1 /* 2 * fs/dcache.c 3 * 4 * Complete reimplementation 5 * (C) 1997 Thomas Schoebel-Theuer, 6 * with heavy changes by Linus Torvalds 7 */ 8 9 /* 10 * Notes on the allocation strategy: 11 * 12 * The dcache is a master of the icache - whenever a dcache entry 13 * exists, the inode will always exist. "iput()" is done either when 14 * the dcache entry is deleted or garbage collected. 15 */ 16 17 #include <linux/syscalls.h> 18 #include <linux/string.h> 19 #include <linux/mm.h> 20 #include <linux/fs.h> 21 #include <linux/fsnotify.h> 22 #include <linux/slab.h> 23 #include <linux/init.h> 24 #include <linux/hash.h> 25 #include <linux/cache.h> 26 #include <linux/export.h> 27 #include <linux/mount.h> 28 #include <linux/file.h> 29 #include <asm/uaccess.h> 30 #include <linux/security.h> 31 #include <linux/seqlock.h> 32 #include <linux/swap.h> 33 #include <linux/bootmem.h> 34 #include <linux/fs_struct.h> 35 #include <linux/hardirq.h> 36 #include <linux/bit_spinlock.h> 37 #include <linux/rculist_bl.h> 38 #include <linux/prefetch.h> 39 #include <linux/ratelimit.h> 40 #include <linux/list_lru.h> 41 #include "internal.h" 42 #include "mount.h" 43 44 /* 45 * Usage: 46 * dcache->d_inode->i_lock protects: 47 * - i_dentry, d_alias, d_inode of aliases 48 * dcache_hash_bucket lock protects: 49 * - the dcache hash table 50 * s_anon bl list spinlock protects: 51 * - the s_anon list (see __d_drop) 52 * dentry->d_sb->s_dentry_lru_lock protects: 53 * - the dcache lru lists and counters 54 * d_lock protects: 55 * - d_flags 56 * - d_name 57 * - d_lru 58 * - d_count 59 * - d_unhashed() 60 * - d_parent and d_subdirs 61 * - childrens' d_child and d_parent 62 * - d_alias, d_inode 63 * 64 * Ordering: 65 * dentry->d_inode->i_lock 66 * dentry->d_lock 67 * dentry->d_sb->s_dentry_lru_lock 68 * dcache_hash_bucket lock 69 * s_anon lock 70 * 71 * If there is an ancestor relationship: 72 * dentry->d_parent->...->d_parent->d_lock 73 * ... 74 * dentry->d_parent->d_lock 75 * dentry->d_lock 76 * 77 * If no ancestor relationship: 78 * if (dentry1 < dentry2) 79 * dentry1->d_lock 80 * dentry2->d_lock 81 */ 82 int sysctl_vfs_cache_pressure __read_mostly = 100; 83 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure); 84 85 __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock); 86 87 EXPORT_SYMBOL(rename_lock); 88 89 static struct kmem_cache *dentry_cache __read_mostly; 90 91 /* 92 * This is the single most critical data structure when it comes 93 * to the dcache: the hashtable for lookups. Somebody should try 94 * to make this good - I've just made it work. 95 * 96 * This hash-function tries to avoid losing too many bits of hash 97 * information, yet avoid using a prime hash-size or similar. 98 */ 99 100 static unsigned int d_hash_mask __read_mostly; 101 static unsigned int d_hash_shift __read_mostly; 102 103 static struct hlist_bl_head *dentry_hashtable __read_mostly; 104 105 static inline struct hlist_bl_head *d_hash(const struct dentry *parent, 106 unsigned int hash) 107 { 108 hash += (unsigned long) parent / L1_CACHE_BYTES; 109 hash = hash + (hash >> d_hash_shift); 110 return dentry_hashtable + (hash & d_hash_mask); 111 } 112 113 /* Statistics gathering. */ 114 struct dentry_stat_t dentry_stat = { 115 .age_limit = 45, 116 }; 117 118 static DEFINE_PER_CPU(long, nr_dentry); 119 static DEFINE_PER_CPU(long, nr_dentry_unused); 120 121 #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS) 122 123 /* 124 * Here we resort to our own counters instead of using generic per-cpu counters 125 * for consistency with what the vfs inode code does. We are expected to harvest 126 * better code and performance by having our own specialized counters. 127 * 128 * Please note that the loop is done over all possible CPUs, not over all online 129 * CPUs. The reason for this is that we don't want to play games with CPUs going 130 * on and off. If one of them goes off, we will just keep their counters. 131 * 132 * glommer: See cffbc8a for details, and if you ever intend to change this, 133 * please update all vfs counters to match. 134 */ 135 static long get_nr_dentry(void) 136 { 137 int i; 138 long sum = 0; 139 for_each_possible_cpu(i) 140 sum += per_cpu(nr_dentry, i); 141 return sum < 0 ? 0 : sum; 142 } 143 144 static long get_nr_dentry_unused(void) 145 { 146 int i; 147 long sum = 0; 148 for_each_possible_cpu(i) 149 sum += per_cpu(nr_dentry_unused, i); 150 return sum < 0 ? 0 : sum; 151 } 152 153 int proc_nr_dentry(ctl_table *table, int write, void __user *buffer, 154 size_t *lenp, loff_t *ppos) 155 { 156 dentry_stat.nr_dentry = get_nr_dentry(); 157 dentry_stat.nr_unused = get_nr_dentry_unused(); 158 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos); 159 } 160 #endif 161 162 /* 163 * Compare 2 name strings, return 0 if they match, otherwise non-zero. 164 * The strings are both count bytes long, and count is non-zero. 165 */ 166 #ifdef CONFIG_DCACHE_WORD_ACCESS 167 168 #include <asm/word-at-a-time.h> 169 /* 170 * NOTE! 'cs' and 'scount' come from a dentry, so it has a 171 * aligned allocation for this particular component. We don't 172 * strictly need the load_unaligned_zeropad() safety, but it 173 * doesn't hurt either. 174 * 175 * In contrast, 'ct' and 'tcount' can be from a pathname, and do 176 * need the careful unaligned handling. 177 */ 178 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount) 179 { 180 unsigned long a,b,mask; 181 182 for (;;) { 183 a = *(unsigned long *)cs; 184 b = load_unaligned_zeropad(ct); 185 if (tcount < sizeof(unsigned long)) 186 break; 187 if (unlikely(a != b)) 188 return 1; 189 cs += sizeof(unsigned long); 190 ct += sizeof(unsigned long); 191 tcount -= sizeof(unsigned long); 192 if (!tcount) 193 return 0; 194 } 195 mask = bytemask_from_count(tcount); 196 return unlikely(!!((a ^ b) & mask)); 197 } 198 199 #else 200 201 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount) 202 { 203 do { 204 if (*cs != *ct) 205 return 1; 206 cs++; 207 ct++; 208 tcount--; 209 } while (tcount); 210 return 0; 211 } 212 213 #endif 214 215 static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount) 216 { 217 const unsigned char *cs; 218 /* 219 * Be careful about RCU walk racing with rename: 220 * use ACCESS_ONCE to fetch the name pointer. 221 * 222 * NOTE! Even if a rename will mean that the length 223 * was not loaded atomically, we don't care. The 224 * RCU walk will check the sequence count eventually, 225 * and catch it. And we won't overrun the buffer, 226 * because we're reading the name pointer atomically, 227 * and a dentry name is guaranteed to be properly 228 * terminated with a NUL byte. 229 * 230 * End result: even if 'len' is wrong, we'll exit 231 * early because the data cannot match (there can 232 * be no NUL in the ct/tcount data) 233 */ 234 cs = ACCESS_ONCE(dentry->d_name.name); 235 smp_read_barrier_depends(); 236 return dentry_string_cmp(cs, ct, tcount); 237 } 238 239 static void __d_free(struct rcu_head *head) 240 { 241 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu); 242 243 WARN_ON(!hlist_unhashed(&dentry->d_alias)); 244 if (dname_external(dentry)) 245 kfree(dentry->d_name.name); 246 kmem_cache_free(dentry_cache, dentry); 247 } 248 249 /* 250 * no locks, please. 251 */ 252 static void d_free(struct dentry *dentry) 253 { 254 BUG_ON((int)dentry->d_lockref.count > 0); 255 this_cpu_dec(nr_dentry); 256 if (dentry->d_op && dentry->d_op->d_release) 257 dentry->d_op->d_release(dentry); 258 259 /* if dentry was never visible to RCU, immediate free is OK */ 260 if (!(dentry->d_flags & DCACHE_RCUACCESS)) 261 __d_free(&dentry->d_u.d_rcu); 262 else 263 call_rcu(&dentry->d_u.d_rcu, __d_free); 264 } 265 266 /** 267 * dentry_rcuwalk_barrier - invalidate in-progress rcu-walk lookups 268 * @dentry: the target dentry 269 * After this call, in-progress rcu-walk path lookup will fail. This 270 * should be called after unhashing, and after changing d_inode (if 271 * the dentry has not already been unhashed). 272 */ 273 static inline void dentry_rcuwalk_barrier(struct dentry *dentry) 274 { 275 assert_spin_locked(&dentry->d_lock); 276 /* Go through a barrier */ 277 write_seqcount_barrier(&dentry->d_seq); 278 } 279 280 /* 281 * Release the dentry's inode, using the filesystem 282 * d_iput() operation if defined. Dentry has no refcount 283 * and is unhashed. 284 */ 285 static void dentry_iput(struct dentry * dentry) 286 __releases(dentry->d_lock) 287 __releases(dentry->d_inode->i_lock) 288 { 289 struct inode *inode = dentry->d_inode; 290 if (inode) { 291 dentry->d_inode = NULL; 292 hlist_del_init(&dentry->d_alias); 293 spin_unlock(&dentry->d_lock); 294 spin_unlock(&inode->i_lock); 295 if (!inode->i_nlink) 296 fsnotify_inoderemove(inode); 297 if (dentry->d_op && dentry->d_op->d_iput) 298 dentry->d_op->d_iput(dentry, inode); 299 else 300 iput(inode); 301 } else { 302 spin_unlock(&dentry->d_lock); 303 } 304 } 305 306 /* 307 * Release the dentry's inode, using the filesystem 308 * d_iput() operation if defined. dentry remains in-use. 309 */ 310 static void dentry_unlink_inode(struct dentry * dentry) 311 __releases(dentry->d_lock) 312 __releases(dentry->d_inode->i_lock) 313 { 314 struct inode *inode = dentry->d_inode; 315 __d_clear_type(dentry); 316 dentry->d_inode = NULL; 317 hlist_del_init(&dentry->d_alias); 318 dentry_rcuwalk_barrier(dentry); 319 spin_unlock(&dentry->d_lock); 320 spin_unlock(&inode->i_lock); 321 if (!inode->i_nlink) 322 fsnotify_inoderemove(inode); 323 if (dentry->d_op && dentry->d_op->d_iput) 324 dentry->d_op->d_iput(dentry, inode); 325 else 326 iput(inode); 327 } 328 329 /* 330 * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry 331 * is in use - which includes both the "real" per-superblock 332 * LRU list _and_ the DCACHE_SHRINK_LIST use. 333 * 334 * The DCACHE_SHRINK_LIST bit is set whenever the dentry is 335 * on the shrink list (ie not on the superblock LRU list). 336 * 337 * The per-cpu "nr_dentry_unused" counters are updated with 338 * the DCACHE_LRU_LIST bit. 339 * 340 * These helper functions make sure we always follow the 341 * rules. d_lock must be held by the caller. 342 */ 343 #define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x)) 344 static void d_lru_add(struct dentry *dentry) 345 { 346 D_FLAG_VERIFY(dentry, 0); 347 dentry->d_flags |= DCACHE_LRU_LIST; 348 this_cpu_inc(nr_dentry_unused); 349 WARN_ON_ONCE(!list_lru_add(&dentry->d_sb->s_dentry_lru, &dentry->d_lru)); 350 } 351 352 static void d_lru_del(struct dentry *dentry) 353 { 354 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST); 355 dentry->d_flags &= ~DCACHE_LRU_LIST; 356 this_cpu_dec(nr_dentry_unused); 357 WARN_ON_ONCE(!list_lru_del(&dentry->d_sb->s_dentry_lru, &dentry->d_lru)); 358 } 359 360 static void d_shrink_del(struct dentry *dentry) 361 { 362 D_FLAG_VERIFY(dentry, DCACHE_SHRINK_LIST | DCACHE_LRU_LIST); 363 list_del_init(&dentry->d_lru); 364 dentry->d_flags &= ~(DCACHE_SHRINK_LIST | DCACHE_LRU_LIST); 365 this_cpu_dec(nr_dentry_unused); 366 } 367 368 static void d_shrink_add(struct dentry *dentry, struct list_head *list) 369 { 370 D_FLAG_VERIFY(dentry, 0); 371 list_add(&dentry->d_lru, list); 372 dentry->d_flags |= DCACHE_SHRINK_LIST | DCACHE_LRU_LIST; 373 this_cpu_inc(nr_dentry_unused); 374 } 375 376 /* 377 * These can only be called under the global LRU lock, ie during the 378 * callback for freeing the LRU list. "isolate" removes it from the 379 * LRU lists entirely, while shrink_move moves it to the indicated 380 * private list. 381 */ 382 static void d_lru_isolate(struct dentry *dentry) 383 { 384 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST); 385 dentry->d_flags &= ~DCACHE_LRU_LIST; 386 this_cpu_dec(nr_dentry_unused); 387 list_del_init(&dentry->d_lru); 388 } 389 390 static void d_lru_shrink_move(struct dentry *dentry, struct list_head *list) 391 { 392 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST); 393 dentry->d_flags |= DCACHE_SHRINK_LIST; 394 list_move_tail(&dentry->d_lru, list); 395 } 396 397 /* 398 * dentry_lru_(add|del)_list) must be called with d_lock held. 399 */ 400 static void dentry_lru_add(struct dentry *dentry) 401 { 402 if (unlikely(!