xref: /openbmc/linux/fs/dcache.c (revision b664e06d)
1 /*
2  * fs/dcache.c
3  *
4  * Complete reimplementation
5  * (C) 1997 Thomas Schoebel-Theuer,
6  * with heavy changes by Linus Torvalds
7  */
8 
9 /*
10  * Notes on the allocation strategy:
11  *
12  * The dcache is a master of the icache - whenever a dcache entry
13  * exists, the inode will always exist. "iput()" is done either when
14  * the dcache entry is deleted or garbage collected.
15  */
16 
17 #include <linux/ratelimit.h>
18 #include <linux/string.h>
19 #include <linux/mm.h>
20 #include <linux/fs.h>
21 #include <linux/fscrypt.h>
22 #include <linux/fsnotify.h>
23 #include <linux/slab.h>
24 #include <linux/init.h>
25 #include <linux/hash.h>
26 #include <linux/cache.h>
27 #include <linux/export.h>
28 #include <linux/security.h>
29 #include <linux/seqlock.h>
30 #include <linux/memblock.h>
31 #include <linux/bit_spinlock.h>
32 #include <linux/rculist_bl.h>
33 #include <linux/list_lru.h>
34 #include "internal.h"
35 #include "mount.h"
36 
37 /*
38  * Usage:
39  * dcache->d_inode->i_lock protects:
40  *   - i_dentry, d_u.d_alias, d_inode of aliases
41  * dcache_hash_bucket lock protects:
42  *   - the dcache hash table
43  * s_roots bl list spinlock protects:
44  *   - the s_roots list (see __d_drop)
45  * dentry->d_sb->s_dentry_lru_lock protects:
46  *   - the dcache lru lists and counters
47  * d_lock protects:
48  *   - d_flags
49  *   - d_name
50  *   - d_lru
51  *   - d_count
52  *   - d_unhashed()
53  *   - d_parent and d_subdirs
54  *   - childrens' d_child and d_parent
55  *   - d_u.d_alias, d_inode
56  *
57  * Ordering:
58  * dentry->d_inode->i_lock
59  *   dentry->d_lock
60  *     dentry->d_sb->s_dentry_lru_lock
61  *     dcache_hash_bucket lock
62  *     s_roots lock
63  *
64  * If there is an ancestor relationship:
65  * dentry->d_parent->...->d_parent->d_lock
66  *   ...
67  *     dentry->d_parent->d_lock
68  *       dentry->d_lock
69  *
70  * If no ancestor relationship:
71  * arbitrary, since it's serialized on rename_lock
72  */
73 int sysctl_vfs_cache_pressure __read_mostly = 100;
74 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
75 
76 __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
77 
78 EXPORT_SYMBOL(rename_lock);
79 
80 static struct kmem_cache *dentry_cache __read_mostly;
81 
82 const struct qstr empty_name = QSTR_INIT("", 0);
83 EXPORT_SYMBOL(empty_name);
84 const struct qstr slash_name = QSTR_INIT("/", 1);
85 EXPORT_SYMBOL(slash_name);
86 
87 /*
88  * This is the single most critical data structure when it comes
89  * to the dcache: the hashtable for lookups. Somebody should try
90  * to make this good - I've just made it work.
91  *
92  * This hash-function tries to avoid losing too many bits of hash
93  * information, yet avoid using a prime hash-size or similar.
94  */
95 
96 static unsigned int d_hash_shift __read_mostly;
97 
98 static struct hlist_bl_head *dentry_hashtable __read_mostly;
99 
100 static inline struct hlist_bl_head *d_hash(unsigned int hash)
101 {
102 	return dentry_hashtable + (hash >> d_hash_shift);
103 }
104 
105 #define IN_LOOKUP_SHIFT 10
106 static struct hlist_bl_head in_lookup_hashtable[1 << IN_LOOKUP_SHIFT];
107 
108 static inline struct hlist_bl_head *in_lookup_hash(const struct dentry *parent,
109 					unsigned int hash)
110 {
111 	hash += (unsigned long) parent / L1_CACHE_BYTES;
112 	return in_lookup_hashtable + hash_32(hash, IN_LOOKUP_SHIFT);
113 }
114 
115 
116 /* Statistics gathering. */
117 struct dentry_stat_t dentry_stat = {
118 	.age_limit = 45,
119 };
120 
121 static DEFINE_PER_CPU(long, nr_dentry);
122 static DEFINE_PER_CPU(long, nr_dentry_unused);
123 static DEFINE_PER_CPU(long, nr_dentry_negative);
124 
125 #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
126 
127 /*
128  * Here we resort to our own counters instead of using generic per-cpu counters
129  * for consistency with what the vfs inode code does. We are expected to harvest
130  * better code and performance by having our own specialized counters.
131  *
132  * Please note that the loop is done over all possible CPUs, not over all online
133  * CPUs. The reason for this is that we don't want to play games with CPUs going
134  * on and off. If one of them goes off, we will just keep their counters.
135  *
136  * glommer: See cffbc8a for details, and if you ever intend to change this,
137  * please update all vfs counters to match.
138  */
139 static long get_nr_dentry(void)
140 {
141 	int i;
142 	long sum = 0;
143 	for_each_possible_cpu(i)
144 		sum += per_cpu(nr_dentry, i);
145 	return sum < 0 ? 0 : sum;
146 }
147 
148 static long get_nr_dentry_unused(void)
149 {
150 	int i;
151 	long sum = 0;
152 	for_each_possible_cpu(i)
153 		sum += per_cpu(nr_dentry_unused, i);
154 	return sum < 0 ? 0 : sum;
155 }
156 
157 static long get_nr_dentry_negative(void)
158 {
159 	int i;
160 	long sum = 0;
161 
162 	for_each_possible_cpu(i)
163 		sum += per_cpu(nr_dentry_negative, i);
164 	return sum < 0 ? 0 : sum;
165 }
166 
167 int proc_nr_dentry(struct ctl_table *table, int write, void __user *buffer,
168 		   size_t *lenp, loff_t *ppos)
169 {
170 	dentry_stat.nr_dentry = get_nr_dentry();
171 	dentry_stat.nr_unused = get_nr_dentry_unused();
172 	dentry_stat.nr_negative = get_nr_dentry_negative();
173 	return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
174 }
175 #endif
176 
177 /*
178  * Compare 2 name strings, return 0 if they match, otherwise non-zero.
179  * The strings are both count bytes long, and count is non-zero.
180  */
181 #ifdef CONFIG_DCACHE_WORD_ACCESS
182 
183 #include <asm/word-at-a-time.h>
184 /*
185  * NOTE! 'cs' and 'scount' come from a dentry, so it has a
186  * aligned allocation for this particular component. We don't
187  * strictly need the load_unaligned_zeropad() safety, but it
188  * doesn't hurt either.
189  *
190  * In contrast, 'ct' and 'tcount' can be from a pathname, and do
191  * need the careful unaligned handling.
192  */
193 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
194 {
195 	unsigned long a,b,mask;
196 
197 	for (;;) {
198 		a = read_word_at_a_time(cs);
199 		b = load_unaligned_zeropad(ct);
200 		if (tcount < sizeof(unsigned long))
201 			break;
202 		if (unlikely(a != b))
203 			return 1;
204 		cs += sizeof(unsigned long);
205 		ct += sizeof(unsigned long);
206 		tcount -= sizeof(unsigned long);
207 		if (!tcount)
208 			return 0;
209 	}
210 	mask = bytemask_from_count(tcount);
211 	return unlikely(!!((a ^ b) & mask));
212 }
213 
214 #else
215 
216 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
217 {
218 	do {
219 		if (*cs != *ct)
220 			return 1;
221 		cs++;
222 		ct++;
223 		tcount--;
224 	} while (tcount);
225 	return 0;
226 }
227 
228 #endif
229 
230 static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount)
231 {
232 	/*
233 	 * Be careful about RCU walk racing with rename:
234 	 * use 'READ_ONCE' to fetch the name pointer.
235 	 *
236 	 * NOTE! Even if a rename will mean that the length
237 	 * was not loaded atomically, we don't care. The
238 	 * RCU walk will check the sequence count eventually,
239 	 * and catch it. And we won't overrun the buffer,
240 	 * because we're reading the name pointer atomically,
241 	 * and a dentry name is guaranteed to be properly
242 	 * terminated with a NUL byte.
243 	 *
244 	 * End result: even if 'len' is wrong, we'll exit
245 	 * early because the data cannot match (there can
246 	 * be no NUL in the ct/tcount data)
247 	 */
248 	const unsigned char *cs = READ_ONCE(dentry->d_name.name);
249 
250 	return dentry_string_cmp(cs, ct, tcount);
251 }
252 
253 struct external_name {
254 	union {
255 		atomic_t count;
256 		struct rcu_head head;
257 	} u;
258 	unsigned char name[];
259 };
260 
261 static inline struct external_name *external_name(struct dentry *dentry)
262 {
263 	return container_of(dentry->d_name.name, struct external_name, name[0]);
264 }
265 
266 static void __d_free(struct rcu_head *head)
267 {
268 	struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
269 
270 	kmem_cache_free(dentry_cache, dentry);
271 }
272 
273 static void __d_free_external(struct rcu_head *head)
274 {
275 	struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
276 	kfree(external_name(dentry));
277 	kmem_cache_free(dentry_cache, dentry);
278 }
279 
280 static inline int dname_external(const struct dentry *dentry)
281 {
282 	return dentry->d_name.name != dentry->d_iname;
283 }
284 
285 void take_dentry_name_snapshot(struct name_snapshot *name, struct dentry *dentry)
286 {
287 	spin_lock(&dentry->d_lock);
288 	name->name = dentry->d_name;
289 	if (unlikely(dname_external(dentry))) {
290 		atomic_inc(&external_name(dentry)->u.count);
291 	} else {
292 		memcpy(name->inline_name, dentry->d_iname,
293 		       dentry->d_name.len + 1);
294 		name->name.name = name->inline_name;
295 	}
296 	spin_unlock(&dentry->d_lock);
297 }
298 EXPORT_SYMBOL(take_dentry_name_snapshot);
299 
300 void release_dentry_name_snapshot(struct name_snapshot *name)
301 {
302 	if (unlikely(name->name.name != name->inline_name)) {
303 		struct external_name *p;
304 		p = container_of(name->name.name, struct external_name, name[0]);
305 		if (unlikely(atomic_dec_and_test(&p->u.count)))
306 			kfree_rcu(p, u.head);
307 	}
308 }
309 EXPORT_SYMBOL(release_dentry_name_snapshot);
310 
311 static inline void __d_set_inode_and_type(struct dentry *dentry,
312 					  struct inode *inode,
313 					  unsigned type_flags)
314 {
315 	unsigned flags;
316 
317 	dentry->d_inode = inode;
318 	flags = READ_ONCE(dentry->d_flags);
319 	flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU);
320 	flags |= type_flags;
321 	WRITE_ONCE(dentry->d_flags, flags);
322 }
323 
324 static inline void __d_clear_type_and_inode(struct dentry *dentry)
325 {
326 	unsigned flags = READ_ONCE(dentry->d_flags);
327 
328 	flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU);
329 	WRITE_ONCE(dentry->d_flags, flags);
330 	dentry->d_inode = NULL;
331 	if (dentry->d_flags & DCACHE_LRU_LIST)
332 		this_cpu_inc(nr_dentry_negative);
333 }
334 
335 static void dentry_free(struct dentry *dentry)
336 {
337 	WARN_ON(!hlist_unhashed(&dentry->d_u.d_alias));
338 	if (unlikely(dname_external(dentry))) {
339 		struct external_name *p = external_name(dentry);
340 		if (likely(atomic_dec_and_test(&p->u.count))) {
341 			call_rcu(&dentry->d_u.d_rcu, __d_free_external);
342 			return;
343 		}
344 	}
345 	/* if dentry was never visible to RCU, immediate free is OK */
346 	if (dentry->d_flags & DCACHE_NORCU)
347 		__d_free(&dentry->d_u.d_rcu);
348 	else
349 		call_rcu(&dentry->d_u.d_rcu, __d_free);
350 }
351 
352 /*
353  * Release the dentry's inode, using the filesystem
354  * d_iput() operation if defined.
355  */
356 static void dentry_unlink_inode(struct dentry * dentry)
357 	__releases(dentry->d_lock)
358 	__releases(dentry->d_inode->i_lock)
359 {
360 	struct inode *inode = dentry->d_inode;
361 
362 	raw_write_seqcount_begin(&dentry->d_seq);
363 	__d_clear_type_and_inode(dentry);
364 	hlist_del_init(&dentry->d_u.d_alias);
365 	raw_write_seqcount_end(&dentry->d_seq);
366 	spin_unlock(&dentry->d_lock);
367 	spin_unlock(&inode->i_lock);
368 	if (!inode->i_nlink)
369 		fsnotify_inoderemove(inode);
370 	if (dentry->d_op && dentry->d_op->d_iput)
371 		dentry->d_op->d_iput(dentry, inode);
372 	else
373 		iput(inode);
374 }
375 
376 /*
377  * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry
378  * is in use - which includes both the "real" per-superblock
379  * LRU list _and_ the DCACHE_SHRINK_LIST use.
380  *
381  * The DCACHE_SHRINK_LIST bit is set whenever the dentry is
382  * on the shrink list (ie not on the superblock LRU list).
383  *
384  * The per-cpu "nr_dentry_unused" counters are updated with
385  * the DCACHE_LRU_LIST bit.
386  *
387  * The per-cpu "nr_dentry_negative" counters are only updated
388  * when deleted from or added to the per-superblock LRU list, not
389  * from/to the shrink list. That is to avoid an unneeded dec/inc
390  * pair when moving from LRU to shrink list in select_collect().
391  *
392  * These helper functions make sure we always follow the
393  * rules. d_lock must be held by the caller.
