1 /* 2 * fs/dcache.c 3 * 4 * Complete reimplementation 5 * (C) 1997 Thomas Schoebel-Theuer, 6 * with heavy changes by Linus Torvalds 7 */ 8 9 /* 10 * Notes on the allocation strategy: 11 * 12 * The dcache is a master of the icache - whenever a dcache entry 13 * exists, the inode will always exist. "iput()" is done either when 14 * the dcache entry is deleted or garbage collected. 15 */ 16 17 #include <linux/syscalls.h> 18 #include <linux/string.h> 19 #include <linux/mm.h> 20 #include <linux/fdtable.h> 21 #include <linux/fs.h> 22 #include <linux/fsnotify.h> 23 #include <linux/slab.h> 24 #include <linux/init.h> 25 #include <linux/hash.h> 26 #include <linux/cache.h> 27 #include <linux/module.h> 28 #include <linux/mount.h> 29 #include <linux/file.h> 30 #include <asm/uaccess.h> 31 #include <linux/security.h> 32 #include <linux/seqlock.h> 33 #include <linux/swap.h> 34 #include <linux/bootmem.h> 35 #include "internal.h" 36 37 int sysctl_vfs_cache_pressure __read_mostly = 100; 38 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure); 39 40 __cacheline_aligned_in_smp DEFINE_SPINLOCK(dcache_lock); 41 __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock); 42 43 EXPORT_SYMBOL(dcache_lock); 44 45 static struct kmem_cache *dentry_cache __read_mostly; 46 47 #define DNAME_INLINE_LEN (sizeof(struct dentry)-offsetof(struct dentry,d_iname)) 48 49 /* 50 * This is the single most critical data structure when it comes 51 * to the dcache: the hashtable for lookups. Somebody should try 52 * to make this good - I've just made it work. 53 * 54 * This hash-function tries to avoid losing too many bits of hash 55 * information, yet avoid using a prime hash-size or similar. 56 */ 57 #define D_HASHBITS d_hash_shift 58 #define D_HASHMASK d_hash_mask 59 60 static unsigned int d_hash_mask __read_mostly; 61 static unsigned int d_hash_shift __read_mostly; 62 static struct hlist_head *dentry_hashtable __read_mostly; 63 64 /* Statistics gathering. */ 65 struct dentry_stat_t dentry_stat = { 66 .age_limit = 45, 67 }; 68 69 static void __d_free(struct dentry *dentry) 70 { 71 WARN_ON(!list_empty(&dentry->d_alias)); 72 if (dname_external(dentry)) 73 kfree(dentry->d_name.name); 74 kmem_cache_free(dentry_cache, dentry); 75 } 76 77 static void d_callback(struct rcu_head *head) 78 { 79 struct dentry * dentry = container_of(head, struct dentry, d_u.d_rcu); 80 __d_free(dentry); 81 } 82 83 /* 84 * no dcache_lock, please. The caller must decrement dentry_stat.nr_dentry 85 * inside dcache_lock. 86 */ 87 static void d_free(struct dentry *dentry) 88 { 89 if (dentry->d_op && dentry->d_op->d_release) 90 dentry->d_op->d_release(dentry); 91 /* if dentry was never inserted into hash, immediate free is OK */ 92 if (hlist_unhashed(&dentry->d_hash)) 93 __d_free(dentry); 94 else 95 call_rcu(&dentry->d_u.d_rcu, d_callback); 96 } 97 98 /* 99 * Release the dentry's inode, using the filesystem 100 * d_iput() operation if defined. 101 */ 102 static void dentry_iput(struct dentry * dentry) 103 __releases(dentry->d_lock) 104 __releases(dcache_lock) 105 { 106 struct inode *inode = dentry->d_inode; 107 if (inode) { 108 dentry->d_inode = NULL; 109 list_del_init(&dentry->d_alias); 110 spin_unlock(&dentry->d_lock); 111 spin_unlock(&dcache_lock); 112 if (!inode->i_nlink) 113 fsnotify_inoderemove(inode); 114 if (dentry->d_op && dentry->d_op->d_iput) 115 dentry->d_op->d_iput(dentry, inode); 116 else 117 iput(inode); 118 } else { 119 spin_unlock(&dentry->d_lock); 120 spin_unlock(&dcache_lock); 121 } 122 } 123 124 /* 125 * dentry_lru_(add|add_tail|del|del_init) must be called with dcache_lock held. 126 */ 127 static void dentry_lru_add(struct dentry *dentry) 128 { 129 list_add(&dentry->d_lru, &dentry->d_sb->s_dentry_lru); 130 dentry->d_sb->s_nr_dentry_unused++; 131 dentry_stat.nr_unused++; 132 } 133 134 static void dentry_lru_add_tail(struct dentry *dentry) 135 { 136 list_add_tail(&dentry->d_lru, &dentry->d_sb->s_dentry_lru); 137 dentry->d_sb->s_nr_dentry_unused++; 138 dentry_stat.nr_unused++; 139 } 140 141 static void dentry_lru_del(struct dentry *dentry) 142 { 143 if (!list_empty(&dentry->d_lru)) { 144 list_del(&dentry->d_lru); 145 dentry->d_sb->s_nr_dentry_unused--; 146 dentry_stat.nr_unused--; 147 } 148 } 149 150 static void dentry_lru_del_init(struct dentry *dentry) 151 { 152 if (likely(!list_empty(&dentry->d_lru))) { 153 list_del_init(&dentry->d_lru); 154 dentry->d_sb->s_nr_dentry_unused--; 155 dentry_stat.nr_unused--; 156 } 157 } 158 159 /** 160 * d_kill - kill dentry and return parent 161 * @dentry: dentry to kill 162 * 163 * The dentry must already be unhashed and removed from the LRU. 164 * 165 * If this is the root of the dentry tree, return NULL. 166 */ 167 static struct dentry *d_kill(struct dentry *dentry) 168 __releases(dentry->d_lock) 169 __releases(dcache_lock) 170 { 171 struct dentry *parent; 172 173 list_del(&dentry->d_u.d_child); 174 dentry_stat.nr_dentry--; /* For d_free, below */ 175 /*drops the locks, at that point nobody can reach this dentry */ 176 dentry_iput(dentry); 177 if (IS_ROOT(dentry)) 178 parent = NULL; 179 else 180 parent = dentry->d_parent; 181 d_free(dentry); 182 return parent; 183 } 184 185 /* 186 * This is dput 187 * 188 * This is complicated by the fact that we do not want to put 189 * dentries that are no longer on any hash chain on the unused 190 * list: we'd much rather just get rid of them immediately. 191 * 192 * However, that implies that we have to traverse the dentry 193 * tree upwards to the parents which might _also_ now be 194 * scheduled for deletion (it may have been only waiting for 195 * its last child to go away). 196 * 197 * This tail recursion is done by hand as we don't want to depend 198 * on the compiler to always get this right (gcc generally doesn't). 199 * Real recursion would eat up our stack space. 200 */ 201 202 /* 203 * dput - release a dentry 204 * @dentry: dentry to release 205 * 206 * Release a dentry. This will drop the usage count and if appropriate 207 * call the dentry unlink method as well as removing it from the queues and 208 * releasing its resources. If the parent dentries were scheduled for release 209 * they too may now get deleted. 210 * 211 * no dcache lock, please. 212 */ 213 214 void dput(struct dentry *dentry) 215 { 216 if (!dentry) 217 return; 218 219 repeat: 220 if (atomic_read(&dentry->d_count) == 1) 221 might_sleep(); 222 if (!atomic_dec_and_lock(&dentry->d_count, &dcache_lock)) 223 return; 224 225 spin_lock(&dentry->d_lock); 226 if (atomic_read(&dentry->d_count)) { 227 spin_unlock(&dentry->d_lock); 228 spin_unlock(&dcache_lock); 229 return; 230 } 231 232 /* 233 * AV: ->d_delete() is _NOT_ allowed to block now. 234 */ 235 if (dentry->d_op && dentry->d_op->d_delete) { 236 if (dentry->d_op->d_delete(dentry)) 237 goto unhash_it; 238 } 239 /* Unreachable? Get rid of it */ 240 if (d_unhashed(dentry)) 241 goto kill_it; 242 if (list_empty(&dentry->d_lru)) { 243 dentry->d_flags |= DCACHE_REFERENCED; 244 dentry_lru_add(dentry); 245 } 246 spin_unlock(&dentry->d_lock); 247 spin_unlock(&dcache_lock); 248 return; 249 250 unhash_it: 251 __d_drop(dentry); 252 kill_it: 253 /* if dentry was on the d_lru list delete it from there */ 254 dentry_lru_del(dentry); 255 dentry = d_kill(dentry); 256 if (dentry) 257 goto repeat; 258 } 259 260 /** 261 * d_invalidate - invalidate a dentry 262 * @dentry: dentry to invalidate 263 * 264 * Try to invalidate the dentry if it turns out to be 265 * possible. If there are other dentries that can be 266 * reached through this one we can't delete it and we 267 * return -EBUSY. On success we return 0. 268 * 269 * no dcache lock. 270 */ 271 272 int d_invalidate(struct dentry * dentry) 273 { 274 /* 275 * If it's already been dropped, return OK. 276 */ 277 spin_lock(&dcache_lock); 278 if (d_unhashed(dentry)) { 279 spin_unlock(&dcache_lock); 280 return 0; 281 } 282 /* 283 * Check whether to do a partial shrink_dcache 284 * to get rid of unused child entries. 285 */ 286 if (!list_empty(&dentry->d_subdirs)) { 287 spin_unlock(&dcache_lock); 288 shrink_dcache_parent(dentry); 289 spin_lock(&dcache_lock); 290 } 291 292 /* 293 * Somebody else still using it? 294 * 295 * If it's a directory, we can't drop it 296 * for fear of somebody re-populating it 297 * with children (even though dropping it 298 * would make it unreachable from the root, 299 * we might still populate it if it was a 300 * working directory or similar). 