long seq;
1359 
1360         do {
1361                 seq = read_seqbegin(&rename_lock);
1362                 dentry = __d_lookup(parent, name);
1363                 if (dentry)
1364 			break;
1365 	} while (read_seqretry(&rename_lock, seq));
1366 	return dentry;
1367 }
1368 EXPORT_SYMBOL(d_lookup);
1369 
1370 /*
1371  * __d_lookup - search for a dentry (racy)
1372  * @parent: parent dentry
1373  * @name: qstr of name we wish to find
1374  * Returns: dentry, or NULL
1375  *
1376  * __d_lookup is like d_lookup, however it may (rarely) return a
1377  * false-negative result due to unrelated rename activity.
1378  *
1379  * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
1380  * however it must be used carefully, eg. with a following d_lookup in
1381  * the case of failure.
1382  *
1383  * __d_lookup callers must be commented.
1384  */
1385 struct dentry * __d_lookup(struct dentry * parent, struct qstr * name)
1386 {
1387 	unsigned int len = name->len;
1388 	unsigned int hash = name->hash;
1389 	const unsigned char *str = name->name;
1390 	struct hlist_head *head = d_hash(parent,hash);
1391 	struct dentry *found = NULL;
1392 	struct hlist_node *node;
1393 	struct dentry *dentry;
1394 
1395 	/*
1396 	 * The hash list is protected using RCU.
1397 	 *
1398 	 * Take d_lock when comparing a candidate dentry, to avoid races
1399 	 * with d_move().
1400 	 *
1401 	 * It is possible that concurrent renames can mess up our list
1402 	 * walk here and result in missing our dentry, resulting in the
1403 	 * false-negative result. d_lookup() protects against concurrent
1404 	 * renames using rename_lock seqlock.
1405 	 *
1406 	 * See Documentation/vfs/dcache-locking.txt for more details.
1407 	 */
1408 	rcu_read_lock();
1409 
1410 	hlist_for_each_entry_rcu(dentry, node, head, d_hash) {
1411 		struct qstr *qstr;
1412 
1413 		if (dentry->d_name.hash != hash)
1414 			continue;
1415 		if (dentry->d_parent != parent)
1416 			continue;
1417 
1418 		spin_lock(&dentry->d_lock);
1419 
1420 		/*
1421 		 * Recheck the dentry after taking the lock - d_move may have
1422 		 * changed things. Don't bother checking the hash because
1423 		 * we're about to compare the whole name anyway.
1424 		 */
1425 		if (dentry->d_parent != parent)
1426 			goto next;
1427 
1428 		/* non-existing due to RCU? */
1429 		if (d_unhashed(dentry))
1430 			goto next;
1431 
1432 		/*
1433 		 * It is safe to compare names since d_move() cannot
1434 		 * change the qstr (protected by d_lock).
1435 		 */
1436 		qstr = &dentry->d_name;
1437 		if (parent->d_op && parent->d_op->d_compare) {
1438 			if (parent->d_op->d_compare(parent, qstr, name))
1439 				goto next;
1440 		} else {
1441 			if (qstr->len != len)
1442 				goto next;
1443 			if (memcmp(qstr->name, str, len))
1444 				goto next;
1445 		}
1446 
1447 		atomic_inc(&dentry->d_count);
1448 		found = dentry;
1449 		spin_unlock(&dentry->d_lock);
1450 		break;
1451 next:
1452 		spin_unlock(&dentry->d_lock);
1453  	}
1454  	rcu_read_unlock();
1455 
1456  	return found;
1457 }
1458 
1459 /**
1460  * d_hash_and_lookup - hash the qstr then search for a dentry
1461  * @dir: Directory to search in
1462  * @name: qstr of name we wish to find
1463  *
1464  * On hash failure or on lookup failure NULL is returned.
1465  */
1466 struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
1467 {
1468 	struct dentry *dentry = NULL;
1469 
1470 	/*
1471 	 * Check for a fs-specific hash function. Note that we must
1472 	 * calculate the standard hash first, as the d_op->d_hash()
1473 	 * routine may choose to leave the hash value unchanged.
1474 	 */
1475 	name->hash = full_name_hash(name->name, name->len);
1476 	if (dir->d_op && dir->d_op->d_hash) {
1477 		if (dir->d_op->d_hash(dir, name) < 0)
1478 			goto out;
1479 	}
1480 	dentry = d_lookup(dir, name);
1481 out:
1482 	return dentry;
1483 }
1484 
1485 /**
1486  * d_validate - verify dentry provided from insecure source
1487  * @dentry: The dentry alleged to be valid child of @dparent
1488  * @dparent: The parent dentry (known to be valid)
1489  *
1490  * An insecure source has sent us a dentry, here we verify it and dget() it.
1491  * This is used by ncpfs in its readdir implementation.
1492  * Zero is returned in the dentry is invalid.