394  */
395 #define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x))
396 static void d_lru_add(struct dentry *dentry)
397 {
398 	D_FLAG_VERIFY(dentry, 0);
399 	dentry->d_flags |= DCACHE_LRU_LIST;
400 	this_cpu_inc(nr_dentry_unused);
401 	if (d_is_negative(dentry))
402 		this_cpu_inc(nr_dentry_negative);
403 	WARN_ON_ONCE(!list_lru_add(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
404 }
405 
406 static void d_lru_del(struct dentry *dentry)
407 {
408 	D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
409 	dentry->d_flags &= ~DCACHE_LRU_LIST;
410 	this_cpu_dec(nr_dentry_unused);
411 	if (d_is_negative(dentry))
412 		this_cpu_dec(nr_dentry_negative);
413 	WARN_ON_ONCE(!list_lru_del(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
414 }
415 
416 static void d_shrink_del(struct dentry *dentry)
417 {
418 	D_FLAG_VERIFY(dentry, DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
419 	list_del_init(&dentry->d_lru);
420 	dentry->d_flags &= ~(DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
421 	this_cpu_dec(nr_dentry_unused);
422 }
423 
424 static void d_shrink_add(struct dentry *dentry, struct list_head *list)
425 {
426 	D_FLAG_VERIFY(dentry, 0);
427 	list_add(&dentry->d_lru, list);
428 	dentry->d_flags |= DCACHE_SHRINK_LIST | DCACHE_LRU_LIST;
429 	this_cpu_inc(nr_dentry_unused);
430 }
431 
432 /*
433  * These can only be called under the global LRU lock, ie during the
434  * callback for freeing the LRU list. "isolate" removes it from the
435  * LRU lists entirely, while shrink_move moves it to the indicated
436  * private list.
437  */
438 static void d_lru_isolate(struct list_lru_one *lru, struct dentry *dentry)
439 {
440 	D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
441 	dentry->d_flags &= ~DCACHE_LRU_LIST;
442 	this_cpu_dec(nr_dentry_unused);
443 	if (d_is_negative(dentry))
444 		this_cpu_dec(nr_dentry_negative);
445 	list_lru_isolate(lru, &dentry->d_lru);
446 }
447 
448 static void d_lru_shrink_move(struct list_lru_one *lru, struct dentry *dentry,
449 			      struct list_head *list)
450 {
451 	D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
452 	dentry->d_flags |= DCACHE_SHRINK_LIST;
453 	if (d_is_negative(dentry))
454 		this_cpu_dec(nr_dentry_negative);
455 	list_lru_isolate_move(lru, &dentry->d_lru, list);
456 }
457 
458 /**
459  * d_drop - drop a dentry
460  * @dentry: dentry to drop
461  *
462  * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
463  * be found through a VFS lookup any more. Note that this is different from
464  * deleting the dentry - d_delete will try to mark the dentry negative if
465  * possible, giving a successful _negative_ lookup, while d_drop will
466  * just make the cache lookup fail.
467  *
468  * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
469  * reason (NFS timeouts or autofs deletes).
470  *
471  * __d_drop requires dentry->d_lock
472  * ___d_drop doesn't mark dentry as "unhashed"
473  *   (dentry->d_hash.pprev will be LIST_POISON2, not NULL).
474  */
475 static void ___d_drop(struct dentry *dentry)
476 {
477 	struct hlist_bl_head *b;
478 	/*
479 	 * Hashed dentries are normally on the dentry hashtable,
480 	 * with the exception of those newly allocated by
481 	 * d_obtain_root, which are always IS_ROOT:
482 	 */
483 	if (unlikely(IS_ROOT(dentry)))
484 		b = &dentry->d_sb->s_roots;
485 	else
486 		b = d_hash(dentry->d_name.hash);
487 
488 	hlist_bl_lock(b);
489 	__hlist_bl_del(&dentry->d_hash);
490 	hlist_bl_unlock(b);
491 }
492 
493 void __d_drop(struct dentry *dentry)
494 {
495 	if (!d_unhashed(dentry)) {
496 		___d_drop(dentry);
497 		dentry->d_hash.pprev = NULL;
498 		write_seqcount_invalidate(&dentry->d_seq);
499 	}
500 }
501 EXPORT_SYMBOL(__d_drop);
502 
503 void d_drop(struct dentry *dentry)
504 {
505 	spin_lock(&dentry->d_lock);
506 	__d_drop(dentry);
507 	spin_unlock(&dentry->d_lock);
508 }
509 EXPORT_SYMBOL(d_drop);
510 
511 static inline void dentry_unlist(struct dentry *dentry, struct dentry *parent)
512 {
513 	struct dentry *next;
514 	/*
515 	 * Inform d_walk() and shrink_dentry_list() that we are no longer
516 	 * attached to the dentry tree
517 	 */
518 	dentry->d_flags |= DCACHE_DENTRY_KILLED;
519 	if (unlikely(list_empty(&dentry->d_child)))
520 		return;
521 	__list_del_entry(&dentry->d_child);
522 	/*
523 	 * Cursors can move around the list of children.  While we'd been
524 	 * a normal list member, it didn't matter - ->d_child.next would've
525 	 * been updated.  However, from now on it won't be and for the
526 	 * things like d_walk() it might end up with a nasty surprise.
527 	 * Normally d_walk() doesn't care about cursors moving around -
528 	 * ->d_lock on parent prevents that and since a cursor has no children
529 	 * of its own, we get through it without ever unlocking the parent.
530 	 * There is one exception, though - if we ascend from a child that
531 	 * gets killed as soon as we unlock it, the next sibling is found
532 	 * using the value left in its ->d_child.next.  And if _that_
533 	 * pointed to a cursor, and cursor got moved (e.g. by lseek())
534 	 * before d_walk() regains parent->d_lock, we'll end up skipping
535 	 * everything the cursor had been moved past.
536 	 *
537 	 * Solution: make sure that the pointer left behind in ->d_child.next
538 	 * points to something that won't be moving around.  I.e. skip the
539 	 * cursors.
540 	 */
541 	while (dentry->d_child.next != &parent->d_subdirs) {
542 		next = list_entry(dentry->d_child.next, struct dentry, d_child);
543 		if (likely(!(next->d_flags & DCACHE_DENTRY_CURSOR)))
544 			break;
545 		dentry->d_child.next = next->d_child.next;
546 	}
547 }
548 
549 static void __dentry_kill(struct dentry *dentry)
550 {
551 	struct dentry *parent = NULL;
552 	bool can_free = true;
553 	if (!IS_ROOT(dentry))
554 		parent = dentry->d_parent;
555 
556 	/*
557 	 * The dentry is now unrecoverably dead to the world.
558 	 */
559 	lockref_mark_dead(&dentry->d_lockref);
560 
561 	/*
562 	 * inform the fs via d_prune that this dentry is about to be
563 	 * unhashed and destroyed.
564 	 */
565 	if (dentry->d_flags & DCACHE_OP_PRUNE)
566 		dentry->d_op->d_prune(dentry);
567 
568 	if (dentry->d_flags & DCACHE_LRU_LIST) {
569 		if (!(dentry->d_flags & DCACHE_SHRINK_LIST))
570 			d_lru_del(dentry);
571 	}
572 	/* if it was on the hash then remove it */
573 	__d_drop(dentry);
574 	dentry_unlist(dentry, parent);
575 	if (parent)
576 		spin_unlock(&parent->d_lock);
577 	if (dentry->d_inode)
578 		dentry_unlink_inode(dentry);
579 	else
580 		spin_unlock(&dentry->d_lock);
581 	this_cpu_dec(nr_dentry);
582 	if (dentry->d_op && dentry->d_op->d_release)
583 		dentry->d_op->d_release(dentry);
584 
585 	spin_lock(&dentry->d_lock);
586 	if (dentry->d_flags & DCACHE_SHRINK_LIST) {
587 		dentry->d_flags |= DCACHE_MAY_FREE;
588 		can_free = false;
589 	}
590 	spin_unlock(&dentry->d_lock);
591 	if (likely(can_free))
592 		dentry_free(dentry);
593 	cond_resched();
594 }
595 
596 static struct dentry *__lock_parent(struct dentry *dentry)
597 {
598 	struct dentry *parent;
599 	rcu_read_lock();
600 	spin_unlock(&dentry->d_lock);
601 again:
602 	parent = READ_ONCE(dentry->d_parent);
603 	spin_lock(&parent->d_lock);
604 	/*
605 	 * We can't blindly lock dentry until we are sure
606 	 * that we won't violate the locking order.
607 	 * Any changes of dentry->d_parent must have
608 	 * been done with parent->d_lock held, so
609 	 * spin_lock() above is enough of a barrier
610 	 * for checking if it's still our child.
611 	 */
612 	if (unlikely(parent != dentry->d_parent)) {
613 		spin_unlock(&parent->d_lock);
614 		goto again;
615 	}
616 	rcu_read_unlock();
617 	if (parent != dentry)
618 		spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
619 	else
620 		parent = NULL;
621 	return parent;
622 }
623 
624 static inline struct dentry *lock_parent(struct dentry *dentry)
625 {
626 	struct dentry *parent = dentry->d_parent;
627 	if (IS_ROOT(dentry))
628 		return NULL;
629 	if (likely(spin_trylock(&parent->d_lock)))
630 		return parent;
631 	return __lock_parent(dentry);
632 }
633 
634 static inline bool retain_dentry(struct dentry *dentry)
635 {
636 	WARN_ON(d_in_lookup(dentry));
637 
638 	/* Unreachable? Get rid of it */
639 	if (unlikely(d_unhashed(dentry)))
640 		return false;
641 
642 	if (unlikely(dentry->d_flags & DCACHE_DISCONNECTED))
643 		return false;
644 
645 	if (unlikely(dentry->d_flags & DCACHE_OP_DELETE)) {
646 		if (dentry->d_op->d_delete(dentry))
647 			return false;
648 	}
649 	/* retain; LRU fodder */
650 	dentry->d_lockref.count--;
651 	if (unlikely(!(dentry->d_flags & DCACHE_LRU_LIST)))
652 		d_lru_add(dentry);
653 	else if (unlikely(!(dentry->d_flags & DCACHE_REFERENCED)))
654 		dentry->d_flags |= DCACHE_REFERENCED;
655 	return true;
656 }
657 
658 /*
659  * Finish off a dentry we've decided to kill.
660  * dentry->d_lock must be held, returns with it unlocked.
661  * Returns dentry requiring refcount drop, or NULL if we're done.
662  */
663 static struct dentry *dentry_kill(struct dentry *dentry)
664 	__releases(dentry->d_lock)
665 {
666 	struct inode *inode = dentry->d_inode;
667 	struct dentry *parent = NULL;
668 
669 	if (inode && unlikely(!spin_trylock(&inode->i_lock)))
670 		goto slow_positive;
671 
672 	if (!IS_ROOT(dentry)) {
673 		parent = dentry->d_parent;
674 		if (unlikely(!spin_trylock(&parent->d_lock))) {
675 			parent = __lock_parent(dentry);
676 			if (likely(inode || !dentry->d_inode))
677 				goto got_locks;
678 			/* negative that became positive */
679 			if (parent)
680 				spin_unlock(&parent->d_lock);
681 			inode = dentry->d_inode;
682 			goto slow_positive;
683 		}
684 	}
685 	__dentry_kill(dentry);
686 	return parent;
687 
688 slow_positive:
689 	spin_unlock(&dentry->d_lock);
690 	spin_lock(&inode->i_lock);
691 	spin_lock(&dentry->d_lock);
692 	parent = lock_parent(dentry);
693 got_locks:
694 	if (unlikely(dentry->d_lockref.count != 1)) {
695 		dentry->d_lockref.count--;
696 	} else if (likely(!retain_dentry(dentry))) {
697 		__dentry_kill(dentry);
698 		return parent;
699 	}
700 	/* we are keeping it, after all */
701 	if (inode)
702 		spin_unlock(&inode->i_lock);
703 	if (parent)
704 		spin_unlock(&parent->d_lock);
705 	spin_unlock(&dentry->d_lock);
706 	return NULL;
707 }
708 
709 /*
710  * Try to do a lockless dput(), and return whether that was successful.
711  *
712  * If unsuccessful, we return false, having already taken the dentry lock.
713  *
714  * The caller needs to hold the RCU read lock, so that the dentry is
715  * guaranteed to stay around even if the refcount goes down to zero!
716  */
717 static inline bool fast_dput(struct dentry *dentry)
718 {
719 	int ret;
720 	unsigned int d_flags;
721 
722 	/*
723 	 * If we have a d_op->d_delete() operation, we sould not
724 	 * let the dentry count go to zero, so use "put_or_lock".
725 	 */
726 	if (unlikely(dentry->d_flags & DCACHE_OP_DELETE))
727 		return lockref_put_or_lock(&dentry->d_lockref);
728 
729 	/*
730 	 * .. otherwise, we can try to just decrement the
731 	 * lockref optimistically.
732 	 */
733 	ret = lockref_put_return(&dentry->d_lockref);
734 
735 	/*
736 	 * If the lockref_put_return() failed due to the lock being held
737 	 * by somebody else, the fast path has failed. We will need to
738 	 * get the lock, and then check the count again.
739 	 */
740 	if (unlikely(ret < 0)) {
741 		spin_lock(&dentry->d_lock);
742 		if (dentry->d_lockref.count > 1) {
743 			dentry->d_lockref.count--;
744 			spin_unlock(&dentry->d_lock);
745 			return true;
746 		}
747 		return false;
748 	}
749 
750 	/*
751 	 * If we weren't the last ref, we're done.
752 	 */
753 	if (ret)
754 		return true;
755 
756 	/*
757 	 * Careful, careful. The reference count went down
758 	 * to zero, but we don't hold the dentry lock, so
759 	 * somebody else could get it again, and do another
760 	 * dput(), and we need to not race with that.
761 	 *
762 	 * However, there is a very special and common case
763 	 * where we don't care, because there is nothing to
764 	 * do: the dentry is still hashed, it does not have
765 	 * a 'delete' op, and it's referenced and already on
766 	 * the LRU list.
767 	 *
768 	 * NOTE! Since we aren't locked, these values are
769 	 * not "stable". However, it is sufficient that at
770 	 * some point after we dropped the reference the
771 	 * dentry was hashed and the flags had the proper
772 	 * value. Other dentry users may have re-gotten
773 	 * a reference to the dentry and change that, but
774 	 * our work is done - we can leave the dentry
775 	 * around with a zero refcount.
776 	 */
777 	smp_rmb();
778 	d_flags = READ_ONCE(dentry->d_flags);
779 	d_flags &= DCACHE_REFERENCED | DCACHE_LRU_LIST | DCACHE_DISCONNECTED;
780 
781 	/* Nothing to do? Dropping the reference was all we needed? */
782 	if (d_flags == (DCACHE_REFERENCED | DCACHE_LRU_LIST) && !d_unhashed(dentry))
783 		return true;
784 
785 	/*
786 	 * Not the fast normal case? Get the lock. We've already decremented
787 	 * the refcount, but we'll need to re-check the situation after
788 	 * getting the lock.
789 	 */
790 	spin_lock(&dentry->d_lock);
791 
792 	/*
793 	 * Did somebody else grab a reference to it in the meantime, and
794 	 * we're no longer the last user after all? Alternatively, somebody
795 	 * else could have killed it and marked it dead. Either way, we
796 	 * don't need to do anything else.
