xref: /openbmc/linux/fs/dcache.c (revision b240b419db5d624ce7a5a397d6f62a1a686009ec)
1 /*
2  * fs/dcache.c
3  *
4  * Complete reimplementation
5  * (C) 1997 Thomas Schoebel-Theuer,
6  * with heavy changes by Linus Torvalds
7  */
8 
9 /*
10  * Notes on the allocation strategy:
11  *
12  * The dcache is a master of the icache - whenever a dcache entry
13  * exists, the inode will always exist. "iput()" is done either when
14  * the dcache entry is deleted or garbage collected.
15  */
16 
17 #include <linux/ratelimit.h>
18 #include <linux/string.h>
19 #include <linux/mm.h>
20 #include <linux/fs.h>
21 #include <linux/fsnotify.h>
22 #include <linux/slab.h>
23 #include <linux/init.h>
24 #include <linux/hash.h>
25 #include <linux/cache.h>
26 #include <linux/export.h>
27 #include <linux/security.h>
28 #include <linux/seqlock.h>
29 #include <linux/bootmem.h>
30 #include <linux/bit_spinlock.h>
31 #include <linux/rculist_bl.h>
32 #include <linux/list_lru.h>
33 #include "internal.h"
34 #include "mount.h"
35 
36 /*
37  * Usage:
38  * dcache->d_inode->i_lock protects:
39  *   - i_dentry, d_u.d_alias, d_inode of aliases
40  * dcache_hash_bucket lock protects:
41  *   - the dcache hash table
42  * s_roots bl list spinlock protects:
43  *   - the s_roots list (see __d_drop)
44  * dentry->d_sb->s_dentry_lru_lock protects:
45  *   - the dcache lru lists and counters
46  * d_lock protects:
47  *   - d_flags
48  *   - d_name
49  *   - d_lru
50  *   - d_count
51  *   - d_unhashed()
52  *   - d_parent and d_subdirs
53  *   - childrens' d_child and d_parent
54  *   - d_u.d_alias, d_inode
55  *
56  * Ordering:
57  * dentry->d_inode->i_lock
58  *   dentry->d_lock
59  *     dentry->d_sb->s_dentry_lru_lock
60  *     dcache_hash_bucket lock
61  *     s_roots lock
62  *
63  * If there is an ancestor relationship:
64  * dentry->d_parent->...->d_parent->d_lock
65  *   ...
66  *     dentry->d_parent->d_lock
67  *       dentry->d_lock
68  *
69  * If no ancestor relationship:
70  * arbitrary, since it's serialized on rename_lock
71  */
72 int sysctl_vfs_cache_pressure __read_mostly = 100;
73 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
74 
75 __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
76 
77 EXPORT_SYMBOL(rename_lock);
78 
79 static struct kmem_cache *dentry_cache __read_mostly;
80 
81 const struct qstr empty_name = QSTR_INIT("", 0);
82 EXPORT_SYMBOL(empty_name);
83 const struct qstr slash_name = QSTR_INIT("/", 1);
84 EXPORT_SYMBOL(slash_name);
85 
86 /*
87  * This is the single most critical data structure when it comes
88  * to the dcache: the hashtable for lookups. Somebody should try
89  * to make this good - I've just made it work.
90  *
91  * This hash-function tries to avoid losing too many bits of hash
92  * information, yet avoid using a prime hash-size or similar.
93  */
94 
95 static unsigned int d_hash_shift __read_mostly;
96 
97 static struct hlist_bl_head *dentry_hashtable __read_mostly;
98 
99 static inline struct hlist_bl_head *d_hash(unsigned int hash)
100 {
101 	return dentry_hashtable + (hash >> d_hash_shift);
102 }
103 
104 #define IN_LOOKUP_SHIFT 10
105 static struct hlist_bl_head in_lookup_hashtable[1 << IN_LOOKUP_SHIFT];
106 
107 static inline struct hlist_bl_head *in_lookup_hash(const struct dentry *parent,
108 					unsigned int hash)
109 {
110 	hash += (unsigned long) parent / L1_CACHE_BYTES;
111 	return in_lookup_hashtable + hash_32(hash, IN_LOOKUP_SHIFT);
112 }
113 
114 
115 /* Statistics gathering. */
116 struct dentry_stat_t dentry_stat = {
117 	.age_limit = 45,
118 };
119 
120 static DEFINE_PER_CPU(long, nr_dentry);
121 static DEFINE_PER_CPU(long, nr_dentry_unused);
122 
123 #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
124 
125 /*
126  * Here we resort to our own counters instead of using generic per-cpu counters
127  * for consistency with what the vfs inode code does. We are expected to harvest
128  * better code and performance by having our own specialized counters.
129  *
130  * Please note that the loop is done over all possible CPUs, not over all online
131  * CPUs. The reason for this is that we don't want to play games with CPUs going
132  * on and off. If one of them goes off, we will just keep their counters.
133  *
134  * glommer: See cffbc8a for details, and if you ever intend to change this,
135  * please update all vfs counters to match.
136  */
137 static long get_nr_dentry(void)
138 {
139 	int i;
140 	long sum = 0;
141 	for_each_possible_cpu(i)
142 		sum += per_cpu(nr_dentry, i);
143 	return sum < 0 ? 0 : sum;
144 }
145 
146 static long get_nr_dentry_unused(void)
147 {
148 	int i;
149 	long sum = 0;
150 	for_each_possible_cpu(i)
151 		sum += per_cpu(nr_dentry_unused, i);
152 	return sum < 0 ? 0 : sum;
153 }
154 
155 int proc_nr_dentry(struct ctl_table *table, int write, void __user *buffer,
156 		   size_t *lenp, loff_t *ppos)
157 {
158 	dentry_stat.nr_dentry = get_nr_dentry();
159 	dentry_stat.nr_unused = get_nr_dentry_unused();
160 	return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
161 }
162 #endif
163 
164 /*
165  * Compare 2 name strings, return 0 if they match, otherwise non-zero.
166  * The strings are both count bytes long, and count is non-zero.
167  */
168 #ifdef CONFIG_DCACHE_WORD_ACCESS
169 
170 #include <asm/word-at-a-time.h>
171 /*
172  * NOTE! 'cs' and 'scount' come from a dentry, so it has a
173  * aligned allocation for this particular component. We don't
174  * strictly need the load_unaligned_zeropad() safety, but it
175  * doesn't hurt either.
176  *
177  * In contrast, 'ct' and 'tcount' can be from a pathname, and do
178  * need the careful unaligned handling.
179  */
180 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
181 {
182 	unsigned long a,b,mask;
183 
184 	for (;;) {
185 		a = read_word_at_a_time(cs);
186 		b = load_unaligned_zeropad(ct);
187 		if (tcount < sizeof(unsigned long))
188 			break;
189 		if (unlikely(a != b))
190 			return 1;
191 		cs += sizeof(unsigned long);
192 		ct += sizeof(unsigned long);
193 		tcount -= sizeof(unsigned long);
194 		if (!tcount)
195 			return 0;
196 	}
197 	mask = bytemask_from_count(tcount);
198 	return unlikely(!!((a ^ b) & mask));
199 }
200 
201 #else
202 
203 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
204 {
205 	do {
206 		if (*cs != *ct)
207 			return 1;
208 		cs++;
209 		ct++;
210 		tcount--;
211 	} while (tcount);
212 	return 0;
213 }
214 
215 #endif
216 
217 static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount)
218 {
219 	/*
220 	 * Be careful about RCU walk racing with rename:
221 	 * use 'READ_ONCE' to fetch the name pointer.
222 	 *
223 	 * NOTE! Even if a rename will mean that the length
224 	 * was not loaded atomically, we don't care. The
225 	 * RCU walk will check the sequence count eventually,
226 	 * and catch it. And we won't overrun the buffer,
227 	 * because we're reading the name pointer atomically,
228 	 * and a dentry name is guaranteed to be properly
229 	 * terminated with a NUL byte.
230 	 *
231 	 * End result: even if 'len' is wrong, we'll exit
232 	 * early because the data cannot match (there can
233 	 * be no NUL in the ct/tcount data)
234 	 */
235 	const unsigned char *cs = READ_ONCE(dentry->d_name.name);
236 
237 	return dentry_string_cmp(cs, ct, tcount);
238 }
239 
240 struct external_name {
241 	union {
242 		atomic_t count;
243 		struct rcu_head head;
244 	} u;
245 	unsigned char name[];
246 };
247 
248 static inline struct external_name *external_name(struct dentry *dentry)
249 {
250 	return container_of(dentry->d_name.name, struct external_name, name[0]);
251 }
252 
253 static void __d_free(struct rcu_head *head)
254 {
255 	struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
256 
257 	kmem_cache_free(dentry_cache, dentry);
258 }
259 
260 static void __d_free_external(struct rcu_head *head)
261 {
262 	struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
263 	kfree(external_name(dentry));
264 	kmem_cache_free(dentry_cache, dentry);
265 }
266 
267 static inline int dname_external(const struct dentry *dentry)
268 {
269 	return dentry->d_name.name != dentry->d_iname;
270 }
271 
272 void take_dentry_name_snapshot(struct name_snapshot *name, struct dentry *dentry)
273 {
274 	spin_lock(&dentry->d_lock);
275 	if (unlikely(dname_external(dentry))) {
276 		struct external_name *p = external_name(dentry);
277 		atomic_inc(&p->u.count);
278 		spin_unlock(&dentry->d_lock);
279 		name->name = p->name;
280 	} else {
281 		memcpy(name->inline_name, dentry->d_iname, DNAME_INLINE_LEN);
282 		spin_unlock(&dentry->d_lock);
283 		name->name = name->inline_name;
284 	}
285 }
286 EXPORT_SYMBOL(take_dentry_name_snapshot);
287 
288 void release_dentry_name_snapshot(struct name_snapshot *name)
289 {
290 	if (unlikely(name->name != name->inline_name)) {
291 		struct external_name *p;
292 		p = container_of(name->name, struct external_name, name[0]);
293 		if (unlikely(atomic_dec_and_test(&p->u.count)))
294 			kfree_rcu(p, u.head);
295 	}
296 }
297 EXPORT_SYMBOL(release_dentry_name_snapshot);
298 
299 static inline void __d_set_inode_and_type(struct dentry *dentry,
300 					  struct inode *inode,
301 					  unsigned type_flags)
302 {
303 	unsigned flags;
304 
305 	dentry->d_inode = inode;
306 	flags = READ_ONCE(dentry->d_flags);
307 	flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU);
308 	flags |= type_flags;
309 	WRITE_ONCE(dentry->d_flags, flags);
310 }
311 
312 static inline void __d_clear_type_and_inode(struct dentry *dentry)
313 {
314 	unsigned flags = READ_ONCE(dentry->d_flags);
315 
316 	flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU);
317 	WRITE_ONCE(dentry->d_flags, flags);
318 	dentry->d_inode = NULL;
319 }
320 
321 static void dentry_free(struct dentry *dentry)
322 {
323 	WARN_ON(!hlist_unhashed(&dentry->d_u.d_alias));
324 	if (unlikely(dname_external(dentry))) {
325 		struct external_name *p = external_name(dentry);
326 		if (likely(atomic_dec_and_test(&p->u.count))) {
327 			call_rcu(&dentry->d_u.d_rcu, __d_free_external);
328 			return;
329 		}
330 	}
331 	/* if dentry was never visible to RCU, immediate free is OK */
332 	if (!(dentry->d_flags & DCACHE_RCUACCESS))
333 		__d_free(&dentry->d_u.d_rcu);
334 	else
335 		call_rcu(&dentry->d_u.d_rcu, __d_free);
336 }
337 
338 /*
339  * Release the dentry's inode, using the filesystem
340  * d_iput() operation if defined.
341  */
342 static void dentry_unlink_inode(struct dentry * dentry)
343 	__releases(dentry->d_lock)
344 	__releases(dentry->d_inode->i_lock)
345 {
346 	struct inode *inode = dentry->d_inode;
347 	bool hashed = !d_unhashed(dentry);
348 
349 	if (hashed)
350 		raw_write_seqcount_begin(&dentry->d_seq);
351 	__d_clear_type_and_inode(dentry);
352 	hlist_del_init(&dentry->d_u.d_alias);
353 	if (hashed)
354 		raw_write_seqcount_end(&dentry->d_seq);
355 	spin_unlock(&dentry->d_lock);
356 	spin_unlock(&inode->i_lock);
357 	if (!inode->i_nlink)
358 		fsnotify_inoderemove(inode);
359 	if (dentry->d_op && dentry->d_op->d_iput)
360 		dentry->d_op->d_iput(dentry, inode);
361 	else
362 		iput(inode);
363 }
364 
365 /*
366  * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry
367  * is in use - which includes both the "real" per-superblock
368  * LRU list _and_ the DCACHE_SHRINK_LIST use.
369  *
370  * The DCACHE_SHRINK_LIST bit is set whenever the dentry is
371  * on the shrink list (ie not on the superblock LRU list).
372  *
373  * The per-cpu "nr_dentry_unused" counters are updated with
374  * the DCACHE_LRU_LIST bit.
375  *
376  * These helper functions make sure we always follow the
377  * rules. d_lock must be held by the caller.
378  */
379 #define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x))
380 static void d_lru_add(struct dentry *dentry)
381 {
382 	D_FLAG_VERIFY(dentry, 0);
383 	dentry->d_flags |= DCACHE_LRU_LIST;
384 	this_cpu_inc(nr_dentry_unused);
385 	WARN_ON_ONCE(!list_lru_add(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
386 }
387 
388 static void d_lru_del(struct dentry *dentry)
389 {
390 	D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
391 	dentry->d_flags &= ~DCACHE_LRU_LIST;
392 	this_cpu_dec(nr_dentry_unused);
393 	WARN_ON_ONCE(!list_lru_del(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
394 }
395 
396 static void d_shrink_del(struct dentry *dentry)
397 {
398 	D_FLAG_VERIFY(dentry, DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
399 	list_del_init(&dentry->d_lru);
400 	dentry->d_flags &= ~(DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
401 	this_cpu_dec(nr_dentry_unused);
402 }
403 
404 static void d_shrink_add(struct dentry *dentry, struct list_head *list)
405 {
406 	D_FLAG_VERIFY(dentry, 0);
407 	list_add(&dentry->d_lru, list);
408 	dentry->d_flags |= DCACHE_SHRINK_LIST | DCACHE_LRU_LIST;
409 	this_cpu_inc(nr_dentry_unused);
410 }
411 
412 /*
413  * These can only be called under the global LRU lock, ie during the
414  * callback for freeing the LRU list. "isolate" removes it from the
415  * LRU lists entirely, while shrink_move moves it to the indicated
416  * private list.
