1 /* 2 * fs/dcache.c 3 * 4 * Complete reimplementation 5 * (C) 1997 Thomas Schoebel-Theuer, 6 * with heavy changes by Linus Torvalds 7 */ 8 9 /* 10 * Notes on the allocation strategy: 11 * 12 * The dcache is a master of the icache - whenever a dcache entry 13 * exists, the inode will always exist. "iput()" is done either when 14 * the dcache entry is deleted or garbage collected. 15 */ 16 17 #include <linux/ratelimit.h> 18 #include <linux/string.h> 19 #include <linux/mm.h> 20 #include <linux/fs.h> 21 #include <linux/fsnotify.h> 22 #include <linux/slab.h> 23 #include <linux/init.h> 24 #include <linux/hash.h> 25 #include <linux/cache.h> 26 #include <linux/export.h> 27 #include <linux/security.h> 28 #include <linux/seqlock.h> 29 #include <linux/bootmem.h> 30 #include <linux/bit_spinlock.h> 31 #include <linux/rculist_bl.h> 32 #include <linux/list_lru.h> 33 #include "internal.h" 34 #include "mount.h" 35 36 /* 37 * Usage: 38 * dcache->d_inode->i_lock protects: 39 * - i_dentry, d_u.d_alias, d_inode of aliases 40 * dcache_hash_bucket lock protects: 41 * - the dcache hash table 42 * s_roots bl list spinlock protects: 43 * - the s_roots list (see __d_drop) 44 * dentry->d_sb->s_dentry_lru_lock protects: 45 * - the dcache lru lists and counters 46 * d_lock protects: 47 * - d_flags 48 * - d_name 49 * - d_lru 50 * - d_count 51 * - d_unhashed() 52 * - d_parent and d_subdirs 53 * - childrens' d_child and d_parent 54 * - d_u.d_alias, d_inode 55 * 56 * Ordering: 57 * dentry->d_inode->i_lock 58 * dentry->d_lock 59 * dentry->d_sb->s_dentry_lru_lock 60 * dcache_hash_bucket lock 61 * s_roots lock 62 * 63 * If there is an ancestor relationship: 64 * dentry->d_parent->...->d_parent->d_lock 65 * ... 66 * dentry->d_parent->d_lock 67 * dentry->d_lock 68 * 69 * If no ancestor relationship: 70 * arbitrary, since it's serialized on rename_lock 71 */ 72 int sysctl_vfs_cache_pressure __read_mostly = 100; 73 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure); 74 75 __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock); 76 77 EXPORT_SYMBOL(rename_lock); 78 79 static struct kmem_cache *dentry_cache __read_mostly; 80 81 const struct qstr empty_name = QSTR_INIT("", 0); 82 EXPORT_SYMBOL(empty_name); 83 const struct qstr slash_name = QSTR_INIT("/", 1); 84 EXPORT_SYMBOL(slash_name); 85 86 /* 87 * This is the single most critical data structure when it comes 88 * to the dcache: the hashtable for lookups. Somebody should try 89 * to make this good - I've just made it work. 90 * 91 * This hash-function tries to avoid losing too many bits of hash 92 * information, yet avoid using a prime hash-size or similar. 93 */ 94 95 static unsigned int d_hash_shift __read_mostly; 96 97 static struct hlist_bl_head *dentry_hashtable __read_mostly; 98 99 static inline struct hlist_bl_head *d_hash(unsigned int hash) 100 { 101 return dentry_hashtable + (hash >> d_hash_shift); 102 } 103 104 #define IN_LOOKUP_SHIFT 10 105 static struct hlist_bl_head in_lookup_hashtable[1 << IN_LOOKUP_SHIFT]; 106 107 static inline struct hlist_bl_head *in_lookup_hash(const struct dentry *parent, 108 unsigned int hash) 109 { 110 hash += (unsigned long) parent / L1_CACHE_BYTES; 111 return in_lookup_hashtable + hash_32(hash, IN_LOOKUP_SHIFT); 112 } 113 114 115 /* Statistics gathering. */ 116 struct dentry_stat_t dentry_stat = { 117 .age_limit = 45, 118 }; 119 120 static DEFINE_PER_CPU(long, nr_dentry); 121 static DEFINE_PER_CPU(long, nr_dentry_unused); 122 123 #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS) 124 125 /* 126 * Here we resort to our own counters instead of using generic per-cpu counters 127 * for consistency with what the vfs inode code does. We are expected to harvest 128 * better code and performance by having our own specialized counters. 129 * 130 * Please note that the loop is done over all possible CPUs, not over all online 131 * CPUs. The reason for this is that we don't want to play games with CPUs going 132 * on and off. If one of them goes off, we will just keep their counters. 133 * 134 * glommer: See cffbc8a for details, and if you ever intend to change this, 135 * please update all vfs counters to match. 136 */ 137 static long get_nr_dentry(void) 138 { 139 int i; 140 long sum = 0; 141 for_each_possible_cpu(i) 142 sum += per_cpu(nr_dentry, i); 143 return sum < 0 ? 0 : sum; 144 } 145 146 static long get_nr_dentry_unused(void) 147 { 148 int i; 149 long sum = 0; 150 for_each_possible_cpu(i) 151 sum += per_cpu(nr_dentry_unused, i); 152 return sum < 0 ? 0 : sum; 153 } 154 155 int proc_nr_dentry(struct ctl_table *table, int write, void __user *buffer, 156 size_t *lenp, loff_t *ppos) 157 { 158 dentry_stat.nr_dentry = get_nr_dentry(); 159 dentry_stat.nr_unused = get_nr_dentry_unused(); 160 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos); 161 } 162 #endif 163 164 /* 165 * Compare 2 name strings, return 0 if they match, otherwise non-zero. 166 * The strings are both count bytes long, and count is non-zero. 167 */ 168 #ifdef CONFIG_DCACHE_WORD_ACCESS 169 170 #include <asm/word-at-a-time.h> 171 /* 172 * NOTE! 'cs' and 'scount' come from a dentry, so it has a 173 * aligned allocation for this particular component. We don't 174 * strictly need the load_unaligned_zeropad() safety, but it 175 * doesn't hurt either. 176 * 177 * In contrast, 'ct' and 'tcount' can be from a pathname, and do 178 * need the careful unaligned handling. 179 */ 180 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount) 181 { 182 unsigned long a,b,mask; 183 184 for (;;) { 185 a = read_word_at_a_time(cs); 186 b = load_unaligned_zeropad(ct); 187 if (tcount < sizeof(unsigned long)) 188 break; 189 if (unlikely(a != b)) 190 return 1; 191 cs += sizeof(unsigned long); 192 ct += sizeof(unsigned long); 193 tcount -= sizeof(unsigned long); 194 if (!tcount) 195 return 0; 196 } 197 mask = bytemask_from_count(tcount); 198 return unlikely(!!((a ^ b) & mask)); 199 } 200 201 #else 202 203 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount) 204 { 205 do { 206 if (*cs != *ct) 207 return 1; 208 cs++; 209 ct++; 210 tcount--; 211 } while (tcount); 212 return 0; 213 } 214 215 #endif 216 217 static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount) 218 { 219 /* 220 * Be careful about RCU walk racing with rename: 221 * use 'READ_ONCE' to fetch the name pointer. 222 * 223 * NOTE! Even if a rename will mean that the length 224 * was not loaded atomically, we don't care. The 225 * RCU walk will check the sequence count eventually, 226 * and catch it. And we won't overrun the buffer, 227 * because we're reading the name pointer atomically, 228 * and a dentry name is guaranteed to be properly 229 * terminated with a NUL byte. 230 * 231 * End result: even if 'len' is wrong, we'll exit 232 * early because the data cannot match (there can 233 * be no NUL in the ct/tcount data) 234 */ 235 const unsigned char *cs = READ_ONCE(dentry->d_name.name); 236 237 return dentry_string_cmp(cs, ct, tcount); 238 } 239 240 struct external_name { 241 union { 242 atomic_t count; 243 struct rcu_head head; 244 } u; 245 unsigned char name[]; 246 }; 247 248 static inline struct external_name *external_name(struct dentry *dentry) 249 { 250 return container_of(dentry->d_name.name, struct external_name, name[0]); 251 } 252 253 static void __d_free(struct rcu_head *head) 254 { 255 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu); 256 257 kmem_cache_free(dentry_cache, dentry); 258 } 259 260 static void __d_free_external(struct rcu_head *head) 261 { 262 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu); 263 kfree(external_name(dentry)); 264 kmem_cache_free(dentry_cache, dentry); 265 } 266 267 static inline int dname_external(const struct dentry *dentry) 268 { 269 return dentry->d_name.name != dentry->d_iname; 270 } 271 272 void take_dentry_name_snapshot(struct name_snapshot *name, struct dentry *dentry) 273 { 274 spin_lock(&dentry->d_lock); 275 if (unlikely(dname_external(dentry))) { 276 struct external_name *p = external_name(dentry); 277 atomic_inc(&p->u.count); 278 spin_unlock(&dentry->d_lock); 279 name->name = p->name; 280 } else { 281 memcpy(name->inline_name, dentry->d_iname, DNAME_INLINE_LEN); 282 spin_unlock(&dentry->d_lock); 283 name->name = name->inline_name; 284 } 285 } 286 EXPORT_SYMBOL(take_dentry_name_snapshot); 287 288 void release_dentry_name_snapshot(struct name_snapshot *name) 289 { 290 if (unlikely(name->name != name->inline_name)) { 291 struct external_name *p; 292 p = container_of(name->name, struct external_name, name[0]); 293 if (unlikely(atomic_dec_and_test(&p->u.count))) 294 kfree_rcu(p, u.head); 295 } 296 } 297 EXPORT_SYMBOL(release_dentry_name_snapshot); 298 299 static inline void __d_set_inode_and_type(struct dentry *dentry, 300 struct inode *inode, 301 unsigned type_flags) 302 { 303 unsigned flags; 304 305 dentry->d_inode = inode; 306 flags = READ_ONCE(dentry->d_flags); 307 flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU); 308 flags |= type_flags; 309 WRITE_ONCE(dentry->d_flags, flags); 310 } 311 312 static inline void __d_clear_type_and_inode(struct dentry *dentry) 313 { 314 unsigned flags = READ_ONCE(dentry->d_flags); 315 316 flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU); 317 WRITE_ONCE(dentry->d_flags, flags); 318 dentry->d_inode = NULL; 319 } 320 321 static void dentry_free(struct dentry *dentry) 322 { 323 WARN_ON(!hlist_unhashed(&dentry->d_u.d_alias)); 324 if (unlikely(dname_external(dentry))) { 325 struct external_name *p = external_name(dentry); 326 if (likely(atomic_dec_and_test(&p->u.count))) { 327 call_rcu(&dentry->d_u.d_rcu, __d_free_external); 328 return; 329 } 330 } 331 /* if dentry was never visible to RCU, immediate free is OK */ 332 if (!(dentry->d_flags & DCACHE_RCUACCESS)) 333 __d_free(&dentry->d_u.d_rcu); 334 else 335 call_rcu(&dentry->d_u.d_rcu, __d_free); 336 } 337 338 /* 339 * Release the dentry's inode, using the filesystem 340 * d_iput() operation if defined. 341 */ 342 static void dentry_unlink_inode(struct dentry * dentry) 343 __releases(dentry->d_lock) 344 __releases(dentry->d_inode->i_lock) 345 { 346 struct inode *inode = dentry->d_inode; 347 bool hashed = !d_unhashed(dentry); 348 349 if (hashed) 350 raw_write_seqcount_begin(&dentry->d_seq); 351 __d_clear_type_and_inode(dentry); 352 hlist_del_init(&dentry->d_u.d_alias); 353 if (hashed) 354 raw_write_seqcount_end(&dentry->d_seq); 355 spin_unlock(&dentry->d_lock); 356 spin_unlock(&inode->i_lock); 357 if (!inode->i_nlink) 358 fsnotify_inoderemove(inode); 359 if (dentry->d_op && dentry->d_op->d_iput) 360 dentry->d_op->d_iput(dentry, inode); 361 else 362 iput(inode); 363 } 364 365 /* 366 * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry 367 * is in use - which includes both the "real" per-superblock 368 * LRU list _and_ the DCACHE_SHRINK_LIST use. 369 * 370 * The DCACHE_SHRINK_LIST bit is set whenever the dentry is 371 * on the shrink list (ie not on the superblock LRU list). 372 * 373 * The per-cpu "nr_dentry_unused" counters are updated with 374 * the DCACHE_LRU_LIST bit. 375 * 376 * These helper functions make sure we always follow the 377 * rules. d_lock must be held by the caller. 