301 */ 302 spin_lock(&dentry->d_lock); 303 if (atomic_read(&dentry->d_count) > 1) { 304 if (dentry->d_inode && S_ISDIR(dentry->d_inode->i_mode)) { 305 spin_unlock(&dentry->d_lock); 306 spin_unlock(&dcache_lock); 307 return -EBUSY; 308 } 309 } 310 311 __d_drop(dentry); 312 spin_unlock(&dentry->d_lock); 313 spin_unlock(&dcache_lock); 314 return 0; 315 } 316 317 /* This should be called _only_ with dcache_lock held */ 318 319 static inline struct dentry * __dget_locked(struct dentry *dentry) 320 { 321 atomic_inc(&dentry->d_count); 322 dentry_lru_del_init(dentry); 323 return dentry; 324 } 325 326 struct dentry * dget_locked(struct dentry *dentry) 327 { 328 return __dget_locked(dentry); 329 } 330 331 /** 332 * d_find_alias - grab a hashed alias of inode 333 * @inode: inode in question 334 * @want_discon: flag, used by d_splice_alias, to request 335 * that only a DISCONNECTED alias be returned. 336 * 337 * If inode has a hashed alias, or is a directory and has any alias, 338 * acquire the reference to alias and return it. Otherwise return NULL. 339 * Notice that if inode is a directory there can be only one alias and 340 * it can be unhashed only if it has no children, or if it is the root 341 * of a filesystem. 342 * 343 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer 344 * any other hashed alias over that one unless @want_discon is set, 345 * in which case only return an IS_ROOT, DCACHE_DISCONNECTED alias. 346 */ 347 348 static struct dentry * __d_find_alias(struct inode *inode, int want_discon) 349 { 350 struct list_head *head, *next, *tmp; 351 struct dentry *alias, *discon_alias=NULL; 352 353 head = &inode->i_dentry; 354 next = inode->i_dentry.next; 355 while (next != head) { 356 tmp = next; 357 next = tmp->next; 358 prefetch(next); 359 alias = list_entry(tmp, struct dentry, d_alias); 360 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) { 361 if (IS_ROOT(alias) && 362 (alias->d_flags & DCACHE_DISCONNECTED)) 363 discon_alias = alias; 364 else if (!want_discon) { 365 __dget_locked(alias); 366 return alias; 367 } 368 } 369 } 370 if (discon_alias) 371 __dget_locked(discon_alias); 372 return discon_alias; 373 } 374 375 struct dentry * d_find_alias(struct inode *inode) 376 { 377 struct dentry *de = NULL; 378 379 if (!list_empty(&inode->i_dentry)) { 380 spin_lock(&dcache_lock); 381 de = __d_find_alias(inode, 0); 382 spin_unlock(&dcache_lock); 383 } 384 return de; 385 } 386 387 /* 388 * Try to kill dentries associated with this inode. 389 * WARNING: you must own a reference to inode. 390 */ 391 void d_prune_aliases(struct inode *inode) 392 { 393 struct dentry *dentry; 394 restart: 395 spin_lock(&dcache_lock); 396 list_for_each_entry(dentry, &inode->i_dentry, d_alias) { 397 spin_lock(&dentry->d_lock); 398 if (!atomic_read(&dentry->d_count)) { 399 __dget_locked(dentry); 400 __d_drop(dentry); 401 spin_unlock(&dentry->d_lock); 402 spin_unlock(&dcache_lock); 403 dput(dentry); 404 goto restart; 405 } 406 spin_unlock(&dentry->d_lock); 407 } 408 spin_unlock(&dcache_lock); 409 } 410 411 /* 412 * Throw away a dentry - free the inode, dput the parent. This requires that 413 * the LRU list has already been removed. 414 * 415 * Try to prune ancestors as well. This is necessary to prevent 416 * quadratic behavior of shrink_dcache_parent(), but is also expected 417 * to be beneficial in reducing dentry cache fragmentation. 418 */ 419 static void prune_one_dentry(struct dentry * dentry) 420 __releases(dentry->d_lock) 421 __releases(dcache_lock) 422 __acquires(dcache_lock) 423 { 424 __d_drop(dentry); 425 dentry = d_kill(dentry); 426 427 /* 428 * Prune ancestors. Locking is simpler than in dput(), 429 * because dcache_lock needs to be taken anyway. 430 */ 431 spin_lock(&dcache_lock); 432 while (dentry) { 433 if (!atomic_dec_and_lock(&dentry->d_count, &dentry->d_lock)) 434 return; 435 436 if (dentry->d_op && dentry->d_op->d_delete) 437 dentry->d_op->d_delete(dentry); 438 dentry_lru_del_init(dentry); 439 __d_drop(dentry); 440 dentry = d_kill(dentry); 441 spin_lock(&dcache_lock); 442 } 443 } 444 445 /* 446 * Shrink the dentry LRU on a given superblock. 447 * @sb : superblock to shrink dentry LRU. 448 * @count: If count is NULL, we prune all dentries on superblock. 449 * @flags: If flags is non-zero, we need to do special processing based on 450 * which flags are set. This means we don't need to maintain multiple 451 * similar copies of this loop. 452 */ 453 static void __shrink_dcache_sb(struct super_block *sb, int *count, int flags) 454 { 455 LIST_HEAD(referenced); 456 LIST_HEAD(tmp); 457 struct dentry *dentry; 458 int cnt = 0; 459 460 BUG_ON(!sb); 461 BUG_ON((flags & DCACHE_REFERENCED) && count == NULL); 462 spin_lock(&dcache_lock); 463 if (count != NULL) 464 /* called from prune_dcache() and shrink_dcache_parent() */ 465 cnt = *count; 466 restart: 467 if (count == NULL) 468 list_splice_init(&sb->s_dentry_lru, &tmp); 469 else { 470 while (!list_empty(&sb->s_dentry_lru)) { 471 dentry = list_entry(sb->s_dentry_lru.prev, 472 struct dentry, d_lru); 473 BUG_ON(dentry->d_sb != sb); 474 475 spin_lock(&dentry->d_lock); 476 /* 477 * If we are honouring the DCACHE_REFERENCED flag and 478 * the dentry has this flag set, don't free it. Clear 479 * the flag and put it back on the LRU. 480 */ 481 if ((flags & DCACHE_REFERENCED) 482 && (dentry->d_flags & DCACHE_REFERENCED)) { 483 dentry->d_flags &= ~DCACHE_REFERENCED; 484 list_move_tail(&dentry->d_lru, &referenced); 485 spin_unlock(&dentry->d_lock); 486 } else { 487 list_move_tail(&dentry->d_lru, &tmp); 488 spin_unlock(&dentry->d_lock); 489 cnt--; 490 if (!cnt) 491 break; 492 } 493 cond_resched_lock(&dcache_lock); 494 } 495 } 496 while (!list_empty(&tmp)) { 497 dentry = list_entry(tmp.prev, struct dentry, d_lru); 498 dentry_lru_del_init(dentry); 499 spin_lock(&dentry->d_lock); 500 /* 501 * We found an inuse dentry which was not removed from 502 * the LRU because of laziness during lookup. Do not free 503 * it - just keep it off the LRU list. 504 */ 505 if (atomic_read(&dentry->d_count)) { 506 spin_unlock(&dentry->d_lock); 507 continue; 508 } 509 prune_one_dentry(dentry); 510 /* dentry->d_lock was dropped in prune_one_dentry() */ 511 cond_resched_lock(&dcache_lock); 512 } 513 if (count == NULL && !list_empty(&sb->s_dentry_lru)) 514 goto restart; 515 if (count != NULL) 516 *count = cnt; 517 if (!list_empty(&referenced)) 518 list_splice(&referenced, &sb->s_dentry_lru); 519 spin_unlock(&dcache_lock); 520 } 521 522 /** 523 * prune_dcache - shrink the dcache 524 * @count: number of entries to try to free 525 * 526 * Shrink the dcache. This is done when we need more memory, or simply when we 527 * need to unmount something (at which point we need to unuse all dentries). 528 * 529 * This function may fail to free any resources if all the dentries are in use. 530 */ 531 static void prune_dcache(int count) 532 { 533 struct super_block *sb; 534 int w_count; 535 int unused = dentry_stat.nr_unused; 536 int prune_ratio; 537 int pruned; 538 539 if (unused == 0 || count == 0) 540 return; 541 spin_lock(&dcache_lock); 542 restart: 543 if (count >= unused) 544 prune_ratio = 1; 545 else 546 prune_ratio = unused / count; 547 spin_lock(&sb_lock); 548 list_for_each_entry(sb, &super_blocks, s_list) { 549 if (sb->s_nr_dentry_unused == 0) 550 continue; 551 sb->s_count++; 552 /* Now, we reclaim unused dentrins with fairness. 553 * We reclaim them same percentage from each superblock. 