417  */
418 static void d_lru_isolate(struct list_lru_one *lru, struct dentry *dentry)
419 {
420 	D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
421 	dentry->d_flags &= ~DCACHE_LRU_LIST;
422 	this_cpu_dec(nr_dentry_unused);
423 	list_lru_isolate(lru, &dentry->d_lru);
424 }
425 
426 static void d_lru_shrink_move(struct list_lru_one *lru, struct dentry *dentry,
427 			      struct list_head *list)
428 {
429 	D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
430 	dentry->d_flags |= DCACHE_SHRINK_LIST;
431 	list_lru_isolate_move(lru, &dentry->d_lru, list);
432 }
433 
434 /**
435  * d_drop - drop a dentry
436  * @dentry: dentry to drop
437  *
438  * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
439  * be found through a VFS lookup any more. Note that this is different from
440  * deleting the dentry - d_delete will try to mark the dentry negative if
441  * possible, giving a successful _negative_ lookup, while d_drop will
442  * just make the cache lookup fail.
443  *
444  * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
445  * reason (NFS timeouts or autofs deletes).
446  *
447  * __d_drop requires dentry->d_lock
448  * ___d_drop doesn't mark dentry as "unhashed"
449  *   (dentry->d_hash.pprev will be LIST_POISON2, not NULL).
450  */
451 static void ___d_drop(struct dentry *dentry)
452 {
453 	struct hlist_bl_head *b;
454 	/*
455 	 * Hashed dentries are normally on the dentry hashtable,
456 	 * with the exception of those newly allocated by
457 	 * d_obtain_root, which are always IS_ROOT:
458 	 */
459 	if (unlikely(IS_ROOT(dentry)))
460 		b = &dentry->d_sb->s_roots;
461 	else
462 		b = d_hash(dentry->d_name.hash);
463 
464 	hlist_bl_lock(b);
465 	__hlist_bl_del(&dentry->d_hash);
466 	hlist_bl_unlock(b);
467 }
468 
469 void __d_drop(struct dentry *dentry)
470 {
471 	if (!d_unhashed(dentry)) {
472 		___d_drop(dentry);
473 		dentry->d_hash.pprev = NULL;
474 		write_seqcount_invalidate(&dentry->d_seq);
475 	}
476 }
477 EXPORT_SYMBOL(__d_drop);
478 
479 void d_drop(struct dentry *dentry)
480 {
481 	spin_lock(&dentry->d_lock);
482 	__d_drop(dentry);
483 	spin_unlock(&dentry->d_lock);
484 }
485 EXPORT_SYMBOL(d_drop);
486 
487 static inline void dentry_unlist(struct dentry *dentry, struct dentry *parent)
488 {
489 	struct dentry *next;
490 	/*
491 	 * Inform d_walk() and shrink_dentry_list() that we are no longer
492 	 * attached to the dentry tree
493 	 */
494 	dentry->d_flags |= DCACHE_DENTRY_KILLED;
495 	if (unlikely(list_empty(&dentry->d_child)))
496 		return;
497 	__list_del_entry(&dentry->d_child);
498 	/*
499 	 * Cursors can move around the list of children.  While we'd been
500 	 * a normal list member, it didn't matter - ->d_child.next would've
501 	 * been updated.  However, from now on it won't be and for the
502 	 * things like d_walk() it might end up with a nasty surprise.
503 	 * Normally d_walk() doesn't care about cursors moving around -
504 	 * ->d_lock on parent prevents that and since a cursor has no children
505 	 * of its own, we get through it without ever unlocking the parent.
506 	 * There is one exception, though - if we ascend from a child that
507 	 * gets killed as soon as we unlock it, the next sibling is found
508 	 * using the value left in its ->d_child.next.  And if _that_
509 	 * pointed to a cursor, and cursor got moved (e.g. by lseek())
510 	 * before d_walk() regains parent->d_lock, we'll end up skipping
511 	 * everything the cursor had been moved past.
512 	 *
513 	 * Solution: make sure that the pointer left behind in ->d_child.next
514 	 * points to something that won't be moving around.  I.e. skip the
515 	 * cursors.
516 	 */
517 	while (dentry->d_child.next != &parent->d_subdirs) {
518 		next = list_entry(dentry->d_child.next, struct dentry, d_child);
519 		if (likely(!(next->d_flags & DCACHE_DENTRY_CURSOR)))
520 			break;
521 		dentry->d_child.next = next->d_child.next;
522 	}
523 }
524 
525 static void __dentry_kill(struct dentry *dentry)
526 {
527 	struct dentry *parent = NULL;
528 	bool can_free = true;
529 	if (!IS_ROOT(dentry))
530 		parent = dentry->d_parent;
531 
532 	/*
533 	 * The dentry is now unrecoverably dead to the world.
534 	 */
535 	lockref_mark_dead(&dentry->d_lockref);
536 
537 	/*
538 	 * inform the fs via d_prune that this dentry is about to be
539 	 * unhashed and destroyed.
540 	 */
541 	if (dentry->d_flags & DCACHE_OP_PRUNE)
542 		dentry->d_op->d_prune(dentry);
543 
544 	if (dentry->d_flags & DCACHE_LRU_LIST) {
545 		if (!(dentry->d_flags & DCACHE_SHRINK_LIST))
546 			d_lru_del(dentry);
547 	}
548 	/* if it was on the hash then remove it */
549 	__d_drop(dentry);
550 	dentry_unlist(dentry, parent);
551 	if (parent)
552 		spin_unlock(&parent->d_lock);
553 	if (dentry->d_inode)
554 		dentry_unlink_inode(dentry);
555 	else
556 		spin_unlock(&dentry->d_lock);
557 	this_cpu_dec(nr_dentry);
558 	if (dentry->d_op && dentry->d_op->d_release)
559 		dentry->d_op->d_release(dentry);
560 
561 	spin_lock(&dentry->d_lock);
562 	if (dentry->d_flags & DCACHE_SHRINK_LIST) {
563 		dentry->d_flags |= DCACHE_MAY_FREE;
564 		can_free = false;
565 	}
566 	spin_unlock(&dentry->d_lock);
567 	if (likely(can_free))
568 		dentry_free(dentry);
569 }
570 
571 static struct dentry *__lock_parent(struct dentry *dentry)
572 {
573 	struct dentry *parent;
574 	rcu_read_lock();
575 	spin_unlock(&dentry->d_lock);
576 again:
577 	parent = READ_ONCE(dentry->d_parent);
578 	spin_lock(&parent->d_lock);
579 	/*
580 	 * We can't blindly lock dentry until we are sure
581 	 * that we won't violate the locking order.
582 	 * Any changes of dentry->d_parent must have
583 	 * been done with parent->d_lock held, so
584 	 * spin_lock() above is enough of a barrier
585 	 * for checking if it's still our child.
586 	 */
587 	if (unlikely(parent != dentry->d_parent)) {
588 		spin_unlock(&parent->d_lock);
589 		goto again;
590 	}
591 	rcu_read_unlock();
592 	if (parent != dentry)
593 		spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
594 	else
595 		parent = NULL;
596 	return parent;
597 }
598 
599 static inline struct dentry *lock_parent(struct dentry *dentry)
600 {
601 	struct dentry *parent = dentry->d_parent;
602 	if (IS_ROOT(dentry))
603 		return NULL;
604 	if (likely(spin_trylock(&parent->d_lock)))
605 		return parent;
606 	return __lock_parent(dentry);
607 }
608 
609 static inline bool retain_dentry(struct dentry *dentry)
610 {
611 	WARN_ON(d_in_lookup(dentry));
612 
613 	/* Unreachable? Get rid of it */
614 	if (unlikely(d_unhashed(dentry)))
615 		return false;
616 
617 	if (unlikely(dentry->d_flags & DCACHE_DISCONNECTED))
618 		return false;
619 
620 	if (unlikely(dentry->d_flags & DCACHE_OP_DELETE)) {
621 		if (dentry->d_op->d_delete(dentry))
622 			return false;
623 	}
624 	/* retain; LRU fodder */
625 	dentry->d_lockref.count--;
626 	if (unlikely(!(dentry->d_flags & DCACHE_LRU_LIST)))
627 		d_lru_add(dentry);
628 	else if (unlikely(!(dentry->d_flags & DCACHE_REFERENCED)))
629 		dentry->d_flags |= DCACHE_REFERENCED;
630 	return true;
631 }
632 
633 /*
634  * Finish off a dentry we've decided to kill.
635  * dentry->d_lock must be held, returns with it unlocked.
636  * Returns dentry requiring refcount drop, or NULL if we're done.
637  */
638 static struct dentry *dentry_kill(struct dentry *dentry)
639 	__releases(dentry->d_lock)
640 {
641 	struct inode *inode = dentry->d_inode;
642 	struct dentry *parent = NULL;
643 
644 	if (inode && unlikely(!spin_trylock(&inode->i_lock)))
645 		goto slow_positive;
646 
647 	if (!IS_ROOT(dentry)) {
648 		parent = dentry->d_parent;
649 		if (unlikely(!spin_trylock(&parent->d_lock))) {
650 			parent = __lock_parent(dentry);
651 			if (likely(inode || !dentry->d_inode))
652 				goto got_locks;
653 			/* negative that became positive */
654 			if (parent)
655 				spin_unlock(&parent->d_lock);
656 			inode = dentry->d_inode;
657 			goto slow_positive;
658 		}
659 	}
660 	__dentry_kill(dentry);
661 	return parent;
662 
663 slow_positive:
664 	spin_unlock(&dentry->d_lock);
665 	spin_lock(&inode->i_lock);
666 	spin_lock(&dentry->d_lock);
667 	parent = lock_parent(dentry);
668 got_locks:
669 	if (unlikely(dentry->d_lockref.count != 1)) {
670 		dentry->d_lockref.count--;
671 	} else if (likely(!retain_dentry(dentry))) {
672 		__dentry_kill(dentry);
673 		return parent;
674 	}
675 	/* we are keeping it, after all */
676 	if (inode)
677 		spin_unlock(&inode->i_lock);
678 	if (parent)
679 		spin_unlock(&parent->d_lock);
680 	spin_unlock(&dentry->d_lock);
681 	return NULL;
682 }
683 
684 /*
685  * Try to do a lockless dput(), and return whether that was successful.
686  *
687  * If unsuccessful, we return false, having already taken the dentry lock.
688  *
689  * The caller needs to hold the RCU read lock, so that the dentry is
690  * guaranteed to stay around even if the refcount goes down to zero!
691  */
692 static inline bool fast_dput(struct dentry *dentry)
693 {
694 	int ret;
695 	unsigned int d_flags;
696 
697 	/*
698 	 * If we have a d_op->d_delete() operation, we sould not
699 	 * let the dentry count go to zero, so use "put_or_lock".
700 	 */
701 	if (unlikely(dentry->d_flags & DCACHE_OP_DELETE))
702 		return lockref_put_or_lock(&dentry->d_lockref);
703 
704 	/*
705 	 * .. otherwise, we can try to just decrement the
706 	 * lockref optimistically.
707 	 */
708 	ret = lockref_put_return(&dentry->d_lockref);
709 
710 	/*
711 	 * If the lockref_put_return() failed due to the lock being held
712 	 * by somebody else, the fast path has failed. We will need to
713 	 * get the lock, and then check the count again.
714 	 */
715 	if (unlikely(ret < 0)) {
716 		spin_lock(&dentry->d_lock);
717 		if (dentry->d_lockref.count > 1) {
718 			dentry->d_lockref.count--;
719 			spin_unlock(&dentry->d_lock);
720 			return 1;
721 		}
722 		return 0;
723 	}
724 
725 	/*
726 	 * If we weren't the last ref, we're done.
727 	 */
728 	if (ret)
729 		return 1;
730 
731 	/*
732 	 * Careful, careful. The reference count went down
733 	 * to zero, but we don't hold the dentry lock, so
734 	 * somebody else could get it again, and do another
735 	 * dput(), and we need to not race with that.
736 	 *
737 	 * However, there is a very special and common case
738 	 * where we don't care, because there is nothing to
739 	 * do: the dentry is still hashed, it does not have
740 	 * a 'delete' op, and it's referenced and already on
741 	 * the LRU list.
742 	 *
743 	 * NOTE! Since we aren't locked, these values are
744 	 * not "stable". However, it is sufficient that at
745 	 * some point after we dropped the reference the
746 	 * dentry was hashed and the flags had the proper
747 	 * value. Other dentry users may have re-gotten
748 	 * a reference to the dentry and change that, but
749 	 * our work is done - we can leave the dentry
750 	 * around with a zero refcount.
751 	 */
752 	smp_rmb();
753 	d_flags = READ_ONCE(dentry->d_flags);
754 	d_flags &= DCACHE_REFERENCED | DCACHE_LRU_LIST | DCACHE_DISCONNECTED;
755 
756 	/* Nothing to do? Dropping the reference was all we needed? */
757 	if (d_flags == (DCACHE_REFERENCED | DCACHE_LRU_LIST) && !d_unhashed(dentry))
758 		return 1;
759 
760 	/*
761 	 * Not the fast normal case? Get the lock. We've already decremented
762 	 * the refcount, but we'll need to re-check the situation after
763 	 * getting the lock.
764 	 */
765 	spin_lock(&dentry->d_lock);
766 
767 	/*
768 	 * Did somebody else grab a reference to it in the meantime, and
769 	 * we're no longer the last user after all? Alternatively, somebody
770 	 * else could have killed it and marked it dead. Either way, we
771 	 * don't need to do anything else.
772 	 */
773 	if (dentry->d_lockref.count) {
774 		spin_unlock(&dentry->d_lock);
775 		return 1;
776 	}
777 
778 	/*
779 	 * Re-get the reference we optimistically dropped. We hold the
780 	 * lock, and we just tested that it was zero, so we can just
781 	 * set it to 1.
782 	 */
783 	dentry->d_lockref.count = 1;
784 	return 0;
785 }
786 
787 
788 /*
789  * This is dput
790  *
791  * This is complicated by the fact that we do not want to put
792  * dentries that are no longer on any hash chain on the unused
793  * list: we'd much rather just get rid of them immediately.
794  *
795  * However, that implies that we have to traverse the dentry
796  * tree upwards to the parents which might _also_ now be
797  * scheduled for deletion (it may have been only waiting for
798  * its last child to go away).
799  *
800  * This tail recursion is done by hand as we don't want to depend
801  * on the compiler to always get this right (gcc generally doesn't).
802  * Real recursion would eat up our stack space.
803  */
804 
805 /*
806  * dput - release a dentry
807  * @dentry: dentry to release
808  *
809  * Release a dentry. This will drop the usage count and if appropriate
810  * call the dentry unlink method as well as removing it from the queues and
811  * releasing its resources. If the parent dentries were scheduled for release
812  * they too may now get deleted.
