1 /* 2 * fs/dcache.c 3 * 4 * Complete reimplementation 5 * (C) 1997 Thomas Schoebel-Theuer, 6 * with heavy changes by Linus Torvalds 7 */ 8 9 /* 10 * Notes on the allocation strategy: 11 * 12 * The dcache is a master of the icache - whenever a dcache entry 13 * exists, the inode will always exist. "iput()" is done either when 14 * the dcache entry is deleted or garbage collected. 15 */ 16 17 #include <linux/ratelimit.h> 18 #include <linux/string.h> 19 #include <linux/mm.h> 20 #include <linux/fs.h> 21 #include <linux/fsnotify.h> 22 #include <linux/slab.h> 23 #include <linux/init.h> 24 #include <linux/hash.h> 25 #include <linux/cache.h> 26 #include <linux/export.h> 27 #include <linux/security.h> 28 #include <linux/seqlock.h> 29 #include <linux/bootmem.h> 30 #include <linux/bit_spinlock.h> 31 #include <linux/rculist_bl.h> 32 #include <linux/list_lru.h> 33 #include "internal.h" 34 #include "mount.h" 35 36 /* 37 * Usage: 38 * dcache->d_inode->i_lock protects: 39 * - i_dentry, d_u.d_alias, d_inode of aliases 40 * dcache_hash_bucket lock protects: 41 * - the dcache hash table 42 * s_roots bl list spinlock protects: 43 * - the s_roots list (see __d_drop) 44 * dentry->d_sb->s_dentry_lru_lock protects: 45 * - the dcache lru lists and counters 46 * d_lock protects: 47 * - d_flags 48 * - d_name 49 * - d_lru 50 * - d_count 51 * - d_unhashed() 52 * - d_parent and d_subdirs 53 * - childrens' d_child and d_parent 54 * - d_u.d_alias, d_inode 55 * 56 * Ordering: 57 * dentry->d_inode->i_lock 58 * dentry->d_lock 59 * dentry->d_sb->s_dentry_lru_lock 60 * dcache_hash_bucket lock 61 * s_roots lock 62 * 63 * If there is an ancestor relationship: 64 * dentry->d_parent->...->d_parent->d_lock 65 * ... 66 * dentry->d_parent->d_lock 67 * dentry->d_lock 68 * 69 * If no ancestor relationship: 70 * arbitrary, since it's serialized on rename_lock 71 */ 72 int sysctl_vfs_cache_pressure __read_mostly = 100; 73 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure); 74 75 __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock); 76 77 EXPORT_SYMBOL(rename_lock); 78 79 static struct kmem_cache *dentry_cache __read_mostly; 80 81 const struct qstr empty_name = QSTR_INIT("", 0); 82 EXPORT_SYMBOL(empty_name); 83 const struct qstr slash_name = QSTR_INIT("/", 1); 84 EXPORT_SYMBOL(slash_name); 85 86 /* 87 * This is the single most critical data structure when it comes 88 * to the dcache: the hashtable for lookups. Somebody should try 89 * to make this good - I've just made it work. 90 * 91 * This hash-function tries to avoid losing too many bits of hash 92 * information, yet avoid using a prime hash-size or similar. 93 */ 94 95 static unsigned int d_hash_shift __read_mostly; 96 97 static struct hlist_bl_head *dentry_hashtable __read_mostly; 98 99 static inline struct hlist_bl_head *d_hash(unsigned int hash) 100 { 101 return dentry_hashtable + (hash >> d_hash_shift); 102 } 103 104 #define IN_LOOKUP_SHIFT 10 105 static struct hlist_bl_head in_lookup_hashtable[1 << IN_LOOKUP_SHIFT]; 106 107 static inline struct hlist_bl_head *in_lookup_hash(const struct dentry *parent, 108 unsigned int hash) 109 { 110 hash += (unsigned long) parent / L1_CACHE_BYTES; 111 return in_lookup_hashtable + hash_32(hash, IN_LOOKUP_SHIFT); 112 } 113 114 115 /* Statistics gathering. */ 116 struct dentry_stat_t dentry_stat = { 117 .age_limit = 45, 118 }; 119 120 static DEFINE_PER_CPU(long, nr_dentry); 121 static DEFINE_PER_CPU(long, nr_dentry_unused); 122 123 #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS) 124 125 /* 126 * Here we resort to our own counters instead of using generic per-cpu counters 127 * for consistency with what the vfs inode code does. We are expected to harvest 128 * better code and performance by having our own specialized counters. 129 * 130 * Please note that the loop is done over all possible CPUs, not over all online 131 * CPUs. The reason for this is that we don't want to play games with CPUs going 132 * on and off. If one of them goes off, we will just keep their counters. 133 * 134 * glommer: See cffbc8a for details, and if you ever intend to change this, 135 * please update all vfs counters to match. 136 */ 137 static long get_nr_dentry(void) 138 { 139 int i; 140 long sum = 0; 141 for_each_possible_cpu(i) 142 sum += per_cpu(nr_dentry, i); 143 return sum < 0 ? 0 : sum; 144 } 145 146 static long get_nr_dentry_unused(void) 147 { 148 int i; 149 long sum = 0; 150 for_each_possible_cpu(i) 151 sum += per_cpu(nr_dentry_unused, i); 152 return sum < 0 ? 0 : sum; 153 } 154 155 int proc_nr_dentry(struct ctl_table *table, int write, void __user *buffer, 156 size_t *lenp, loff_t *ppos) 157 { 158 dentry_stat.nr_dentry = get_nr_dentry(); 159 dentry_stat.nr_unused = get_nr_dentry_unused(); 160 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos); 161 } 162 #endif 163 164 /* 165 * Compare 2 name strings, return 0 if they match, otherwise non-zero. 166 * The strings are both count bytes long, and count is non-zero. 167 */ 168 #ifdef CONFIG_DCACHE_WORD_ACCESS 169 170 #include <asm/word-at-a-time.h> 171 /* 172 * NOTE! 'cs' and 'scount' come from a dentry, so it has a 173 * aligned allocation for this particular component. We don't 174 * strictly need the load_unaligned_zeropad() safety, but it 175 * doesn't hurt either. 176 * 177 * In contrast, 'ct' and 'tcount' can be from a pathname, and do 178 * need the careful unaligned handling. 179 */ 180 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount) 181 { 182 unsigned long a,b,mask; 183 184 for (;;) { 185 a = read_word_at_a_time(cs); 186 b = load_unaligned_zeropad(ct); 187 if (tcount < sizeof(unsigned long)) 188 break; 189 if (unlikely(a != b)) 190 return 1; 191 cs += sizeof(unsigned long); 192 ct += sizeof(unsigned long); 193 tcount -= sizeof(unsigned long); 194 if (!tcount) 195 return 0; 196 } 197 mask = bytemask_from_count(tcount); 198 return unlikely(!!((a ^ b) & mask)); 199 } 200 201 #else 202 203 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount) 204 { 205 do { 206 if (*cs != *ct) 207 return 1; 208 cs++; 209 ct++; 210 tcount--; 211 } while (tcount); 212 return 0; 213 } 214 215 #endif 216 217 static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount) 218 { 219 /* 220 * Be careful about RCU walk racing with rename: 221 * use 'READ_ONCE' to fetch the name pointer. 222 * 223 * NOTE! Even if a rename will mean that the length 224 * was not loaded atomically, we don't care. The 225 * RCU walk will check the sequence count eventually, 226 * and catch it. And we won't overrun the buffer, 227 * because we're reading the name pointer atomically, 228 * and a dentry name is guaranteed to be properly 229 * terminated with a NUL byte. 230 * 231 * End result: even if 'len' is wrong, we'll exit 232 * early because the data cannot match (there can 233 * be no NUL in the ct/tcount data) 234 */ 235 const unsigned char *cs = READ_ONCE(dentry->d_name.name); 236 237 return dentry_string_cmp(cs, ct, tcount); 238 } 239 240 struct external_name { 241 union { 242 atomic_t count; 243 struct rcu_head head; 244 } u; 245 unsigned char name[]; 246 }; 247 248 static inline struct external_name *external_name(struct dentry *dentry) 249 { 250 return container_of(dentry->d_name.name, struct external_name, name[0]); 251 } 252 253 static void __d_free(struct rcu_head *head) 254 { 255 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu); 256 257 kmem_cache_free(dentry_cache, dentry); 258 } 259 260 static void __d_free_external_name(struct rcu_head *head) 261 { 262 struct external_name *name = container_of(head, struct external_name, 263 u.head); 264 265 mod_node_page_state(page_pgdat(virt_to_page(name)), 266 NR_INDIRECTLY_RECLAIMABLE_BYTES, 267 -ksize(name)); 268 269 kfree(name); 270 } 271 272 static void __d_free_external(struct rcu_head *head) 273 { 274 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu); 275 276 __d_free_external_name(&external_name(dentry)->u.head); 277 278 kmem_cache_free(dentry_cache, dentry); 279 } 280 281 static inline int dname_external(const struct dentry *dentry) 282 { 283 return dentry->d_name.name != dentry->d_iname; 284 } 285 286 void take_dentry_name_snapshot(struct name_snapshot *name, struct dentry *dentry) 287 { 288 spin_lock(&dentry->d_lock); 289 if (unlikely(dname_external(dentry))) { 290 struct external_name *p = external_name(dentry); 291 atomic_inc(&p->u.count); 292 spin_unlock(&dentry->d_lock); 293 name->name = p->name; 294 } else { 295 memcpy(name->inline_name, dentry->d_iname, DNAME_INLINE_LEN); 296 spin_unlock(&dentry->d_lock); 297 name->name = name->inline_name; 298 } 299 } 300 EXPORT_SYMBOL(take_dentry_name_snapshot); 301 302 void release_dentry_name_snapshot(struct name_snapshot *name) 303 { 304 if (unlikely(name->name != name->inline_name)) { 305 struct external_name *p; 306 p = container_of(name->name, struct external_name, name[0]); 307 if (unlikely(atomic_dec_and_test(&p->u.count))) 308 call_rcu(&p->u.head, __d_free_external_name); 309 } 310 } 311 EXPORT_SYMBOL(release_dentry_name_snapshot); 312 313 static inline void __d_set_inode_and_type(struct dentry *dentry, 314 struct inode *inode, 315 unsigned type_flags) 316 { 317 unsigned flags; 318 319 dentry->d_inode = inode; 320 flags = READ_ONCE(dentry->d_flags); 321 flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU); 322 flags |= type_flags; 323 WRITE_ONCE(dentry->d_flags, flags); 324 } 325 326 static inline void __d_clear_type_and_inode(struct dentry *dentry) 327 { 328 unsigned flags = READ_ONCE(dentry->d_flags); 329 330 flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU); 331 WRITE_ONCE(dentry->d_flags, flags); 332 dentry->d_inode = NULL; 333 } 334 335 static void dentry_free(struct dentry *dentry) 336 { 337 WARN_ON(!hlist_unhashed(&dentry->d_u.d_alias)); 338 if (unlikely(dname_external(dentry))) { 339 struct external_name *p = external_name(dentry); 340 if (likely(atomic_dec_and_test(&p->u.count))) { 341 call_rcu(&dentry->d_u.d_rcu, __d_free_external); 342 return; 343 } 344 } 345 /* if dentry was never visible to RCU, immediate free is OK */ 346 if (!(dentry->d_flags & DCACHE_RCUACCESS)) 347 __d_free(&dentry->d_u.d_rcu); 348 else 349 call_rcu(&dentry->d_u.d_rcu, __d_free); 350 } 351 352 /* 353 * Release the dentry's inode, using the filesystem 354 * d_iput() operation if defined. 355 */ 356 static void dentry_unlink_inode(struct dentry * dentry) 357 __releases(dentry->d_lock) 358 __releases(dentry->d_inode->i_lock) 359 { 360 struct inode *inode = dentry->d_inode; 361 bool hashed = !d_unhashed(dentry); 362 363 if (hashed) 364 raw_write_seqcount_begin(&dentry->d_seq); 365 __d_clear_type_and_inode(dentry); 366 hlist_del_init(&dentry->d_u.d_alias); 367 if (hashed) 368 raw_write_seqcount_end(&dentry->d_seq); 369 spin_unlock(&dentry->d_lock); 370 spin_unlock(&inode->i_lock); 371 if (!inode->i_nlink) 372 fsnotify_inoderemove(inode); 373 if (dentry->d_op && dentry->d_op->d_iput) 374 dentry->d_op->d_iput(dentry, inode); 375 else 376 iput(inode); 377 } 378 379 /* 380 * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry 381 * is in use - which includes both the "real" per-superblock 382 * LRU list _and_ the DCACHE_SHRINK_LIST use. 383 * 384 * The DCACHE_SHRINK_LIST bit is set whenever the dentry is 385 * on the shrink list (ie not on the superblock LRU list). 386 * 387 * The per-cpu "nr_dentry_unused" counters are updated with 388 * the DCACHE_LRU_LIST bit. 389 * 390 * These helper functions make sure we always follow the 391 * rules. d_lock must be held by the caller. 