554 * We calculate number of dentries to scan on this sb 555 * as follows, but the implementation is arranged to avoid 556 * overflows: 557 * number of dentries to scan on this sb = 558 * count * (number of dentries on this sb / 559 * number of dentries in the machine) 560 */ 561 spin_unlock(&sb_lock); 562 if (prune_ratio != 1) 563 w_count = (sb->s_nr_dentry_unused / prune_ratio) + 1; 564 else 565 w_count = sb->s_nr_dentry_unused; 566 pruned = w_count; 567 /* 568 * We need to be sure this filesystem isn't being unmounted, 569 * otherwise we could race with generic_shutdown_super(), and 570 * end up holding a reference to an inode while the filesystem 571 * is unmounted. So we try to get s_umount, and make sure 572 * s_root isn't NULL. 573 */ 574 if (down_read_trylock(&sb->s_umount)) { 575 if ((sb->s_root != NULL) && 576 (!list_empty(&sb->s_dentry_lru))) { 577 spin_unlock(&dcache_lock); 578 __shrink_dcache_sb(sb, &w_count, 579 DCACHE_REFERENCED); 580 pruned -= w_count; 581 spin_lock(&dcache_lock); 582 } 583 up_read(&sb->s_umount); 584 } 585 spin_lock(&sb_lock); 586 count -= pruned; 587 /* 588 * restart only when sb is no longer on the list and 589 * we have more work to do. 590 */ 591 if (__put_super_and_need_restart(sb) && count > 0) { 592 spin_unlock(&sb_lock); 593 goto restart; 594 } 595 } 596 spin_unlock(&sb_lock); 597 spin_unlock(&dcache_lock); 598 } 599 600 /** 601 * shrink_dcache_sb - shrink dcache for a superblock 602 * @sb: superblock 603 * 604 * Shrink the dcache for the specified super block. This 605 * is used to free the dcache before unmounting a file 606 * system 607 */ 608 void shrink_dcache_sb(struct super_block * sb) 609 { 610 __shrink_dcache_sb(sb, NULL, 0); 611 } 612 613 /* 614 * destroy a single subtree of dentries for unmount 615 * - see the comments on shrink_dcache_for_umount() for a description of the 616 * locking 617 */ 618 static void shrink_dcache_for_umount_subtree(struct dentry *dentry) 619 { 620 struct dentry *parent; 621 unsigned detached = 0; 622 623 BUG_ON(!IS_ROOT(dentry)); 624 625 /* detach this root from the system */ 626 spin_lock(&dcache_lock); 627 dentry_lru_del_init(dentry); 628 __d_drop(dentry); 629 spin_unlock(&dcache_lock); 630 631 for (;;) { 632 /* descend to the first leaf in the current subtree */ 633 while (!list_empty(&dentry->d_subdirs)) { 634 struct dentry *loop; 635 636 /* this is a branch with children - detach all of them 637 * from the system in one go */ 638 spin_lock(&dcache_lock); 639 list_for_each_entry(loop, &dentry->d_subdirs, 640 d_u.d_child) { 641 dentry_lru_del_init(loop); 642 __d_drop(loop); 643 cond_resched_lock(&dcache_lock); 644 } 645 spin_unlock(&dcache_lock); 646 647 /* move to the first child */ 648 dentry = list_entry(dentry->d_subdirs.next, 649 struct dentry, d_u.d_child); 650 } 651 652 /* consume the dentries from this leaf up through its parents 653 * until we find one with children or run out altogether */ 654 do { 655 struct inode *inode; 656 657 if (atomic_read(&dentry->d_count) != 0) { 658 printk(KERN_ERR 659 "BUG: Dentry %p{i=%lx,n=%s}" 660 " still in use (%d)" 661 " [unmount of %s %s]\n", 662 dentry, 663 dentry->d_inode ? 664 dentry->d_inode->i_ino : 0UL, 665 dentry->d_name.name, 666 atomic_read(&dentry->d_count), 667 dentry->d_sb->s_type->name, 668 dentry->d_sb->s_id); 669 BUG(); 670 } 671 672 if (IS_ROOT(dentry)) 673 parent = NULL; 674 else { 675 parent = dentry->d_parent; 676 atomic_dec(&parent->d_count); 677 } 678 679 list_del(&dentry->d_u.d_child); 680 detached++; 681 682 inode = dentry->d_inode; 683 if (inode) { 684 dentry->d_inode = NULL; 685 list_del_init(&dentry->d_alias); 686 if (dentry->d_op && dentry->d_op->d_iput) 687 dentry->d_op->d_iput(dentry, inode); 688 else 689 iput(inode); 690 } 691 692 d_free(dentry); 693 694 /* finished when we fall off the top of the tree, 695 * otherwise we ascend to the parent and move to the 696 * next sibling if there is one */ 697 if (!parent) 698 goto out; 699 700 dentry = parent; 701 702 } while (list_empty(&dentry->d_subdirs)); 703 704 dentry = list_entry(dentry->d_subdirs.next, 705 struct dentry, d_u.d_child); 706 } 707 out: 708 /* several dentries were freed, need to correct nr_dentry */ 709 spin_lock(&dcache_lock); 710 dentry_stat.nr_dentry -= detached; 711 spin_unlock(&dcache_lock); 712 } 713 714 /* 715 * destroy the dentries attached to a superblock on unmounting 716 * - we don't need to use dentry->d_lock, and only need dcache_lock when 717 * removing the dentry from the system lists and hashes because: 718 * - the superblock is detached from all mountings and open files, so the 719 * dentry trees will not be rearranged by the VFS 720 * - s_umount is write-locked, so the memory pressure shrinker will ignore 721 * any dentries belonging to this superblock that it comes across 722 * - the filesystem itself is no longer permitted to rearrange the dentries 723 * in this superblock 724 */ 725 void shrink_dcache_for_umount(struct super_block *sb) 726 { 727 struct dentry *dentry; 728 729 if (down_read_trylock(&sb->s_umount)) 730 BUG(); 731 732 dentry = sb->s_root; 733 sb->s_root = NULL; 734 atomic_dec(&dentry->d_count); 735 shrink_dcache_for_umount_subtree(dentry); 736 737 while (!hlist_empty(&sb->s_anon)) { 738 dentry = hlist_entry(sb->s_anon.first, struct dentry, d_hash); 739 shrink_dcache_for_umount_subtree(dentry); 740 } 741 } 742 743 /* 744 * Search for at least 1 mount point in the dentry's subdirs. 745 * We descend to the next level whenever the d_subdirs 746 * list is non-empty and continue searching. 747 */ 748 749 /** 750 * have_submounts - check for mounts over a dentry 751 * @parent: dentry to check. 752 * 753 * Return true if the parent or its subdirectories contain 754 * a mount point 755 */ 756 757 int have_submounts(struct dentry *parent) 758 { 759 struct dentry *this_parent = parent; 760 struct list_head *next; 761 762 spin_lock(&dcache_lock); 763 if (d_mountpoint(parent)) 764 goto positive; 765 repeat: 766 next = this_parent->d_subdirs.next; 767 resume: 768 while (next != &this_parent->d_subdirs) { 769 struct list_head *tmp = next; 770 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child); 771 next = tmp->next; 772 /* Have we found a mount point ? */ 773 if (d_mountpoint(dentry)) 774 goto positive; 775 if (!list_empty(&dentry->d_subdirs)) { 776 this_parent = dentry; 777 goto repeat; 778 } 779 } 780 /* 781 * All done at this level ... ascend and resume the search. 782 */ 783 if (this_parent != parent) { 784 next = this_parent->d_u.d_child.next; 785 this_parent = this_parent->d_parent; 786 goto resume; 787 } 788 spin_unlock(&dcache_lock); 789 return 0; /* No mount points found in tree */ 790 positive: 791 spin_unlock(&dcache_lock); 792 return 1; 793 } 794 795 /* 796 * Search the dentry child list for the specified parent, 797 * and move any unused dentries to the end of the unused 798 * list for prune_dcache(). We descend to the next level 799 * whenever the d_subdirs list is non-empty and continue 800 * searching. 801 * 802 * It returns zero iff there are no unused children, 803 * otherwise it returns the number of children moved to 804 * the end of the unused list. This may not be the total 805 * number of unused children, because select_parent can 806 * drop the lock and return early due to latency 807 * constraints. 808 */ 809 static int select_parent(struct dentry * parent) 810 { 811 struct dentry *this_parent = parent; 812 struct list_head *next; 813 int found = 0; 814 815 spin_lock(&dcache_lock); 816 repeat: 817 next = this_parent->d_subdirs.next; 818 resume: 819 while (next != &this_parent->d_subdirs) { 820 struct list_head *tmp = next; 821 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child); 822 next = tmp->next; 823 824 dentry_lru_del_init(dentry); 825 /* 826 * move only zero ref count dentries to the end 827 * of the unused list for prune_dcache 828 */ 829 if (!atomic_read(&dentry->d_count)) { 830 dentry_lru_add_tail(dentry); 831 found++; 832 } 833 834 /* 835 * We can return to the caller if we have found some (this 836 * ensures forward progress). We'll be coming back to find 837 * the rest. 838 */ 839 if (found && need_resched()) 840 goto out; 841 842 /* 843 * Descend a level if the d_subdirs list is non-empty. 844 */ 845 if (!list_empty(&dentry->d_subdirs)) { 846 this_parent = dentry; 847 goto repeat; 848 } 849 } 850 /* 851 * All done at this level ... ascend and resume the search. 852 */ 853 if (this_parent != parent) { 854 next = this_parent->d_u.d_child.next; 855 this_parent = this_parent->d_parent; 856 goto resume; 857 } 858 out: 859 spin_unlock(&dcache_lock); 860 return found; 861 } 862 863 /** 864 * shrink_dcache_parent - prune dcache 865 * @parent: parent of entries to prune 866 * 867 * Prune the dcache to remove unused children of the parent dentry. 868 */ 869 870 void shrink_dcache_parent(struct dentry * parent) 871 { 872 struct super_block *sb = parent->d_sb; 873 int found; 874 875 while ((found = select_parent(parent)) != 0) 876 __shrink_dcache_sb(sb, &found, 0); 877 } 878 879 /* 880 * Scan `nr' dentries and return the number which remain. 881 * 882 * We need to avoid reentering the filesystem if the caller is performing a 883 * GFP_NOFS allocation attempt. One example deadlock is: 884 * 885 * ext2_new_block->getblk->GFP->shrink_dcache_memory->prune_dcache-> 886 * prune_one_dentry->dput->dentry_iput->iput->inode->i_sb->s_op->put_inode-> 887 * ext2_discard_prealloc->ext2_free_blocks->lock_super->DEADLOCK. 888 * 889 * In this case we return -1 to tell the caller that we baled. 890 */ 891 static int shrink_dcache_memory(int nr, gfp_t gfp_mask) 892 { 893 if (nr) { 894 if (!