xref: /openbmc/linux/fs/dcache.c (revision addee42a)
1 /*
2  * fs/dcache.c
3  *
4  * Complete reimplementation
5  * (C) 1997 Thomas Schoebel-Theuer,
6  * with heavy changes by Linus Torvalds
7  */
8 
9 /*
10  * Notes on the allocation strategy:
11  *
12  * The dcache is a master of the icache - whenever a dcache entry
13  * exists, the inode will always exist. "iput()" is done either when
14  * the dcache entry is deleted or garbage collected.
15  */
16 
17 #include <linux/ratelimit.h>
18 #include <linux/string.h>
19 #include <linux/mm.h>
20 #include <linux/fs.h>
21 #include <linux/fsnotify.h>
22 #include <linux/slab.h>
23 #include <linux/init.h>
24 #include <linux/hash.h>
25 #include <linux/cache.h>
26 #include <linux/export.h>
27 #include <linux/security.h>
28 #include <linux/seqlock.h>
29 #include <linux/bootmem.h>
30 #include <linux/bit_spinlock.h>
31 #include <linux/rculist_bl.h>
32 #include <linux/list_lru.h>
33 #include "internal.h"
34 #include "mount.h"
35 
36 /*
37  * Usage:
38  * dcache->d_inode->i_lock protects:
39  *   - i_dentry, d_u.d_alias, d_inode of aliases
40  * dcache_hash_bucket lock protects:
41  *   - the dcache hash table
42  * s_roots bl list spinlock protects:
43  *   - the s_roots list (see __d_drop)
44  * dentry->d_sb->s_dentry_lru_lock protects:
45  *   - the dcache lru lists and counters
46  * d_lock protects:
47  *   - d_flags
48  *   - d_name
49  *   - d_lru
50  *   - d_count
51  *   - d_unhashed()
52  *   - d_parent and d_subdirs
53  *   - childrens' d_child and d_parent
54  *   - d_u.d_alias, d_inode
55  *
56  * Ordering:
57  * dentry->d_inode->i_lock
58  *   dentry->d_lock
59  *     dentry->d_sb->s_dentry_lru_lock
60  *     dcache_hash_bucket lock
61  *     s_roots lock
62  *
63  * If there is an ancestor relationship:
64  * dentry->d_parent->...->d_parent->d_lock
65  *   ...
66  *     dentry->d_parent->d_lock
67  *       dentry->d_lock
68  *
69  * If no ancestor relationship:
70  * arbitrary, since it's serialized on rename_lock
71  */
72 int sysctl_vfs_cache_pressure __read_mostly = 100;
73 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
74 
75 __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
76 
77 EXPORT_SYMBOL(rename_lock);
78 
79 static struct kmem_cache *dentry_cache __read_mostly;
80 
81 const struct qstr empty_name = QSTR_INIT("", 0);
82 EXPORT_SYMBOL(empty_name);
83 const struct qstr slash_name = QSTR_INIT("/", 1);
84 EXPORT_SYMBOL(slash_name);
85 
86 /*
87  * This is the single most critical data structure when it comes
88  * to the dcache: the hashtable for lookups. Somebody should try
89  * to make this good - I've just made it work.
90  *
91  * This hash-function tries to avoid losing too many bits of hash
92  * information, yet avoid using a prime hash-size or similar.
93  */
94 
95 static unsigned int d_hash_shift __read_mostly;
96 
97 static struct hlist_bl_head *dentry_hashtable __read_mostly;
98 
99 static inline struct hlist_bl_head *d_hash(unsigned int hash)
100 {
101 	return dentry_hashtable + (hash >> d_hash_shift);
102 }
103 
104 #define IN_LOOKUP_SHIFT 10
105 static struct hlist_bl_head in_lookup_hashtable[1 << IN_LOOKUP_SHIFT];
106 
107 static inline struct hlist_bl_head *in_lookup_hash(const struct dentry *parent,
108 					unsigned int hash)
109 {
110 	hash += (unsigned long) parent / L1_CACHE_BYTES;
111 	return in_lookup_hashtable + hash_32(hash, IN_LOOKUP_SHIFT);
112 }
113 
114 
115 /* Statistics gathering. */
116 struct dentry_stat_t dentry_stat = {
117 	.age_limit = 45,
118 };
119 
120 static DEFINE_PER_CPU(long, nr_dentry);
121 static DEFINE_PER_CPU(long, nr_dentry_unused);
122 
123 #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
124 
125 /*
126  * Here we resort to our own counters instead of using generic per-cpu counters
127  * for consistency with what the vfs inode code does. We are expected to harvest
128  * better code and performance by having our own specialized counters.