378 */ 379 #define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x)) 380 static void d_lru_add(struct dentry *dentry) 381 { 382 D_FLAG_VERIFY(dentry, 0); 383 dentry->d_flags |= DCACHE_LRU_LIST; 384 this_cpu_inc(nr_dentry_unused); 385 WARN_ON_ONCE(!list_lru_add(&dentry->d_sb->s_dentry_lru, &dentry->d_lru)); 386 } 387 388 static void d_lru_del(struct dentry *dentry) 389 { 390 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST); 391 dentry->d_flags &= ~DCACHE_LRU_LIST; 392 this_cpu_dec(nr_dentry_unused); 393 WARN_ON_ONCE(!list_lru_del(&dentry->d_sb->s_dentry_lru, &dentry->d_lru)); 394 } 395 396 static void d_shrink_del(struct dentry *dentry) 397 { 398 D_FLAG_VERIFY(dentry, DCACHE_SHRINK_LIST | DCACHE_LRU_LIST); 399 list_del_init(&dentry->d_lru); 400 dentry->d_flags &= ~(DCACHE_SHRINK_LIST | DCACHE_LRU_LIST); 401 this_cpu_dec(nr_dentry_unused); 402 } 403 404 static void d_shrink_add(struct dentry *dentry, struct list_head *list) 405 { 406 D_FLAG_VERIFY(dentry, 0); 407 list_add(&dentry->d_lru, list); 408 dentry->d_flags |= DCACHE_SHRINK_LIST | DCACHE_LRU_LIST; 409 this_cpu_inc(nr_dentry_unused); 410 } 411 412 /* 413 * These can only be called under the global LRU lock, ie during the 414 * callback for freeing the LRU list. "isolate" removes it from the 415 * LRU lists entirely, while shrink_move moves it to the indicated 416 * private list. 417 */ 418 static void d_lru_isolate(struct list_lru_one *lru, struct dentry *dentry) 419 { 420 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST); 421 dentry->d_flags &= ~DCACHE_LRU_LIST; 422 this_cpu_dec(nr_dentry_unused); 423 list_lru_isolate(lru, &dentry->d_lru); 424 } 425 426 static void d_lru_shrink_move(struct list_lru_one *lru, struct dentry *dentry, 427 struct list_head *list) 428 { 429 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST); 430 dentry->d_flags |= DCACHE_SHRINK_LIST; 431 list_lru_isolate_move(lru, &dentry->d_lru, list); 432 } 433 434 /** 435 * d_drop - drop a dentry 436 * @dentry: dentry to drop 437 * 438 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't 439 * be found through a VFS lookup any more. Note that this is different from 440 * deleting the dentry - d_delete will try to mark the dentry negative if 441 * possible, giving a successful _negative_ lookup, while d_drop will 442 * just make the cache lookup fail. 443 * 444 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some 445 * reason (NFS timeouts or autofs deletes). 446 * 447 * __d_drop requires dentry->d_lock 448 * ___d_drop doesn't mark dentry as "unhashed" 449 * (dentry->d_hash.pprev will be LIST_POISON2, not NULL). 450 */ 451 static void ___d_drop(struct dentry *dentry) 452 { 453 struct hlist_bl_head *b; 454 /* 455 * Hashed dentries are normally on the dentry hashtable, 456 * with the exception of those newly allocated by 457 * d_obtain_root, which are always IS_ROOT: 458 */ 459 if (unlikely(IS_ROOT(dentry))) 460 b = &dentry->d_sb->s_roots; 461 else 462 b = d_hash(dentry->d_name.hash); 463 464 hlist_bl_lock(b); 465 __hlist_bl_del(&dentry->d_hash); 466 hlist_bl_unlock(b); 467 } 468 469 void __d_drop(struct dentry *dentry) 470 { 471 if (!d_unhashed(dentry)) { 472 ___d_drop(dentry); 473 dentry->d_hash.pprev = NULL; 474 write_seqcount_invalidate(&dentry->d_seq); 475 } 476 } 477 EXPORT_SYMBOL(__d_drop); 478 479 void d_drop(struct dentry *dentry) 480 { 481 spin_lock(&dentry->d_lock); 482 __d_drop(dentry); 483 spin_unlock(&dentry->d_lock); 484 } 485 EXPORT_SYMBOL(d_drop); 486 487 static inline void dentry_unlist(struct dentry *dentry, struct dentry *parent) 488 { 489 struct dentry *next; 490 /* 491 * Inform d_walk() and shrink_dentry_list() that we are no longer 492 * attached to the dentry tree 493 */ 494 dentry->d_flags |= DCACHE_DENTRY_KILLED; 495 if (unlikely(list_empty(&dentry->d_child))) 496 return; 497 __list_del_entry(&dentry->d_child); 498 /* 499 * Cursors can move around the list of children. While we'd been 500 * a normal list member, it didn't matter - ->d_child.next would've 501 * been updated. However, from now on it won't be and for the 502 * things like d_walk() it might end up with a nasty surprise. 503 * Normally d_walk() doesn't care about cursors moving around - 504 * ->d_lock on parent prevents that and since a cursor has no children 505 * of its own, we get through it without ever unlocking the parent. 506 * There is one exception, though - if we ascend from a child that 507 * gets killed as soon as we unlock it, the next sibling is found 508 * using the value left in its ->d_child.next. And if _that_ 509 * pointed to a cursor, and cursor got moved (e.g. by lseek()) 510 * before d_walk() regains parent->d_lock, we'll end up skipping 511 * everything the cursor had been moved past. 512 * 513 * Solution: make sure that the pointer left behind in ->d_child.next 514 * points to something that won't be moving around. I.e. skip the 515 * cursors. 516 */ 517 while (dentry->d_child.next != &parent->d_subdirs) { 518 next = list_entry(dentry->d_child.next, struct dentry, d_child); 519 if (likely(!(next->d_flags & DCACHE_DENTRY_CURSOR))) 520 break; 521 dentry->d_child.next = next->d_child.next; 522 } 523 } 524 525 static void __dentry_kill(struct dentry *dentry) 526 { 527 struct dentry *parent = NULL; 528 bool can_free = true; 529 if (!IS_ROOT(dentry)) 530 parent = dentry->d_parent; 531 532 /* 533 * The dentry is now unrecoverably dead to the world. 534 */ 535 lockref_mark_dead(&dentry->d_lockref); 536 537 /* 538 * inform the fs via d_prune that this dentry is about to be 539 * unhashed and destroyed. 540 */ 541 if (dentry->d_flags & DCACHE_OP_PRUNE) 542 dentry->d_op->d_prune(dentry); 543 544 if (dentry->d_flags & DCACHE_LRU_LIST) { 545 if (!(dentry->d_flags & DCACHE_SHRINK_LIST)) 546 d_lru_del(dentry); 547 } 548 /* if it was on the hash then remove it */ 549 __d_drop(dentry); 550 dentry_unlist(dentry, parent); 551 if (parent) 552 spin_unlock(&parent->d_lock); 553 if (dentry->d_inode) 554 dentry_unlink_inode(dentry); 555 else 556 spin_unlock(&dentry->d_lock); 557 this_cpu_dec(nr_dentry); 558 if (dentry->d_op && dentry->d_op->d_release) 559 dentry->d_op->d_release(dentry); 560 561 spin_lock(&dentry->d_lock); 562 if (dentry->d_flags & DCACHE_SHRINK_LIST) { 563 dentry->d_flags |= DCACHE_MAY_FREE; 564 can_free = false; 565 } 566 spin_unlock(&dentry->d_lock); 567 if (likely(can_free)) 568 dentry_free(dentry); 569 } 570 571 static struct dentry *__lock_parent(struct dentry *dentry) 572 { 573 struct dentry *parent; 574 rcu_read_lock(); 575 spin_unlock(&dentry->d_lock); 576 again: 577 parent = READ_ONCE(dentry->d_parent); 578 spin_lock(&parent->d_lock); 579 /* 580 * We can't blindly lock dentry until we are sure 581 * that we won't violate the locking order. 582 * Any changes of dentry->d_parent must have 583 * been done with parent->d_lock held, so 584 * spin_lock() above is enough of a barrier 585 * for checking if it's still our child. 586 */ 587 if (unlikely(parent != dentry->d_parent)) { 588 spin_unlock(&parent->d_lock); 589 goto again; 590 } 591 rcu_read_unlock(); 592 if (parent != dentry) 593 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED); 594 else 595 parent = NULL; 596 return parent; 597 } 598 599 static inline struct dentry *lock_parent(struct dentry *dentry) 600 { 601 struct dentry *parent = dentry->d_parent; 602 if (IS_ROOT(dentry)) 603 return NULL; 604 if (likely(spin_trylock(&parent->d_lock))) 605 return parent; 606 return __lock_parent(dentry); 607 } 608 609 static inline bool retain_dentry(struct dentry *dentry) 610 { 611 WARN_ON(d_in_lookup(dentry)); 612 613 /* Unreachable? Get rid of it */ 614 if (unlikely(d_unhashed(dentry))) 615 return false; 616 617 if (unlikely(dentry->d_flags & DCACHE_DISCONNECTED)) 618 return false; 619 620 if (unlikely(dentry->d_flags & DCACHE_OP_DELETE)) { 621 if (dentry->d_op->d_delete(dentry)) 622 return false; 623 } 624 /* retain; LRU fodder */ 625 dentry->d_lockref.count--; 626 if (unlikely(!(dentry->d_flags & DCACHE_LRU_LIST))) 627 d_lru_add(dentry); 628 else if (unlikely(!(dentry->d_flags & DCACHE_REFERENCED))) 629 dentry->d_flags |= DCACHE_REFERENCED; 630 return true; 631 } 632 633 /* 634 * Finish off a dentry we've decided to kill. 635 * dentry->d_lock must be held, returns with it unlocked. 636 * Returns dentry requiring refcount drop, or NULL if we're done. 637 */ 638 static struct dentry *dentry_kill(struct dentry *dentry) 639 __releases(dentry->d_lock) 640 { 641 struct inode *inode = dentry->d_inode; 642 struct dentry *parent = NULL; 643 644 if (inode && unlikely(!spin_trylock(&inode->i_lock))) 645 goto slow_positive; 646 647 if (!IS_ROOT(dentry)) { 648 parent = dentry->d_parent; 649 if (unlikely(!spin_trylock(&parent->d_lock))) { 650 parent = __lock_parent(dentry); 651 if (likely(inode || !dentry->d_inode)) 652 goto got_locks; 653 /* negative that became positive */ 654 if (parent) 655 spin_unlock(&parent->d_lock); 656 inode = dentry->d_inode; 657 goto slow_positive; 658 } 659 } 660 __dentry_kill(dentry); 661 return parent; 662 663 slow_positive: 664 spin_unlock(&dentry->d_lock); 665 spin_lock(&inode->i_lock); 666 spin_lock(&dentry->d_lock); 667 parent = lock_parent(dentry); 668 got_locks: 669 if (unlikely(dentry->d_lockref.count != 1)) { 670 dentry->d_lockref.count--; 671 } else if (likely(!retain_dentry(dentry))) { 672 __dentry_kill(dentry); 673 return parent; 674 } 675 /* we are keeping it, after all */ 676 if (inode) 677 spin_unlock(&inode->i_lock); 678 if (parent) 679 spin_unlock(&parent->d_lock); 680 spin_unlock(&dentry->d_lock); 681 return NULL; 682 } 683 684 /* 685 * Try to do a lockless dput(), and return whether that was successful. 686 * 687 * If unsuccessful, we return false, having already taken the dentry lock. 688 * 689 * The caller needs to hold the RCU read lock, so that the dentry is 690 * guaranteed to stay around even if the refcount goes down to zero! 691 */ 692 static inline bool fast_dput(struct dentry *dentry) 693 { 694 int ret; 695 unsigned int d_flags; 696 697 /* 698 * If we have a d_op->d_delete() operation, we sould not 699 * let the dentry count go to zero, so use "put_or_lock". 700 */ 701 if (unlikely(dentry->d_flags & DCACHE_OP_DELETE)) 702 return lockref_put_or_lock(&dentry->d_lockref); 703 704 /* 705 * .. otherwise, we can try to just decrement the 706 * lockref optimistically. 707 */ 708 ret = lockref_put_return(&dentry->d_lockref); 709 710 /* 711 * If the lockref_put_return() failed due to the lock being held 712 * by somebody else, the fast path has failed. We will need to 713 * get the lock, and then check the count again. 714 */ 715 if (unlikely(ret < 0)) { 716 spin_lock(&dentry->d_lock); 717 if (dentry->d_lockref.count > 1) { 718 dentry->d_lockref.count--; 719 spin_unlock(&dentry->d_lock); 720 return 1; 721 } 722 return 0; 723 } 724 725 /* 726 * If we weren't the last ref, we're done. 727 */ 728 if (ret) 729 return 1; 730 731 /* 732 * Careful, careful. The reference count went down 733 * to zero, but we don't hold the dentry lock, so 734 * somebody else could get it again, and do another 735 * dput(), and we need to not race with that. 736 * 737 * However, there is a very special and common case 738 * where we don't care, because there is nothing to 739 * do: the dentry is still hashed, it does not have 740 * a 'delete' op, and it's referenced and already on 741 * the LRU list. 742 * 743 * NOTE! Since we aren't locked, these values are 744 * not "stable". However, it is sufficient that at 745 * some point after we dropped the reference the 746 * dentry was hashed and the flags had the proper 747 * value. Other dentry users may have re-gotten 748 * a reference to the dentry and change that, but 749 * our work is done - we can leave the dentry 750 * around with a zero refcount. 751 */ 752 smp_rmb(); 753 d_flags = READ_ONCE(dentry->d_flags); 754 d_flags &= DCACHE_REFERENCED | DCACHE_LRU_LIST | DCACHE_DISCONNECTED; 755 756 /* Nothing to do? Dropping the reference was all we needed? */ 757 if (d_flags == (DCACHE_REFERENCED | DCACHE_LRU_LIST) && !d_unhashed(dentry)) 758 return 1; 759 760 /* 761 * Not the fast normal case? Get the lock. We've already decremented 762 * the refcount, but we'll need to re-check the situation after 763 * getting the lock. 764 */ 765 spin_lock(&dentry->d_lock); 766 767 /* 768 * Did somebody else grab a reference to it in the meantime, and 769 * we're no longer the last user after all? Alternatively, somebody 770 * else could have killed it and marked it dead. Either way, we 771 * don't need to do anything else. 772 */ 773 if (dentry->d_lockref.count) { 774 spin_unlock(&dentry->d_lock); 775 return 1; 776 } 777 778 /* 779 * Re-get the reference we optimistically dropped. We hold the 780 * lock, and we just tested that it was zero, so we can just 781 * set it to 1. 