813  */
814 void dput(struct dentry *dentry)
815 {
816 	if (unlikely(!dentry))
817 		return;
818 
819 repeat:
820 	might_sleep();
821 
822 	rcu_read_lock();
823 	if (likely(fast_dput(dentry))) {
824 		rcu_read_unlock();
825 		return;
826 	}
827 
828 	/* Slow case: now with the dentry lock held */
829 	rcu_read_unlock();
830 
831 	if (likely(retain_dentry(dentry))) {
832 		spin_unlock(&dentry->d_lock);
833 		return;
834 	}
835 
836 	dentry = dentry_kill(dentry);
837 	if (dentry) {
838 		cond_resched();
839 		goto repeat;
840 	}
841 }
842 EXPORT_SYMBOL(dput);
843 
844 
845 /* This must be called with d_lock held */
846 static inline void __dget_dlock(struct dentry *dentry)
847 {
848 	dentry->d_lockref.count++;
849 }
850 
851 static inline void __dget(struct dentry *dentry)
852 {
853 	lockref_get(&dentry->d_lockref);
854 }
855 
856 struct dentry *dget_parent(struct dentry *dentry)
857 {
858 	int gotref;
859 	struct dentry *ret;
860 
861 	/*
862 	 * Do optimistic parent lookup without any
863 	 * locking.
864 	 */
865 	rcu_read_lock();
866 	ret = READ_ONCE(dentry->d_parent);
867 	gotref = lockref_get_not_zero(&ret->d_lockref);
868 	rcu_read_unlock();
869 	if (likely(gotref)) {
870 		if (likely(ret == READ_ONCE(dentry->d_parent)))
871 			return ret;
872 		dput(ret);
873 	}
874 
875 repeat:
876 	/*
877 	 * Don't need rcu_dereference because we re-check it was correct under
878 	 * the lock.
879 	 */
880 	rcu_read_lock();
881 	ret = dentry->d_parent;
882 	spin_lock(&ret->d_lock);
883 	if (unlikely(ret != dentry->d_parent)) {
884 		spin_unlock(&ret->d_lock);
885 		rcu_read_unlock();
886 		goto repeat;
887 	}
888 	rcu_read_unlock();
889 	BUG_ON(!ret->d_lockref.count);
890 	ret->d_lockref.count++;
891 	spin_unlock(&ret->d_lock);
892 	return ret;
893 }
894 EXPORT_SYMBOL(dget_parent);
895 
896 /**
897  * d_find_alias - grab a hashed alias of inode
898  * @inode: inode in question
899  *
900  * If inode has a hashed alias, or is a directory and has any alias,
901  * acquire the reference to alias and return it. Otherwise return NULL.
902  * Notice that if inode is a directory there can be only one alias and
903  * it can be unhashed only if it has no children, or if it is the root
904  * of a filesystem, or if the directory was renamed and d_revalidate
905  * was the first vfs operation to notice.
906  *
907  * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
908  * any other hashed alias over that one.
909  */
910 static struct dentry *__d_find_alias(struct inode *inode)
911 {
912 	struct dentry *alias, *discon_alias;
913 
914 again:
915 	discon_alias = NULL;
916 	hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
917 		spin_lock(&alias->d_lock);
918  		if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
919 			if (IS_ROOT(alias) &&
920 			    (alias->d_flags & DCACHE_DISCONNECTED)) {
921 				discon_alias = alias;
922 			} else {
923 				__dget_dlock(alias);
924 				spin_unlock(&alias->d_lock);
925 				return alias;
926 			}
927 		}
928 		spin_unlock(&alias->d_lock);
929 	}
930 	if (discon_alias) {
931 		alias = discon_alias;
932 		spin_lock(&alias->d_lock);
933 		if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
934 			__dget_dlock(alias);
935 			spin_unlock(&alias->d_lock);
936 			return alias;
937 		}
938 		spin_unlock(&alias->d_lock);
939 		goto again;
940 	}
941 	return NULL;
942 }
943 
944 struct dentry *d_find_alias(struct inode *inode)
945 {
946 	struct dentry *de = NULL;
947 
948 	if (!hlist_empty(&inode->i_dentry)) {
949 		spin_lock(&inode->i_lock);
950 		de = __d_find_alias(inode);
951 		spin_unlock(&inode->i_lock);
952 	}
953 	return de;
954 }
955 EXPORT_SYMBOL(d_find_alias);
956 
957 /*
958  *	Try to kill dentries associated with this inode.
959  * WARNING: you must own a reference to inode.
960  */
961 void d_prune_aliases(struct inode *inode)
962 {
963 	struct dentry *dentry;
964 restart:
965 	spin_lock(&inode->i_lock);
966 	hlist_for_each_entry(dentry, &inode->i_dentry, d_u.d_alias) {
967 		spin_lock(&dentry->d_lock);
968 		if (!dentry->d_lockref.count) {
969 			struct dentry *parent = lock_parent(dentry);
970 			if (likely(!dentry->d_lockref.count)) {
971 				__dentry_kill(dentry);
972 				dput(parent);
973 				goto restart;
974 			}
975 			if (parent)
976 				spin_unlock(&parent->d_lock);
977 		}
978 		spin_unlock(&dentry->d_lock);
979 	}
980 	spin_unlock(&inode->i_lock);
981 }
982 EXPORT_SYMBOL(d_prune_aliases);
983 
984 /*
985  * Lock a dentry from shrink list.
986  * Called under rcu_read_lock() and dentry->d_lock; the former
987  * guarantees that nothing we access will be freed under us.
988  * Note that dentry is *not* protected from concurrent dentry_kill(),
989  * d_delete(), etc.
990  *
991  * Return false if dentry has been disrupted or grabbed, leaving
992  * the caller to kick it off-list.  Otherwise, return true and have
993  * that dentry's inode and parent both locked.
994  */
995 static bool shrink_lock_dentry(struct dentry *dentry)
996 {
997 	struct inode *inode;
998 	struct dentry *parent;
999 
1000 	if (dentry->d_lockref.count)
1001 		return false;
1002 
1003 	inode = dentry->d_inode;
1004 	if (inode && unlikely(!spin_trylock(&inode->i_lock))) {
1005 		spin_unlock(&dentry->d_lock);
1006 		spin_lock(&inode->i_lock);
1007 		spin_lock(&dentry->d_lock);
1008 		if (unlikely(dentry->d_lockref.count))
1009 			goto out;
1010 		/* changed inode means that somebody had grabbed it */
1011 		if (unlikely(inode != dentry->d_inode))
1012 			goto out;
1013 	}
1014 
1015 	parent = dentry->d_parent;
1016 	if (IS_ROOT(dentry) || likely(spin_trylock(&parent->d_lock)))
1017 		return true;
1018 
1019 	spin_unlock(&dentry->d_lock);
1020 	spin_lock(&parent->d_lock);
1021 	if (unlikely(parent != dentry->d_parent)) {
1022 		spin_unlock(&parent->d_lock);
1023 		spin_lock(&dentry->d_lock);
1024 		goto out;
1025 	}
1026 	spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1027 	if (likely(!dentry->d_lockref.count))
1028 		return true;
1029 	spin_unlock(&parent->d_lock);
1030 out:
1031 	if (inode)
1032 		spin_unlock(&inode->i_lock);
1033 	return false;
1034 }
1035 
1036 static void shrink_dentry_list(struct list_head *list)
1037 {
1038 	while (!list_empty(list)) {
1039 		struct dentry *dentry, *parent;
1040 
1041 		dentry = list_entry(list->prev, struct dentry, d_lru);
1042 		spin_lock(&dentry->d_lock);
1043 		rcu_read_lock();
1044 		if (!shrink_lock_dentry(dentry)) {
1045 			bool can_free = false;
1046 			rcu_read_unlock();
1047 			d_shrink_del(dentry);
1048 			if (dentry->d_lockref.count < 0)
1049 				can_free = dentry->d_flags & DCACHE_MAY_FREE;
1050 			spin_unlock(&dentry->d_lock);
1051 			if (can_free)
1052 				dentry_free(dentry);
1053 			continue;
1054 		}
1055 		rcu_read_unlock();
1056 		d_shrink_del(dentry);
1057 		parent = dentry->d_parent;
1058 		__dentry_kill(dentry);
1059 		if (parent == dentry)
1060 			continue;
1061 		/*
1062 		 * We need to prune ancestors too. This is necessary to prevent
1063 		 * quadratic behavior of shrink_dcache_parent(), but is also
1064 		 * expected to be beneficial in reducing dentry cache
1065 		 * fragmentation.
1066 		 */
1067 		dentry = parent;
1068 		while (dentry && !lockref_put_or_lock(&dentry->d_lockref))
1069 			dentry = dentry_kill(dentry);
1070 	}
1071 }
1072 
1073 static enum lru_status dentry_lru_isolate(struct list_head *item,
1074 		struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
1075 {
1076 	struct list_head *freeable = arg;
1077 	struct dentry	*dentry = container_of(item, struct dentry, d_lru);
1078 
1079 
1080 	/*
1081 	 * we are inverting the lru lock/dentry->d_lock here,
1082 	 * so use a trylock. If we fail to get the lock, just skip
1083 	 * it
1084 	 */
1085 	if (!spin_trylock(&dentry->d_lock))
1086 		return LRU_SKIP;
1087 
1088 	/*
1089 	 * Referenced dentries are still in use. If they have active
1090 	 * counts, just remove them from the LRU. Otherwise give them
1091 	 * another pass through the LRU.
1092 	 */
1093 	if (dentry->d_lockref.count) {
1094 		d_lru_isolate(lru, dentry);
1095 		spin_unlock(&dentry->d_lock);
1096 		return LRU_REMOVED;
1097 	}
1098 
1099 	if (dentry->d_flags & DCACHE_REFERENCED) {
1100 		dentry->d_flags &= ~DCACHE_REFERENCED;
1101 		spin_unlock(&dentry->d_lock);
1102 
1103 		/*
1104 		 * The list move itself will be made by the common LRU code. At
1105 		 * this point, we've dropped the dentry->d_lock but keep the
1106 		 * lru lock. This is safe to do, since every list movement is
1107 		 * protected by the lru lock even if both locks are held.
1108 		 *
1109 		 * This is guaranteed by the fact that all LRU management
1110 		 * functions are intermediated by the LRU API calls like
1111 		 * list_lru_add and list_lru_del. List movement in this file
1112 		 * only ever occur through this functions or through callbacks
1113 		 * like this one, that are called from the LRU API.
1114 		 *
1115 		 * The only exceptions to this are functions like
1116 		 * shrink_dentry_list, and code that first checks for the
1117 		 * DCACHE_SHRINK_LIST flag.  Those are guaranteed to be
1118 		 * operating only with stack provided lists after they are
1119 		 * properly isolated from the main list.  It is thus, always a
1120 		 * local access.
1121 		 */
1122 		return LRU_ROTATE;
1123 	}
1124 
1125 	d_lru_shrink_move(lru, dentry, freeable);
1126 	spin_unlock(&dentry->d_lock);
1127 
1128 	return LRU_REMOVED;
1129 }
1130 
1131 /**
1132  * prune_dcache_sb - shrink the dcache
1133  * @sb: superblock
1134  * @sc: shrink control, passed to list_lru_shrink_walk()
1135  *
1136  * Attempt to shrink the superblock dcache LRU by @sc->nr_to_scan entries. This
1137  * is done when we need more memory and called from the superblock shrinker
1138  * function.
1139  *
1140  * This function may fail to free any resources if all the dentries are in
1141  * use.
1142  */
1143 long prune_dcache_sb(struct super_block *sb, struct shrink_control *sc)
1144 {
1145 	LIST_HEAD(dispose);
1146 	long freed;
1147 
1148 	freed = list_lru_shrink_walk(&sb->s_dentry_lru, sc,
1149 				     dentry_lru_isolate, &dispose);
1150 	shrink_dentry_list(&dispose);
1151 	return freed;
1152 }
1153 
1154 static enum lru_status dentry_lru_isolate_shrink(struct list_head *item,
1155 		struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
1156 {
1157 	struct list_head *freeable = arg;
1158 	struct dentry	*dentry = container_of(item, struct dentry, d_lru);
1159 
1160 	/*
1161 	 * we are inverting the lru lock/dentry->d_lock here,
1162 	 * so use a trylock. If we fail to get the lock, just skip
1163 	 * it
1164 	 */
1165 	if (!spin_trylock(&dentry->d_lock))
1166 		return LRU_SKIP;
1167 
1168 	d_lru_shrink_move(lru, dentry, freeable);
1169 	spin_unlock(&dentry->d_lock);
1170 
1171 	return LRU_REMOVED;
1172 }
1173 
1174 
1175 /**
1176  * shrink_dcache_sb - shrink dcache for a superblock
1177  * @sb: superblock
1178  *
1179  * Shrink the dcache for the specified super block. This is used to free
1180  * the dcache before unmounting a file system.
1181  */
1182 void shrink_dcache_sb(struct super_block *sb)
1183 {
1184 	long freed;
1185 
1186 	do {
1187 		LIST_HEAD(dispose);
1188 
1189 		freed = list_lru_walk(&sb->s_dentry_lru,
1190 			dentry_lru_isolate_shrink, &dispose, 1024);
1191 
1192 		this_cpu_sub(nr_dentry_unused, freed);
1193 		shrink_dentry_list(&dispose);
1194 		cond_resched();
1195 	} while (list_lru_count(&sb->s_dentry_lru) > 0);
1196 }
1197 EXPORT_SYMBOL(shrink_dcache_sb);
1198 
1199 /**
1200  * enum d_walk_ret - action to talke during tree walk
1201  * @D_WALK_CONTINUE:	contrinue walk
1202  * @D_WALK_QUIT:	quit walk
1203  * @D_WALK_NORETRY:	quit when retry is needed
1204  * @D_WALK_SKIP:	skip this dentry and its children
1205  */
1206 enum d_walk_ret {
1207 	D_WALK_CONTINUE,
1208 	D_WALK_QUIT,
1209 	D_WALK_NORETRY,
1210 	D_WALK_SKIP,
1211 };
1212 
1213 /**
1214  * d_walk - walk the dentry tree
1215  * @parent:	start of walk
1216  * @data:	data passed to @enter() and @finish()
1217  * @enter:	callback when first entering the dentry
1218  * @finish:	callback when successfully finished the walk
1219  *
1220  * The @enter() and @finish() callbacks are called with d_lock held.