129  *
130  * Please note that the loop is done over all possible CPUs, not over all online
131  * CPUs. The reason for this is that we don't want to play games with CPUs going
132  * on and off. If one of them goes off, we will just keep their counters.
133  *
134  * glommer: See cffbc8a for details, and if you ever intend to change this,
135  * please update all vfs counters to match.
136  */
137 static long get_nr_dentry(void)
138 {
139 	int i;
140 	long sum = 0;
141 	for_each_possible_cpu(i)
142 		sum += per_cpu(nr_dentry, i);
143 	return sum < 0 ? 0 : sum;
144 }
145 
146 static long get_nr_dentry_unused(void)
147 {
148 	int i;
149 	long sum = 0;
150 	for_each_possible_cpu(i)
151 		sum += per_cpu(nr_dentry_unused, i);
152 	return sum < 0 ? 0 : sum;
153 }
154 
155 int proc_nr_dentry(struct ctl_table *table, int write, void __user *buffer,
156 		   size_t *lenp, loff_t *ppos)
157 {
158 	dentry_stat.nr_dentry = get_nr_dentry();
159 	dentry_stat.nr_unused = get_nr_dentry_unused();
160 	return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
161 }
162 #endif
163 
164 /*
165  * Compare 2 name strings, return 0 if they match, otherwise non-zero.
166  * The strings are both count bytes long, and count is non-zero.
167  */
168 #ifdef CONFIG_DCACHE_WORD_ACCESS
169 
170 #include <asm/word-at-a-time.h>
171 /*
172  * NOTE! 'cs' and 'scount' come from a dentry, so it has a
173  * aligned allocation for this particular component. We don't
174  * strictly need the load_unaligned_zeropad() safety, but it
175  * doesn't hurt either.
176  *
177  * In contrast, 'ct' and 'tcount' can be from a pathname, and do
178  * need the careful unaligned handling.
179  */
180 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
181 {
182 	unsigned long a,b,mask;
183 
184 	for (;;) {
185 		a = read_word_at_a_time(cs);
186 		b = load_unaligned_zeropad(ct);
187 		if (tcount < sizeof(unsigned long))
188 			break;
189 		if (unlikely(a != b))
190 			return 1;
191 		cs += sizeof(unsigned long);
192 		ct += sizeof(unsigned long);
193 		tcount -= sizeof(unsigned long);
194 		if (!tcount)
195 			return 0;
196 	}
197 	mask = bytemask_from_count(tcount);
198 	return unlikely(!!((a ^ b) & mask));
199 }
200 
201 #else
202 
203 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
204 {
205 	do {
206 		if (*cs != *ct)
207 			return 1;
208 		cs++;
209 		ct++;
210 		tcount--;
211 	} while (tcount);
212 	return 0;
213 }
214 
215 #endif
216 
217 static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount)
218 {
219 	/*
220 	 * Be careful about RCU walk racing with rename:
221 	 * use 'READ_ONCE' to fetch the name pointer.
222 	 *
223 	 * NOTE! Even if a rename will mean that the length
224 	 * was not loaded atomically, we don't care. The
225 	 * RCU walk will check the sequence count eventually,
226 	 * and catch it. And we won't overrun the buffer,
227 	 * because we're reading the name pointer atomically,
228 	 * and a dentry name is guaranteed to be properly
229 	 * terminated with a NUL byte.