797 	 */
798 	if (dentry->d_lockref.count) {
799 		spin_unlock(&dentry->d_lock);
800 		return true;
801 	}
802 
803 	/*
804 	 * Re-get the reference we optimistically dropped. We hold the
805 	 * lock, and we just tested that it was zero, so we can just
806 	 * set it to 1.
807 	 */
808 	dentry->d_lockref.count = 1;
809 	return false;
810 }
811 
812 
813 /*
814  * This is dput
815  *
816  * This is complicated by the fact that we do not want to put
817  * dentries that are no longer on any hash chain on the unused
818  * list: we'd much rather just get rid of them immediately.
819  *
820  * However, that implies that we have to traverse the dentry
821  * tree upwards to the parents which might _also_ now be
822  * scheduled for deletion (it may have been only waiting for
823  * its last child to go away).
824  *
825  * This tail recursion is done by hand as we don't want to depend
826  * on the compiler to always get this right (gcc generally doesn't).
827  * Real recursion would eat up our stack space.
828  */
829 
830 /*
831  * dput - release a dentry
832  * @dentry: dentry to release
833  *
834  * Release a dentry. This will drop the usage count and if appropriate
835  * call the dentry unlink method as well as removing it from the queues and
836  * releasing its resources. If the parent dentries were scheduled for release
837  * they too may now get deleted.
838  */
839 void dput(struct dentry *dentry)
840 {
841 	while (dentry) {
842 		might_sleep();
843 
844 		rcu_read_lock();
845 		if (likely(fast_dput(dentry))) {
846 			rcu_read_unlock();
847 			return;
848 		}
849 
850 		/* Slow case: now with the dentry lock held */
851 		rcu_read_unlock();
852 
853 		if (likely(retain_dentry(dentry))) {
854 			spin_unlock(&dentry->d_lock);
855 			return;
856 		}
857 
858 		dentry = dentry_kill(dentry);
859 	}
860 }
861 EXPORT_SYMBOL(dput);
862 
863 
864 /* This must be called with d_lock held */
865 static inline void __dget_dlock(struct dentry *dentry)
866 {
867 	dentry->d_lockref.count++;
868 }
869 
870 static inline void __dget(struct dentry *dentry)
871 {
872 	lockref_get(&dentry->d_lockref);
873 }
874 
875 struct dentry *dget_parent(struct dentry *dentry)
876 {
877 	int gotref;
878 	struct dentry *ret;
879 
880 	/*
881 	 * Do optimistic parent lookup without any
882 	 * locking.
883 	 */
884 	rcu_read_lock();
885 	ret = READ_ONCE(dentry->d_parent);
886 	gotref = lockref_get_not_zero(&ret->d_lockref);
887 	rcu_read_unlock();
888 	if (likely(gotref)) {
889 		if (likely(ret == READ_ONCE(dentry->d_parent)))
890 			return ret;
891 		dput(ret);
892 	}
893 
894 repeat:
895 	/*
896 	 * Don't need rcu_dereference because we re-check it was correct under
897 	 * the lock.
898 	 */
899 	rcu_read_lock();
900 	ret = dentry->d_parent;
901 	spin_lock(&ret->d_lock);
902 	if (unlikely(ret != dentry->d_parent)) {
903 		spin_unlock(&ret->d_lock);
904 		rcu_read_unlock();
905 		goto repeat;
906 	}
907 	rcu_read_unlock();
908 	BUG_ON(!ret->d_lockref.count);
909 	ret->d_lockref.count++;
910 	spin_unlock(&ret->d_lock);
911 	return ret;
912 }
913 EXPORT_SYMBOL(dget_parent);
914 
915 static struct dentry * __d_find_any_alias(struct inode *inode)
916 {
917 	struct dentry *alias;
918 
919 	if (hlist_empty(&inode->i_dentry))
920 		return NULL;
921 	alias = hlist_entry(inode->i_dentry.first, struct dentry, d_u.d_alias);
922 	__dget(alias);
923 	return alias;
924 }
925 
926 /**
927  * d_find_any_alias - find any alias for a given inode
928  * @inode: inode to find an alias for
929  *
930  * If any aliases exist for the given inode, take and return a
931  * reference for one of them.  If no aliases exist, return %NULL.
932  */
933 struct dentry *d_find_any_alias(struct inode *inode)
934 {
935 	struct dentry *de;
936 
937 	spin_lock(&inode->i_lock);
938 	de = __d_find_any_alias(inode);
939 	spin_unlock(&inode->i_lock);
940 	return de;
941 }
942 EXPORT_SYMBOL(d_find_any_alias);
943 
944 /**
945  * d_find_alias - grab a hashed alias of inode
946  * @inode: inode in question
947  *
948  * If inode has a hashed alias, or is a directory and has any alias,
949  * acquire the reference to alias and return it. Otherwise return NULL.
950  * Notice that if inode is a directory there can be only one alias and
951  * it can be unhashed only if it has no children, or if it is the root
952  * of a filesystem, or if the directory was renamed and d_revalidate
953  * was the first vfs operation to notice.
954  *
955  * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
956  * any other hashed alias over that one.
957  */
958 static struct dentry *__d_find_alias(struct inode *inode)
959 {
960 	struct dentry *alias;
961 
962 	if (S_ISDIR(inode->i_mode))
963 		return __d_find_any_alias(inode);
964 
965 	hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
966 		spin_lock(&alias->d_lock);
967  		if (!d_unhashed(alias)) {
968 			__dget_dlock(alias);
969 			spin_unlock(&alias->d_lock);
970 			return alias;
971 		}
972 		spin_unlock(&alias->d_lock);
973 	}
974 	return NULL;
975 }
976 
977 struct dentry *d_find_alias(struct inode *inode)
978 {
979 	struct dentry *de = NULL;
980 
981 	if (!hlist_empty(&inode->i_dentry)) {
982 		spin_lock(&inode->i_lock);
983 		de = __d_find_alias(inode);
984 		spin_unlock(&inode->i_lock);
985 	}
986 	return de;
987 }
988 EXPORT_SYMBOL(d_find_alias);
989 
990 /*
991  *	Try to kill dentries associated with this inode.
992  * WARNING: you must own a reference to inode.
993  */
994 void d_prune_aliases(struct inode *inode)
995 {
996 	struct dentry *dentry;
997 restart:
998 	spin_lock(&inode->i_lock);
999 	hlist_for_each_entry(dentry, &inode->i_dentry, d_u.d_alias) {
1000 		spin_lock(&dentry->d_lock);
1001 		if (!dentry->d_lockref.count) {
1002 			struct dentry *parent = lock_parent(dentry);
1003 			if (likely(!dentry->d_lockref.count)) {
1004 				__dentry_kill(dentry);
1005 				dput(parent);
1006 				goto restart;
1007 			}
1008 			if (parent)
1009 				spin_unlock(&parent->d_lock);
1010 		}
1011 		spin_unlock(&dentry->d_lock);
1012 	}
1013 	spin_unlock(&inode->i_lock);
1014 }
1015 EXPORT_SYMBOL(d_prune_aliases);
1016 
1017 /*
1018  * Lock a dentry from shrink list.
1019  * Called under rcu_read_lock() and dentry->d_lock; the former
1020  * guarantees that nothing we access will be freed under us.
1021  * Note that dentry is *not* protected from concurrent dentry_kill(),
1022  * d_delete(), etc.
1023  *
1024  * Return false if dentry has been disrupted or grabbed, leaving
1025  * the caller to kick it off-list.  Otherwise, return true and have
1026  * that dentry's inode and parent both locked.
1027  */
1028 static bool shrink_lock_dentry(struct dentry *dentry)
1029 {
1030 	struct inode *inode;
1031 	struct dentry *parent;
1032 
1033 	if (dentry->d_lockref.count)
1034 		return false;
1035 
1036 	inode = dentry->d_inode;
1037 	if (inode && unlikely(!spin_trylock(&inode->i_lock))) {
1038 		spin_unlock(&dentry->d_lock);
1039 		spin_lock(&inode->i_lock);
1040 		spin_lock(&dentry->d_lock);
1041 		if (unlikely(dentry->d_lockref.count))
1042 			goto out;
1043 		/* changed inode means that somebody had grabbed it */
1044 		if (unlikely(inode != dentry->d_inode))
1045 			goto out;
1046 	}
1047 
1048 	parent = dentry->d_parent;
1049 	if (IS_ROOT(dentry) || likely(spin_trylock(&parent->d_lock)))
1050 		return true;
1051 
1052 	spin_unlock(&dentry->d_lock);
1053 	spin_lock(&parent->d_lock);
1054 	if (unlikely(parent != dentry->d_parent)) {
1055 		spin_unlock(&parent->d_lock);
1056 		spin_lock(&dentry->d_lock);
1057 		goto out;
1058 	}
1059 	spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1060 	if (likely(!dentry->d_lockref.count))
1061 		return true;
1062 	spin_unlock(&parent->d_lock);
1063 out:
1064 	if (inode)
1065 		spin_unlock(&inode->i_lock);
1066 	return false;
1067 }
1068 
1069 static void shrink_dentry_list(struct list_head *list)
1070 {
1071 	while (!list_empty(list)) {
1072 		struct dentry *dentry, *parent;
1073 
1074 		dentry = list_entry(list->prev, struct dentry, d_lru);
1075 		spin_lock(&dentry->d_lock);
1076 		rcu_read_lock();
1077 		if (!shrink_lock_dentry(dentry)) {
1078 			bool can_free = false;
1079 			rcu_read_unlock();
1080 			d_shrink_del(dentry);
1081 			if (dentry->d_lockref.count < 0)
1082 				can_free = dentry->d_flags & DCACHE_MAY_FREE;
1083 			spin_unlock(&dentry->d_lock);
1084 			if (can_free)
1085 				dentry_free(dentry);
1086 			continue;
1087 		}
1088 		rcu_read_unlock();
1089 		d_shrink_del(dentry);
1090 		parent = dentry->d_parent;
1091 		__dentry_kill(dentry);
1092 		if (parent == dentry)
1093 			continue;
1094 		/*
1095 		 * We need to prune ancestors too. This is necessary to prevent
1096 		 * quadratic behavior of shrink_dcache_parent(), but is also
1097 		 * expected to be beneficial in reducing dentry cache
1098 		 * fragmentation.
1099 		 */
1100 		dentry = parent;
1101 		while (dentry && !lockref_put_or_lock(&dentry->d_lockref))
1102 			dentry = dentry_kill(dentry);
1103 	}
1104 }
1105 
1106 static enum lru_status dentry_lru_isolate(struct list_head *item,
1107 		struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
1108 {
1109 	struct list_head *freeable = arg;
1110 	struct dentry	*dentry = container_of(item, struct dentry, d_lru);
1111 
1112 
1113 	/*
1114 	 * we are inverting the lru lock/dentry->d_lock here,
1115 	 * so use a trylock. If we fail to get the lock, just skip
1116 	 * it
1117 	 */
1118 	if (!spin_trylock(&dentry->d_lock))
1119 		return LRU_SKIP;
1120 
1121 	/*
1122 	 * Referenced dentries are still in use. If they have active
1123 	 * counts, just remove them from the LRU. Otherwise give them
1124 	 * another pass through the LRU.
1125 	 */
1126 	if (dentry->d_lockref.count) {
1127 		d_lru_isolate(lru, dentry);
1128 		spin_unlock(&dentry->d_lock);
1129 		return LRU_REMOVED;
1130 	}
1131 
1132 	if (dentry->d_flags & DCACHE_REFERENCED) {
1133 		dentry->d_flags &= ~DCACHE_REFERENCED;
1134 		spin_unlock(&dentry->d_lock);
1135 
1136 		/*
1137 		 * The list move itself will be made by the common LRU code. At
1138 		 * this point, we've dropped the dentry->d_lock but keep the
1139 		 * lru lock. This is safe to do, since every list movement is
1140 		 * protected by the lru lock even if both locks are held.
1141 		 *
1142 		 * This is guaranteed by the fact that all LRU management
1143 		 * functions are intermediated by the LRU API calls like
1144 		 * list_lru_add and list_lru_del. List movement in this file
1145 		 * only ever occur through this functions or through callbacks
1146 		 * like this one, that are called from the LRU API.
1147 		 *
1148 		 * The only exceptions to this are functions like
1149 		 * shrink_dentry_list, and code that first checks for the
1150 		 * DCACHE_SHRINK_LIST flag.  Those are guaranteed to be
1151 		 * operating only with stack provided lists after they are
1152 		 * properly isolated from the main list.  It is thus, always a
1153 		 * local access.
1154 		 */
1155 		return LRU_ROTATE;
1156 	}
1157 
1158 	d_lru_shrink_move(lru, dentry, freeable);
1159 	spin_unlock(&dentry->d_lock);
1160 
1161 	return LRU_REMOVED;
1162 }
1163 
1164 /**
1165  * prune_dcache_sb - shrink the dcache
1166  * @sb: superblock
1167  * @sc: shrink control, passed to list_lru_shrink_walk()
1168  *
1169  * Attempt to shrink the superblock dcache LRU by @sc->nr_to_scan entries. This
1170  * is done when we need more memory and called from the superblock shrinker
1171  * function.
1172  *
1173  * This function may fail to free any resources if all the dentries are in
1174  * use.
1175  */
1176 long prune_dcache_sb(struct super_block *sb, struct shrink_control *sc)
1177 {
1178 	LIST_HEAD(dispose);
1179 	long freed;
1180 
1181 	freed = list_lru_shrink_walk(&sb->s_dentry_lru, sc,
1182 				     dentry_lru_isolate, &dispose);
1183 	shrink_dentry_list(&dispose);
1184 	return freed;
1185 }
1186 
1187 static enum lru_status dentry_lru_isolate_shrink(struct list_head *item,
1188 		struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
1189 {
1190 	struct list_head *freeable = arg;
1191 	struct dentry	*dentry = container_of(item, struct dentry, d_lru);
1192 
1193 	/*
1194 	 * we are inverting the lru lock/dentry->d_lock here,
1195 	 * so use a trylock. If we fail to get the lock, just skip
1196 	 * it
1197 	 */
1198 	if (!spin_trylock(&dentry->d_lock))
1199 		return LRU_SKIP;
1200 
1201 	d_lru_shrink_move(lru, dentry, freeable);
1202 	spin_unlock(&dentry->d_lock);
1203 
1204 	return LRU_REMOVED;
1205 }
1206 
1207 
1208 /**
1209  * shrink_dcache_sb - shrink dcache for a superblock
1210  * @sb: superblock
1211  *
1212  * Shrink the dcache for the specified super block. This is used to free
1213  * the dcache before unmounting a file system.