782 */ 783 dentry->d_lockref.count = 1; 784 return 0; 785 } 786 787 788 /* 789 * This is dput 790 * 791 * This is complicated by the fact that we do not want to put 792 * dentries that are no longer on any hash chain on the unused 793 * list: we'd much rather just get rid of them immediately. 794 * 795 * However, that implies that we have to traverse the dentry 796 * tree upwards to the parents which might _also_ now be 797 * scheduled for deletion (it may have been only waiting for 798 * its last child to go away). 799 * 800 * This tail recursion is done by hand as we don't want to depend 801 * on the compiler to always get this right (gcc generally doesn't). 802 * Real recursion would eat up our stack space. 803 */ 804 805 /* 806 * dput - release a dentry 807 * @dentry: dentry to release 808 * 809 * Release a dentry. This will drop the usage count and if appropriate 810 * call the dentry unlink method as well as removing it from the queues and 811 * releasing its resources. If the parent dentries were scheduled for release 812 * they too may now get deleted. 813 */ 814 void dput(struct dentry *dentry) 815 { 816 if (unlikely(!dentry)) 817 return; 818 819 repeat: 820 might_sleep(); 821 822 rcu_read_lock(); 823 if (likely(fast_dput(dentry))) { 824 rcu_read_unlock(); 825 return; 826 } 827 828 /* Slow case: now with the dentry lock held */ 829 rcu_read_unlock(); 830 831 if (likely(retain_dentry(dentry))) { 832 spin_unlock(&dentry->d_lock); 833 return; 834 } 835 836 dentry = dentry_kill(dentry); 837 if (dentry) { 838 cond_resched(); 839 goto repeat; 840 } 841 } 842 EXPORT_SYMBOL(dput); 843 844 845 /* This must be called with d_lock held */ 846 static inline void __dget_dlock(struct dentry *dentry) 847 { 848 dentry->d_lockref.count++; 849 } 850 851 static inline void __dget(struct dentry *dentry) 852 { 853 lockref_get(&dentry->d_lockref); 854 } 855 856 struct dentry *dget_parent(struct dentry *dentry) 857 { 858 int gotref; 859 struct dentry *ret; 860 861 /* 862 * Do optimistic parent lookup without any 863 * locking. 864 */ 865 rcu_read_lock(); 866 ret = READ_ONCE(dentry->d_parent); 867 gotref = lockref_get_not_zero(&ret->d_lockref); 868 rcu_read_unlock(); 869 if (likely(gotref)) { 870 if (likely(ret == READ_ONCE(dentry->d_parent))) 871 return ret; 872 dput(ret); 873 } 874 875 repeat: 876 /* 877 * Don't need rcu_dereference because we re-check it was correct under 878 * the lock. 879 */ 880 rcu_read_lock(); 881 ret = dentry->d_parent; 882 spin_lock(&ret->d_lock); 883 if (unlikely(ret != dentry->d_parent)) { 884 spin_unlock(&ret->d_lock); 885 rcu_read_unlock(); 886 goto repeat; 887 } 888 rcu_read_unlock(); 889 BUG_ON(!ret->d_lockref.count); 890 ret->d_lockref.count++; 891 spin_unlock(&ret->d_lock); 892 return ret; 893 } 894 EXPORT_SYMBOL(dget_parent); 895 896 /** 897 * d_find_alias - grab a hashed alias of inode 898 * @inode: inode in question 899 * 900 * If inode has a hashed alias, or is a directory and has any alias, 901 * acquire the reference to alias and return it. Otherwise return NULL. 902 * Notice that if inode is a directory there can be only one alias and 903 * it can be unhashed only if it has no children, or if it is the root 904 * of a filesystem, or if the directory was renamed and d_revalidate 905 * was the first vfs operation to notice. 906 * 907 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer 908 * any other hashed alias over that one. 909 */ 910 static struct dentry *__d_find_alias(struct inode *inode) 911 { 912 struct dentry *alias, *discon_alias; 913 914 again: 915 discon_alias = NULL; 916 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) { 917 spin_lock(&alias->d_lock); 918 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) { 919 if (IS_ROOT(alias) && 920 (alias->d_flags & DCACHE_DISCONNECTED)) { 921 discon_alias = alias; 922 } else { 923 __dget_dlock(alias); 924 spin_unlock(&alias->d_lock); 925 return alias; 926 } 927 } 928 spin_unlock(&alias->d_lock); 929 } 930 if (discon_alias) { 931 alias = discon_alias; 932 spin_lock(&alias->d_lock); 933 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) { 934 __dget_dlock(alias); 935 spin_unlock(&alias->d_lock); 936 return alias; 937 } 938 spin_unlock(&alias->d_lock); 939 goto again; 940 } 941 return NULL; 942 } 943 944 struct dentry *d_find_alias(struct inode *inode) 945 { 946 struct dentry *de = NULL; 947 948 if (!hlist_empty(&inode->i_dentry)) { 949 spin_lock(&inode->i_lock); 950 de = __d_find_alias(inode); 951 spin_unlock(&inode->i_lock); 952 } 953 return de; 954 } 955 EXPORT_SYMBOL(d_find_alias); 956 957 /* 958 * Try to kill dentries associated with this inode. 959 * WARNING: you must own a reference to inode. 960 */ 961 void d_prune_aliases(struct inode *inode) 962 { 963 struct dentry *dentry; 964 restart: 965 spin_lock(&inode->i_lock); 966 hlist_for_each_entry(dentry, &inode->i_dentry, d_u.d_alias) { 967 spin_lock(&dentry->d_lock); 968 if (!dentry->d_lockref.count) { 969 struct dentry *parent = lock_parent(dentry); 970 if (likely(!dentry->d_lockref.count)) { 971 __dentry_kill(dentry); 972 dput(parent); 973 goto restart; 974 } 975 if (parent) 976 spin_unlock(&parent->d_lock); 977 } 978 spin_unlock(&dentry->d_lock); 979 } 980 spin_unlock(&inode->i_lock); 981 } 982 EXPORT_SYMBOL(d_prune_aliases); 983 984 /* 985 * Lock a dentry from shrink list. 986 * Called under rcu_read_lock() and dentry->d_lock; the former 987 * guarantees that nothing we access will be freed under us. 988 * Note that dentry is *not* protected from concurrent dentry_kill(), 989 * d_delete(), etc. 990 * 991 * Return false if dentry has been disrupted or grabbed, leaving 992 * the caller to kick it off-list. Otherwise, return true and have 993 * that dentry's inode and parent both locked. 994 */ 995 static bool shrink_lock_dentry(struct dentry *dentry) 996 { 997 struct inode *inode; 998 struct dentry *parent; 999 1000 if (dentry->d_lockref.count) 1001 return false; 1002 1003 inode = dentry->d_inode; 1004 if (inode && unlikely(!spin_trylock(&inode->i_lock))) { 1005 spin_unlock(&dentry->d_lock); 1006 spin_lock(&inode->i_lock); 1007 spin_lock(&dentry->d_lock); 1008 if (unlikely(dentry->d_lockref.count)) 1009 goto out; 1010 /* changed inode means that somebody had grabbed it */ 1011 if (unlikely(inode != dentry->d_inode)) 1012 goto out; 1013 } 1014 1015 parent = dentry->d_parent; 1016 if (IS_ROOT(dentry) || likely(spin_trylock(&parent->d_lock))) 1017 return true; 1018 1019 spin_unlock(&dentry->d_lock); 1020 spin_lock(&parent->d_lock); 1021 if (unlikely(parent != dentry->d_parent)) { 1022 spin_unlock(&parent->d_lock); 1023 spin_lock(&dentry->d_lock); 1024 goto out; 1025 } 1026 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED); 1027 if (likely(!dentry->d_lockref.count)) 1028 return true; 1029 spin_unlock(&parent->d_lock); 1030 out: 1031 if (inode) 1032 spin_unlock(&inode->i_lock); 1033 return false; 1034 } 1035 1036 static void shrink_dentry_list(struct list_head *list) 1037 { 1038 while (!list_empty(list)) { 1039 struct dentry *dentry, *parent; 1040 1041 dentry = list_entry(list->prev, struct dentry, d_lru); 1042 spin_lock(&dentry->d_lock); 1043 rcu_read_lock(); 1044 if (!shrink_lock_dentry(dentry)) { 1045 bool can_free = false; 1046 rcu_read_unlock(); 1047 d_shrink_del(dentry); 1048 if (dentry->d_lockref.count < 0) 1049 can_free = dentry->d_flags & DCACHE_MAY_FREE; 1050 spin_unlock(&dentry->d_lock); 1051 if (can_free) 1052 dentry_free(dentry); 1053 continue; 1054 } 1055 rcu_read_unlock(); 1056 d_shrink_del(dentry); 1057 parent = dentry->d_parent; 1058 __dentry_kill(dentry); 1059 if (parent == dentry) 1060 continue; 1061 /* 1062 * We need to prune ancestors too. This is necessary to prevent 1063 * quadratic behavior of shrink_dcache_parent(), but is also 1064 * expected to be beneficial in reducing dentry cache 1065 * fragmentation. 1066 */ 1067 dentry = parent; 1068 while (dentry && !lockref_put_or_lock(&dentry->d_lockref)) 1069 dentry = dentry_kill(dentry); 1070 } 1071 } 1072 1073 static enum lru_status dentry_lru_isolate(struct list_head *item, 1074 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg) 1075 { 1076 struct list_head *freeable = arg; 1077 struct dentry *dentry = container_of(item, struct dentry, d_lru); 1078 1079 1080 /* 1081 * we are inverting the lru lock/dentry->d_lock here, 1082 * so use a trylock. If we fail to get the lock, just skip 1083 * it 1084 */ 1085 if (!spin_trylock(&dentry->d_lock)) 1086 return LRU_SKIP; 1087 1088 /* 1089 * Referenced dentries are still in use. If they have active 1090 * counts, just remove them from the LRU. Otherwise give them 1091 * another pass through the LRU. 1092 */ 1093 if (dentry->d_lockref.count) { 1094 d_lru_isolate(lru, dentry); 1095 spin_unlock(&dentry->d_lock); 1096 return LRU_REMOVED; 1097 } 1098 1099 if (dentry->d_flags & DCACHE_REFERENCED) { 1100 dentry->d_flags &= ~DCACHE_REFERENCED; 1101 spin_unlock(&dentry->d_lock); 1102 1103 /* 1104 * The list move itself will be made by the common LRU code. At 1105 * this point, we've dropped the dentry->d_lock but keep the 1106 * lru lock. This is safe to do, since every list movement is 1107 * protected by the lru lock even if both locks are held. 1108 * 1109 * This is guaranteed by the fact that all LRU management 1110 * functions are intermediated by the LRU API calls like 1111 * list_lru_add and list_lru_del. List movement in this file 1112 * only ever occur through this functions or through callbacks 1113 * like this one, that are called from the LRU API. 1114 * 1115 * The only exceptions to this are functions like 1116 * shrink_dentry_list, and code that first checks for the 1117 * DCACHE_SHRINK_LIST flag. Those are guaranteed to be 1118 * operating only with stack provided lists after they are 1119 * properly isolated from the main list. It is thus, always a 1120 * local access. 1121 */ 1122 return LRU_ROTATE; 1123 } 1124 1125 d_lru_shrink_move(lru, dentry, freeable); 1126 spin_unlock(&dentry->d_lock); 1127 1128 return LRU_REMOVED; 1129 } 1130 1131 /** 1132 * prune_dcache_sb - shrink the dcache 1133 * @sb: superblock 1134 * @sc: shrink control, passed to list_lru_shrink_walk() 1135 * 1136 * Attempt to shrink the superblock dcache LRU by @sc->nr_to_scan entries. This 1137 * is done when we need more memory and called from the superblock shrinker 1138 * function. 1139 * 1140 * This function may fail to free any resources if all the dentries are in 1141 * use. 1142 */ 1143 long prune_dcache_sb(struct super_block *sb, struct shrink_control *sc) 1144 { 1145 LIST_HEAD(dispose); 1146 long freed; 1147 1148 freed = list_lru_shrink_walk(&sb->s_dentry_lru, sc, 1149 dentry_lru_isolate, &dispose); 1150 shrink_dentry_list(&dispose); 1151 return freed; 1152 } 1153 1154 static enum lru_status dentry_lru_isolate_shrink(struct list_head *item, 1155 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg) 1156 { 1157 struct list_head *freeable = arg; 1158 struct dentry *dentry = container_of(item, struct dentry, d_lru); 1159 1160 /* 1161 * we are inverting the lru lock/dentry->d_lock here, 1162 * so use a trylock. If we fail to get the lock, just skip 1163 * it 1164 */ 1165 if (!spin_trylock(&dentry->d_lock)) 1166 return LRU_SKIP; 1167 1168 d_lru_shrink_move(lru, dentry, freeable); 1169 spin_unlock(&dentry->d_lock); 1170 1171 return LRU_REMOVED; 1172 } 1173 1174 1175 /** 1176 * shrink_dcache_sb - shrink dcache for a superblock 1177 * @sb: superblock 1178 * 1179 * Shrink the dcache for the specified super block. This is used to free 1180 * the dcache before unmounting a file system. 