(dentry->d_flags & DCACHE_LRU_LIST))) 403 d_lru_add(dentry); 404 } 405 406 /* 407 * Remove a dentry with references from the LRU. 408 * 409 * If we are on the shrink list, then we can get to try_prune_one_dentry() and 410 * lose our last reference through the parent walk. In this case, we need to 411 * remove ourselves from the shrink list, not the LRU. 412 */ 413 static void dentry_lru_del(struct dentry *dentry) 414 { 415 if (dentry->d_flags & DCACHE_LRU_LIST) { 416 if (dentry->d_flags & DCACHE_SHRINK_LIST) 417 return d_shrink_del(dentry); 418 d_lru_del(dentry); 419 } 420 } 421 422 /** 423 * d_kill - kill dentry and return parent 424 * @dentry: dentry to kill 425 * @parent: parent dentry 426 * 427 * The dentry must already be unhashed and removed from the LRU. 428 * 429 * If this is the root of the dentry tree, return NULL. 430 * 431 * dentry->d_lock and parent->d_lock must be held by caller, and are dropped by 432 * d_kill. 433 */ 434 static struct dentry *d_kill(struct dentry *dentry, struct dentry *parent) 435 __releases(dentry->d_lock) 436 __releases(parent->d_lock) 437 __releases(dentry->d_inode->i_lock) 438 { 439 list_del(&dentry->d_u.d_child); 440 /* 441 * Inform d_walk() that we are no longer attached to the 442 * dentry tree 443 */ 444 dentry->d_flags |= DCACHE_DENTRY_KILLED; 445 if (parent) 446 spin_unlock(&parent->d_lock); 447 dentry_iput(dentry); 448 /* 449 * dentry_iput drops the locks, at which point nobody (except 450 * transient RCU lookups) can reach this dentry. 451 */ 452 d_free(dentry); 453 return parent; 454 } 455 456 /** 457 * d_drop - drop a dentry 458 * @dentry: dentry to drop 459 * 460 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't 461 * be found through a VFS lookup any more. Note that this is different from 462 * deleting the dentry - d_delete will try to mark the dentry negative if 463 * possible, giving a successful _negative_ lookup, while d_drop will 464 * just make the cache lookup fail. 465 * 466 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some 467 * reason (NFS timeouts or autofs deletes). 468 * 469 * __d_drop requires dentry->d_lock. 470 */ 471 void __d_drop(struct dentry *dentry) 472 { 473 if (!d_unhashed(dentry)) { 474 struct hlist_bl_head *b; 475 /* 476 * Hashed dentries are normally on the dentry hashtable, 477 * with the exception of those newly allocated by 478 * d_obtain_alias, which are always IS_ROOT: 479 */ 480 if (unlikely(IS_ROOT(dentry))) 481 b = &dentry->d_sb->s_anon; 482 else 483 b = d_hash(dentry->d_parent, dentry->d_name.hash); 484 485 hlist_bl_lock(b); 486 __hlist_bl_del(&dentry->d_hash); 487 dentry->d_hash.pprev = NULL; 488 hlist_bl_unlock(b); 489 dentry_rcuwalk_barrier(dentry); 490 } 491 } 492 EXPORT_SYMBOL(__d_drop); 493 494 void d_drop(struct dentry *dentry) 495 { 496 spin_lock(&dentry->d_lock); 497 __d_drop(dentry); 498 spin_unlock(&dentry->d_lock); 499 } 500 EXPORT_SYMBOL(d_drop); 501 502 /* 503 * Finish off a dentry we've decided to kill. 504 * dentry->d_lock must be held, returns with it unlocked. 505 * If ref is non-zero, then decrement the refcount too. 506 * Returns dentry requiring refcount drop, or NULL if we're done. 507 */ 508 static struct dentry * 509 dentry_kill(struct dentry *dentry, int unlock_on_failure) 510 __releases(dentry->d_lock) 511 { 512 struct inode *inode; 513 struct dentry *parent; 514 515 inode = dentry->d_inode; 516 if (inode && !spin_trylock(&inode->i_lock)) { 517 relock: 518 if (unlock_on_failure) { 519 spin_unlock(&dentry->d_lock); 520 cpu_relax(); 521 } 522 return dentry; /* try again with same dentry */ 523 } 524 if (IS_ROOT(dentry)) 525 parent = NULL; 526 else 527 parent = dentry->d_parent; 528 if (parent && !spin_trylock(&parent->d_lock)) { 529 if (inode) 530 spin_unlock(&inode->i_lock); 531 goto relock; 532 } 533 534 /* 535 * The dentry is now unrecoverably dead to the world. 536 */ 537 lockref_mark_dead(&dentry->d_lockref); 538 539 /* 540 * inform the fs via d_prune that this dentry is about to be 541 * unhashed and destroyed. 542 */ 543 if ((dentry->d_flags & DCACHE_OP_PRUNE) && !d_unhashed(dentry)) 544 dentry->d_op->d_prune(dentry); 545 546 dentry_lru_del(dentry); 547 /* if it was on the hash then remove it */ 548 __d_drop(dentry); 549 return d_kill(dentry, parent); 550 } 551 552 /* 553 * This is dput 554 * 555 * This is complicated by the fact that we do not want to put 556 * dentries that are no longer on any hash chain on the unused 557 * list: we'd much rather just get rid of them immediately. 558 * 559 * However, that implies that we have to traverse the dentry 560 * tree upwards to the parents which might _also_ now be 561 * scheduled for deletion (it may have been only waiting for 562 * its last child to go away). 563 * 564 * This tail recursion is done by hand as we don't want to depend 565 * on the compiler to always get this right (gcc generally doesn't). 566 * Real recursion would eat up our stack space. 567 */ 568 569 /* 570 * dput - release a dentry 571 * @dentry: dentry to release 572 * 573 * Release a dentry. This will drop the usage count and if appropriate 574 * call the dentry unlink method as well as removing it from the queues and 575 * releasing its resources. If the parent dentries were scheduled for release 576 * they too may now get deleted. 577 */ 578 void dput(struct dentry *dentry) 579 { 580 if (unlikely(!dentry)) 581 return; 582 583 repeat: 584 if (lockref_put_or_lock(&dentry->d_lockref)) 585 return; 586 587 /* Unreachable? Get rid of it */ 588 if (unlikely(d_unhashed(dentry))) 589 goto kill_it; 590 591 if (unlikely(dentry->d_flags & DCACHE_OP_DELETE)) { 592 if (dentry->d_op->d_delete(dentry)) 593 goto kill_it; 594 } 595 596 if (!(dentry->d_flags & DCACHE_REFERENCED)) 597 dentry->d_flags |= DCACHE_REFERENCED; 598 dentry_lru_add(dentry); 599 600 dentry->d_lockref.count--; 601 spin_unlock(&dentry->d_lock); 602 return; 603 604 kill_it: 605 dentry = dentry_kill(dentry, 1); 606 if (dentry) 607 goto repeat; 608 } 609 EXPORT_SYMBOL(dput); 610 611 /** 612 * d_invalidate - invalidate a dentry 613 * @dentry: dentry to invalidate 614 * 615 * Try to invalidate the dentry if it turns out to be 616 * possible. If there are other dentries that can be 617 * reached through this one we can't delete it and we 618 * return -EBUSY. On success we return 0. 619 * 620 * no dcache lock. 621 */ 622 623 int d_invalidate(struct dentry * dentry) 624 { 625 /* 626 * If it's already been dropped, return OK. 627 */ 628 spin_lock(&dentry->d_lock); 629 if (d_unhashed(dentry)) { 630 spin_unlock(&dentry->d_lock); 631 return 0; 632 } 633 /* 634 * Check whether to do a partial shrink_dcache 635 * to get rid of unused child entries. 636 */ 637 if (!list_empty(&dentry->d_subdirs)) { 638 spin_unlock(&dentry->d_lock); 639 shrink_dcache_parent(dentry); 640 spin_lock(&dentry->d_lock); 641 } 642 643 /* 644 * Somebody else still using it? 645 * 646 * If it's a directory, we can't drop it 647 * for fear of somebody re-populating it 648 * with children (even though dropping it 649 * would make it unreachable from the root, 650 * we might still populate it if it was a 651 * working directory or similar). 652 * We also need to leave mountpoints alone, 653 * directory or not. 654 */ 655 if (dentry->d_lockref.count > 1 && dentry->d_inode) { 656 if (S_ISDIR(dentry->d_inode->i_mode) || d_mountpoint(dentry)) { 657 spin_unlock(&dentry->d_lock); 658 return -EBUSY; 659 } 660 } 661 662 __d_drop(dentry); 663 spin_unlock(&dentry->d_lock); 664 return 0; 665 } 666 EXPORT_SYMBOL(d_invalidate); 667 668 /* This must be called with d_lock held */ 669 static inline void __dget_dlock(struct dentry *dentry) 670 { 671 dentry->d_lockref.count++; 672 } 673 674 static inline void __dget(struct dentry *dentry) 675 { 676 lockref_get(&dentry->d_lockref); 677 } 678 679 struct dentry *dget_parent(struct dentry *dentry) 680 { 681 int gotref; 682 struct dentry *ret; 683 684 /* 685 * Do optimistic parent lookup without any 686 * locking. 687 */ 688 rcu_read_lock(); 689 ret = ACCESS_ONCE(dentry->d_parent); 690 gotref = lockref_get_not_zero(&ret->d_lockref); 691 rcu_read_unlock(); 692 if (likely(gotref)) { 693 if (likely(ret == ACCESS_ONCE(dentry->d_parent))) 694 return ret; 695 dput(ret); 696 } 697 698 repeat: 699 /* 700 * Don't need rcu_dereference because we re-check it was correct under 701 * the lock. 702 */ 703 rcu_read_lock(); 704 ret = dentry->d_parent; 705 spin_lock(&ret->d_lock); 706 if (unlikely(ret != dentry->d_parent)) { 707 spin_unlock(&ret->d_lock); 708 rcu_read_unlock(); 709 goto repeat; 710 } 711 rcu_read_unlock(); 712 BUG_ON(!ret->d_lockref.count); 713 ret->d_lockref.count++; 714 spin_unlock(&ret->d_lock); 715 return ret; 716 } 717 EXPORT_SYMBOL(dget_parent); 718 719 /** 720 * d_find_alias - grab a hashed alias of inode 721 * @inode: inode in question 722 * @want_discon: flag, used by d_splice_alias, to request 723 * that only a DISCONNECTED alias be returned. 724 * 725 * If inode has a hashed alias, or is a directory and has any alias, 726 * acquire the reference to alias and return it. Otherwise return NULL. 727 * Notice that if inode is a directory there can be only one alias and 728 * it can be unhashed only if it has no children, or if it is the root 729 * of a filesystem. 730 * 731 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer 732 * any other hashed alias over that one unless @want_discon is set, 733 * in which case only return an IS_ROOT, DCACHE_DISCONNECTED alias. 734 */ 735 static struct dentry *__d_find_alias(struct inode *inode, int want_discon) 736 { 737 struct dentry *alias, *discon_alias; 738 739 again: 740 discon_alias = NULL; 741 hlist_for_each_entry(alias, &inode->i_dentry, d_alias) { 742 spin_lock(&alias->d_lock); 743 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) { 744 if (IS_ROOT(alias) && 745 (alias->d_flags & DCACHE_DISCONNECTED)) { 746 discon_alias = alias; 747 } else if (!want_discon) { 748 __dget_dlock(alias); 749 spin_unlock(&alias->d_lock); 750 return alias; 751 } 752 } 753 spin_unlock(&alias->d_lock); 754 } 755 if (discon_alias) { 756 alias = discon_alias; 757 spin_lock(&alias->d_lock); 758 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) { 759 if (IS_ROOT(alias) && 760 (alias->d_flags & DCACHE_DISCONNECTED)) { 761 __dget_dlock(alias); 762 spin_unlock(&alias->d_lock); 763 return alias; 764 } 765 } 766 spin_unlock(&alias->d_lock); 767 goto again; 768 } 769 return NULL; 770 } 771 772 struct dentry *d_find_alias(struct inode *inode) 773 { 774 struct dentry *de = NULL; 775 776 if (!hlist_empty(&inode->i_dentry)) { 777 spin_lock(&inode->i_lock); 778 de = __d_find_alias(inode, 0); 779 spin_unlock(&inode->i_lock); 780 } 781 return de; 782 } 783 EXPORT_SYMBOL(d_find_alias); 784 785 /* 786 * Try to kill dentries associated with this inode. 787 * WARNING: you must own a reference to inode. 788 */ 789 void d_prune_aliases(struct inode *inode) 790 { 791 struct dentry *dentry; 792 restart: 793 spin_lock(&inode->i_lock); 794 hlist_for_each_entry(dentry, &inode->i_dentry, d_alias) { 795 spin_lock(&dentry->d_lock); 796 if (!dentry->d_lockref.count) { 797 /* 798 * inform the fs via d_prune that this dentry 799 * is about to be unhashed and destroyed. 800 */ 801 if ((dentry->d_flags & DCACHE_OP_PRUNE) && 802 !d_unhashed(dentry)) 803 dentry->d_op->d_prune(dentry); 804 805 __dget_dlock(dentry); 806 __d_drop(dentry); 807 spin_unlock(&dentry->d_lock); 808 spin_unlock(&inode->i_lock); 809 dput(dentry); 810 goto restart; 811 } 812 spin_unlock(&dentry->d_lock); 813 } 814 spin_unlock(&inode->i_lock); 815 } 816 EXPORT_SYMBOL(d_prune_aliases); 817 818 /* 819 * Try to throw away a dentry - free the inode, dput the parent. 820 * Requires dentry->d_lock is held, and dentry->d_count == 0. 821 * Releases dentry->d_lock. 822 * 823 * This may fail if locks cannot be acquired no problem, just try again. 824 */ 825 static struct dentry * try_prune_one_dentry(struct dentry *dentry) 826 __releases(dentry->d_lock) 827 { 828 struct dentry *parent; 829 830 parent = dentry_kill(dentry, 0); 831 /* 832 * If dentry_kill returns NULL, we have nothing more to do. 833 * if it returns the same dentry, trylocks failed. In either 834 * case, just loop again. 835 * 836 * Otherwise, we need to prune ancestors too. This is necessary 837 * to prevent quadratic behavior of shrink_dcache_parent(), but 838 * is also expected to be beneficial in reducing dentry cache 839 * fragmentation. 