(gfp_mask & __GFP_FS)) 895 return -1; 896 prune_dcache(nr); 897 } 898 return (dentry_stat.nr_unused / 100) * sysctl_vfs_cache_pressure; 899 } 900 901 static struct shrinker dcache_shrinker = { 902 .shrink = shrink_dcache_memory, 903 .seeks = DEFAULT_SEEKS, 904 }; 905 906 /** 907 * d_alloc - allocate a dcache entry 908 * @parent: parent of entry to allocate 909 * @name: qstr of the name 910 * 911 * Allocates a dentry. It returns %NULL if there is insufficient memory 912 * available. On a success the dentry is returned. The name passed in is 913 * copied and the copy passed in may be reused after this call. 914 */ 915 916 struct dentry *d_alloc(struct dentry * parent, const struct qstr *name) 917 { 918 struct dentry *dentry; 919 char *dname; 920 921 dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL); 922 if (!dentry) 923 return NULL; 924 925 if (name->len > DNAME_INLINE_LEN-1) { 926 dname = kmalloc(name->len + 1, GFP_KERNEL); 927 if (!dname) { 928 kmem_cache_free(dentry_cache, dentry); 929 return NULL; 930 } 931 } else { 932 dname = dentry->d_iname; 933 } 934 dentry->d_name.name = dname; 935 936 dentry->d_name.len = name->len; 937 dentry->d_name.hash = name->hash; 938 memcpy(dname, name->name, name->len); 939 dname[name->len] = 0; 940 941 atomic_set(&dentry->d_count, 1); 942 dentry->d_flags = DCACHE_UNHASHED; 943 spin_lock_init(&dentry->d_lock); 944 dentry->d_inode = NULL; 945 dentry->d_parent = NULL; 946 dentry->d_sb = NULL; 947 dentry->d_op = NULL; 948 dentry->d_fsdata = NULL; 949 dentry->d_mounted = 0; 950 INIT_HLIST_NODE(&dentry->d_hash); 951 INIT_LIST_HEAD(&dentry->d_lru); 952 INIT_LIST_HEAD(&dentry->d_subdirs); 953 INIT_LIST_HEAD(&dentry->d_alias); 954 955 if (parent) { 956 dentry->d_parent = dget(parent); 957 dentry->d_sb = parent->d_sb; 958 } else { 959 INIT_LIST_HEAD(&dentry->d_u.d_child); 960 } 961 962 spin_lock(&dcache_lock); 963 if (parent) 964 list_add(&dentry->d_u.d_child, &parent->d_subdirs); 965 dentry_stat.nr_dentry++; 966 spin_unlock(&dcache_lock); 967 968 return dentry; 969 } 970 971 struct dentry *d_alloc_name(struct dentry *parent, const char *name) 972 { 973 struct qstr q; 974 975 q.name = name; 976 q.len = strlen(name); 977 q.hash = full_name_hash(q.name, q.len); 978 return d_alloc(parent, &q); 979 } 980 981 /* the caller must hold dcache_lock */ 982 static void __d_instantiate(struct dentry *dentry, struct inode *inode) 983 { 984 if (inode) 985 list_add(&dentry->d_alias, &inode->i_dentry); 986 dentry->d_inode = inode; 987 fsnotify_d_instantiate(dentry, inode); 988 } 989 990 /** 991 * d_instantiate - fill in inode information for a dentry 992 * @entry: dentry to complete 993 * @inode: inode to attach to this dentry 994 * 995 * Fill in inode information in the entry. 996 * 997 * This turns negative dentries into productive full members 998 * of society. 999 * 1000 * NOTE! This assumes that the inode count has been incremented 1001 * (or otherwise set) by the caller to indicate that it is now 1002 * in use by the dcache. 1003 */ 1004 1005 void d_instantiate(struct dentry *entry, struct inode * inode) 1006 { 1007 BUG_ON(!list_empty(&entry->d_alias)); 1008 spin_lock(&dcache_lock); 1009 __d_instantiate(entry, inode); 1010 spin_unlock(&dcache_lock); 1011 security_d_instantiate(entry, inode); 1012 } 1013 1014 /** 1015 * d_instantiate_unique - instantiate a non-aliased dentry 1016 * @entry: dentry to instantiate 1017 * @inode: inode to attach to this dentry 1018 * 1019 * Fill in inode information in the entry. On success, it returns NULL. 1020 * If an unhashed alias of "entry" already exists, then we return the 1021 * aliased dentry instead and drop one reference to inode. 1022 * 1023 * Note that in order to avoid conflicts with rename() etc, the caller 1024 * had better be holding the parent directory semaphore. 1025 * 1026 * This also assumes that the inode count has been incremented 1027 * (or otherwise set) by the caller to indicate that it is now 1028 * in use by the dcache. 1029 */ 1030 static struct dentry *__d_instantiate_unique(struct dentry *entry, 1031 struct inode *inode) 1032 { 1033 struct dentry *alias; 1034 int len = entry->d_name.len; 1035 const char *name = entry->d_name.name; 1036 unsigned int hash = entry->d_name.hash; 1037 1038 if (!inode) { 1039 __d_instantiate(entry, NULL); 1040 return NULL; 1041 } 1042 1043 list_for_each_entry(alias, &inode->i_dentry, d_alias) { 1044 struct qstr *qstr = &alias->d_name; 1045 1046 if (qstr->hash != hash) 1047 continue; 1048 if (alias->d_parent != entry->d_parent) 1049 continue; 1050 if (qstr->len != len) 1051 continue; 1052 if (memcmp(qstr->name, name, len)) 1053 continue; 1054 dget_locked(alias); 1055 return alias; 1056 } 1057 1058 __d_instantiate(entry, inode); 1059 return NULL; 1060 } 1061 1062 struct dentry *d_instantiate_unique(struct dentry *entry, struct inode *inode) 1063 { 1064 struct dentry *result; 1065 1066 BUG_ON(!list_empty(&entry->d_alias)); 1067 1068 spin_lock(&dcache_lock); 1069 result = __d_instantiate_unique(entry, inode); 1070 spin_unlock(&dcache_lock); 1071 1072 if (!result) { 1073 security_d_instantiate(entry, inode); 1074 return NULL; 1075 } 1076 1077 BUG_ON(!d_unhashed(result)); 1078 iput(inode); 1079 return result; 1080 } 1081 1082 EXPORT_SYMBOL(d_instantiate_unique); 1083 1084 /** 1085 * d_alloc_root - allocate root dentry 1086 * @root_inode: inode to allocate the root for 1087 * 1088 * Allocate a root ("/") dentry for the inode given. The inode is 1089 * instantiated and returned. %NULL is returned if there is insufficient 1090 * memory or the inode passed is %NULL. 1091 */ 1092 1093 struct dentry * d_alloc_root(struct inode * root_inode) 1094 { 1095 struct dentry *res = NULL; 1096 1097 if (root_inode) { 1098 static const struct qstr name = { .name = "/", .len = 1 }; 1099 1100 res = d_alloc(NULL, &name); 1101 if (res) { 1102 res->d_sb = root_inode->i_sb; 1103 res->d_parent = res; 1104 d_instantiate(res, root_inode); 1105 } 1106 } 1107 return res; 1108 } 1109 1110 static inline struct hlist_head *d_hash(struct dentry *parent, 1111 unsigned long hash) 1112 { 1113 hash += ((unsigned long) parent ^ GOLDEN_RATIO_PRIME) / L1_CACHE_BYTES; 1114 hash = hash ^ ((hash ^ GOLDEN_RATIO_PRIME) >> D_HASHBITS); 1115 return dentry_hashtable + (hash & D_HASHMASK); 1116 } 1117 1118 /** 1119 * d_obtain_alias - find or allocate a dentry for a given inode 1120 * @inode: inode to allocate the dentry for 1121 * 1122 * Obtain a dentry for an inode resulting from NFS filehandle conversion or 1123 * similar open by handle operations. The returned dentry may be anonymous, 1124 * or may have a full name (if the inode was already in the cache). 1125 * 1126 * When called on a directory inode, we must ensure that the inode only ever 1127 * has one dentry. If a dentry is found, that is returned instead of 1128 * allocating a new one. 1129 * 1130 * On successful return, the reference to the inode has been transferred 1131 * to the dentry. In case of an error the reference on the inode is released. 1132 * To make it easier to use in export operations a %NULL or IS_ERR inode may 1133 * be passed in and will be the error will be propagate to the return value, 1134 * with a %NULL @inode replaced by ERR_PTR(-ESTALE). 1135 */ 1136 struct dentry *d_obtain_alias(struct inode *inode) 1137 { 1138 static const struct qstr anonstring = { .name = "" }; 1139 struct dentry *tmp; 1140 struct dentry *res; 1141 1142 if (!inode) 1143 return ERR_PTR(-ESTALE); 1144 if (IS_ERR(inode)) 1145 return ERR_CAST(inode); 1146 1147 res = d_find_alias(inode); 1148 if (res) 1149 goto out_iput; 1150 1151 tmp = d_alloc(NULL, &anonstring); 1152 if (!tmp) { 1153 res = ERR_PTR(-ENOMEM); 1154 goto out_iput; 1155 } 1156 tmp->d_parent = tmp; /* make sure dput doesn't croak */ 1157 1158 spin_lock(&dcache_lock); 1159 res = __d_find_alias(inode, 0); 1160 if (res) { 1161 spin_unlock(&dcache_lock); 1162 dput(tmp); 1163 goto out_iput; 1164 } 1165 1166 /* attach a disconnected dentry */ 1167 spin_lock(&tmp->d_lock); 1168 tmp->d_sb = inode->i_sb; 1169 tmp->d_inode = inode; 1170 tmp->d_flags |= DCACHE_DISCONNECTED; 1171 tmp->d_flags &= ~DCACHE_UNHASHED; 1172 list_add(&tmp->d_alias, &inode->i_dentry); 1173 hlist_add_head(&tmp->d_hash, &inode->i_sb->s_anon); 1174 spin_unlock(&tmp->d_lock); 1175 1176 spin_unlock(&dcache_lock); 1177 return tmp; 1178 1179 out_iput: 1180 iput(inode); 1181 return res; 1182 } 1183 EXPORT_SYMBOL(d_obtain_alias); 1184 1185 /** 1186 * d_splice_alias - splice a disconnected dentry into the tree if one exists 1187 * @inode: the inode which may have a disconnected dentry 1188 * @dentry: a negative dentry which we want to point to the inode. 