1181 */ 1182 void shrink_dcache_sb(struct super_block *sb) 1183 { 1184 long freed; 1185 1186 do { 1187 LIST_HEAD(dispose); 1188 1189 freed = list_lru_walk(&sb->s_dentry_lru, 1190 dentry_lru_isolate_shrink, &dispose, 1024); 1191 1192 this_cpu_sub(nr_dentry_unused, freed); 1193 shrink_dentry_list(&dispose); 1194 cond_resched(); 1195 } while (list_lru_count(&sb->s_dentry_lru) > 0); 1196 } 1197 EXPORT_SYMBOL(shrink_dcache_sb); 1198 1199 /** 1200 * enum d_walk_ret - action to talke during tree walk 1201 * @D_WALK_CONTINUE: contrinue walk 1202 * @D_WALK_QUIT: quit walk 1203 * @D_WALK_NORETRY: quit when retry is needed 1204 * @D_WALK_SKIP: skip this dentry and its children 1205 */ 1206 enum d_walk_ret { 1207 D_WALK_CONTINUE, 1208 D_WALK_QUIT, 1209 D_WALK_NORETRY, 1210 D_WALK_SKIP, 1211 }; 1212 1213 /** 1214 * d_walk - walk the dentry tree 1215 * @parent: start of walk 1216 * @data: data passed to @enter() and @finish() 1217 * @enter: callback when first entering the dentry 1218 * @finish: callback when successfully finished the walk 1219 * 1220 * The @enter() and @finish() callbacks are called with d_lock held. 1221 */ 1222 static void d_walk(struct dentry *parent, void *data, 1223 enum d_walk_ret (*enter)(void *, struct dentry *), 1224 void (*finish)(void *)) 1225 { 1226 struct dentry *this_parent; 1227 struct list_head *next; 1228 unsigned seq = 0; 1229 enum d_walk_ret ret; 1230 bool retry = true; 1231 1232 again: 1233 read_seqbegin_or_lock(&rename_lock, &seq); 1234 this_parent = parent; 1235 spin_lock(&this_parent->d_lock); 1236 1237 ret = enter(data, this_parent); 1238 switch (ret) { 1239 case D_WALK_CONTINUE: 1240 break; 1241 case D_WALK_QUIT: 1242 case D_WALK_SKIP: 1243 goto out_unlock; 1244 case D_WALK_NORETRY: 1245 retry = false; 1246 break; 1247 } 1248 repeat: 1249 next = this_parent->d_subdirs.next; 1250 resume: 1251 while (next != &this_parent->d_subdirs) { 1252 struct list_head *tmp = next; 1253 struct dentry *dentry = list_entry(tmp, struct dentry, d_child); 1254 next = tmp->next; 1255 1256 if (unlikely(dentry->d_flags & DCACHE_DENTRY_CURSOR)) 1257 continue; 1258 1259 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED); 1260 1261 ret = enter(data, dentry); 1262 switch (ret) { 1263 case D_WALK_CONTINUE: 1264 break; 1265 case D_WALK_QUIT: 1266 spin_unlock(&dentry->d_lock); 1267 goto out_unlock; 1268 case D_WALK_NORETRY: 1269 retry = false; 1270 break; 1271 case D_WALK_SKIP: 1272 spin_unlock(&dentry->d_lock); 1273 continue; 1274 } 1275 1276 if (!list_empty(&dentry->d_subdirs)) { 1277 spin_unlock(&this_parent->d_lock); 1278 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_); 1279 this_parent = dentry; 1280 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_); 1281 goto repeat; 1282 } 1283 spin_unlock(&dentry->d_lock); 1284 } 1285 /* 1286 * All done at this level ... ascend and resume the search. 1287 */ 1288 rcu_read_lock(); 1289 ascend: 1290 if (this_parent != parent) { 1291 struct dentry *child = this_parent; 1292 this_parent = child->d_parent; 1293 1294 spin_unlock(&child->d_lock); 1295 spin_lock(&this_parent->d_lock); 1296 1297 /* might go back up the wrong parent if we have had a rename. */ 1298 if (need_seqretry(&rename_lock, seq)) 1299 goto rename_retry; 1300 /* go into the first sibling still alive */ 1301 do { 1302 next = child->d_child.next; 1303 if (next == &this_parent->d_subdirs) 1304 goto ascend; 1305 child = list_entry(next, struct dentry, d_child); 1306 } while (unlikely(child->d_flags & DCACHE_DENTRY_KILLED)); 1307 rcu_read_unlock(); 1308 goto resume; 1309 } 1310 if (need_seqretry(&rename_lock, seq)) 1311 goto rename_retry; 1312 rcu_read_unlock(); 1313 if (finish) 1314 finish(data); 1315 1316 out_unlock: 1317 spin_unlock(&this_parent->d_lock); 1318 done_seqretry(&rename_lock, seq); 1319 return; 1320 1321 rename_retry: 1322 spin_unlock(&this_parent->d_lock); 1323 rcu_read_unlock(); 1324 BUG_ON(seq & 1); 1325 if (!retry) 1326 return; 1327 seq = 1; 1328 goto again; 1329 } 1330 1331 struct check_mount { 1332 struct vfsmount *mnt; 1333 unsigned int mounted; 1334 }; 1335 1336 static enum d_walk_ret path_check_mount(void *data, struct dentry *dentry) 1337 { 1338 struct check_mount *info = data; 1339 struct path path = { .mnt = info->mnt, .dentry = dentry }; 1340 1341 if (likely(!d_mountpoint(dentry))) 1342 return D_WALK_CONTINUE; 1343 if (__path_is_mountpoint(&path)) { 1344 info->mounted = 1; 1345 return D_WALK_QUIT; 1346 } 1347 return D_WALK_CONTINUE; 1348 } 1349 1350 /** 1351 * path_has_submounts - check for mounts over a dentry in the 1352 * current namespace. 1353 * @parent: path to check. 1354 * 1355 * Return true if the parent or its subdirectories contain 1356 * a mount point in the current namespace. 1357 */ 1358 int path_has_submounts(const struct path *parent) 1359 { 1360 struct check_mount data = { .mnt = parent->mnt, .mounted = 0 }; 1361 1362 read_seqlock_excl(&mount_lock); 1363 d_walk(parent->dentry, &data, path_check_mount, NULL); 1364 read_sequnlock_excl(&mount_lock); 1365 1366 return data.mounted; 1367 } 1368 EXPORT_SYMBOL(path_has_submounts); 1369 1370 /* 1371 * Called by mount code to set a mountpoint and check if the mountpoint is 1372 * reachable (e.g. NFS can unhash a directory dentry and then the complete 1373 * subtree can become unreachable). 1374 * 1375 * Only one of d_invalidate() and d_set_mounted() must succeed. For 1376 * this reason take rename_lock and d_lock on dentry and ancestors. 1377 */ 1378 int d_set_mounted(struct dentry *dentry) 1379 { 1380 struct dentry *p; 1381 int ret = -ENOENT; 1382 write_seqlock(&rename_lock); 1383 for (p = dentry->d_parent; !IS_ROOT(p); p = p->d_parent) { 1384 /* Need exclusion wrt. d_invalidate() */ 1385 spin_lock(&p->d_lock); 1386 if (unlikely(d_unhashed(p))) { 1387 spin_unlock(&p->d_lock); 1388 goto out; 1389 } 1390 spin_unlock(&p->d_lock); 1391 } 1392 spin_lock(&dentry->d_lock); 1393 if (!d_unlinked(dentry)) { 1394 ret = -EBUSY; 1395 if (!d_mountpoint(dentry)) { 1396 dentry->d_flags |= DCACHE_MOUNTED; 1397 ret = 0; 1398 } 1399 } 1400 spin_unlock(&dentry->d_lock); 1401 out: 1402 write_sequnlock(&rename_lock); 1403 return ret; 1404 } 1405 1406 /* 1407 * Search the dentry child list of the specified parent, 1408 * and move any unused dentries to the end of the unused 1409 * list for prune_dcache(). We descend to the next level 1410 * whenever the d_subdirs list is non-empty and continue 1411 * searching. 1412 * 1413 * It returns zero iff there are no unused children, 1414 * otherwise it returns the number of children moved to 1415 * the end of the unused list. This may not be the total 1416 * number of unused children, because select_parent can 1417 * drop the lock and return early due to latency 1418 * constraints. 1419 */ 1420 1421 struct select_data { 1422 struct dentry *start; 1423 struct list_head dispose; 1424 int found; 1425 }; 1426 1427 static enum d_walk_ret select_collect(void *_data, struct dentry *dentry) 1428 { 1429 struct select_data *data = _data; 1430 enum d_walk_ret ret = D_WALK_CONTINUE; 1431 1432 if (data->start == dentry) 1433 goto out; 1434 1435 if (dentry->d_flags & DCACHE_SHRINK_LIST) { 1436 data->found++; 1437 } else { 1438 if (dentry->d_flags & DCACHE_LRU_LIST) 1439 d_lru_del(dentry); 1440 if (!dentry->d_lockref.count) { 1441 d_shrink_add(dentry, &data->dispose); 1442 data->found++; 1443 } 1444 } 1445 /* 1446 * We can return to the caller if we have found some (this 1447 * ensures forward progress). We'll be coming back to find 1448 * the rest. 1449 */ 1450 if (!list_empty(&data->dispose)) 1451 ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY; 1452 out: 1453 return ret; 1454 } 1455 1456 /** 1457 * shrink_dcache_parent - prune dcache 1458 * @parent: parent of entries to prune 1459 * 1460 * Prune the dcache to remove unused children of the parent dentry. 1461 */ 1462 void shrink_dcache_parent(struct dentry *parent) 1463 { 1464 for (;;) { 1465 struct select_data data; 1466 1467 INIT_LIST_HEAD(&data.dispose); 1468 data.start = parent; 1469 data.found = 0; 1470 1471 d_walk(parent, &data, select_collect, NULL); 1472 if (!data.found) 1473 break; 1474 1475 shrink_dentry_list(&data.dispose); 1476 cond_resched(); 1477 } 1478 } 1479 EXPORT_SYMBOL(shrink_dcache_parent); 1480 1481 static enum d_walk_ret umount_check(void *_data, struct dentry *dentry) 1482 { 1483 /* it has busy descendents; complain about those instead */ 1484 if (!list_empty(&dentry->d_subdirs)) 1485 return D_WALK_CONTINUE; 1486 1487 /* root with refcount 1 is fine */ 1488 if (dentry == _data && dentry->d_lockref.count == 1) 1489 return D_WALK_CONTINUE; 1490 1491 printk(KERN_ERR "BUG: Dentry %p{i=%lx,n=%pd} " 1492 " still in use (%d) [unmount of %s %s]\n", 1493 dentry, 1494 dentry->d_inode ? 1495 dentry->d_inode->i_ino : 0UL, 1496 dentry, 1497 dentry->d_lockref.count, 1498 dentry->d_sb->s_type->name, 1499 dentry->d_sb->s_id); 1500 WARN_ON(1); 1501 return D_WALK_CONTINUE; 1502 } 1503 1504 static void do_one_tree(struct dentry *dentry) 1505 { 1506 shrink_dcache_parent(dentry); 1507 d_walk(dentry, dentry, umount_check, NULL); 1508 d_drop(dentry); 1509 dput(dentry); 1510 } 1511 1512 /* 1513 * destroy the dentries attached to a superblock on unmounting 1514 */ 1515 void shrink_dcache_for_umount(struct super_block *sb) 1516 { 1517 struct dentry *dentry; 1518 1519 WARN(down_read_trylock(&sb->s_umount), "s_umount should've been locked"); 1520 1521 dentry = sb->s_root; 1522 sb->s_root = NULL; 1523 do_one_tree(dentry); 1524 1525 while (!hlist_bl_empty(&sb->s_roots)) { 1526 dentry = dget(hlist_bl_entry(hlist_bl_first(&sb->s_roots), struct dentry, d_hash)); 1527 do_one_tree(dentry); 1528 } 1529 } 1530 1531 struct detach_data { 1532 struct select_data select; 1533 struct dentry *mountpoint; 1534 }; 1535 static enum d_walk_ret detach_and_collect(void *_data, struct dentry *dentry) 1536 { 1537 struct detach_data *data = _data; 1538 1539 if (d_mountpoint(dentry)) { 1540 __dget_dlock(dentry); 1541 data->mountpoint = dentry; 1542 return D_WALK_QUIT; 1543 } 1544 1545 return select_collect(&data->select, dentry); 1546 } 1547 1548 static void check_and_drop(void *_data) 1549 { 1550 struct detach_data *data = _data; 1551 1552 if (!data->mountpoint && list_empty(&data->select.dispose)) 1553 __d_drop(data->select.start); 1554 } 1555 1556 /** 1557 * d_invalidate - detach submounts, prune dcache, and drop 1558 * @dentry: dentry to invalidate (aka detach, prune and drop) 1559 * 1560 * no dcache lock. 1561 * 1562 * The final d_drop is done as an atomic operation relative to 1563 * rename_lock ensuring there are no races with d_set_mounted. This 1564 * ensures there are no unhashed dentries on the path to a mountpoint. 1565 */ 1566 void d_invalidate(struct dentry *dentry) 1567 { 1568 /* 1569 * If it's already been dropped, return OK. 1570 */ 1571 spin_lock(&dentry->d_lock); 1572 if (d_unhashed(dentry)) { 1573 spin_unlock(&dentry->d_lock); 1574 return; 1575 } 1576 spin_unlock(&dentry->d_lock); 1577 1578 /* Negative dentries can be dropped without further checks */ 1579 if (!dentry->d_inode) { 1580 d_drop(dentry); 1581 return; 1582 } 1583 1584 for (;;) { 1585 struct detach_data data; 1586 1587 data.mountpoint = NULL; 1588 INIT_LIST_HEAD(&data.select.dispose); 1589 data.select.start = dentry; 1590 data.select.found = 0; 1591 1592 d_walk(dentry, &data, detach_and_collect, check_and_drop); 1593 1594 if (!list_empty(&data.select.dispose)) 1595 shrink_dentry_list(&data.select.dispose); 1596 else if (!data.mountpoint) 1597 return; 1598 1599 if (data.mountpoint) { 1600 detach_mounts(data.mountpoint); 1601 dput(data.mountpoint); 1602 } 1603 cond_resched(); 1604 } 1605 } 1606 EXPORT_SYMBOL(d_invalidate); 1607 1608 /** 1609 * __d_alloc - allocate a dcache entry 1610 * @sb: filesystem it will belong to 1611 * @name: qstr of the name 1612 * 1613 * Allocates a dentry. It returns %NULL if there is insufficient memory 1614 * available. On a success the dentry is returned. The name passed in is 1615 * copied and the copy passed in may be reused after this call. 1616 */ 1617 1618 struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name) 1619 { 1620 struct dentry *dentry; 1621 char *dname; 1622 int err; 1623 1624 dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL); 1625 if (!dentry) 1626 return NULL; 1627 1628 /* 1629 * We guarantee that the inline name is always NUL-terminated. 