1493  */
1494 int d_validate(struct dentry *dentry, struct dentry *parent)
1495 {
1496 	struct hlist_head *head = d_hash(parent, dentry->d_name.hash);
1497 	struct hlist_node *node;
1498 	struct dentry *d;
1499 
1500 	/* Check whether the ptr might be valid at all.. */
1501 	if (!kmem_ptr_validate(dentry_cache, dentry))
1502 		return 0;
1503 	if (dentry->d_parent != parent)
1504 		return 0;
1505 
1506 	rcu_read_lock();
1507 	hlist_for_each_entry_rcu(d, node, head, d_hash) {
1508 		if (d == dentry) {
1509 			dget(dentry);
1510 			return 1;
1511 		}
1512 	}
1513 	rcu_read_unlock();
1514 	return 0;
1515 }
1516 EXPORT_SYMBOL(d_validate);
1517 
1518 /*
1519  * When a file is deleted, we have two options:
1520  * - turn this dentry into a negative dentry
1521  * - unhash this dentry and free it.
1522  *
1523  * Usually, we want to just turn this into
1524  * a negative dentry, but if anybody else is
1525  * currently using the dentry or the inode
1526  * we can't do that and we fall back on removing
1527  * it from the hash queues and waiting for
1528  * it to be deleted later when it has no users
1529  */
1530 
1531 /**
1532  * d_delete - delete a dentry
1533  * @dentry: The dentry to delete
1534  *
1535  * Turn the dentry into a negative dentry if possible, otherwise
1536  * remove it from the hash queues so it can be deleted later
1537  */
1538 
1539 void d_delete(struct dentry * dentry)
1540 {
1541 	int isdir = 0;
1542 	/*
1543 	 * Are we the only user?
1544 	 */
1545 	spin_lock(&dcache_lock);
1546 	spin_lock(&dentry->d_lock);
1547 	isdir = S_ISDIR(dentry->d_inode->i_mode);
1548 	if (atomic_read(&dentry->d_count) == 1) {
1549 		dentry->d_flags &= ~DCACHE_CANT_MOUNT;
1550 		dentry_iput(dentry);
1551 		fsnotify_nameremove(dentry, isdir);
1552 		return;
1553 	}
1554 
1555 	if (!d_unhashed(dentry))
1556 		__d_drop(dentry);
1557 
1558 	spin_unlock(&dentry->d_lock);
1559 	spin_unlock(&dcache_lock);
1560 
1561 	fsnotify_nameremove(dentry, isdir);
1562 }
1563 EXPORT_SYMBOL(d_delete);
1564 
1565 static void __d_rehash(struct dentry * entry, struct hlist_head *list)
1566 {
1567 
1568  	entry->d_flags &= ~DCACHE_UNHASHED;
1569  	hlist_add_head_rcu(&entry->d_hash, list);
1570 }
1571 
1572 static void _d_rehash(struct dentry * entry)
1573 {
1574 	__d_rehash(entry, d_hash(entry->d_parent, entry->d_name.hash));
1575 }
1576 
1577 /**
1578  * d_rehash	- add an entry back to the hash
1579  * @entry: dentry to add to the hash
1580  *
1581  * Adds a dentry to the hash according to its name.
1582  */
1583 
1584 void d_rehash(struct dentry * entry)
1585 {
1586 	spin_lock(&dcache_lock);
1587 	spin_lock(&entry->d_lock);
1588 	_d_rehash(entry);
1589 	spin_unlock(&entry->d_lock);
1590 	spin_unlock(&dcache_lock);
1591 }
1592 EXPORT_SYMBOL(d_rehash);
1593 
1594 /*
1595  * When switching names, the actual string doesn't strictly have to
1596  * be preserved in the target - because we're dropping the target
1597  * anyway. As such, we can just do a simple memcpy() to copy over
1598  * the new name before we switch.
1599  *
1600  * Note that we have to be a lot more careful about getting the hash
1601  * switched - we have to switch the hash value properly even if it
1602  * then no longer matches the actual (corrupted) string of the target.
1603  * The hash value has to match the hash queue that the dentry is on..
1604  */
1605 static void switch_names(struct dentry *dentry, struct dentry *target)
1606 {
1607 	if (dname_external(target)) {
1608 		if (dname_external(dentry)) {
1609 			/*
1610 			 * Both external: swap the pointers
1611 			 */
1612 			swap(target->d_name.name, dentry->d_name.name);
1613 		} else {
1614 			/*
1615 			 * dentry:internal, target:external.  Steal target's
1616 			 * storage and make target internal.
1617 			 */
1618 			memcpy(target->d_iname, dentry->d_name.name,
1619 					dentry->d_name.len + 1);
1620 			dentry->d_name.name = target->d_name.name;
1621 			target->d_name.name = target->d_iname;
1622 		}
1623 	} else {
1624 		if (dname_external(dentry)) {
1625 			/*
1626 			 * dentry:external, target:internal.  Give dentry's
1627 			 * storage to target and make dentry internal
1628 			 */
1629 			memcpy(dentry->d_iname, target->d_name.name,
1630 					target->d_name.len + 1);
1631 			target->d_name.name = dentry->d_name.name;
1632 			dentry->d_name.name = dentry->d_iname;
1633 		} else {
1634 			/*
1635 			 * Both are internal.  Just copy target to dentry
1636 			 */
1637 			memcpy(dentry->d_iname, target->d_name.name,
1638 					target->d_name.len + 1);
1639 			dentry->d_name.len = target->d_name.len;
1640 			return;
1641 		}
1642 	}
1643 	swap(dentry->d_name.len, target->d_name.len);
1644 }
1645 
1646 /*
1647  * We cannibalize "target" when moving dentry on top of it,
1648  * because it's going to be thrown away anyway. We could be more
1649  * polite about it, though.