1189 * 1190 * If inode is a directory and has a 'disconnected' dentry (i.e. IS_ROOT and 1191 * DCACHE_DISCONNECTED), then d_move that in place of the given dentry 1192 * and return it, else simply d_add the inode to the dentry and return NULL. 1193 * 1194 * This is needed in the lookup routine of any filesystem that is exportable 1195 * (via knfsd) so that we can build dcache paths to directories effectively. 1196 * 1197 * If a dentry was found and moved, then it is returned. Otherwise NULL 1198 * is returned. This matches the expected return value of ->lookup. 1199 * 1200 */ 1201 struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry) 1202 { 1203 struct dentry *new = NULL; 1204 1205 if (inode && S_ISDIR(inode->i_mode)) { 1206 spin_lock(&dcache_lock); 1207 new = __d_find_alias(inode, 1); 1208 if (new) { 1209 BUG_ON(!(new->d_flags & DCACHE_DISCONNECTED)); 1210 spin_unlock(&dcache_lock); 1211 security_d_instantiate(new, inode); 1212 d_rehash(dentry); 1213 d_move(new, dentry); 1214 iput(inode); 1215 } else { 1216 /* already taking dcache_lock, so d_add() by hand */ 1217 __d_instantiate(dentry, inode); 1218 spin_unlock(&dcache_lock); 1219 security_d_instantiate(dentry, inode); 1220 d_rehash(dentry); 1221 } 1222 } else 1223 d_add(dentry, inode); 1224 return new; 1225 } 1226 1227 /** 1228 * d_add_ci - lookup or allocate new dentry with case-exact name 1229 * @inode: the inode case-insensitive lookup has found 1230 * @dentry: the negative dentry that was passed to the parent's lookup func 1231 * @name: the case-exact name to be associated with the returned dentry 1232 * 1233 * This is to avoid filling the dcache with case-insensitive names to the 1234 * same inode, only the actual correct case is stored in the dcache for 1235 * case-insensitive filesystems. 1236 * 1237 * For a case-insensitive lookup match and if the the case-exact dentry 1238 * already exists in in the dcache, use it and return it. 1239 * 1240 * If no entry exists with the exact case name, allocate new dentry with 1241 * the exact case, and return the spliced entry. 1242 */ 1243 struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode, 1244 struct qstr *name) 1245 { 1246 int error; 1247 struct dentry *found; 1248 struct dentry *new; 1249 1250 /* 1251 * First check if a dentry matching the name already exists, 1252 * if not go ahead and create it now. 1253 */ 1254 found = d_hash_and_lookup(dentry->d_parent, name); 1255 if (!found) { 1256 new = d_alloc(dentry->d_parent, name); 1257 if (!new) { 1258 error = -ENOMEM; 1259 goto err_out; 1260 } 1261 1262 found = d_splice_alias(inode, new); 1263 if (found) { 1264 dput(new); 1265 return found; 1266 } 1267 return new; 1268 } 1269 1270 /* 1271 * If a matching dentry exists, and it's not negative use it. 1272 * 1273 * Decrement the reference count to balance the iget() done 1274 * earlier on. 1275 */ 1276 if (found->d_inode) { 1277 if (unlikely(found->d_inode != inode)) { 1278 /* This can't happen because bad inodes are unhashed. */ 1279 BUG_ON(!is_bad_inode(inode)); 1280 BUG_ON(!is_bad_inode(found->d_inode)); 1281 } 1282 iput(inode); 1283 return found; 1284 } 1285 1286 /* 1287 * Negative dentry: instantiate it unless the inode is a directory and 1288 * already has a dentry. 1289 */ 1290 spin_lock(&dcache_lock); 1291 if (!S_ISDIR(inode->i_mode) || list_empty(&inode->i_dentry)) { 1292 __d_instantiate(found, inode); 1293 spin_unlock(&dcache_lock); 1294 security_d_instantiate(found, inode); 1295 return found; 1296 } 1297 1298 /* 1299 * In case a directory already has a (disconnected) entry grab a 1300 * reference to it, move it in place and use it. 1301 */ 1302 new = list_entry(inode->i_dentry.next, struct dentry, d_alias); 1303 dget_locked(new); 1304 spin_unlock(&dcache_lock); 1305 security_d_instantiate(found, inode); 1306 d_move(new, found); 1307 iput(inode); 1308 dput(found); 1309 return new; 1310 1311 err_out: 1312 iput(inode); 1313 return ERR_PTR(error); 1314 } 1315 1316 /** 1317 * d_lookup - search for a dentry 1318 * @parent: parent dentry 1319 * @name: qstr of name we wish to find 1320 * 1321 * Searches the children of the parent dentry for the name in question. If 1322 * the dentry is found its reference count is incremented and the dentry 1323 * is returned. The caller must use dput to free the entry when it has 1324 * finished using it. %NULL is returned on failure. 1325 * 1326 * __d_lookup is dcache_lock free. The hash list is protected using RCU. 1327 * Memory barriers are used while updating and doing lockless traversal. 1328 * To avoid races with d_move while rename is happening, d_lock is used. 1329 * 1330 * Overflows in memcmp(), while d_move, are avoided by keeping the length 1331 * and name pointer in one structure pointed by d_qstr. 1332 * 1333 * rcu_read_lock() and rcu_read_unlock() are used to disable preemption while 1334 * lookup is going on. 1335 * 1336 * The dentry unused LRU is not updated even if lookup finds the required dentry 1337 * in there. It is updated in places such as prune_dcache, shrink_dcache_sb, 1338 * select_parent and __dget_locked. This laziness saves lookup from dcache_lock 1339 * acquisition. 1340 * 1341 * d_lookup() is protected against the concurrent renames in some unrelated 1342 * directory using the seqlockt_t rename_lock. 1343 */ 1344 1345 struct dentry * d_lookup(struct dentry * parent, struct qstr * name) 1346 { 1347 struct dentry * dentry = NULL; 1348 unsigned long seq; 1349 1350 do { 1351 seq = read_seqbegin(&rename_lock); 1352 dentry = __d_lookup(parent, name); 1353 if (dentry) 1354 break; 1355 } while (read_seqretry(&rename_lock, seq)); 1356 return dentry; 1357 } 1358 1359 struct dentry * __d_lookup(struct dentry * parent, struct qstr * name) 1360 { 1361 unsigned int len = name->len; 1362 unsigned int hash = name->hash; 1363 const unsigned char *str = name->name; 1364 struct hlist_head *head = d_hash(parent,hash); 1365 struct dentry *found = NULL; 1366 struct hlist_node *node; 1367 struct dentry *dentry; 1368 1369 rcu_read_lock(); 1370 1371 hlist_for_each_entry_rcu(dentry, node, head, d_hash) { 1372 struct qstr *qstr; 1373 1374 if (dentry->d_name.hash != hash) 1375 continue; 1376 if (dentry->d_parent != parent) 1377 continue; 1378 1379 spin_lock(&dentry->d_lock); 1380 1381 /* 1382 * Recheck the dentry after taking the lock - d_move may have 1383 * changed things. Don't bother checking the hash because we're 1384 * about to compare the whole name anyway. 1385 */ 1386 if (dentry->d_parent != parent) 1387 goto next; 1388 1389 /* non-existing due to RCU? */ 1390 if (d_unhashed(dentry)) 1391 goto next; 1392 1393 /* 1394 * It is safe to compare names since d_move() cannot 1395 * change the qstr (protected by d_lock). 1396 */ 1397 qstr = &dentry->d_name; 1398 if (parent->d_op && parent->d_op->d_compare) { 1399 if (parent->d_op->d_compare(parent, qstr, name)) 1400 goto next; 1401 } else { 1402 if (qstr->len != len) 1403 goto next; 1404 if (memcmp(qstr->name, str, len)) 1405 goto next; 1406 } 1407 1408 atomic_inc(&dentry->d_count); 1409 found = dentry; 1410 spin_unlock(&dentry->d_lock); 1411 break; 1412 next: 1413 spin_unlock(&dentry->d_lock); 1414 } 1415 rcu_read_unlock(); 1416 1417 return found; 1418 } 1419 1420 /** 1421 * d_hash_and_lookup - hash the qstr then search for a dentry 1422 * @dir: Directory to search in 1423 * @name: qstr of name we wish to find 1424 * 1425 * On hash failure or on lookup failure NULL is returned. 1426 */ 1427 struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name) 1428 { 1429 struct dentry *dentry = NULL; 1430 1431 /* 1432 * Check for a fs-specific hash function. Note that we must 1433 * calculate the standard hash first, as the d_op->d_hash() 1434 * routine may choose to leave the hash value unchanged. 1435 */ 1436 name->hash = full_name_hash(name->name, name->len); 1437 if (dir->d_op && dir->d_op->d_hash) { 1438 if (dir->d_op->d_hash(dir, name) < 0) 1439 goto out; 1440 } 1441 dentry = d_lookup(dir, name); 1442 out: 1443 return dentry; 1444 } 1445 1446 /** 1447 * d_validate - verify dentry provided from insecure source 1448 * @dentry: The dentry alleged to be valid child of @dparent 1449 * @dparent: The parent dentry (known to be valid) 1450 * 1451 * An insecure source has sent us a dentry, here we verify it and dget() it. 1452 * This is used by ncpfs in its readdir implementation. 