1630 * This way the memcpy() done by the name switching in rename 1631 * will still always have a NUL at the end, even if we might 1632 * be overwriting an internal NUL character 1633 */ 1634 dentry->d_iname[DNAME_INLINE_LEN-1] = 0; 1635 if (unlikely(!name)) { 1636 name = &slash_name; 1637 dname = dentry->d_iname; 1638 } else if (name->len > DNAME_INLINE_LEN-1) { 1639 size_t size = offsetof(struct external_name, name[1]); 1640 struct external_name *p = kmalloc(size + name->len, 1641 GFP_KERNEL_ACCOUNT); 1642 if (!p) { 1643 kmem_cache_free(dentry_cache, dentry); 1644 return NULL; 1645 } 1646 atomic_set(&p->u.count, 1); 1647 dname = p->name; 1648 } else { 1649 dname = dentry->d_iname; 1650 } 1651 1652 dentry->d_name.len = name->len; 1653 dentry->d_name.hash = name->hash; 1654 memcpy(dname, name->name, name->len); 1655 dname[name->len] = 0; 1656 1657 /* Make sure we always see the terminating NUL character */ 1658 smp_store_release(&dentry->d_name.name, dname); /* ^^^ */ 1659 1660 dentry->d_lockref.count = 1; 1661 dentry->d_flags = 0; 1662 spin_lock_init(&dentry->d_lock); 1663 seqcount_init(&dentry->d_seq); 1664 dentry->d_inode = NULL; 1665 dentry->d_parent = dentry; 1666 dentry->d_sb = sb; 1667 dentry->d_op = NULL; 1668 dentry->d_fsdata = NULL; 1669 INIT_HLIST_BL_NODE(&dentry->d_hash); 1670 INIT_LIST_HEAD(&dentry->d_lru); 1671 INIT_LIST_HEAD(&dentry->d_subdirs); 1672 INIT_HLIST_NODE(&dentry->d_u.d_alias); 1673 INIT_LIST_HEAD(&dentry->d_child); 1674 d_set_d_op(dentry, dentry->d_sb->s_d_op); 1675 1676 if (dentry->d_op && dentry->d_op->d_init) { 1677 err = dentry->d_op->d_init(dentry); 1678 if (err) { 1679 if (dname_external(dentry)) 1680 kfree(external_name(dentry)); 1681 kmem_cache_free(dentry_cache, dentry); 1682 return NULL; 1683 } 1684 } 1685 1686 this_cpu_inc(nr_dentry); 1687 1688 return dentry; 1689 } 1690 1691 /** 1692 * d_alloc - allocate a dcache entry 1693 * @parent: parent of entry to allocate 1694 * @name: qstr of the name 1695 * 1696 * Allocates a dentry. It returns %NULL if there is insufficient memory 1697 * available. On a success the dentry is returned. The name passed in is 1698 * copied and the copy passed in may be reused after this call. 1699 */ 1700 struct dentry *d_alloc(struct dentry * parent, const struct qstr *name) 1701 { 1702 struct dentry *dentry = __d_alloc(parent->d_sb, name); 1703 if (!dentry) 1704 return NULL; 1705 dentry->d_flags |= DCACHE_RCUACCESS; 1706 spin_lock(&parent->d_lock); 1707 /* 1708 * don't need child lock because it is not subject 1709 * to concurrency here 1710 */ 1711 __dget_dlock(parent); 1712 dentry->d_parent = parent; 1713 list_add(&dentry->d_child, &parent->d_subdirs); 1714 spin_unlock(&parent->d_lock); 1715 1716 return dentry; 1717 } 1718 EXPORT_SYMBOL(d_alloc); 1719 1720 struct dentry *d_alloc_anon(struct super_block *sb) 1721 { 1722 return __d_alloc(sb, NULL); 1723 } 1724 EXPORT_SYMBOL(d_alloc_anon); 1725 1726 struct dentry *d_alloc_cursor(struct dentry * parent) 1727 { 1728 struct dentry *dentry = d_alloc_anon(parent->d_sb); 1729 if (dentry) { 1730 dentry->d_flags |= DCACHE_RCUACCESS | DCACHE_DENTRY_CURSOR; 1731 dentry->d_parent = dget(parent); 1732 } 1733 return dentry; 1734 } 1735 1736 /** 1737 * d_alloc_pseudo - allocate a dentry (for lookup-less filesystems) 1738 * @sb: the superblock 1739 * @name: qstr of the name 1740 * 1741 * For a filesystem that just pins its dentries in memory and never 1742 * performs lookups at all, return an unhashed IS_ROOT dentry. 1743 */ 1744 struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name) 1745 { 1746 return __d_alloc(sb, name); 1747 } 1748 EXPORT_SYMBOL(d_alloc_pseudo); 1749 1750 struct dentry *d_alloc_name(struct dentry *parent, const char *name) 1751 { 1752 struct qstr q; 1753 1754 q.name = name; 1755 q.hash_len = hashlen_string(parent, name); 1756 return d_alloc(parent, &q); 1757 } 1758 EXPORT_SYMBOL(d_alloc_name); 1759 1760 void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op) 1761 { 1762 WARN_ON_ONCE(dentry->d_op); 1763 WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH | 1764 DCACHE_OP_COMPARE | 1765 DCACHE_OP_REVALIDATE | 1766 DCACHE_OP_WEAK_REVALIDATE | 1767 DCACHE_OP_DELETE | 1768 DCACHE_OP_REAL)); 1769 dentry->d_op = op; 1770 if (!op) 1771 return; 1772 if (op->d_hash) 1773 dentry->d_flags |= DCACHE_OP_HASH; 1774 if (op->d_compare) 1775 dentry->d_flags |= DCACHE_OP_COMPARE; 1776 if (op->d_revalidate) 1777 dentry->d_flags |= DCACHE_OP_REVALIDATE; 1778 if (op->d_weak_revalidate) 1779 dentry->d_flags |= DCACHE_OP_WEAK_REVALIDATE; 1780 if (op->d_delete) 1781 dentry->d_flags |= DCACHE_OP_DELETE; 1782 if (op->d_prune) 1783 dentry->d_flags |= DCACHE_OP_PRUNE; 1784 if (op->d_real) 1785 dentry->d_flags |= DCACHE_OP_REAL; 1786 1787 } 1788 EXPORT_SYMBOL(d_set_d_op); 1789 1790 1791 /* 1792 * d_set_fallthru - Mark a dentry as falling through to a lower layer 1793 * @dentry - The dentry to mark 1794 * 1795 * Mark a dentry as falling through to the lower layer (as set with 1796 * d_pin_lower()). This flag may be recorded on the medium. 1797 */ 1798 void d_set_fallthru(struct dentry *dentry) 1799 { 1800 spin_lock(&dentry->d_lock); 1801 dentry->d_flags |= DCACHE_FALLTHRU; 1802 spin_unlock(&dentry->d_lock); 1803 } 1804 EXPORT_SYMBOL(d_set_fallthru); 1805 1806 static unsigned d_flags_for_inode(struct inode *inode) 1807 { 1808 unsigned add_flags = DCACHE_REGULAR_TYPE; 1809 1810 if (!inode) 1811 return DCACHE_MISS_TYPE; 1812 1813 if (S_ISDIR(inode->i_mode)) { 1814 add_flags = DCACHE_DIRECTORY_TYPE; 1815 if (unlikely(!(inode->i_opflags & IOP_LOOKUP))) { 1816 if (unlikely(!inode->i_op->lookup)) 1817 add_flags = DCACHE_AUTODIR_TYPE; 1818 else 1819 inode->i_opflags |= IOP_LOOKUP; 1820 } 1821 goto type_determined; 1822 } 1823 1824 if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) { 1825 if (unlikely(inode->i_op->get_link)) { 1826 add_flags = DCACHE_SYMLINK_TYPE; 1827 goto type_determined; 1828 } 1829 inode->i_opflags |= IOP_NOFOLLOW; 1830 } 1831 1832 if (unlikely(!S_ISREG(inode->i_mode))) 1833 add_flags = DCACHE_SPECIAL_TYPE; 1834 1835 type_determined: 1836 if (unlikely(IS_AUTOMOUNT(inode))) 1837 add_flags |= DCACHE_NEED_AUTOMOUNT; 1838 return add_flags; 1839 } 1840 1841 static void __d_instantiate(struct dentry *dentry, struct inode *inode) 1842 { 1843 unsigned add_flags = d_flags_for_inode(inode); 1844 WARN_ON(d_in_lookup(dentry)); 1845 1846 spin_lock(&dentry->d_lock); 1847 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry); 1848 raw_write_seqcount_begin(&dentry->d_seq); 1849 __d_set_inode_and_type(dentry, inode, add_flags); 1850 raw_write_seqcount_end(&dentry->d_seq); 1851 fsnotify_update_flags(dentry); 1852 spin_unlock(&dentry->d_lock); 1853 } 1854 1855 /** 1856 * d_instantiate - fill in inode information for a dentry 1857 * @entry: dentry to complete 1858 * @inode: inode to attach to this dentry 1859 * 1860 * Fill in inode information in the entry. 1861 * 1862 * This turns negative dentries into productive full members 1863 * of society. 1864 * 1865 * NOTE! This assumes that the inode count has been incremented 1866 * (or otherwise set) by the caller to indicate that it is now 1867 * in use by the dcache. 1868 */ 1869 1870 void d_instantiate(struct dentry *entry, struct inode * inode) 1871 { 1872 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias)); 1873 if (inode) { 1874 security_d_instantiate(entry, inode); 1875 spin_lock(&inode->i_lock); 1876 __d_instantiate(entry, inode); 1877 spin_unlock(&inode->i_lock); 1878 } 1879 } 1880 EXPORT_SYMBOL(d_instantiate); 1881 1882 /** 1883 * d_instantiate_no_diralias - instantiate a non-aliased dentry 1884 * @entry: dentry to complete 1885 * @inode: inode to attach to this dentry 1886 * 1887 * Fill in inode information in the entry. If a directory alias is found, then 1888 * return an error (and drop inode). Together with d_materialise_unique() this 1889 * guarantees that a directory inode may never have more than one alias. 1890 */ 1891 int d_instantiate_no_diralias(struct dentry *entry, struct inode *inode) 1892 { 1893 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias)); 1894 1895 security_d_instantiate(entry, inode); 1896 spin_lock(&inode->i_lock); 1897 if (S_ISDIR(inode->i_mode) && !hlist_empty(&inode->i_dentry)) { 1898 spin_unlock(&inode->i_lock); 1899 iput(inode); 1900 return -EBUSY; 1901 } 1902 __d_instantiate(entry, inode); 1903 spin_unlock(&inode->i_lock); 1904 1905 return 0; 1906 } 1907 EXPORT_SYMBOL(d_instantiate_no_diralias); 1908 1909 struct dentry *d_make_root(struct inode *root_inode) 1910 { 1911 struct dentry *res = NULL; 1912 1913 if (root_inode) { 1914 res = d_alloc_anon(root_inode->i_sb); 1915 if (res) 1916 d_instantiate(res, root_inode); 1917 else 1918 iput(root_inode); 1919 } 1920 return res; 1921 } 1922 EXPORT_SYMBOL(d_make_root); 1923 1924 static struct dentry * __d_find_any_alias(struct inode *inode) 1925 { 1926 struct dentry *alias; 1927 1928 if (hlist_empty(&inode->i_dentry)) 1929 return NULL; 1930 alias = hlist_entry(inode->i_dentry.first, struct dentry, d_u.d_alias); 1931 __dget(alias); 1932 return alias; 1933 } 1934 1935 /** 1936 * d_find_any_alias - find any alias for a given inode 1937 * @inode: inode to find an alias for 1938 * 1939 * If any aliases exist for the given inode, take and return a 1940 * reference for one of them. If no aliases exist, return %NULL. 1941 */ 1942 struct dentry *d_find_any_alias(struct inode *inode) 1943 { 1944 struct dentry *de; 1945 1946 spin_lock(&inode->i_lock); 1947 de = __d_find_any_alias(inode); 1948 spin_unlock(&inode->i_lock); 1949 return de; 1950 } 1951 EXPORT_SYMBOL(d_find_any_alias); 1952 1953 static struct dentry *__d_instantiate_anon(struct dentry *dentry, 1954 struct inode *inode, 1955 bool disconnected) 1956 { 1957 struct dentry *res; 1958 unsigned add_flags; 1959 1960 security_d_instantiate(dentry, inode); 1961 spin_lock(&inode->i_lock); 1962 res = __d_find_any_alias(inode); 1963 if (res) { 1964 spin_unlock(&inode->i_lock); 1965 dput(dentry); 1966 goto out_iput; 1967 } 1968 1969 /* attach a disconnected dentry */ 1970 add_flags = d_flags_for_inode(inode); 1971 1972 if (disconnected) 1973 add_flags |= DCACHE_DISCONNECTED; 1974 1975 spin_lock(&dentry->d_lock); 1976 __d_set_inode_and_type(dentry, inode, add_flags); 1977 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry); 1978 if (!disconnected) { 1979 hlist_bl_lock(&dentry->d_sb->s_roots); 1980 hlist_bl_add_head(&dentry->d_hash, &dentry->d_sb->s_roots); 1981 hlist_bl_unlock(&dentry->d_sb->s_roots); 1982 } 1983 spin_unlock(&dentry->d_lock); 1984 spin_unlock(&inode->i_lock); 1985 1986 return dentry; 1987 1988 out_iput: 1989 iput(inode); 1990 return res; 1991 } 1992 1993 struct dentry *d_instantiate_anon(struct dentry *dentry, struct inode *inode) 1994 { 1995 return __d_instantiate_anon(dentry, inode, true); 1996 } 1997 EXPORT_SYMBOL(d_instantiate_anon); 1998 1999 static struct dentry *__d_obtain_alias(struct inode *inode, bool disconnected) 2000 { 2001 struct dentry *tmp; 2002 struct dentry *res; 2003 2004 if (!inode) 2005 return ERR_PTR(-ESTALE); 2006 if (IS_ERR(inode)) 2007 return ERR_CAST(inode); 2008 2009 res = d_find_any_alias(inode); 2010 if (res) 2011 goto out_iput; 2012 2013 tmp = d_alloc_anon(inode->i_sb); 2014 if (!tmp) { 2015 res = ERR_PTR(-ENOMEM); 2016 goto out_iput; 2017 } 2018 2019 return __d_instantiate_anon(tmp, inode, disconnected); 2020 2021 out_iput: 2022 iput(inode); 2023 return res; 2024 } 2025 2026 /** 2027 * d_obtain_alias - find or allocate a DISCONNECTED dentry for a given inode 2028 * @inode: inode to allocate the dentry for 2029 * 2030 * Obtain a dentry for an inode resulting from NFS filehandle conversion or 2031 * similar open by handle operations. The returned dentry may be anonymous, 2032 * or may have a full name (if the inode was already in the cache). 2033 * 2034 * When called on a directory inode, we must ensure that the inode only ever 2035 * has one dentry. If a dentry is found, that is returned instead of 2036 * allocating a new one. 2037 * 2038 * On successful return, the reference to the inode has been transferred 2039 * to the dentry. In case of an error the reference on the inode is released. 