1650  *
1651  * This forceful removal will result in ugly /proc output if
1652  * somebody holds a file open that got deleted due to a rename.
1653  * We could be nicer about the deleted file, and let it show
1654  * up under the name it had before it was deleted rather than
1655  * under the original name of the file that was moved on top of it.
1656  */
1657 
1658 /*
1659  * d_move_locked - move a dentry
1660  * @dentry: entry to move
1661  * @target: new dentry
1662  *
1663  * Update the dcache to reflect the move of a file name. Negative
1664  * dcache entries should not be moved in this way.
1665  */
1666 static void d_move_locked(struct dentry * dentry, struct dentry * target)
1667 {
1668 	struct hlist_head *list;
1669 
1670 	if (!dentry->d_inode)
1671 		printk(KERN_WARNING "VFS: moving negative dcache entry\n");
1672 
1673 	write_seqlock(&rename_lock);
1674 	/*
1675 	 * XXXX: do we really need to take target->d_lock?
1676 	 */
1677 	if (target < dentry) {
1678 		spin_lock(&target->d_lock);
1679 		spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1680 	} else {
1681 		spin_lock(&dentry->d_lock);
1682 		spin_lock_nested(&target->d_lock, DENTRY_D_LOCK_NESTED);
1683 	}
1684 
1685 	/* Move the dentry to the target hash queue, if on different bucket */
1686 	if (d_unhashed(dentry))
1687 		goto already_unhashed;
1688 
1689 	hlist_del_rcu(&dentry->d_hash);
1690 
1691 already_unhashed:
1692 	list = d_hash(target->d_parent, target->d_name.hash);
1693 	__d_rehash(dentry, list);
1694 
1695 	/* Unhash the target: dput() will then get rid of it */
1696 	__d_drop(target);
1697 
1698 	list_del(&dentry->d_u.d_child);
1699 	list_del(&target->d_u.d_child);
1700 
1701 	/* Switch the names.. */
1702 	switch_names(dentry, target);
1703 	swap(dentry->d_name.hash, target->d_name.hash);
1704 
1705 	/* ... and switch the parents */
1706 	if (IS_ROOT(dentry)) {
1707 		dentry->d_parent = target->d_parent;
1708 		target->d_parent = target;
1709 		INIT_LIST_HEAD(&target->d_u.d_child);
1710 	} else {
1711 		swap(dentry->d_parent, target->d_parent);
1712 
1713 		/* And add them back to the (new) parent lists */
1714 		list_add(&target->d_u.d_child, &target->d_parent->d_subdirs);
1715 	}
1716 
1717 	list_add(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs);
1718 	spin_unlock(&target->d_lock);
1719 	fsnotify_d_move(dentry);
1720 	spin_unlock(&dentry->d_lock);
1721 	write_sequnlock(&rename_lock);
1722 }
1723 
1724 /**
1725  * d_move - move a dentry
1726  * @dentry: entry to move
1727  * @target: new dentry
1728  *
1729  * Update the dcache to reflect the move of a file name. Negative
1730  * dcache entries should not be moved in this way.
1731  */
1732 
1733 void d_move(struct dentry * dentry, struct dentry * target)
1734 {
1735 	spin_lock(&dcache_lock);
1736 	d_move_locked(dentry, target);
1737 	spin_unlock(&dcache_lock);
1738 }
1739 EXPORT_SYMBOL(d_move);
1740 
1741 /**
1742  * d_ancestor - search for an ancestor
1743  * @p1: ancestor dentry
1744  * @p2: child dentry
1745  *
1746  * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
1747  * an ancestor of p2, else NULL.
1748  */
1749 struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
1750 {
1751 	struct dentry *p;
1752 
1753 	for (p = p2; !IS_ROOT(p); p = p->d_parent) {
1754 		if (p->d_parent == p1)
1755 			return p;
1756 	}
1757 	return NULL;
1758 }
1759 
1760 /*
1761  * This helper attempts to cope with remotely renamed directories
1762  *
1763  * It assumes that the caller is already holding
1764  * dentry->d_parent->d_inode->i_mutex and the dcache_lock
1765  *
1766  * Note: If ever the locking in lock_rename() changes, then please
1767  * remember to update this too...