840 */ 841 if (!parent) 842 return NULL; 843 if (parent == dentry) 844 return dentry; 845 846 /* Prune ancestors. */ 847 dentry = parent; 848 while (dentry) { 849 if (lockref_put_or_lock(&dentry->d_lockref)) 850 return NULL; 851 dentry = dentry_kill(dentry, 1); 852 } 853 return NULL; 854 } 855 856 static void shrink_dentry_list(struct list_head *list) 857 { 858 struct dentry *dentry; 859 860 rcu_read_lock(); 861 for (;;) { 862 dentry = list_entry_rcu(list->prev, struct dentry, d_lru); 863 if (&dentry->d_lru == list) 864 break; /* empty */ 865 866 /* 867 * Get the dentry lock, and re-verify that the dentry is 868 * this on the shrinking list. If it is, we know that 869 * DCACHE_SHRINK_LIST and DCACHE_LRU_LIST are set. 870 */ 871 spin_lock(&dentry->d_lock); 872 if (dentry != list_entry(list->prev, struct dentry, d_lru)) { 873 spin_unlock(&dentry->d_lock); 874 continue; 875 } 876 877 /* 878 * The dispose list is isolated and dentries are not accounted 879 * to the LRU here, so we can simply remove it from the list 880 * here regardless of whether it is referenced or not. 881 */ 882 d_shrink_del(dentry); 883 884 /* 885 * We found an inuse dentry which was not removed from 886 * the LRU because of laziness during lookup. Do not free it. 887 */ 888 if (dentry->d_lockref.count) { 889 spin_unlock(&dentry->d_lock); 890 continue; 891 } 892 rcu_read_unlock(); 893 894 /* 895 * If 'try_to_prune()' returns a dentry, it will 896 * be the same one we passed in, and d_lock will 897 * have been held the whole time, so it will not 898 * have been added to any other lists. We failed 899 * to get the inode lock. 900 * 901 * We just add it back to the shrink list. 902 */ 903 dentry = try_prune_one_dentry(dentry); 904 905 rcu_read_lock(); 906 if (dentry) { 907 d_shrink_add(dentry, list); 908 spin_unlock(&dentry->d_lock); 909 } 910 } 911 rcu_read_unlock(); 912 } 913 914 static enum lru_status 915 dentry_lru_isolate(struct list_head *item, spinlock_t *lru_lock, void *arg) 916 { 917 struct list_head *freeable = arg; 918 struct dentry *dentry = container_of(item, struct dentry, d_lru); 919 920 921 /* 922 * we are inverting the lru lock/dentry->d_lock here, 923 * so use a trylock. If we fail to get the lock, just skip 924 * it 925 */ 926 if (!spin_trylock(&dentry->d_lock)) 927 return LRU_SKIP; 928 929 /* 930 * Referenced dentries are still in use. If they have active 931 * counts, just remove them from the LRU. Otherwise give them 932 * another pass through the LRU. 933 */ 934 if (dentry->d_lockref.count) { 935 d_lru_isolate(dentry); 936 spin_unlock(&dentry->d_lock); 937 return LRU_REMOVED; 938 } 939 940 if (dentry->d_flags & DCACHE_REFERENCED) { 941 dentry->d_flags &= ~DCACHE_REFERENCED; 942 spin_unlock(&dentry->d_lock); 943 944 /* 945 * The list move itself will be made by the common LRU code. At 946 * this point, we've dropped the dentry->d_lock but keep the 947 * lru lock. This is safe to do, since every list movement is 948 * protected by the lru lock even if both locks are held. 949 * 950 * This is guaranteed by the fact that all LRU management 951 * functions are intermediated by the LRU API calls like 952 * list_lru_add and list_lru_del. List movement in this file 953 * only ever occur through this functions or through callbacks 954 * like this one, that are called from the LRU API. 955 * 956 * The only exceptions to this are functions like 957 * shrink_dentry_list, and code that first checks for the 958 * DCACHE_SHRINK_LIST flag. Those are guaranteed to be 959 * operating only with stack provided lists after they are 960 * properly isolated from the main list. It is thus, always a 961 * local access. 962 */ 963 return LRU_ROTATE; 964 } 965 966 d_lru_shrink_move(dentry, freeable); 967 spin_unlock(&dentry->d_lock); 968 969 return LRU_REMOVED; 970 } 971 972 /** 973 * prune_dcache_sb - shrink the dcache 974 * @sb: superblock 975 * @nr_to_scan : number of entries to try to free 976 * @nid: which node to scan for freeable entities 977 * 978 * Attempt to shrink the superblock dcache LRU by @nr_to_scan entries. This is 979 * done when we need more memory an called from the superblock shrinker 980 * function. 981 * 982 * This function may fail to free any resources if all the dentries are in 983 * use. 984 */ 985 long prune_dcache_sb(struct super_block *sb, unsigned long nr_to_scan, 986 int nid) 987 { 988 LIST_HEAD(dispose); 989 long freed; 990 991 freed = list_lru_walk_node(&sb->s_dentry_lru, nid, dentry_lru_isolate, 992 &dispose, &nr_to_scan); 993 shrink_dentry_list(&dispose); 994 return freed; 995 } 996 997 static enum lru_status dentry_lru_isolate_shrink(struct list_head *item, 998 spinlock_t *lru_lock, void *arg) 999 { 1000 struct list_head *freeable = arg; 1001 struct dentry *dentry = container_of(item, struct dentry, d_lru); 1002 1003 /* 1004 * we are inverting the lru lock/dentry->d_lock here, 1005 * so use a trylock. If we fail to get the lock, just skip 1006 * it 1007 */ 1008 if (!spin_trylock(&dentry->d_lock)) 1009 return LRU_SKIP; 1010 1011 d_lru_shrink_move(dentry, freeable); 1012 spin_unlock(&dentry->d_lock); 1013 1014 return LRU_REMOVED; 1015 } 1016 1017 1018 /** 1019 * shrink_dcache_sb - shrink dcache for a superblock 1020 * @sb: superblock 1021 * 1022 * Shrink the dcache for the specified super block. This is used to free 1023 * the dcache before unmounting a file system. 1024 */ 1025 void shrink_dcache_sb(struct super_block *sb) 1026 { 1027 long freed; 1028 1029 do { 1030 LIST_HEAD(dispose); 1031 1032 freed = list_lru_walk(&sb->s_dentry_lru, 1033 dentry_lru_isolate_shrink, &dispose, UINT_MAX); 1034 1035 this_cpu_sub(nr_dentry_unused, freed); 1036 shrink_dentry_list(&dispose); 1037 } while (freed > 0); 1038 } 1039 EXPORT_SYMBOL(shrink_dcache_sb); 1040 1041 /** 1042 * enum d_walk_ret - action to talke during tree walk 1043 * @D_WALK_CONTINUE: contrinue walk 1044 * @D_WALK_QUIT: quit walk 1045 * @D_WALK_NORETRY: quit when retry is needed 1046 * @D_WALK_SKIP: skip this dentry and its children 1047 */ 1048 enum d_walk_ret { 1049 D_WALK_CONTINUE, 1050 D_WALK_QUIT, 1051 D_WALK_NORETRY, 1052 D_WALK_SKIP, 1053 }; 1054 1055 /** 1056 * d_walk - walk the dentry tree 1057 * @parent: start of walk 1058 * @data: data passed to @enter() and @finish() 1059 * @enter: callback when first entering the dentry 1060 * @finish: callback when successfully finished the walk 1061 * 1062 * The @enter() and @finish() callbacks are called with d_lock held. 1063 */ 1064 static void d_walk(struct dentry *parent, void *data, 1065 enum d_walk_ret (*enter)(void *, struct dentry *), 1066 void (*finish)(void *)) 1067 { 1068 struct dentry *this_parent; 1069 struct list_head *next; 1070 unsigned seq = 0; 1071 enum d_walk_ret ret; 1072 bool retry = true; 1073 1074 again: 1075 read_seqbegin_or_lock(&rename_lock, &seq); 1076 this_parent = parent; 1077 spin_lock(&this_parent->d_lock); 1078 1079 ret = enter(data, this_parent); 1080 switch (ret) { 1081 case D_WALK_CONTINUE: 1082 break; 1083 case D_WALK_QUIT: 1084 case D_WALK_SKIP: 1085 goto out_unlock; 1086 case D_WALK_NORETRY: 1087 retry = false; 1088 break; 1089 } 1090 repeat: 1091 next = this_parent->d_subdirs.next; 1092 resume: 1093 while (next != &this_parent->d_subdirs) { 1094 struct list_head *tmp = next; 1095 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child); 1096 next = tmp->next; 1097 1098 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED); 1099 1100 ret = enter(data, dentry); 1101 switch (ret) { 1102 case D_WALK_CONTINUE: 1103 break; 1104 case D_WALK_QUIT: 1105 spin_unlock(&dentry->d_lock); 1106 goto out_unlock; 1107 case D_WALK_NORETRY: 1108 retry = false; 1109 break; 1110 case D_WALK_SKIP: 1111 spin_unlock(&dentry->d_lock); 1112 continue; 1113 } 1114 1115 if (!list_empty(&dentry->d_subdirs)) { 1116 spin_unlock(&this_parent->d_lock); 1117 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_); 1118 this_parent = dentry; 1119 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_); 1120 goto repeat; 1121 } 1122 spin_unlock(&dentry->d_lock); 1123 } 1124 /* 1125 * All done at this level ... ascend and resume the search. 1126 */ 1127 if (this_parent != parent) { 1128 struct dentry *child = this_parent; 1129 this_parent = child->d_parent; 1130 1131 rcu_read_lock(); 1132 spin_unlock(&child->d_lock); 1133 spin_lock(&this_parent->d_lock); 1134 1135 /* 1136 * might go back up the wrong parent if we have had a rename 1137 * or deletion 1138 */ 1139 if (this_parent != child->d_parent || 1140 (child->d_flags & DCACHE_DENTRY_KILLED) || 1141 need_seqretry(&rename_lock, seq)) { 1142 spin_unlock(&this_parent->d_lock); 1143 rcu_read_unlock(); 1144 goto rename_retry; 1145 } 1146 rcu_read_unlock(); 1147 next = child->d_u.d_child.next; 1148 goto resume; 1149 } 1150 if (need_seqretry(&rename_lock, seq)) { 1151 spin_unlock(&this_parent->d_lock); 1152 goto rename_retry; 1153 } 1154 if (finish) 1155 finish(data); 1156 1157 out_unlock: 1158 spin_unlock(&this_parent->d_lock); 1159 done_seqretry(&rename_lock, seq); 1160 return; 1161 1162 rename_retry: 1163 if (!retry) 1164 return; 1165 seq = 1; 1166 goto again; 1167 } 1168 1169 /* 1170 * Search for at least 1 mount point in the dentry's subdirs. 1171 * We descend to the next level whenever the d_subdirs 1172 * list is non-empty and continue searching. 1173 */ 1174 1175 static enum d_walk_ret check_mount(void *data, struct dentry *dentry) 1176 { 1177 int *ret = data; 1178 if (d_mountpoint(dentry)) { 1179 *ret = 1; 1180 return D_WALK_QUIT; 1181 } 1182 return D_WALK_CONTINUE; 1183 } 1184 1185 /** 1186 * have_submounts - check for mounts over a dentry 1187 * @parent: dentry to check. 1188 * 1189 * Return true if the parent or its subdirectories contain 1190 * a mount point 1191 */ 1192 int have_submounts(struct dentry *parent) 1193 { 1194 int ret = 0; 1195 1196 d_walk(parent, &ret, check_mount, NULL); 1197 1198 return ret; 1199 } 1200 EXPORT_SYMBOL(have_submounts); 1201 1202 /* 1203 * Called by mount code to set a mountpoint and check if the mountpoint is 1204 * reachable (e.g. NFS can unhash a directory dentry and then the complete 1205 * subtree can become unreachable). 1206 * 1207 * Only one of check_submounts_and_drop() and d_set_mounted() must succeed. For 1208 * this reason take rename_lock and d_lock on dentry and ancestors. 1209 */ 1210 int d_set_mounted(struct dentry *dentry) 1211 { 1212 struct dentry *p; 1213 int ret = -ENOENT; 1214 write_seqlock(&rename_lock); 1215 for (p = dentry->d_parent; !IS_ROOT(p); p = p->d_parent) { 1216 /* Need exclusion wrt. check_submounts_and_drop() */ 1217 spin_lock(&p->d_lock); 1218 if (unlikely(d_unhashed(p))) { 1219 spin_unlock(&p->d_lock); 1220 goto out; 1221 } 1222 spin_unlock(&p->d_lock); 1223 } 1224 spin_lock(&dentry->d_lock); 1225 if (!d_unlinked(dentry)) { 1226 dentry->d_flags |= DCACHE_MOUNTED; 1227 ret = 0; 1228 } 1229 spin_unlock(&dentry->d_lock); 1230 out: 1231 write_sequnlock(&rename_lock); 1232 return ret; 1233 } 1234 1235 /* 1236 * Search the dentry child list of the specified parent, 1237 * and move any unused dentries to the end of the unused 1238 * list for prune_dcache(). We descend to the next level 1239 * whenever the d_subdirs list is non-empty and continue 1240 * searching. 1241 * 1242 * It returns zero iff there are no unused children, 1243 * otherwise it returns the number of children moved to 1244 * the end of the unused list. This may not be the total 1245 * number of unused children, because select_parent can 1246 * drop the lock and return early due to latency 1247 * constraints. 1248 */ 1249 1250 struct select_data { 1251 struct dentry *start; 1252 struct list_head dispose; 1253 int found; 1254 }; 1255 1256 static enum d_walk_ret select_collect(void *_data, struct dentry *dentry) 1257 { 1258 struct select_data *data = _data; 1259 enum d_walk_ret ret = D_WALK_CONTINUE; 1260 1261 if (data->start == dentry) 1262 goto out; 1263 1264 /* 1265 * move only zero ref count dentries to the dispose list. 1266 * 1267 * Those which are presently on the shrink list, being processed 1268 * by shrink_dentry_list(), shouldn't be moved. Otherwise the 1269 * loop in shrink_dcache_parent() might not make any progress 1270 * and loop forever. 1271 */ 1272 if (dentry->d_lockref.count) { 1273 dentry_lru_del(dentry); 1274 } else if (!(dentry->d_flags & DCACHE_SHRINK_LIST)) { 1275 /* 1276 * We can't use d_lru_shrink_move() because we 1277 * need to get the global LRU lock and do the 1278 * LRU accounting. 1279 */ 1280 d_lru_del(dentry); 1281 d_shrink_add(dentry, &data->dispose); 1282 data->found++; 1283 ret = D_WALK_NORETRY; 1284 } 1285 /* 1286 * We can return to the caller if we have found some (this 1287 * ensures forward progress). We'll be coming back to find 1288 * the rest. 1289 */ 1290 if (data->found && need_resched()) 1291 ret = D_WALK_QUIT; 1292 out: 1293 return ret; 1294 } 1295 1296 /** 1297 * shrink_dcache_parent - prune dcache 1298 * @parent: parent of entries to prune 1299 * 1300 * Prune the dcache to remove unused children of the parent dentry. 1301 */ 1302 void shrink_dcache_parent(struct dentry *parent) 1303 { 1304 for (;;) { 1305 struct select_data data; 1306 1307 INIT_LIST_HEAD(&data.dispose); 1308 data.start = parent; 1309 data.found = 0; 1310 1311 d_walk(parent, &data, select_collect, NULL); 1312 if (!data.found) 1313 break; 1314 1315 shrink_dentry_list(&data.dispose); 1316 cond_resched(); 1317 } 1318 } 1319 EXPORT_SYMBOL(shrink_dcache_parent); 1320 1321 static enum d_walk_ret umount_collect(void *_data, struct dentry *dentry) 1322 { 1323 struct select_data *data = _data; 1324 enum d_walk_ret ret = D_WALK_CONTINUE; 1325 1326 if (dentry->d_lockref.count) { 1327 dentry_lru_del(dentry); 1328 if (likely(!list_empty(&dentry->d_subdirs))) 1329 goto out; 1330 if (dentry == data->start && dentry->d_lockref.count == 1) 1331 goto out; 1332 printk(KERN_ERR 1333 "BUG: Dentry %p{i=%lx,n=%s}" 1334 " still in use (%d)" 1335 " [unmount of %s %s]\n", 1336 dentry, 1337 dentry->d_inode ? 