2040 * To make it easier to use in export operations a %NULL or IS_ERR inode may 2041 * be passed in and the error will be propagated to the return value, 2042 * with a %NULL @inode replaced by ERR_PTR(-ESTALE). 2043 */ 2044 struct dentry *d_obtain_alias(struct inode *inode) 2045 { 2046 return __d_obtain_alias(inode, true); 2047 } 2048 EXPORT_SYMBOL(d_obtain_alias); 2049 2050 /** 2051 * d_obtain_root - find or allocate a dentry for a given inode 2052 * @inode: inode to allocate the dentry for 2053 * 2054 * Obtain an IS_ROOT dentry for the root of a filesystem. 2055 * 2056 * We must ensure that directory inodes only ever have one dentry. If a 2057 * dentry is found, that is returned instead of allocating a new one. 2058 * 2059 * On successful return, the reference to the inode has been transferred 2060 * to the dentry. In case of an error the reference on the inode is 2061 * released. A %NULL or IS_ERR inode may be passed in and will be the 2062 * error will be propagate to the return value, with a %NULL @inode 2063 * replaced by ERR_PTR(-ESTALE). 2064 */ 2065 struct dentry *d_obtain_root(struct inode *inode) 2066 { 2067 return __d_obtain_alias(inode, false); 2068 } 2069 EXPORT_SYMBOL(d_obtain_root); 2070 2071 /** 2072 * d_add_ci - lookup or allocate new dentry with case-exact name 2073 * @inode: the inode case-insensitive lookup has found 2074 * @dentry: the negative dentry that was passed to the parent's lookup func 2075 * @name: the case-exact name to be associated with the returned dentry 2076 * 2077 * This is to avoid filling the dcache with case-insensitive names to the 2078 * same inode, only the actual correct case is stored in the dcache for 2079 * case-insensitive filesystems. 2080 * 2081 * For a case-insensitive lookup match and if the the case-exact dentry 2082 * already exists in in the dcache, use it and return it. 2083 * 2084 * If no entry exists with the exact case name, allocate new dentry with 2085 * the exact case, and return the spliced entry. 2086 */ 2087 struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode, 2088 struct qstr *name) 2089 { 2090 struct dentry *found, *res; 2091 2092 /* 2093 * First check if a dentry matching the name already exists, 2094 * if not go ahead and create it now. 2095 */ 2096 found = d_hash_and_lookup(dentry->d_parent, name); 2097 if (found) { 2098 iput(inode); 2099 return found; 2100 } 2101 if (d_in_lookup(dentry)) { 2102 found = d_alloc_parallel(dentry->d_parent, name, 2103 dentry->d_wait); 2104 if (IS_ERR(found) || !d_in_lookup(found)) { 2105 iput(inode); 2106 return found; 2107 } 2108 } else { 2109 found = d_alloc(dentry->d_parent, name); 2110 if (!found) { 2111 iput(inode); 2112 return ERR_PTR(-ENOMEM); 2113 } 2114 } 2115 res = d_splice_alias(inode, found); 2116 if (res) { 2117 dput(found); 2118 return res; 2119 } 2120 return found; 2121 } 2122 EXPORT_SYMBOL(d_add_ci); 2123 2124 2125 static inline bool d_same_name(const struct dentry *dentry, 2126 const struct dentry *parent, 2127 const struct qstr *name) 2128 { 2129 if (likely(!(parent->d_flags & DCACHE_OP_COMPARE))) { 2130 if (dentry->d_name.len != name->len) 2131 return false; 2132 return dentry_cmp(dentry, name->name, name->len) == 0; 2133 } 2134 return parent->d_op->d_compare(dentry, 2135 dentry->d_name.len, dentry->d_name.name, 2136 name) == 0; 2137 } 2138 2139 /** 2140 * __d_lookup_rcu - search for a dentry (racy, store-free) 2141 * @parent: parent dentry 2142 * @name: qstr of name we wish to find 2143 * @seqp: returns d_seq value at the point where the dentry was found 2144 * Returns: dentry, or NULL 2145 * 2146 * __d_lookup_rcu is the dcache lookup function for rcu-walk name 2147 * resolution (store-free path walking) design described in 2148 * Documentation/filesystems/path-lookup.txt. 2149 * 2150 * This is not to be used outside core vfs. 2151 * 2152 * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock 2153 * held, and rcu_read_lock held. The returned dentry must not be stored into 2154 * without taking d_lock and checking d_seq sequence count against @seq 2155 * returned here. 2156 * 2157 * A refcount may be taken on the found dentry with the d_rcu_to_refcount 2158 * function. 2159 * 2160 * Alternatively, __d_lookup_rcu may be called again to look up the child of 2161 * the returned dentry, so long as its parent's seqlock is checked after the 2162 * child is looked up. Thus, an interlocking stepping of sequence lock checks 2163 * is formed, giving integrity down the path walk. 2164 * 2165 * NOTE! The caller *has* to check the resulting dentry against the sequence 2166 * number we've returned before using any of the resulting dentry state! 2167 */ 2168 struct dentry *__d_lookup_rcu(const struct dentry *parent, 2169 const struct qstr *name, 2170 unsigned *seqp) 2171 { 2172 u64 hashlen = name->hash_len; 2173 const unsigned char *str = name->name; 2174 struct hlist_bl_head *b = d_hash(hashlen_hash(hashlen)); 2175 struct hlist_bl_node *node; 2176 struct dentry *dentry; 2177 2178 /* 2179 * Note: There is significant duplication with __d_lookup_rcu which is 2180 * required to prevent single threaded performance regressions 2181 * especially on architectures where smp_rmb (in seqcounts) are costly. 2182 * Keep the two functions in sync. 2183 */ 2184 2185 /* 2186 * The hash list is protected using RCU. 2187 * 2188 * Carefully use d_seq when comparing a candidate dentry, to avoid 2189 * races with d_move(). 2190 * 2191 * It is possible that concurrent renames can mess up our list 2192 * walk here and result in missing our dentry, resulting in the 2193 * false-negative result. d_lookup() protects against concurrent 2194 * renames using rename_lock seqlock. 2195 * 2196 * See Documentation/filesystems/path-lookup.txt for more details. 2197 */ 2198 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) { 2199 unsigned seq; 2200 2201 seqretry: 2202 /* 2203 * The dentry sequence count protects us from concurrent 2204 * renames, and thus protects parent and name fields. 2205 * 2206 * The caller must perform a seqcount check in order 2207 * to do anything useful with the returned dentry. 2208 * 2209 * NOTE! We do a "raw" seqcount_begin here. That means that 2210 * we don't wait for the sequence count to stabilize if it 2211 * is in the middle of a sequence change. If we do the slow 2212 * dentry compare, we will do seqretries until it is stable, 2213 * and if we end up with a successful lookup, we actually 2214 * want to exit RCU lookup anyway. 2215 * 2216 * Note that raw_seqcount_begin still *does* smp_rmb(), so 2217 * we are still guaranteed NUL-termination of ->d_name.name. 2218 */ 2219 seq = raw_seqcount_begin(&dentry->d_seq); 2220 if (dentry->d_parent != parent) 2221 continue; 2222 if (d_unhashed(dentry)) 2223 continue; 2224 2225 if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) { 2226 int tlen; 2227 const char *tname; 2228 if (dentry->d_name.hash != hashlen_hash(hashlen)) 2229 continue; 2230 tlen = dentry->d_name.len; 2231 tname = dentry->d_name.name; 2232 /* we want a consistent (name,len) pair */ 2233 if (read_seqcount_retry(&dentry->d_seq, seq)) { 2234 cpu_relax(); 2235 goto seqretry; 2236 } 2237 if (parent->d_op->d_compare(dentry, 2238 tlen, tname, name) != 0) 2239 continue; 2240 } else { 2241 if (dentry->d_name.hash_len != hashlen) 2242 continue; 2243 if (dentry_cmp(dentry, str, hashlen_len(hashlen)) != 0) 2244 continue; 2245 } 2246 *seqp = seq; 2247 return dentry; 2248 } 2249 return NULL; 2250 } 2251 2252 /** 2253 * d_lookup - search for a dentry 2254 * @parent: parent dentry 2255 * @name: qstr of name we wish to find 2256 * Returns: dentry, or NULL 2257 * 2258 * d_lookup searches the children of the parent dentry for the name in 2259 * question. If the dentry is found its reference count is incremented and the 2260 * dentry is returned. The caller must use dput to free the entry when it has 2261 * finished using it. %NULL is returned if the dentry does not exist. 2262 */ 2263 struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name) 2264 { 2265 struct dentry *dentry; 2266 unsigned seq; 2267 2268 do { 2269 seq = read_seqbegin(&rename_lock); 2270 dentry = __d_lookup(parent, name); 2271 if (dentry) 2272 break; 2273 } while (read_seqretry(&rename_lock, seq)); 2274 return dentry; 2275 } 2276 EXPORT_SYMBOL(d_lookup); 2277 2278 /** 2279 * __d_lookup - search for a dentry (racy) 2280 * @parent: parent dentry 2281 * @name: qstr of name we wish to find 2282 * Returns: dentry, or NULL 2283 * 2284 * __d_lookup is like d_lookup, however it may (rarely) return a 2285 * false-negative result due to unrelated rename activity. 2286 * 2287 * __d_lookup is slightly faster by avoiding rename_lock read seqlock, 2288 * however it must be used carefully, eg. with a following d_lookup in 2289 * the case of failure. 2290 * 2291 * __d_lookup callers must be commented. 2292 */ 2293 struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name) 2294 { 2295 unsigned int hash = name->hash; 2296 struct hlist_bl_head *b = d_hash(hash); 2297 struct hlist_bl_node *node; 2298 struct dentry *found = NULL; 2299 struct dentry *dentry; 2300 2301 /* 2302 * Note: There is significant duplication with __d_lookup_rcu which is 2303 * required to prevent single threaded performance regressions 2304 * especially on architectures where smp_rmb (in seqcounts) are costly. 2305 * Keep the two functions in sync. 2306 */ 2307 2308 /* 2309 * The hash list is protected using RCU. 2310 * 2311 * Take d_lock when comparing a candidate dentry, to avoid races 2312 * with d_move(). 2313 * 2314 * It is possible that concurrent renames can mess up our list 2315 * walk here and result in missing our dentry, resulting in the 2316 * false-negative result. d_lookup() protects against concurrent 2317 * renames using rename_lock seqlock. 2318 * 2319 * See Documentation/filesystems/path-lookup.txt for more details. 2320 */ 2321 rcu_read_lock(); 2322 2323 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) { 2324 2325 if (dentry->d_name.hash != hash) 2326 continue; 2327 2328 spin_lock(&dentry->d_lock); 2329 if (dentry->d_parent != parent) 2330 goto next; 2331 if (d_unhashed(dentry)) 2332 goto next; 2333 2334 if (!d_same_name(dentry, parent, name)) 2335 goto next; 2336 2337 dentry->d_lockref.count++; 2338 found = dentry; 2339 spin_unlock(&dentry->d_lock); 2340 break; 2341 next: 2342 spin_unlock(&dentry->d_lock); 2343 } 2344 rcu_read_unlock(); 2345 2346 return found; 2347 } 2348 2349 /** 2350 * d_hash_and_lookup - hash the qstr then search for a dentry 2351 * @dir: Directory to search in 2352 * @name: qstr of name we wish to find 2353 * 2354 * On lookup failure NULL is returned; on bad name - ERR_PTR(-error) 2355 */ 2356 struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name) 2357 { 2358 /* 2359 * Check for a fs-specific hash function. Note that we must 2360 * calculate the standard hash first, as the d_op->d_hash() 2361 * routine may choose to leave the hash value unchanged. 