1768  */
1769 static struct dentry *__d_unalias(struct dentry *dentry, struct dentry *alias)
1770 	__releases(dcache_lock)
1771 {
1772 	struct mutex *m1 = NULL, *m2 = NULL;
1773 	struct dentry *ret;
1774 
1775 	/* If alias and dentry share a parent, then no extra locks required */
1776 	if (alias->d_parent == dentry->d_parent)
1777 		goto out_unalias;
1778 
1779 	/* Check for loops */
1780 	ret = ERR_PTR(-ELOOP);
1781 	if (d_ancestor(alias, dentry))
1782 		goto out_err;
1783 
1784 	/* See lock_rename() */
1785 	ret = ERR_PTR(-EBUSY);
1786 	if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
1787 		goto out_err;
1788 	m1 = &dentry->d_sb->s_vfs_rename_mutex;
1789 	if (!mutex_trylock(&alias->d_parent->d_inode->i_mutex))
1790 		goto out_err;
1791 	m2 = &alias->d_parent->d_inode->i_mutex;
1792 out_unalias:
1793 	d_move_locked(alias, dentry);
1794 	ret = alias;
1795 out_err:
1796 	spin_unlock(&dcache_lock);
1797 	if (m2)
1798 		mutex_unlock(m2);
1799 	if (m1)
1800 		mutex_unlock(m1);
1801 	return ret;
1802 }
1803 
1804 /*
1805  * Prepare an anonymous dentry for life in the superblock's dentry tree as a
1806  * named dentry in place of the dentry to be replaced.
1807  */
1808 static void __d_materialise_dentry(struct dentry *dentry, struct dentry *anon)
1809 {
1810 	struct dentry *dparent, *aparent;
1811 
1812 	switch_names(dentry, anon);
1813 	swap(dentry->d_name.hash, anon->d_name.hash);
1814 
1815 	dparent = dentry->d_parent;
1816 	aparent = anon->d_parent;
1817 
1818 	dentry->d_parent = (aparent == anon) ? dentry : aparent;
1819 	list_del(&dentry->d_u.d_child);
1820 	if (!IS_ROOT(dentry))
1821 		list_add(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs);
1822 	else
1823 		INIT_LIST_HEAD(&dentry->d_u.d_child);
1824 
1825 	anon->d_parent = (dparent == dentry) ? anon : dparent;
1826 	list_del(&anon->d_u.d_child);
1827 	if (!IS_ROOT(anon))
1828 		list_add(&anon->d_u.d_child, &anon->d_parent->d_subdirs);
1829 	else
1830 		INIT_LIST_HEAD(&anon->d_u.d_child);
1831 
1832 	anon->d_flags &= ~DCACHE_DISCONNECTED;
1833 }
1834 
1835 /**
1836  * d_materialise_unique - introduce an inode into the tree
1837  * @dentry: candidate dentry
1838  * @inode: inode to bind to the dentry, to which aliases may be attached
1839  *
1840  * Introduces an dentry into the tree, substituting an extant disconnected
1841  * root directory alias in its place if there is one
1842  */
1843 struct dentry *d_materialise_unique(struct dentry *dentry, struct inode *inode)
1844 {
1845 	struct dentry *actual;
1846 
1847 	BUG_ON(!d_unhashed(dentry));
1848 
1849 	spin_lock(&dcache_lock);
1850 
1851 	if (!inode) {
1852 		actual = dentry;
1853 		__d_instantiate(dentry, NULL);
1854 		goto found_lock;
1855 	}
1856 
1857 	if (S_ISDIR(inode->i_mode)) {
1858 		struct dentry *alias;
1859 
1860 		/* Does an aliased dentry already exist? */
1861 		alias = __d_find_alias(inode, 0);
1862 		if (alias) {
1863 			actual = alias;
1864 			/* Is this an anonymous mountpoint that we could splice
1865 			 * into our tree? */
1866 			if (IS_ROOT(alias)) {
1867 				spin_lock(&alias->d_lock);
1868 				__d_materialise_dentry(dentry, alias);
1869 				__d_drop(alias);
1870 				goto found;
1871 			}
1872 			/* Nope, but we must(!) avoid directory aliasing */
1873 			actual = __d_unalias(dentry, alias);
1874 			if (IS_ERR(actual))
1875 				dput(alias);
1876 			goto out_nolock;
1877 		}
1878 	}
1879 
1880 	/* Add a unique reference */
1881 	actual = __d_instantiate_unique(dentry, inode);
1882 	if (!actual)
1883 		actual = dentry;
1884 	else if (unlikely(!d_unhashed(actual)))
1885 		goto shouldnt_be_hashed;
1886 
1887 found_lock:
1888 	spin_lock(&actual->d_lock);
1889 found:
1890 	_d_rehash(actual);
1891 	spin_unlock(&actual->d_lock);
1892 	spin_unlock(&dcache_lock);
1893 out_nolock:
1894 	if (actual == dentry) {
1895 		security_d_instantiate(dentry, inode);
1896 		return NULL;
1897 	}
1898 
1899 	iput(inode);
1900 	return actual;
1901 
1902 shouldnt_be_hashed:
1903 	spin_unlock(&dcache_lock);
1904 	BUG();
1905 }
1906 EXPORT_SYMBOL_GPL(d_materialise_unique);
1907 
1908 static int prepend(char **buffer, int *buflen, const char *str, int namelen)
1909 {
1910 	*buflen -= namelen;
1911 	if (*buflen < 0)
1912 		return -ENAMETOOLONG;
1913 	*buffer -= namelen;
1914 	memcpy(*buffer, str, namelen);
1915 	return 0;
1916 }
1917 
1918 static int prepend_name(char **buffer, int *buflen, struct qstr *name)
1919 {
1920 	return prepend(buffer, buflen, name->name, name->len);
1921 }
1922 
1923 /**
1924  * Prepend path string to a buffer
1925  *
1926  * @path: the dentry/vfsmount to report
1927  * @root: root vfsmnt/dentry (may be modified by this function)
1928  * @buffer: pointer to the end of the buffer
1929  * @buflen: pointer to buffer length
1930  *
1931  * Caller holds the dcache_lock.