1214  */
1215 void shrink_dcache_sb(struct super_block *sb)
1216 {
1217 	do {
1218 		LIST_HEAD(dispose);
1219 
1220 		list_lru_walk(&sb->s_dentry_lru,
1221 			dentry_lru_isolate_shrink, &dispose, 1024);
1222 		shrink_dentry_list(&dispose);
1223 	} while (list_lru_count(&sb->s_dentry_lru) > 0);
1224 }
1225 EXPORT_SYMBOL(shrink_dcache_sb);
1226 
1227 /**
1228  * enum d_walk_ret - action to talke during tree walk
1229  * @D_WALK_CONTINUE:	contrinue walk
1230  * @D_WALK_QUIT:	quit walk
1231  * @D_WALK_NORETRY:	quit when retry is needed
1232  * @D_WALK_SKIP:	skip this dentry and its children
1233  */
1234 enum d_walk_ret {
1235 	D_WALK_CONTINUE,
1236 	D_WALK_QUIT,
1237 	D_WALK_NORETRY,
1238 	D_WALK_SKIP,
1239 };
1240 
1241 /**
1242  * d_walk - walk the dentry tree
1243  * @parent:	start of walk
1244  * @data:	data passed to @enter() and @finish()
1245  * @enter:	callback when first entering the dentry
1246  *
1247  * The @enter() callbacks are called with d_lock held.
1248  */
1249 static void d_walk(struct dentry *parent, void *data,
1250 		   enum d_walk_ret (*enter)(void *, struct dentry *))
1251 {
1252 	struct dentry *this_parent;
1253 	struct list_head *next;
1254 	unsigned seq = 0;
1255 	enum d_walk_ret ret;
1256 	bool retry = true;
1257 
1258 again:
1259 	read_seqbegin_or_lock(&rename_lock, &seq);
1260 	this_parent = parent;
1261 	spin_lock(&this_parent->d_lock);
1262 
1263 	ret = enter(data, this_parent);
1264 	switch (ret) {
1265 	case D_WALK_CONTINUE:
1266 		break;
1267 	case D_WALK_QUIT:
1268 	case D_WALK_SKIP:
1269 		goto out_unlock;
1270 	case D_WALK_NORETRY:
1271 		retry = false;
1272 		break;
1273 	}
1274 repeat:
1275 	next = this_parent->d_subdirs.next;
1276 resume:
1277 	while (next != &this_parent->d_subdirs) {
1278 		struct list_head *tmp = next;
1279 		struct dentry *dentry = list_entry(tmp, struct dentry, d_child);
1280 		next = tmp->next;
1281 
1282 		if (unlikely(dentry->d_flags & DCACHE_DENTRY_CURSOR))
1283 			continue;
1284 
1285 		spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1286 
1287 		ret = enter(data, dentry);
1288 		switch (ret) {
1289 		case D_WALK_CONTINUE:
1290 			break;
1291 		case D_WALK_QUIT:
1292 			spin_unlock(&dentry->d_lock);
1293 			goto out_unlock;
1294 		case D_WALK_NORETRY:
1295 			retry = false;
1296 			break;
1297 		case D_WALK_SKIP:
1298 			spin_unlock(&dentry->d_lock);
1299 			continue;
1300 		}
1301 
1302 		if (!list_empty(&dentry->d_subdirs)) {
1303 			spin_unlock(&this_parent->d_lock);
1304 			spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1305 			this_parent = dentry;
1306 			spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1307 			goto repeat;
1308 		}
1309 		spin_unlock(&dentry->d_lock);
1310 	}
1311 	/*
1312 	 * All done at this level ... ascend and resume the search.
1313 	 */
1314 	rcu_read_lock();
1315 ascend:
1316 	if (this_parent != parent) {
1317 		struct dentry *child = this_parent;
1318 		this_parent = child->d_parent;
1319 
1320 		spin_unlock(&child->d_lock);
1321 		spin_lock(&this_parent->d_lock);
1322 
1323 		/* might go back up the wrong parent if we have had a rename. */
1324 		if (need_seqretry(&rename_lock, seq))
1325 			goto rename_retry;
1326 		/* go into the first sibling still alive */
1327 		do {
1328 			next = child->d_child.next;
1329 			if (next == &this_parent->d_subdirs)
1330 				goto ascend;
1331 			child = list_entry(next, struct dentry, d_child);
1332 		} while (unlikely(child->d_flags & DCACHE_DENTRY_KILLED));
1333 		rcu_read_unlock();
1334 		goto resume;
1335 	}
1336 	if (need_seqretry(&rename_lock, seq))
1337 		goto rename_retry;
1338 	rcu_read_unlock();
1339 
1340 out_unlock:
1341 	spin_unlock(&this_parent->d_lock);
1342 	done_seqretry(&rename_lock, seq);
1343 	return;
1344 
1345 rename_retry:
1346 	spin_unlock(&this_parent->d_lock);
1347 	rcu_read_unlock();
1348 	BUG_ON(seq & 1);
1349 	if (!retry)
1350 		return;
1351 	seq = 1;
1352 	goto again;
1353 }
1354 
1355 struct check_mount {
1356 	struct vfsmount *mnt;
1357 	unsigned int mounted;
1358 };
1359 
1360 static enum d_walk_ret path_check_mount(void *data, struct dentry *dentry)
1361 {
1362 	struct check_mount *info = data;
1363 	struct path path = { .mnt = info->mnt, .dentry = dentry };
1364 
1365 	if (likely(!d_mountpoint(dentry)))
1366 		return D_WALK_CONTINUE;
1367 	if (__path_is_mountpoint(&path)) {
1368 		info->mounted = 1;
1369 		return D_WALK_QUIT;
1370 	}
1371 	return D_WALK_CONTINUE;
1372 }
1373 
1374 /**
1375  * path_has_submounts - check for mounts over a dentry in the
1376  *                      current namespace.
1377  * @parent: path to check.
1378  *
1379  * Return true if the parent or its subdirectories contain
1380  * a mount point in the current namespace.
1381  */
1382 int path_has_submounts(const struct path *parent)
1383 {
1384 	struct check_mount data = { .mnt = parent->mnt, .mounted = 0 };
1385 
1386 	read_seqlock_excl(&mount_lock);
1387 	d_walk(parent->dentry, &data, path_check_mount);
1388 	read_sequnlock_excl(&mount_lock);
1389 
1390 	return data.mounted;
1391 }
1392 EXPORT_SYMBOL(path_has_submounts);
1393 
1394 /*
1395  * Called by mount code to set a mountpoint and check if the mountpoint is
1396  * reachable (e.g. NFS can unhash a directory dentry and then the complete
1397  * subtree can become unreachable).
1398  *
1399  * Only one of d_invalidate() and d_set_mounted() must succeed.  For
1400  * this reason take rename_lock and d_lock on dentry and ancestors.
1401  */
1402 int d_set_mounted(struct dentry *dentry)
1403 {
1404 	struct dentry *p;
1405 	int ret = -ENOENT;
1406 	write_seqlock(&rename_lock);
1407 	for (p = dentry->d_parent; !IS_ROOT(p); p = p->d_parent) {
1408 		/* Need exclusion wrt. d_invalidate() */
1409 		spin_lock(&p->d_lock);
1410 		if (unlikely(d_unhashed(p))) {
1411 			spin_unlock(&p->d_lock);
1412 			goto out;
1413 		}
1414 		spin_unlock(&p->d_lock);
1415 	}
1416 	spin_lock(&dentry->d_lock);
1417 	if (!d_unlinked(dentry)) {
1418 		ret = -EBUSY;
1419 		if (!d_mountpoint(dentry)) {
1420 			dentry->d_flags |= DCACHE_MOUNTED;
1421 			ret = 0;
1422 		}
1423 	}
1424  	spin_unlock(&dentry->d_lock);
1425 out:
1426 	write_sequnlock(&rename_lock);
1427 	return ret;
1428 }
1429 
1430 /*
1431  * Search the dentry child list of the specified parent,
1432  * and move any unused dentries to the end of the unused
1433  * list for prune_dcache(). We descend to the next level
1434  * whenever the d_subdirs list is non-empty and continue
1435  * searching.
1436  *
1437  * It returns zero iff there are no unused children,
1438  * otherwise  it returns the number of children moved to
1439  * the end of the unused list. This may not be the total
1440  * number of unused children, because select_parent can
1441  * drop the lock and return early due to latency
1442  * constraints.
1443  */
1444 
1445 struct select_data {
1446 	struct dentry *start;
1447 	struct list_head dispose;
1448 	int found;
1449 };
1450 
1451 static enum d_walk_ret select_collect(void *_data, struct dentry *dentry)
1452 {
1453 	struct select_data *data = _data;
1454 	enum d_walk_ret ret = D_WALK_CONTINUE;
1455 
1456 	if (data->start == dentry)
1457 		goto out;
1458 
1459 	if (dentry->d_flags & DCACHE_SHRINK_LIST) {
1460 		data->found++;
1461 	} else {
1462 		if (dentry->d_flags & DCACHE_LRU_LIST)
1463 			d_lru_del(dentry);
1464 		if (!dentry->d_lockref.count) {
1465 			d_shrink_add(dentry, &data->dispose);
1466 			data->found++;
1467 		}
1468 	}
1469 	/*
1470 	 * We can return to the caller if we have found some (this
1471 	 * ensures forward progress). We'll be coming back to find
1472 	 * the rest.
1473 	 */
1474 	if (!list_empty(&data->dispose))
1475 		ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY;
1476 out:
1477 	return ret;
1478 }
1479 
1480 /**
1481  * shrink_dcache_parent - prune dcache
1482  * @parent: parent of entries to prune
1483  *
1484  * Prune the dcache to remove unused children of the parent dentry.
1485  */
1486 void shrink_dcache_parent(struct dentry *parent)
1487 {
1488 	for (;;) {
1489 		struct select_data data;
1490 
1491 		INIT_LIST_HEAD(&data.dispose);
1492 		data.start = parent;
1493 		data.found = 0;
1494 
1495 		d_walk(parent, &data, select_collect);
1496 
1497 		if (!list_empty(&data.dispose)) {
1498 			shrink_dentry_list(&data.dispose);
1499 			continue;
1500 		}
1501 
1502 		cond_resched();
1503 		if (!data.found)
1504 			break;
1505 	}
1506 }
1507 EXPORT_SYMBOL(shrink_dcache_parent);
1508 
1509 static enum d_walk_ret umount_check(void *_data, struct dentry *dentry)
1510 {
1511 	/* it has busy descendents; complain about those instead */
1512 	if (!list_empty(&dentry->d_subdirs))
1513 		return D_WALK_CONTINUE;
1514 
1515 	/* root with refcount 1 is fine */
1516 	if (dentry == _data && dentry->d_lockref.count == 1)
1517 		return D_WALK_CONTINUE;
1518 
1519 	printk(KERN_ERR "BUG: Dentry %p{i=%lx,n=%pd} "
1520 			" still in use (%d) [unmount of %s %s]\n",
1521 		       dentry,
1522 		       dentry->d_inode ?
1523 		       dentry->d_inode->i_ino : 0UL,
1524 		       dentry,
1525 		       dentry->d_lockref.count,
1526 		       dentry->d_sb->s_type->name,
1527 		       dentry->d_sb->s_id);
1528 	WARN_ON(1);
1529 	return D_WALK_CONTINUE;
1530 }
1531 
1532 static void do_one_tree(struct dentry *dentry)
1533 {
1534 	shrink_dcache_parent(dentry);
1535 	d_walk(dentry, dentry, umount_check);
1536 	d_drop(dentry);
1537 	dput(dentry);
1538 }
1539 
1540 /*
1541  * destroy the dentries attached to a superblock on unmounting
1542  */
1543 void shrink_dcache_for_umount(struct super_block *sb)
1544 {
1545 	struct dentry *dentry;
1546 
1547 	WARN(down_read_trylock(&sb->s_umount), "s_umount should've been locked");
1548 
1549 	dentry = sb->s_root;
1550 	sb->s_root = NULL;
1551 	do_one_tree(dentry);
1552 
1553 	while (!hlist_bl_empty(&sb->s_roots)) {
1554 		dentry = dget(hlist_bl_entry(hlist_bl_first(&sb->s_roots), struct dentry, d_hash));
1555 		do_one_tree(dentry);
1556 	}
1557 }
1558 
1559 static enum d_walk_ret find_submount(void *_data, struct dentry *dentry)
1560 {
1561 	struct dentry **victim = _data;
1562 	if (d_mountpoint(dentry)) {
1563 		__dget_dlock(dentry);
1564 		*victim = dentry;
1565 		return D_WALK_QUIT;
1566 	}
1567 	return D_WALK_CONTINUE;
1568 }
1569 
1570 /**
1571  * d_invalidate - detach submounts, prune dcache, and drop
1572  * @dentry: dentry to invalidate (aka detach, prune and drop)
1573  */
1574 void d_invalidate(struct dentry *dentry)
1575 {
1576 	bool had_submounts = false;
1577 	spin_lock(&dentry->d_lock);
1578 	if (d_unhashed(dentry)) {
1579 		spin_unlock(&dentry->d_lock);
1580 		return;
1581 	}
1582 	__d_drop(dentry);
1583 	spin_unlock(&dentry->d_lock);
1584 
1585 	/* Negative dentries can be dropped without further checks */
1586 	if (!dentry->d_inode)
1587 		return;
1588 
1589 	shrink_dcache_parent(dentry);
1590 	for (;;) {
1591 		struct dentry *victim = NULL;
1592 		d_walk(dentry, &victim, find_submount);
1593 		if (!victim) {
1594 			if (had_submounts)
1595 				shrink_dcache_parent(dentry);
1596 			return;
1597 		}
1598 		had_submounts = true;
1599 		detach_mounts(victim);
1600 		dput(victim);
1601 	}
1602 }
1603 EXPORT_SYMBOL(d_invalidate);
1604 
1605 /**
1606  * __d_alloc	-	allocate a dcache entry
1607  * @sb: filesystem it will belong to
1608  * @name: qstr of the name
1609  *
1610  * Allocates a dentry. It returns %NULL if there is insufficient memory
1611  * available. On a success the dentry is returned. The name passed in is
1612  * copied and the copy passed in may be reused after this call.