2362 */ 2363 name->hash = full_name_hash(dir, name->name, name->len); 2364 if (dir->d_flags & DCACHE_OP_HASH) { 2365 int err = dir->d_op->d_hash(dir, name); 2366 if (unlikely(err < 0)) 2367 return ERR_PTR(err); 2368 } 2369 return d_lookup(dir, name); 2370 } 2371 EXPORT_SYMBOL(d_hash_and_lookup); 2372 2373 /* 2374 * When a file is deleted, we have two options: 2375 * - turn this dentry into a negative dentry 2376 * - unhash this dentry and free it. 2377 * 2378 * Usually, we want to just turn this into 2379 * a negative dentry, but if anybody else is 2380 * currently using the dentry or the inode 2381 * we can't do that and we fall back on removing 2382 * it from the hash queues and waiting for 2383 * it to be deleted later when it has no users 2384 */ 2385 2386 /** 2387 * d_delete - delete a dentry 2388 * @dentry: The dentry to delete 2389 * 2390 * Turn the dentry into a negative dentry if possible, otherwise 2391 * remove it from the hash queues so it can be deleted later 2392 */ 2393 2394 void d_delete(struct dentry * dentry) 2395 { 2396 struct inode *inode = dentry->d_inode; 2397 int isdir = d_is_dir(dentry); 2398 2399 spin_lock(&inode->i_lock); 2400 spin_lock(&dentry->d_lock); 2401 /* 2402 * Are we the only user? 2403 */ 2404 if (dentry->d_lockref.count == 1) { 2405 dentry->d_flags &= ~DCACHE_CANT_MOUNT; 2406 dentry_unlink_inode(dentry); 2407 } else { 2408 __d_drop(dentry); 2409 spin_unlock(&dentry->d_lock); 2410 spin_unlock(&inode->i_lock); 2411 } 2412 fsnotify_nameremove(dentry, isdir); 2413 } 2414 EXPORT_SYMBOL(d_delete); 2415 2416 static void __d_rehash(struct dentry *entry) 2417 { 2418 struct hlist_bl_head *b = d_hash(entry->d_name.hash); 2419 2420 hlist_bl_lock(b); 2421 hlist_bl_add_head_rcu(&entry->d_hash, b); 2422 hlist_bl_unlock(b); 2423 } 2424 2425 /** 2426 * d_rehash - add an entry back to the hash 2427 * @entry: dentry to add to the hash 2428 * 2429 * Adds a dentry to the hash according to its name. 2430 */ 2431 2432 void d_rehash(struct dentry * entry) 2433 { 2434 spin_lock(&entry->d_lock); 2435 __d_rehash(entry); 2436 spin_unlock(&entry->d_lock); 2437 } 2438 EXPORT_SYMBOL(d_rehash); 2439 2440 static inline unsigned start_dir_add(struct inode *dir) 2441 { 2442 2443 for (;;) { 2444 unsigned n = dir->i_dir_seq; 2445 if (!(n & 1) && cmpxchg(&dir->i_dir_seq, n, n + 1) == n) 2446 return n; 2447 cpu_relax(); 2448 } 2449 } 2450 2451 static inline void end_dir_add(struct inode *dir, unsigned n) 2452 { 2453 smp_store_release(&dir->i_dir_seq, n + 2); 2454 } 2455 2456 static void d_wait_lookup(struct dentry *dentry) 2457 { 2458 if (d_in_lookup(dentry)) { 2459 DECLARE_WAITQUEUE(wait, current); 2460 add_wait_queue(dentry->d_wait, &wait); 2461 do { 2462 set_current_state(TASK_UNINTERRUPTIBLE); 2463 spin_unlock(&dentry->d_lock); 2464 schedule(); 2465 spin_lock(&dentry->d_lock); 2466 } while (d_in_lookup(dentry)); 2467 } 2468 } 2469 2470 struct dentry *d_alloc_parallel(struct dentry *parent, 2471 const struct qstr *name, 2472 wait_queue_head_t *wq) 2473 { 2474 unsigned int hash = name->hash; 2475 struct hlist_bl_head *b = in_lookup_hash(parent, hash); 2476 struct hlist_bl_node *node; 2477 struct dentry *new = d_alloc(parent, name); 2478 struct dentry *dentry; 2479 unsigned seq, r_seq, d_seq; 2480 2481 if (unlikely(!new)) 2482 return ERR_PTR(-ENOMEM); 2483 2484 retry: 2485 rcu_read_lock(); 2486 seq = smp_load_acquire(&parent->d_inode->i_dir_seq); 2487 r_seq = read_seqbegin(&rename_lock); 2488 dentry = __d_lookup_rcu(parent, name, &d_seq); 2489 if (unlikely(dentry)) { 2490 if (!lockref_get_not_dead(&dentry->d_lockref)) { 2491 rcu_read_unlock(); 2492 goto retry; 2493 } 2494 if (read_seqcount_retry(&dentry->d_seq, d_seq)) { 2495 rcu_read_unlock(); 2496 dput(dentry); 2497 goto retry; 2498 } 2499 rcu_read_unlock(); 2500 dput(new); 2501 return dentry; 2502 } 2503 if (unlikely(read_seqretry(&rename_lock, r_seq))) { 2504 rcu_read_unlock(); 2505 goto retry; 2506 } 2507 2508 if (unlikely(seq & 1)) { 2509 rcu_read_unlock(); 2510 goto retry; 2511 } 2512 2513 hlist_bl_lock(b); 2514 if (unlikely(READ_ONCE(parent->d_inode->i_dir_seq) != seq)) { 2515 hlist_bl_unlock(b); 2516 rcu_read_unlock(); 2517 goto retry; 2518 } 2519 /* 2520 * No changes for the parent since the beginning of d_lookup(). 2521 * Since all removals from the chain happen with hlist_bl_lock(), 2522 * any potential in-lookup matches are going to stay here until 2523 * we unlock the chain. All fields are stable in everything 2524 * we encounter. 2525 */ 2526 hlist_bl_for_each_entry(dentry, node, b, d_u.d_in_lookup_hash) { 2527 if (dentry->d_name.hash != hash) 2528 continue; 2529 if (dentry->d_parent != parent) 2530 continue; 2531 if (!d_same_name(dentry, parent, name)) 2532 continue; 2533 hlist_bl_unlock(b); 2534 /* now we can try to grab a reference */ 2535 if (!lockref_get_not_dead(&dentry->d_lockref)) { 2536 rcu_read_unlock(); 2537 goto retry; 2538 } 2539 2540 rcu_read_unlock(); 2541 /* 2542 * somebody is likely to be still doing lookup for it; 2543 * wait for them to finish 2544 */ 2545 spin_lock(&dentry->d_lock); 2546 d_wait_lookup(dentry); 2547 /* 2548 * it's not in-lookup anymore; in principle we should repeat 2549 * everything from dcache lookup, but it's likely to be what 2550 * d_lookup() would've found anyway. If it is, just return it; 2551 * otherwise we really have to repeat the whole thing. 2552 */ 2553 if (unlikely(dentry->d_name.hash != hash)) 2554 goto mismatch; 2555 if (unlikely(dentry->d_parent != parent)) 2556 goto mismatch; 2557 if (unlikely(d_unhashed(dentry))) 2558 goto mismatch; 2559 if (unlikely(!d_same_name(dentry, parent, name))) 2560 goto mismatch; 2561 /* OK, it *is* a hashed match; return it */ 2562 spin_unlock(&dentry->d_lock); 2563 dput(new); 2564 return dentry; 2565 } 2566 rcu_read_unlock(); 2567 /* we can't take ->d_lock here; it's OK, though. */ 2568 new->d_flags |= DCACHE_PAR_LOOKUP; 2569 new->d_wait = wq; 2570 hlist_bl_add_head_rcu(&new->d_u.d_in_lookup_hash, b); 2571 hlist_bl_unlock(b); 2572 return new; 2573 mismatch: 2574 spin_unlock(&dentry->d_lock); 2575 dput(dentry); 2576 goto retry; 2577 } 2578 EXPORT_SYMBOL(d_alloc_parallel); 2579 2580 void __d_lookup_done(struct dentry *dentry) 2581 { 2582 struct hlist_bl_head *b = in_lookup_hash(dentry->d_parent, 2583 dentry->d_name.hash); 2584 hlist_bl_lock(b); 2585 dentry->d_flags &= ~DCACHE_PAR_LOOKUP; 2586 __hlist_bl_del(&dentry->d_u.d_in_lookup_hash); 2587 wake_up_all(dentry->d_wait); 2588 dentry->d_wait = NULL; 2589 hlist_bl_unlock(b); 2590 INIT_HLIST_NODE(&dentry->d_u.d_alias); 2591 INIT_LIST_HEAD(&dentry->d_lru); 2592 } 2593 EXPORT_SYMBOL(__d_lookup_done); 2594 2595 /* inode->i_lock held if inode is non-NULL */ 2596 2597 static inline void __d_add(struct dentry *dentry, struct inode *inode) 2598 { 2599 struct inode *dir = NULL; 2600 unsigned n; 2601 spin_lock(&dentry->d_lock); 2602 if (unlikely(d_in_lookup(dentry))) { 2603 dir = dentry->d_parent->d_inode; 2604 n = start_dir_add(dir); 2605 __d_lookup_done(dentry); 2606 } 2607 if (inode) { 2608 unsigned add_flags = d_flags_for_inode(inode); 2609 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry); 2610 raw_write_seqcount_begin(&dentry->d_seq); 2611 __d_set_inode_and_type(dentry, inode, add_flags); 2612 raw_write_seqcount_end(&dentry->d_seq); 2613 fsnotify_update_flags(dentry); 2614 } 2615 __d_rehash(dentry); 2616 if (dir) 2617 end_dir_add(dir, n); 2618 spin_unlock(&dentry->d_lock); 2619 if (inode) 2620 spin_unlock(&inode->i_lock); 2621 } 2622 2623 /** 2624 * d_add - add dentry to hash queues 2625 * @entry: dentry to add 2626 * @inode: The inode to attach to this dentry 2627 * 2628 * This adds the entry to the hash queues and initializes @inode. 2629 * The entry was actually filled in earlier during d_alloc(). 2630 */ 2631 2632 void d_add(struct dentry *entry, struct inode *inode) 2633 { 2634 if (inode) { 2635 security_d_instantiate(entry, inode); 2636 spin_lock(&inode->i_lock); 2637 } 2638 __d_add(entry, inode); 2639 } 2640 EXPORT_SYMBOL(d_add); 2641 2642 /** 2643 * d_exact_alias - find and hash an exact unhashed alias 2644 * @entry: dentry to add 2645 * @inode: The inode to go with this dentry 2646 * 2647 * If an unhashed dentry with the same name/parent and desired 2648 * inode already exists, hash and return it. Otherwise, return 2649 * NULL. 2650 * 2651 * Parent directory should be locked. 2652 */ 2653 struct dentry *d_exact_alias(struct dentry *entry, struct inode *inode) 2654 { 2655 struct dentry *alias; 2656 unsigned int hash = entry->d_name.hash; 2657 2658 spin_lock(&inode->i_lock); 2659 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) { 2660 /* 2661 * Don't need alias->d_lock here, because aliases with 2662 * d_parent == entry->d_parent are not subject to name or 2663 * parent changes, because the parent inode i_mutex is held. 2664 */ 2665 if (alias->d_name.hash != hash) 2666 continue; 2667 if (alias->d_parent != entry->d_parent) 2668 continue; 2669 if (!d_same_name(alias, entry->d_parent, &entry->d_name)) 2670 continue; 2671 spin_lock(&alias->d_lock); 2672 if (!d_unhashed(alias)) { 2673 spin_unlock(&alias->d_lock); 2674 alias = NULL; 2675 } else { 2676 __dget_dlock(alias); 2677 __d_rehash(alias); 2678 spin_unlock(&alias->d_lock); 2679 } 2680 spin_unlock(&inode->i_lock); 2681 return alias; 2682 } 2683 spin_unlock(&inode->i_lock); 2684 return NULL; 2685 } 2686 EXPORT_SYMBOL(d_exact_alias); 2687 2688 /** 2689 * dentry_update_name_case - update case insensitive dentry with a new name 2690 * @dentry: dentry to be updated 2691 * @name: new name 2692 * 2693 * Update a case insensitive dentry with new case of name. 2694 * 2695 * dentry must have been returned by d_lookup with name @name. Old and new 2696 * name lengths must match (ie. no d_compare which allows mismatched name 2697 * lengths). 2698 * 2699 * Parent inode i_mutex must be held over d_lookup and into this call (to 2700 * keep renames and concurrent inserts, and readdir(2) away). 2701 */ 2702 void dentry_update_name_case(struct dentry *dentry, const struct qstr *name) 2703 { 2704 BUG_ON(!inode_is_locked(dentry->d_parent->d_inode)); 2705 BUG_ON(dentry->d_name.len != name->len); /* d_lookup gives this */ 2706 2707 spin_lock(&dentry->d_lock); 2708 write_seqcount_begin(&dentry->d_seq); 2709 memcpy((unsigned char *)dentry->d_name.name, name->name, name->len); 2710 write_seqcount_end(&dentry->d_seq); 2711 spin_unlock(&dentry->d_lock); 2712 } 2713 EXPORT_SYMBOL(dentry_update_name_case); 2714 2715 static void swap_names(struct dentry *dentry, struct dentry *target) 2716 { 2717 if (unlikely(dname_external(target))) { 2718 if (unlikely(dname_external(dentry))) { 2719 /* 2720 * Both external: swap the pointers 2721 */ 2722 swap(target->d_name.name, dentry->d_name.name); 2723 } else { 2724 /* 2725 * dentry:internal, target:external. Steal target's 2726 * storage and make target internal. 2727 */ 2728 memcpy(target->d_iname, dentry->d_name.name, 2729 dentry->d_name.len + 1); 2730 dentry->d_name.name = target->d_name.name; 2731 target->d_name.name = target->d_iname; 2732 } 2733 } else { 2734 if (unlikely(dname_external(dentry))) { 2735 /* 2736 * dentry:external, target:internal. Give dentry's 2737 * storage to target and make dentry internal 2738 */ 2739 memcpy(dentry->d_iname, target->d_name.name, 2740 target->d_name.len + 1); 2741 target->d_name.name = dentry->d_name.name; 2742 dentry->d_name.name = dentry->d_iname; 2743 } else { 2744 /* 2745 * Both are internal. 2746 */ 2747 unsigned int i; 2748 BUILD_BUG_ON(!IS_ALIGNED(DNAME_INLINE_LEN, sizeof(long))); 2749 for (i = 0; i < DNAME_INLINE_LEN / sizeof(long); i++) { 2750 swap(((long *) &dentry->d_iname)[i], 2751 ((long *) &target->d_iname)[i]); 2752 } 2753 } 2754 } 2755 swap(dentry->d_name.hash_len, target->d_name.hash_len); 2756 } 2757 2758 static void copy_name(struct dentry *dentry, struct dentry *target) 2759 { 2760 struct external_name *old_name = NULL; 2761 if (unlikely(dname_external(dentry))) 2762 old_name = external_name(dentry); 2763 if (unlikely(dname_external(target))) { 2764 atomic_inc(&external_name(target)->u.count); 2765 dentry->d_name = target->d_name; 2766 } else { 2767 memcpy(dentry->d_iname, target->d_name.name, 2768 target->d_name.len + 1); 2769 dentry->d_name.name = dentry->d_iname; 2770 dentry->d_name.hash_len = target->d_name.hash_len; 2771 } 2772 if (old_name && likely(atomic_dec_and_test(&old_name->u.count))) 2773 kfree_rcu(old_name, u.head); 2774 } 2775 2776 /* 2777 * __d_move - move a dentry 2778 * @dentry: entry to move 2779 * @target: new dentry 2780 * @exchange: exchange the two dentries 2781 * 2782 * Update the dcache to reflect the move of a file name. Negative 2783 * dcache entries should not be moved in this way. Caller must hold 2784 * rename_lock, the i_mutex of the source and target directories, 2785 * and the sb->s_vfs_rename_mutex if they differ. See lock_rename(). 