1932  *
1933  * If path is not reachable from the supplied root, then the value of
1934  * root is changed (without modifying refcounts).
1935  */
1936 static int prepend_path(const struct path *path, struct path *root,
1937 			char **buffer, int *buflen)
1938 {
1939 	struct dentry *dentry = path->dentry;
1940 	struct vfsmount *vfsmnt = path->mnt;
1941 	bool slash = false;
1942 	int error = 0;
1943 
1944 	br_read_lock(vfsmount_lock);
1945 	while (dentry != root->dentry || vfsmnt != root->mnt) {
1946 		struct dentry * parent;
1947 
1948 		if (dentry == vfsmnt->mnt_root || IS_ROOT(dentry)) {
1949 			/* Global root? */
1950 			if (vfsmnt->mnt_parent == vfsmnt) {
1951 				goto global_root;
1952 			}
1953 			dentry = vfsmnt->mnt_mountpoint;
1954 			vfsmnt = vfsmnt->mnt_parent;
1955 			continue;
1956 		}
1957 		parent = dentry->d_parent;
1958 		prefetch(parent);
1959 		error = prepend_name(buffer, buflen, &dentry->d_name);
1960 		if (!error)
1961 			error = prepend(buffer, buflen, "/", 1);
1962 		if (error)
1963 			break;
1964 
1965 		slash = true;
1966 		dentry = parent;
1967 	}
1968 
1969 out:
1970 	if (!error && !slash)
1971 		error = prepend(buffer, buflen, "/", 1);
1972 
1973 	br_read_unlock(vfsmount_lock);
1974 	return error;
1975 
1976 global_root:
1977 	/*
1978 	 * Filesystems needing to implement special "root names"
1979 	 * should do so with ->d_dname()
1980 	 */
1981 	if (IS_ROOT(dentry) &&
1982 	    (dentry->d_name.len != 1 || dentry->d_name.name[0] != '/')) {
1983 		WARN(1, "Root dentry has weird name <%.*s>\n",
1984 		     (int) dentry->d_name.len, dentry->d_name.name);
1985 	}
1986 	root->mnt = vfsmnt;
1987 	root->dentry = dentry;
1988 	goto out;
1989 }
1990 
1991 /**
1992  * __d_path - return the path of a dentry
1993  * @path: the dentry/vfsmount to report
1994  * @root: root vfsmnt/dentry (may be modified by this function)
1995  * @buf: buffer to return value in
1996  * @buflen: buffer length
1997  *
1998  * Convert a dentry into an ASCII path name.
1999  *
2000  * Returns a pointer into the buffer or an error code if the
2001  * path was too long.
2002  *
2003  * "buflen" should be positive.
2004  *
2005  * If path is not reachable from the supplied root, then the value of
2006  * root is changed (without modifying refcounts).
2007  */
2008 char *__d_path(const struct path *path, struct path *root,
2009 	       char *buf, int buflen)
2010 {
2011 	char *res = buf + buflen;
2012 	int error;
2013 
2014 	prepend(&res, &buflen, "\0", 1);
2015 	spin_lock(&dcache_lock);
2016 	error = prepend_path(path, root, &res, &buflen);
2017 	spin_unlock(&dcache_lock);
2018 
2019 	if (error)
2020 		return ERR_PTR(error);
2021 	return res;
2022 }
2023 
2024 /*
2025  * same as __d_path but appends "(deleted)" for unlinked files.
2026  */
2027 static int path_with_deleted(const struct path *path, struct path *root,
2028 				 char **buf, int *buflen)
2029 {
2030 	prepend(buf, buflen, "\0", 1);
2031 	if (d_unlinked(path->dentry)) {
2032 		int error = prepend(buf, buflen, " (deleted)", 10);
2033 		if (error)
2034 			return error;
2035 	}
2036 
2037 	return prepend_path(path, root, buf, buflen);
2038 }
2039 
2040 static int prepend_unreachable(char **buffer, int *buflen)
2041 {
2042 	return prepend(buffer, buflen, "(unreachable)", 13);
2043 }
2044 
2045 /**
2046  * d_path - return the path of a dentry
2047  * @path: path to report
2048  * @buf: buffer to return value in
2049  * @buflen: buffer length
2050  *
2051  * Convert a dentry into an ASCII path name. If the entry has been deleted
2052  * the string " (deleted)" is appended. Note that this is ambiguous.