1453 * Zero is returned in the dentry is invalid. 1454 */ 1455 1456 int d_validate(struct dentry *dentry, struct dentry *dparent) 1457 { 1458 struct hlist_head *base; 1459 struct hlist_node *lhp; 1460 1461 /* Check whether the ptr might be valid at all.. */ 1462 if (!kmem_ptr_validate(dentry_cache, dentry)) 1463 goto out; 1464 1465 if (dentry->d_parent != dparent) 1466 goto out; 1467 1468 spin_lock(&dcache_lock); 1469 base = d_hash(dparent, dentry->d_name.hash); 1470 hlist_for_each(lhp,base) { 1471 /* hlist_for_each_entry_rcu() not required for d_hash list 1472 * as it is parsed under dcache_lock 1473 */ 1474 if (dentry == hlist_entry(lhp, struct dentry, d_hash)) { 1475 __dget_locked(dentry); 1476 spin_unlock(&dcache_lock); 1477 return 1; 1478 } 1479 } 1480 spin_unlock(&dcache_lock); 1481 out: 1482 return 0; 1483 } 1484 1485 /* 1486 * When a file is deleted, we have two options: 1487 * - turn this dentry into a negative dentry 1488 * - unhash this dentry and free it. 1489 * 1490 * Usually, we want to just turn this into 1491 * a negative dentry, but if anybody else is 1492 * currently using the dentry or the inode 1493 * we can't do that and we fall back on removing 1494 * it from the hash queues and waiting for 1495 * it to be deleted later when it has no users 1496 */ 1497 1498 /** 1499 * d_delete - delete a dentry 1500 * @dentry: The dentry to delete 1501 * 1502 * Turn the dentry into a negative dentry if possible, otherwise 1503 * remove it from the hash queues so it can be deleted later 1504 */ 1505 1506 void d_delete(struct dentry * dentry) 1507 { 1508 int isdir = 0; 1509 /* 1510 * Are we the only user? 1511 */ 1512 spin_lock(&dcache_lock); 1513 spin_lock(&dentry->d_lock); 1514 isdir = S_ISDIR(dentry->d_inode->i_mode); 1515 if (atomic_read(&dentry->d_count) == 1) { 1516 dentry_iput(dentry); 1517 fsnotify_nameremove(dentry, isdir); 1518 return; 1519 } 1520 1521 if (!d_unhashed(dentry)) 1522 __d_drop(dentry); 1523 1524 spin_unlock(&dentry->d_lock); 1525 spin_unlock(&dcache_lock); 1526 1527 fsnotify_nameremove(dentry, isdir); 1528 } 1529 1530 static void __d_rehash(struct dentry * entry, struct hlist_head *list) 1531 { 1532 1533 entry->d_flags &= ~DCACHE_UNHASHED; 1534 hlist_add_head_rcu(&entry->d_hash, list); 1535 } 1536 1537 static void _d_rehash(struct dentry * entry) 1538 { 1539 __d_rehash(entry, d_hash(entry->d_parent, entry->d_name.hash)); 1540 } 1541 1542 /** 1543 * d_rehash - add an entry back to the hash 1544 * @entry: dentry to add to the hash 1545 * 1546 * Adds a dentry to the hash according to its name. 1547 */ 1548 1549 void d_rehash(struct dentry * entry) 1550 { 1551 spin_lock(&dcache_lock); 1552 spin_lock(&entry->d_lock); 1553 _d_rehash(entry); 1554 spin_unlock(&entry->d_lock); 1555 spin_unlock(&dcache_lock); 1556 } 1557 1558 /* 1559 * When switching names, the actual string doesn't strictly have to 1560 * be preserved in the target - because we're dropping the target 1561 * anyway. As such, we can just do a simple memcpy() to copy over 1562 * the new name before we switch. 1563 * 1564 * Note that we have to be a lot more careful about getting the hash 1565 * switched - we have to switch the hash value properly even if it 1566 * then no longer matches the actual (corrupted) string of the target. 1567 * The hash value has to match the hash queue that the dentry is on.. 1568 */ 1569 static void switch_names(struct dentry *dentry, struct dentry *target) 1570 { 1571 if (dname_external(target)) { 1572 if (dname_external(dentry)) { 1573 /* 1574 * Both external: swap the pointers 1575 */ 1576 swap(target->d_name.name, dentry->d_name.name); 1577 } else { 1578 /* 1579 * dentry:internal, target:external. Steal target's 1580 * storage and make target internal. 1581 */ 1582 memcpy(target->d_iname, dentry->d_name.name, 1583 dentry->d_name.len + 1); 1584 dentry->d_name.name = target->d_name.name; 1585 target->d_name.name = target->d_iname; 1586 } 1587 } else { 1588 if (dname_external(dentry)) { 1589 /* 1590 * dentry:external, target:internal. Give dentry's 1591 * storage to target and make dentry internal 1592 */ 1593 memcpy(dentry->d_iname, target->d_name.name, 1594 target->d_name.len + 1); 1595 target->d_name.name = dentry->d_name.name; 1596 dentry->d_name.name = dentry->d_iname; 1597 } else { 1598 /* 1599 * Both are internal. Just copy target to dentry 1600 */ 1601 memcpy(dentry->d_iname, target->d_name.name, 1602 target->d_name.len + 1); 1603 dentry->d_name.len = target->d_name.len; 1604 return; 1605 } 1606 } 1607 swap(dentry->d_name.len, target->d_name.len); 1608 } 1609 1610 /* 1611 * We cannibalize "target" when moving dentry on top of it, 1612 * because it's going to be thrown away anyway. We could be more 1613 * polite about it, though. 1614 * 1615 * This forceful removal will result in ugly /proc output if 1616 * somebody holds a file open that got deleted due to a rename. 1617 * We could be nicer about the deleted file, and let it show 1618 * up under the name it had before it was deleted rather than 1619 * under the original name of the file that was moved on top of it. 1620 */ 1621 1622 /* 1623 * d_move_locked - move a dentry 1624 * @dentry: entry to move 1625 * @target: new dentry 1626 * 1627 * Update the dcache to reflect the move of a file name. Negative 1628 * dcache entries should not be moved in this way. 1629 */ 1630 static void d_move_locked(struct dentry * dentry, struct dentry * target) 1631 { 1632 struct hlist_head *list; 1633 1634 if (!dentry->d_inode) 1635 printk(KERN_WARNING "VFS: moving negative dcache entry\n"); 1636 1637 write_seqlock(&rename_lock); 1638 /* 1639 * XXXX: do we really need to take target->d_lock? 1640 */ 1641 if (target < dentry) { 1642 spin_lock(&target->d_lock); 1643 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED); 1644 } else { 1645 spin_lock(&dentry->d_lock); 1646 spin_lock_nested(&target->d_lock, DENTRY_D_LOCK_NESTED); 1647 } 1648 1649 /* Move the dentry to the target hash queue, if on different bucket */ 1650 if (d_unhashed(dentry)) 1651 goto already_unhashed; 1652 1653 hlist_del_rcu(&dentry->d_hash); 1654 1655 already_unhashed: 1656 list = d_hash(target->d_parent, target->d_name.hash); 1657 __d_rehash(dentry, list); 1658 1659 /* Unhash the target: dput() will then get rid of it */ 1660 __d_drop(target); 1661 1662 list_del(&dentry->d_u.d_child); 1663 list_del(&target->d_u.d_child); 1664 1665 /* Switch the names.. */ 1666 switch_names(dentry, target); 1667 swap(dentry->d_name.hash, target->d_name.hash); 1668 1669 /* ... and switch the parents */ 1670 if (IS_ROOT(dentry)) { 1671 dentry->d_parent = target->d_parent; 1672 target->d_parent = target; 1673 INIT_LIST_HEAD(&target->d_u.d_child); 1674 } else { 1675 swap(dentry->d_parent, target->d_parent); 1676 1677 /* And add them back to the (new) parent lists */ 1678 list_add(&target->d_u.d_child, &target->d_parent->d_subdirs); 1679 } 1680 1681 list_add(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs); 1682 spin_unlock(&target->d_lock); 1683 fsnotify_d_move(dentry); 1684 spin_unlock(&dentry->d_lock); 1685 write_sequnlock(&rename_lock); 1686 } 1687 1688 /** 1689 * d_move - move a dentry 1690 * @dentry: entry to move 1691 * @target: new dentry 1692 * 1693 * Update the dcache to reflect the move of a file name. Negative 1694 * dcache entries should not be moved in this way. 1695 */ 1696 1697 void d_move(struct dentry * dentry, struct dentry * target) 1698 { 1699 spin_lock(&dcache_lock); 1700 d_move_locked(dentry, target); 1701 spin_unlock(&dcache_lock); 1702 } 1703 1704 /** 1705 * d_ancestor - search for an ancestor 1706 * @p1: ancestor dentry 1707 * @p2: child dentry 1708 * 1709 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is 1710 * an ancestor of p2, else NULL. 1711 */ 1712 struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2) 1713 { 1714 struct dentry *p; 1715 1716 for (p = p2; !IS_ROOT(p); p = p->d_parent) { 1717 if (p->d_parent == p1) 1718 return p; 1719 } 1720 return NULL; 1721 } 1722 1723 /* 1724 * This helper attempts to cope with remotely renamed directories 1725 * 1726 * It assumes that the caller is already holding 1727 * dentry->d_parent->d_inode->i_mutex and the dcache_lock 1728 * 1729 * Note: If ever the locking in lock_rename() changes, then please 1730 * remember to update this too... 1731 */ 1732 static struct dentry *__d_unalias(struct dentry *dentry, struct dentry *alias) 1733 __releases(dcache_lock) 1734 { 1735 struct mutex *m1 = NULL, *m2 = NULL; 1736 struct dentry *ret; 1737 1738 /* If alias and dentry share a parent, then no extra locks required */ 1739 if (alias->d_parent == dentry->d_parent) 1740 goto out_unalias; 1741 1742 /* Check for loops */ 1743 ret = ERR_PTR(-ELOOP); 1744 if (d_ancestor(alias, dentry)) 1745 goto out_err; 1746 1747 /* See lock_rename() */ 1748 ret = ERR_PTR(-EBUSY); 1749 if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex)) 1750 goto out_err; 1751 m1 = &dentry->d_sb->s_vfs_rename_mutex; 1752 if (!mutex_trylock(&alias->d_parent->d_inode->i_mutex)) 1753 goto out_err; 1754 m2 = &alias->d_parent->d_inode->i_mutex; 1755 out_unalias: 1756 d_move_locked(alias, dentry); 1757 ret = alias; 1758 out_err: 1759 spin_unlock(&dcache_lock); 1760 if (m2) 1761 mutex_unlock(m2); 1762 if (m1) 1763 mutex_unlock(m1); 1764 return ret; 1765 } 1766 1767 /* 1768 * Prepare an anonymous dentry for life in the superblock's dentry tree as a 1769 * named dentry in place of the dentry to be replaced. 