1338 dentry->d_inode->i_ino : 0UL, 1339 dentry->d_name.name, 1340 dentry->d_lockref.count, 1341 dentry->d_sb->s_type->name, 1342 dentry->d_sb->s_id); 1343 BUG(); 1344 } else if (!(dentry->d_flags & DCACHE_SHRINK_LIST)) { 1345 /* 1346 * We can't use d_lru_shrink_move() because we 1347 * need to get the global LRU lock and do the 1348 * LRU accounting. 1349 */ 1350 if (dentry->d_flags & DCACHE_LRU_LIST) 1351 d_lru_del(dentry); 1352 d_shrink_add(dentry, &data->dispose); 1353 data->found++; 1354 ret = D_WALK_NORETRY; 1355 } 1356 out: 1357 if (data->found && need_resched()) 1358 ret = D_WALK_QUIT; 1359 return ret; 1360 } 1361 1362 /* 1363 * destroy the dentries attached to a superblock on unmounting 1364 */ 1365 void shrink_dcache_for_umount(struct super_block *sb) 1366 { 1367 struct dentry *dentry; 1368 1369 if (down_read_trylock(&sb->s_umount)) 1370 BUG(); 1371 1372 dentry = sb->s_root; 1373 sb->s_root = NULL; 1374 for (;;) { 1375 struct select_data data; 1376 1377 INIT_LIST_HEAD(&data.dispose); 1378 data.start = dentry; 1379 data.found = 0; 1380 1381 d_walk(dentry, &data, umount_collect, NULL); 1382 if (!data.found) 1383 break; 1384 1385 shrink_dentry_list(&data.dispose); 1386 cond_resched(); 1387 } 1388 d_drop(dentry); 1389 dput(dentry); 1390 1391 while (!hlist_bl_empty(&sb->s_anon)) { 1392 struct select_data data; 1393 dentry = hlist_bl_entry(hlist_bl_first(&sb->s_anon), struct dentry, d_hash); 1394 1395 INIT_LIST_HEAD(&data.dispose); 1396 data.start = NULL; 1397 data.found = 0; 1398 1399 d_walk(dentry, &data, umount_collect, NULL); 1400 if (data.found) 1401 shrink_dentry_list(&data.dispose); 1402 cond_resched(); 1403 } 1404 } 1405 1406 static enum d_walk_ret check_and_collect(void *_data, struct dentry *dentry) 1407 { 1408 struct select_data *data = _data; 1409 1410 if (d_mountpoint(dentry)) { 1411 data->found = -EBUSY; 1412 return D_WALK_QUIT; 1413 } 1414 1415 return select_collect(_data, dentry); 1416 } 1417 1418 static void check_and_drop(void *_data) 1419 { 1420 struct select_data *data = _data; 1421 1422 if (d_mountpoint(data->start)) 1423 data->found = -EBUSY; 1424 if (!data->found) 1425 __d_drop(data->start); 1426 } 1427 1428 /** 1429 * check_submounts_and_drop - prune dcache, check for submounts and drop 1430 * 1431 * All done as a single atomic operation relative to has_unlinked_ancestor(). 1432 * Returns 0 if successfully unhashed @parent. If there were submounts then 1433 * return -EBUSY. 1434 * 1435 * @dentry: dentry to prune and drop 1436 */ 1437 int check_submounts_and_drop(struct dentry *dentry) 1438 { 1439 int ret = 0; 1440 1441 /* Negative dentries can be dropped without further checks */ 1442 if (!dentry->d_inode) { 1443 d_drop(dentry); 1444 goto out; 1445 } 1446 1447 for (;;) { 1448 struct select_data data; 1449 1450 INIT_LIST_HEAD(&data.dispose); 1451 data.start = dentry; 1452 data.found = 0; 1453 1454 d_walk(dentry, &data, check_and_collect, check_and_drop); 1455 ret = data.found; 1456 1457 if (!list_empty(&data.dispose)) 1458 shrink_dentry_list(&data.dispose); 1459 1460 if (ret <= 0) 1461 break; 1462 1463 cond_resched(); 1464 } 1465 1466 out: 1467 return ret; 1468 } 1469 EXPORT_SYMBOL(check_submounts_and_drop); 1470 1471 /** 1472 * __d_alloc - allocate a dcache entry 1473 * @sb: filesystem it will belong to 1474 * @name: qstr of the name 1475 * 1476 * Allocates a dentry. It returns %NULL if there is insufficient memory 1477 * available. On a success the dentry is returned. The name passed in is 1478 * copied and the copy passed in may be reused after this call. 1479 */ 1480 1481 struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name) 1482 { 1483 struct dentry *dentry; 1484 char *dname; 1485 1486 dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL); 1487 if (!dentry) 1488 return NULL; 1489 1490 /* 1491 * We guarantee that the inline name is always NUL-terminated. 1492 * This way the memcpy() done by the name switching in rename 1493 * will still always have a NUL at the end, even if we might 1494 * be overwriting an internal NUL character 1495 */ 1496 dentry->d_iname[DNAME_INLINE_LEN-1] = 0; 1497 if (name->len > DNAME_INLINE_LEN-1) { 1498 dname = kmalloc(name->len + 1, GFP_KERNEL); 1499 if (!dname) { 1500 kmem_cache_free(dentry_cache, dentry); 1501 return NULL; 1502 } 1503 } else { 1504 dname = dentry->d_iname; 1505 } 1506 1507 dentry->d_name.len = name->len; 1508 dentry->d_name.hash = name->hash; 1509 memcpy(dname, name->name, name->len); 1510 dname[name->len] = 0; 1511 1512 /* Make sure we always see the terminating NUL character */ 1513 smp_wmb(); 1514 dentry->d_name.name = dname; 1515 1516 dentry->d_lockref.count = 1; 1517 dentry->d_flags = 0; 1518 spin_lock_init(&dentry->d_lock); 1519 seqcount_init(&dentry->d_seq); 1520 dentry->d_inode = NULL; 1521 dentry->d_parent = dentry; 1522 dentry->d_sb = sb; 1523 dentry->d_op = NULL; 1524 dentry->d_fsdata = NULL; 1525 INIT_HLIST_BL_NODE(&dentry->d_hash); 1526 INIT_LIST_HEAD(&dentry->d_lru); 1527 INIT_LIST_HEAD(&dentry->d_subdirs); 1528 INIT_HLIST_NODE(&dentry->d_alias); 1529 INIT_LIST_HEAD(&dentry->d_u.d_child); 1530 d_set_d_op(dentry, dentry->d_sb->s_d_op); 1531 1532 this_cpu_inc(nr_dentry); 1533 1534 return dentry; 1535 } 1536 1537 /** 1538 * d_alloc - allocate a dcache entry 1539 * @parent: parent of entry to allocate 1540 * @name: qstr of the name 1541 * 1542 * Allocates a dentry. It returns %NULL if there is insufficient memory 1543 * available. On a success the dentry is returned. The name passed in is 1544 * copied and the copy passed in may be reused after this call. 1545 */ 1546 struct dentry *d_alloc(struct dentry * parent, const struct qstr *name) 1547 { 1548 struct dentry *dentry = __d_alloc(parent->d_sb, name); 1549 if (!dentry) 1550 return NULL; 1551 1552 spin_lock(&parent->d_lock); 1553 /* 1554 * don't need child lock because it is not subject 1555 * to concurrency here 1556 */ 1557 __dget_dlock(parent); 1558 dentry->d_parent = parent; 1559 list_add(&dentry->d_u.d_child, &parent->d_subdirs); 1560 spin_unlock(&parent->d_lock); 1561 1562 return dentry; 1563 } 1564 EXPORT_SYMBOL(d_alloc); 1565 1566 /** 1567 * d_alloc_pseudo - allocate a dentry (for lookup-less filesystems) 1568 * @sb: the superblock 1569 * @name: qstr of the name 1570 * 1571 * For a filesystem that just pins its dentries in memory and never 1572 * performs lookups at all, return an unhashed IS_ROOT dentry. 1573 */ 1574 struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name) 1575 { 1576 return __d_alloc(sb, name); 1577 } 1578 EXPORT_SYMBOL(d_alloc_pseudo); 1579 1580 struct dentry *d_alloc_name(struct dentry *parent, const char *name) 1581 { 1582 struct qstr q; 1583 1584 q.name = name; 1585 q.len = strlen(name); 1586 q.hash = full_name_hash(q.name, q.len); 1587 return d_alloc(parent, &q); 1588 } 1589 EXPORT_SYMBOL(d_alloc_name); 1590 1591 void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op) 1592 { 1593 WARN_ON_ONCE(dentry->d_op); 1594 WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH | 1595 DCACHE_OP_COMPARE | 1596 DCACHE_OP_REVALIDATE | 1597 DCACHE_OP_WEAK_REVALIDATE | 1598 DCACHE_OP_DELETE )); 1599 dentry->d_op = op; 1600 if (!op) 1601 return; 1602 if (op->d_hash) 1603 dentry->d_flags |= DCACHE_OP_HASH; 1604 if (op->d_compare) 1605 dentry->d_flags |= DCACHE_OP_COMPARE; 1606 if (op->d_revalidate) 1607 dentry->d_flags |= DCACHE_OP_REVALIDATE; 1608 if (op->d_weak_revalidate) 1609 dentry->d_flags |= DCACHE_OP_WEAK_REVALIDATE; 1610 if (op->d_delete) 1611 dentry->d_flags |= DCACHE_OP_DELETE; 1612 if (op->d_prune) 1613 dentry->d_flags |= DCACHE_OP_PRUNE; 1614 1615 } 1616 EXPORT_SYMBOL(d_set_d_op); 1617 1618 static unsigned d_flags_for_inode(struct inode *inode) 1619 { 1620 unsigned add_flags = DCACHE_FILE_TYPE; 1621 1622 if (!inode) 1623 return DCACHE_MISS_TYPE; 1624 1625 if (S_ISDIR(inode->i_mode)) { 1626 add_flags = DCACHE_DIRECTORY_TYPE; 1627 if (unlikely(!(inode->i_opflags & IOP_LOOKUP))) { 1628 if (unlikely(!inode->i_op->lookup)) 1629 add_flags = DCACHE_AUTODIR_TYPE; 1630 else 1631 inode->i_opflags |= IOP_LOOKUP; 1632 } 1633 } else if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) { 1634 if (unlikely(inode->i_op->follow_link)) 1635 add_flags = DCACHE_SYMLINK_TYPE; 1636 else 1637 inode->i_opflags |= IOP_NOFOLLOW; 1638 } 1639 1640 if (unlikely(IS_AUTOMOUNT(inode))) 1641 add_flags |= DCACHE_NEED_AUTOMOUNT; 1642 return add_flags; 1643 } 1644 1645 static void __d_instantiate(struct dentry *dentry, struct inode *inode) 1646 { 1647 unsigned add_flags = d_flags_for_inode(inode); 1648 1649 spin_lock(&dentry->d_lock); 1650 dentry->d_flags &= ~DCACHE_ENTRY_TYPE; 1651 dentry->d_flags |= add_flags; 1652 if (inode) 1653 hlist_add_head(&dentry->d_alias, &inode->i_dentry); 1654 dentry->d_inode = inode; 1655 dentry_rcuwalk_barrier(dentry); 1656 spin_unlock(&dentry->d_lock); 1657 fsnotify_d_instantiate(dentry, inode); 1658 } 1659 1660 /** 1661 * d_instantiate - fill in inode information for a dentry 1662 * @entry: dentry to complete 1663 * @inode: inode to attach to this dentry 1664 * 1665 * Fill in inode information in the entry. 1666 * 1667 * This turns negative dentries into productive full members 1668 * of society. 1669 * 1670 * NOTE! This assumes that the inode count has been incremented 1671 * (or otherwise set) by the caller to indicate that it is now 1672 * in use by the dcache. 1673 */ 1674 1675 void d_instantiate(struct dentry *entry, struct inode * inode) 1676 { 1677 BUG_ON(!hlist_unhashed(&entry->d_alias)); 1678 if (inode) 1679 spin_lock(&inode->i_lock); 1680 __d_instantiate(entry, inode); 1681 if (inode) 1682 spin_unlock(&inode->i_lock); 1683 security_d_instantiate(entry, inode); 1684 } 1685 EXPORT_SYMBOL(d_instantiate); 1686 1687 /** 1688 * d_instantiate_unique - instantiate a non-aliased dentry 1689 * @entry: dentry to instantiate 1690 * @inode: inode to attach to this dentry 1691 * 1692 * Fill in inode information in the entry. On success, it returns NULL. 1693 * If an unhashed alias of "entry" already exists, then we return the 1694 * aliased dentry instead and drop one reference to inode. 1695 * 1696 * Note that in order to avoid conflicts with rename() etc, the caller 1697 * had better be holding the parent directory semaphore. 1698 * 1699 * This also assumes that the inode count has been incremented 1700 * (or otherwise set) by the caller to indicate that it is now 1701 * in use by the dcache. 1702 */ 1703 static struct dentry *__d_instantiate_unique(struct dentry *entry, 1704 struct inode *inode) 1705 { 1706 struct dentry *alias; 1707 int len = entry->d_name.len; 1708 const char *name = entry->d_name.name; 1709 unsigned int hash = entry->d_name.hash; 1710 1711 if (!inode) { 1712 __d_instantiate(entry, NULL); 1713 return NULL; 1714 } 1715 1716 hlist_for_each_entry(alias, &inode->i_dentry, d_alias) { 1717 /* 1718 * Don't need alias->d_lock here, because aliases with 1719 * d_parent == entry->d_parent are not subject to name or 1720 * parent changes, because the parent inode i_mutex is held. 1721 */ 1722 if (alias->d_name.hash != hash) 1723 continue; 1724 if (alias->d_parent != entry->d_parent) 1725 continue; 1726 if (alias->d_name.len != len) 1727 continue; 1728 if (dentry_cmp(alias, name, len)) 1729 continue; 1730 __dget(alias); 1731 return alias; 1732 } 1733 1734 __d_instantiate(entry, inode); 1735 return NULL; 1736 } 1737 1738 struct dentry *d_instantiate_unique(struct dentry *entry, struct inode *inode) 1739 { 1740 struct dentry *result; 1741 1742 BUG_ON(!hlist_unhashed(&entry->d_alias)); 1743 1744 if (inode) 1745 spin_lock(&inode->i_lock); 1746 result = __d_instantiate_unique(entry, inode); 1747 if (inode) 1748 spin_unlock(&inode->i_lock); 1749 1750 if (!result) { 1751 security_d_instantiate(entry, inode); 1752 return NULL; 1753 } 1754 1755 BUG_ON(!d_unhashed(result)); 1756 iput(inode); 1757 return result; 1758 } 1759 1760 EXPORT_SYMBOL(d_instantiate_unique); 1761 1762 /** 1763 * d_instantiate_no_diralias - instantiate a non-aliased dentry 1764 * @entry: dentry to complete 1765 * @inode: inode to attach to this dentry 1766 * 1767 * Fill in inode information in the entry. If a directory alias is found, then 1768 * return an error (and drop inode). Together with d_materialise_unique() this 1769 * guarantees that a directory inode may never have more than one alias. 