2053  *
2054  * Returns a pointer into the buffer or an error code if the path was
2055  * too long. Note: Callers should use the returned pointer, not the passed
2056  * in buffer, to use the name! The implementation often starts at an offset
2057  * into the buffer, and may leave 0 bytes at the start.
2058  *
2059  * "buflen" should be positive.
2060  */
2061 char *d_path(const struct path *path, char *buf, int buflen)
2062 {
2063 	char *res = buf + buflen;
2064 	struct path root;
2065 	struct path tmp;
2066 	int error;
2067 
2068 	/*
2069 	 * We have various synthetic filesystems that never get mounted.  On
2070 	 * these filesystems dentries are never used for lookup purposes, and
2071 	 * thus don't need to be hashed.  They also don't need a name until a
2072 	 * user wants to identify the object in /proc/pid/fd/.  The little hack
2073 	 * below allows us to generate a name for these objects on demand:
2074 	 */
2075 	if (path->dentry->d_op && path->dentry->d_op->d_dname)
2076 		return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
2077 
2078 	get_fs_root(current->fs, &root);
2079 	spin_lock(&dcache_lock);
2080 	tmp = root;
2081 	error = path_with_deleted(path, &tmp, &res, &buflen);
2082 	if (error)
2083 		res = ERR_PTR(error);
2084 	spin_unlock(&dcache_lock);
2085 	path_put(&root);
2086 	return res;
2087 }
2088 EXPORT_SYMBOL(d_path);
2089 
2090 /**
2091  * d_path_with_unreachable - return the path of a dentry
2092  * @path: path to report
2093  * @buf: buffer to return value in
2094  * @buflen: buffer length
2095  *
2096  * The difference from d_path() is that this prepends "(unreachable)"
2097  * to paths which are unreachable from the current process' root.
2098  */
2099 char *d_path_with_unreachable(const struct path *path, char *buf, int buflen)
2100 {
2101 	char *res = buf + buflen;
2102 	struct path root;
2103 	struct path tmp;
2104 	int error;
2105 
2106 	if (path->dentry->d_op && path->dentry->d_op->d_dname)
2107 		return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
2108 
2109 	get_fs_root(current->fs, &root);
2110 	spin_lock(&dcache_lock);
2111 	tmp = root;
2112 	error = path_with_deleted(path, &tmp, &res, &buflen);
2113 	if (!error && !path_equal(&tmp, &root))
2114 		error = prepend_unreachable(&res, &buflen);
2115 	spin_unlock(&dcache_lock);
2116 	path_put(&root);
2117 	if (error)
2118 		res =  ERR_PTR(error);
2119 
2120 	return res;
2121 }
2122 
2123 /*
2124  * Helper function for dentry_operations.d_dname() members
2125  */
2126 char *dynamic_dname(struct dentry *dentry, char *buffer, int buflen,
2127 			const char *fmt, ...)
2128 {
2129 	va_list args;
2130 	char temp[64];
2131 	int sz;
2132 
2133 	va_start(args, fmt);
2134 	sz = vsnprintf(temp, sizeof(temp), fmt, args) + 1;
2135 	va_end(args);
2136 
2137 	if (sz > sizeof(temp) || sz > buflen)
2138 		return ERR_PTR(-ENAMETOOLONG);
2139 
2140 	buffer += buflen - sz;
2141 	return memcpy(buffer, temp, sz);
2142 }
2143 
2144 /*
2145  * Write full pathname from the root of the filesystem into the buffer.
2146  */
2147 char *__dentry_path(struct dentry *dentry, char *buf, int buflen)
2148 {
2149 	char *end = buf + buflen;
2150 	char *retval;
2151 
2152 	prepend(&end, &buflen, "\0", 1);
2153 	if (buflen < 1)
2154 		goto Elong;
2155 	/* Get '/' right */
2156 	retval = end-1;
2157 	*retval = '/';
2158 
2159 	while (!IS_ROOT(dentry)) {
2160 		struct dentry *parent = dentry->d_parent;
2161 
2162 		prefetch(parent);
2163 		if ((prepend_name(&end, &buflen, &dentry->d_name) != 0) ||
2164 		    (prepend(&end, &buflen, "/", 1) != 0))
2165 			goto Elong;
2166 
2167 		retval = end;
2168 		dentry = parent;
2169 	}
2170 	return retval;
2171 Elong:
2172 	return ERR_PTR(-ENAMETOOLONG);
2173 }
2174 EXPORT_SYMBOL(__dentry_path);
2175 
2176 char *dentry_path(struct dentry *dentry, char *buf, int buflen)
2177 {
2178 	char *p = NULL;
2179 	char *retval;
2180 
2181 	spin_lock(&dcache_lock);
2182 	if (d_unlinked(dentry)) {
2183 		p = buf + buflen;
2184 		if (prepend(&p, &buflen, "//deleted", 10) != 0)
2185 			goto Elong;
2186 		buflen++;
2187 	}
2188 	retval = __dentry_path(dentry, buf, buflen);
2189 	spin_unlock(&dcache_lock);
2190 	if (!IS_ERR(retval) && p)
2191 		*p = '/';	/* restore '/' overriden with '\0' */
2192 	return retval;
2193 Elong:
2194 	spin_unlock(&dcache_lock);
2195 	return ERR_PTR(-ENAMETOOLONG);
2196 }
2197 
2198 /*
2199  * NOTE! The user-level library version returns a