1613  */
1614 
1615 struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name)
1616 {
1617 	struct dentry *dentry;
1618 	char *dname;
1619 	int err;
1620 
1621 	dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
1622 	if (!dentry)
1623 		return NULL;
1624 
1625 	/*
1626 	 * We guarantee that the inline name is always NUL-terminated.
1627 	 * This way the memcpy() done by the name switching in rename
1628 	 * will still always have a NUL at the end, even if we might
1629 	 * be overwriting an internal NUL character
1630 	 */
1631 	dentry->d_iname[DNAME_INLINE_LEN-1] = 0;
1632 	if (unlikely(!name)) {
1633 		name = &slash_name;
1634 		dname = dentry->d_iname;
1635 	} else if (name->len > DNAME_INLINE_LEN-1) {
1636 		size_t size = offsetof(struct external_name, name[1]);
1637 		struct external_name *p = kmalloc(size + name->len,
1638 						  GFP_KERNEL_ACCOUNT |
1639 						  __GFP_RECLAIMABLE);
1640 		if (!p) {
1641 			kmem_cache_free(dentry_cache, dentry);
1642 			return NULL;
1643 		}
1644 		atomic_set(&p->u.count, 1);
1645 		dname = p->name;
1646 	} else  {
1647 		dname = dentry->d_iname;
1648 	}
1649 
1650 	dentry->d_name.len = name->len;
1651 	dentry->d_name.hash = name->hash;
1652 	memcpy(dname, name->name, name->len);
1653 	dname[name->len] = 0;
1654 
1655 	/* Make sure we always see the terminating NUL character */
1656 	smp_store_release(&dentry->d_name.name, dname); /* ^^^ */
1657 
1658 	dentry->d_lockref.count = 1;
1659 	dentry->d_flags = 0;
1660 	spin_lock_init(&dentry->d_lock);
1661 	seqcount_init(&dentry->d_seq);
1662 	dentry->d_inode = NULL;
1663 	dentry->d_parent = dentry;
1664 	dentry->d_sb = sb;
1665 	dentry->d_op = NULL;
1666 	dentry->d_fsdata = NULL;
1667 	INIT_HLIST_BL_NODE(&dentry->d_hash);
1668 	INIT_LIST_HEAD(&dentry->d_lru);
1669 	INIT_LIST_HEAD(&dentry->d_subdirs);
1670 	INIT_HLIST_NODE(&dentry->d_u.d_alias);
1671 	INIT_LIST_HEAD(&dentry->d_child);
1672 	d_set_d_op(dentry, dentry->d_sb->s_d_op);
1673 
1674 	if (dentry->d_op && dentry->d_op->d_init) {
1675 		err = dentry->d_op->d_init(dentry);
1676 		if (err) {
1677 			if (dname_external(dentry))
1678 				kfree(external_name(dentry));
1679 			kmem_cache_free(dentry_cache, dentry);
1680 			return NULL;
1681 		}
1682 	}
1683 
1684 	this_cpu_inc(nr_dentry);
1685 
1686 	return dentry;
1687 }
1688 
1689 /**
1690  * d_alloc	-	allocate a dcache entry
1691  * @parent: parent of entry to allocate
1692  * @name: qstr of the name
1693  *
1694  * Allocates a dentry. It returns %NULL if there is insufficient memory
1695  * available. On a success the dentry is returned. The name passed in is
1696  * copied and the copy passed in may be reused after this call.
1697  */
1698 struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1699 {
1700 	struct dentry *dentry = __d_alloc(parent->d_sb, name);
1701 	if (!dentry)
1702 		return NULL;
1703 	spin_lock(&parent->d_lock);
1704 	/*
1705 	 * don't need child lock because it is not subject
1706 	 * to concurrency here
1707 	 */
1708 	__dget_dlock(parent);
1709 	dentry->d_parent = parent;
1710 	list_add(&dentry->d_child, &parent->d_subdirs);
1711 	spin_unlock(&parent->d_lock);
1712 
1713 	return dentry;
1714 }
1715 EXPORT_SYMBOL(d_alloc);
1716 
1717 struct dentry *d_alloc_anon(struct super_block *sb)
1718 {
1719 	return __d_alloc(sb, NULL);
1720 }
1721 EXPORT_SYMBOL(d_alloc_anon);
1722 
1723 struct dentry *d_alloc_cursor(struct dentry * parent)
1724 {
1725 	struct dentry *dentry = d_alloc_anon(parent->d_sb);
1726 	if (dentry) {
1727 		dentry->d_flags |= DCACHE_DENTRY_CURSOR;
1728 		dentry->d_parent = dget(parent);
1729 	}
1730 	return dentry;
1731 }
1732 
1733 /**
1734  * d_alloc_pseudo - allocate a dentry (for lookup-less filesystems)
1735  * @sb: the superblock
1736  * @name: qstr of the name
1737  *
1738  * For a filesystem that just pins its dentries in memory and never
1739  * performs lookups at all, return an unhashed IS_ROOT dentry.
1740  * This is used for pipes, sockets et.al. - the stuff that should
1741  * never be anyone's children or parents.  Unlike all other
1742  * dentries, these will not have RCU delay between dropping the
1743  * last reference and freeing them.
1744  *
1745  * The only user is alloc_file_pseudo() and that's what should
1746  * be considered a public interface.  Don't use directly.
1747  */
1748 struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
1749 {
1750 	struct dentry *dentry = __d_alloc(sb, name);
1751 	if (likely(dentry))
1752 		dentry->d_flags |= DCACHE_NORCU;
1753 	return dentry;
1754 }
1755 
1756 struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1757 {
1758 	struct qstr q;
1759 
1760 	q.name = name;
1761 	q.hash_len = hashlen_string(parent, name);
1762 	return d_alloc(parent, &q);
1763 }
1764 EXPORT_SYMBOL(d_alloc_name);
1765 
1766 void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1767 {
1768 	WARN_ON_ONCE(dentry->d_op);
1769 	WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH	|
1770 				DCACHE_OP_COMPARE	|
1771 				DCACHE_OP_REVALIDATE	|
1772 				DCACHE_OP_WEAK_REVALIDATE	|
1773 				DCACHE_OP_DELETE	|
1774 				DCACHE_OP_REAL));
1775 	dentry->d_op = op;
1776 	if (!op)
1777 		return;
1778 	if (op->d_hash)
1779 		dentry->d_flags |= DCACHE_OP_HASH;
1780 	if (op->d_compare)
1781 		dentry->d_flags |= DCACHE_OP_COMPARE;
1782 	if (op->d_revalidate)
1783 		dentry->d_flags |= DCACHE_OP_REVALIDATE;
1784 	if (op->d_weak_revalidate)
1785 		dentry->d_flags |= DCACHE_OP_WEAK_REVALIDATE;
1786 	if (op->d_delete)
1787 		dentry->d_flags |= DCACHE_OP_DELETE;
1788 	if (op->d_prune)
1789 		dentry->d_flags |= DCACHE_OP_PRUNE;
1790 	if (op->d_real)
1791 		dentry->d_flags |= DCACHE_OP_REAL;
1792 
1793 }
1794 EXPORT_SYMBOL(d_set_d_op);
1795 
1796 
1797 /*
1798  * d_set_fallthru - Mark a dentry as falling through to a lower layer
1799  * @dentry - The dentry to mark
1800  *
1801  * Mark a dentry as falling through to the lower layer (as set with
1802  * d_pin_lower()).  This flag may be recorded on the medium.
1803  */
1804 void d_set_fallthru(struct dentry *dentry)
1805 {
1806 	spin_lock(&dentry->d_lock);
1807 	dentry->d_flags |= DCACHE_FALLTHRU;
1808 	spin_unlock(&dentry->d_lock);
1809 }
1810 EXPORT_SYMBOL(d_set_fallthru);
1811 
1812 static unsigned d_flags_for_inode(struct inode *inode)
1813 {
1814 	unsigned add_flags = DCACHE_REGULAR_TYPE;
1815 
1816 	if (!inode)
1817 		return DCACHE_MISS_TYPE;
1818 
1819 	if (S_ISDIR(inode->i_mode)) {
1820 		add_flags = DCACHE_DIRECTORY_TYPE;
1821 		if (unlikely(!(inode->i_opflags & IOP_LOOKUP))) {
1822 			if (unlikely(!inode->i_op->lookup))
1823 				add_flags = DCACHE_AUTODIR_TYPE;
1824 			else
1825 				inode->i_opflags |= IOP_LOOKUP;
1826 		}
1827 		goto type_determined;
1828 	}
1829 
1830 	if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) {
1831 		if (unlikely(inode->i_op->get_link)) {
1832 			add_flags = DCACHE_SYMLINK_TYPE;
1833 			goto type_determined;
1834 		}
1835 		inode->i_opflags |= IOP_NOFOLLOW;
1836 	}
1837 
1838 	if (unlikely(!S_ISREG(inode->i_mode)))
1839 		add_flags = DCACHE_SPECIAL_TYPE;
1840 
1841 type_determined:
1842 	if (unlikely(IS_AUTOMOUNT(inode)))
1843 		add_flags |= DCACHE_NEED_AUTOMOUNT;
1844 	return add_flags;
1845 }
1846 
1847 static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1848 {
1849 	unsigned add_flags = d_flags_for_inode(inode);
1850 	WARN_ON(d_in_lookup(dentry));
1851 
1852 	spin_lock(&dentry->d_lock);
1853 	/*
1854 	 * Decrement negative dentry count if it was in the LRU list.
1855 	 */
1856 	if (dentry->d_flags & DCACHE_LRU_LIST)
1857 		this_cpu_dec(nr_dentry_negative);
1858 	hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
1859 	raw_write_seqcount_begin(&dentry->d_seq);
1860 	__d_set_inode_and_type(dentry, inode, add_flags);
1861 	raw_write_seqcount_end(&dentry->d_seq);
1862 	fsnotify_update_flags(dentry);
1863 	spin_unlock(&dentry->d_lock);
1864 }
1865 
1866 /**
1867  * d_instantiate - fill in inode information for a dentry
1868  * @entry: dentry to complete
1869  * @inode: inode to attach to this dentry
1870  *
1871  * Fill in inode information in the entry.
1872  *
1873  * This turns negative dentries into productive full members
1874  * of society.
1875  *
1876  * NOTE! This assumes that the inode count has been incremented
1877  * (or otherwise set) by the caller to indicate that it is now
1878  * in use by the dcache.
1879  */
1880 
1881 void d_instantiate(struct dentry *entry, struct inode * inode)
1882 {
1883 	BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
1884 	if (inode) {
1885 		security_d_instantiate(entry, inode);
1886 		spin_lock(&inode->i_lock);
1887 		__d_instantiate(entry, inode);
1888 		spin_unlock(&inode->i_lock);
1889 	}
1890 }
1891 EXPORT_SYMBOL(d_instantiate);
1892 
1893 /*
1894  * This should be equivalent to d_instantiate() + unlock_new_inode(),
1895  * with lockdep-related part of unlock_new_inode() done before
1896  * anything else.  Use that instead of open-coding d_instantiate()/
1897  * unlock_new_inode() combinations.
1898  */
1899 void d_instantiate_new(struct dentry *entry, struct inode *inode)
1900 {
1901 	BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
1902 	BUG_ON(!inode);
1903 	lockdep_annotate_inode_mutex_key(inode);
1904 	security_d_instantiate(entry, inode);
1905 	spin_lock(&inode->i_lock);
1906 	__d_instantiate(entry, inode);
1907 	WARN_ON(!(inode->i_state & I_NEW));
1908 	inode->i_state &= ~I_NEW & ~I_CREATING;
1909 	smp_mb();
1910 	wake_up_bit(&inode->i_state, __I_NEW);
1911 	spin_unlock(&inode->i_lock);
1912 }
1913 EXPORT_SYMBOL(d_instantiate_new);
1914 
1915 struct dentry *d_make_root(struct inode *root_inode)
1916 {
1917 	struct dentry *res = NULL;
1918 
1919 	if (root_inode) {
1920 		res = d_alloc_anon(root_inode->i_sb);
1921 		if (res)
1922 			d_instantiate(res, root_inode);
1923 		else
1924 			iput(root_inode);
1925 	}
1926 	return res;
1927 }
1928 EXPORT_SYMBOL(d_make_root);
1929 
1930 static struct dentry *__d_instantiate_anon(struct dentry *dentry,
1931 					   struct inode *inode,
1932 					   bool disconnected)
1933 {
1934 	struct dentry *res;
1935 	unsigned add_flags;
1936 
1937 	security_d_instantiate(dentry, inode);
1938 	spin_lock(&inode->i_lock);
1939 	res = __d_find_any_alias(inode);
1940 	if (res) {
1941 		spin_unlock(&inode->i_lock);
1942 		dput(dentry);
1943 		goto out_iput;
1944 	}
1945 
1946 	/* attach a disconnected dentry */
1947 	add_flags = d_flags_for_inode(inode);
1948 
1949 	if (disconnected)
1950 		add_flags |= DCACHE_DISCONNECTED;
1951 
1952 	spin_lock(&dentry->d_lock);
1953 	__d_set_inode_and_type(dentry, inode, add_flags);
1954 	hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
1955 	if (!disconnected) {
1956 		hlist_bl_lock(&dentry->d_sb->s_roots);
1957 		hlist_bl_add_head(&dentry->d_hash, &dentry->d_sb->s_roots);
1958 		hlist_bl_unlock(&dentry->d_sb->s_roots);
1959 	}
1960 	spin_unlock(&dentry->d_lock);
1961 	spin_unlock(&inode->i_lock);
1962 
1963 	return dentry;
1964 
1965  out_iput:
1966 	iput(inode);
1967 	return res;
1968 }
1969 
1970 struct dentry *d_instantiate_anon(struct dentry *dentry, struct inode *inode)
1971 {
1972 	return __d_instantiate_anon(dentry, inode, true);
1973 }
1974 EXPORT_SYMBOL(d_instantiate_anon);
1975 
1976 static struct dentry *__d_obtain_alias(struct inode *inode, bool disconnected)
1977 {
1978 	struct dentry *tmp;
1979 	struct dentry *res;
1980 
1981 	if (!inode)
1982 		return ERR_PTR(-ESTALE);
1983 	if (IS_ERR(inode))
1984 		return ERR_CAST(inode);
1985 
1986 	res = d_find_any_alias(inode);
1987 	if (res)
1988 		goto out_iput;
1989 
1990 	tmp = d_alloc_anon(inode->i_sb);
1991 	if (!tmp) {
1992 		res = ERR_PTR(-ENOMEM);
1993 		goto out_iput;
1994 	}
1995 
1996 	return __d_instantiate_anon(tmp, inode, disconnected);
1997 
1998 out_iput:
1999 	iput(inode);
2000 	return res;
2001 }
2002 
2003 /**
2004  * d_obtain_alias - find or allocate a DISCONNECTED dentry for a given inode
2005  * @inode: inode to allocate the dentry for
2006  *
2007  * Obtain a dentry for an inode resulting from NFS filehandle conversion or
2008  * similar open by handle operations.  The returned dentry may be anonymous,
2009  * or may have a full name (if the inode was already in the cache).