1221  */
1222 static void d_walk(struct dentry *parent, void *data,
1223 		   enum d_walk_ret (*enter)(void *, struct dentry *),
1224 		   void (*finish)(void *))
1225 {
1226 	struct dentry *this_parent;
1227 	struct list_head *next;
1228 	unsigned seq = 0;
1229 	enum d_walk_ret ret;
1230 	bool retry = true;
1231 
1232 again:
1233 	read_seqbegin_or_lock(&rename_lock, &seq);
1234 	this_parent = parent;
1235 	spin_lock(&this_parent->d_lock);
1236 
1237 	ret = enter(data, this_parent);
1238 	switch (ret) {
1239 	case D_WALK_CONTINUE:
1240 		break;
1241 	case D_WALK_QUIT:
1242 	case D_WALK_SKIP:
1243 		goto out_unlock;
1244 	case D_WALK_NORETRY:
1245 		retry = false;
1246 		break;
1247 	}
1248 repeat:
1249 	next = this_parent->d_subdirs.next;
1250 resume:
1251 	while (next != &this_parent->d_subdirs) {
1252 		struct list_head *tmp = next;
1253 		struct dentry *dentry = list_entry(tmp, struct dentry, d_child);
1254 		next = tmp->next;
1255 
1256 		if (unlikely(dentry->d_flags & DCACHE_DENTRY_CURSOR))
1257 			continue;
1258 
1259 		spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1260 
1261 		ret = enter(data, dentry);
1262 		switch (ret) {
1263 		case D_WALK_CONTINUE:
1264 			break;
1265 		case D_WALK_QUIT:
1266 			spin_unlock(&dentry->d_lock);
1267 			goto out_unlock;
1268 		case D_WALK_NORETRY:
1269 			retry = false;
1270 			break;
1271 		case D_WALK_SKIP:
1272 			spin_unlock(&dentry->d_lock);
1273 			continue;
1274 		}
1275 
1276 		if (!list_empty(&dentry->d_subdirs)) {
1277 			spin_unlock(&this_parent->d_lock);
1278 			spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1279 			this_parent = dentry;
1280 			spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1281 			goto repeat;
1282 		}
1283 		spin_unlock(&dentry->d_lock);
1284 	}
1285 	/*
1286 	 * All done at this level ... ascend and resume the search.
1287 	 */
1288 	rcu_read_lock();
1289 ascend:
1290 	if (this_parent != parent) {
1291 		struct dentry *child = this_parent;
1292 		this_parent = child->d_parent;
1293 
1294 		spin_unlock(&child->d_lock);
1295 		spin_lock(&this_parent->d_lock);
1296 
1297 		/* might go back up the wrong parent if we have had a rename. */
1298 		if (need_seqretry(&rename_lock, seq))
1299 			goto rename_retry;
1300 		/* go into the first sibling still alive */
1301 		do {
1302 			next = child->d_child.next;
1303 			if (next == &this_parent->d_subdirs)
1304 				goto ascend;
1305 			child = list_entry(next, struct dentry, d_child);
1306 		} while (unlikely(child->d_flags & DCACHE_DENTRY_KILLED));
1307 		rcu_read_unlock();
1308 		goto resume;
1309 	}
1310 	if (need_seqretry(&rename_lock, seq))
1311 		goto rename_retry;
1312 	rcu_read_unlock();
1313 	if (finish)
1314 		finish(data);
1315 
1316 out_unlock:
1317 	spin_unlock(&this_parent->d_lock);
1318 	done_seqretry(&rename_lock, seq);
1319 	return;
1320 
1321 rename_retry:
1322 	spin_unlock(&this_parent->d_lock);
1323 	rcu_read_unlock();
1324 	BUG_ON(seq & 1);
1325 	if (!retry)
1326 		return;
1327 	seq = 1;
1328 	goto again;
1329 }
1330 
1331 struct check_mount {
1332 	struct vfsmount *mnt;
1333 	unsigned int mounted;
1334 };
1335 
1336 static enum d_walk_ret path_check_mount(void *data, struct dentry *dentry)
1337 {
1338 	struct check_mount *info = data;
1339 	struct path path = { .mnt = info->mnt, .dentry = dentry };
1340 
1341 	if (likely(!d_mountpoint(dentry)))
1342 		return D_WALK_CONTINUE;
1343 	if (__path_is_mountpoint(&path)) {
1344 		info->mounted = 1;
1345 		return D_WALK_QUIT;
1346 	}
1347 	return D_WALK_CONTINUE;
1348 }
1349 
1350 /**
1351  * path_has_submounts - check for mounts over a dentry in the
1352  *                      current namespace.
1353  * @parent: path to check.
1354  *
1355  * Return true if the parent or its subdirectories contain
1356  * a mount point in the current namespace.
1357  */
1358 int path_has_submounts(const struct path *parent)
1359 {
1360 	struct check_mount data = { .mnt = parent->mnt, .mounted = 0 };
1361 
1362 	read_seqlock_excl(&mount_lock);
1363 	d_walk(parent->dentry, &data, path_check_mount, NULL);
1364 	read_sequnlock_excl(&mount_lock);
1365 
1366 	return data.mounted;
1367 }
1368 EXPORT_SYMBOL(path_has_submounts);
1369 
1370 /*
1371  * Called by mount code to set a mountpoint and check if the mountpoint is
1372  * reachable (e.g. NFS can unhash a directory dentry and then the complete
1373  * subtree can become unreachable).
1374  *
1375  * Only one of d_invalidate() and d_set_mounted() must succeed.  For
1376  * this reason take rename_lock and d_lock on dentry and ancestors.
1377  */
1378 int d_set_mounted(struct dentry *dentry)
1379 {
1380 	struct dentry *p;
1381 	int ret = -ENOENT;
1382 	write_seqlock(&rename_lock);
1383 	for (p = dentry->d_parent; !IS_ROOT(p); p = p->d_parent) {
1384 		/* Need exclusion wrt. d_invalidate() */
1385 		spin_lock(&p->d_lock);
1386 		if (unlikely(d_unhashed(p))) {
1387 			spin_unlock(&p->d_lock);
1388 			goto out;
1389 		}
1390 		spin_unlock(&p->d_lock);
1391 	}
1392 	spin_lock(&dentry->d_lock);
1393 	if (!d_unlinked(dentry)) {
1394 		ret = -EBUSY;
1395 		if (!d_mountpoint(dentry)) {
1396 			dentry->d_flags |= DCACHE_MOUNTED;
1397 			ret = 0;
1398 		}
1399 	}
1400  	spin_unlock(&dentry->d_lock);
1401 out:
1402 	write_sequnlock(&rename_lock);
1403 	return ret;
1404 }
1405 
1406 /*
1407  * Search the dentry child list of the specified parent,
1408  * and move any unused dentries to the end of the unused
1409  * list for prune_dcache(). We descend to the next level
1410  * whenever the d_subdirs list is non-empty and continue
1411  * searching.
1412  *
1413  * It returns zero iff there are no unused children,
1414  * otherwise  it returns the number of children moved to
1415  * the end of the unused list. This may not be the total
1416  * number of unused children, because select_parent can
1417  * drop the lock and return early due to latency
1418  * constraints.
1419  */
1420 
1421 struct select_data {
1422 	struct dentry *start;
1423 	struct list_head dispose;
1424 	int found;
1425 };
1426 
1427 static enum d_walk_ret select_collect(void *_data, struct dentry *dentry)
1428 {
1429 	struct select_data *data = _data;
1430 	enum d_walk_ret ret = D_WALK_CONTINUE;
1431 
1432 	if (data->start == dentry)
1433 		goto out;
1434 
1435 	if (dentry->d_flags & DCACHE_SHRINK_LIST) {
1436 		data->found++;
1437 	} else {
1438 		if (dentry->d_flags & DCACHE_LRU_LIST)
1439 			d_lru_del(dentry);
1440 		if (!dentry->d_lockref.count) {
1441 			d_shrink_add(dentry, &data->dispose);
1442 			data->found++;
1443 		}
1444 	}
1445 	/*
1446 	 * We can return to the caller if we have found some (this
1447 	 * ensures forward progress). We'll be coming back to find
1448 	 * the rest.
1449 	 */
1450 	if (!list_empty(&data->dispose))
1451 		ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY;
1452 out:
1453 	return ret;
1454 }
1455 
1456 /**
1457  * shrink_dcache_parent - prune dcache
1458  * @parent: parent of entries to prune
1459  *
1460  * Prune the dcache to remove unused children of the parent dentry.
1461  */
1462 void shrink_dcache_parent(struct dentry *parent)
1463 {
1464 	for (;;) {
1465 		struct select_data data;
1466 
1467 		INIT_LIST_HEAD(&data.dispose);
1468 		data.start = parent;
1469 		data.found = 0;
1470 
1471 		d_walk(parent, &data, select_collect, NULL);
1472 		if (!data.found)
1473 			break;
1474 
1475 		shrink_dentry_list(&data.dispose);
1476 		cond_resched();
1477 	}
1478 }
1479 EXPORT_SYMBOL(shrink_dcache_parent);
1480 
1481 static enum d_walk_ret umount_check(void *_data, struct dentry *dentry)
1482 {
1483 	/* it has busy descendents; complain about those instead */
1484 	if (!list_empty(&dentry->d_subdirs))
1485 		return D_WALK_CONTINUE;
1486 
1487 	/* root with refcount 1 is fine */
1488 	if (dentry == _data && dentry->d_lockref.count == 1)
1489 		return D_WALK_CONTINUE;
1490 
1491 	printk(KERN_ERR "BUG: Dentry %p{i=%lx,n=%pd} "
1492 			" still in use (%d) [unmount of %s %s]\n",
1493 		       dentry,
1494 		       dentry->d_inode ?
1495 		       dentry->d_inode->i_ino : 0UL,
1496 		       dentry,
1497 		       dentry->d_lockref.count,
1498 		       dentry->d_sb->s_type->name,
1499 		       dentry->d_sb->s_id);
1500 	WARN_ON(1);
1501 	return D_WALK_CONTINUE;
1502 }
1503 
1504 static void do_one_tree(struct dentry *dentry)
1505 {
1506 	shrink_dcache_parent(dentry);
1507 	d_walk(dentry, dentry, umount_check, NULL);
1508 	d_drop(dentry);
1509 	dput(dentry);
1510 }
1511 
1512 /*
1513  * destroy the dentries attached to a superblock on unmounting
1514  */
1515 void shrink_dcache_for_umount(struct super_block *sb)
1516 {
1517 	struct dentry *dentry;
1518 
1519 	WARN(down_read_trylock(&sb->s_umount), "s_umount should've been locked");
1520 
1521 	dentry = sb->s_root;
1522 	sb->s_root = NULL;
1523 	do_one_tree(dentry);
1524 
1525 	while (!hlist_bl_empty(&sb->s_roots)) {
1526 		dentry = dget(hlist_bl_entry(hlist_bl_first(&sb->s_roots), struct dentry, d_hash));
1527 		do_one_tree(dentry);
1528 	}
1529 }
1530 
1531 struct detach_data {
1532 	struct select_data select;
1533 	struct dentry *mountpoint;
1534 };
1535 static enum d_walk_ret detach_and_collect(void *_data, struct dentry *dentry)
1536 {
1537 	struct detach_data *data = _data;
1538 
1539 	if (d_mountpoint(dentry)) {
1540 		__dget_dlock(dentry);
1541 		data->mountpoint = dentry;
1542 		return D_WALK_QUIT;
1543 	}
1544 
1545 	return select_collect(&data->select, dentry);
1546 }
1547 
1548 static void check_and_drop(void *_data)
1549 {
1550 	struct detach_data *data = _data;
1551 
1552 	if (!data->mountpoint && list_empty(&data->select.dispose))
1553 		__d_drop(data->select.start);
1554 }
1555 
1556 /**
1557  * d_invalidate - detach submounts, prune dcache, and drop
1558  * @dentry: dentry to invalidate (aka detach, prune and drop)
1559  *
1560  * no dcache lock.
1561  *
1562  * The final d_drop is done as an atomic operation relative to
1563  * rename_lock ensuring there are no races with d_set_mounted.  This
1564  * ensures there are no unhashed dentries on the path to a mountpoint.
1565  */
1566 void d_invalidate(struct dentry *dentry)
1567 {
1568 	/*
1569 	 * If it's already been dropped, return OK.
1570 	 */
1571 	spin_lock(&dentry->d_lock);
1572 	if (d_unhashed(dentry)) {
1573 		spin_unlock(&dentry->d_lock);
1574 		return;
1575 	}
1576 	spin_unlock(&dentry->d_lock);
1577 
1578 	/* Negative dentries can be dropped without further checks */
1579 	if (!dentry->d_inode) {
1580 		d_drop(dentry);
1581 		return;
1582 	}
1583 
1584 	for (;;) {
1585 		struct detach_data data;
1586 
1587 		data.mountpoint = NULL;
1588 		INIT_LIST_HEAD(&data.select.dispose);
1589 		data.select.start = dentry;
1590 		data.select.found = 0;
1591 
1592 		d_walk(dentry, &data, detach_and_collect, check_and_drop);
1593 
1594 		if (!list_empty(&data.select.dispose))
1595 			shrink_dentry_list(&data.select.dispose);
1596 		else if (!data.mountpoint)
1597 			return;
1598 
1599 		if (data.mountpoint) {
1600 			detach_mounts(data.mountpoint);
1601 			dput(data.mountpoint);
1602 		}
1603 		cond_resched();
1604 	}
1605 }
1606 EXPORT_SYMBOL(d_invalidate);
1607 
1608 /**
1609  * __d_alloc	-	allocate a dcache entry
1610  * @sb: filesystem it will belong to
1611  * @name: qstr of the name
1612  *
1613  * Allocates a dentry. It returns %NULL if there is insufficient memory
1614  * available. On a success the dentry is returned. The name passed in is
1615  * copied and the copy passed in may be reused after this call.
1616  */
1617 
1618 struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name)
1619 {
1620 	struct dentry *dentry;
1621 	char *dname;
1622 	int err;
1623 
1624 	dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
1625 	if (!dentry)
1626 		return NULL;
1627 
1628 	/*
1629 	 * We guarantee that the inline name is always NUL-terminated.