2200  * character pointer. The kernel system call just
2201  * returns the length of the buffer filled (which
2202  * includes the ending '\0' character), or a negative
2203  * error value. So libc would do something like
2204  *
2205  *	char *getcwd(char * buf, size_t size)
2206  *	{
2207  *		int retval;
2208  *
2209  *		retval = sys_getcwd(buf, size);
2210  *		if (retval >= 0)
2211  *			return buf;
2212  *		errno = -retval;
2213  *		return NULL;
2214  *	}
2215  */
2216 SYSCALL_DEFINE2(getcwd, char __user *, buf, unsigned long, size)
2217 {
2218 	int error;
2219 	struct path pwd, root;
2220 	char *page = (char *) __get_free_page(GFP_USER);
2221 
2222 	if (!page)
2223 		return -ENOMEM;
2224 
2225 	get_fs_root_and_pwd(current->fs, &root, &pwd);
2226 
2227 	error = -ENOENT;
2228 	spin_lock(&dcache_lock);
2229 	if (!d_unlinked(pwd.dentry)) {
2230 		unsigned long len;
2231 		struct path tmp = root;
2232 		char *cwd = page + PAGE_SIZE;
2233 		int buflen = PAGE_SIZE;
2234 
2235 		prepend(&cwd, &buflen, "\0", 1);
2236 		error = prepend_path(&pwd, &tmp, &cwd, &buflen);
2237 		spin_unlock(&dcache_lock);
2238 
2239 		if (error)
2240 			goto out;
2241 
2242 		/* Unreachable from current root */
2243 		if (!path_equal(&tmp, &root)) {
2244 			error = prepend_unreachable(&cwd, &buflen);
2245 			if (error)
2246 				goto out;
2247 		}
2248 
2249 		error = -ERANGE;
2250 		len = PAGE_SIZE + page - cwd;
2251 		if (len <= size) {
2252 			error = len;
2253 			if (copy_to_user(buf, cwd, len))
2254 				error = -EFAULT;
2255 		}
2256 	} else
2257 		spin_unlock(&dcache_lock);
2258 
2259 out:
2260 	path_put(&pwd);
2261 	path_put(&root);
2262 	free_page((unsigned long) page);
2263 	return error;
2264 }
2265 
2266 /*
2267  * Test whether new_dentry is a subdirectory of old_dentry.
2268  *
2269  * Trivially implemented using the dcache structure
2270  */
2271 
2272 /**
2273  * is_subdir - is new dentry a subdirectory of old_dentry
2274  * @new_dentry: new dentry
2275  * @old_dentry: old dentry
2276  *
2277  * Returns 1 if new_dentry is a subdirectory of the parent (at any depth).
2278  * Returns 0 otherwise.
2279  * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
2280  */
2281 
2282 int is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
2283 {
2284 	int result;
2285 	unsigned long seq;
2286 
2287 	if (new_dentry == old_dentry)
2288 		return 1;
2289 
2290 	/*
2291 	 * Need rcu_readlock to protect against the d_parent trashing
2292 	 * due to d_move
2293 	 */
2294 	rcu_read_lock();
2295 	do {
2296 		/* for restarting inner loop in case of seq retry */
2297 		seq = read_seqbegin(&rename_lock);
2298 		if (d_ancestor(old_dentry, new_dentry))
2299 			result = 1;
2300 		else
2301 			result = 0;
2302 	} while (read_seqretry(&rename_lock, seq));
2303 	rcu_read_unlock();
2304 
2305 	return result;
2306 }
2307 
2308 int path_is_under(struct path *path1, struct path *path2)
2309 {
2310 	struct vfsmount *mnt = path1->mnt;
2311 	struct dentry *dentry = path1->dentry;
2312 	int res;
2313 
2314 	br_read_lock(vfsmount_lock);
2315 	if (mnt != path2->mnt) {
2316 		for (;;) {
2317 			if (mnt->mnt_parent == mnt) {
2318 				br_read_unlock(vfsmount_lock);
2319 				return 0;
2320 			}
2321 			if (mnt->mnt_parent == path2->mnt)
2322 				break;
2323 			mnt = mnt->mnt_parent;
2324 		}
2325 		dentry = mnt->mnt_mountpoint;
2326 	}
2327 	res = is_subdir(dentry, path2->dentry);
2328 	br_read_unlock(vfsmount_lock);
2329 	return res;
2330 }
2331 EXPORT_SYMBOL(path_is_under);
2332 
2333 void d_genocide(struct dentry *root)
2334 {
2335 	struct dentry *this_parent = root;
2336 	struct list_head *next;
2337 
2338 	spin_lock(&dcache_lock);
2339 repeat:
2340 	next = this_parent->d_subdirs.next;
2341 resume:
2342 	while (next != &this_parent->d_subdirs) {
2343 		struct list_head *tmp = next;
2344 		struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
2345 		next = tmp->next;
2346 		if (d_unhashed(dentry)||!dentry->d_inode)
2347 			continue;
2348 		if (!list_empty(&dentry->d_subdirs)) {
2349 			this_parent = dentry;
2350 			goto repeat;
2351 		}
2352 		atomic_dec(&dentry->d_count);
2353 	}
2354 	if (this_parent != root) {
2355 		next = this_parent->d_u.d_child.next;
2356 		atomic_dec(&this_parent->d_count);
2357 		this_parent = this_parent->d_parent;
2358 		goto resume;
2359 	}
2360 	spin_unlock(&dcache_lock);
2361 }
2362 
2363 /**
2364  * find_inode_number - check for dentry with name
2365  * @dir: directory to check
2366  * @name: Name to find.