392 */ 393 #define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x)) 394 static void d_lru_add(struct dentry *dentry) 395 { 396 D_FLAG_VERIFY(dentry, 0); 397 dentry->d_flags |= DCACHE_LRU_LIST; 398 this_cpu_inc(nr_dentry_unused); 399 WARN_ON_ONCE(!list_lru_add(&dentry->d_sb->s_dentry_lru, &dentry->d_lru)); 400 } 401 402 static void d_lru_del(struct dentry *dentry) 403 { 404 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST); 405 dentry->d_flags &= ~DCACHE_LRU_LIST; 406 this_cpu_dec(nr_dentry_unused); 407 WARN_ON_ONCE(!list_lru_del(&dentry->d_sb->s_dentry_lru, &dentry->d_lru)); 408 } 409 410 static void d_shrink_del(struct dentry *dentry) 411 { 412 D_FLAG_VERIFY(dentry, DCACHE_SHRINK_LIST | DCACHE_LRU_LIST); 413 list_del_init(&dentry->d_lru); 414 dentry->d_flags &= ~(DCACHE_SHRINK_LIST | DCACHE_LRU_LIST); 415 this_cpu_dec(nr_dentry_unused); 416 } 417 418 static void d_shrink_add(struct dentry *dentry, struct list_head *list) 419 { 420 D_FLAG_VERIFY(dentry, 0); 421 list_add(&dentry->d_lru, list); 422 dentry->d_flags |= DCACHE_SHRINK_LIST | DCACHE_LRU_LIST; 423 this_cpu_inc(nr_dentry_unused); 424 } 425 426 /* 427 * These can only be called under the global LRU lock, ie during the 428 * callback for freeing the LRU list. "isolate" removes it from the 429 * LRU lists entirely, while shrink_move moves it to the indicated 430 * private list. 431 */ 432 static void d_lru_isolate(struct list_lru_one *lru, struct dentry *dentry) 433 { 434 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST); 435 dentry->d_flags &= ~DCACHE_LRU_LIST; 436 this_cpu_dec(nr_dentry_unused); 437 list_lru_isolate(lru, &dentry->d_lru); 438 } 439 440 static void d_lru_shrink_move(struct list_lru_one *lru, struct dentry *dentry, 441 struct list_head *list) 442 { 443 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST); 444 dentry->d_flags |= DCACHE_SHRINK_LIST; 445 list_lru_isolate_move(lru, &dentry->d_lru, list); 446 } 447 448 /** 449 * d_drop - drop a dentry 450 * @dentry: dentry to drop 451 * 452 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't 453 * be found through a VFS lookup any more. Note that this is different from 454 * deleting the dentry - d_delete will try to mark the dentry negative if 455 * possible, giving a successful _negative_ lookup, while d_drop will 456 * just make the cache lookup fail. 457 * 458 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some 459 * reason (NFS timeouts or autofs deletes). 460 * 461 * __d_drop requires dentry->d_lock 462 * ___d_drop doesn't mark dentry as "unhashed" 463 * (dentry->d_hash.pprev will be LIST_POISON2, not NULL). 464 */ 465 static void ___d_drop(struct dentry *dentry) 466 { 467 struct hlist_bl_head *b; 468 /* 469 * Hashed dentries are normally on the dentry hashtable, 470 * with the exception of those newly allocated by 471 * d_obtain_root, which are always IS_ROOT: 472 */ 473 if (unlikely(IS_ROOT(dentry))) 474 b = &dentry->d_sb->s_roots; 475 else 476 b = d_hash(dentry->d_name.hash); 477 478 hlist_bl_lock(b); 479 __hlist_bl_del(&dentry->d_hash); 480 hlist_bl_unlock(b); 481 } 482 483 void __d_drop(struct dentry *dentry) 484 { 485 if (!d_unhashed(dentry)) { 486 ___d_drop(dentry); 487 dentry->d_hash.pprev = NULL; 488 write_seqcount_invalidate(&dentry->d_seq); 489 } 490 } 491 EXPORT_SYMBOL(__d_drop); 492 493 void d_drop(struct dentry *dentry) 494 { 495 spin_lock(&dentry->d_lock); 496 __d_drop(dentry); 497 spin_unlock(&dentry->d_lock); 498 } 499 EXPORT_SYMBOL(d_drop); 500 501 static inline void dentry_unlist(struct dentry *dentry, struct dentry *parent) 502 { 503 struct dentry *next; 504 /* 505 * Inform d_walk() and shrink_dentry_list() that we are no longer 506 * attached to the dentry tree 507 */ 508 dentry->d_flags |= DCACHE_DENTRY_KILLED; 509 if (unlikely(list_empty(&dentry->d_child))) 510 return; 511 __list_del_entry(&dentry->d_child); 512 /* 513 * Cursors can move around the list of children. While we'd been 514 * a normal list member, it didn't matter - ->d_child.next would've 515 * been updated. However, from now on it won't be and for the 516 * things like d_walk() it might end up with a nasty surprise. 517 * Normally d_walk() doesn't care about cursors moving around - 518 * ->d_lock on parent prevents that and since a cursor has no children 519 * of its own, we get through it without ever unlocking the parent. 520 * There is one exception, though - if we ascend from a child that 521 * gets killed as soon as we unlock it, the next sibling is found 522 * using the value left in its ->d_child.next. And if _that_ 523 * pointed to a cursor, and cursor got moved (e.g. by lseek()) 524 * before d_walk() regains parent->d_lock, we'll end up skipping 525 * everything the cursor had been moved past. 526 * 527 * Solution: make sure that the pointer left behind in ->d_child.next 528 * points to something that won't be moving around. I.e. skip the 529 * cursors. 530 */ 531 while (dentry->d_child.next != &parent->d_subdirs) { 532 next = list_entry(dentry->d_child.next, struct dentry, d_child); 533 if (likely(!(next->d_flags & DCACHE_DENTRY_CURSOR))) 534 break; 535 dentry->d_child.next = next->d_child.next; 536 } 537 } 538 539 static void __dentry_kill(struct dentry *dentry) 540 { 541 struct dentry *parent = NULL; 542 bool can_free = true; 543 if (!IS_ROOT(dentry)) 544 parent = dentry->d_parent; 545 546 /* 547 * The dentry is now unrecoverably dead to the world. 548 */ 549 lockref_mark_dead(&dentry->d_lockref); 550 551 /* 552 * inform the fs via d_prune that this dentry is about to be 553 * unhashed and destroyed. 554 */ 555 if (dentry->d_flags & DCACHE_OP_PRUNE) 556 dentry->d_op->d_prune(dentry); 557 558 if (dentry->d_flags & DCACHE_LRU_LIST) { 559 if (!(dentry->d_flags & DCACHE_SHRINK_LIST)) 560 d_lru_del(dentry); 561 } 562 /* if it was on the hash then remove it */ 563 __d_drop(dentry); 564 dentry_unlist(dentry, parent); 565 if (parent) 566 spin_unlock(&parent->d_lock); 567 if (dentry->d_inode) 568 dentry_unlink_inode(dentry); 569 else 570 spin_unlock(&dentry->d_lock); 571 this_cpu_dec(nr_dentry); 572 if (dentry->d_op && dentry->d_op->d_release) 573 dentry->d_op->d_release(dentry); 574 575 spin_lock(&dentry->d_lock); 576 if (dentry->d_flags & DCACHE_SHRINK_LIST) { 577 dentry->d_flags |= DCACHE_MAY_FREE; 578 can_free = false; 579 } 580 spin_unlock(&dentry->d_lock); 581 if (likely(can_free)) 582 dentry_free(dentry); 583 } 584 585 static struct dentry *__lock_parent(struct dentry *dentry) 586 { 587 struct dentry *parent; 588 rcu_read_lock(); 589 spin_unlock(&dentry->d_lock); 590 again: 591 parent = READ_ONCE(dentry->d_parent); 592 spin_lock(&parent->d_lock); 593 /* 594 * We can't blindly lock dentry until we are sure 595 * that we won't violate the locking order. 596 * Any changes of dentry->d_parent must have 597 * been done with parent->d_lock held, so 598 * spin_lock() above is enough of a barrier 599 * for checking if it's still our child. 600 */ 601 if (unlikely(parent != dentry->d_parent)) { 602 spin_unlock(&parent->d_lock); 603 goto again; 604 } 605 rcu_read_unlock(); 606 if (parent != dentry) 607 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED); 608 else 609 parent = NULL; 610 return parent; 611 } 612 613 static inline struct dentry *lock_parent(struct dentry *dentry) 614 { 615 struct dentry *parent = dentry->d_parent; 616 if (IS_ROOT(dentry)) 617 return NULL; 618 if (likely(spin_trylock(&parent->d_lock))) 619 return parent; 620 return __lock_parent(dentry); 621 } 622 623 static inline bool retain_dentry(struct dentry *dentry) 624 { 625 WARN_ON(d_in_lookup(dentry)); 626 627 /* Unreachable? Get rid of it */ 628 if (unlikely(d_unhashed(dentry))) 629 return false; 630 631 if (unlikely(dentry->d_flags & DCACHE_DISCONNECTED)) 632 return false; 633 634 if (unlikely(dentry->d_flags & DCACHE_OP_DELETE)) { 635 if (dentry->d_op->d_delete(dentry)) 636 return false; 637 } 638 /* retain; LRU fodder */ 639 dentry->d_lockref.count--; 640 if (unlikely(!(dentry->d_flags & DCACHE_LRU_LIST))) 641 d_lru_add(dentry); 642 else if (unlikely(!(dentry->d_flags & DCACHE_REFERENCED))) 643 dentry->d_flags |= DCACHE_REFERENCED; 644 return true; 645 } 646 647 /* 648 * Finish off a dentry we've decided to kill. 649 * dentry->d_lock must be held, returns with it unlocked. 650 * Returns dentry requiring refcount drop, or NULL if we're done. 651 */ 652 static struct dentry *dentry_kill(struct dentry *dentry) 653 __releases(dentry->d_lock) 654 { 655 struct inode *inode = dentry->d_inode; 656 struct dentry *parent = NULL; 657 658 if (inode && unlikely(!spin_trylock(&inode->i_lock))) 659 goto slow_positive; 660 661 if (!IS_ROOT(dentry)) { 662 parent = dentry->d_parent; 663 if (unlikely(!spin_trylock(&parent->d_lock))) { 664 parent = __lock_parent(dentry); 665 if (likely(inode || !dentry->d_inode)) 666 goto got_locks; 667 /* negative that became positive */ 668 if (parent) 669 spin_unlock(&parent->d_lock); 670 inode = dentry->d_inode; 671 goto slow_positive; 672 } 673 } 674 __dentry_kill(dentry); 675 return parent; 676 677 slow_positive: 678 spin_unlock(&dentry->d_lock); 679 spin_lock(&inode->i_lock); 680 spin_lock(&dentry->d_lock); 681 parent = lock_parent(dentry); 682 got_locks: 683 if (unlikely(dentry->d_lockref.count != 1)) { 684 dentry->d_lockref.count--; 685 } else if (likely(!retain_dentry(dentry))) { 686 __dentry_kill(dentry); 687 return parent; 688 } 689 /* we are keeping it, after all */ 690 if (inode) 691 spin_unlock(&inode->i_lock); 692 if (parent) 693 spin_unlock(&parent->d_lock); 694 spin_unlock(&dentry->d_lock); 695 return NULL; 696 } 697 698 /* 699 * Try to do a lockless dput(), and return whether that was successful. 700 * 701 * If unsuccessful, we return false, having already taken the dentry lock. 702 * 703 * The caller needs to hold the RCU read lock, so that the dentry is 704 * guaranteed to stay around even if the refcount goes down to zero! 705 */ 706 static inline bool fast_dput(struct dentry *dentry) 707 { 708 int ret; 709 unsigned int d_flags; 710 711 /* 712 * If we have a d_op->d_delete() operation, we sould not 713 * let the dentry count go to zero, so use "put_or_lock". 714 */ 715 if (unlikely(dentry->d_flags & DCACHE_OP_DELETE)) 716 return lockref_put_or_lock(&dentry->d_lockref); 717 718 /* 719 * .. otherwise, we can try to just decrement the 720 * lockref optimistically. 721 */ 722 ret = lockref_put_return(&dentry->d_lockref); 723 724 /* 725 * If the lockref_put_return() failed due to the lock being held 726 * by somebody else, the fast path has failed. We will need to 727 * get the lock, and then check the count again. 728 */ 729 if (unlikely(ret < 0)) { 730 spin_lock(&dentry->d_lock); 731 if (dentry->d_lockref.count > 1) { 732 dentry->d_lockref.count--; 733 spin_unlock(&dentry->d_lock); 734 return 1; 735 } 736 return 0; 737 } 738 739 /* 740 * If we weren't the last ref, we're done. 741 */ 742 if (ret) 743 return 1; 744 745 /* 746 * Careful, careful. The reference count went down 747 * to zero, but we don't hold the dentry lock, so 748 * somebody else could get it again, and do another 749 * dput(), and we need to not race with that. 750 * 751 * However, there is a very special and common case 752 * where we don't care, because there is nothing to 753 * do: the dentry is still hashed, it does not have 754 * a 'delete' op, and it's referenced and already on 755 * the LRU list. 756 * 757 * NOTE! Since we aren't locked, these values are 758 * not "stable". However, it is sufficient that at 759 * some point after we dropped the reference the 760 * dentry was hashed and the flags had the proper 761 * value. Other dentry users may have re-gotten 762 * a reference to the dentry and change that, but 763 * our work is done - we can leave the dentry 764 * around with a zero refcount. 765 */ 766 smp_rmb(); 767 d_flags = READ_ONCE(dentry->d_flags); 768 d_flags &= DCACHE_REFERENCED | DCACHE_LRU_LIST | DCACHE_DISCONNECTED; 769 770 /* Nothing to do? Dropping the reference was all we needed? */ 771 if (d_flags == (DCACHE_REFERENCED | DCACHE_LRU_LIST) && !d_unhashed(dentry)) 772 return 1; 773 774 /* 775 * Not the fast normal case? Get the lock. We've already decremented 776 * the refcount, but we'll need to re-check the situation after 777 * getting the lock. 778 */ 779 spin_lock(&dentry->d_lock); 780 781 /* 782 * Did somebody else grab a reference to it in the meantime, and 783 * we're no longer the last user after all? Alternatively, somebody 784 * else could have killed it and marked it dead. Either way, we 785 * don't need to do anything else. 786 */ 787 if (dentry->d_lockref.count) { 788 spin_unlock(&dentry->d_lock); 789 return 1; 790 } 791 792 /* 793 * Re-get the reference we optimistically dropped. We hold the 794 * lock, and we just tested that it was zero, so we can just 795 * set it to 1. 