2010  *
2011  * When called on a directory inode, we must ensure that the inode only ever
2012  * has one dentry.  If a dentry is found, that is returned instead of
2013  * allocating a new one.
2014  *
2015  * On successful return, the reference to the inode has been transferred
2016  * to the dentry.  In case of an error the reference on the inode is released.
2017  * To make it easier to use in export operations a %NULL or IS_ERR inode may
2018  * be passed in and the error will be propagated to the return value,
2019  * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
2020  */
2021 struct dentry *d_obtain_alias(struct inode *inode)
2022 {
2023 	return __d_obtain_alias(inode, true);
2024 }
2025 EXPORT_SYMBOL(d_obtain_alias);
2026 
2027 /**
2028  * d_obtain_root - find or allocate a dentry for a given inode
2029  * @inode: inode to allocate the dentry for
2030  *
2031  * Obtain an IS_ROOT dentry for the root of a filesystem.
2032  *
2033  * We must ensure that directory inodes only ever have one dentry.  If a
2034  * dentry is found, that is returned instead of allocating a new one.
2035  *
2036  * On successful return, the reference to the inode has been transferred
2037  * to the dentry.  In case of an error the reference on the inode is
2038  * released.  A %NULL or IS_ERR inode may be passed in and will be the
2039  * error will be propagate to the return value, with a %NULL @inode
2040  * replaced by ERR_PTR(-ESTALE).
2041  */
2042 struct dentry *d_obtain_root(struct inode *inode)
2043 {
2044 	return __d_obtain_alias(inode, false);
2045 }
2046 EXPORT_SYMBOL(d_obtain_root);
2047 
2048 /**
2049  * d_add_ci - lookup or allocate new dentry with case-exact name
2050  * @inode:  the inode case-insensitive lookup has found
2051  * @dentry: the negative dentry that was passed to the parent's lookup func
2052  * @name:   the case-exact name to be associated with the returned dentry
2053  *
2054  * This is to avoid filling the dcache with case-insensitive names to the
2055  * same inode, only the actual correct case is stored in the dcache for
2056  * case-insensitive filesystems.
2057  *
2058  * For a case-insensitive lookup match and if the the case-exact dentry
2059  * already exists in in the dcache, use it and return it.
2060  *
2061  * If no entry exists with the exact case name, allocate new dentry with
2062  * the exact case, and return the spliced entry.
2063  */
2064 struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
2065 			struct qstr *name)
2066 {
2067 	struct dentry *found, *res;
2068 
2069 	/*
2070 	 * First check if a dentry matching the name already exists,
2071 	 * if not go ahead and create it now.
2072 	 */
2073 	found = d_hash_and_lookup(dentry->d_parent, name);
2074 	if (found) {
2075 		iput(inode);
2076 		return found;
2077 	}
2078 	if (d_in_lookup(dentry)) {
2079 		found = d_alloc_parallel(dentry->d_parent, name,
2080 					dentry->d_wait);
2081 		if (IS_ERR(found) || !d_in_lookup(found)) {
2082 			iput(inode);
2083 			return found;
2084 		}
2085 	} else {
2086 		found = d_alloc(dentry->d_parent, name);
2087 		if (!found) {
2088 			iput(inode);
2089 			return ERR_PTR(-ENOMEM);
2090 		}
2091 	}
2092 	res = d_splice_alias(inode, found);
2093 	if (res) {
2094 		dput(found);
2095 		return res;
2096 	}
2097 	return found;
2098 }
2099 EXPORT_SYMBOL(d_add_ci);
2100 
2101 
2102 static inline bool d_same_name(const struct dentry *dentry,
2103 				const struct dentry *parent,
2104 				const struct qstr *name)
2105 {
2106 	if (likely(!(parent->d_flags & DCACHE_OP_COMPARE))) {
2107 		if (dentry->d_name.len != name->len)
2108 			return false;
2109 		return dentry_cmp(dentry, name->name, name->len) == 0;
2110 	}
2111 	return parent->d_op->d_compare(dentry,
2112 				       dentry->d_name.len, dentry->d_name.name,
2113 				       name) == 0;
2114 }
2115 
2116 /**
2117  * __d_lookup_rcu - search for a dentry (racy, store-free)
2118  * @parent: parent dentry
2119  * @name: qstr of name we wish to find
2120  * @seqp: returns d_seq value at the point where the dentry was found
2121  * Returns: dentry, or NULL
2122  *
2123  * __d_lookup_rcu is the dcache lookup function for rcu-walk name
2124  * resolution (store-free path walking) design described in
2125  * Documentation/filesystems/path-lookup.txt.
2126  *
2127  * This is not to be used outside core vfs.
2128  *
2129  * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
2130  * held, and rcu_read_lock held. The returned dentry must not be stored into
2131  * without taking d_lock and checking d_seq sequence count against @seq
2132  * returned here.
2133  *
2134  * A refcount may be taken on the found dentry with the d_rcu_to_refcount
2135  * function.
2136  *
2137  * Alternatively, __d_lookup_rcu may be called again to look up the child of
2138  * the returned dentry, so long as its parent's seqlock is checked after the
2139  * child is looked up. Thus, an interlocking stepping of sequence lock checks
2140  * is formed, giving integrity down the path walk.
2141  *
2142  * NOTE! The caller *has* to check the resulting dentry against the sequence
2143  * number we've returned before using any of the resulting dentry state!
2144  */
2145 struct dentry *__d_lookup_rcu(const struct dentry *parent,
2146 				const struct qstr *name,
2147 				unsigned *seqp)
2148 {
2149 	u64 hashlen = name->hash_len;
2150 	const unsigned char *str = name->name;
2151 	struct hlist_bl_head *b = d_hash(hashlen_hash(hashlen));
2152 	struct hlist_bl_node *node;
2153 	struct dentry *dentry;
2154 
2155 	/*
2156 	 * Note: There is significant duplication with __d_lookup_rcu which is
2157 	 * required to prevent single threaded performance regressions
2158 	 * especially on architectures where smp_rmb (in seqcounts) are costly.
2159 	 * Keep the two functions in sync.
2160 	 */
2161 
2162 	/*
2163 	 * The hash list is protected using RCU.
2164 	 *
2165 	 * Carefully use d_seq when comparing a candidate dentry, to avoid
2166 	 * races with d_move().
2167 	 *
2168 	 * It is possible that concurrent renames can mess up our list
2169 	 * walk here and result in missing our dentry, resulting in the
2170 	 * false-negative result. d_lookup() protects against concurrent
2171 	 * renames using rename_lock seqlock.
2172 	 *
2173 	 * See Documentation/filesystems/path-lookup.txt for more details.
2174 	 */
2175 	hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2176 		unsigned seq;
2177 
2178 seqretry:
2179 		/*
2180 		 * The dentry sequence count protects us from concurrent
2181 		 * renames, and thus protects parent and name fields.
2182 		 *
2183 		 * The caller must perform a seqcount check in order
2184 		 * to do anything useful with the returned dentry.
2185 		 *
2186 		 * NOTE! We do a "raw" seqcount_begin here. That means that
2187 		 * we don't wait for the sequence count to stabilize if it
2188 		 * is in the middle of a sequence change. If we do the slow
2189 		 * dentry compare, we will do seqretries until it is stable,
2190 		 * and if we end up with a successful lookup, we actually
2191 		 * want to exit RCU lookup anyway.
2192 		 *
2193 		 * Note that raw_seqcount_begin still *does* smp_rmb(), so
2194 		 * we are still guaranteed NUL-termination of ->d_name.name.
2195 		 */
2196 		seq = raw_seqcount_begin(&dentry->d_seq);
2197 		if (dentry->d_parent != parent)
2198 			continue;
2199 		if (d_unhashed(dentry))
2200 			continue;
2201 
2202 		if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) {
2203 			int tlen;
2204 			const char *tname;
2205 			if (dentry->d_name.hash != hashlen_hash(hashlen))
2206 				continue;
2207 			tlen = dentry->d_name.len;
2208 			tname = dentry->d_name.name;
2209 			/* we want a consistent (name,len) pair */
2210 			if (read_seqcount_retry(&dentry->d_seq, seq)) {
2211 				cpu_relax();
2212 				goto seqretry;
2213 			}
2214 			if (parent->d_op->d_compare(dentry,
2215 						    tlen, tname, name) != 0)
2216 				continue;
2217 		} else {
2218 			if (dentry->d_name.hash_len != hashlen)
2219 				continue;
2220 			if (dentry_cmp(dentry, str, hashlen_len(hashlen)) != 0)
2221 				continue;
2222 		}
2223 		*seqp = seq;
2224 		return dentry;
2225 	}
2226 	return NULL;
2227 }
2228 
2229 /**
2230  * d_lookup - search for a dentry
2231  * @parent: parent dentry
2232  * @name: qstr of name we wish to find
2233  * Returns: dentry, or NULL
2234  *
2235  * d_lookup searches the children of the parent dentry for the name in
2236  * question. If the dentry is found its reference count is incremented and the
2237  * dentry is returned. The caller must use dput to free the entry when it has
2238  * finished using it. %NULL is returned if the dentry does not exist.
2239  */
2240 struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name)
2241 {
2242 	struct dentry *dentry;
2243 	unsigned seq;
2244 
2245 	do {
2246 		seq = read_seqbegin(&rename_lock);
2247 		dentry = __d_lookup(parent, name);
2248 		if (dentry)
2249 			break;
2250 	} while (read_seqretry(&rename_lock, seq));
2251 	return dentry;
2252 }
2253 EXPORT_SYMBOL(d_lookup);
2254 
2255 /**
2256  * __d_lookup - search for a dentry (racy)
2257  * @parent: parent dentry
2258  * @name: qstr of name we wish to find
2259  * Returns: dentry, or NULL
2260  *
2261  * __d_lookup is like d_lookup, however it may (rarely) return a
2262  * false-negative result due to unrelated rename activity.
2263  *
2264  * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
2265  * however it must be used carefully, eg. with a following d_lookup in
2266  * the case of failure.
2267  *
2268  * __d_lookup callers must be commented.
2269  */
2270 struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name)
2271 {
2272 	unsigned int hash = name->hash;
2273 	struct hlist_bl_head *b = d_hash(hash);
2274 	struct hlist_bl_node *node;
2275 	struct dentry *found = NULL;
2276 	struct dentry *dentry;
2277 
2278 	/*
2279 	 * Note: There is significant duplication with __d_lookup_rcu which is
2280 	 * required to prevent single threaded performance regressions
2281 	 * especially on architectures where smp_rmb (in seqcounts) are costly.
2282 	 * Keep the two functions in sync.
2283 	 */
2284 
2285 	/*
2286 	 * The hash list is protected using RCU.
2287 	 *
2288 	 * Take d_lock when comparing a candidate dentry, to avoid races
2289 	 * with d_move().
2290 	 *
2291 	 * It is possible that concurrent renames can mess up our list
2292 	 * walk here and result in missing our dentry, resulting in the
2293 	 * false-negative result. d_lookup() protects against concurrent
2294 	 * renames using rename_lock seqlock.
2295 	 *
2296 	 * See Documentation/filesystems/path-lookup.txt for more details.
2297 	 */
2298 	rcu_read_lock();
2299 
2300 	hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2301 
2302 		if (dentry->d_name.hash != hash)
2303 			continue;
2304 
2305 		spin_lock(&dentry->d_lock);
2306 		if (dentry->d_parent != parent)
2307 			goto next;
2308 		if (d_unhashed(dentry))
2309 			goto next;
2310 
2311 		if (!d_same_name(dentry, parent, name))
2312 			goto next;
2313 
2314 		dentry->d_lockref.count++;
2315 		found = dentry;
2316 		spin_unlock(&dentry->d_lock);
2317 		break;
2318 next:
2319 		spin_unlock(&dentry->d_lock);
2320  	}
2321  	rcu_read_unlock();
2322 
2323  	return found;
2324 }
2325 
2326 /**
2327  * d_hash_and_lookup - hash the qstr then search for a dentry
2328  * @dir: Directory to search in
2329  * @name: qstr of name we wish to find
2330  *
2331  * On lookup failure NULL is returned; on bad name - ERR_PTR(-error)
2332  */
2333 struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
2334 {
2335 	/*
2336 	 * Check for a fs-specific hash function. Note that we must
2337 	 * calculate the standard hash first, as the d_op->d_hash()
2338 	 * routine may choose to leave the hash value unchanged.
2339 	 */
2340 	name->hash = full_name_hash(dir, name->name, name->len);
2341 	if (dir->d_flags & DCACHE_OP_HASH) {
2342 		int err = dir->d_op->d_hash(dir, name);
2343 		if (unlikely(err < 0))
2344 			return ERR_PTR(err);
2345 	}
2346 	return d_lookup(dir, name);
2347 }
2348 EXPORT_SYMBOL(d_hash_and_lookup);
2349 
2350 /*
2351  * When a file is deleted, we have two options:
2352  * - turn this dentry into a negative dentry
2353  * - unhash this dentry and free it.
2354  *
2355  * Usually, we want to just turn this into
2356  * a negative dentry, but if anybody else is
2357  * currently using the dentry or the inode
2358  * we can't do that and we fall back on removing
2359  * it from the hash queues and waiting for
2360  * it to be deleted later when it has no users
2361  */
2362 
2363 /**
2364  * d_delete - delete a dentry
2365  * @dentry: The dentry to delete
2366  *
2367  * Turn the dentry into a negative dentry if possible, otherwise
2368  * remove it from the hash queues so it can be deleted later
2369  */
2370 
2371 void d_delete(struct dentry * dentry)
2372 {
2373 	struct inode *inode = dentry->d_inode;
2374 	int isdir = d_is_dir(dentry);
2375 
2376 	spin_lock(&inode->i_lock);
2377 	spin_lock(&dentry->d_lock);
2378 	/*
2379 	 * Are we the only user?