230 	 *
231 	 * End result: even if 'len' is wrong, we'll exit
232 	 * early because the data cannot match (there can
233 	 * be no NUL in the ct/tcount data)
234 	 */
235 	const unsigned char *cs = READ_ONCE(dentry->d_name.name);
236 
237 	return dentry_string_cmp(cs, ct, tcount);
238 }
239 
240 struct external_name {
241 	union {
242 		atomic_t count;
243 		struct rcu_head head;
244 	} u;
245 	unsigned char name[];
246 };
247 
248 static inline struct external_name *external_name(struct dentry *dentry)
249 {
250 	return container_of(dentry->d_name.name, struct external_name, name[0]);
251 }
252 
253 static void __d_free(struct rcu_head *head)
254 {
255 	struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
256 
257 	kmem_cache_free(dentry_cache, dentry);
258 }
259 
260 static void __d_free_external_name(struct rcu_head *head)
261 {
262 	struct external_name *name = container_of(head, struct external_name,
263 						  u.head);
264 
265 	mod_node_page_state(page_pgdat(virt_to_page(name)),
266 			    NR_INDIRECTLY_RECLAIMABLE_BYTES,
267 			    -ksize(name));
268 
269 	kfree(name);
270 }
271 
272 static void __d_free_external(struct rcu_head *head)
273 {
274 	struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
275 
276 	__d_free_external_name(&external_name(dentry)->u.head);
277 
278 	kmem_cache_free(dentry_cache, dentry);
279 }
280 
281 static inline int dname_external(const struct dentry *dentry)
282 {
283 	return dentry->d_name.name != dentry->d_iname;
284 }
285 
286 void take_dentry_name_snapshot(struct name_snapshot *name, struct dentry *dentry)
287 {
288 	spin_lock(&dentry->d_lock);
289 	if (unlikely(dname_external(dentry))) {
290 		struct external_name *p = external_name(dentry);
291 		atomic_inc(&p->u.count);
292 		spin_unlock(&dentry->d_lock);
293 		name->name = p->name;
294 	} else {
295 		memcpy(name->inline_name, dentry->d_iname, DNAME_INLINE_LEN);
296 		spin_unlock(&dentry->d_lock);
297 		name->name = name->inline_name;
298 	}
299 }
300 EXPORT_SYMBOL(take_dentry_name_snapshot);
301 
302 void release_dentry_name_snapshot(struct name_snapshot *name)
303 {
304 	if (unlikely(name->name != name->inline_name)) {
305 		struct external_name *p;
306 		p = container_of(name->name, struct external_name, name[0]);
307 		if (unlikely(atomic_dec_and_test(&p->u.count)))
308 			call_rcu(&p->u.head, __d_free_external_name);
309 	}
310 }
311 EXPORT_SYMBOL(release_dentry_name_snapshot);
312 
313 static inline void __d_set_inode_and_type(struct dentry *dentry,
314 					  struct inode *inode,
315 					  unsigned type_flags)
316 {
317 	unsigned flags;
318 
319 	dentry->d_inode = inode;
320 	flags = READ_ONCE(dentry->d_flags);
321 	flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU);
322 	flags |= type_flags;
323 	WRITE_ONCE(dentry->d_flags, flags);
324 }
325 
326 static inline void __d_clear_type_and_inode(struct dentry *dentry)
327 {
328 	unsigned flags = READ_ONCE(dentry->d_flags);
329 
330 	flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU);
331 	WRITE_ONCE(dentry->d_flags, flags);
332 	dentry->d_inode = NULL;
333 }
334 
335 static void dentry_free(struct dentry *dentry)
336 {
337 	WARN_ON(!hlist_unhashed(&dentry->d_u.d_alias));
338 	if (unlikely(dname_external(dentry))) {
339 		struct external_name *p = external_name(dentry);
340 		if (likely(atomic_dec_and_test(&p->u.count))) {
341 			call_rcu(&dentry->d_u.d_rcu, __d_free_external);
342 			return;
343 		}
344 	}
345 	/* if dentry was never visible to RCU, immediate free is OK */
346 	if (!(dentry->d_flags & DCACHE_RCUACCESS))
347 		__d_free(&dentry->d_u.d_rcu);
348 	else
349 		call_rcu(&dentry->d_u.d_rcu, __d_free);
350 }
351 
352 /*
353  * Release the dentry's inode, using the filesystem
354  * d_iput() operation if defined.