796 */ 797 dentry->d_lockref.count = 1; 798 return 0; 799 } 800 801 802 /* 803 * This is dput 804 * 805 * This is complicated by the fact that we do not want to put 806 * dentries that are no longer on any hash chain on the unused 807 * list: we'd much rather just get rid of them immediately. 808 * 809 * However, that implies that we have to traverse the dentry 810 * tree upwards to the parents which might _also_ now be 811 * scheduled for deletion (it may have been only waiting for 812 * its last child to go away). 813 * 814 * This tail recursion is done by hand as we don't want to depend 815 * on the compiler to always get this right (gcc generally doesn't). 816 * Real recursion would eat up our stack space. 817 */ 818 819 /* 820 * dput - release a dentry 821 * @dentry: dentry to release 822 * 823 * Release a dentry. This will drop the usage count and if appropriate 824 * call the dentry unlink method as well as removing it from the queues and 825 * releasing its resources. If the parent dentries were scheduled for release 826 * they too may now get deleted. 827 */ 828 void dput(struct dentry *dentry) 829 { 830 if (unlikely(!dentry)) 831 return; 832 833 repeat: 834 might_sleep(); 835 836 rcu_read_lock(); 837 if (likely(fast_dput(dentry))) { 838 rcu_read_unlock(); 839 return; 840 } 841 842 /* Slow case: now with the dentry lock held */ 843 rcu_read_unlock(); 844 845 if (likely(retain_dentry(dentry))) { 846 spin_unlock(&dentry->d_lock); 847 return; 848 } 849 850 dentry = dentry_kill(dentry); 851 if (dentry) { 852 cond_resched(); 853 goto repeat; 854 } 855 } 856 EXPORT_SYMBOL(dput); 857 858 859 /* This must be called with d_lock held */ 860 static inline void __dget_dlock(struct dentry *dentry) 861 { 862 dentry->d_lockref.count++; 863 } 864 865 static inline void __dget(struct dentry *dentry) 866 { 867 lockref_get(&dentry->d_lockref); 868 } 869 870 struct dentry *dget_parent(struct dentry *dentry) 871 { 872 int gotref; 873 struct dentry *ret; 874 875 /* 876 * Do optimistic parent lookup without any 877 * locking. 878 */ 879 rcu_read_lock(); 880 ret = READ_ONCE(dentry->d_parent); 881 gotref = lockref_get_not_zero(&ret->d_lockref); 882 rcu_read_unlock(); 883 if (likely(gotref)) { 884 if (likely(ret == READ_ONCE(dentry->d_parent))) 885 return ret; 886 dput(ret); 887 } 888 889 repeat: 890 /* 891 * Don't need rcu_dereference because we re-check it was correct under 892 * the lock. 893 */ 894 rcu_read_lock(); 895 ret = dentry->d_parent; 896 spin_lock(&ret->d_lock); 897 if (unlikely(ret != dentry->d_parent)) { 898 spin_unlock(&ret->d_lock); 899 rcu_read_unlock(); 900 goto repeat; 901 } 902 rcu_read_unlock(); 903 BUG_ON(!ret->d_lockref.count); 904 ret->d_lockref.count++; 905 spin_unlock(&ret->d_lock); 906 return ret; 907 } 908 EXPORT_SYMBOL(dget_parent); 909 910 /** 911 * d_find_alias - grab a hashed alias of inode 912 * @inode: inode in question 913 * 914 * If inode has a hashed alias, or is a directory and has any alias, 915 * acquire the reference to alias and return it. Otherwise return NULL. 916 * Notice that if inode is a directory there can be only one alias and 917 * it can be unhashed only if it has no children, or if it is the root 918 * of a filesystem, or if the directory was renamed and d_revalidate 919 * was the first vfs operation to notice. 920 * 921 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer 922 * any other hashed alias over that one. 923 */ 924 static struct dentry *__d_find_alias(struct inode *inode) 925 { 926 struct dentry *alias, *discon_alias; 927 928 again: 929 discon_alias = NULL; 930 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) { 931 spin_lock(&alias->d_lock); 932 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) { 933 if (IS_ROOT(alias) && 934 (alias->d_flags & DCACHE_DISCONNECTED)) { 935 discon_alias = alias; 936 } else { 937 __dget_dlock(alias); 938 spin_unlock(&alias->d_lock); 939 return alias; 940 } 941 } 942 spin_unlock(&alias->d_lock); 943 } 944 if (discon_alias) { 945 alias = discon_alias; 946 spin_lock(&alias->d_lock); 947 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) { 948 __dget_dlock(alias); 949 spin_unlock(&alias->d_lock); 950 return alias; 951 } 952 spin_unlock(&alias->d_lock); 953 goto again; 954 } 955 return NULL; 956 } 957 958 struct dentry *d_find_alias(struct inode *inode) 959 { 960 struct dentry *de = NULL; 961 962 if (!hlist_empty(&inode->i_dentry)) { 963 spin_lock(&inode->i_lock); 964 de = __d_find_alias(inode); 965 spin_unlock(&inode->i_lock); 966 } 967 return de; 968 } 969 EXPORT_SYMBOL(d_find_alias); 970 971 /* 972 * Try to kill dentries associated with this inode. 973 * WARNING: you must own a reference to inode. 974 */ 975 void d_prune_aliases(struct inode *inode) 976 { 977 struct dentry *dentry; 978 restart: 979 spin_lock(&inode->i_lock); 980 hlist_for_each_entry(dentry, &inode->i_dentry, d_u.d_alias) { 981 spin_lock(&dentry->d_lock); 982 if (!dentry->d_lockref.count) { 983 struct dentry *parent = lock_parent(dentry); 984 if (likely(!dentry->d_lockref.count)) { 985 __dentry_kill(dentry); 986 dput(parent); 987 goto restart; 988 } 989 if (parent) 990 spin_unlock(&parent->d_lock); 991 } 992 spin_unlock(&dentry->d_lock); 993 } 994 spin_unlock(&inode->i_lock); 995 } 996 EXPORT_SYMBOL(d_prune_aliases); 997 998 /* 999 * Lock a dentry from shrink list. 1000 * Called under rcu_read_lock() and dentry->d_lock; the former 1001 * guarantees that nothing we access will be freed under us. 1002 * Note that dentry is *not* protected from concurrent dentry_kill(), 1003 * d_delete(), etc. 1004 * 1005 * Return false if dentry has been disrupted or grabbed, leaving 1006 * the caller to kick it off-list. Otherwise, return true and have 1007 * that dentry's inode and parent both locked. 1008 */ 1009 static bool shrink_lock_dentry(struct dentry *dentry) 1010 { 1011 struct inode *inode; 1012 struct dentry *parent; 1013 1014 if (dentry->d_lockref.count) 1015 return false; 1016 1017 inode = dentry->d_inode; 1018 if (inode && unlikely(!spin_trylock(&inode->i_lock))) { 1019 spin_unlock(&dentry->d_lock); 1020 spin_lock(&inode->i_lock); 1021 spin_lock(&dentry->d_lock); 1022 if (unlikely(dentry->d_lockref.count)) 1023 goto out; 1024 /* changed inode means that somebody had grabbed it */ 1025 if (unlikely(inode != dentry->d_inode)) 1026 goto out; 1027 } 1028 1029 parent = dentry->d_parent; 1030 if (IS_ROOT(dentry) || likely(spin_trylock(&parent->d_lock))) 1031 return true; 1032 1033 spin_unlock(&dentry->d_lock); 1034 spin_lock(&parent->d_lock); 1035 if (unlikely(parent != dentry->d_parent)) { 1036 spin_unlock(&parent->d_lock); 1037 spin_lock(&dentry->d_lock); 1038 goto out; 1039 } 1040 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED); 1041 if (likely(!dentry->d_lockref.count)) 1042 return true; 1043 spin_unlock(&parent->d_lock); 1044 out: 1045 if (inode) 1046 spin_unlock(&inode->i_lock); 1047 return false; 1048 } 1049 1050 static void shrink_dentry_list(struct list_head *list) 1051 { 1052 while (!list_empty(list)) { 1053 struct dentry *dentry, *parent; 1054 1055 cond_resched(); 1056 1057 dentry = list_entry(list->prev, struct dentry, d_lru); 1058 spin_lock(&dentry->d_lock); 1059 rcu_read_lock(); 1060 if (!shrink_lock_dentry(dentry)) { 1061 bool can_free = false; 1062 rcu_read_unlock(); 1063 d_shrink_del(dentry); 1064 if (dentry->d_lockref.count < 0) 1065 can_free = dentry->d_flags & DCACHE_MAY_FREE; 1066 spin_unlock(&dentry->d_lock); 1067 if (can_free) 1068 dentry_free(dentry); 1069 continue; 1070 } 1071 rcu_read_unlock(); 1072 d_shrink_del(dentry); 1073 parent = dentry->d_parent; 1074 __dentry_kill(dentry); 1075 if (parent == dentry) 1076 continue; 1077 /* 1078 * We need to prune ancestors too. This is necessary to prevent 1079 * quadratic behavior of shrink_dcache_parent(), but is also 1080 * expected to be beneficial in reducing dentry cache 1081 * fragmentation. 1082 */ 1083 dentry = parent; 1084 while (dentry && !lockref_put_or_lock(&dentry->d_lockref)) 1085 dentry = dentry_kill(dentry); 1086 } 1087 } 1088 1089 static enum lru_status dentry_lru_isolate(struct list_head *item, 1090 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg) 1091 { 1092 struct list_head *freeable = arg; 1093 struct dentry *dentry = container_of(item, struct dentry, d_lru); 1094 1095 1096 /* 1097 * we are inverting the lru lock/dentry->d_lock here, 1098 * so use a trylock. If we fail to get the lock, just skip 1099 * it 1100 */ 1101 if (!spin_trylock(&dentry->d_lock)) 1102 return LRU_SKIP; 1103 1104 /* 1105 * Referenced dentries are still in use. If they have active 1106 * counts, just remove them from the LRU. Otherwise give them 1107 * another pass through the LRU. 1108 */ 1109 if (dentry->d_lockref.count) { 1110 d_lru_isolate(lru, dentry); 1111 spin_unlock(&dentry->d_lock); 1112 return LRU_REMOVED; 1113 } 1114 1115 if (dentry->d_flags & DCACHE_REFERENCED) { 1116 dentry->d_flags &= ~DCACHE_REFERENCED; 1117 spin_unlock(&dentry->d_lock); 1118 1119 /* 1120 * The list move itself will be made by the common LRU code. At 1121 * this point, we've dropped the dentry->d_lock but keep the 1122 * lru lock. This is safe to do, since every list movement is 1123 * protected by the lru lock even if both locks are held. 1124 * 1125 * This is guaranteed by the fact that all LRU management 1126 * functions are intermediated by the LRU API calls like 1127 * list_lru_add and list_lru_del. List movement in this file 1128 * only ever occur through this functions or through callbacks 1129 * like this one, that are called from the LRU API. 1130 * 1131 * The only exceptions to this are functions like 1132 * shrink_dentry_list, and code that first checks for the 1133 * DCACHE_SHRINK_LIST flag. Those are guaranteed to be 1134 * operating only with stack provided lists after they are 1135 * properly isolated from the main list. It is thus, always a 1136 * local access. 1137 */ 1138 return LRU_ROTATE; 1139 } 1140 1141 d_lru_shrink_move(lru, dentry, freeable); 1142 spin_unlock(&dentry->d_lock); 1143 1144 return LRU_REMOVED; 1145 } 1146 1147 /** 1148 * prune_dcache_sb - shrink the dcache 1149 * @sb: superblock 1150 * @sc: shrink control, passed to list_lru_shrink_walk() 1151 * 1152 * Attempt to shrink the superblock dcache LRU by @sc->nr_to_scan entries. This 1153 * is done when we need more memory and called from the superblock shrinker 1154 * function. 1155 * 1156 * This function may fail to free any resources if all the dentries are in 1157 * use. 1158 */ 1159 long prune_dcache_sb(struct super_block *sb, struct shrink_control *sc) 1160 { 1161 LIST_HEAD(dispose); 1162 long freed; 1163 1164 freed = list_lru_shrink_walk(&sb->s_dentry_lru, sc, 1165 dentry_lru_isolate, &dispose); 1166 shrink_dentry_list(&dispose); 1167 return freed; 1168 } 1169 1170 static enum lru_status dentry_lru_isolate_shrink(struct list_head *item, 1171 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg) 1172 { 1173 struct list_head *freeable = arg; 1174 struct dentry *dentry = container_of(item, struct dentry, d_lru); 1175 1176 /* 1177 * we are inverting the lru lock/dentry->d_lock here, 1178 * so use a trylock. If we fail to get the lock, just skip 1179 * it 1180 */ 1181 if (!spin_trylock(&dentry->d_lock)) 1182 return LRU_SKIP; 1183 1184 d_lru_shrink_move(lru, dentry, freeable); 1185 spin_unlock(&dentry->d_lock); 1186 1187 return LRU_REMOVED; 1188 } 1189 1190 1191 /** 1192 * shrink_dcache_sb - shrink dcache for a superblock 1193 * @sb: superblock 1194 * 1195 * Shrink the dcache for the specified super block. This is used to free 1196 * the dcache before unmounting a file system. 