1770 */ 1771 int d_instantiate_no_diralias(struct dentry *entry, struct inode *inode) 1772 { 1773 BUG_ON(!hlist_unhashed(&entry->d_alias)); 1774 1775 spin_lock(&inode->i_lock); 1776 if (S_ISDIR(inode->i_mode) && !hlist_empty(&inode->i_dentry)) { 1777 spin_unlock(&inode->i_lock); 1778 iput(inode); 1779 return -EBUSY; 1780 } 1781 __d_instantiate(entry, inode); 1782 spin_unlock(&inode->i_lock); 1783 security_d_instantiate(entry, inode); 1784 1785 return 0; 1786 } 1787 EXPORT_SYMBOL(d_instantiate_no_diralias); 1788 1789 struct dentry *d_make_root(struct inode *root_inode) 1790 { 1791 struct dentry *res = NULL; 1792 1793 if (root_inode) { 1794 static const struct qstr name = QSTR_INIT("/", 1); 1795 1796 res = __d_alloc(root_inode->i_sb, &name); 1797 if (res) 1798 d_instantiate(res, root_inode); 1799 else 1800 iput(root_inode); 1801 } 1802 return res; 1803 } 1804 EXPORT_SYMBOL(d_make_root); 1805 1806 static struct dentry * __d_find_any_alias(struct inode *inode) 1807 { 1808 struct dentry *alias; 1809 1810 if (hlist_empty(&inode->i_dentry)) 1811 return NULL; 1812 alias = hlist_entry(inode->i_dentry.first, struct dentry, d_alias); 1813 __dget(alias); 1814 return alias; 1815 } 1816 1817 /** 1818 * d_find_any_alias - find any alias for a given inode 1819 * @inode: inode to find an alias for 1820 * 1821 * If any aliases exist for the given inode, take and return a 1822 * reference for one of them. If no aliases exist, return %NULL. 1823 */ 1824 struct dentry *d_find_any_alias(struct inode *inode) 1825 { 1826 struct dentry *de; 1827 1828 spin_lock(&inode->i_lock); 1829 de = __d_find_any_alias(inode); 1830 spin_unlock(&inode->i_lock); 1831 return de; 1832 } 1833 EXPORT_SYMBOL(d_find_any_alias); 1834 1835 /** 1836 * d_obtain_alias - find or allocate a dentry for a given inode 1837 * @inode: inode to allocate the dentry for 1838 * 1839 * Obtain a dentry for an inode resulting from NFS filehandle conversion or 1840 * similar open by handle operations. The returned dentry may be anonymous, 1841 * or may have a full name (if the inode was already in the cache). 1842 * 1843 * When called on a directory inode, we must ensure that the inode only ever 1844 * has one dentry. If a dentry is found, that is returned instead of 1845 * allocating a new one. 1846 * 1847 * On successful return, the reference to the inode has been transferred 1848 * to the dentry. In case of an error the reference on the inode is released. 1849 * To make it easier to use in export operations a %NULL or IS_ERR inode may 1850 * be passed in and will be the error will be propagate to the return value, 1851 * with a %NULL @inode replaced by ERR_PTR(-ESTALE). 1852 */ 1853 struct dentry *d_obtain_alias(struct inode *inode) 1854 { 1855 static const struct qstr anonstring = QSTR_INIT("/", 1); 1856 struct dentry *tmp; 1857 struct dentry *res; 1858 unsigned add_flags; 1859 1860 if (!inode) 1861 return ERR_PTR(-ESTALE); 1862 if (IS_ERR(inode)) 1863 return ERR_CAST(inode); 1864 1865 res = d_find_any_alias(inode); 1866 if (res) 1867 goto out_iput; 1868 1869 tmp = __d_alloc(inode->i_sb, &anonstring); 1870 if (!tmp) { 1871 res = ERR_PTR(-ENOMEM); 1872 goto out_iput; 1873 } 1874 1875 spin_lock(&inode->i_lock); 1876 res = __d_find_any_alias(inode); 1877 if (res) { 1878 spin_unlock(&inode->i_lock); 1879 dput(tmp); 1880 goto out_iput; 1881 } 1882 1883 /* attach a disconnected dentry */ 1884 add_flags = d_flags_for_inode(inode) | DCACHE_DISCONNECTED; 1885 1886 spin_lock(&tmp->d_lock); 1887 tmp->d_inode = inode; 1888 tmp->d_flags |= add_flags; 1889 hlist_add_head(&tmp->d_alias, &inode->i_dentry); 1890 hlist_bl_lock(&tmp->d_sb->s_anon); 1891 hlist_bl_add_head(&tmp->d_hash, &tmp->d_sb->s_anon); 1892 hlist_bl_unlock(&tmp->d_sb->s_anon); 1893 spin_unlock(&tmp->d_lock); 1894 spin_unlock(&inode->i_lock); 1895 security_d_instantiate(tmp, inode); 1896 1897 return tmp; 1898 1899 out_iput: 1900 if (res && !IS_ERR(res)) 1901 security_d_instantiate(res, inode); 1902 iput(inode); 1903 return res; 1904 } 1905 EXPORT_SYMBOL(d_obtain_alias); 1906 1907 /** 1908 * d_splice_alias - splice a disconnected dentry into the tree if one exists 1909 * @inode: the inode which may have a disconnected dentry 1910 * @dentry: a negative dentry which we want to point to the inode. 1911 * 1912 * If inode is a directory and has a 'disconnected' dentry (i.e. IS_ROOT and 1913 * DCACHE_DISCONNECTED), then d_move that in place of the given dentry 1914 * and return it, else simply d_add the inode to the dentry and return NULL. 1915 * 1916 * This is needed in the lookup routine of any filesystem that is exportable 1917 * (via knfsd) so that we can build dcache paths to directories effectively. 1918 * 1919 * If a dentry was found and moved, then it is returned. Otherwise NULL 1920 * is returned. This matches the expected return value of ->lookup. 1921 * 1922 * Cluster filesystems may call this function with a negative, hashed dentry. 1923 * In that case, we know that the inode will be a regular file, and also this 1924 * will only occur during atomic_open. So we need to check for the dentry 1925 * being already hashed only in the final case. 1926 */ 1927 struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry) 1928 { 1929 struct dentry *new = NULL; 1930 1931 if (IS_ERR(inode)) 1932 return ERR_CAST(inode); 1933 1934 if (inode && S_ISDIR(inode->i_mode)) { 1935 spin_lock(&inode->i_lock); 1936 new = __d_find_alias(inode, 1); 1937 if (new) { 1938 BUG_ON(!(new->d_flags & DCACHE_DISCONNECTED)); 1939 spin_unlock(&inode->i_lock); 1940 security_d_instantiate(new, inode); 1941 d_move(new, dentry); 1942 iput(inode); 1943 } else { 1944 /* already taking inode->i_lock, so d_add() by hand */ 1945 __d_instantiate(dentry, inode); 1946 spin_unlock(&inode->i_lock); 1947 security_d_instantiate(dentry, inode); 1948 d_rehash(dentry); 1949 } 1950 } else { 1951 d_instantiate(dentry, inode); 1952 if (d_unhashed(dentry)) 1953 d_rehash(dentry); 1954 } 1955 return new; 1956 } 1957 EXPORT_SYMBOL(d_splice_alias); 1958 1959 /** 1960 * d_add_ci - lookup or allocate new dentry with case-exact name 1961 * @inode: the inode case-insensitive lookup has found 1962 * @dentry: the negative dentry that was passed to the parent's lookup func 1963 * @name: the case-exact name to be associated with the returned dentry 1964 * 1965 * This is to avoid filling the dcache with case-insensitive names to the 1966 * same inode, only the actual correct case is stored in the dcache for 1967 * case-insensitive filesystems. 1968 * 1969 * For a case-insensitive lookup match and if the the case-exact dentry 1970 * already exists in in the dcache, use it and return it. 1971 * 1972 * If no entry exists with the exact case name, allocate new dentry with 1973 * the exact case, and return the spliced entry. 1974 */ 1975 struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode, 1976 struct qstr *name) 1977 { 1978 struct dentry *found; 1979 struct dentry *new; 1980 1981 /* 1982 * First check if a dentry matching the name already exists, 1983 * if not go ahead and create it now. 1984 */ 1985 found = d_hash_and_lookup(dentry->d_parent, name); 1986 if (unlikely(IS_ERR(found))) 1987 goto err_out; 1988 if (!found) { 1989 new = d_alloc(dentry->d_parent, name); 1990 if (!new) { 1991 found = ERR_PTR(-ENOMEM); 1992 goto err_out; 1993 } 1994 1995 found = d_splice_alias(inode, new); 1996 if (found) { 1997 dput(new); 1998 return found; 1999 } 2000 return new; 2001 } 2002 2003 /* 2004 * If a matching dentry exists, and it's not negative use it. 2005 * 2006 * Decrement the reference count to balance the iget() done 2007 * earlier on. 2008 */ 2009 if (found->d_inode) { 2010 if (unlikely(found->d_inode != inode)) { 2011 /* This can't happen because bad inodes are unhashed. */ 2012 BUG_ON(!is_bad_inode(inode)); 2013 BUG_ON(!is_bad_inode(found->d_inode)); 2014 } 2015 iput(inode); 2016 return found; 2017 } 2018 2019 /* 2020 * Negative dentry: instantiate it unless the inode is a directory and 2021 * already has a dentry. 2022 */ 2023 new = d_splice_alias(inode, found); 2024 if (new) { 2025 dput(found); 2026 found = new; 2027 } 2028 return found; 2029 2030 err_out: 2031 iput(inode); 2032 return found; 2033 } 2034 EXPORT_SYMBOL(d_add_ci); 2035 2036 /* 2037 * Do the slow-case of the dentry name compare. 2038 * 2039 * Unlike the dentry_cmp() function, we need to atomically 2040 * load the name and length information, so that the 2041 * filesystem can rely on them, and can use the 'name' and 2042 * 'len' information without worrying about walking off the 2043 * end of memory etc. 2044 * 2045 * Thus the read_seqcount_retry() and the "duplicate" info 2046 * in arguments (the low-level filesystem should not look 2047 * at the dentry inode or name contents directly, since 2048 * rename can change them while we're in RCU mode). 2049 */ 2050 enum slow_d_compare { 2051 D_COMP_OK, 2052 D_COMP_NOMATCH, 2053 D_COMP_SEQRETRY, 2054 }; 2055 2056 static noinline enum slow_d_compare slow_dentry_cmp( 2057 const struct dentry *parent, 2058 struct dentry *dentry, 2059 unsigned int seq, 2060 const struct qstr *name) 2061 { 2062 int tlen = dentry->d_name.len; 2063 const char *tname = dentry->d_name.name; 2064 2065 if (read_seqcount_retry(&dentry->d_seq, seq)) { 2066 cpu_relax(); 2067 return D_COMP_SEQRETRY; 2068 } 2069 if (parent->d_op->d_compare(parent, dentry, tlen, tname, name)) 2070 return D_COMP_NOMATCH; 2071 return D_COMP_OK; 2072 } 2073 2074 /** 2075 * __d_lookup_rcu - search for a dentry (racy, store-free) 2076 * @parent: parent dentry 2077 * @name: qstr of name we wish to find 2078 * @seqp: returns d_seq value at the point where the dentry was found 2079 * Returns: dentry, or NULL 2080 * 2081 * __d_lookup_rcu is the dcache lookup function for rcu-walk name 2082 * resolution (store-free path walking) design described in 2083 * Documentation/filesystems/path-lookup.txt. 2084 * 2085 * This is not to be used outside core vfs. 2086 * 2087 * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock 2088 * held, and rcu_read_lock held. The returned dentry must not be stored into 2089 * without taking d_lock and checking d_seq sequence count against @seq 2090 * returned here. 2091 * 2092 * A refcount may be taken on the found dentry with the d_rcu_to_refcount 2093 * function. 2094 * 2095 * Alternatively, __d_lookup_rcu may be called again to look up the child of 2096 * the returned dentry, so long as its parent's seqlock is checked after the 2097 * child is looked up. Thus, an interlocking stepping of sequence lock checks 2098 * is formed, giving integrity down the path walk. 2099 * 2100 * NOTE! The caller *has* to check the resulting dentry against the sequence 2101 * number we've returned before using any of the resulting dentry state! 2102 */ 2103 struct dentry *__d_lookup_rcu(const struct dentry *parent, 2104 const struct qstr *name, 2105 unsigned *seqp) 2106 { 2107 u64 hashlen = name->hash_len; 2108 const unsigned char *str = name->name; 2109 struct hlist_bl_head *b = d_hash(parent, hashlen_hash(hashlen)); 2110 struct hlist_bl_node *node; 2111 struct dentry *dentry; 2112 2113 /* 2114 * Note: There is significant duplication with __d_lookup_rcu which is 2115 * required to prevent single threaded performance regressions 2116 * especially on architectures where smp_rmb (in seqcounts) are costly. 2117 * Keep the two functions in sync. 2118 */ 2119 2120 /* 2121 * The hash list is protected using RCU. 2122 * 2123 * Carefully use d_seq when comparing a candidate dentry, to avoid 2124 * races with d_move(). 2125 * 2126 * It is possible that concurrent renames can mess up our list 2127 * walk here and result in missing our dentry, resulting in the 2128 * false-negative result. d_lookup() protects against concurrent 2129 * renames using rename_lock seqlock. 2130 * 2131 * See Documentation/filesystems/path-lookup.txt for more details. 2132 */ 2133 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) { 2134 unsigned seq; 2135 2136 seqretry: 2137 /* 2138 * The dentry sequence count protects us from concurrent 2139 * renames, and thus protects parent and name fields. 2140 * 2141 * The caller must perform a seqcount check in order 2142 * to do anything useful with the returned dentry. 2143 * 2144 * NOTE! We do a "raw" seqcount_begin here. That means that 2145 * we don't wait for the sequence count to stabilize if it 2146 * is in the middle of a sequence change. If we do the slow 2147 * dentry compare, we will do seqretries until it is stable, 2148 * and if we end up with a successful lookup, we actually 2149 * want to exit RCU lookup anyway. 