2380 	 */
2381 	if (dentry->d_lockref.count == 1) {
2382 		dentry->d_flags &= ~DCACHE_CANT_MOUNT;
2383 		dentry_unlink_inode(dentry);
2384 	} else {
2385 		__d_drop(dentry);
2386 		spin_unlock(&dentry->d_lock);
2387 		spin_unlock(&inode->i_lock);
2388 	}
2389 	fsnotify_nameremove(dentry, isdir);
2390 }
2391 EXPORT_SYMBOL(d_delete);
2392 
2393 static void __d_rehash(struct dentry *entry)
2394 {
2395 	struct hlist_bl_head *b = d_hash(entry->d_name.hash);
2396 
2397 	hlist_bl_lock(b);
2398 	hlist_bl_add_head_rcu(&entry->d_hash, b);
2399 	hlist_bl_unlock(b);
2400 }
2401 
2402 /**
2403  * d_rehash	- add an entry back to the hash
2404  * @entry: dentry to add to the hash
2405  *
2406  * Adds a dentry to the hash according to its name.
2407  */
2408 
2409 void d_rehash(struct dentry * entry)
2410 {
2411 	spin_lock(&entry->d_lock);
2412 	__d_rehash(entry);
2413 	spin_unlock(&entry->d_lock);
2414 }
2415 EXPORT_SYMBOL(d_rehash);
2416 
2417 static inline unsigned start_dir_add(struct inode *dir)
2418 {
2419 
2420 	for (;;) {
2421 		unsigned n = dir->i_dir_seq;
2422 		if (!(n & 1) && cmpxchg(&dir->i_dir_seq, n, n + 1) == n)
2423 			return n;
2424 		cpu_relax();
2425 	}
2426 }
2427 
2428 static inline void end_dir_add(struct inode *dir, unsigned n)
2429 {
2430 	smp_store_release(&dir->i_dir_seq, n + 2);
2431 }
2432 
2433 static void d_wait_lookup(struct dentry *dentry)
2434 {
2435 	if (d_in_lookup(dentry)) {
2436 		DECLARE_WAITQUEUE(wait, current);
2437 		add_wait_queue(dentry->d_wait, &wait);
2438 		do {
2439 			set_current_state(TASK_UNINTERRUPTIBLE);
2440 			spin_unlock(&dentry->d_lock);
2441 			schedule();
2442 			spin_lock(&dentry->d_lock);
2443 		} while (d_in_lookup(dentry));
2444 	}
2445 }
2446 
2447 struct dentry *d_alloc_parallel(struct dentry *parent,
2448 				const struct qstr *name,
2449 				wait_queue_head_t *wq)
2450 {
2451 	unsigned int hash = name->hash;
2452 	struct hlist_bl_head *b = in_lookup_hash(parent, hash);
2453 	struct hlist_bl_node *node;
2454 	struct dentry *new = d_alloc(parent, name);
2455 	struct dentry *dentry;
2456 	unsigned seq, r_seq, d_seq;
2457 
2458 	if (unlikely(!new))
2459 		return ERR_PTR(-ENOMEM);
2460 
2461 retry:
2462 	rcu_read_lock();
2463 	seq = smp_load_acquire(&parent->d_inode->i_dir_seq);
2464 	r_seq = read_seqbegin(&rename_lock);
2465 	dentry = __d_lookup_rcu(parent, name, &d_seq);
2466 	if (unlikely(dentry)) {
2467 		if (!lockref_get_not_dead(&dentry->d_lockref)) {
2468 			rcu_read_unlock();
2469 			goto retry;
2470 		}
2471 		if (read_seqcount_retry(&dentry->d_seq, d_seq)) {
2472 			rcu_read_unlock();
2473 			dput(dentry);
2474 			goto retry;
2475 		}
2476 		rcu_read_unlock();
2477 		dput(new);
2478 		return dentry;
2479 	}
2480 	if (unlikely(read_seqretry(&rename_lock, r_seq))) {
2481 		rcu_read_unlock();
2482 		goto retry;
2483 	}
2484 
2485 	if (unlikely(seq & 1)) {
2486 		rcu_read_unlock();
2487 		goto retry;
2488 	}
2489 
2490 	hlist_bl_lock(b);
2491 	if (unlikely(READ_ONCE(parent->d_inode->i_dir_seq) != seq)) {
2492 		hlist_bl_unlock(b);
2493 		rcu_read_unlock();
2494 		goto retry;
2495 	}
2496 	/*
2497 	 * No changes for the parent since the beginning of d_lookup().
2498 	 * Since all removals from the chain happen with hlist_bl_lock(),
2499 	 * any potential in-lookup matches are going to stay here until
2500 	 * we unlock the chain.  All fields are stable in everything
2501 	 * we encounter.
2502 	 */
2503 	hlist_bl_for_each_entry(dentry, node, b, d_u.d_in_lookup_hash) {
2504 		if (dentry->d_name.hash != hash)
2505 			continue;
2506 		if (dentry->d_parent != parent)
2507 			continue;
2508 		if (!d_same_name(dentry, parent, name))
2509 			continue;
2510 		hlist_bl_unlock(b);
2511 		/* now we can try to grab a reference */
2512 		if (!lockref_get_not_dead(&dentry->d_lockref)) {
2513 			rcu_read_unlock();
2514 			goto retry;
2515 		}
2516 
2517 		rcu_read_unlock();
2518 		/*
2519 		 * somebody is likely to be still doing lookup for it;
2520 		 * wait for them to finish
2521 		 */
2522 		spin_lock(&dentry->d_lock);
2523 		d_wait_lookup(dentry);
2524 		/*
2525 		 * it's not in-lookup anymore; in principle we should repeat
2526 		 * everything from dcache lookup, but it's likely to be what
2527 		 * d_lookup() would've found anyway.  If it is, just return it;
2528 		 * otherwise we really have to repeat the whole thing.
2529 		 */
2530 		if (unlikely(dentry->d_name.hash != hash))
2531 			goto mismatch;
2532 		if (unlikely(dentry->d_parent != parent))
2533 			goto mismatch;
2534 		if (unlikely(d_unhashed(dentry)))
2535 			goto mismatch;
2536 		if (unlikely(!d_same_name(dentry, parent, name)))
2537 			goto mismatch;
2538 		/* OK, it *is* a hashed match; return it */
2539 		spin_unlock(&dentry->d_lock);
2540 		dput(new);
2541 		return dentry;
2542 	}
2543 	rcu_read_unlock();
2544 	/* we can't take ->d_lock here; it's OK, though. */
2545 	new->d_flags |= DCACHE_PAR_LOOKUP;
2546 	new->d_wait = wq;
2547 	hlist_bl_add_head_rcu(&new->d_u.d_in_lookup_hash, b);
2548 	hlist_bl_unlock(b);
2549 	return new;
2550 mismatch:
2551 	spin_unlock(&dentry->d_lock);
2552 	dput(dentry);
2553 	goto retry;
2554 }
2555 EXPORT_SYMBOL(d_alloc_parallel);
2556 
2557 void __d_lookup_done(struct dentry *dentry)
2558 {
2559 	struct hlist_bl_head *b = in_lookup_hash(dentry->d_parent,
2560 						 dentry->d_name.hash);
2561 	hlist_bl_lock(b);
2562 	dentry->d_flags &= ~DCACHE_PAR_LOOKUP;
2563 	__hlist_bl_del(&dentry->d_u.d_in_lookup_hash);
2564 	wake_up_all(dentry->d_wait);
2565 	dentry->d_wait = NULL;
2566 	hlist_bl_unlock(b);
2567 	INIT_HLIST_NODE(&dentry->d_u.d_alias);
2568 	INIT_LIST_HEAD(&dentry->d_lru);
2569 }
2570 EXPORT_SYMBOL(__d_lookup_done);
2571 
2572 /* inode->i_lock held if inode is non-NULL */
2573 
2574 static inline void __d_add(struct dentry *dentry, struct inode *inode)
2575 {
2576 	struct inode *dir = NULL;
2577 	unsigned n;
2578 	spin_lock(&dentry->d_lock);
2579 	if (unlikely(d_in_lookup(dentry))) {
2580 		dir = dentry->d_parent->d_inode;
2581 		n = start_dir_add(dir);
2582 		__d_lookup_done(dentry);
2583 	}
2584 	if (inode) {
2585 		unsigned add_flags = d_flags_for_inode(inode);
2586 		hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
2587 		raw_write_seqcount_begin(&dentry->d_seq);
2588 		__d_set_inode_and_type(dentry, inode, add_flags);
2589 		raw_write_seqcount_end(&dentry->d_seq);
2590 		fsnotify_update_flags(dentry);
2591 	}
2592 	__d_rehash(dentry);
2593 	if (dir)
2594 		end_dir_add(dir, n);
2595 	spin_unlock(&dentry->d_lock);
2596 	if (inode)
2597 		spin_unlock(&inode->i_lock);
2598 }
2599 
2600 /**
2601  * d_add - add dentry to hash queues
2602  * @entry: dentry to add
2603  * @inode: The inode to attach to this dentry
2604  *
2605  * This adds the entry to the hash queues and initializes @inode.
2606  * The entry was actually filled in earlier during d_alloc().
2607  */
2608 
2609 void d_add(struct dentry *entry, struct inode *inode)
2610 {
2611 	if (inode) {
2612 		security_d_instantiate(entry, inode);
2613 		spin_lock(&inode->i_lock);
2614 	}
2615 	__d_add(entry, inode);
2616 }
2617 EXPORT_SYMBOL(d_add);
2618 
2619 /**
2620  * d_exact_alias - find and hash an exact unhashed alias
2621  * @entry: dentry to add
2622  * @inode: The inode to go with this dentry
2623  *
2624  * If an unhashed dentry with the same name/parent and desired
2625  * inode already exists, hash and return it.  Otherwise, return
2626  * NULL.
2627  *
2628  * Parent directory should be locked.
2629  */
2630 struct dentry *d_exact_alias(struct dentry *entry, struct inode *inode)
2631 {
2632 	struct dentry *alias;
2633 	unsigned int hash = entry->d_name.hash;
2634 
2635 	spin_lock(&inode->i_lock);
2636 	hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
2637 		/*
2638 		 * Don't need alias->d_lock here, because aliases with
2639 		 * d_parent == entry->d_parent are not subject to name or
2640 		 * parent changes, because the parent inode i_mutex is held.
2641 		 */
2642 		if (alias->d_name.hash != hash)
2643 			continue;
2644 		if (alias->d_parent != entry->d_parent)
2645 			continue;
2646 		if (!d_same_name(alias, entry->d_parent, &entry->d_name))
2647 			continue;
2648 		spin_lock(&alias->d_lock);
2649 		if (!d_unhashed(alias)) {
2650 			spin_unlock(&alias->d_lock);
2651 			alias = NULL;
2652 		} else {
2653 			__dget_dlock(alias);
2654 			__d_rehash(alias);
2655 			spin_unlock(&alias->d_lock);
2656 		}
2657 		spin_unlock(&inode->i_lock);
2658 		return alias;
2659 	}
2660 	spin_unlock(&inode->i_lock);
2661 	return NULL;
2662 }
2663 EXPORT_SYMBOL(d_exact_alias);
2664 
2665 static void swap_names(struct dentry *dentry, struct dentry *target)
2666 {
2667 	if (unlikely(dname_external(target))) {
2668 		if (unlikely(dname_external(dentry))) {
2669 			/*
2670 			 * Both external: swap the pointers
2671 			 */
2672 			swap(target->d_name.name, dentry->d_name.name);
2673 		} else {
2674 			/*
2675 			 * dentry:internal, target:external.  Steal target's
2676 			 * storage and make target internal.
2677 			 */
2678 			memcpy(target->d_iname, dentry->d_name.name,
2679 					dentry->d_name.len + 1);
2680 			dentry->d_name.name = target->d_name.name;
2681 			target->d_name.name = target->d_iname;
2682 		}
2683 	} else {
2684 		if (unlikely(dname_external(dentry))) {
2685 			/*
2686 			 * dentry:external, target:internal.  Give dentry's
2687 			 * storage to target and make dentry internal
2688 			 */
2689 			memcpy(dentry->d_iname, target->d_name.name,
2690 					target->d_name.len + 1);
2691 			target->d_name.name = dentry->d_name.name;
2692 			dentry->d_name.name = dentry->d_iname;
2693 		} else {
2694 			/*
2695 			 * Both are internal.