1770 */ 1771 static void __d_materialise_dentry(struct dentry *dentry, struct dentry *anon) 1772 { 1773 struct dentry *dparent, *aparent; 1774 1775 switch_names(dentry, anon); 1776 swap(dentry->d_name.hash, anon->d_name.hash); 1777 1778 dparent = dentry->d_parent; 1779 aparent = anon->d_parent; 1780 1781 dentry->d_parent = (aparent == anon) ? dentry : aparent; 1782 list_del(&dentry->d_u.d_child); 1783 if (!IS_ROOT(dentry)) 1784 list_add(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs); 1785 else 1786 INIT_LIST_HEAD(&dentry->d_u.d_child); 1787 1788 anon->d_parent = (dparent == dentry) ? anon : dparent; 1789 list_del(&anon->d_u.d_child); 1790 if (!IS_ROOT(anon)) 1791 list_add(&anon->d_u.d_child, &anon->d_parent->d_subdirs); 1792 else 1793 INIT_LIST_HEAD(&anon->d_u.d_child); 1794 1795 anon->d_flags &= ~DCACHE_DISCONNECTED; 1796 } 1797 1798 /** 1799 * d_materialise_unique - introduce an inode into the tree 1800 * @dentry: candidate dentry 1801 * @inode: inode to bind to the dentry, to which aliases may be attached 1802 * 1803 * Introduces an dentry into the tree, substituting an extant disconnected 1804 * root directory alias in its place if there is one 1805 */ 1806 struct dentry *d_materialise_unique(struct dentry *dentry, struct inode *inode) 1807 { 1808 struct dentry *actual; 1809 1810 BUG_ON(!d_unhashed(dentry)); 1811 1812 spin_lock(&dcache_lock); 1813 1814 if (!inode) { 1815 actual = dentry; 1816 __d_instantiate(dentry, NULL); 1817 goto found_lock; 1818 } 1819 1820 if (S_ISDIR(inode->i_mode)) { 1821 struct dentry *alias; 1822 1823 /* Does an aliased dentry already exist? */ 1824 alias = __d_find_alias(inode, 0); 1825 if (alias) { 1826 actual = alias; 1827 /* Is this an anonymous mountpoint that we could splice 1828 * into our tree? */ 1829 if (IS_ROOT(alias)) { 1830 spin_lock(&alias->d_lock); 1831 __d_materialise_dentry(dentry, alias); 1832 __d_drop(alias); 1833 goto found; 1834 } 1835 /* Nope, but we must(!) avoid directory aliasing */ 1836 actual = __d_unalias(dentry, alias); 1837 if (IS_ERR(actual)) 1838 dput(alias); 1839 goto out_nolock; 1840 } 1841 } 1842 1843 /* Add a unique reference */ 1844 actual = __d_instantiate_unique(dentry, inode); 1845 if (!actual) 1846 actual = dentry; 1847 else if (unlikely(!d_unhashed(actual))) 1848 goto shouldnt_be_hashed; 1849 1850 found_lock: 1851 spin_lock(&actual->d_lock); 1852 found: 1853 _d_rehash(actual); 1854 spin_unlock(&actual->d_lock); 1855 spin_unlock(&dcache_lock); 1856 out_nolock: 1857 if (actual == dentry) { 1858 security_d_instantiate(dentry, inode); 1859 return NULL; 1860 } 1861 1862 iput(inode); 1863 return actual; 1864 1865 shouldnt_be_hashed: 1866 spin_unlock(&dcache_lock); 1867 BUG(); 1868 } 1869 1870 static int prepend(char **buffer, int *buflen, const char *str, int namelen) 1871 { 1872 *buflen -= namelen; 1873 if (*buflen < 0) 1874 return -ENAMETOOLONG; 1875 *buffer -= namelen; 1876 memcpy(*buffer, str, namelen); 1877 return 0; 1878 } 1879 1880 static int prepend_name(char **buffer, int *buflen, struct qstr *name) 1881 { 1882 return prepend(buffer, buflen, name->name, name->len); 1883 } 1884 1885 /** 1886 * __d_path - return the path of a dentry 1887 * @path: the dentry/vfsmount to report 1888 * @root: root vfsmnt/dentry (may be modified by this function) 1889 * @buffer: buffer to return value in 1890 * @buflen: buffer length 1891 * 1892 * Convert a dentry into an ASCII path name. If the entry has been deleted 1893 * the string " (deleted)" is appended. Note that this is ambiguous. 1894 * 1895 * Returns a pointer into the buffer or an error code if the 1896 * path was too long. 1897 * 1898 * "buflen" should be positive. Caller holds the dcache_lock. 1899 * 1900 * If path is not reachable from the supplied root, then the value of 1901 * root is changed (without modifying refcounts). 1902 */ 1903 char *__d_path(const struct path *path, struct path *root, 1904 char *buffer, int buflen) 1905 { 1906 struct dentry *dentry = path->dentry; 1907 struct vfsmount *vfsmnt = path->mnt; 1908 char *end = buffer + buflen; 1909 char *retval; 1910 1911 spin_lock(&vfsmount_lock); 1912 prepend(&end, &buflen, "\0", 1); 1913 if (!IS_ROOT(dentry) && d_unhashed(dentry) && 1914 (prepend(&end, &buflen, " (deleted)", 10) != 0)) 1915 goto Elong; 1916 1917 if (buflen < 1) 1918 goto Elong; 1919 /* Get '/' right */ 1920 retval = end-1; 1921 *retval = '/'; 1922 1923 for (;;) { 1924 struct dentry * parent; 1925 1926 if (dentry == root->dentry && vfsmnt == root->mnt) 1927 break; 1928 if (dentry == vfsmnt->mnt_root || IS_ROOT(dentry)) { 1929 /* Global root? */ 1930 if (vfsmnt->mnt_parent == vfsmnt) { 1931 goto global_root; 1932 } 1933 dentry = vfsmnt->mnt_mountpoint; 1934 vfsmnt = vfsmnt->mnt_parent; 1935 continue; 1936 } 1937 parent = dentry->d_parent; 1938 prefetch(parent); 1939 if ((prepend_name(&end, &buflen, &dentry->d_name) != 0) || 1940 (prepend(&end, &buflen, "/", 1) != 0)) 1941 goto Elong; 1942 retval = end; 1943 dentry = parent; 1944 } 1945 1946 out: 1947 spin_unlock(&vfsmount_lock); 1948 return retval; 1949 1950 global_root: 1951 retval += 1; /* hit the slash */ 1952 if (prepend_name(&retval, &buflen, &dentry->d_name) != 0) 1953 goto Elong; 1954 root->mnt = vfsmnt; 1955 root->dentry = dentry; 1956 goto out; 1957 1958 Elong: 1959 retval = ERR_PTR(-ENAMETOOLONG); 1960 goto out; 1961 } 1962 1963 /** 1964 * d_path - return the path of a dentry 1965 * @path: path to report 1966 * @buf: buffer to return value in 1967 * @buflen: buffer length 1968 * 1969 * Convert a dentry into an ASCII path name. If the entry has been deleted 1970 * the string " (deleted)" is appended. Note that this is ambiguous. 1971 * 1972 * Returns a pointer into the buffer or an error code if the path was 1973 * too long. Note: Callers should use the returned pointer, not the passed 1974 * in buffer, to use the name! The implementation often starts at an offset 1975 * into the buffer, and may leave 0 bytes at the start. 1976 * 1977 * "buflen" should be positive. 1978 */ 1979 char *d_path(const struct path *path, char *buf, int buflen) 1980 { 1981 char *res; 1982 struct path root; 1983 struct path tmp; 1984 1985 /* 1986 * We have various synthetic filesystems that never get mounted. On 1987 * these filesystems dentries are never used for lookup purposes, and 1988 * thus don't need to be hashed. They also don't need a name until a 1989 * user wants to identify the object in /proc/pid/fd/. The little hack 1990 * below allows us to generate a name for these objects on demand: 1991 */ 1992 if (path->dentry->d_op && path->dentry->d_op->d_dname) 1993 return path->dentry->d_op->d_dname(path->dentry, buf, buflen); 1994 1995 read_lock(¤t->fs->lock); 1996 root = current->fs->root; 1997 path_get(&root); 1998 read_unlock(¤t->fs->lock); 1999 spin_lock(&dcache_lock); 2000 tmp = root; 2001 res = __d_path(path, &tmp, buf, buflen); 2002 spin_unlock(&dcache_lock); 2003 path_put(&root); 2004 return res; 2005 } 2006 2007 /* 2008 * Helper function for dentry_operations.d_dname() members 2009 */ 2010 char *dynamic_dname(struct dentry *dentry, char *buffer, int buflen, 2011 const char *fmt, ...) 2012 { 2013 va_list args; 2014 char temp[64]; 2015 int sz; 2016 2017 va_start(args, fmt); 2018 sz = vsnprintf(temp, sizeof(temp), fmt, args) + 1; 2019 va_end(args); 2020 2021 if (sz > sizeof(temp) || sz > buflen) 2022 return ERR_PTR(-ENAMETOOLONG); 2023 2024 buffer += buflen - sz; 2025 return memcpy(buffer, temp, sz); 2026 } 2027 2028 /* 2029 * Write full pathname from the root of the filesystem into the buffer. 