1630 	 * This way the memcpy() done by the name switching in rename
1631 	 * will still always have a NUL at the end, even if we might
1632 	 * be overwriting an internal NUL character
1633 	 */
1634 	dentry->d_iname[DNAME_INLINE_LEN-1] = 0;
1635 	if (unlikely(!name)) {
1636 		name = &slash_name;
1637 		dname = dentry->d_iname;
1638 	} else if (name->len > DNAME_INLINE_LEN-1) {
1639 		size_t size = offsetof(struct external_name, name[1]);
1640 		struct external_name *p = kmalloc(size + name->len,
1641 						  GFP_KERNEL_ACCOUNT);
1642 		if (!p) {
1643 			kmem_cache_free(dentry_cache, dentry);
1644 			return NULL;
1645 		}
1646 		atomic_set(&p->u.count, 1);
1647 		dname = p->name;
1648 	} else  {
1649 		dname = dentry->d_iname;
1650 	}
1651 
1652 	dentry->d_name.len = name->len;
1653 	dentry->d_name.hash = name->hash;
1654 	memcpy(dname, name->name, name->len);
1655 	dname[name->len] = 0;
1656 
1657 	/* Make sure we always see the terminating NUL character */
1658 	smp_store_release(&dentry->d_name.name, dname); /* ^^^ */
1659 
1660 	dentry->d_lockref.count = 1;
1661 	dentry->d_flags = 0;
1662 	spin_lock_init(&dentry->d_lock);
1663 	seqcount_init(&dentry->d_seq);
1664 	dentry->d_inode = NULL;
1665 	dentry->d_parent = dentry;
1666 	dentry->d_sb = sb;
1667 	dentry->d_op = NULL;
1668 	dentry->d_fsdata = NULL;
1669 	INIT_HLIST_BL_NODE(&dentry->d_hash);
1670 	INIT_LIST_HEAD(&dentry->d_lru);
1671 	INIT_LIST_HEAD(&dentry->d_subdirs);
1672 	INIT_HLIST_NODE(&dentry->d_u.d_alias);
1673 	INIT_LIST_HEAD(&dentry->d_child);
1674 	d_set_d_op(dentry, dentry->d_sb->s_d_op);
1675 
1676 	if (dentry->d_op && dentry->d_op->d_init) {
1677 		err = dentry->d_op->d_init(dentry);
1678 		if (err) {
1679 			if (dname_external(dentry))
1680 				kfree(external_name(dentry));
1681 			kmem_cache_free(dentry_cache, dentry);
1682 			return NULL;
1683 		}
1684 	}
1685 
1686 	this_cpu_inc(nr_dentry);
1687 
1688 	return dentry;
1689 }
1690 
1691 /**
1692  * d_alloc	-	allocate a dcache entry
1693  * @parent: parent of entry to allocate
1694  * @name: qstr of the name
1695  *
1696  * Allocates a dentry. It returns %NULL if there is insufficient memory
1697  * available. On a success the dentry is returned. The name passed in is
1698  * copied and the copy passed in may be reused after this call.
1699  */
1700 struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1701 {
1702 	struct dentry *dentry = __d_alloc(parent->d_sb, name);
1703 	if (!dentry)
1704 		return NULL;
1705 	dentry->d_flags |= DCACHE_RCUACCESS;
1706 	spin_lock(&parent->d_lock);
1707 	/*
1708 	 * don't need child lock because it is not subject
1709 	 * to concurrency here
1710 	 */
1711 	__dget_dlock(parent);
1712 	dentry->d_parent = parent;
1713 	list_add(&dentry->d_child, &parent->d_subdirs);
1714 	spin_unlock(&parent->d_lock);
1715 
1716 	return dentry;
1717 }
1718 EXPORT_SYMBOL(d_alloc);
1719 
1720 struct dentry *d_alloc_anon(struct super_block *sb)
1721 {
1722 	return __d_alloc(sb, NULL);
1723 }
1724 EXPORT_SYMBOL(d_alloc_anon);
1725 
1726 struct dentry *d_alloc_cursor(struct dentry * parent)
1727 {
1728 	struct dentry *dentry = d_alloc_anon(parent->d_sb);
1729 	if (dentry) {
1730 		dentry->d_flags |= DCACHE_RCUACCESS | DCACHE_DENTRY_CURSOR;
1731 		dentry->d_parent = dget(parent);
1732 	}
1733 	return dentry;
1734 }
1735 
1736 /**
1737  * d_alloc_pseudo - allocate a dentry (for lookup-less filesystems)
1738  * @sb: the superblock
1739  * @name: qstr of the name
1740  *
1741  * For a filesystem that just pins its dentries in memory and never
1742  * performs lookups at all, return an unhashed IS_ROOT dentry.
1743  */
1744 struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
1745 {
1746 	return __d_alloc(sb, name);
1747 }
1748 EXPORT_SYMBOL(d_alloc_pseudo);
1749 
1750 struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1751 {
1752 	struct qstr q;
1753 
1754 	q.name = name;
1755 	q.hash_len = hashlen_string(parent, name);
1756 	return d_alloc(parent, &q);
1757 }
1758 EXPORT_SYMBOL(d_alloc_name);
1759 
1760 void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1761 {
1762 	WARN_ON_ONCE(dentry->d_op);
1763 	WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH	|
1764 				DCACHE_OP_COMPARE	|
1765 				DCACHE_OP_REVALIDATE	|
1766 				DCACHE_OP_WEAK_REVALIDATE	|
1767 				DCACHE_OP_DELETE	|
1768 				DCACHE_OP_REAL));
1769 	dentry->d_op = op;
1770 	if (!op)
1771 		return;
1772 	if (op->d_hash)
1773 		dentry->d_flags |= DCACHE_OP_HASH;
1774 	if (op->d_compare)
1775 		dentry->d_flags |= DCACHE_OP_COMPARE;
1776 	if (op->d_revalidate)
1777 		dentry->d_flags |= DCACHE_OP_REVALIDATE;
1778 	if (op->d_weak_revalidate)
1779 		dentry->d_flags |= DCACHE_OP_WEAK_REVALIDATE;
1780 	if (op->d_delete)
1781 		dentry->d_flags |= DCACHE_OP_DELETE;
1782 	if (op->d_prune)
1783 		dentry->d_flags |= DCACHE_OP_PRUNE;
1784 	if (op->d_real)
1785 		dentry->d_flags |= DCACHE_OP_REAL;
1786 
1787 }
1788 EXPORT_SYMBOL(d_set_d_op);
1789 
1790 
1791 /*
1792  * d_set_fallthru - Mark a dentry as falling through to a lower layer
1793  * @dentry - The dentry to mark
1794  *
1795  * Mark a dentry as falling through to the lower layer (as set with
1796  * d_pin_lower()).  This flag may be recorded on the medium.
1797  */
1798 void d_set_fallthru(struct dentry *dentry)
1799 {
1800 	spin_lock(&dentry->d_lock);
1801 	dentry->d_flags |= DCACHE_FALLTHRU;
1802 	spin_unlock(&dentry->d_lock);
1803 }
1804 EXPORT_SYMBOL(d_set_fallthru);
1805 
1806 static unsigned d_flags_for_inode(struct inode *inode)
1807 {
1808 	unsigned add_flags = DCACHE_REGULAR_TYPE;
1809 
1810 	if (!inode)
1811 		return DCACHE_MISS_TYPE;
1812 
1813 	if (S_ISDIR(inode->i_mode)) {
1814 		add_flags = DCACHE_DIRECTORY_TYPE;
1815 		if (unlikely(!(inode->i_opflags & IOP_LOOKUP))) {
1816 			if (unlikely(!inode->i_op->lookup))
1817 				add_flags = DCACHE_AUTODIR_TYPE;
1818 			else
1819 				inode->i_opflags |= IOP_LOOKUP;
1820 		}
1821 		goto type_determined;
1822 	}
1823 
1824 	if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) {
1825 		if (unlikely(inode->i_op->get_link)) {
1826 			add_flags = DCACHE_SYMLINK_TYPE;
1827 			goto type_determined;
1828 		}
1829 		inode->i_opflags |= IOP_NOFOLLOW;
1830 	}
1831 
1832 	if (unlikely(!S_ISREG(inode->i_mode)))
1833 		add_flags = DCACHE_SPECIAL_TYPE;
1834 
1835 type_determined:
1836 	if (unlikely(IS_AUTOMOUNT(inode)))
1837 		add_flags |= DCACHE_NEED_AUTOMOUNT;
1838 	return add_flags;
1839 }
1840 
1841 static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1842 {
1843 	unsigned add_flags = d_flags_for_inode(inode);
1844 	WARN_ON(d_in_lookup(dentry));
1845 
1846 	spin_lock(&dentry->d_lock);
1847 	hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
1848 	raw_write_seqcount_begin(&dentry->d_seq);
1849 	__d_set_inode_and_type(dentry, inode, add_flags);
1850 	raw_write_seqcount_end(&dentry->d_seq);
1851 	fsnotify_update_flags(dentry);
1852 	spin_unlock(&dentry->d_lock);
1853 }
1854 
1855 /**
1856  * d_instantiate - fill in inode information for a dentry
1857  * @entry: dentry to complete
1858  * @inode: inode to attach to this dentry
1859  *
1860  * Fill in inode information in the entry.
1861  *
1862  * This turns negative dentries into productive full members
1863  * of society.
1864  *
1865  * NOTE! This assumes that the inode count has been incremented
1866  * (or otherwise set) by the caller to indicate that it is now
1867  * in use by the dcache.
1868  */
1869 
1870 void d_instantiate(struct dentry *entry, struct inode * inode)
1871 {
1872 	BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
1873 	if (inode) {
1874 		security_d_instantiate(entry, inode);
1875 		spin_lock(&inode->i_lock);
1876 		__d_instantiate(entry, inode);
1877 		spin_unlock(&inode->i_lock);
1878 	}
1879 }
1880 EXPORT_SYMBOL(d_instantiate);
1881 
1882 /**
1883  * d_instantiate_no_diralias - instantiate a non-aliased dentry
1884  * @entry: dentry to complete
1885  * @inode: inode to attach to this dentry
1886  *
1887  * Fill in inode information in the entry.  If a directory alias is found, then
1888  * return an error (and drop inode).  Together with d_materialise_unique() this
1889  * guarantees that a directory inode may never have more than one alias.
1890  */
1891 int d_instantiate_no_diralias(struct dentry *entry, struct inode *inode)
1892 {
1893 	BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
1894 
1895 	security_d_instantiate(entry, inode);
1896 	spin_lock(&inode->i_lock);
1897 	if (S_ISDIR(inode->i_mode) && !hlist_empty(&inode->i_dentry)) {
1898 		spin_unlock(&inode->i_lock);
1899 		iput(inode);
1900 		return -EBUSY;
1901 	}
1902 	__d_instantiate(entry, inode);
1903 	spin_unlock(&inode->i_lock);
1904 
1905 	return 0;
1906 }
1907 EXPORT_SYMBOL(d_instantiate_no_diralias);
1908 
1909 struct dentry *d_make_root(struct inode *root_inode)
1910 {
1911 	struct dentry *res = NULL;
1912 
1913 	if (root_inode) {
1914 		res = d_alloc_anon(root_inode->i_sb);
1915 		if (res)
1916 			d_instantiate(res, root_inode);
1917 		else
1918 			iput(root_inode);
1919 	}
1920 	return res;
1921 }
1922 EXPORT_SYMBOL(d_make_root);
1923 
1924 static struct dentry * __d_find_any_alias(struct inode *inode)
1925 {
1926 	struct dentry *alias;
1927 
1928 	if (hlist_empty(&inode->i_dentry))
1929 		return NULL;
1930 	alias = hlist_entry(inode->i_dentry.first, struct dentry, d_u.d_alias);
1931 	__dget(alias);
1932 	return alias;
1933 }
1934 
1935 /**
1936  * d_find_any_alias - find any alias for a given inode
1937  * @inode: inode to find an alias for
1938  *
1939  * If any aliases exist for the given inode, take and return a
1940  * reference for one of them.  If no aliases exist, return %NULL.
1941  */
1942 struct dentry *d_find_any_alias(struct inode *inode)
1943 {
1944 	struct dentry *de;
1945 
1946 	spin_lock(&inode->i_lock);
1947 	de = __d_find_any_alias(inode);
1948 	spin_unlock(&inode->i_lock);
1949 	return de;
1950 }
1951 EXPORT_SYMBOL(d_find_any_alias);
1952 
1953 static struct dentry *__d_instantiate_anon(struct dentry *dentry,
1954 					   struct inode *inode,
1955 					   bool disconnected)
1956 {
1957 	struct dentry *res;
1958 	unsigned add_flags;
1959 
1960 	security_d_instantiate(dentry, inode);
1961 	spin_lock(&inode->i_lock);
1962 	res = __d_find_any_alias(inode);
1963 	if (res) {
1964 		spin_unlock(&inode->i_lock);
1965 		dput(dentry);
1966 		goto out_iput;
1967 	}
1968 
1969 	/* attach a disconnected dentry */
1970 	add_flags = d_flags_for_inode(inode);
1971 
1972 	if (disconnected)
1973 		add_flags |= DCACHE_DISCONNECTED;
1974 
1975 	spin_lock(&dentry->d_lock);
1976 	__d_set_inode_and_type(dentry, inode, add_flags);
1977 	hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
1978 	if (!disconnected) {
1979 		hlist_bl_lock(&dentry->d_sb->s_roots);
1980 		hlist_bl_add_head(&dentry->d_hash, &dentry->d_sb->s_roots);
1981 		hlist_bl_unlock(&dentry->d_sb->s_roots);
1982 	}
1983 	spin_unlock(&dentry->d_lock);
1984 	spin_unlock(&inode->i_lock);
1985 
1986 	return dentry;
1987 
1988  out_iput:
1989 	iput(inode);
1990 	return res;
1991 }
1992 
1993 struct dentry *d_instantiate_anon(struct dentry *dentry, struct inode *inode)
1994 {
1995 	return __d_instantiate_anon(dentry, inode, true);
1996 }
1997 EXPORT_SYMBOL(d_instantiate_anon);
1998 
1999 static struct dentry *__d_obtain_alias(struct inode *inode, bool disconnected)
2000 {
2001 	struct dentry *tmp;
2002 	struct dentry *res;
2003 
2004 	if (!inode)
2005 		return ERR_PTR(-ESTALE);
2006 	if (IS_ERR(inode))
2007 		return ERR_CAST(inode);
2008 
2009 	res = d_find_any_alias(inode);
2010 	if (res)
2011 		goto out_iput;
2012 
2013 	tmp = d_alloc_anon(inode->i_sb);
2014 	if (!tmp) {
2015 		res = ERR_PTR(-ENOMEM);
2016 		goto out_iput;
2017 	}
2018 
2019 	return __d_instantiate_anon(tmp, inode, disconnected);
2020 
2021 out_iput:
2022 	iput(inode);
2023 	return res;
2024 }
2025 
2026 /**
2027  * d_obtain_alias - find or allocate a DISCONNECTED dentry for a given inode
2028  * @inode: inode to allocate the dentry for
2029  *
2030  * Obtain a dentry for an inode resulting from NFS filehandle conversion or
2031  * similar open by handle operations.  The returned dentry may be anonymous,
2032  * or may have a full name (if the inode was already in the cache).
2033  *
2034  * When called on a directory inode, we must ensure that the inode only ever
2035  * has one dentry.  If a dentry is found, that is returned instead of
2036  * allocating a new one.