1197 */ 1198 void shrink_dcache_sb(struct super_block *sb) 1199 { 1200 long freed; 1201 1202 do { 1203 LIST_HEAD(dispose); 1204 1205 freed = list_lru_walk(&sb->s_dentry_lru, 1206 dentry_lru_isolate_shrink, &dispose, 1024); 1207 1208 this_cpu_sub(nr_dentry_unused, freed); 1209 shrink_dentry_list(&dispose); 1210 } while (list_lru_count(&sb->s_dentry_lru) > 0); 1211 } 1212 EXPORT_SYMBOL(shrink_dcache_sb); 1213 1214 /** 1215 * enum d_walk_ret - action to talke during tree walk 1216 * @D_WALK_CONTINUE: contrinue walk 1217 * @D_WALK_QUIT: quit walk 1218 * @D_WALK_NORETRY: quit when retry is needed 1219 * @D_WALK_SKIP: skip this dentry and its children 1220 */ 1221 enum d_walk_ret { 1222 D_WALK_CONTINUE, 1223 D_WALK_QUIT, 1224 D_WALK_NORETRY, 1225 D_WALK_SKIP, 1226 }; 1227 1228 /** 1229 * d_walk - walk the dentry tree 1230 * @parent: start of walk 1231 * @data: data passed to @enter() and @finish() 1232 * @enter: callback when first entering the dentry 1233 * @finish: callback when successfully finished the walk 1234 * 1235 * The @enter() and @finish() callbacks are called with d_lock held. 1236 */ 1237 static void d_walk(struct dentry *parent, void *data, 1238 enum d_walk_ret (*enter)(void *, struct dentry *), 1239 void (*finish)(void *)) 1240 { 1241 struct dentry *this_parent; 1242 struct list_head *next; 1243 unsigned seq = 0; 1244 enum d_walk_ret ret; 1245 bool retry = true; 1246 1247 again: 1248 read_seqbegin_or_lock(&rename_lock, &seq); 1249 this_parent = parent; 1250 spin_lock(&this_parent->d_lock); 1251 1252 ret = enter(data, this_parent); 1253 switch (ret) { 1254 case D_WALK_CONTINUE: 1255 break; 1256 case D_WALK_QUIT: 1257 case D_WALK_SKIP: 1258 goto out_unlock; 1259 case D_WALK_NORETRY: 1260 retry = false; 1261 break; 1262 } 1263 repeat: 1264 next = this_parent->d_subdirs.next; 1265 resume: 1266 while (next != &this_parent->d_subdirs) { 1267 struct list_head *tmp = next; 1268 struct dentry *dentry = list_entry(tmp, struct dentry, d_child); 1269 next = tmp->next; 1270 1271 if (unlikely(dentry->d_flags & DCACHE_DENTRY_CURSOR)) 1272 continue; 1273 1274 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED); 1275 1276 ret = enter(data, dentry); 1277 switch (ret) { 1278 case D_WALK_CONTINUE: 1279 break; 1280 case D_WALK_QUIT: 1281 spin_unlock(&dentry->d_lock); 1282 goto out_unlock; 1283 case D_WALK_NORETRY: 1284 retry = false; 1285 break; 1286 case D_WALK_SKIP: 1287 spin_unlock(&dentry->d_lock); 1288 continue; 1289 } 1290 1291 if (!list_empty(&dentry->d_subdirs)) { 1292 spin_unlock(&this_parent->d_lock); 1293 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_); 1294 this_parent = dentry; 1295 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_); 1296 goto repeat; 1297 } 1298 spin_unlock(&dentry->d_lock); 1299 } 1300 /* 1301 * All done at this level ... ascend and resume the search. 1302 */ 1303 rcu_read_lock(); 1304 ascend: 1305 if (this_parent != parent) { 1306 struct dentry *child = this_parent; 1307 this_parent = child->d_parent; 1308 1309 spin_unlock(&child->d_lock); 1310 spin_lock(&this_parent->d_lock); 1311 1312 /* might go back up the wrong parent if we have had a rename. */ 1313 if (need_seqretry(&rename_lock, seq)) 1314 goto rename_retry; 1315 /* go into the first sibling still alive */ 1316 do { 1317 next = child->d_child.next; 1318 if (next == &this_parent->d_subdirs) 1319 goto ascend; 1320 child = list_entry(next, struct dentry, d_child); 1321 } while (unlikely(child->d_flags & DCACHE_DENTRY_KILLED)); 1322 rcu_read_unlock(); 1323 goto resume; 1324 } 1325 if (need_seqretry(&rename_lock, seq)) 1326 goto rename_retry; 1327 rcu_read_unlock(); 1328 if (finish) 1329 finish(data); 1330 1331 out_unlock: 1332 spin_unlock(&this_parent->d_lock); 1333 done_seqretry(&rename_lock, seq); 1334 return; 1335 1336 rename_retry: 1337 spin_unlock(&this_parent->d_lock); 1338 rcu_read_unlock(); 1339 BUG_ON(seq & 1); 1340 if (!retry) 1341 return; 1342 seq = 1; 1343 goto again; 1344 } 1345 1346 struct check_mount { 1347 struct vfsmount *mnt; 1348 unsigned int mounted; 1349 }; 1350 1351 static enum d_walk_ret path_check_mount(void *data, struct dentry *dentry) 1352 { 1353 struct check_mount *info = data; 1354 struct path path = { .mnt = info->mnt, .dentry = dentry }; 1355 1356 if (likely(!d_mountpoint(dentry))) 1357 return D_WALK_CONTINUE; 1358 if (__path_is_mountpoint(&path)) { 1359 info->mounted = 1; 1360 return D_WALK_QUIT; 1361 } 1362 return D_WALK_CONTINUE; 1363 } 1364 1365 /** 1366 * path_has_submounts - check for mounts over a dentry in the 1367 * current namespace. 1368 * @parent: path to check. 1369 * 1370 * Return true if the parent or its subdirectories contain 1371 * a mount point in the current namespace. 1372 */ 1373 int path_has_submounts(const struct path *parent) 1374 { 1375 struct check_mount data = { .mnt = parent->mnt, .mounted = 0 }; 1376 1377 read_seqlock_excl(&mount_lock); 1378 d_walk(parent->dentry, &data, path_check_mount, NULL); 1379 read_sequnlock_excl(&mount_lock); 1380 1381 return data.mounted; 1382 } 1383 EXPORT_SYMBOL(path_has_submounts); 1384 1385 /* 1386 * Called by mount code to set a mountpoint and check if the mountpoint is 1387 * reachable (e.g. NFS can unhash a directory dentry and then the complete 1388 * subtree can become unreachable). 1389 * 1390 * Only one of d_invalidate() and d_set_mounted() must succeed. For 1391 * this reason take rename_lock and d_lock on dentry and ancestors. 1392 */ 1393 int d_set_mounted(struct dentry *dentry) 1394 { 1395 struct dentry *p; 1396 int ret = -ENOENT; 1397 write_seqlock(&rename_lock); 1398 for (p = dentry->d_parent; !IS_ROOT(p); p = p->d_parent) { 1399 /* Need exclusion wrt. d_invalidate() */ 1400 spin_lock(&p->d_lock); 1401 if (unlikely(d_unhashed(p))) { 1402 spin_unlock(&p->d_lock); 1403 goto out; 1404 } 1405 spin_unlock(&p->d_lock); 1406 } 1407 spin_lock(&dentry->d_lock); 1408 if (!d_unlinked(dentry)) { 1409 ret = -EBUSY; 1410 if (!d_mountpoint(dentry)) { 1411 dentry->d_flags |= DCACHE_MOUNTED; 1412 ret = 0; 1413 } 1414 } 1415 spin_unlock(&dentry->d_lock); 1416 out: 1417 write_sequnlock(&rename_lock); 1418 return ret; 1419 } 1420 1421 /* 1422 * Search the dentry child list of the specified parent, 1423 * and move any unused dentries to the end of the unused 1424 * list for prune_dcache(). We descend to the next level 1425 * whenever the d_subdirs list is non-empty and continue 1426 * searching. 1427 * 1428 * It returns zero iff there are no unused children, 1429 * otherwise it returns the number of children moved to 1430 * the end of the unused list. This may not be the total 1431 * number of unused children, because select_parent can 1432 * drop the lock and return early due to latency 1433 * constraints. 1434 */ 1435 1436 struct select_data { 1437 struct dentry *start; 1438 struct list_head dispose; 1439 int found; 1440 }; 1441 1442 static enum d_walk_ret select_collect(void *_data, struct dentry *dentry) 1443 { 1444 struct select_data *data = _data; 1445 enum d_walk_ret ret = D_WALK_CONTINUE; 1446 1447 if (data->start == dentry) 1448 goto out; 1449 1450 if (dentry->d_flags & DCACHE_SHRINK_LIST) { 1451 data->found++; 1452 } else { 1453 if (dentry->d_flags & DCACHE_LRU_LIST) 1454 d_lru_del(dentry); 1455 if (!dentry->d_lockref.count) { 1456 d_shrink_add(dentry, &data->dispose); 1457 data->found++; 1458 } 1459 } 1460 /* 1461 * We can return to the caller if we have found some (this 1462 * ensures forward progress). We'll be coming back to find 1463 * the rest. 1464 */ 1465 if (!list_empty(&data->dispose)) 1466 ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY; 1467 out: 1468 return ret; 1469 } 1470 1471 /** 1472 * shrink_dcache_parent - prune dcache 1473 * @parent: parent of entries to prune 1474 * 1475 * Prune the dcache to remove unused children of the parent dentry. 1476 */ 1477 void shrink_dcache_parent(struct dentry *parent) 1478 { 1479 for (;;) { 1480 struct select_data data; 1481 1482 INIT_LIST_HEAD(&data.dispose); 1483 data.start = parent; 1484 data.found = 0; 1485 1486 d_walk(parent, &data, select_collect, NULL); 1487 if (!data.found) 1488 break; 1489 1490 shrink_dentry_list(&data.dispose); 1491 } 1492 } 1493 EXPORT_SYMBOL(shrink_dcache_parent); 1494 1495 static enum d_walk_ret umount_check(void *_data, struct dentry *dentry) 1496 { 1497 /* it has busy descendents; complain about those instead */ 1498 if (!list_empty(&dentry->d_subdirs)) 1499 return D_WALK_CONTINUE; 1500 1501 /* root with refcount 1 is fine */ 1502 if (dentry == _data && dentry->d_lockref.count == 1) 1503 return D_WALK_CONTINUE; 1504 1505 printk(KERN_ERR "BUG: Dentry %p{i=%lx,n=%pd} " 1506 " still in use (%d) [unmount of %s %s]\n", 1507 dentry, 1508 dentry->d_inode ? 1509 dentry->d_inode->i_ino : 0UL, 1510 dentry, 1511 dentry->d_lockref.count, 1512 dentry->d_sb->s_type->name, 1513 dentry->d_sb->s_id); 1514 WARN_ON(1); 1515 return D_WALK_CONTINUE; 1516 } 1517 1518 static void do_one_tree(struct dentry *dentry) 1519 { 1520 shrink_dcache_parent(dentry); 1521 d_walk(dentry, dentry, umount_check, NULL); 1522 d_drop(dentry); 1523 dput(dentry); 1524 } 1525 1526 /* 1527 * destroy the dentries attached to a superblock on unmounting 1528 */ 1529 void shrink_dcache_for_umount(struct super_block *sb) 1530 { 1531 struct dentry *dentry; 1532 1533 WARN(down_read_trylock(&sb->s_umount), "s_umount should've been locked"); 1534 1535 dentry = sb->s_root; 1536 sb->s_root = NULL; 1537 do_one_tree(dentry); 1538 1539 while (!hlist_bl_empty(&sb->s_roots)) { 1540 dentry = dget(hlist_bl_entry(hlist_bl_first(&sb->s_roots), struct dentry, d_hash)); 1541 do_one_tree(dentry); 1542 } 1543 } 1544 1545 struct detach_data { 1546 struct select_data select; 1547 struct dentry *mountpoint; 1548 }; 1549 static enum d_walk_ret detach_and_collect(void *_data, struct dentry *dentry) 1550 { 1551 struct detach_data *data = _data; 1552 1553 if (d_mountpoint(dentry)) { 1554 __dget_dlock(dentry); 1555 data->mountpoint = dentry; 1556 return D_WALK_QUIT; 1557 } 1558 1559 return select_collect(&data->select, dentry); 1560 } 1561 1562 static void check_and_drop(void *_data) 1563 { 1564 struct detach_data *data = _data; 1565 1566 if (!data->mountpoint && list_empty(&data->select.dispose)) 1567 __d_drop(data->select.start); 1568 } 1569 1570 /** 1571 * d_invalidate - detach submounts, prune dcache, and drop 1572 * @dentry: dentry to invalidate (aka detach, prune and drop) 1573 * 1574 * no dcache lock. 1575 * 1576 * The final d_drop is done as an atomic operation relative to 1577 * rename_lock ensuring there are no races with d_set_mounted. This 1578 * ensures there are no unhashed dentries on the path to a mountpoint. 1579 */ 1580 void d_invalidate(struct dentry *dentry) 1581 { 1582 /* 1583 * If it's already been dropped, return OK. 1584 */ 1585 spin_lock(&dentry->d_lock); 1586 if (d_unhashed(dentry)) { 1587 spin_unlock(&dentry->d_lock); 1588 return; 1589 } 1590 spin_unlock(&dentry->d_lock); 1591 1592 /* Negative dentries can be dropped without further checks */ 1593 if (!dentry->d_inode) { 1594 d_drop(dentry); 1595 return; 1596 } 1597 1598 for (;;) { 1599 struct detach_data data; 1600 1601 data.mountpoint = NULL; 1602 INIT_LIST_HEAD(&data.select.dispose); 1603 data.select.start = dentry; 1604 data.select.found = 0; 1605 1606 d_walk(dentry, &data, detach_and_collect, check_and_drop); 1607 1608 if (!list_empty(&data.select.dispose)) 1609 shrink_dentry_list(&data.select.dispose); 1610 else if (!data.mountpoint) 1611 return; 1612 1613 if (data.mountpoint) { 1614 detach_mounts(data.mountpoint); 1615 dput(data.mountpoint); 1616 } 1617 } 1618 } 1619 EXPORT_SYMBOL(d_invalidate); 1620 1621 /** 1622 * __d_alloc - allocate a dcache entry 1623 * @sb: filesystem it will belong to 1624 * @name: qstr of the name 1625 * 1626 * Allocates a dentry. It returns %NULL if there is insufficient memory 1627 * available. On a success the dentry is returned. The name passed in is 1628 * copied and the copy passed in may be reused after this call. 1629 */ 1630 1631 struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name) 1632 { 1633 struct external_name *ext = NULL; 1634 struct dentry *dentry; 1635 char *dname; 1636 int err; 1637 1638 dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL); 1639 if (!dentry) 1640 return NULL; 1641 1642 /* 1643 * We guarantee that the inline name is always NUL-terminated. 