2150 */ 2151 seq = raw_seqcount_begin(&dentry->d_seq); 2152 if (dentry->d_parent != parent) 2153 continue; 2154 if (d_unhashed(dentry)) 2155 continue; 2156 2157 if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) { 2158 if (dentry->d_name.hash != hashlen_hash(hashlen)) 2159 continue; 2160 *seqp = seq; 2161 switch (slow_dentry_cmp(parent, dentry, seq, name)) { 2162 case D_COMP_OK: 2163 return dentry; 2164 case D_COMP_NOMATCH: 2165 continue; 2166 default: 2167 goto seqretry; 2168 } 2169 } 2170 2171 if (dentry->d_name.hash_len != hashlen) 2172 continue; 2173 *seqp = seq; 2174 if (!dentry_cmp(dentry, str, hashlen_len(hashlen))) 2175 return dentry; 2176 } 2177 return NULL; 2178 } 2179 2180 /** 2181 * d_lookup - search for a dentry 2182 * @parent: parent dentry 2183 * @name: qstr of name we wish to find 2184 * Returns: dentry, or NULL 2185 * 2186 * d_lookup searches the children of the parent dentry for the name in 2187 * question. If the dentry is found its reference count is incremented and the 2188 * dentry is returned. The caller must use dput to free the entry when it has 2189 * finished using it. %NULL is returned if the dentry does not exist. 2190 */ 2191 struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name) 2192 { 2193 struct dentry *dentry; 2194 unsigned seq; 2195 2196 do { 2197 seq = read_seqbegin(&rename_lock); 2198 dentry = __d_lookup(parent, name); 2199 if (dentry) 2200 break; 2201 } while (read_seqretry(&rename_lock, seq)); 2202 return dentry; 2203 } 2204 EXPORT_SYMBOL(d_lookup); 2205 2206 /** 2207 * __d_lookup - search for a dentry (racy) 2208 * @parent: parent dentry 2209 * @name: qstr of name we wish to find 2210 * Returns: dentry, or NULL 2211 * 2212 * __d_lookup is like d_lookup, however it may (rarely) return a 2213 * false-negative result due to unrelated rename activity. 2214 * 2215 * __d_lookup is slightly faster by avoiding rename_lock read seqlock, 2216 * however it must be used carefully, eg. with a following d_lookup in 2217 * the case of failure. 2218 * 2219 * __d_lookup callers must be commented. 2220 */ 2221 struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name) 2222 { 2223 unsigned int len = name->len; 2224 unsigned int hash = name->hash; 2225 const unsigned char *str = name->name; 2226 struct hlist_bl_head *b = d_hash(parent, hash); 2227 struct hlist_bl_node *node; 2228 struct dentry *found = NULL; 2229 struct dentry *dentry; 2230 2231 /* 2232 * Note: There is significant duplication with __d_lookup_rcu which is 2233 * required to prevent single threaded performance regressions 2234 * especially on architectures where smp_rmb (in seqcounts) are costly. 2235 * Keep the two functions in sync. 2236 */ 2237 2238 /* 2239 * The hash list is protected using RCU. 2240 * 2241 * Take d_lock when comparing a candidate dentry, to avoid races 2242 * with d_move(). 2243 * 2244 * It is possible that concurrent renames can mess up our list 2245 * walk here and result in missing our dentry, resulting in the 2246 * false-negative result. d_lookup() protects against concurrent 2247 * renames using rename_lock seqlock. 2248 * 2249 * See Documentation/filesystems/path-lookup.txt for more details. 2250 */ 2251 rcu_read_lock(); 2252 2253 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) { 2254 2255 if (dentry->d_name.hash != hash) 2256 continue; 2257 2258 spin_lock(&dentry->d_lock); 2259 if (dentry->d_parent != parent) 2260 goto next; 2261 if (d_unhashed(dentry)) 2262 goto next; 2263 2264 /* 2265 * It is safe to compare names since d_move() cannot 2266 * change the qstr (protected by d_lock). 2267 */ 2268 if (parent->d_flags & DCACHE_OP_COMPARE) { 2269 int tlen = dentry->d_name.len; 2270 const char *tname = dentry->d_name.name; 2271 if (parent->d_op->d_compare(parent, dentry, tlen, tname, name)) 2272 goto next; 2273 } else { 2274 if (dentry->d_name.len != len) 2275 goto next; 2276 if (dentry_cmp(dentry, str, len)) 2277 goto next; 2278 } 2279 2280 dentry->d_lockref.count++; 2281 found = dentry; 2282 spin_unlock(&dentry->d_lock); 2283 break; 2284 next: 2285 spin_unlock(&dentry->d_lock); 2286 } 2287 rcu_read_unlock(); 2288 2289 return found; 2290 } 2291 2292 /** 2293 * d_hash_and_lookup - hash the qstr then search for a dentry 2294 * @dir: Directory to search in 2295 * @name: qstr of name we wish to find 2296 * 2297 * On lookup failure NULL is returned; on bad name - ERR_PTR(-error) 2298 */ 2299 struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name) 2300 { 2301 /* 2302 * Check for a fs-specific hash function. Note that we must 2303 * calculate the standard hash first, as the d_op->d_hash() 2304 * routine may choose to leave the hash value unchanged. 2305 */ 2306 name->hash = full_name_hash(name->name, name->len); 2307 if (dir->d_flags & DCACHE_OP_HASH) { 2308 int err = dir->d_op->d_hash(dir, name); 2309 if (unlikely(err < 0)) 2310 return ERR_PTR(err); 2311 } 2312 return d_lookup(dir, name); 2313 } 2314 EXPORT_SYMBOL(d_hash_and_lookup); 2315 2316 /** 2317 * d_validate - verify dentry provided from insecure source (deprecated) 2318 * @dentry: The dentry alleged to be valid child of @dparent 2319 * @dparent: The parent dentry (known to be valid) 2320 * 2321 * An insecure source has sent us a dentry, here we verify it and dget() it. 2322 * This is used by ncpfs in its readdir implementation. 2323 * Zero is returned in the dentry is invalid. 2324 * 2325 * This function is slow for big directories, and deprecated, do not use it. 2326 */ 2327 int d_validate(struct dentry *dentry, struct dentry *dparent) 2328 { 2329 struct dentry *child; 2330 2331 spin_lock(&dparent->d_lock); 2332 list_for_each_entry(child, &dparent->d_subdirs, d_u.d_child) { 2333 if (dentry == child) { 2334 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED); 2335 __dget_dlock(dentry); 2336 spin_unlock(&dentry->d_lock); 2337 spin_unlock(&dparent->d_lock); 2338 return 1; 2339 } 2340 } 2341 spin_unlock(&dparent->d_lock); 2342 2343 return 0; 2344 } 2345 EXPORT_SYMBOL(d_validate); 2346 2347 /* 2348 * When a file is deleted, we have two options: 2349 * - turn this dentry into a negative dentry 2350 * - unhash this dentry and free it. 2351 * 2352 * Usually, we want to just turn this into 2353 * a negative dentry, but if anybody else is 2354 * currently using the dentry or the inode 2355 * we can't do that and we fall back on removing 2356 * it from the hash queues and waiting for 2357 * it to be deleted later when it has no users 2358 */ 2359 2360 /** 2361 * d_delete - delete a dentry 2362 * @dentry: The dentry to delete 2363 * 2364 * Turn the dentry into a negative dentry if possible, otherwise 2365 * remove it from the hash queues so it can be deleted later 2366 */ 2367 2368 void d_delete(struct dentry * dentry) 2369 { 2370 struct inode *inode; 2371 int isdir = 0; 2372 /* 2373 * Are we the only user? 2374 */ 2375 again: 2376 spin_lock(&dentry->d_lock); 2377 inode = dentry->d_inode; 2378 isdir = S_ISDIR(inode->i_mode); 2379 if (dentry->d_lockref.count == 1) { 2380 if (!spin_trylock(&inode->i_lock)) { 2381 spin_unlock(&dentry->d_lock); 2382 cpu_relax(); 2383 goto again; 2384 } 2385 dentry->d_flags &= ~DCACHE_CANT_MOUNT; 2386 dentry_unlink_inode(dentry); 2387 fsnotify_nameremove(dentry, isdir); 2388 return; 2389 } 2390 2391 if (!d_unhashed(dentry)) 2392 __d_drop(dentry); 2393 2394 spin_unlock(&dentry->d_lock); 2395 2396 fsnotify_nameremove(dentry, isdir); 2397 } 2398 EXPORT_SYMBOL(d_delete); 2399 2400 static void __d_rehash(struct dentry * entry, struct hlist_bl_head *b) 2401 { 2402 BUG_ON(!d_unhashed(entry)); 2403 hlist_bl_lock(b); 2404 entry->d_flags |= DCACHE_RCUACCESS; 2405 hlist_bl_add_head_rcu(&entry->d_hash, b); 2406 hlist_bl_unlock(b); 2407 } 2408 2409 static void _d_rehash(struct dentry * entry) 2410 { 2411 __d_rehash(entry, d_hash(entry->d_parent, entry->d_name.hash)); 2412 } 2413 2414 /** 2415 * d_rehash - add an entry back to the hash 2416 * @entry: dentry to add to the hash 2417 * 2418 * Adds a dentry to the hash according to its name. 2419 */ 2420 2421 void d_rehash(struct dentry * entry) 2422 { 2423 spin_lock(&entry->d_lock); 2424 _d_rehash(entry); 2425 spin_unlock(&entry->d_lock); 2426 } 2427 EXPORT_SYMBOL(d_rehash); 2428 2429 /** 2430 * dentry_update_name_case - update case insensitive dentry with a new name 2431 * @dentry: dentry to be updated 2432 * @name: new name 2433 * 2434 * Update a case insensitive dentry with new case of name. 2435 * 2436 * dentry must have been returned by d_lookup with name @name. Old and new 2437 * name lengths must match (ie. no d_compare which allows mismatched name 2438 * lengths). 2439 * 2440 * Parent inode i_mutex must be held over d_lookup and into this call (to 2441 * keep renames and concurrent inserts, and readdir(2) away). 2442 */ 2443 void dentry_update_name_case(struct dentry *dentry, struct qstr *name) 2444 { 2445 BUG_ON(!mutex_is_locked(&dentry->d_parent->d_inode->i_mutex)); 2446 BUG_ON(dentry->d_name.len != name->len); /* d_lookup gives this */ 2447 2448 spin_lock(&dentry->d_lock); 2449 write_seqcount_begin(&dentry->d_seq); 2450 memcpy((unsigned char *)dentry->d_name.name, name->name, name->len); 2451 write_seqcount_end(&dentry->d_seq); 2452 spin_unlock(&dentry->d_lock); 2453 } 2454 EXPORT_SYMBOL(dentry_update_name_case); 2455 2456 static void switch_names(struct dentry *dentry, struct dentry *target) 2457 { 2458 if (dname_external(target)) { 2459 if (dname_external(dentry)) { 2460 /* 2461 * Both external: swap the pointers 2462 */ 2463 swap(target->d_name.name, dentry->d_name.name); 2464 } else { 2465 /* 2466 * dentry:internal, target:external. Steal target's 2467 * storage and make target internal. 2468 */ 2469 memcpy(target->d_iname, dentry->d_name.name, 2470 dentry->d_name.len + 1); 2471 dentry->d_name.name = target->d_name.name; 2472 target->d_name.name = target->d_iname; 2473 } 2474 } else { 2475 if (dname_external(dentry)) { 2476 /* 2477 * dentry:external, target:internal. Give dentry's 2478 * storage to target and make dentry internal 2479 */ 2480 memcpy(dentry->d_iname, target->d_name.name, 2481 target->d_name.len + 1); 2482 target->d_name.name = dentry->d_name.name; 2483 dentry->d_name.name = dentry->d_iname; 2484 } else { 2485 /* 2486 * Both are internal. 2487 */ 2488 unsigned int i; 2489 BUILD_BUG_ON(!IS_ALIGNED(DNAME_INLINE_LEN, sizeof(long))); 2490 for (i = 0; i < DNAME_INLINE_LEN / sizeof(long); i++) { 2491 swap(((long *) &dentry->d_iname)[i], 2492 ((long *) &target->d_iname)[i]); 2493 } 2494 } 2495 } 2496 swap(dentry->d_name.len, target->d_name.len); 2497 } 2498 2499 static void dentry_lock_for_move(struct dentry *dentry, struct dentry *target) 2500 { 2501 /* 2502 * XXXX: do we really need to take target->d_lock? 2503 */ 2504 if (IS_ROOT(dentry) || dentry->d_parent == target->d_parent) 2505 spin_lock(&target->d_parent->d_lock); 2506 else { 2507 if (d_ancestor(dentry->d_parent, target->d_parent)) { 2508 spin_lock(&dentry->d_parent->d_lock); 2509 spin_lock_nested(&target->d_parent->d_lock, 2510 DENTRY_D_LOCK_NESTED); 2511 } else { 2512 spin_lock(&target->d_parent->d_lock); 2513 spin_lock_nested(&dentry->d_parent->d_lock, 2514 DENTRY_D_LOCK_NESTED); 2515 } 2516 } 2517 if (target < dentry) { 2518 spin_lock_nested(&target->d_lock, 2); 2519 spin_lock_nested(&dentry->d_lock, 3); 2520 } else { 2521 spin_lock_nested(&dentry->d_lock, 2); 2522 spin_lock_nested(&target->d_lock, 3); 2523 } 2524 } 2525 2526 static void dentry_unlock_parents_for_move(struct dentry *dentry, 2527 struct dentry *target) 2528 { 2529 if (target->d_parent != dentry->d_parent) 2530 spin_unlock(&dentry->d_parent->d_lock); 2531 if (target->d_parent != target) 2532 spin_unlock(&target->d_parent->d_lock); 2533 } 2534 2535 /* 2536 * When switching names, the actual string doesn't strictly have to 2537 * be preserved in the target - because we're dropping the target 2538 * anyway. As such, we can just do a simple memcpy() to copy over 2539 * the new name before we switch. 2540 * 2541 * Note that we have to be a lot more careful about getting the hash 2542 * switched - we have to switch the hash value properly even if it 2543 * then no longer matches the actual (corrupted) string of the target. 2544 * The hash value has to match the hash queue that the dentry is on.. 2545 */ 2546 /* 2547 * __d_move - move a dentry 2548 * @dentry: entry to move 2549 * @target: new dentry 2550 * @exchange: exchange the two dentries 2551 * 2552 * Update the dcache to reflect the move of a file name. Negative 2553 * dcache entries should not be moved in this way. Caller must hold 2554 * rename_lock, the i_mutex of the source and target directories, 2555 * and the sb->s_vfs_rename_mutex if they differ. See lock_rename(). 