2037  *
2038  * On successful return, the reference to the inode has been transferred
2039  * to the dentry.  In case of an error the reference on the inode is released.
2040  * To make it easier to use in export operations a %NULL or IS_ERR inode may
2041  * be passed in and the error will be propagated to the return value,
2042  * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
2043  */
2044 struct dentry *d_obtain_alias(struct inode *inode)
2045 {
2046 	return __d_obtain_alias(inode, true);
2047 }
2048 EXPORT_SYMBOL(d_obtain_alias);
2049 
2050 /**
2051  * d_obtain_root - find or allocate a dentry for a given inode
2052  * @inode: inode to allocate the dentry for
2053  *
2054  * Obtain an IS_ROOT dentry for the root of a filesystem.
2055  *
2056  * We must ensure that directory inodes only ever have one dentry.  If a
2057  * dentry is found, that is returned instead of allocating a new one.
2058  *
2059  * On successful return, the reference to the inode has been transferred
2060  * to the dentry.  In case of an error the reference on the inode is
2061  * released.  A %NULL or IS_ERR inode may be passed in and will be the
2062  * error will be propagate to the return value, with a %NULL @inode
2063  * replaced by ERR_PTR(-ESTALE).
2064  */
2065 struct dentry *d_obtain_root(struct inode *inode)
2066 {
2067 	return __d_obtain_alias(inode, false);
2068 }
2069 EXPORT_SYMBOL(d_obtain_root);
2070 
2071 /**
2072  * d_add_ci - lookup or allocate new dentry with case-exact name
2073  * @inode:  the inode case-insensitive lookup has found
2074  * @dentry: the negative dentry that was passed to the parent's lookup func
2075  * @name:   the case-exact name to be associated with the returned dentry
2076  *
2077  * This is to avoid filling the dcache with case-insensitive names to the
2078  * same inode, only the actual correct case is stored in the dcache for
2079  * case-insensitive filesystems.
2080  *
2081  * For a case-insensitive lookup match and if the the case-exact dentry
2082  * already exists in in the dcache, use it and return it.
2083  *
2084  * If no entry exists with the exact case name, allocate new dentry with
2085  * the exact case, and return the spliced entry.
2086  */
2087 struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
2088 			struct qstr *name)
2089 {
2090 	struct dentry *found, *res;
2091 
2092 	/*
2093 	 * First check if a dentry matching the name already exists,
2094 	 * if not go ahead and create it now.
2095 	 */
2096 	found = d_hash_and_lookup(dentry->d_parent, name);
2097 	if (found) {
2098 		iput(inode);
2099 		return found;
2100 	}
2101 	if (d_in_lookup(dentry)) {
2102 		found = d_alloc_parallel(dentry->d_parent, name,
2103 					dentry->d_wait);
2104 		if (IS_ERR(found) || !d_in_lookup(found)) {
2105 			iput(inode);
2106 			return found;
2107 		}
2108 	} else {
2109 		found = d_alloc(dentry->d_parent, name);
2110 		if (!found) {
2111 			iput(inode);
2112 			return ERR_PTR(-ENOMEM);
2113 		}
2114 	}
2115 	res = d_splice_alias(inode, found);
2116 	if (res) {
2117 		dput(found);
2118 		return res;
2119 	}
2120 	return found;
2121 }
2122 EXPORT_SYMBOL(d_add_ci);
2123 
2124 
2125 static inline bool d_same_name(const struct dentry *dentry,
2126 				const struct dentry *parent,
2127 				const struct qstr *name)
2128 {
2129 	if (likely(!(parent->d_flags & DCACHE_OP_COMPARE))) {
2130 		if (dentry->d_name.len != name->len)
2131 			return false;
2132 		return dentry_cmp(dentry, name->name, name->len) == 0;
2133 	}
2134 	return parent->d_op->d_compare(dentry,
2135 				       dentry->d_name.len, dentry->d_name.name,
2136 				       name) == 0;
2137 }
2138 
2139 /**
2140  * __d_lookup_rcu - search for a dentry (racy, store-free)
2141  * @parent: parent dentry
2142  * @name: qstr of name we wish to find
2143  * @seqp: returns d_seq value at the point where the dentry was found
2144  * Returns: dentry, or NULL
2145  *
2146  * __d_lookup_rcu is the dcache lookup function for rcu-walk name
2147  * resolution (store-free path walking) design described in
2148  * Documentation/filesystems/path-lookup.txt.
2149  *
2150  * This is not to be used outside core vfs.
2151  *
2152  * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
2153  * held, and rcu_read_lock held. The returned dentry must not be stored into
2154  * without taking d_lock and checking d_seq sequence count against @seq
2155  * returned here.
2156  *
2157  * A refcount may be taken on the found dentry with the d_rcu_to_refcount
2158  * function.
2159  *
2160  * Alternatively, __d_lookup_rcu may be called again to look up the child of
2161  * the returned dentry, so long as its parent's seqlock is checked after the
2162  * child is looked up. Thus, an interlocking stepping of sequence lock checks
2163  * is formed, giving integrity down the path walk.
2164  *
2165  * NOTE! The caller *has* to check the resulting dentry against the sequence
2166  * number we've returned before using any of the resulting dentry state!
2167  */
2168 struct dentry *__d_lookup_rcu(const struct dentry *parent,
2169 				const struct qstr *name,
2170 				unsigned *seqp)
2171 {
2172 	u64 hashlen = name->hash_len;
2173 	const unsigned char *str = name->name;
2174 	struct hlist_bl_head *b = d_hash(hashlen_hash(hashlen));
2175 	struct hlist_bl_node *node;
2176 	struct dentry *dentry;
2177 
2178 	/*
2179 	 * Note: There is significant duplication with __d_lookup_rcu which is
2180 	 * required to prevent single threaded performance regressions
2181 	 * especially on architectures where smp_rmb (in seqcounts) are costly.
2182 	 * Keep the two functions in sync.
2183 	 */
2184 
2185 	/*
2186 	 * The hash list is protected using RCU.
2187 	 *
2188 	 * Carefully use d_seq when comparing a candidate dentry, to avoid
2189 	 * races with d_move().
2190 	 *
2191 	 * It is possible that concurrent renames can mess up our list
2192 	 * walk here and result in missing our dentry, resulting in the
2193 	 * false-negative result. d_lookup() protects against concurrent
2194 	 * renames using rename_lock seqlock.
2195 	 *
2196 	 * See Documentation/filesystems/path-lookup.txt for more details.
2197 	 */
2198 	hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2199 		unsigned seq;
2200 
2201 seqretry:
2202 		/*
2203 		 * The dentry sequence count protects us from concurrent
2204 		 * renames, and thus protects parent and name fields.
2205 		 *
2206 		 * The caller must perform a seqcount check in order
2207 		 * to do anything useful with the returned dentry.
2208 		 *
2209 		 * NOTE! We do a "raw" seqcount_begin here. That means that
2210 		 * we don't wait for the sequence count to stabilize if it
2211 		 * is in the middle of a sequence change. If we do the slow
2212 		 * dentry compare, we will do seqretries until it is stable,
2213 		 * and if we end up with a successful lookup, we actually
2214 		 * want to exit RCU lookup anyway.
2215 		 *
2216 		 * Note that raw_seqcount_begin still *does* smp_rmb(), so
2217 		 * we are still guaranteed NUL-termination of ->d_name.name.
2218 		 */
2219 		seq = raw_seqcount_begin(&dentry->d_seq);
2220 		if (dentry->d_parent != parent)
2221 			continue;
2222 		if (d_unhashed(dentry))
2223 			continue;
2224 
2225 		if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) {
2226 			int tlen;
2227 			const char *tname;
2228 			if (dentry->d_name.hash != hashlen_hash(hashlen))
2229 				continue;
2230 			tlen = dentry->d_name.len;
2231 			tname = dentry->d_name.name;
2232 			/* we want a consistent (name,len) pair */
2233 			if (read_seqcount_retry(&dentry->d_seq, seq)) {
2234 				cpu_relax();
2235 				goto seqretry;
2236 			}
2237 			if (parent->d_op->d_compare(dentry,
2238 						    tlen, tname, name) != 0)
2239 				continue;
2240 		} else {
2241 			if (dentry->d_name.hash_len != hashlen)
2242 				continue;
2243 			if (dentry_cmp(dentry, str, hashlen_len(hashlen)) != 0)
2244 				continue;
2245 		}
2246 		*seqp = seq;
2247 		return dentry;
2248 	}
2249 	return NULL;
2250 }
2251 
2252 /**
2253  * d_lookup - search for a dentry
2254  * @parent: parent dentry
2255  * @name: qstr of name we wish to find
2256  * Returns: dentry, or NULL
2257  *
2258  * d_lookup searches the children of the parent dentry for the name in
2259  * question. If the dentry is found its reference count is incremented and the
2260  * dentry is returned. The caller must use dput to free the entry when it has
2261  * finished using it. %NULL is returned if the dentry does not exist.
2262  */
2263 struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name)
2264 {
2265 	struct dentry *dentry;
2266 	unsigned seq;
2267 
2268 	do {
2269 		seq = read_seqbegin(&rename_lock);
2270 		dentry = __d_lookup(parent, name);
2271 		if (dentry)
2272 			break;
2273 	} while (read_seqretry(&rename_lock, seq));
2274 	return dentry;
2275 }
2276 EXPORT_SYMBOL(d_lookup);
2277 
2278 /**
2279  * __d_lookup - search for a dentry (racy)
2280  * @parent: parent dentry
2281  * @name: qstr of name we wish to find
2282  * Returns: dentry, or NULL
2283  *
2284  * __d_lookup is like d_lookup, however it may (rarely) return a
2285  * false-negative result due to unrelated rename activity.
2286  *
2287  * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
2288  * however it must be used carefully, eg. with a following d_lookup in
2289  * the case of failure.
2290  *
2291  * __d_lookup callers must be commented.
2292  */
2293 struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name)
2294 {
2295 	unsigned int hash = name->hash;
2296 	struct hlist_bl_head *b = d_hash(hash);
2297 	struct hlist_bl_node *node;
2298 	struct dentry *found = NULL;
2299 	struct dentry *dentry;
2300 
2301 	/*
2302 	 * Note: There is significant duplication with __d_lookup_rcu which is
2303 	 * required to prevent single threaded performance regressions
2304 	 * especially on architectures where smp_rmb (in seqcounts) are costly.
2305 	 * Keep the two functions in sync.
2306 	 */
2307 
2308 	/*
2309 	 * The hash list is protected using RCU.
2310 	 *
2311 	 * Take d_lock when comparing a candidate dentry, to avoid races
2312 	 * with d_move().
2313 	 *
2314 	 * It is possible that concurrent renames can mess up our list
2315 	 * walk here and result in missing our dentry, resulting in the
2316 	 * false-negative result. d_lookup() protects against concurrent
2317 	 * renames using rename_lock seqlock.
2318 	 *
2319 	 * See Documentation/filesystems/path-lookup.txt for more details.
2320 	 */
2321 	rcu_read_lock();
2322 
2323 	hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2324 
2325 		if (dentry->d_name.hash != hash)
2326 			continue;
2327 
2328 		spin_lock(&dentry->d_lock);
2329 		if (dentry->d_parent != parent)
2330 			goto next;
2331 		if (d_unhashed(dentry))
2332 			goto next;
2333 
2334 		if (!d_same_name(dentry, parent, name))
2335 			goto next;
2336 
2337 		dentry->d_lockref.count++;
2338 		found = dentry;
2339 		spin_unlock(&dentry->d_lock);
2340 		break;
2341 next:
2342 		spin_unlock(&dentry->d_lock);
2343  	}
2344  	rcu_read_unlock();
2345 
2346  	return found;
2347 }
2348 
2349 /**
2350  * d_hash_and_lookup - hash the qstr then search for a dentry
2351  * @dir: Directory to search in
2352  * @name: qstr of name we wish to find
2353  *
2354  * On lookup failure NULL is returned; on bad name - ERR_PTR(-error)
2355  */
2356 struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
2357 {
2358 	/*
2359 	 * Check for a fs-specific hash function. Note that we must
2360 	 * calculate the standard hash first, as the d_op->d_hash()
2361 	 * routine may choose to leave the hash value unchanged.
2362 	 */
2363 	name->hash = full_name_hash(dir, name->name, name->len);
2364 	if (dir->d_flags & DCACHE_OP_HASH) {
2365 		int err = dir->d_op->d_hash(dir, name);
2366 		if (unlikely(err < 0))
2367 			return ERR_PTR(err);
2368 	}
2369 	return d_lookup(dir, name);
2370 }
2371 EXPORT_SYMBOL(d_hash_and_lookup);
2372 
2373 /*
2374  * When a file is deleted, we have two options:
2375  * - turn this dentry into a negative dentry
2376  * - unhash this dentry and free it.
2377  *
2378  * Usually, we want to just turn this into
2379  * a negative dentry, but if anybody else is
2380  * currently using the dentry or the inode
2381  * we can't do that and we fall back on removing
2382  * it from the hash queues and waiting for
2383  * it to be deleted later when it has no users
2384  */
2385 
2386 /**
2387  * d_delete - delete a dentry
2388  * @dentry: The dentry to delete
2389  *
2390  * Turn the dentry into a negative dentry if possible, otherwise
2391  * remove it from the hash queues so it can be deleted later
2392  */
2393 
2394 void d_delete(struct dentry * dentry)
2395 {
2396 	struct inode *inode = dentry->d_inode;
2397 	int isdir = d_is_dir(dentry);
2398 
2399 	spin_lock(&inode->i_lock);
2400 	spin_lock(&dentry->d_lock);
2401 	/*
2402 	 * Are we the only user?
2403 	 */
2404 	if (dentry->d_lockref.count == 1) {
2405 		dentry->d_flags &= ~DCACHE_CANT_MOUNT;
2406 		dentry_unlink_inode(dentry);
2407 	} else {
2408 		__d_drop(dentry);
2409 		spin_unlock(&dentry->d_lock);
2410 		spin_unlock(&inode->i_lock);
2411 	}
2412 	fsnotify_nameremove(dentry, isdir);
2413 }
2414 EXPORT_SYMBOL(d_delete);
2415 
2416 static void __d_rehash(struct dentry *entry)
2417 {
2418 	struct hlist_bl_head *b = d_hash(entry->d_name.hash);
2419 
2420 	hlist_bl_lock(b);
2421 	hlist_bl_add_head_rcu(&entry->d_hash, b);
2422 	hlist_bl_unlock(b);
2423 }
2424 
2425 /**
2426  * d_rehash	- add an entry back to the hash
2427  * @entry: dentry to add to the hash
2428  *
2429  * Adds a dentry to the hash according to its name.