1644 * This way the memcpy() done by the name switching in rename 1645 * will still always have a NUL at the end, even if we might 1646 * be overwriting an internal NUL character 1647 */ 1648 dentry->d_iname[DNAME_INLINE_LEN-1] = 0; 1649 if (unlikely(!name)) { 1650 name = &slash_name; 1651 dname = dentry->d_iname; 1652 } else if (name->len > DNAME_INLINE_LEN-1) { 1653 size_t size = offsetof(struct external_name, name[1]); 1654 1655 ext = kmalloc(size + name->len, GFP_KERNEL_ACCOUNT); 1656 if (!ext) { 1657 kmem_cache_free(dentry_cache, dentry); 1658 return NULL; 1659 } 1660 atomic_set(&ext->u.count, 1); 1661 dname = ext->name; 1662 } else { 1663 dname = dentry->d_iname; 1664 } 1665 1666 dentry->d_name.len = name->len; 1667 dentry->d_name.hash = name->hash; 1668 memcpy(dname, name->name, name->len); 1669 dname[name->len] = 0; 1670 1671 /* Make sure we always see the terminating NUL character */ 1672 smp_store_release(&dentry->d_name.name, dname); /* ^^^ */ 1673 1674 dentry->d_lockref.count = 1; 1675 dentry->d_flags = 0; 1676 spin_lock_init(&dentry->d_lock); 1677 seqcount_init(&dentry->d_seq); 1678 dentry->d_inode = NULL; 1679 dentry->d_parent = dentry; 1680 dentry->d_sb = sb; 1681 dentry->d_op = NULL; 1682 dentry->d_fsdata = NULL; 1683 INIT_HLIST_BL_NODE(&dentry->d_hash); 1684 INIT_LIST_HEAD(&dentry->d_lru); 1685 INIT_LIST_HEAD(&dentry->d_subdirs); 1686 INIT_HLIST_NODE(&dentry->d_u.d_alias); 1687 INIT_LIST_HEAD(&dentry->d_child); 1688 d_set_d_op(dentry, dentry->d_sb->s_d_op); 1689 1690 if (dentry->d_op && dentry->d_op->d_init) { 1691 err = dentry->d_op->d_init(dentry); 1692 if (err) { 1693 if (dname_external(dentry)) 1694 kfree(external_name(dentry)); 1695 kmem_cache_free(dentry_cache, dentry); 1696 return NULL; 1697 } 1698 } 1699 1700 if (unlikely(ext)) { 1701 pg_data_t *pgdat = page_pgdat(virt_to_page(ext)); 1702 mod_node_page_state(pgdat, NR_INDIRECTLY_RECLAIMABLE_BYTES, 1703 ksize(ext)); 1704 } 1705 1706 this_cpu_inc(nr_dentry); 1707 1708 return dentry; 1709 } 1710 1711 /** 1712 * d_alloc - allocate a dcache entry 1713 * @parent: parent of entry to allocate 1714 * @name: qstr of the name 1715 * 1716 * Allocates a dentry. It returns %NULL if there is insufficient memory 1717 * available. On a success the dentry is returned. The name passed in is 1718 * copied and the copy passed in may be reused after this call. 1719 */ 1720 struct dentry *d_alloc(struct dentry * parent, const struct qstr *name) 1721 { 1722 struct dentry *dentry = __d_alloc(parent->d_sb, name); 1723 if (!dentry) 1724 return NULL; 1725 dentry->d_flags |= DCACHE_RCUACCESS; 1726 spin_lock(&parent->d_lock); 1727 /* 1728 * don't need child lock because it is not subject 1729 * to concurrency here 1730 */ 1731 __dget_dlock(parent); 1732 dentry->d_parent = parent; 1733 list_add(&dentry->d_child, &parent->d_subdirs); 1734 spin_unlock(&parent->d_lock); 1735 1736 return dentry; 1737 } 1738 EXPORT_SYMBOL(d_alloc); 1739 1740 struct dentry *d_alloc_anon(struct super_block *sb) 1741 { 1742 return __d_alloc(sb, NULL); 1743 } 1744 EXPORT_SYMBOL(d_alloc_anon); 1745 1746 struct dentry *d_alloc_cursor(struct dentry * parent) 1747 { 1748 struct dentry *dentry = d_alloc_anon(parent->d_sb); 1749 if (dentry) { 1750 dentry->d_flags |= DCACHE_RCUACCESS | DCACHE_DENTRY_CURSOR; 1751 dentry->d_parent = dget(parent); 1752 } 1753 return dentry; 1754 } 1755 1756 /** 1757 * d_alloc_pseudo - allocate a dentry (for lookup-less filesystems) 1758 * @sb: the superblock 1759 * @name: qstr of the name 1760 * 1761 * For a filesystem that just pins its dentries in memory and never 1762 * performs lookups at all, return an unhashed IS_ROOT dentry. 1763 */ 1764 struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name) 1765 { 1766 return __d_alloc(sb, name); 1767 } 1768 EXPORT_SYMBOL(d_alloc_pseudo); 1769 1770 struct dentry *d_alloc_name(struct dentry *parent, const char *name) 1771 { 1772 struct qstr q; 1773 1774 q.name = name; 1775 q.hash_len = hashlen_string(parent, name); 1776 return d_alloc(parent, &q); 1777 } 1778 EXPORT_SYMBOL(d_alloc_name); 1779 1780 void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op) 1781 { 1782 WARN_ON_ONCE(dentry->d_op); 1783 WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH | 1784 DCACHE_OP_COMPARE | 1785 DCACHE_OP_REVALIDATE | 1786 DCACHE_OP_WEAK_REVALIDATE | 1787 DCACHE_OP_DELETE | 1788 DCACHE_OP_REAL)); 1789 dentry->d_op = op; 1790 if (!op) 1791 return; 1792 if (op->d_hash) 1793 dentry->d_flags |= DCACHE_OP_HASH; 1794 if (op->d_compare) 1795 dentry->d_flags |= DCACHE_OP_COMPARE; 1796 if (op->d_revalidate) 1797 dentry->d_flags |= DCACHE_OP_REVALIDATE; 1798 if (op->d_weak_revalidate) 1799 dentry->d_flags |= DCACHE_OP_WEAK_REVALIDATE; 1800 if (op->d_delete) 1801 dentry->d_flags |= DCACHE_OP_DELETE; 1802 if (op->d_prune) 1803 dentry->d_flags |= DCACHE_OP_PRUNE; 1804 if (op->d_real) 1805 dentry->d_flags |= DCACHE_OP_REAL; 1806 1807 } 1808 EXPORT_SYMBOL(d_set_d_op); 1809 1810 1811 /* 1812 * d_set_fallthru - Mark a dentry as falling through to a lower layer 1813 * @dentry - The dentry to mark 1814 * 1815 * Mark a dentry as falling through to the lower layer (as set with 1816 * d_pin_lower()). This flag may be recorded on the medium. 1817 */ 1818 void d_set_fallthru(struct dentry *dentry) 1819 { 1820 spin_lock(&dentry->d_lock); 1821 dentry->d_flags |= DCACHE_FALLTHRU; 1822 spin_unlock(&dentry->d_lock); 1823 } 1824 EXPORT_SYMBOL(d_set_fallthru); 1825 1826 static unsigned d_flags_for_inode(struct inode *inode) 1827 { 1828 unsigned add_flags = DCACHE_REGULAR_TYPE; 1829 1830 if (!inode) 1831 return DCACHE_MISS_TYPE; 1832 1833 if (S_ISDIR(inode->i_mode)) { 1834 add_flags = DCACHE_DIRECTORY_TYPE; 1835 if (unlikely(!(inode->i_opflags & IOP_LOOKUP))) { 1836 if (unlikely(!inode->i_op->lookup)) 1837 add_flags = DCACHE_AUTODIR_TYPE; 1838 else 1839 inode->i_opflags |= IOP_LOOKUP; 1840 } 1841 goto type_determined; 1842 } 1843 1844 if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) { 1845 if (unlikely(inode->i_op->get_link)) { 1846 add_flags = DCACHE_SYMLINK_TYPE; 1847 goto type_determined; 1848 } 1849 inode->i_opflags |= IOP_NOFOLLOW; 1850 } 1851 1852 if (unlikely(!S_ISREG(inode->i_mode))) 1853 add_flags = DCACHE_SPECIAL_TYPE; 1854 1855 type_determined: 1856 if (unlikely(IS_AUTOMOUNT(inode))) 1857 add_flags |= DCACHE_NEED_AUTOMOUNT; 1858 return add_flags; 1859 } 1860 1861 static void __d_instantiate(struct dentry *dentry, struct inode *inode) 1862 { 1863 unsigned add_flags = d_flags_for_inode(inode); 1864 WARN_ON(d_in_lookup(dentry)); 1865 1866 spin_lock(&dentry->d_lock); 1867 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry); 1868 raw_write_seqcount_begin(&dentry->d_seq); 1869 __d_set_inode_and_type(dentry, inode, add_flags); 1870 raw_write_seqcount_end(&dentry->d_seq); 1871 fsnotify_update_flags(dentry); 1872 spin_unlock(&dentry->d_lock); 1873 } 1874 1875 /** 1876 * d_instantiate - fill in inode information for a dentry 1877 * @entry: dentry to complete 1878 * @inode: inode to attach to this dentry 1879 * 1880 * Fill in inode information in the entry. 1881 * 1882 * This turns negative dentries into productive full members 1883 * of society. 1884 * 1885 * NOTE! This assumes that the inode count has been incremented 1886 * (or otherwise set) by the caller to indicate that it is now 1887 * in use by the dcache. 1888 */ 1889 1890 void d_instantiate(struct dentry *entry, struct inode * inode) 1891 { 1892 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias)); 1893 if (inode) { 1894 security_d_instantiate(entry, inode); 1895 spin_lock(&inode->i_lock); 1896 __d_instantiate(entry, inode); 1897 spin_unlock(&inode->i_lock); 1898 } 1899 } 1900 EXPORT_SYMBOL(d_instantiate); 1901 1902 /* 1903 * This should be equivalent to d_instantiate() + unlock_new_inode(), 1904 * with lockdep-related part of unlock_new_inode() done before 1905 * anything else. Use that instead of open-coding d_instantiate()/ 1906 * unlock_new_inode() combinations. 1907 */ 1908 void d_instantiate_new(struct dentry *entry, struct inode *inode) 1909 { 1910 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias)); 1911 BUG_ON(!inode); 1912 lockdep_annotate_inode_mutex_key(inode); 1913 security_d_instantiate(entry, inode); 1914 spin_lock(&inode->i_lock); 1915 __d_instantiate(entry, inode); 1916 WARN_ON(!(inode->i_state & I_NEW)); 1917 inode->i_state &= ~I_NEW; 1918 smp_mb(); 1919 wake_up_bit(&inode->i_state, __I_NEW); 1920 spin_unlock(&inode->i_lock); 1921 } 1922 EXPORT_SYMBOL(d_instantiate_new); 1923 1924 /** 1925 * d_instantiate_no_diralias - instantiate a non-aliased dentry 1926 * @entry: dentry to complete 1927 * @inode: inode to attach to this dentry 1928 * 1929 * Fill in inode information in the entry. If a directory alias is found, then 1930 * return an error (and drop inode). Together with d_materialise_unique() this 1931 * guarantees that a directory inode may never have more than one alias. 1932 */ 1933 int d_instantiate_no_diralias(struct dentry *entry, struct inode *inode) 1934 { 1935 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias)); 1936 1937 security_d_instantiate(entry, inode); 1938 spin_lock(&inode->i_lock); 1939 if (S_ISDIR(inode->i_mode) && !hlist_empty(&inode->i_dentry)) { 1940 spin_unlock(&inode->i_lock); 1941 iput(inode); 1942 return -EBUSY; 1943 } 1944 __d_instantiate(entry, inode); 1945 spin_unlock(&inode->i_lock); 1946 1947 return 0; 1948 } 1949 EXPORT_SYMBOL(d_instantiate_no_diralias); 1950 1951 struct dentry *d_make_root(struct inode *root_inode) 1952 { 1953 struct dentry *res = NULL; 1954 1955 if (root_inode) { 1956 res = d_alloc_anon(root_inode->i_sb); 1957 if (res) 1958 d_instantiate(res, root_inode); 1959 else 1960 iput(root_inode); 1961 } 1962 return res; 1963 } 1964 EXPORT_SYMBOL(d_make_root); 1965 1966 static struct dentry * __d_find_any_alias(struct inode *inode) 1967 { 1968 struct dentry *alias; 1969 1970 if (hlist_empty(&inode->i_dentry)) 1971 return NULL; 1972 alias = hlist_entry(inode->i_dentry.first, struct dentry, d_u.d_alias); 1973 __dget(alias); 1974 return alias; 1975 } 1976 1977 /** 1978 * d_find_any_alias - find any alias for a given inode 1979 * @inode: inode to find an alias for 1980 * 1981 * If any aliases exist for the given inode, take and return a 1982 * reference for one of them. If no aliases exist, return %NULL. 1983 */ 1984 struct dentry *d_find_any_alias(struct inode *inode) 1985 { 1986 struct dentry *de; 1987 1988 spin_lock(&inode->i_lock); 1989 de = __d_find_any_alias(inode); 1990 spin_unlock(&inode->i_lock); 1991 return de; 1992 } 1993 EXPORT_SYMBOL(d_find_any_alias); 1994 1995 static struct dentry *__d_instantiate_anon(struct dentry *dentry, 1996 struct inode *inode, 1997 bool disconnected) 1998 { 1999 struct dentry *res; 2000 unsigned add_flags; 2001 2002 security_d_instantiate(dentry, inode); 2003 spin_lock(&inode->i_lock); 2004 res = __d_find_any_alias(inode); 2005 if (res) { 2006 spin_unlock(&inode->i_lock); 2007 dput(dentry); 2008 goto out_iput; 2009 } 2010 2011 /* attach a disconnected dentry */ 2012 add_flags = d_flags_for_inode(inode); 2013 2014 if (disconnected) 2015 add_flags |= DCACHE_DISCONNECTED; 2016 2017 spin_lock(&dentry->d_lock); 2018 __d_set_inode_and_type(dentry, inode, add_flags); 2019 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry); 2020 if (!disconnected) { 2021 hlist_bl_lock(&dentry->d_sb->s_roots); 2022 hlist_bl_add_head(&dentry->d_hash, &dentry->d_sb->s_roots); 2023 hlist_bl_unlock(&dentry->d_sb->s_roots); 2024 } 2025 spin_unlock(&dentry->d_lock); 2026 spin_unlock(&inode->i_lock); 2027 2028 return dentry; 2029 2030 out_iput: 2031 iput(inode); 2032 return res; 2033 } 2034 2035 struct dentry *d_instantiate_anon(struct dentry *dentry, struct inode *inode) 2036 { 2037 return __d_instantiate_anon(dentry, inode, true); 2038 } 2039 EXPORT_SYMBOL(d_instantiate_anon); 2040 2041 static struct dentry *__d_obtain_alias(struct inode *inode, bool disconnected) 2042 { 2043 struct dentry *tmp; 2044 struct dentry *res; 2045 2046 if (!inode) 2047 return ERR_PTR(-ESTALE); 2048 if (IS_ERR(inode)) 2049 return ERR_CAST(inode); 2050 2051 res = d_find_any_alias(inode); 2052 if (res) 2053 goto out_iput; 2054 2055 tmp = d_alloc_anon(inode->i_sb); 2056 if (!tmp) { 2057 res = ERR_PTR(-ENOMEM); 2058 goto out_iput; 2059 } 2060 2061 return __d_instantiate_anon(tmp, inode, disconnected); 2062 2063 out_iput: 2064 iput(inode); 2065 return res; 2066 } 2067 2068 /** 2069 * d_obtain_alias - find or allocate a DISCONNECTED dentry for a given inode 2070 * @inode: inode to allocate the dentry for 2071 * 2072 * Obtain a dentry for an inode resulting from NFS filehandle conversion or 2073 * similar open by handle operations. The returned dentry may be anonymous, 2074 * or may have a full name (if the inode was already in the cache). 