2556 */ 2557 static void __d_move(struct dentry *dentry, struct dentry *target, 2558 bool exchange) 2559 { 2560 if (!dentry->d_inode) 2561 printk(KERN_WARNING "VFS: moving negative dcache entry\n"); 2562 2563 BUG_ON(d_ancestor(dentry, target)); 2564 BUG_ON(d_ancestor(target, dentry)); 2565 2566 dentry_lock_for_move(dentry, target); 2567 2568 write_seqcount_begin(&dentry->d_seq); 2569 write_seqcount_begin_nested(&target->d_seq, DENTRY_D_LOCK_NESTED); 2570 2571 /* __d_drop does write_seqcount_barrier, but they're OK to nest. */ 2572 2573 /* 2574 * Move the dentry to the target hash queue. Don't bother checking 2575 * for the same hash queue because of how unlikely it is. 2576 */ 2577 __d_drop(dentry); 2578 __d_rehash(dentry, d_hash(target->d_parent, target->d_name.hash)); 2579 2580 /* 2581 * Unhash the target (d_delete() is not usable here). If exchanging 2582 * the two dentries, then rehash onto the other's hash queue. 2583 */ 2584 __d_drop(target); 2585 if (exchange) { 2586 __d_rehash(target, 2587 d_hash(dentry->d_parent, dentry->d_name.hash)); 2588 } 2589 2590 list_del(&dentry->d_u.d_child); 2591 list_del(&target->d_u.d_child); 2592 2593 /* Switch the names.. */ 2594 switch_names(dentry, target); 2595 swap(dentry->d_name.hash, target->d_name.hash); 2596 2597 /* ... and switch the parents */ 2598 if (IS_ROOT(dentry)) { 2599 dentry->d_parent = target->d_parent; 2600 target->d_parent = target; 2601 INIT_LIST_HEAD(&target->d_u.d_child); 2602 } else { 2603 swap(dentry->d_parent, target->d_parent); 2604 2605 /* And add them back to the (new) parent lists */ 2606 list_add(&target->d_u.d_child, &target->d_parent->d_subdirs); 2607 } 2608 2609 list_add(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs); 2610 2611 write_seqcount_end(&target->d_seq); 2612 write_seqcount_end(&dentry->d_seq); 2613 2614 dentry_unlock_parents_for_move(dentry, target); 2615 if (exchange) 2616 fsnotify_d_move(target); 2617 spin_unlock(&target->d_lock); 2618 fsnotify_d_move(dentry); 2619 spin_unlock(&dentry->d_lock); 2620 } 2621 2622 /* 2623 * d_move - move a dentry 2624 * @dentry: entry to move 2625 * @target: new dentry 2626 * 2627 * Update the dcache to reflect the move of a file name. Negative 2628 * dcache entries should not be moved in this way. See the locking 2629 * requirements for __d_move. 2630 */ 2631 void d_move(struct dentry *dentry, struct dentry *target) 2632 { 2633 write_seqlock(&rename_lock); 2634 __d_move(dentry, target, false); 2635 write_sequnlock(&rename_lock); 2636 } 2637 EXPORT_SYMBOL(d_move); 2638 2639 /* 2640 * d_exchange - exchange two dentries 2641 * @dentry1: first dentry 2642 * @dentry2: second dentry 2643 */ 2644 void d_exchange(struct dentry *dentry1, struct dentry *dentry2) 2645 { 2646 write_seqlock(&rename_lock); 2647 2648 WARN_ON(!dentry1->d_inode); 2649 WARN_ON(!dentry2->d_inode); 2650 WARN_ON(IS_ROOT(dentry1)); 2651 WARN_ON(IS_ROOT(dentry2)); 2652 2653 __d_move(dentry1, dentry2, true); 2654 2655 write_sequnlock(&rename_lock); 2656 } 2657 2658 /** 2659 * d_ancestor - search for an ancestor 2660 * @p1: ancestor dentry 2661 * @p2: child dentry 2662 * 2663 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is 2664 * an ancestor of p2, else NULL. 2665 */ 2666 struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2) 2667 { 2668 struct dentry *p; 2669 2670 for (p = p2; !IS_ROOT(p); p = p->d_parent) { 2671 if (p->d_parent == p1) 2672 return p; 2673 } 2674 return NULL; 2675 } 2676 2677 /* 2678 * This helper attempts to cope with remotely renamed directories 2679 * 2680 * It assumes that the caller is already holding 2681 * dentry->d_parent->d_inode->i_mutex, inode->i_lock and rename_lock 2682 * 2683 * Note: If ever the locking in lock_rename() changes, then please 2684 * remember to update this too... 2685 */ 2686 static struct dentry *__d_unalias(struct inode *inode, 2687 struct dentry *dentry, struct dentry *alias) 2688 { 2689 struct mutex *m1 = NULL, *m2 = NULL; 2690 struct dentry *ret = ERR_PTR(-EBUSY); 2691 2692 /* If alias and dentry share a parent, then no extra locks required */ 2693 if (alias->d_parent == dentry->d_parent) 2694 goto out_unalias; 2695 2696 /* See lock_rename() */ 2697 if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex)) 2698 goto out_err; 2699 m1 = &dentry->d_sb->s_vfs_rename_mutex; 2700 if (!mutex_trylock(&alias->d_parent->d_inode->i_mutex)) 2701 goto out_err; 2702 m2 = &alias->d_parent->d_inode->i_mutex; 2703 out_unalias: 2704 if (likely(!d_mountpoint(alias))) { 2705 __d_move(alias, dentry, false); 2706 ret = alias; 2707 } 2708 out_err: 2709 spin_unlock(&inode->i_lock); 2710 if (m2) 2711 mutex_unlock(m2); 2712 if (m1) 2713 mutex_unlock(m1); 2714 return ret; 2715 } 2716 2717 /* 2718 * Prepare an anonymous dentry for life in the superblock's dentry tree as a 2719 * named dentry in place of the dentry to be replaced. 2720 * returns with anon->d_lock held! 2721 */ 2722 static void __d_materialise_dentry(struct dentry *dentry, struct dentry *anon) 2723 { 2724 struct dentry *dparent; 2725 2726 dentry_lock_for_move(anon, dentry); 2727 2728 write_seqcount_begin(&dentry->d_seq); 2729 write_seqcount_begin_nested(&anon->d_seq, DENTRY_D_LOCK_NESTED); 2730 2731 dparent = dentry->d_parent; 2732 2733 switch_names(dentry, anon); 2734 swap(dentry->d_name.hash, anon->d_name.hash); 2735 2736 dentry->d_parent = dentry; 2737 list_del_init(&dentry->d_u.d_child); 2738 anon->d_parent = dparent; 2739 list_move(&anon->d_u.d_child, &dparent->d_subdirs); 2740 2741 write_seqcount_end(&dentry->d_seq); 2742 write_seqcount_end(&anon->d_seq); 2743 2744 dentry_unlock_parents_for_move(anon, dentry); 2745 spin_unlock(&dentry->d_lock); 2746 2747 /* anon->d_lock still locked, returns locked */ 2748 } 2749 2750 /** 2751 * d_materialise_unique - introduce an inode into the tree 2752 * @dentry: candidate dentry 2753 * @inode: inode to bind to the dentry, to which aliases may be attached 2754 * 2755 * Introduces an dentry into the tree, substituting an extant disconnected 2756 * root directory alias in its place if there is one. Caller must hold the 2757 * i_mutex of the parent directory. 2758 */ 2759 struct dentry *d_materialise_unique(struct dentry *dentry, struct inode *inode) 2760 { 2761 struct dentry *actual; 2762 2763 BUG_ON(!d_unhashed(dentry)); 2764 2765 if (!inode) { 2766 actual = dentry; 2767 __d_instantiate(dentry, NULL); 2768 d_rehash(actual); 2769 goto out_nolock; 2770 } 2771 2772 spin_lock(&inode->i_lock); 2773 2774 if (S_ISDIR(inode->i_mode)) { 2775 struct dentry *alias; 2776 2777 /* Does an aliased dentry already exist? */ 2778 alias = __d_find_alias(inode, 0); 2779 if (alias) { 2780 actual = alias; 2781 write_seqlock(&rename_lock); 2782 2783 if (d_ancestor(alias, dentry)) { 2784 /* Check for loops */ 2785 actual = ERR_PTR(-ELOOP); 2786 spin_unlock(&inode->i_lock); 2787 } else if (IS_ROOT(alias)) { 2788 /* Is this an anonymous mountpoint that we 2789 * could splice into our tree? */ 2790 __d_materialise_dentry(dentry, alias); 2791 write_sequnlock(&rename_lock); 2792 __d_drop(alias); 2793 goto found; 2794 } else { 2795 /* Nope, but we must(!) avoid directory 2796 * aliasing. This drops inode->i_lock */ 2797 actual = __d_unalias(inode, dentry, alias); 2798 } 2799 write_sequnlock(&rename_lock); 2800 if (IS_ERR(actual)) { 2801 if (PTR_ERR(actual) == -ELOOP) 2802 pr_warn_ratelimited( 2803 "VFS: Lookup of '%s' in %s %s" 2804 " would have caused loop\n", 2805 dentry->d_name.name, 2806 inode->i_sb->s_type->name, 2807 inode->i_sb->s_id); 2808 dput(alias); 2809 } 2810 goto out_nolock; 2811 } 2812 } 2813 2814 /* Add a unique reference */ 2815 actual = __d_instantiate_unique(dentry, inode); 2816 if (!actual) 2817 actual = dentry; 2818 else 2819 BUG_ON(!d_unhashed(actual)); 2820 2821 spin_lock(&actual->d_lock); 2822 found: 2823 _d_rehash(actual); 2824 spin_unlock(&actual->d_lock); 2825 spin_unlock(&inode->i_lock); 2826 out_nolock: 2827 if (actual == dentry) { 2828 security_d_instantiate(dentry, inode); 2829 return NULL; 2830 } 2831 2832 iput(inode); 2833 return actual; 2834 } 2835 EXPORT_SYMBOL_GPL(d_materialise_unique); 2836 2837 static int prepend(char **buffer, int *buflen, const char *str, int namelen) 2838 { 2839 *buflen -= namelen; 2840 if (*buflen < 0) 2841 return -ENAMETOOLONG; 2842 *buffer -= namelen; 2843 memcpy(*buffer, str, namelen); 2844 return 0; 2845 } 2846 2847 /** 2848 * prepend_name - prepend a pathname in front of current buffer pointer 2849 * @buffer: buffer pointer 2850 * @buflen: allocated length of the buffer 2851 * @name: name string and length qstr structure 2852 * 2853 * With RCU path tracing, it may race with d_move(). Use ACCESS_ONCE() to 2854 * make sure that either the old or the new name pointer and length are 2855 * fetched. However, there may be mismatch between length and pointer. 2856 * The length cannot be trusted, we need to copy it byte-by-byte until 2857 * the length is reached or a null byte is found. It also prepends "/" at 2858 * the beginning of the name. The sequence number check at the caller will 2859 * retry it again when a d_move() does happen. So any garbage in the buffer 2860 * due to mismatched pointer and length will be discarded. 2861 */ 2862 static int prepend_name(char **buffer, int *buflen, struct qstr *name) 2863 { 2864 const char *dname = ACCESS_ONCE(name->name); 2865 u32 dlen = ACCESS_ONCE(name->len); 2866 char *p; 2867 2868 *buflen -= dlen + 1; 2869 if (*buflen < 0) 2870 return -ENAMETOOLONG; 2871 p = *buffer -= dlen + 1; 2872 *p++ = '/'; 2873 while (dlen--) { 2874 char c = *dname++; 2875 if (!c) 2876 break; 2877 *p++ = c; 2878 } 2879 return 0; 2880 } 2881 2882 /** 2883 * prepend_path - Prepend path string to a buffer 2884 * @path: the dentry/vfsmount to report 2885 * @root: root vfsmnt/dentry 2886 * @buffer: pointer to the end of the buffer 2887 * @buflen: pointer to buffer length 2888 * 2889 * The function will first try to write out the pathname without taking any 2890 * lock other than the RCU read lock to make sure that dentries won't go away. 2891 * It only checks the sequence number of the global rename_lock as any change 2892 * in the dentry's d_seq will be preceded by changes in the rename_lock 2893 * sequence number. If the sequence number had been changed, it will restart 2894 * the whole pathname back-tracing sequence again by taking the rename_lock. 2895 * In this case, there is no need to take the RCU read lock as the recursive 2896 * parent pointer references will keep the dentry chain alive as long as no 2897 * rename operation is performed. 2898 */ 2899 static int prepend_path(const struct path *path, 2900 const struct path *root, 2901 char **buffer, int *buflen) 2902 { 2903 struct dentry *dentry; 2904 struct vfsmount *vfsmnt; 2905 struct mount *mnt; 2906 int error = 0; 2907 unsigned seq, m_seq = 0; 2908 char *bptr; 2909 int blen; 2910 2911 rcu_read_lock(); 2912 restart_mnt: 2913 read_seqbegin_or_lock(&mount_lock, &m_seq); 2914 seq = 0; 2915 rcu_read_lock(); 2916 restart: 2917 bptr = *buffer; 2918 blen = *buflen; 2919 error = 0; 2920 dentry = path->dentry; 2921 vfsmnt = path->mnt; 2922 mnt = real_mount(vfsmnt); 2923 read_seqbegin_or_lock(&rename_lock, &seq); 2924 while (dentry != root->dentry || vfsmnt != root->mnt) { 2925 struct dentry * parent; 2926 2927 if (dentry == vfsmnt->mnt_root || IS_ROOT(dentry)) { 2928 struct mount *parent = ACCESS_ONCE(mnt->mnt_parent); 2929 /* Global root? */ 2930 if (mnt != parent) { 2931 dentry = ACCESS_ONCE(mnt->mnt_mountpoint); 2932 mnt = parent; 2933 vfsmnt = &mnt->mnt; 2934 continue; 2935 } 2936 /* 2937 * Filesystems needing to implement special "root names" 2938 * should do so with ->d_dname() 2939 */ 2940 if (IS_ROOT(dentry) && 2941 (dentry->d_name.len != 1 || 2942 dentry->d_name.name[0] != '/')) { 2943 WARN(1, "Root dentry has weird name <%.*s>\n", 2944 (int) dentry->d_name.len, 2945 dentry->d_name.name); 2946 } 2947 if (!error) 2948 error = is_mounted(vfsmnt) ? 1 : 2; 2949 break; 2950 } 2951 parent = dentry->d_parent; 2952 prefetch(parent); 2953 error = prepend_name(&bptr, &blen, &dentry->d_name); 2954 if (error) 2955 break; 2956 2957 dentry = parent; 2958 } 2959 if (!(seq & 1)) 2960 rcu_read_unlock(); 2961 if (need_seqretry(&rename_lock, seq)) { 2962 seq = 1; 2963 goto restart; 2964 } 2965 done_seqretry(&rename_lock, seq); 2966 2967 if (!(m_seq & 1)) 2968 rcu_read_unlock(); 2969 if (need_seqretry(&mount_lock, m_seq)) { 2970 m_seq = 1; 2971 goto restart_mnt; 2972 } 2973 done_seqretry(&mount_lock, m_seq); 2974 2975 if (error >= 0 && bptr == *buffer) { 2976 if (--blen < 0) 2977 error = -ENAMETOOLONG; 2978 else 2979 *--bptr = '/'; 2980 } 2981 *buffer = bptr; 2982 *buflen = blen; 2983 return error; 2984 } 2985 2986 /** 2987 * __d_path - return the path of a dentry 2988 * @path: the dentry/vfsmount to report 2989 * @root: root vfsmnt/dentry 2990 * @buf: buffer to return value in 2991 * @buflen: buffer length 2992 * 2993 * Convert a dentry into an ASCII path name. 2994 * 2995 * Returns a pointer into the buffer or an error code if the 2996 * path was too long. 2997 * 2998 * "buflen" should be positive. 