2786 */ 2787 static void __d_move(struct dentry *dentry, struct dentry *target, 2788 bool exchange) 2789 { 2790 struct dentry *old_parent, *p; 2791 struct inode *dir = NULL; 2792 unsigned n; 2793 2794 WARN_ON(!dentry->d_inode); 2795 if (WARN_ON(dentry == target)) 2796 return; 2797 2798 BUG_ON(d_ancestor(target, dentry)); 2799 old_parent = dentry->d_parent; 2800 p = d_ancestor(old_parent, target); 2801 if (IS_ROOT(dentry)) { 2802 BUG_ON(p); 2803 spin_lock(&target->d_parent->d_lock); 2804 } else if (!p) { 2805 /* target is not a descendent of dentry->d_parent */ 2806 spin_lock(&target->d_parent->d_lock); 2807 spin_lock_nested(&old_parent->d_lock, DENTRY_D_LOCK_NESTED); 2808 } else { 2809 BUG_ON(p == dentry); 2810 spin_lock(&old_parent->d_lock); 2811 if (p != target) 2812 spin_lock_nested(&target->d_parent->d_lock, 2813 DENTRY_D_LOCK_NESTED); 2814 } 2815 spin_lock_nested(&dentry->d_lock, 2); 2816 spin_lock_nested(&target->d_lock, 3); 2817 2818 if (unlikely(d_in_lookup(target))) { 2819 dir = target->d_parent->d_inode; 2820 n = start_dir_add(dir); 2821 __d_lookup_done(target); 2822 } 2823 2824 write_seqcount_begin(&dentry->d_seq); 2825 write_seqcount_begin_nested(&target->d_seq, DENTRY_D_LOCK_NESTED); 2826 2827 /* unhash both */ 2828 if (!d_unhashed(dentry)) 2829 ___d_drop(dentry); 2830 if (!d_unhashed(target)) 2831 ___d_drop(target); 2832 2833 /* ... and switch them in the tree */ 2834 dentry->d_parent = target->d_parent; 2835 if (!exchange) { 2836 copy_name(dentry, target); 2837 target->d_hash.pprev = NULL; 2838 dentry->d_parent->d_lockref.count++; 2839 if (dentry == old_parent) 2840 dentry->d_flags |= DCACHE_RCUACCESS; 2841 else 2842 WARN_ON(!--old_parent->d_lockref.count); 2843 } else { 2844 target->d_parent = old_parent; 2845 swap_names(dentry, target); 2846 list_move(&target->d_child, &target->d_parent->d_subdirs); 2847 __d_rehash(target); 2848 fsnotify_update_flags(target); 2849 } 2850 list_move(&dentry->d_child, &dentry->d_parent->d_subdirs); 2851 __d_rehash(dentry); 2852 fsnotify_update_flags(dentry); 2853 2854 write_seqcount_end(&target->d_seq); 2855 write_seqcount_end(&dentry->d_seq); 2856 2857 if (dir) 2858 end_dir_add(dir, n); 2859 2860 if (dentry->d_parent != old_parent) 2861 spin_unlock(&dentry->d_parent->d_lock); 2862 if (dentry != old_parent) 2863 spin_unlock(&old_parent->d_lock); 2864 spin_unlock(&target->d_lock); 2865 spin_unlock(&dentry->d_lock); 2866 } 2867 2868 /* 2869 * d_move - move a dentry 2870 * @dentry: entry to move 2871 * @target: new dentry 2872 * 2873 * Update the dcache to reflect the move of a file name. Negative 2874 * dcache entries should not be moved in this way. See the locking 2875 * requirements for __d_move. 2876 */ 2877 void d_move(struct dentry *dentry, struct dentry *target) 2878 { 2879 write_seqlock(&rename_lock); 2880 __d_move(dentry, target, false); 2881 write_sequnlock(&rename_lock); 2882 } 2883 EXPORT_SYMBOL(d_move); 2884 2885 /* 2886 * d_exchange - exchange two dentries 2887 * @dentry1: first dentry 2888 * @dentry2: second dentry 2889 */ 2890 void d_exchange(struct dentry *dentry1, struct dentry *dentry2) 2891 { 2892 write_seqlock(&rename_lock); 2893 2894 WARN_ON(!dentry1->d_inode); 2895 WARN_ON(!dentry2->d_inode); 2896 WARN_ON(IS_ROOT(dentry1)); 2897 WARN_ON(IS_ROOT(dentry2)); 2898 2899 __d_move(dentry1, dentry2, true); 2900 2901 write_sequnlock(&rename_lock); 2902 } 2903 2904 /** 2905 * d_ancestor - search for an ancestor 2906 * @p1: ancestor dentry 2907 * @p2: child dentry 2908 * 2909 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is 2910 * an ancestor of p2, else NULL. 2911 */ 2912 struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2) 2913 { 2914 struct dentry *p; 2915 2916 for (p = p2; !IS_ROOT(p); p = p->d_parent) { 2917 if (p->d_parent == p1) 2918 return p; 2919 } 2920 return NULL; 2921 } 2922 2923 /* 2924 * This helper attempts to cope with remotely renamed directories 2925 * 2926 * It assumes that the caller is already holding 2927 * dentry->d_parent->d_inode->i_mutex, and rename_lock 2928 * 2929 * Note: If ever the locking in lock_rename() changes, then please 2930 * remember to update this too... 2931 */ 2932 static int __d_unalias(struct inode *inode, 2933 struct dentry *dentry, struct dentry *alias) 2934 { 2935 struct mutex *m1 = NULL; 2936 struct rw_semaphore *m2 = NULL; 2937 int ret = -ESTALE; 2938 2939 /* If alias and dentry share a parent, then no extra locks required */ 2940 if (alias->d_parent == dentry->d_parent) 2941 goto out_unalias; 2942 2943 /* See lock_rename() */ 2944 if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex)) 2945 goto out_err; 2946 m1 = &dentry->d_sb->s_vfs_rename_mutex; 2947 if (!inode_trylock_shared(alias->d_parent->d_inode)) 2948 goto out_err; 2949 m2 = &alias->d_parent->d_inode->i_rwsem; 2950 out_unalias: 2951 __d_move(alias, dentry, false); 2952 ret = 0; 2953 out_err: 2954 if (m2) 2955 up_read(m2); 2956 if (m1) 2957 mutex_unlock(m1); 2958 return ret; 2959 } 2960 2961 /** 2962 * d_splice_alias - splice a disconnected dentry into the tree if one exists 2963 * @inode: the inode which may have a disconnected dentry 2964 * @dentry: a negative dentry which we want to point to the inode. 2965 * 2966 * If inode is a directory and has an IS_ROOT alias, then d_move that in 2967 * place of the given dentry and return it, else simply d_add the inode 2968 * to the dentry and return NULL. 2969 * 2970 * If a non-IS_ROOT directory is found, the filesystem is corrupt, and 2971 * we should error out: directories can't have multiple aliases. 2972 * 2973 * This is needed in the lookup routine of any filesystem that is exportable 2974 * (via knfsd) so that we can build dcache paths to directories effectively. 2975 * 2976 * If a dentry was found and moved, then it is returned. Otherwise NULL 2977 * is returned. This matches the expected return value of ->lookup. 2978 * 2979 * Cluster filesystems may call this function with a negative, hashed dentry. 2980 * In that case, we know that the inode will be a regular file, and also this 2981 * will only occur during atomic_open. So we need to check for the dentry 2982 * being already hashed only in the final case. 2983 */ 2984 struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry) 2985 { 2986 if (IS_ERR(inode)) 2987 return ERR_CAST(inode); 2988 2989 BUG_ON(!d_unhashed(dentry)); 2990 2991 if (!inode) 2992 goto out; 2993 2994 security_d_instantiate(dentry, inode); 2995 spin_lock(&inode->i_lock); 2996 if (S_ISDIR(inode->i_mode)) { 2997 struct dentry *new = __d_find_any_alias(inode); 2998 if (unlikely(new)) { 2999 /* The reference to new ensures it remains an alias */ 3000 spin_unlock(&inode->i_lock); 3001 write_seqlock(&rename_lock); 3002 if (unlikely(d_ancestor(new, dentry))) { 3003 write_sequnlock(&rename_lock); 3004 dput(new); 3005 new = ERR_PTR(-ELOOP); 3006 pr_warn_ratelimited( 3007 "VFS: Lookup of '%s' in %s %s" 3008 " would have caused loop\n", 3009 dentry->d_name.name, 3010 inode->i_sb->s_type->name, 3011 inode->i_sb->s_id); 3012 } else if (!IS_ROOT(new)) { 3013 struct dentry *old_parent = dget(new->d_parent); 3014 int err = __d_unalias(inode, dentry, new); 3015 write_sequnlock(&rename_lock); 3016 if (err) { 3017 dput(new); 3018 new = ERR_PTR(err); 3019 } 3020 dput(old_parent); 3021 } else { 3022 __d_move(new, dentry, false); 3023 write_sequnlock(&rename_lock); 3024 } 3025 iput(inode); 3026 return new; 3027 } 3028 } 3029 out: 3030 __d_add(dentry, inode); 3031 return NULL; 3032 } 3033 EXPORT_SYMBOL(d_splice_alias); 3034 3035 /* 3036 * Test whether new_dentry is a subdirectory of old_dentry. 3037 * 3038 * Trivially implemented using the dcache structure 3039 */ 3040 3041 /** 3042 * is_subdir - is new dentry a subdirectory of old_dentry 3043 * @new_dentry: new dentry 3044 * @old_dentry: old dentry 3045 * 3046 * Returns true if new_dentry is a subdirectory of the parent (at any depth). 3047 * Returns false otherwise. 3048 * Caller must ensure that "new_dentry" is pinned before calling is_subdir() 3049 */ 3050 3051 bool is_subdir(struct dentry *new_dentry, struct dentry *old_dentry) 3052 { 3053 bool result; 3054 unsigned seq; 3055 3056 if (new_dentry == old_dentry) 3057 return true; 3058 3059 do { 3060 /* for restarting inner loop in case of seq retry */ 3061 seq = read_seqbegin(&rename_lock); 3062 /* 3063 * Need rcu_readlock to protect against the d_parent trashing 3064 * due to d_move 3065 */ 3066 rcu_read_lock(); 3067 if (d_ancestor(old_dentry, new_dentry)) 3068 result = true; 3069 else 3070 result = false; 3071 rcu_read_unlock(); 3072 } while (read_seqretry(&rename_lock, seq)); 3073 3074 return result; 3075 } 3076 EXPORT_SYMBOL(is_subdir); 3077 3078 static enum d_walk_ret d_genocide_kill(void *data, struct dentry *dentry) 3079 { 3080 struct dentry *root = data; 3081 if (dentry != root) { 3082 if (d_unhashed(dentry) || !dentry->d_inode) 3083 return D_WALK_SKIP; 3084 3085 if (!(dentry->d_flags & DCACHE_GENOCIDE)) { 3086 dentry->d_flags |= DCACHE_GENOCIDE; 3087 dentry->d_lockref.count--; 3088 } 3089 } 3090 return D_WALK_CONTINUE; 3091 } 3092 3093 void d_genocide(struct dentry *parent) 3094 { 3095 d_walk(parent, parent, d_genocide_kill, NULL); 3096 } 3097 3098 EXPORT_SYMBOL(d_genocide); 3099 3100 void d_tmpfile(struct dentry *dentry, struct inode *inode) 3101 { 3102 inode_dec_link_count(inode); 3103 BUG_ON(dentry->d_name.name != dentry->d_iname || 3104 !hlist_unhashed(&dentry->d_u.d_alias) || 3105 !d_unlinked(dentry)); 3106 spin_lock(&dentry->d_parent->d_lock); 3107 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED); 3108 dentry->d_name.len = sprintf(dentry->d_iname, "#%llu", 3109 (unsigned long long)inode->i_ino); 3110 spin_unlock(&dentry->d_lock); 3111 spin_unlock(&dentry->d_parent->d_lock); 3112 d_instantiate(dentry, inode); 3113 } 3114 EXPORT_SYMBOL(d_tmpfile); 3115 3116 static __initdata unsigned long dhash_entries; 3117 static int __init set_dhash_entries(char *str) 3118 { 3119 if (!str) 3120 return 0; 3121 dhash_entries = simple_strtoul(str, &str, 0); 3122 return 1; 3123 } 3124 __setup("dhash_entries=", set_dhash_entries); 3125 3126 static void __init dcache_init_early(void) 3127 { 3128 /* If hashes are distributed across NUMA nodes, defer 3129 * hash allocation until vmalloc space is available. 3130 */ 3131 if (hashdist) 3132 return; 3133 3134 dentry_hashtable = 3135 alloc_large_system_hash("Dentry cache", 3136 sizeof(struct hlist_bl_head), 3137 dhash_entries, 3138 13, 3139 HASH_EARLY | HASH_ZERO, 3140 &d_hash_shift, 3141 NULL, 3142 0, 3143 0); 3144 d_hash_shift = 32 - d_hash_shift; 3145 } 3146 3147 static void __init dcache_init(void) 3148 { 3149 /* 3150 * A constructor could be added for stable state like the lists, 3151 * but it is probably not worth it because of the cache nature 3152 * of the dcache. 3153 */ 3154 dentry_cache = KMEM_CACHE_USERCOPY(dentry, 3155 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD|SLAB_ACCOUNT, 3156 d_iname); 3157 3158 /* Hash may have been set up in dcache_init_early */ 3159 if (!hashdist) 3160 return; 3161 3162 dentry_hashtable = 3163 alloc_large_system_hash("Dentry cache", 3164 sizeof(struct hlist_bl_head), 3165 dhash_entries, 3166 13, 3167 HASH_ZERO, 3168 &d_hash_shift, 3169 NULL, 3170 0, 3171 0); 3172 d_hash_shift = 32 - d_hash_shift; 3173 } 3174 3175 /* SLAB cache for __getname() consumers */ 3176 struct kmem_cache *names_cachep __read_mostly; 3177 EXPORT_SYMBOL(names_cachep); 3178 3179 void __init vfs_caches_init_early(void) 3180 { 3181 int i; 3182 3183 for (i = 0; i < ARRAY_SIZE(in_lookup_hashtable); i++) 3184 INIT_HLIST_BL_HEAD(&in_lookup_hashtable[i]); 3185 3186 dcache_init_early(); 3187 inode_init_early(); 3188 } 3189 3190 void __init vfs_caches_init(void) 3191 { 3192 names_cachep = kmem_cache_create_usercopy("names_cache", PATH_MAX, 0, 3193 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 0, PATH_MAX, NULL); 3194 3195 dcache_init(); 3196 inode_init(); 3197 files_init(); 3198 files_maxfiles_init(); 3199 mnt_init(); 3200 bdev_cache_init(); 3201 chrdev_init(); 3202 } 3203