2075 * 2076 * When called on a directory inode, we must ensure that the inode only ever 2077 * has one dentry. If a dentry is found, that is returned instead of 2078 * allocating a new one. 2079 * 2080 * On successful return, the reference to the inode has been transferred 2081 * to the dentry. In case of an error the reference on the inode is released. 2082 * To make it easier to use in export operations a %NULL or IS_ERR inode may 2083 * be passed in and the error will be propagated to the return value, 2084 * with a %NULL @inode replaced by ERR_PTR(-ESTALE). 2085 */ 2086 struct dentry *d_obtain_alias(struct inode *inode) 2087 { 2088 return __d_obtain_alias(inode, true); 2089 } 2090 EXPORT_SYMBOL(d_obtain_alias); 2091 2092 /** 2093 * d_obtain_root - find or allocate a dentry for a given inode 2094 * @inode: inode to allocate the dentry for 2095 * 2096 * Obtain an IS_ROOT dentry for the root of a filesystem. 2097 * 2098 * We must ensure that directory inodes only ever have one dentry. If a 2099 * dentry is found, that is returned instead of allocating a new one. 2100 * 2101 * On successful return, the reference to the inode has been transferred 2102 * to the dentry. In case of an error the reference on the inode is 2103 * released. A %NULL or IS_ERR inode may be passed in and will be the 2104 * error will be propagate to the return value, with a %NULL @inode 2105 * replaced by ERR_PTR(-ESTALE). 2106 */ 2107 struct dentry *d_obtain_root(struct inode *inode) 2108 { 2109 return __d_obtain_alias(inode, false); 2110 } 2111 EXPORT_SYMBOL(d_obtain_root); 2112 2113 /** 2114 * d_add_ci - lookup or allocate new dentry with case-exact name 2115 * @inode: the inode case-insensitive lookup has found 2116 * @dentry: the negative dentry that was passed to the parent's lookup func 2117 * @name: the case-exact name to be associated with the returned dentry 2118 * 2119 * This is to avoid filling the dcache with case-insensitive names to the 2120 * same inode, only the actual correct case is stored in the dcache for 2121 * case-insensitive filesystems. 2122 * 2123 * For a case-insensitive lookup match and if the the case-exact dentry 2124 * already exists in in the dcache, use it and return it. 2125 * 2126 * If no entry exists with the exact case name, allocate new dentry with 2127 * the exact case, and return the spliced entry. 2128 */ 2129 struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode, 2130 struct qstr *name) 2131 { 2132 struct dentry *found, *res; 2133 2134 /* 2135 * First check if a dentry matching the name already exists, 2136 * if not go ahead and create it now. 2137 */ 2138 found = d_hash_and_lookup(dentry->d_parent, name); 2139 if (found) { 2140 iput(inode); 2141 return found; 2142 } 2143 if (d_in_lookup(dentry)) { 2144 found = d_alloc_parallel(dentry->d_parent, name, 2145 dentry->d_wait); 2146 if (IS_ERR(found) || !d_in_lookup(found)) { 2147 iput(inode); 2148 return found; 2149 } 2150 } else { 2151 found = d_alloc(dentry->d_parent, name); 2152 if (!found) { 2153 iput(inode); 2154 return ERR_PTR(-ENOMEM); 2155 } 2156 } 2157 res = d_splice_alias(inode, found); 2158 if (res) { 2159 dput(found); 2160 return res; 2161 } 2162 return found; 2163 } 2164 EXPORT_SYMBOL(d_add_ci); 2165 2166 2167 static inline bool d_same_name(const struct dentry *dentry, 2168 const struct dentry *parent, 2169 const struct qstr *name) 2170 { 2171 if (likely(!(parent->d_flags & DCACHE_OP_COMPARE))) { 2172 if (dentry->d_name.len != name->len) 2173 return false; 2174 return dentry_cmp(dentry, name->name, name->len) == 0; 2175 } 2176 return parent->d_op->d_compare(dentry, 2177 dentry->d_name.len, dentry->d_name.name, 2178 name) == 0; 2179 } 2180 2181 /** 2182 * __d_lookup_rcu - search for a dentry (racy, store-free) 2183 * @parent: parent dentry 2184 * @name: qstr of name we wish to find 2185 * @seqp: returns d_seq value at the point where the dentry was found 2186 * Returns: dentry, or NULL 2187 * 2188 * __d_lookup_rcu is the dcache lookup function for rcu-walk name 2189 * resolution (store-free path walking) design described in 2190 * Documentation/filesystems/path-lookup.txt. 2191 * 2192 * This is not to be used outside core vfs. 2193 * 2194 * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock 2195 * held, and rcu_read_lock held. The returned dentry must not be stored into 2196 * without taking d_lock and checking d_seq sequence count against @seq 2197 * returned here. 2198 * 2199 * A refcount may be taken on the found dentry with the d_rcu_to_refcount 2200 * function. 2201 * 2202 * Alternatively, __d_lookup_rcu may be called again to look up the child of 2203 * the returned dentry, so long as its parent's seqlock is checked after the 2204 * child is looked up. Thus, an interlocking stepping of sequence lock checks 2205 * is formed, giving integrity down the path walk. 2206 * 2207 * NOTE! The caller *has* to check the resulting dentry against the sequence 2208 * number we've returned before using any of the resulting dentry state! 2209 */ 2210 struct dentry *__d_lookup_rcu(const struct dentry *parent, 2211 const struct qstr *name, 2212 unsigned *seqp) 2213 { 2214 u64 hashlen = name->hash_len; 2215 const unsigned char *str = name->name; 2216 struct hlist_bl_head *b = d_hash(hashlen_hash(hashlen)); 2217 struct hlist_bl_node *node; 2218 struct dentry *dentry; 2219 2220 /* 2221 * Note: There is significant duplication with __d_lookup_rcu which is 2222 * required to prevent single threaded performance regressions 2223 * especially on architectures where smp_rmb (in seqcounts) are costly. 2224 * Keep the two functions in sync. 2225 */ 2226 2227 /* 2228 * The hash list is protected using RCU. 2229 * 2230 * Carefully use d_seq when comparing a candidate dentry, to avoid 2231 * races with d_move(). 2232 * 2233 * It is possible that concurrent renames can mess up our list 2234 * walk here and result in missing our dentry, resulting in the 2235 * false-negative result. d_lookup() protects against concurrent 2236 * renames using rename_lock seqlock. 2237 * 2238 * See Documentation/filesystems/path-lookup.txt for more details. 2239 */ 2240 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) { 2241 unsigned seq; 2242 2243 seqretry: 2244 /* 2245 * The dentry sequence count protects us from concurrent 2246 * renames, and thus protects parent and name fields. 2247 * 2248 * The caller must perform a seqcount check in order 2249 * to do anything useful with the returned dentry. 2250 * 2251 * NOTE! We do a "raw" seqcount_begin here. That means that 2252 * we don't wait for the sequence count to stabilize if it 2253 * is in the middle of a sequence change. If we do the slow 2254 * dentry compare, we will do seqretries until it is stable, 2255 * and if we end up with a successful lookup, we actually 2256 * want to exit RCU lookup anyway. 2257 * 2258 * Note that raw_seqcount_begin still *does* smp_rmb(), so 2259 * we are still guaranteed NUL-termination of ->d_name.name. 2260 */ 2261 seq = raw_seqcount_begin(&dentry->d_seq); 2262 if (dentry->d_parent != parent) 2263 continue; 2264 if (d_unhashed(dentry)) 2265 continue; 2266 2267 if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) { 2268 int tlen; 2269 const char *tname; 2270 if (dentry->d_name.hash != hashlen_hash(hashlen)) 2271 continue; 2272 tlen = dentry->d_name.len; 2273 tname = dentry->d_name.name; 2274 /* we want a consistent (name,len) pair */ 2275 if (read_seqcount_retry(&dentry->d_seq, seq)) { 2276 cpu_relax(); 2277 goto seqretry; 2278 } 2279 if (parent->d_op->d_compare(dentry, 2280 tlen, tname, name) != 0) 2281 continue; 2282 } else { 2283 if (dentry->d_name.hash_len != hashlen) 2284 continue; 2285 if (dentry_cmp(dentry, str, hashlen_len(hashlen)) != 0) 2286 continue; 2287 } 2288 *seqp = seq; 2289 return dentry; 2290 } 2291 return NULL; 2292 } 2293 2294 /** 2295 * d_lookup - search for a dentry 2296 * @parent: parent dentry 2297 * @name: qstr of name we wish to find 2298 * Returns: dentry, or NULL 2299 * 2300 * d_lookup searches the children of the parent dentry for the name in 2301 * question. If the dentry is found its reference count is incremented and the 2302 * dentry is returned. The caller must use dput to free the entry when it has 2303 * finished using it. %NULL is returned if the dentry does not exist. 2304 */ 2305 struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name) 2306 { 2307 struct dentry *dentry; 2308 unsigned seq; 2309 2310 do { 2311 seq = read_seqbegin(&rename_lock); 2312 dentry = __d_lookup(parent, name); 2313 if (dentry) 2314 break; 2315 } while (read_seqretry(&rename_lock, seq)); 2316 return dentry; 2317 } 2318 EXPORT_SYMBOL(d_lookup); 2319 2320 /** 2321 * __d_lookup - search for a dentry (racy) 2322 * @parent: parent dentry 2323 * @name: qstr of name we wish to find 2324 * Returns: dentry, or NULL 2325 * 2326 * __d_lookup is like d_lookup, however it may (rarely) return a 2327 * false-negative result due to unrelated rename activity. 2328 * 2329 * __d_lookup is slightly faster by avoiding rename_lock read seqlock, 2330 * however it must be used carefully, eg. with a following d_lookup in 2331 * the case of failure. 2332 * 2333 * __d_lookup callers must be commented. 2334 */ 2335 struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name) 2336 { 2337 unsigned int hash = name->hash; 2338 struct hlist_bl_head *b = d_hash(hash); 2339 struct hlist_bl_node *node; 2340 struct dentry *found = NULL; 2341 struct dentry *dentry; 2342 2343 /* 2344 * Note: There is significant duplication with __d_lookup_rcu which is 2345 * required to prevent single threaded performance regressions 2346 * especially on architectures where smp_rmb (in seqcounts) are costly. 2347 * Keep the two functions in sync. 2348 */ 2349 2350 /* 2351 * The hash list is protected using RCU. 2352 * 2353 * Take d_lock when comparing a candidate dentry, to avoid races 2354 * with d_move(). 2355 * 2356 * It is possible that concurrent renames can mess up our list 2357 * walk here and result in missing our dentry, resulting in the 2358 * false-negative result. d_lookup() protects against concurrent 2359 * renames using rename_lock seqlock. 2360 * 2361 * See Documentation/filesystems/path-lookup.txt for more details. 2362 */ 2363 rcu_read_lock(); 2364 2365 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) { 2366 2367 if (dentry->d_name.hash != hash) 2368 continue; 2369 2370 spin_lock(&dentry->d_lock); 2371 if (dentry->d_parent != parent) 2372 goto next; 2373 if (d_unhashed(dentry)) 2374 goto next; 2375 2376 if (!d_same_name(dentry, parent, name)) 2377 goto next; 2378 2379 dentry->d_lockref.count++; 2380 found = dentry; 2381 spin_unlock(&dentry->d_lock); 2382 break; 2383 next: 2384 spin_unlock(&dentry->d_lock); 2385 } 2386 rcu_read_unlock(); 2387 2388 return found; 2389 } 2390 2391 /** 2392 * d_hash_and_lookup - hash the qstr then search for a dentry 2393 * @dir: Directory to search in 2394 * @name: qstr of name we wish to find 2395 * 2396 * On lookup failure NULL is returned; on bad name - ERR_PTR(-error) 2397 */ 2398 struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name) 2399 { 2400 /* 2401 * Check for a fs-specific hash function. Note that we must 2402 * calculate the standard hash first, as the d_op->d_hash() 2403 * routine may choose to leave the hash value unchanged. 