2999 * 3000 * If the path is not reachable from the supplied root, return %NULL. 3001 */ 3002 char *__d_path(const struct path *path, 3003 const struct path *root, 3004 char *buf, int buflen) 3005 { 3006 char *res = buf + buflen; 3007 int error; 3008 3009 prepend(&res, &buflen, "\0", 1); 3010 error = prepend_path(path, root, &res, &buflen); 3011 3012 if (error < 0) 3013 return ERR_PTR(error); 3014 if (error > 0) 3015 return NULL; 3016 return res; 3017 } 3018 3019 char *d_absolute_path(const struct path *path, 3020 char *buf, int buflen) 3021 { 3022 struct path root = {}; 3023 char *res = buf + buflen; 3024 int error; 3025 3026 prepend(&res, &buflen, "\0", 1); 3027 error = prepend_path(path, &root, &res, &buflen); 3028 3029 if (error > 1) 3030 error = -EINVAL; 3031 if (error < 0) 3032 return ERR_PTR(error); 3033 return res; 3034 } 3035 3036 /* 3037 * same as __d_path but appends "(deleted)" for unlinked files. 3038 */ 3039 static int path_with_deleted(const struct path *path, 3040 const struct path *root, 3041 char **buf, int *buflen) 3042 { 3043 prepend(buf, buflen, "\0", 1); 3044 if (d_unlinked(path->dentry)) { 3045 int error = prepend(buf, buflen, " (deleted)", 10); 3046 if (error) 3047 return error; 3048 } 3049 3050 return prepend_path(path, root, buf, buflen); 3051 } 3052 3053 static int prepend_unreachable(char **buffer, int *buflen) 3054 { 3055 return prepend(buffer, buflen, "(unreachable)", 13); 3056 } 3057 3058 static void get_fs_root_rcu(struct fs_struct *fs, struct path *root) 3059 { 3060 unsigned seq; 3061 3062 do { 3063 seq = read_seqcount_begin(&fs->seq); 3064 *root = fs->root; 3065 } while (read_seqcount_retry(&fs->seq, seq)); 3066 } 3067 3068 /** 3069 * d_path - return the path of a dentry 3070 * @path: path to report 3071 * @buf: buffer to return value in 3072 * @buflen: buffer length 3073 * 3074 * Convert a dentry into an ASCII path name. If the entry has been deleted 3075 * the string " (deleted)" is appended. Note that this is ambiguous. 3076 * 3077 * Returns a pointer into the buffer or an error code if the path was 3078 * too long. Note: Callers should use the returned pointer, not the passed 3079 * in buffer, to use the name! The implementation often starts at an offset 3080 * into the buffer, and may leave 0 bytes at the start. 3081 * 3082 * "buflen" should be positive. 3083 */ 3084 char *d_path(const struct path *path, char *buf, int buflen) 3085 { 3086 char *res = buf + buflen; 3087 struct path root; 3088 int error; 3089 3090 /* 3091 * We have various synthetic filesystems that never get mounted. On 3092 * these filesystems dentries are never used for lookup purposes, and 3093 * thus don't need to be hashed. They also don't need a name until a 3094 * user wants to identify the object in /proc/pid/fd/. The little hack 3095 * below allows us to generate a name for these objects on demand: 3096 * 3097 * Some pseudo inodes are mountable. When they are mounted 3098 * path->dentry == path->mnt->mnt_root. In that case don't call d_dname 3099 * and instead have d_path return the mounted path. 3100 */ 3101 if (path->dentry->d_op && path->dentry->d_op->d_dname && 3102 (!IS_ROOT(path->dentry) || path->dentry != path->mnt->mnt_root)) 3103 return path->dentry->d_op->d_dname(path->dentry, buf, buflen); 3104 3105 rcu_read_lock(); 3106 get_fs_root_rcu(current->fs, &root); 3107 error = path_with_deleted(path, &root, &res, &buflen); 3108 rcu_read_unlock(); 3109 3110 if (error < 0) 3111 res = ERR_PTR(error); 3112 return res; 3113 } 3114 EXPORT_SYMBOL(d_path); 3115 3116 /* 3117 * Helper function for dentry_operations.d_dname() members 3118 */ 3119 char *dynamic_dname(struct dentry *dentry, char *buffer, int buflen, 3120 const char *fmt, ...) 3121 { 3122 va_list args; 3123 char temp[64]; 3124 int sz; 3125 3126 va_start(args, fmt); 3127 sz = vsnprintf(temp, sizeof(temp), fmt, args) + 1; 3128 va_end(args); 3129 3130 if (sz > sizeof(temp) || sz > buflen) 3131 return ERR_PTR(-ENAMETOOLONG); 3132 3133 buffer += buflen - sz; 3134 return memcpy(buffer, temp, sz); 3135 } 3136 3137 char *simple_dname(struct dentry *dentry, char *buffer, int buflen) 3138 { 3139 char *end = buffer + buflen; 3140 /* these dentries are never renamed, so d_lock is not needed */ 3141 if (prepend(&end, &buflen, " (deleted)", 11) || 3142 prepend(&end, &buflen, dentry->d_name.name, dentry->d_name.len) || 3143 prepend(&end, &buflen, "/", 1)) 3144 end = ERR_PTR(-ENAMETOOLONG); 3145 return end; 3146 } 3147 EXPORT_SYMBOL(simple_dname); 3148 3149 /* 3150 * Write full pathname from the root of the filesystem into the buffer. 3151 */ 3152 static char *__dentry_path(struct dentry *d, char *buf, int buflen) 3153 { 3154 struct dentry *dentry; 3155 char *end, *retval; 3156 int len, seq = 0; 3157 int error = 0; 3158 3159 if (buflen < 2) 3160 goto Elong; 3161 3162 rcu_read_lock(); 3163 restart: 3164 dentry = d; 3165 end = buf + buflen; 3166 len = buflen; 3167 prepend(&end, &len, "\0", 1); 3168 /* Get '/' right */ 3169 retval = end-1; 3170 *retval = '/'; 3171 read_seqbegin_or_lock(&rename_lock, &seq); 3172 while (!IS_ROOT(dentry)) { 3173 struct dentry *parent = dentry->d_parent; 3174 3175 prefetch(parent); 3176 error = prepend_name(&end, &len, &dentry->d_name); 3177 if (error) 3178 break; 3179 3180 retval = end; 3181 dentry = parent; 3182 } 3183 if (!(seq & 1)) 3184 rcu_read_unlock(); 3185 if (need_seqretry(&rename_lock, seq)) { 3186 seq = 1; 3187 goto restart; 3188 } 3189 done_seqretry(&rename_lock, seq); 3190 if (error) 3191 goto Elong; 3192 return retval; 3193 Elong: 3194 return ERR_PTR(-ENAMETOOLONG); 3195 } 3196 3197 char *dentry_path_raw(struct dentry *dentry, char *buf, int buflen) 3198 { 3199 return __dentry_path(dentry, buf, buflen); 3200 } 3201 EXPORT_SYMBOL(dentry_path_raw); 3202 3203 char *dentry_path(struct dentry *dentry, char *buf, int buflen) 3204 { 3205 char *p = NULL; 3206 char *retval; 3207 3208 if (d_unlinked(dentry)) { 3209 p = buf + buflen; 3210 if (prepend(&p, &buflen, "//deleted", 10) != 0) 3211 goto Elong; 3212 buflen++; 3213 } 3214 retval = __dentry_path(dentry, buf, buflen); 3215 if (!IS_ERR(retval) && p) 3216 *p = '/'; /* restore '/' overriden with '\0' */ 3217 return retval; 3218 Elong: 3219 return ERR_PTR(-ENAMETOOLONG); 3220 } 3221 3222 static void get_fs_root_and_pwd_rcu(struct fs_struct *fs, struct path *root, 3223 struct path *pwd) 3224 { 3225 unsigned seq; 3226 3227 do { 3228 seq = read_seqcount_begin(&fs->seq); 3229 *root = fs->root; 3230 *pwd = fs->pwd; 3231 } while (read_seqcount_retry(&fs->seq, seq)); 3232 } 3233 3234 /* 3235 * NOTE! The user-level library version returns a 3236 * character pointer. The kernel system call just 3237 * returns the length of the buffer filled (which 3238 * includes the ending '\0' character), or a negative 3239 * error value. So libc would do something like 3240 * 3241 * char *getcwd(char * buf, size_t size) 3242 * { 3243 * int retval; 3244 * 3245 * retval = sys_getcwd(buf, size); 3246 * if (retval >= 0) 3247 * return buf; 3248 * errno = -retval; 3249 * return NULL; 3250 * } 3251 */ 3252 SYSCALL_DEFINE2(getcwd, char __user *, buf, unsigned long, size) 3253 { 3254 int error; 3255 struct path pwd, root; 3256 char *page = __getname(); 3257 3258 if (!page) 3259 return -ENOMEM; 3260 3261 rcu_read_lock(); 3262 get_fs_root_and_pwd_rcu(current->fs, &root, &pwd); 3263 3264 error = -ENOENT; 3265 if (!d_unlinked(pwd.dentry)) { 3266 unsigned long len; 3267 char *cwd = page + PATH_MAX; 3268 int buflen = PATH_MAX; 3269 3270 prepend(&cwd, &buflen, "\0", 1); 3271 error = prepend_path(&pwd, &root, &cwd, &buflen); 3272 rcu_read_unlock(); 3273 3274 if (error < 0) 3275 goto out; 3276 3277 /* Unreachable from current root */ 3278 if (error > 0) { 3279 error = prepend_unreachable(&cwd, &buflen); 3280 if (error) 3281 goto out; 3282 } 3283 3284 error = -ERANGE; 3285 len = PATH_MAX + page - cwd; 3286 if (len <= size) { 3287 error = len; 3288 if (copy_to_user(buf, cwd, len)) 3289 error = -EFAULT; 3290 } 3291 } else { 3292 rcu_read_unlock(); 3293 } 3294 3295 out: 3296 __putname(page); 3297 return error; 3298 } 3299 3300 /* 3301 * Test whether new_dentry is a subdirectory of old_dentry. 3302 * 3303 * Trivially implemented using the dcache structure 3304 */ 3305 3306 /** 3307 * is_subdir - is new dentry a subdirectory of old_dentry 3308 * @new_dentry: new dentry 3309 * @old_dentry: old dentry 3310 * 3311 * Returns 1 if new_dentry is a subdirectory of the parent (at any depth). 3312 * Returns 0 otherwise. 3313 * Caller must ensure that "new_dentry" is pinned before calling is_subdir() 3314 */ 3315 3316 int is_subdir(struct dentry *new_dentry, struct dentry *old_dentry) 3317 { 3318 int result; 3319 unsigned seq; 3320 3321 if (new_dentry == old_dentry) 3322 return 1; 3323 3324 do { 3325 /* for restarting inner loop in case of seq retry */ 3326 seq = read_seqbegin(&rename_lock); 3327 /* 3328 * Need rcu_readlock to protect against the d_parent trashing 3329 * due to d_move 3330 */ 3331 rcu_read_lock(); 3332 if (d_ancestor(old_dentry, new_dentry)) 3333 result = 1; 3334 else 3335 result = 0; 3336 rcu_read_unlock(); 3337 } while (read_seqretry(&rename_lock, seq)); 3338 3339 return result; 3340 } 3341 3342 static enum d_walk_ret d_genocide_kill(void *data, struct dentry *dentry) 3343 { 3344 struct dentry *root = data; 3345 if (dentry != root) { 3346 if (d_unhashed(dentry) || !dentry->d_inode) 3347 return D_WALK_SKIP; 3348 3349 if (!(dentry->d_flags & DCACHE_GENOCIDE)) { 3350 dentry->d_flags |= DCACHE_GENOCIDE; 3351 dentry->d_lockref.count--; 3352 } 3353 } 3354 return D_WALK_CONTINUE; 3355 } 3356 3357 void d_genocide(struct dentry *parent) 3358 { 3359 d_walk(parent, parent, d_genocide_kill, NULL); 3360 } 3361 3362 void d_tmpfile(struct dentry *dentry, struct inode *inode) 3363 { 3364 inode_dec_link_count(inode); 3365 BUG_ON(dentry->d_name.name != dentry->d_iname || 3366 !hlist_unhashed(&dentry->d_alias) || 3367 !d_unlinked(dentry)); 3368 spin_lock(&dentry->d_parent->d_lock); 3369 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED); 3370 dentry->d_name.len = sprintf(dentry->d_iname, "#%llu", 3371 (unsigned long long)inode->i_ino); 3372 spin_unlock(&dentry->d_lock); 3373 spin_unlock(&dentry->d_parent->d_lock); 3374 d_instantiate(dentry, inode); 3375 } 3376 EXPORT_SYMBOL(d_tmpfile); 3377 3378 static __initdata unsigned long dhash_entries; 3379 static int __init set_dhash_entries(char *str) 3380 { 3381 if (!str) 3382 return 0; 3383 dhash_entries = simple_strtoul(str, &str, 0); 3384 return 1; 3385 } 3386 __setup("dhash_entries=", set_dhash_entries); 3387 3388 static void __init dcache_init_early(void) 3389 { 3390 unsigned int loop; 3391 3392 /* If hashes are distributed across NUMA nodes, defer 3393 * hash allocation until vmalloc space is available. 3394 */ 3395 if (hashdist) 3396 return; 3397 3398 dentry_hashtable = 3399 alloc_large_system_hash("Dentry cache", 3400 sizeof(struct hlist_bl_head), 3401 dhash_entries, 3402 13, 3403 HASH_EARLY, 3404 &d_hash_shift, 3405 &d_hash_mask, 3406 0, 3407 0); 3408 3409 for (loop = 0; loop < (1U << d_hash_shift); loop++) 3410 INIT_HLIST_BL_HEAD(dentry_hashtable + loop); 3411 } 3412 3413 static void __init dcache_init(void) 3414 { 3415 unsigned int loop; 3416 3417 /* 3418 * A constructor could be added for stable state like the lists, 3419 * but it is probably not worth it because of the cache nature 3420 * of the dcache. 3421 */ 3422 dentry_cache = KMEM_CACHE(dentry, 3423 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD); 3424 3425 /* Hash may have been set up in dcache_init_early */ 3426 if (!hashdist) 3427 return; 3428 3429 dentry_hashtable = 3430 alloc_large_system_hash("Dentry cache", 3431 sizeof(struct hlist_bl_head), 3432 dhash_entries, 3433 13, 3434 0, 3435 &d_hash_shift, 3436 &d_hash_mask, 3437 0, 3438 0); 3439 3440 for (loop = 0; loop < (1U << d_hash_shift); loop++) 3441 INIT_HLIST_BL_HEAD(dentry_hashtable + loop); 3442 } 3443 3444 /* SLAB cache for __getname() consumers */ 3445 struct kmem_cache *names_cachep __read_mostly; 3446 EXPORT_SYMBOL(names_cachep); 3447 3448 EXPORT_SYMBOL(d_genocide); 3449 3450 void __init vfs_caches_init_early(void) 3451 { 3452 dcache_init_early(); 3453 inode_init_early(); 3454 } 3455 3456 void __init vfs_caches_init(unsigned long mempages) 3457 { 3458 unsigned long reserve; 3459 3460 /* Base hash sizes on available memory, with a reserve equal to 3461 150% of current kernel size */ 3462 3463 reserve = min((mempages - nr_free_pages()) * 3/2, mempages - 1); 3464 mempages -= reserve; 3465 3466 names_cachep = kmem_cache_create("names_cache", PATH_MAX, 0, 3467 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL); 3468 3469 dcache_init(); 3470 inode_init(); 3471 files_init(mempages); 3472 mnt_init(); 3473 bdev_cache_init(); 3474 chrdev_init(); 3475 } 3476