2696 			 */
2697 			unsigned int i;
2698 			BUILD_BUG_ON(!IS_ALIGNED(DNAME_INLINE_LEN, sizeof(long)));
2699 			for (i = 0; i < DNAME_INLINE_LEN / sizeof(long); i++) {
2700 				swap(((long *) &dentry->d_iname)[i],
2701 				     ((long *) &target->d_iname)[i]);
2702 			}
2703 		}
2704 	}
2705 	swap(dentry->d_name.hash_len, target->d_name.hash_len);
2706 }
2707 
2708 static void copy_name(struct dentry *dentry, struct dentry *target)
2709 {
2710 	struct external_name *old_name = NULL;
2711 	if (unlikely(dname_external(dentry)))
2712 		old_name = external_name(dentry);
2713 	if (unlikely(dname_external(target))) {
2714 		atomic_inc(&external_name(target)->u.count);
2715 		dentry->d_name = target->d_name;
2716 	} else {
2717 		memcpy(dentry->d_iname, target->d_name.name,
2718 				target->d_name.len + 1);
2719 		dentry->d_name.name = dentry->d_iname;
2720 		dentry->d_name.hash_len = target->d_name.hash_len;
2721 	}
2722 	if (old_name && likely(atomic_dec_and_test(&old_name->u.count)))
2723 		kfree_rcu(old_name, u.head);
2724 }
2725 
2726 /*
2727  * __d_move - move a dentry
2728  * @dentry: entry to move
2729  * @target: new dentry
2730  * @exchange: exchange the two dentries
2731  *
2732  * Update the dcache to reflect the move of a file name. Negative
2733  * dcache entries should not be moved in this way. Caller must hold
2734  * rename_lock, the i_mutex of the source and target directories,
2735  * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
2736  */
2737 static void __d_move(struct dentry *dentry, struct dentry *target,
2738 		     bool exchange)
2739 {
2740 	struct dentry *old_parent, *p;
2741 	struct inode *dir = NULL;
2742 	unsigned n;
2743 
2744 	WARN_ON(!dentry->d_inode);
2745 	if (WARN_ON(dentry == target))
2746 		return;
2747 
2748 	BUG_ON(d_ancestor(target, dentry));
2749 	old_parent = dentry->d_parent;
2750 	p = d_ancestor(old_parent, target);
2751 	if (IS_ROOT(dentry)) {
2752 		BUG_ON(p);
2753 		spin_lock(&target->d_parent->d_lock);
2754 	} else if (!p) {
2755 		/* target is not a descendent of dentry->d_parent */
2756 		spin_lock(&target->d_parent->d_lock);
2757 		spin_lock_nested(&old_parent->d_lock, DENTRY_D_LOCK_NESTED);
2758 	} else {
2759 		BUG_ON(p == dentry);
2760 		spin_lock(&old_parent->d_lock);
2761 		if (p != target)
2762 			spin_lock_nested(&target->d_parent->d_lock,
2763 					DENTRY_D_LOCK_NESTED);
2764 	}
2765 	spin_lock_nested(&dentry->d_lock, 2);
2766 	spin_lock_nested(&target->d_lock, 3);
2767 
2768 	if (unlikely(d_in_lookup(target))) {
2769 		dir = target->d_parent->d_inode;
2770 		n = start_dir_add(dir);
2771 		__d_lookup_done(target);
2772 	}
2773 
2774 	write_seqcount_begin(&dentry->d_seq);
2775 	write_seqcount_begin_nested(&target->d_seq, DENTRY_D_LOCK_NESTED);
2776 
2777 	/* unhash both */
2778 	if (!d_unhashed(dentry))
2779 		___d_drop(dentry);
2780 	if (!d_unhashed(target))
2781 		___d_drop(target);
2782 
2783 	/* ... and switch them in the tree */
2784 	dentry->d_parent = target->d_parent;
2785 	if (!exchange) {
2786 		copy_name(dentry, target);
2787 		target->d_hash.pprev = NULL;
2788 		dentry->d_parent->d_lockref.count++;
2789 		if (dentry != old_parent) /* wasn't IS_ROOT */
2790 			WARN_ON(!--old_parent->d_lockref.count);
2791 	} else {
2792 		target->d_parent = old_parent;
2793 		swap_names(dentry, target);
2794 		list_move(&target->d_child, &target->d_parent->d_subdirs);
2795 		__d_rehash(target);
2796 		fsnotify_update_flags(target);
2797 	}
2798 	list_move(&dentry->d_child, &dentry->d_parent->d_subdirs);
2799 	__d_rehash(dentry);
2800 	fsnotify_update_flags(dentry);
2801 	fscrypt_handle_d_move(dentry);
2802 
2803 	write_seqcount_end(&target->d_seq);
2804 	write_seqcount_end(&dentry->d_seq);
2805 
2806 	if (dir)
2807 		end_dir_add(dir, n);
2808 
2809 	if (dentry->d_parent != old_parent)
2810 		spin_unlock(&dentry->d_parent->d_lock);
2811 	if (dentry != old_parent)
2812 		spin_unlock(&old_parent->d_lock);
2813 	spin_unlock(&target->d_lock);
2814 	spin_unlock(&dentry->d_lock);
2815 }
2816 
2817 /*
2818  * d_move - move a dentry
2819  * @dentry: entry to move
2820  * @target: new dentry
2821  *
2822  * Update the dcache to reflect the move of a file name. Negative
2823  * dcache entries should not be moved in this way. See the locking
2824  * requirements for __d_move.
2825  */
2826 void d_move(struct dentry *dentry, struct dentry *target)
2827 {
2828 	write_seqlock(&rename_lock);
2829 	__d_move(dentry, target, false);
2830 	write_sequnlock(&rename_lock);
2831 }
2832 EXPORT_SYMBOL(d_move);
2833 
2834 /*
2835  * d_exchange - exchange two dentries
2836  * @dentry1: first dentry
2837  * @dentry2: second dentry
2838  */
2839 void d_exchange(struct dentry *dentry1, struct dentry *dentry2)
2840 {
2841 	write_seqlock(&rename_lock);
2842 
2843 	WARN_ON(!dentry1->d_inode);
2844 	WARN_ON(!dentry2->d_inode);
2845 	WARN_ON(IS_ROOT(dentry1));
2846 	WARN_ON(IS_ROOT(dentry2));
2847 
2848 	__d_move(dentry1, dentry2, true);
2849 
2850 	write_sequnlock(&rename_lock);
2851 }
2852 
2853 /**
2854  * d_ancestor - search for an ancestor
2855  * @p1: ancestor dentry
2856  * @p2: child dentry
2857  *
2858  * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2859  * an ancestor of p2, else NULL.
2860  */
2861 struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
2862 {
2863 	struct dentry *p;
2864 
2865 	for (p = p2; !IS_ROOT(p); p = p->d_parent) {
2866 		if (p->d_parent == p1)
2867 			return p;
2868 	}
2869 	return NULL;
2870 }
2871 
2872 /*
2873  * This helper attempts to cope with remotely renamed directories
2874  *
2875  * It assumes that the caller is already holding
2876  * dentry->d_parent->d_inode->i_mutex, and rename_lock
2877  *
2878  * Note: If ever the locking in lock_rename() changes, then please
2879  * remember to update this too...
2880  */
2881 static int __d_unalias(struct inode *inode,
2882 		struct dentry *dentry, struct dentry *alias)
2883 {
2884 	struct mutex *m1 = NULL;
2885 	struct rw_semaphore *m2 = NULL;
2886 	int ret = -ESTALE;
2887 
2888 	/* If alias and dentry share a parent, then no extra locks required */
2889 	if (alias->d_parent == dentry->d_parent)
2890 		goto out_unalias;
2891 
2892 	/* See lock_rename() */
2893 	if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
2894 		goto out_err;
2895 	m1 = &dentry->d_sb->s_vfs_rename_mutex;
2896 	if (!inode_trylock_shared(alias->d_parent->d_inode))
2897 		goto out_err;
2898 	m2 = &alias->d_parent->d_inode->i_rwsem;
2899 out_unalias:
2900 	__d_move(alias, dentry, false);
2901 	ret = 0;
2902 out_err:
2903 	if (m2)
2904 		up_read(m2);
2905 	if (m1)
2906 		mutex_unlock(m1);
2907 	return ret;
2908 }
2909 
2910 /**
2911  * d_splice_alias - splice a disconnected dentry into the tree if one exists
2912  * @inode:  the inode which may have a disconnected dentry
2913  * @dentry: a negative dentry which we want to point to the inode.
2914  *
2915  * If inode is a directory and has an IS_ROOT alias, then d_move that in
2916  * place of the given dentry and return it, else simply d_add the inode
2917  * to the dentry and return NULL.
2918  *
2919  * If a non-IS_ROOT directory is found, the filesystem is corrupt, and
2920  * we should error out: directories can't have multiple aliases.
2921  *
2922  * This is needed in the lookup routine of any filesystem that is exportable
2923  * (via knfsd) so that we can build dcache paths to directories effectively.
2924  *
2925  * If a dentry was found and moved, then it is returned.  Otherwise NULL
2926  * is returned.  This matches the expected return value of ->lookup.
2927  *
2928  * Cluster filesystems may call this function with a negative, hashed dentry.
2929  * In that case, we know that the inode will be a regular file, and also this
2930  * will only occur during atomic_open. So we need to check for the dentry
2931  * being already hashed only in the final case.
2932  */
2933 struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
2934 {
2935 	if (IS_ERR(inode))
2936 		return ERR_CAST(inode);
2937 
2938 	BUG_ON(!d_unhashed(dentry));
2939 
2940 	if (!inode)
2941 		goto out;
2942 
2943 	security_d_instantiate(dentry, inode);
2944 	spin_lock(&inode->i_lock);
2945 	if (S_ISDIR(inode->i_mode)) {
2946 		struct dentry *new = __d_find_any_alias(inode);
2947 		if (unlikely(new)) {
2948 			/* The reference to new ensures it remains an alias */
2949 			spin_unlock(&inode->i_lock);
2950 			write_seqlock(&rename_lock);
2951 			if (unlikely(d_ancestor(new, dentry))) {
2952 				write_sequnlock(&rename_lock);
2953 				dput(new);
2954 				new = ERR_PTR(-ELOOP);
2955 				pr_warn_ratelimited(
2956 					"VFS: Lookup of '%s' in %s %s"
2957 					" would have caused loop\n",
2958 					dentry->d_name.name,
2959 					inode->i_sb->s_type->name,
2960 					inode->i_sb->s_id);
2961 			} else if (!IS_ROOT(new)) {
2962 				struct dentry *old_parent = dget(new->d_parent);
2963 				int err = __d_unalias(inode, dentry, new);
2964 				write_sequnlock(&rename_lock);
2965 				if (err) {
2966 					dput(new);
2967 					new = ERR_PTR(err);
2968 				}
2969 				dput(old_parent);
2970 			} else {
2971 				__d_move(new, dentry, false);
2972 				write_sequnlock(&rename_lock);
2973 			}
2974 			iput(inode);
2975 			return new;
2976 		}
2977 	}
2978 out:
2979 	__d_add(dentry, inode);
2980 	return NULL;
2981 }
2982 EXPORT_SYMBOL(d_splice_alias);
2983 
2984 /*
2985  * Test whether new_dentry is a subdirectory of old_dentry.
2986  *
2987  * Trivially implemented using the dcache structure
2988  */
2989 
2990 /**
2991  * is_subdir - is new dentry a subdirectory of old_dentry
2992  * @new_dentry: new dentry
2993  * @old_dentry: old dentry
2994  *
2995  * Returns true if new_dentry is a subdirectory of the parent (at any depth).
2996  * Returns false otherwise.
2997  * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
2998  */
2999 
3000 bool is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
3001 {
3002 	bool result;
3003 	unsigned seq;
3004 
3005 	if (new_dentry == old_dentry)
3006 		return true;
3007 
3008 	do {
3009 		/* for restarting inner loop in case of seq retry */
3010 		seq = read_seqbegin(&rename_lock);
3011 		/*
3012 		 * Need rcu_readlock to protect against the d_parent trashing
3013 		 * due to d_move
3014 		 */
3015 		rcu_read_lock();
3016 		if (d_ancestor(old_dentry, new_dentry))
3017 			result = true;
3018 		else
3019 			result = false;
3020 		rcu_read_unlock();
3021 	} while (read_seqretry(&rename_lock, seq));
3022 
3023 	return result;
3024 }
3025 EXPORT_SYMBOL(is_subdir);
3026 
3027 static enum d_walk_ret d_genocide_kill(void *data, struct dentry *dentry)
3028 {
3029 	struct dentry *root = data;
3030 	if (dentry != root) {
3031 		if (d_unhashed(dentry) || !dentry->d_inode)
3032 			return D_WALK_SKIP;
3033 
3034 		if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
3035 			dentry->d_flags |= DCACHE_GENOCIDE;
3036 			dentry->d_lockref.count--;
3037 		}
3038 	}
3039 	return D_WALK_CONTINUE;
3040 }
3041 
3042 void d_genocide(struct dentry *parent)
3043 {
3044 	d_walk(parent, parent, d_genocide_kill);
3045 }
3046 
3047 EXPORT_SYMBOL(d_genocide);
3048 
3049 void d_tmpfile(struct dentry *dentry, struct inode *inode)
3050 {
3051 	inode_dec_link_count(inode);
3052 	BUG_ON(dentry->d_name.name != dentry->d_iname ||
3053 		!hlist_unhashed(&dentry->d_u.d_alias) ||
3054 		!d_unlinked(dentry));
3055 	spin_lock(&dentry->d_parent->d_lock);
3056 	spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
3057 	dentry->d_name.len = sprintf(dentry->d_iname, "#%llu",
3058 				(unsigned long long)inode->i_ino);
3059 	spin_unlock(&dentry->d_lock);
3060 	spin_unlock(&dentry->d_parent->d_lock);
3061 	d_instantiate(dentry, inode);
3062 }
3063 EXPORT_SYMBOL(d_tmpfile);
3064 
3065 static __initdata unsigned long dhash_entries;
3066 static int __init set_dhash_entries(char *str)
3067 {
3068 	if (!str)
3069 		return 0;
3070 	dhash_entries = simple_strtoul(str, &str, 0);
3071 	return 1;
3072 }
3073 __setup("dhash_entries=", set_dhash_entries);
3074 
3075 static void __init dcache_init_early(void)
3076 {
3077 	/* If hashes are distributed across NUMA nodes, defer
3078 	 * hash allocation until vmalloc space is available.
3079 	 */
3080 	if (hashdist)
3081 		return;
3082 
3083 	dentry_hashtable =
3084 		alloc_large_system_hash("Dentry cache",
3085 					sizeof(struct hlist_bl_head),
3086 					dhash_entries,
3087 					13,
3088 					HASH_EARLY | HASH_ZERO,
3089 					&d_hash_shift,
3090 					NULL,
3091 					0,
3092 					0);
3093 	d_hash_shift = 32 - d_hash_shift;
3094 }
3095 
3096 static void __init dcache_init(void)
3097 {
3098 	/*
3099 	 * A constructor could be added for stable state like the lists,
3100 	 * but it is probably not worth it because of the cache nature
3101 	 * of the dcache.
3102 	 */
3103 	dentry_cache = KMEM_CACHE_USERCOPY(dentry,
3104 		SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD|SLAB_ACCOUNT,
3105 		d_iname);
3106 
3107 	/* Hash may have been set up in dcache_init_early */
3108 	if (!hashdist)
3109 		return;
3110 
3111 	dentry_hashtable =
3112 		alloc_large_system_hash("Dentry cache",
3113 					sizeof(struct hlist_bl_head),
3114 					dhash_entries,
3115 					13,
3116 					HASH_ZERO,
3117 					&d_hash_shift,
3118 					NULL,
3119 					0,
3120 					0);
3121 	d_hash_shift = 32 - d_hash_shift;
3122 }
3123 
3124 /* SLAB cache for __getname() consumers */
3125 struct kmem_cache *names_cachep __read_mostly;
3126 EXPORT_SYMBOL(names_cachep);
3127 
3128 void __init vfs_caches_init_early(void)
3129 {
3130 	int i;
3131 
3132 	for (i = 0; i < ARRAY_SIZE(in_lookup_hashtable); i++)
3133 		INIT_HLIST_BL_HEAD(&in_lookup_hashtable[i]);
3134 
3135 	dcache_init_early();
3136 	inode_init_early();
3137 }
3138 
3139 void __init vfs_caches_init(void)
3140 {
3141 	names_cachep = kmem_cache_create_usercopy("names_cache", PATH_MAX, 0,
3142 			SLAB_HWCACHE_ALIGN|SLAB_PANIC, 0, PATH_MAX, NULL);
3143 
3144 	dcache_init();
3145 	inode_init();
3146 	files_init();
3147 	files_maxfiles_init();
3148 	mnt_init();
3149 	bdev_cache_init();
3150 	chrdev_init();
3151 }
3152