2404 */ 2405 name->hash = full_name_hash(dir, name->name, name->len); 2406 if (dir->d_flags & DCACHE_OP_HASH) { 2407 int err = dir->d_op->d_hash(dir, name); 2408 if (unlikely(err < 0)) 2409 return ERR_PTR(err); 2410 } 2411 return d_lookup(dir, name); 2412 } 2413 EXPORT_SYMBOL(d_hash_and_lookup); 2414 2415 /* 2416 * When a file is deleted, we have two options: 2417 * - turn this dentry into a negative dentry 2418 * - unhash this dentry and free it. 2419 * 2420 * Usually, we want to just turn this into 2421 * a negative dentry, but if anybody else is 2422 * currently using the dentry or the inode 2423 * we can't do that and we fall back on removing 2424 * it from the hash queues and waiting for 2425 * it to be deleted later when it has no users 2426 */ 2427 2428 /** 2429 * d_delete - delete a dentry 2430 * @dentry: The dentry to delete 2431 * 2432 * Turn the dentry into a negative dentry if possible, otherwise 2433 * remove it from the hash queues so it can be deleted later 2434 */ 2435 2436 void d_delete(struct dentry * dentry) 2437 { 2438 struct inode *inode = dentry->d_inode; 2439 int isdir = d_is_dir(dentry); 2440 2441 spin_lock(&inode->i_lock); 2442 spin_lock(&dentry->d_lock); 2443 /* 2444 * Are we the only user? 2445 */ 2446 if (dentry->d_lockref.count == 1) { 2447 dentry->d_flags &= ~DCACHE_CANT_MOUNT; 2448 dentry_unlink_inode(dentry); 2449 } else { 2450 __d_drop(dentry); 2451 spin_unlock(&dentry->d_lock); 2452 spin_unlock(&inode->i_lock); 2453 } 2454 fsnotify_nameremove(dentry, isdir); 2455 } 2456 EXPORT_SYMBOL(d_delete); 2457 2458 static void __d_rehash(struct dentry *entry) 2459 { 2460 struct hlist_bl_head *b = d_hash(entry->d_name.hash); 2461 2462 hlist_bl_lock(b); 2463 hlist_bl_add_head_rcu(&entry->d_hash, b); 2464 hlist_bl_unlock(b); 2465 } 2466 2467 /** 2468 * d_rehash - add an entry back to the hash 2469 * @entry: dentry to add to the hash 2470 * 2471 * Adds a dentry to the hash according to its name. 2472 */ 2473 2474 void d_rehash(struct dentry * entry) 2475 { 2476 spin_lock(&entry->d_lock); 2477 __d_rehash(entry); 2478 spin_unlock(&entry->d_lock); 2479 } 2480 EXPORT_SYMBOL(d_rehash); 2481 2482 static inline unsigned start_dir_add(struct inode *dir) 2483 { 2484 2485 for (;;) { 2486 unsigned n = dir->i_dir_seq; 2487 if (!(n & 1) && cmpxchg(&dir->i_dir_seq, n, n + 1) == n) 2488 return n; 2489 cpu_relax(); 2490 } 2491 } 2492 2493 static inline void end_dir_add(struct inode *dir, unsigned n) 2494 { 2495 smp_store_release(&dir->i_dir_seq, n + 2); 2496 } 2497 2498 static void d_wait_lookup(struct dentry *dentry) 2499 { 2500 if (d_in_lookup(dentry)) { 2501 DECLARE_WAITQUEUE(wait, current); 2502 add_wait_queue(dentry->d_wait, &wait); 2503 do { 2504 set_current_state(TASK_UNINTERRUPTIBLE); 2505 spin_unlock(&dentry->d_lock); 2506 schedule(); 2507 spin_lock(&dentry->d_lock); 2508 } while (d_in_lookup(dentry)); 2509 } 2510 } 2511 2512 struct dentry *d_alloc_parallel(struct dentry *parent, 2513 const struct qstr *name, 2514 wait_queue_head_t *wq) 2515 { 2516 unsigned int hash = name->hash; 2517 struct hlist_bl_head *b = in_lookup_hash(parent, hash); 2518 struct hlist_bl_node *node; 2519 struct dentry *new = d_alloc(parent, name); 2520 struct dentry *dentry; 2521 unsigned seq, r_seq, d_seq; 2522 2523 if (unlikely(!new)) 2524 return ERR_PTR(-ENOMEM); 2525 2526 retry: 2527 rcu_read_lock(); 2528 seq = smp_load_acquire(&parent->d_inode->i_dir_seq); 2529 r_seq = read_seqbegin(&rename_lock); 2530 dentry = __d_lookup_rcu(parent, name, &d_seq); 2531 if (unlikely(dentry)) { 2532 if (!lockref_get_not_dead(&dentry->d_lockref)) { 2533 rcu_read_unlock(); 2534 goto retry; 2535 } 2536 if (read_seqcount_retry(&dentry->d_seq, d_seq)) { 2537 rcu_read_unlock(); 2538 dput(dentry); 2539 goto retry; 2540 } 2541 rcu_read_unlock(); 2542 dput(new); 2543 return dentry; 2544 } 2545 if (unlikely(read_seqretry(&rename_lock, r_seq))) { 2546 rcu_read_unlock(); 2547 goto retry; 2548 } 2549 2550 if (unlikely(seq & 1)) { 2551 rcu_read_unlock(); 2552 goto retry; 2553 } 2554 2555 hlist_bl_lock(b); 2556 if (unlikely(READ_ONCE(parent->d_inode->i_dir_seq) != seq)) { 2557 hlist_bl_unlock(b); 2558 rcu_read_unlock(); 2559 goto retry; 2560 } 2561 /* 2562 * No changes for the parent since the beginning of d_lookup(). 2563 * Since all removals from the chain happen with hlist_bl_lock(), 2564 * any potential in-lookup matches are going to stay here until 2565 * we unlock the chain. All fields are stable in everything 2566 * we encounter. 2567 */ 2568 hlist_bl_for_each_entry(dentry, node, b, d_u.d_in_lookup_hash) { 2569 if (dentry->d_name.hash != hash) 2570 continue; 2571 if (dentry->d_parent != parent) 2572 continue; 2573 if (!d_same_name(dentry, parent, name)) 2574 continue; 2575 hlist_bl_unlock(b); 2576 /* now we can try to grab a reference */ 2577 if (!lockref_get_not_dead(&dentry->d_lockref)) { 2578 rcu_read_unlock(); 2579 goto retry; 2580 } 2581 2582 rcu_read_unlock(); 2583 /* 2584 * somebody is likely to be still doing lookup for it; 2585 * wait for them to finish 2586 */ 2587 spin_lock(&dentry->d_lock); 2588 d_wait_lookup(dentry); 2589 /* 2590 * it's not in-lookup anymore; in principle we should repeat 2591 * everything from dcache lookup, but it's likely to be what 2592 * d_lookup() would've found anyway. If it is, just return it; 2593 * otherwise we really have to repeat the whole thing. 2594 */ 2595 if (unlikely(dentry->d_name.hash != hash)) 2596 goto mismatch; 2597 if (unlikely(dentry->d_parent != parent)) 2598 goto mismatch; 2599 if (unlikely(d_unhashed(dentry))) 2600 goto mismatch; 2601 if (unlikely(!d_same_name(dentry, parent, name))) 2602 goto mismatch; 2603 /* OK, it *is* a hashed match; return it */ 2604 spin_unlock(&dentry->d_lock); 2605 dput(new); 2606 return dentry; 2607 } 2608 rcu_read_unlock(); 2609 /* we can't take ->d_lock here; it's OK, though. */ 2610 new->d_flags |= DCACHE_PAR_LOOKUP; 2611 new->d_wait = wq; 2612 hlist_bl_add_head_rcu(&new->d_u.d_in_lookup_hash, b); 2613 hlist_bl_unlock(b); 2614 return new; 2615 mismatch: 2616 spin_unlock(&dentry->d_lock); 2617 dput(dentry); 2618 goto retry; 2619 } 2620 EXPORT_SYMBOL(d_alloc_parallel); 2621 2622 void __d_lookup_done(struct dentry *dentry) 2623 { 2624 struct hlist_bl_head *b = in_lookup_hash(dentry->d_parent, 2625 dentry->d_name.hash); 2626 hlist_bl_lock(b); 2627 dentry->d_flags &= ~DCACHE_PAR_LOOKUP; 2628 __hlist_bl_del(&dentry->d_u.d_in_lookup_hash); 2629 wake_up_all(dentry->d_wait); 2630 dentry->d_wait = NULL; 2631 hlist_bl_unlock(b); 2632 INIT_HLIST_NODE(&dentry->d_u.d_alias); 2633 INIT_LIST_HEAD(&dentry->d_lru); 2634 } 2635 EXPORT_SYMBOL(__d_lookup_done); 2636 2637 /* inode->i_lock held if inode is non-NULL */ 2638 2639 static inline void __d_add(struct dentry *dentry, struct inode *inode) 2640 { 2641 struct inode *dir = NULL; 2642 unsigned n; 2643 spin_lock(&dentry->d_lock); 2644 if (unlikely(d_in_lookup(dentry))) { 2645 dir = dentry->d_parent->d_inode; 2646 n = start_dir_add(dir); 2647 __d_lookup_done(dentry); 2648 } 2649 if (inode) { 2650 unsigned add_flags = d_flags_for_inode(inode); 2651 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry); 2652 raw_write_seqcount_begin(&dentry->d_seq); 2653 __d_set_inode_and_type(dentry, inode, add_flags); 2654 raw_write_seqcount_end(&dentry->d_seq); 2655 fsnotify_update_flags(dentry); 2656 } 2657 __d_rehash(dentry); 2658 if (dir) 2659 end_dir_add(dir, n); 2660 spin_unlock(&dentry->d_lock); 2661 if (inode) 2662 spin_unlock(&inode->i_lock); 2663 } 2664 2665 /** 2666 * d_add - add dentry to hash queues 2667 * @entry: dentry to add 2668 * @inode: The inode to attach to this dentry 2669 * 2670 * This adds the entry to the hash queues and initializes @inode. 2671 * The entry was actually filled in earlier during d_alloc(). 2672 */ 2673 2674 void d_add(struct dentry *entry, struct inode *inode) 2675 { 2676 if (inode) { 2677 security_d_instantiate(entry, inode); 2678 spin_lock(&inode->i_lock); 2679 } 2680 __d_add(entry, inode); 2681 } 2682 EXPORT_SYMBOL(d_add); 2683 2684 /** 2685 * d_exact_alias - find and hash an exact unhashed alias 2686 * @entry: dentry to add 2687 * @inode: The inode to go with this dentry 2688 * 2689 * If an unhashed dentry with the same name/parent and desired 2690 * inode already exists, hash and return it. Otherwise, return 2691 * NULL. 2692 * 2693 * Parent directory should be locked. 2694 */ 2695 struct dentry *d_exact_alias(struct dentry *entry, struct inode *inode) 2696 { 2697 struct dentry *alias; 2698 unsigned int hash = entry->d_name.hash; 2699 2700 spin_lock(&inode->i_lock); 2701 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) { 2702 /* 2703 * Don't need alias->d_lock here, because aliases with 2704 * d_parent == entry->d_parent are not subject to name or 2705 * parent changes, because the parent inode i_mutex is held. 2706 */ 2707 if (alias->d_name.hash != hash) 2708 continue; 2709 if (alias->d_parent != entry->d_parent) 2710 continue; 2711 if (!d_same_name(alias, entry->d_parent, &entry->d_name)) 2712 continue; 2713 spin_lock(&alias->d_lock); 2714 if (!d_unhashed(alias)) { 2715 spin_unlock(&alias->d_lock); 2716 alias = NULL; 2717 } else { 2718 __dget_dlock(alias); 2719 __d_rehash(alias); 2720 spin_unlock(&alias->d_lock); 2721 } 2722 spin_unlock(&inode->i_lock); 2723 return alias; 2724 } 2725 spin_unlock(&inode->i_lock); 2726 return NULL; 2727 } 2728 EXPORT_SYMBOL(d_exact_alias); 2729 2730 /** 2731 * dentry_update_name_case - update case insensitive dentry with a new name 2732 * @dentry: dentry to be updated 2733 * @name: new name 2734 * 2735 * Update a case insensitive dentry with new case of name. 2736 * 2737 * dentry must have been returned by d_lookup with name @name. Old and new 2738 * name lengths must match (ie. no d_compare which allows mismatched name 2739 * lengths). 2740 * 2741 * Parent inode i_mutex must be held over d_lookup and into this call (to 2742 * keep renames and concurrent inserts, and readdir(2) away). 2743 */ 2744 void dentry_update_name_case(struct dentry *dentry, const struct qstr *name) 2745 { 2746 BUG_ON(!inode_is_locked(dentry->d_parent->d_inode)); 2747 BUG_ON(dentry->d_name.len != name->len); /* d_lookup gives this */ 2748 2749 spin_lock(&dentry->d_lock); 2750 write_seqcount_begin(&dentry->d_seq); 2751 memcpy((unsigned char *)dentry->d_name.name, name->name, name->len); 2752 write_seqcount_end(&dentry->d_seq); 2753 spin_unlock(&dentry->d_lock); 2754 } 2755 EXPORT_SYMBOL(dentry_update_name_case); 2756 2757 static void swap_names(struct dentry *dentry, struct dentry *target) 2758 { 2759 if (unlikely(dname_external(target))) { 2760 if (unlikely(dname_external(dentry))) { 2761 /* 2762 * Both external: swap the pointers 2763 */ 2764 swap(target->d_name.name, dentry->d_name.name); 2765 } else { 2766 /* 2767 * dentry:internal, target:external. Steal target's 2768 * storage and make target internal. 2769 */ 2770 memcpy(target->d_iname, dentry->d_name.name, 2771 dentry->d_name.len + 1); 2772 dentry->d_name.name = target->d_name.name; 2773 target->d_name.name = target->d_iname; 2774 } 2775 } else { 2776 if (unlikely(dname_external(dentry))) { 2777 /* 2778 * dentry:external, target:internal. Give dentry's 2779 * storage to target and make dentry internal 2780 */ 2781 memcpy(dentry->d_iname, target->d_name.name, 2782 target->d_name.len + 1); 2783 target->d_name.name = dentry->d_name.name; 2784 dentry->d_name.name = dentry->d_iname; 2785 } else { 2786 /* 2787 * Both are internal. 2788 */ 2789 unsigned int i; 2790 BUILD_BUG_ON(!IS_ALIGNED(DNAME_INLINE_LEN, sizeof(long))); 2791 for (i = 0; i < DNAME_INLINE_LEN / sizeof(long); i++) { 2792 swap(((long *) &dentry->d_iname)[i], 2793 ((long *) &target->d_iname)[i]); 2794 } 2795 } 2796 } 2797 swap(dentry->d_name.hash_len, target->d_name.hash_len); 2798 } 2799 2800 static void copy_name(struct dentry *dentry, struct dentry *target) 2801 { 2802 struct external_name *old_name = NULL; 2803 if (unlikely(dname_external(dentry))) 2804 old_name = external_name(dentry); 2805 if (unlikely(dname_external(target))) { 2806 atomic_inc(&external_name(target)->u.count); 2807 dentry->d_name = target->d_name; 2808 } else { 2809 memcpy(dentry->d_iname, target->d_name.name, 2810 target->d_name.len + 1); 2811 dentry->d_name.name = dentry->d_iname; 2812 dentry->d_name.hash_len = target->d_name.hash_len; 2813 } 2814 if (old_name && likely(atomic_dec_and_test(&old_name->u.count))) 2815 call_rcu(&old_name->u.head, __d_free_external_name); 2816 } 2817 2818 /* 2819 * __d_move - move a dentry 2820 * @dentry: entry to move 2821 * @target: new dentry 2822 * @exchange: exchange the two dentries 2823 * 2824 * Update the dcache to reflect the move of a file name. Negative 2825 * dcache entries should not be moved in this way. Caller must hold 2826 * rename_lock, the i_mutex of the source and target directories, 2827 * and the sb->s_vfs_rename_mutex if they differ. See lock_rename(). 