2430  */
2431 
2432 void d_rehash(struct dentry * entry)
2433 {
2434 	spin_lock(&entry->d_lock);
2435 	__d_rehash(entry);
2436 	spin_unlock(&entry->d_lock);
2437 }
2438 EXPORT_SYMBOL(d_rehash);
2439 
2440 static inline unsigned start_dir_add(struct inode *dir)
2441 {
2442 
2443 	for (;;) {
2444 		unsigned n = dir->i_dir_seq;
2445 		if (!(n & 1) && cmpxchg(&dir->i_dir_seq, n, n + 1) == n)
2446 			return n;
2447 		cpu_relax();
2448 	}
2449 }
2450 
2451 static inline void end_dir_add(struct inode *dir, unsigned n)
2452 {
2453 	smp_store_release(&dir->i_dir_seq, n + 2);
2454 }
2455 
2456 static void d_wait_lookup(struct dentry *dentry)
2457 {
2458 	if (d_in_lookup(dentry)) {
2459 		DECLARE_WAITQUEUE(wait, current);
2460 		add_wait_queue(dentry->d_wait, &wait);
2461 		do {
2462 			set_current_state(TASK_UNINTERRUPTIBLE);
2463 			spin_unlock(&dentry->d_lock);
2464 			schedule();
2465 			spin_lock(&dentry->d_lock);
2466 		} while (d_in_lookup(dentry));
2467 	}
2468 }
2469 
2470 struct dentry *d_alloc_parallel(struct dentry *parent,
2471 				const struct qstr *name,
2472 				wait_queue_head_t *wq)
2473 {
2474 	unsigned int hash = name->hash;
2475 	struct hlist_bl_head *b = in_lookup_hash(parent, hash);
2476 	struct hlist_bl_node *node;
2477 	struct dentry *new = d_alloc(parent, name);
2478 	struct dentry *dentry;
2479 	unsigned seq, r_seq, d_seq;
2480 
2481 	if (unlikely(!new))
2482 		return ERR_PTR(-ENOMEM);
2483 
2484 retry:
2485 	rcu_read_lock();
2486 	seq = smp_load_acquire(&parent->d_inode->i_dir_seq);
2487 	r_seq = read_seqbegin(&rename_lock);
2488 	dentry = __d_lookup_rcu(parent, name, &d_seq);
2489 	if (unlikely(dentry)) {
2490 		if (!lockref_get_not_dead(&dentry->d_lockref)) {
2491 			rcu_read_unlock();
2492 			goto retry;
2493 		}
2494 		if (read_seqcount_retry(&dentry->d_seq, d_seq)) {
2495 			rcu_read_unlock();
2496 			dput(dentry);
2497 			goto retry;
2498 		}
2499 		rcu_read_unlock();
2500 		dput(new);
2501 		return dentry;
2502 	}
2503 	if (unlikely(read_seqretry(&rename_lock, r_seq))) {
2504 		rcu_read_unlock();
2505 		goto retry;
2506 	}
2507 
2508 	if (unlikely(seq & 1)) {
2509 		rcu_read_unlock();
2510 		goto retry;
2511 	}
2512 
2513 	hlist_bl_lock(b);
2514 	if (unlikely(READ_ONCE(parent->d_inode->i_dir_seq) != seq)) {
2515 		hlist_bl_unlock(b);
2516 		rcu_read_unlock();
2517 		goto retry;
2518 	}
2519 	/*
2520 	 * No changes for the parent since the beginning of d_lookup().
2521 	 * Since all removals from the chain happen with hlist_bl_lock(),
2522 	 * any potential in-lookup matches are going to stay here until
2523 	 * we unlock the chain.  All fields are stable in everything
2524 	 * we encounter.
2525 	 */
2526 	hlist_bl_for_each_entry(dentry, node, b, d_u.d_in_lookup_hash) {
2527 		if (dentry->d_name.hash != hash)
2528 			continue;
2529 		if (dentry->d_parent != parent)
2530 			continue;
2531 		if (!d_same_name(dentry, parent, name))
2532 			continue;
2533 		hlist_bl_unlock(b);
2534 		/* now we can try to grab a reference */
2535 		if (!lockref_get_not_dead(&dentry->d_lockref)) {
2536 			rcu_read_unlock();
2537 			goto retry;
2538 		}
2539 
2540 		rcu_read_unlock();
2541 		/*
2542 		 * somebody is likely to be still doing lookup for it;
2543 		 * wait for them to finish
2544 		 */
2545 		spin_lock(&dentry->d_lock);
2546 		d_wait_lookup(dentry);
2547 		/*
2548 		 * it's not in-lookup anymore; in principle we should repeat
2549 		 * everything from dcache lookup, but it's likely to be what
2550 		 * d_lookup() would've found anyway.  If it is, just return it;
2551 		 * otherwise we really have to repeat the whole thing.
2552 		 */
2553 		if (unlikely(dentry->d_name.hash != hash))
2554 			goto mismatch;
2555 		if (unlikely(dentry->d_parent != parent))
2556 			goto mismatch;
2557 		if (unlikely(d_unhashed(dentry)))
2558 			goto mismatch;
2559 		if (unlikely(!d_same_name(dentry, parent, name)))
2560 			goto mismatch;
2561 		/* OK, it *is* a hashed match; return it */
2562 		spin_unlock(&dentry->d_lock);
2563 		dput(new);
2564 		return dentry;
2565 	}
2566 	rcu_read_unlock();
2567 	/* we can't take ->d_lock here; it's OK, though. */
2568 	new->d_flags |= DCACHE_PAR_LOOKUP;
2569 	new->d_wait = wq;
2570 	hlist_bl_add_head_rcu(&new->d_u.d_in_lookup_hash, b);
2571 	hlist_bl_unlock(b);
2572 	return new;
2573 mismatch:
2574 	spin_unlock(&dentry->d_lock);
2575 	dput(dentry);
2576 	goto retry;
2577 }
2578 EXPORT_SYMBOL(d_alloc_parallel);
2579 
2580 void __d_lookup_done(struct dentry *dentry)
2581 {
2582 	struct hlist_bl_head *b = in_lookup_hash(dentry->d_parent,
2583 						 dentry->d_name.hash);
2584 	hlist_bl_lock(b);
2585 	dentry->d_flags &= ~DCACHE_PAR_LOOKUP;
2586 	__hlist_bl_del(&dentry->d_u.d_in_lookup_hash);
2587 	wake_up_all(dentry->d_wait);
2588 	dentry->d_wait = NULL;
2589 	hlist_bl_unlock(b);
2590 	INIT_HLIST_NODE(&dentry->d_u.d_alias);
2591 	INIT_LIST_HEAD(&dentry->d_lru);
2592 }
2593 EXPORT_SYMBOL(__d_lookup_done);
2594 
2595 /* inode->i_lock held if inode is non-NULL */
2596 
2597 static inline void __d_add(struct dentry *dentry, struct inode *inode)
2598 {
2599 	struct inode *dir = NULL;
2600 	unsigned n;
2601 	spin_lock(&dentry->d_lock);
2602 	if (unlikely(d_in_lookup(dentry))) {
2603 		dir = dentry->d_parent->d_inode;
2604 		n = start_dir_add(dir);
2605 		__d_lookup_done(dentry);
2606 	}
2607 	if (inode) {
2608 		unsigned add_flags = d_flags_for_inode(inode);
2609 		hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
2610 		raw_write_seqcount_begin(&dentry->d_seq);
2611 		__d_set_inode_and_type(dentry, inode, add_flags);
2612 		raw_write_seqcount_end(&dentry->d_seq);
2613 		fsnotify_update_flags(dentry);
2614 	}
2615 	__d_rehash(dentry);
2616 	if (dir)
2617 		end_dir_add(dir, n);
2618 	spin_unlock(&dentry->d_lock);
2619 	if (inode)
2620 		spin_unlock(&inode->i_lock);
2621 }
2622 
2623 /**
2624  * d_add - add dentry to hash queues
2625  * @entry: dentry to add
2626  * @inode: The inode to attach to this dentry
2627  *
2628  * This adds the entry to the hash queues and initializes @inode.
2629  * The entry was actually filled in earlier during d_alloc().
2630  */
2631 
2632 void d_add(struct dentry *entry, struct inode *inode)
2633 {
2634 	if (inode) {
2635 		security_d_instantiate(entry, inode);
2636 		spin_lock(&inode->i_lock);
2637 	}
2638 	__d_add(entry, inode);
2639 }
2640 EXPORT_SYMBOL(d_add);
2641 
2642 /**
2643  * d_exact_alias - find and hash an exact unhashed alias
2644  * @entry: dentry to add
2645  * @inode: The inode to go with this dentry
2646  *
2647  * If an unhashed dentry with the same name/parent and desired
2648  * inode already exists, hash and return it.  Otherwise, return
2649  * NULL.
2650  *
2651  * Parent directory should be locked.
2652  */
2653 struct dentry *d_exact_alias(struct dentry *entry, struct inode *inode)
2654 {
2655 	struct dentry *alias;
2656 	unsigned int hash = entry->d_name.hash;
2657 
2658 	spin_lock(&inode->i_lock);
2659 	hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
2660 		/*
2661 		 * Don't need alias->d_lock here, because aliases with
2662 		 * d_parent == entry->d_parent are not subject to name or
2663 		 * parent changes, because the parent inode i_mutex is held.
2664 		 */
2665 		if (alias->d_name.hash != hash)
2666 			continue;
2667 		if (alias->d_parent != entry->d_parent)
2668 			continue;
2669 		if (!d_same_name(alias, entry->d_parent, &entry->d_name))
2670 			continue;
2671 		spin_lock(&alias->d_lock);
2672 		if (!d_unhashed(alias)) {
2673 			spin_unlock(&alias->d_lock);
2674 			alias = NULL;
2675 		} else {
2676 			__dget_dlock(alias);
2677 			__d_rehash(alias);
2678 			spin_unlock(&alias->d_lock);
2679 		}
2680 		spin_unlock(&inode->i_lock);
2681 		return alias;
2682 	}
2683 	spin_unlock(&inode->i_lock);
2684 	return NULL;
2685 }
2686 EXPORT_SYMBOL(d_exact_alias);
2687 
2688 /**
2689  * dentry_update_name_case - update case insensitive dentry with a new name
2690  * @dentry: dentry to be updated
2691  * @name: new name
2692  *
2693  * Update a case insensitive dentry with new case of name.
2694  *
2695  * dentry must have been returned by d_lookup with name @name. Old and new
2696  * name lengths must match (ie. no d_compare which allows mismatched name
2697  * lengths).
2698  *
2699  * Parent inode i_mutex must be held over d_lookup and into this call (to
2700  * keep renames and concurrent inserts, and readdir(2) away).
2701  */
2702 void dentry_update_name_case(struct dentry *dentry, const struct qstr *name)
2703 {
2704 	BUG_ON(!inode_is_locked(dentry->d_parent->d_inode));
2705 	BUG_ON(dentry->d_name.len != name->len); /* d_lookup gives this */
2706 
2707 	spin_lock(&dentry->d_lock);
2708 	write_seqcount_begin(&dentry->d_seq);
2709 	memcpy((unsigned char *)dentry->d_name.name, name->name, name->len);
2710 	write_seqcount_end(&dentry->d_seq);
2711 	spin_unlock(&dentry->d_lock);
2712 }
2713 EXPORT_SYMBOL(dentry_update_name_case);
2714 
2715 static void swap_names(struct dentry *dentry, struct dentry *target)
2716 {
2717 	if (unlikely(dname_external(target))) {
2718 		if (unlikely(dname_external(dentry))) {
2719 			/*
2720 			 * Both external: swap the pointers
2721 			 */
2722 			swap(target->d_name.name, dentry->d_name.name);
2723 		} else {
2724 			/*
2725 			 * dentry:internal, target:external.  Steal target's
2726 			 * storage and make target internal.
2727 			 */
2728 			memcpy(target->d_iname, dentry->d_name.name,
2729 					dentry->d_name.len + 1);
2730 			dentry->d_name.name = target->d_name.name;
2731 			target->d_name.name = target->d_iname;
2732 		}
2733 	} else {
2734 		if (unlikely(dname_external(dentry))) {
2735 			/*
2736 			 * dentry:external, target:internal.  Give dentry's
2737 			 * storage to target and make dentry internal
2738 			 */
2739 			memcpy(dentry->d_iname, target->d_name.name,
2740 					target->d_name.len + 1);
2741 			target->d_name.name = dentry->d_name.name;
2742 			dentry->d_name.name = dentry->d_iname;
2743 		} else {
2744 			/*
2745 			 * Both are internal.