2367  *
2368  * Check whether a dentry already exists for the given name,
2369  * and return the inode number if it has an inode. Otherwise
2370  * 0 is returned.
2371  *
2372  * This routine is used to post-process directory listings for
2373  * filesystems using synthetic inode numbers, and is necessary
2374  * to keep getcwd() working.
2375  */
2376 
2377 ino_t find_inode_number(struct dentry *dir, struct qstr *name)
2378 {
2379 	struct dentry * dentry;
2380 	ino_t ino = 0;
2381 
2382 	dentry = d_hash_and_lookup(dir, name);
2383 	if (dentry) {
2384 		if (dentry->d_inode)
2385 			ino = dentry->d_inode->i_ino;
2386 		dput(dentry);
2387 	}
2388 	return ino;
2389 }
2390 EXPORT_SYMBOL(find_inode_number);
2391 
2392 static __initdata unsigned long dhash_entries;
2393 static int __init set_dhash_entries(char *str)
2394 {
2395 	if (!str)
2396 		return 0;
2397 	dhash_entries = simple_strtoul(str, &str, 0);
2398 	return 1;
2399 }
2400 __setup("dhash_entries=", set_dhash_entries);
2401 
2402 static void __init dcache_init_early(void)
2403 {
2404 	int loop;
2405 
2406 	/* If hashes are distributed across NUMA nodes, defer
2407 	 * hash allocation until vmalloc space is available.
2408 	 */
2409 	if (hashdist)
2410 		return;
2411 
2412 	dentry_hashtable =
2413 		alloc_large_system_hash("Dentry cache",
2414 					sizeof(struct hlist_head),
2415 					dhash_entries,
2416 					13,
2417 					HASH_EARLY,
2418 					&d_hash_shift,
2419 					&d_hash_mask,
2420 					0);
2421 
2422 	for (loop = 0; loop < (1 << d_hash_shift); loop++)
2423 		INIT_HLIST_HEAD(&dentry_hashtable[loop]);
2424 }
2425 
2426 static void __init dcache_init(void)
2427 {
2428 	int loop;
2429 
2430 	percpu_counter_init(&nr_dentry, 0);
2431 	percpu_counter_init(&nr_dentry_unused, 0);
2432 
2433 	/*
2434 	 * A constructor could be added for stable state like the lists,
2435 	 * but it is probably not worth it because of the cache nature
2436 	 * of the dcache.
2437 	 */
2438 	dentry_cache = KMEM_CACHE(dentry,
2439 		SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD);
2440 
2441 	register_shrinker(&dcache_shrinker);
2442 
2443 	/* Hash may have been set up in dcache_init_early */
2444 	if (!hashdist)
2445 		return;
2446 
2447 	dentry_hashtable =
2448 		alloc_large_system_hash("Dentry cache",
2449 					sizeof(struct hlist_head),
2450 					dhash_entries,
2451 					13,
2452 					0,
2453 					&d_hash_shift,
2454 					&d_hash_mask,
2455 					0);
2456 
2457 	for (loop = 0; loop < (1 << d_hash_shift); loop++)
2458 		INIT_HLIST_HEAD(&dentry_hashtable[loop]);
2459 }
2460 
2461 /* SLAB cache for __getname() consumers */
2462 struct kmem_cache *names_cachep __read_mostly;
2463 EXPORT_SYMBOL(names_cachep);
2464 
2465 EXPORT_SYMBOL(d_genocide);
2466 
2467 void __init vfs_caches_init_early(void)
2468 {
2469 	dcache_init_early();
2470 	inode_init_early();
2471 }
2472 
2473 void __init vfs_caches_init(unsigned long mempages)
2474 {
2475 	unsigned long reserve;
2476 
2477 	/* Base hash sizes on available memory, with a reserve equal to
2478            150% of current kernel size */
2479 
2480 	reserve = min((mempages - nr_free_pages()) * 3/2, mempages - 1);
2481 	mempages -= reserve;
2482 
2483 	names_cachep = kmem_cache_create("names_cache", PATH_MAX, 0,
2484 			SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
2485 
2486 	dcache_init();
2487 	inode_init();
2488 	files_init(mempages);
2489 	mnt_init();
2490 	bdev_cache_init();
2491 	chrdev_init();
2492 }
2493