2828 */ 2829 static void __d_move(struct dentry *dentry, struct dentry *target, 2830 bool exchange) 2831 { 2832 struct dentry *old_parent, *p; 2833 struct inode *dir = NULL; 2834 unsigned n; 2835 2836 WARN_ON(!dentry->d_inode); 2837 if (WARN_ON(dentry == target)) 2838 return; 2839 2840 BUG_ON(d_ancestor(target, dentry)); 2841 old_parent = dentry->d_parent; 2842 p = d_ancestor(old_parent, target); 2843 if (IS_ROOT(dentry)) { 2844 BUG_ON(p); 2845 spin_lock(&target->d_parent->d_lock); 2846 } else if (!p) { 2847 /* target is not a descendent of dentry->d_parent */ 2848 spin_lock(&target->d_parent->d_lock); 2849 spin_lock_nested(&old_parent->d_lock, DENTRY_D_LOCK_NESTED); 2850 } else { 2851 BUG_ON(p == dentry); 2852 spin_lock(&old_parent->d_lock); 2853 if (p != target) 2854 spin_lock_nested(&target->d_parent->d_lock, 2855 DENTRY_D_LOCK_NESTED); 2856 } 2857 spin_lock_nested(&dentry->d_lock, 2); 2858 spin_lock_nested(&target->d_lock, 3); 2859 2860 if (unlikely(d_in_lookup(target))) { 2861 dir = target->d_parent->d_inode; 2862 n = start_dir_add(dir); 2863 __d_lookup_done(target); 2864 } 2865 2866 write_seqcount_begin(&dentry->d_seq); 2867 write_seqcount_begin_nested(&target->d_seq, DENTRY_D_LOCK_NESTED); 2868 2869 /* unhash both */ 2870 if (!d_unhashed(dentry)) 2871 ___d_drop(dentry); 2872 if (!d_unhashed(target)) 2873 ___d_drop(target); 2874 2875 /* ... and switch them in the tree */ 2876 dentry->d_parent = target->d_parent; 2877 if (!exchange) { 2878 copy_name(dentry, target); 2879 target->d_hash.pprev = NULL; 2880 dentry->d_parent->d_lockref.count++; 2881 if (dentry == old_parent) 2882 dentry->d_flags |= DCACHE_RCUACCESS; 2883 else 2884 WARN_ON(!--old_parent->d_lockref.count); 2885 } else { 2886 target->d_parent = old_parent; 2887 swap_names(dentry, target); 2888 list_move(&target->d_child, &target->d_parent->d_subdirs); 2889 __d_rehash(target); 2890 fsnotify_update_flags(target); 2891 } 2892 list_move(&dentry->d_child, &dentry->d_parent->d_subdirs); 2893 __d_rehash(dentry); 2894 fsnotify_update_flags(dentry); 2895 2896 write_seqcount_end(&target->d_seq); 2897 write_seqcount_end(&dentry->d_seq); 2898 2899 if (dir) 2900 end_dir_add(dir, n); 2901 2902 if (dentry->d_parent != old_parent) 2903 spin_unlock(&dentry->d_parent->d_lock); 2904 if (dentry != old_parent) 2905 spin_unlock(&old_parent->d_lock); 2906 spin_unlock(&target->d_lock); 2907 spin_unlock(&dentry->d_lock); 2908 } 2909 2910 /* 2911 * d_move - move a dentry 2912 * @dentry: entry to move 2913 * @target: new dentry 2914 * 2915 * Update the dcache to reflect the move of a file name. Negative 2916 * dcache entries should not be moved in this way. See the locking 2917 * requirements for __d_move. 2918 */ 2919 void d_move(struct dentry *dentry, struct dentry *target) 2920 { 2921 write_seqlock(&rename_lock); 2922 __d_move(dentry, target, false); 2923 write_sequnlock(&rename_lock); 2924 } 2925 EXPORT_SYMBOL(d_move); 2926 2927 /* 2928 * d_exchange - exchange two dentries 2929 * @dentry1: first dentry 2930 * @dentry2: second dentry 2931 */ 2932 void d_exchange(struct dentry *dentry1, struct dentry *dentry2) 2933 { 2934 write_seqlock(&rename_lock); 2935 2936 WARN_ON(!dentry1->d_inode); 2937 WARN_ON(!dentry2->d_inode); 2938 WARN_ON(IS_ROOT(dentry1)); 2939 WARN_ON(IS_ROOT(dentry2)); 2940 2941 __d_move(dentry1, dentry2, true); 2942 2943 write_sequnlock(&rename_lock); 2944 } 2945 2946 /** 2947 * d_ancestor - search for an ancestor 2948 * @p1: ancestor dentry 2949 * @p2: child dentry 2950 * 2951 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is 2952 * an ancestor of p2, else NULL. 2953 */ 2954 struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2) 2955 { 2956 struct dentry *p; 2957 2958 for (p = p2; !IS_ROOT(p); p = p->d_parent) { 2959 if (p->d_parent == p1) 2960 return p; 2961 } 2962 return NULL; 2963 } 2964 2965 /* 2966 * This helper attempts to cope with remotely renamed directories 2967 * 2968 * It assumes that the caller is already holding 2969 * dentry->d_parent->d_inode->i_mutex, and rename_lock 2970 * 2971 * Note: If ever the locking in lock_rename() changes, then please 2972 * remember to update this too... 2973 */ 2974 static int __d_unalias(struct inode *inode, 2975 struct dentry *dentry, struct dentry *alias) 2976 { 2977 struct mutex *m1 = NULL; 2978 struct rw_semaphore *m2 = NULL; 2979 int ret = -ESTALE; 2980 2981 /* If alias and dentry share a parent, then no extra locks required */ 2982 if (alias->d_parent == dentry->d_parent) 2983 goto out_unalias; 2984 2985 /* See lock_rename() */ 2986 if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex)) 2987 goto out_err; 2988 m1 = &dentry->d_sb->s_vfs_rename_mutex; 2989 if (!inode_trylock_shared(alias->d_parent->d_inode)) 2990 goto out_err; 2991 m2 = &alias->d_parent->d_inode->i_rwsem; 2992 out_unalias: 2993 __d_move(alias, dentry, false); 2994 ret = 0; 2995 out_err: 2996 if (m2) 2997 up_read(m2); 2998 if (m1) 2999 mutex_unlock(m1); 3000 return ret; 3001 } 3002 3003 /** 3004 * d_splice_alias - splice a disconnected dentry into the tree if one exists 3005 * @inode: the inode which may have a disconnected dentry 3006 * @dentry: a negative dentry which we want to point to the inode. 3007 * 3008 * If inode is a directory and has an IS_ROOT alias, then d_move that in 3009 * place of the given dentry and return it, else simply d_add the inode 3010 * to the dentry and return NULL. 3011 * 3012 * If a non-IS_ROOT directory is found, the filesystem is corrupt, and 3013 * we should error out: directories can't have multiple aliases. 3014 * 3015 * This is needed in the lookup routine of any filesystem that is exportable 3016 * (via knfsd) so that we can build dcache paths to directories effectively. 3017 * 3018 * If a dentry was found and moved, then it is returned. Otherwise NULL 3019 * is returned. This matches the expected return value of ->lookup. 3020 * 3021 * Cluster filesystems may call this function with a negative, hashed dentry. 3022 * In that case, we know that the inode will be a regular file, and also this 3023 * will only occur during atomic_open. So we need to check for the dentry 3024 * being already hashed only in the final case. 3025 */ 3026 struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry) 3027 { 3028 if (IS_ERR(inode)) 3029 return ERR_CAST(inode); 3030 3031 BUG_ON(!d_unhashed(dentry)); 3032 3033 if (!inode) 3034 goto out; 3035 3036 security_d_instantiate(dentry, inode); 3037 spin_lock(&inode->i_lock); 3038 if (S_ISDIR(inode->i_mode)) { 3039 struct dentry *new = __d_find_any_alias(inode); 3040 if (unlikely(new)) { 3041 /* The reference to new ensures it remains an alias */ 3042 spin_unlock(&inode->i_lock); 3043 write_seqlock(&rename_lock); 3044 if (unlikely(d_ancestor(new, dentry))) { 3045 write_sequnlock(&rename_lock); 3046 dput(new); 3047 new = ERR_PTR(-ELOOP); 3048 pr_warn_ratelimited( 3049 "VFS: Lookup of '%s' in %s %s" 3050 " would have caused loop\n", 3051 dentry->d_name.name, 3052 inode->i_sb->s_type->name, 3053 inode->i_sb->s_id); 3054 } else if (!IS_ROOT(new)) { 3055 struct dentry *old_parent = dget(new->d_parent); 3056 int err = __d_unalias(inode, dentry, new); 3057 write_sequnlock(&rename_lock); 3058 if (err) { 3059 dput(new); 3060 new = ERR_PTR(err); 3061 } 3062 dput(old_parent); 3063 } else { 3064 __d_move(new, dentry, false); 3065 write_sequnlock(&rename_lock); 3066 } 3067 iput(inode); 3068 return new; 3069 } 3070 } 3071 out: 3072 __d_add(dentry, inode); 3073 return NULL; 3074 } 3075 EXPORT_SYMBOL(d_splice_alias); 3076 3077 /* 3078 * Test whether new_dentry is a subdirectory of old_dentry. 3079 * 3080 * Trivially implemented using the dcache structure 3081 */ 3082 3083 /** 3084 * is_subdir - is new dentry a subdirectory of old_dentry 3085 * @new_dentry: new dentry 3086 * @old_dentry: old dentry 3087 * 3088 * Returns true if new_dentry is a subdirectory of the parent (at any depth). 3089 * Returns false otherwise. 3090 * Caller must ensure that "new_dentry" is pinned before calling is_subdir() 3091 */ 3092 3093 bool is_subdir(struct dentry *new_dentry, struct dentry *old_dentry) 3094 { 3095 bool result; 3096 unsigned seq; 3097 3098 if (new_dentry == old_dentry) 3099 return true; 3100 3101 do { 3102 /* for restarting inner loop in case of seq retry */ 3103 seq = read_seqbegin(&rename_lock); 3104 /* 3105 * Need rcu_readlock to protect against the d_parent trashing 3106 * due to d_move 3107 */ 3108 rcu_read_lock(); 3109 if (d_ancestor(old_dentry, new_dentry)) 3110 result = true; 3111 else 3112 result = false; 3113 rcu_read_unlock(); 3114 } while (read_seqretry(&rename_lock, seq)); 3115 3116 return result; 3117 } 3118 EXPORT_SYMBOL(is_subdir); 3119 3120 static enum d_walk_ret d_genocide_kill(void *data, struct dentry *dentry) 3121 { 3122 struct dentry *root = data; 3123 if (dentry != root) { 3124 if (d_unhashed(dentry) || !dentry->d_inode) 3125 return D_WALK_SKIP; 3126 3127 if (!(dentry->d_flags & DCACHE_GENOCIDE)) { 3128 dentry->d_flags |= DCACHE_GENOCIDE; 3129 dentry->d_lockref.count--; 3130 } 3131 } 3132 return D_WALK_CONTINUE; 3133 } 3134 3135 void d_genocide(struct dentry *parent) 3136 { 3137 d_walk(parent, parent, d_genocide_kill, NULL); 3138 } 3139 3140 EXPORT_SYMBOL(d_genocide); 3141 3142 void d_tmpfile(struct dentry *dentry, struct inode *inode) 3143 { 3144 inode_dec_link_count(inode); 3145 BUG_ON(dentry->d_name.name != dentry->d_iname || 3146 !hlist_unhashed(&dentry->d_u.d_alias) || 3147 !d_unlinked(dentry)); 3148 spin_lock(&dentry->d_parent->d_lock); 3149 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED); 3150 dentry->d_name.len = sprintf(dentry->d_iname, "#%llu", 3151 (unsigned long long)inode->i_ino); 3152 spin_unlock(&dentry->d_lock); 3153 spin_unlock(&dentry->d_parent->d_lock); 3154 d_instantiate(dentry, inode); 3155 } 3156 EXPORT_SYMBOL(d_tmpfile); 3157 3158 static __initdata unsigned long dhash_entries; 3159 static int __init set_dhash_entries(char *str) 3160 { 3161 if (!str) 3162 return 0; 3163 dhash_entries = simple_strtoul(str, &str, 0); 3164 return 1; 3165 } 3166 __setup("dhash_entries=", set_dhash_entries); 3167 3168 static void __init dcache_init_early(void) 3169 { 3170 /* If hashes are distributed across NUMA nodes, defer 3171 * hash allocation until vmalloc space is available. 3172 */ 3173 if (hashdist) 3174 return; 3175 3176 dentry_hashtable = 3177 alloc_large_system_hash("Dentry cache", 3178 sizeof(struct hlist_bl_head), 3179 dhash_entries, 3180 13, 3181 HASH_EARLY | HASH_ZERO, 3182 &d_hash_shift, 3183 NULL, 3184 0, 3185 0); 3186 d_hash_shift = 32 - d_hash_shift; 3187 } 3188 3189 static void __init dcache_init(void) 3190 { 3191 /* 3192 * A constructor could be added for stable state like the lists, 3193 * but it is probably not worth it because of the cache nature 3194 * of the dcache. 3195 */ 3196 dentry_cache = KMEM_CACHE_USERCOPY(dentry, 3197 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD|SLAB_ACCOUNT, 3198 d_iname); 3199 3200 /* Hash may have been set up in dcache_init_early */ 3201 if (!hashdist) 3202 return; 3203 3204 dentry_hashtable = 3205 alloc_large_system_hash("Dentry cache", 3206 sizeof(struct hlist_bl_head), 3207 dhash_entries, 3208 13, 3209 HASH_ZERO, 3210 &d_hash_shift, 3211 NULL, 3212 0, 3213 0); 3214 d_hash_shift = 32 - d_hash_shift; 3215 } 3216 3217 /* SLAB cache for __getname() consumers */ 3218 struct kmem_cache *names_cachep __read_mostly; 3219 EXPORT_SYMBOL(names_cachep); 3220 3221 void __init vfs_caches_init_early(void) 3222 { 3223 int i; 3224 3225 for (i = 0; i < ARRAY_SIZE(in_lookup_hashtable); i++) 3226 INIT_HLIST_BL_HEAD(&in_lookup_hashtable[i]); 3227 3228 dcache_init_early(); 3229 inode_init_early(); 3230 } 3231 3232 void __init vfs_caches_init(void) 3233 { 3234 names_cachep = kmem_cache_create_usercopy("names_cache", PATH_MAX, 0, 3235 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 0, PATH_MAX, NULL); 3236 3237 dcache_init(); 3238 inode_init(); 3239 files_init(); 3240 files_maxfiles_init(); 3241 mnt_init(); 3242 bdev_cache_init(); 3243 chrdev_init(); 3244 } 3245