2746 			 */
2747 			unsigned int i;
2748 			BUILD_BUG_ON(!IS_ALIGNED(DNAME_INLINE_LEN, sizeof(long)));
2749 			for (i = 0; i < DNAME_INLINE_LEN / sizeof(long); i++) {
2750 				swap(((long *) &dentry->d_iname)[i],
2751 				     ((long *) &target->d_iname)[i]);
2752 			}
2753 		}
2754 	}
2755 	swap(dentry->d_name.hash_len, target->d_name.hash_len);
2756 }
2757 
2758 static void copy_name(struct dentry *dentry, struct dentry *target)
2759 {
2760 	struct external_name *old_name = NULL;
2761 	if (unlikely(dname_external(dentry)))
2762 		old_name = external_name(dentry);
2763 	if (unlikely(dname_external(target))) {
2764 		atomic_inc(&external_name(target)->u.count);
2765 		dentry->d_name = target->d_name;
2766 	} else {
2767 		memcpy(dentry->d_iname, target->d_name.name,
2768 				target->d_name.len + 1);
2769 		dentry->d_name.name = dentry->d_iname;
2770 		dentry->d_name.hash_len = target->d_name.hash_len;
2771 	}
2772 	if (old_name && likely(atomic_dec_and_test(&old_name->u.count)))
2773 		kfree_rcu(old_name, u.head);
2774 }
2775 
2776 /*
2777  * __d_move - move a dentry
2778  * @dentry: entry to move
2779  * @target: new dentry
2780  * @exchange: exchange the two dentries
2781  *
2782  * Update the dcache to reflect the move of a file name. Negative
2783  * dcache entries should not be moved in this way. Caller must hold
2784  * rename_lock, the i_mutex of the source and target directories,
2785  * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
2786  */
2787 static void __d_move(struct dentry *dentry, struct dentry *target,
2788 		     bool exchange)
2789 {
2790 	struct dentry *old_parent, *p;
2791 	struct inode *dir = NULL;
2792 	unsigned n;
2793 
2794 	WARN_ON(!dentry->d_inode);
2795 	if (WARN_ON(dentry == target))
2796 		return;
2797 
2798 	BUG_ON(d_ancestor(target, dentry));
2799 	old_parent = dentry->d_parent;
2800 	p = d_ancestor(old_parent, target);
2801 	if (IS_ROOT(dentry)) {
2802 		BUG_ON(p);
2803 		spin_lock(&target->d_parent->d_lock);
2804 	} else if (!p) {
2805 		/* target is not a descendent of dentry->d_parent */
2806 		spin_lock(&target->d_parent->d_lock);
2807 		spin_lock_nested(&old_parent->d_lock, DENTRY_D_LOCK_NESTED);
2808 	} else {
2809 		BUG_ON(p == dentry);
2810 		spin_lock(&old_parent->d_lock);
2811 		if (p != target)
2812 			spin_lock_nested(&target->d_parent->d_lock,
2813 					DENTRY_D_LOCK_NESTED);
2814 	}
2815 	spin_lock_nested(&dentry->d_lock, 2);
2816 	spin_lock_nested(&target->d_lock, 3);
2817 
2818 	if (unlikely(d_in_lookup(target))) {
2819 		dir = target->d_parent->d_inode;
2820 		n = start_dir_add(dir);
2821 		__d_lookup_done(target);
2822 	}
2823 
2824 	write_seqcount_begin(&dentry->d_seq);
2825 	write_seqcount_begin_nested(&target->d_seq, DENTRY_D_LOCK_NESTED);
2826 
2827 	/* unhash both */
2828 	if (!d_unhashed(dentry))
2829 		___d_drop(dentry);
2830 	if (!d_unhashed(target))
2831 		___d_drop(target);
2832 
2833 	/* ... and switch them in the tree */
2834 	dentry->d_parent = target->d_parent;
2835 	if (!exchange) {
2836 		copy_name(dentry, target);
2837 		target->d_hash.pprev = NULL;
2838 		dentry->d_parent->d_lockref.count++;
2839 		if (dentry == old_parent)
2840 			dentry->d_flags |= DCACHE_RCUACCESS;
2841 		else
2842 			WARN_ON(!--old_parent->d_lockref.count);
2843 	} else {
2844 		target->d_parent = old_parent;
2845 		swap_names(dentry, target);
2846 		list_move(&target->d_child, &target->d_parent->d_subdirs);
2847 		__d_rehash(target);
2848 		fsnotify_update_flags(target);
2849 	}
2850 	list_move(&dentry->d_child, &dentry->d_parent->d_subdirs);
2851 	__d_rehash(dentry);
2852 	fsnotify_update_flags(dentry);
2853 
2854 	write_seqcount_end(&target->d_seq);
2855 	write_seqcount_end(&dentry->d_seq);
2856 
2857 	if (dir)
2858 		end_dir_add(dir, n);
2859 
2860 	if (dentry->d_parent != old_parent)
2861 		spin_unlock(&dentry->d_parent->d_lock);
2862 	if (dentry != old_parent)
2863 		spin_unlock(&old_parent->d_lock);
2864 	spin_unlock(&target->d_lock);
2865 	spin_unlock(&dentry->d_lock);
2866 }
2867 
2868 /*
2869  * d_move - move a dentry
2870  * @dentry: entry to move
2871  * @target: new dentry
2872  *
2873  * Update the dcache to reflect the move of a file name. Negative
2874  * dcache entries should not be moved in this way. See the locking
2875  * requirements for __d_move.
2876  */
2877 void d_move(struct dentry *dentry, struct dentry *target)
2878 {
2879 	write_seqlock(&rename_lock);
2880 	__d_move(dentry, target, false);
2881 	write_sequnlock(&rename_lock);
2882 }
2883 EXPORT_SYMBOL(d_move);
2884 
2885 /*
2886  * d_exchange - exchange two dentries
2887  * @dentry1: first dentry
2888  * @dentry2: second dentry
2889  */
2890 void d_exchange(struct dentry *dentry1, struct dentry *dentry2)
2891 {
2892 	write_seqlock(&rename_lock);
2893 
2894 	WARN_ON(!dentry1->d_inode);
2895 	WARN_ON(!dentry2->d_inode);
2896 	WARN_ON(IS_ROOT(dentry1));
2897 	WARN_ON(IS_ROOT(dentry2));
2898 
2899 	__d_move(dentry1, dentry2, true);
2900 
2901 	write_sequnlock(&rename_lock);
2902 }
2903 
2904 /**
2905  * d_ancestor - search for an ancestor
2906  * @p1: ancestor dentry
2907  * @p2: child dentry
2908  *
2909  * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2910  * an ancestor of p2, else NULL.
2911  */
2912 struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
2913 {
2914 	struct dentry *p;
2915 
2916 	for (p = p2; !IS_ROOT(p); p = p->d_parent) {
2917 		if (p->d_parent == p1)
2918 			return p;
2919 	}
2920 	return NULL;
2921 }
2922 
2923 /*
2924  * This helper attempts to cope with remotely renamed directories
2925  *
2926  * It assumes that the caller is already holding
2927  * dentry->d_parent->d_inode->i_mutex, and rename_lock
2928  *
2929  * Note: If ever the locking in lock_rename() changes, then please
2930  * remember to update this too...
2931  */
2932 static int __d_unalias(struct inode *inode,
2933 		struct dentry *dentry, struct dentry *alias)
2934 {
2935 	struct mutex *m1 = NULL;
2936 	struct rw_semaphore *m2 = NULL;
2937 	int ret = -ESTALE;
2938 
2939 	/* If alias and dentry share a parent, then no extra locks required */
2940 	if (alias->d_parent == dentry->d_parent)
2941 		goto out_unalias;
2942 
2943 	/* See lock_rename() */
2944 	if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
2945 		goto out_err;
2946 	m1 = &dentry->d_sb->s_vfs_rename_mutex;
2947 	if (!inode_trylock_shared(alias->d_parent->d_inode))
2948 		goto out_err;
2949 	m2 = &alias->d_parent->d_inode->i_rwsem;
2950 out_unalias:
2951 	__d_move(alias, dentry, false);
2952 	ret = 0;
2953 out_err:
2954 	if (m2)
2955 		up_read(m2);
2956 	if (m1)
2957 		mutex_unlock(m1);
2958 	return ret;
2959 }
2960 
2961 /**
2962  * d_splice_alias - splice a disconnected dentry into the tree if one exists
2963  * @inode:  the inode which may have a disconnected dentry
2964  * @dentry: a negative dentry which we want to point to the inode.
2965  *
2966  * If inode is a directory and has an IS_ROOT alias, then d_move that in
2967  * place of the given dentry and return it, else simply d_add the inode
2968  * to the dentry and return NULL.
2969  *
2970  * If a non-IS_ROOT directory is found, the filesystem is corrupt, and
2971  * we should error out: directories can't have multiple aliases.
2972  *
2973  * This is needed in the lookup routine of any filesystem that is exportable
2974  * (via knfsd) so that we can build dcache paths to directories effectively.
2975  *
2976  * If a dentry was found and moved, then it is returned.  Otherwise NULL
2977  * is returned.  This matches the expected return value of ->lookup.
2978  *
2979  * Cluster filesystems may call this function with a negative, hashed dentry.
2980  * In that case, we know that the inode will be a regular file, and also this
2981  * will only occur during atomic_open. So we need to check for the dentry
2982  * being already hashed only in the final case.
2983  */
2984 struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
2985 {
2986 	if (IS_ERR(inode))
2987 		return ERR_CAST(inode);
2988 
2989 	BUG_ON(!d_unhashed(dentry));
2990 
2991 	if (!inode)
2992 		goto out;
2993 
2994 	security_d_instantiate(dentry, inode);
2995 	spin_lock(&inode->i_lock);
2996 	if (S_ISDIR(inode->i_mode)) {
2997 		struct dentry *new = __d_find_any_alias(inode);
2998 		if (unlikely(new)) {
2999 			/* The reference to new ensures it remains an alias */
3000 			spin_unlock(&inode->i_lock);
3001 			write_seqlock(&rename_lock);
3002 			if (unlikely(d_ancestor(new, dentry))) {
3003 				write_sequnlock(&rename_lock);
3004 				dput(new);
3005 				new = ERR_PTR(-ELOOP);
3006 				pr_warn_ratelimited(
3007 					"VFS: Lookup of '%s' in %s %s"
3008 					" would have caused loop\n",
3009 					dentry->d_name.name,
3010 					inode->i_sb->s_type->name,
3011 					inode->i_sb->s_id);
3012 			} else if (!IS_ROOT(new)) {
3013 				struct dentry *old_parent = dget(new->d_parent);
3014 				int err = __d_unalias(inode, dentry, new);
3015 				write_sequnlock(&rename_lock);
3016 				if (err) {
3017 					dput(new);
3018 					new = ERR_PTR(err);
3019 				}
3020 				dput(old_parent);
3021 			} else {
3022 				__d_move(new, dentry, false);
3023 				write_sequnlock(&rename_lock);
3024 			}
3025 			iput(inode);
3026 			return new;
3027 		}
3028 	}
3029 out:
3030 	__d_add(dentry, inode);
3031 	return NULL;
3032 }
3033 EXPORT_SYMBOL(d_splice_alias);
3034 
3035 /*
3036  * Test whether new_dentry is a subdirectory of old_dentry.
3037  *
3038  * Trivially implemented using the dcache structure
3039  */
3040 
3041 /**
3042  * is_subdir - is new dentry a subdirectory of old_dentry
3043  * @new_dentry: new dentry
3044  * @old_dentry: old dentry
3045  *
3046  * Returns true if new_dentry is a subdirectory of the parent (at any depth).
3047  * Returns false otherwise.
3048  * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
3049  */
3050 
3051 bool is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
3052 {
3053 	bool result;
3054 	unsigned seq;
3055 
3056 	if (new_dentry == old_dentry)
3057 		return true;
3058 
3059 	do {
3060 		/* for restarting inner loop in case of seq retry */
3061 		seq = read_seqbegin(&rename_lock);
3062 		/*
3063 		 * Need rcu_readlock to protect against the d_parent trashing
3064 		 * due to d_move
3065 		 */
3066 		rcu_read_lock();
3067 		if (d_ancestor(old_dentry, new_dentry))
3068 			result = true;
3069 		else
3070 			result = false;
3071 		rcu_read_unlock();
3072 	} while (read_seqretry(&rename_lock, seq));
3073 
3074 	return result;
3075 }
3076 EXPORT_SYMBOL(is_subdir);
3077 
3078 static enum d_walk_ret d_genocide_kill(void *data, struct dentry *dentry)
3079 {
3080 	struct dentry *root = data;
3081 	if (dentry != root) {
3082 		if (d_unhashed(dentry) || !dentry->d_inode)
3083 			return D_WALK_SKIP;
3084 
3085 		if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
3086 			dentry->d_flags |= DCACHE_GENOCIDE;
3087 			dentry->d_lockref.count--;
3088 		}
3089 	}
3090 	return D_WALK_CONTINUE;
3091 }
3092 
3093 void d_genocide(struct dentry *parent)
3094 {
3095 	d_walk(parent, parent, d_genocide_kill, NULL);
3096 }
3097 
3098 EXPORT_SYMBOL(d_genocide);
3099 
3100 void d_tmpfile(struct dentry *dentry, struct inode *inode)
3101 {
3102 	inode_dec_link_count(inode);
3103 	BUG_ON(dentry->d_name.name != dentry->d_iname ||
3104 		!hlist_unhashed(&dentry->d_u.d_alias) ||
3105 		!d_unlinked(dentry));
3106 	spin_lock(&dentry->d_parent->d_lock);
3107 	spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
3108 	dentry->d_name.len = sprintf(dentry->d_iname, "#%llu",
3109 				(unsigned long long)inode->i_ino);
3110 	spin_unlock(&dentry->d_lock);
3111 	spin_unlock(&dentry->d_parent->d_lock);
3112 	d_instantiate(dentry, inode);
3113 }
3114 EXPORT_SYMBOL(d_tmpfile);
3115 
3116 static __initdata unsigned long dhash_entries;
3117 static int __init set_dhash_entries(char *str)
3118 {
3119 	if (!str)
3120 		return 0;
3121 	dhash_entries = simple_strtoul(str, &str, 0);
3122 	return 1;
3123 }
3124 __setup("dhash_entries=", set_dhash_entries);
3125 
3126 static void __init dcache_init_early(void)
3127 {
3128 	/* If hashes are distributed across NUMA nodes, defer
3129 	 * hash allocation until vmalloc space is available.
3130 	 */
3131 	if (hashdist)
3132 		return;
3133 
3134 	dentry_hashtable =
3135 		alloc_large_system_hash("Dentry cache",
3136 					sizeof(struct hlist_bl_head),
3137 					dhash_entries,
3138 					13,
3139 					HASH_EARLY | HASH_ZERO,
3140 					&d_hash_shift,
3141 					NULL,
3142 					0,
3143 					0);
3144 	d_hash_shift = 32 - d_hash_shift;
3145 }
3146 
3147 static void __init dcache_init(void)
3148 {
3149 	/*
3150 	 * A constructor could be added for stable state like the lists,
3151 	 * but it is probably not worth it because of the cache nature
3152 	 * of the dcache.
3153 	 */
3154 	dentry_cache = KMEM_CACHE_USERCOPY(dentry,
3155 		SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD|SLAB_ACCOUNT,
3156 		d_iname);
3157 
3158 	/* Hash may have been set up in dcache_init_early */
3159 	if (!hashdist)
3160 		return;
3161 
3162 	dentry_hashtable =
3163 		alloc_large_system_hash("Dentry cache",
3164 					sizeof(struct hlist_bl_head),
3165 					dhash_entries,
3166 					13,
3167 					HASH_ZERO,
3168 					&d_hash_shift,
3169 					NULL,
3170 					0,
3171 					0);
3172 	d_hash_shift = 32 - d_hash_shift;
3173 }
3174 
3175 /* SLAB cache for __getname() consumers */
3176 struct kmem_cache *names_cachep __read_mostly;
3177 EXPORT_SYMBOL(names_cachep);
3178 
3179 void __init vfs_caches_init_early(void)
3180 {
3181 	int i;
3182 
3183 	for (i = 0; i < ARRAY_SIZE(in_lookup_hashtable); i++)
3184 		INIT_HLIST_BL_HEAD(&in_lookup_hashtable[i]);
3185 
3186 	dcache_init_early();
3187 	inode_init_early();
3188 }
3189 
3190 void __init vfs_caches_init(void)
3191 {
3192 	names_cachep = kmem_cache_create_usercopy("names_cache", PATH_MAX, 0,
3193 			SLAB_HWCACHE_ALIGN|SLAB_PANIC, 0, PATH_MAX, NULL);
3194 
3195 	dcache_init();
3196 	inode_init();
3197 	files_init();
3198 	files_maxfiles_init();
3199 	mnt_init();
3200 	bdev_cache_init();
3201 	chrdev_init();
3202 }
3203