2030 */ 2031 char *dentry_path(struct dentry *dentry, char *buf, int buflen) 2032 { 2033 char *end = buf + buflen; 2034 char *retval; 2035 2036 spin_lock(&dcache_lock); 2037 prepend(&end, &buflen, "\0", 1); 2038 if (!IS_ROOT(dentry) && d_unhashed(dentry) && 2039 (prepend(&end, &buflen, "//deleted", 9) != 0)) 2040 goto Elong; 2041 if (buflen < 1) 2042 goto Elong; 2043 /* Get '/' right */ 2044 retval = end-1; 2045 *retval = '/'; 2046 2047 while (!IS_ROOT(dentry)) { 2048 struct dentry *parent = dentry->d_parent; 2049 2050 prefetch(parent); 2051 if ((prepend_name(&end, &buflen, &dentry->d_name) != 0) || 2052 (prepend(&end, &buflen, "/", 1) != 0)) 2053 goto Elong; 2054 2055 retval = end; 2056 dentry = parent; 2057 } 2058 spin_unlock(&dcache_lock); 2059 return retval; 2060 Elong: 2061 spin_unlock(&dcache_lock); 2062 return ERR_PTR(-ENAMETOOLONG); 2063 } 2064 2065 /* 2066 * NOTE! The user-level library version returns a 2067 * character pointer. The kernel system call just 2068 * returns the length of the buffer filled (which 2069 * includes the ending '\0' character), or a negative 2070 * error value. So libc would do something like 2071 * 2072 * char *getcwd(char * buf, size_t size) 2073 * { 2074 * int retval; 2075 * 2076 * retval = sys_getcwd(buf, size); 2077 * if (retval >= 0) 2078 * return buf; 2079 * errno = -retval; 2080 * return NULL; 2081 * } 2082 */ 2083 SYSCALL_DEFINE2(getcwd, char __user *, buf, unsigned long, size) 2084 { 2085 int error; 2086 struct path pwd, root; 2087 char *page = (char *) __get_free_page(GFP_USER); 2088 2089 if (!page) 2090 return -ENOMEM; 2091 2092 read_lock(¤t->fs->lock); 2093 pwd = current->fs->pwd; 2094 path_get(&pwd); 2095 root = current->fs->root; 2096 path_get(&root); 2097 read_unlock(¤t->fs->lock); 2098 2099 error = -ENOENT; 2100 /* Has the current directory has been unlinked? */ 2101 spin_lock(&dcache_lock); 2102 if (IS_ROOT(pwd.dentry) || !d_unhashed(pwd.dentry)) { 2103 unsigned long len; 2104 struct path tmp = root; 2105 char * cwd; 2106 2107 cwd = __d_path(&pwd, &tmp, page, PAGE_SIZE); 2108 spin_unlock(&dcache_lock); 2109 2110 error = PTR_ERR(cwd); 2111 if (IS_ERR(cwd)) 2112 goto out; 2113 2114 error = -ERANGE; 2115 len = PAGE_SIZE + page - cwd; 2116 if (len <= size) { 2117 error = len; 2118 if (copy_to_user(buf, cwd, len)) 2119 error = -EFAULT; 2120 } 2121 } else 2122 spin_unlock(&dcache_lock); 2123 2124 out: 2125 path_put(&pwd); 2126 path_put(&root); 2127 free_page((unsigned long) page); 2128 return error; 2129 } 2130 2131 /* 2132 * Test whether new_dentry is a subdirectory of old_dentry. 2133 * 2134 * Trivially implemented using the dcache structure 2135 */ 2136 2137 /** 2138 * is_subdir - is new dentry a subdirectory of old_dentry 2139 * @new_dentry: new dentry 2140 * @old_dentry: old dentry 2141 * 2142 * Returns 1 if new_dentry is a subdirectory of the parent (at any depth). 2143 * Returns 0 otherwise. 2144 * Caller must ensure that "new_dentry" is pinned before calling is_subdir() 2145 */ 2146 2147 int is_subdir(struct dentry *new_dentry, struct dentry *old_dentry) 2148 { 2149 int result; 2150 unsigned long seq; 2151 2152 /* FIXME: This is old behavior, needed? Please check callers. */ 2153 if (new_dentry == old_dentry) 2154 return 1; 2155 2156 /* 2157 * Need rcu_readlock to protect against the d_parent trashing 2158 * due to d_move 2159 */ 2160 rcu_read_lock(); 2161 do { 2162 /* for restarting inner loop in case of seq retry */ 2163 seq = read_seqbegin(&rename_lock); 2164 if (d_ancestor(old_dentry, new_dentry)) 2165 result = 1; 2166 else 2167 result = 0; 2168 } while (read_seqretry(&rename_lock, seq)); 2169 rcu_read_unlock(); 2170 2171 return result; 2172 } 2173 2174 void d_genocide(struct dentry *root) 2175 { 2176 struct dentry *this_parent = root; 2177 struct list_head *next; 2178 2179 spin_lock(&dcache_lock); 2180 repeat: 2181 next = this_parent->d_subdirs.next; 2182 resume: 2183 while (next != &this_parent->d_subdirs) { 2184 struct list_head *tmp = next; 2185 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child); 2186 next = tmp->next; 2187 if (d_unhashed(dentry)||!dentry->d_inode) 2188 continue; 2189 if (!list_empty(&dentry->d_subdirs)) { 2190 this_parent = dentry; 2191 goto repeat; 2192 } 2193 atomic_dec(&dentry->d_count); 2194 } 2195 if (this_parent != root) { 2196 next = this_parent->d_u.d_child.next; 2197 atomic_dec(&this_parent->d_count); 2198 this_parent = this_parent->d_parent; 2199 goto resume; 2200 } 2201 spin_unlock(&dcache_lock); 2202 } 2203 2204 /** 2205 * find_inode_number - check for dentry with name 2206 * @dir: directory to check 2207 * @name: Name to find. 2208 * 2209 * Check whether a dentry already exists for the given name, 2210 * and return the inode number if it has an inode. Otherwise 2211 * 0 is returned. 2212 * 2213 * This routine is used to post-process directory listings for 2214 * filesystems using synthetic inode numbers, and is necessary 2215 * to keep getcwd() working. 2216 */ 2217 2218 ino_t find_inode_number(struct dentry *dir, struct qstr *name) 2219 { 2220 struct dentry * dentry; 2221 ino_t ino = 0; 2222 2223 dentry = d_hash_and_lookup(dir, name); 2224 if (dentry) { 2225 if (dentry->d_inode) 2226 ino = dentry->d_inode->i_ino; 2227 dput(dentry); 2228 } 2229 return ino; 2230 } 2231 2232 static __initdata unsigned long dhash_entries; 2233 static int __init set_dhash_entries(char *str) 2234 { 2235 if (!str) 2236 return 0; 2237 dhash_entries = simple_strtoul(str, &str, 0); 2238 return 1; 2239 } 2240 __setup("dhash_entries=", set_dhash_entries); 2241 2242 static void __init dcache_init_early(void) 2243 { 2244 int loop; 2245 2246 /* If hashes are distributed across NUMA nodes, defer 2247 * hash allocation until vmalloc space is available. 2248 */ 2249 if (hashdist) 2250 return; 2251 2252 dentry_hashtable = 2253 alloc_large_system_hash("Dentry cache", 2254 sizeof(struct hlist_head), 2255 dhash_entries, 2256 13, 2257 HASH_EARLY, 2258 &d_hash_shift, 2259 &d_hash_mask, 2260 0); 2261 2262 for (loop = 0; loop < (1 << d_hash_shift); loop++) 2263 INIT_HLIST_HEAD(&dentry_hashtable[loop]); 2264 } 2265 2266 static void __init dcache_init(void) 2267 { 2268 int loop; 2269 2270 /* 2271 * A constructor could be added for stable state like the lists, 2272 * but it is probably not worth it because of the cache nature 2273 * of the dcache. 2274 */ 2275 dentry_cache = KMEM_CACHE(dentry, 2276 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD); 2277 2278 register_shrinker(&dcache_shrinker); 2279 2280 /* Hash may have been set up in dcache_init_early */ 2281 if (!hashdist) 2282 return; 2283 2284 dentry_hashtable = 2285 alloc_large_system_hash("Dentry cache", 2286 sizeof(struct hlist_head), 2287 dhash_entries, 2288 13, 2289 0, 2290 &d_hash_shift, 2291 &d_hash_mask, 2292 0); 2293 2294 for (loop = 0; loop < (1 << d_hash_shift); loop++) 2295 INIT_HLIST_HEAD(&dentry_hashtable[loop]); 2296 } 2297 2298 /* SLAB cache for __getname() consumers */ 2299 struct kmem_cache *names_cachep __read_mostly; 2300 2301 EXPORT_SYMBOL(d_genocide); 2302 2303 void __init vfs_caches_init_early(void) 2304 { 2305 dcache_init_early(); 2306 inode_init_early(); 2307 } 2308 2309 void __init vfs_caches_init(unsigned long mempages) 2310 { 2311 unsigned long reserve; 2312 2313 /* Base hash sizes on available memory, with a reserve equal to 2314 150% of current kernel size */ 2315 2316 reserve = min((mempages - nr_free_pages()) * 3/2, mempages - 1); 2317 mempages -= reserve; 2318 2319 names_cachep = kmem_cache_create("names_cache", PATH_MAX, 0, 2320 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL); 2321 2322 dcache_init(); 2323 inode_init(); 2324 files_init(mempages); 2325 mnt_init(); 2326 bdev_cache_init(); 2327 chrdev_init(); 2328 } 2329 2330 EXPORT_SYMBOL(d_alloc); 2331 EXPORT_SYMBOL(d_alloc_root); 2332 EXPORT_SYMBOL(d_delete); 2333 EXPORT_SYMBOL(d_find_alias); 2334 EXPORT_SYMBOL(d_instantiate); 2335 EXPORT_SYMBOL(d_invalidate); 2336 EXPORT_SYMBOL(d_lookup); 2337 EXPORT_SYMBOL(d_move); 2338 EXPORT_SYMBOL_GPL(d_materialise_unique); 2339 EXPORT_SYMBOL(d_path); 2340 EXPORT_SYMBOL(d_prune_aliases); 2341 EXPORT_SYMBOL(d_rehash); 2342 EXPORT_SYMBOL(d_splice_alias); 2343 EXPORT_SYMBOL(d_add_ci); 2344 EXPORT_SYMBOL(d_validate); 2345 EXPORT_SYMBOL(dget_locked); 2346 EXPORT_SYMBOL(dput); 2347 EXPORT_SYMBOL(find_inode_number); 2348 EXPORT_SYMBOL(have_submounts); 2349 EXPORT_SYMBOL(names_cachep); 2350 EXPORT_SYMBOL(shrink_dcache_parent); 2351 EXPORT_SYMBOL(shrink_dcache_sb); 2352