355  */
356 static void dentry_unlink_inode(struct dentry * dentry)
357 	__releases(dentry->d_lock)
358 	__releases(dentry->d_inode->i_lock)
359 {
360 	struct inode *inode = dentry->d_inode;
361 	bool hashed = !d_unhashed(dentry);
362 
363 	if (hashed)
364 		raw_write_seqcount_begin(&dentry->d_seq);
365 	__d_clear_type_and_inode(dentry);
366 	hlist_del_init(&dentry->d_u.d_alias);
367 	if (hashed)
368 		raw_write_seqcount_end(&dentry->d_seq);
369 	spin_unlock(&dentry->d_lock);
370 	spin_unlock(&inode->i_lock);
371 	if (!inode->i_nlink)
372 		fsnotify_inoderemove(inode);
373 	if (dentry->d_op && dentry->d_op->d_iput)
374 		dentry->d_op->d_iput(dentry, inode);
375 	else
376 		iput(inode);
377 }
378 
379 /*
380  * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry
381  * is in use - which includes both the "real" per-superblock
382  * LRU list _and_ the DCACHE_SHRINK_LIST use.
383  *
384  * The DCACHE_SHRINK_LIST bit is set whenever the dentry is
385  * on the shrink list (ie not on the superblock LRU list).
386  *
387  * The per-cpu "nr_dentry_unused" counters are updated with
388  * the DCACHE_LRU_LIST bit.
389  *
390  * These helper functions make sure we always follow the
391  * rules. d_lock must be held by the caller.
392  */
393 #define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x))
394 static void d_lru_add(struct dentry *dentry)
395 {
396 	D_FLAG_VERIFY(dentry, 0);
397 	dentry->d_flags |= DCACHE_LRU_LIST;
398 	this_cpu_inc(nr_dentry_unused);
399 	WARN_ON_ONCE(!list_lru_add(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
400 }
401 
402 static void d_lru_del(struct dentry *dentry)
403 {
404 	D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
405 	dentry->d_flags &= ~DCACHE_LRU_LIST;
406 	this_cpu_dec(nr_dentry_unused);
407 	WARN_ON_ONCE(!list_lru_del(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
408 }
409 
410 static void d_shrink_del(struct dentry *dentry)
411 {
412 	D_FLAG_VERIFY(dentry, DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
413 	list_del_init(&dentry->d_lru);
414 	dentry->d_flags &= ~(DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
415 	this_cpu_dec(nr_dentry_unused);
416 }
417 
418 static void d_shrink_add(struct dentry *dentry, struct list_head *list)
419 {
420 	D_FLAG_VERIFY(dentry, 0);
421 	list_add(&dentry->d_lru, list);
422 	dentry->d_flags |= DCACHE_SHRINK_LIST | DCACHE_LRU_LIST;
423 	this_cpu_inc(nr_dentry_unused);
424 }
425 
426 /*
427  * These can only be called under the global LRU lock, ie during the
428  * callback for freeing the LRU list. "isolate" removes it from the
429  * LRU lists entirely, while shrink_move moves it to the indicated
430  * private list.
431  */
432 static void d_lru_isolate(struct list_lru_one *lru, struct dentry *dentry)
433 {
434 	D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
435 	dentry->d_flags &= ~DCACHE_LRU_LIST;
436 	this_cpu_dec(nr_dentry_unused);
437 	list_lru_isolate(lru, &dentry->d_lru);
438 }
439 
440 static void d_lru_shrink_move(struct list_lru_one *lru, struct dentry *dentry,
441 			      struct list_head *list)
442 {
443 	D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
444 	dentry->d_flags |= DCACHE_SHRINK_LIST;
445 	list_lru_isolate_move(lru, &dentry->d_lru, list);
446 }
447 
448 /**
449  * d_drop - drop a dentry
450  * @dentry: dentry to drop
451  *
452  * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
453  * be found through a VFS lookup any more. Note that this is different from
454  * deleting the dentry - d_delete will try to mark the dentry negative if
455  * possible, giving a successful _negative_ lookup, while d_drop will
456  * just make the cache lookup fail.
457  *
458  * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
459  * reason (NFS timeouts or autofs deletes).
460  *
461  * __d_drop requires dentry->d_lock
462  * ___d_drop doesn't mark dentry as "unhashed"
463  *   (dentry->d_hash.pprev will be LIST_POISON2, not NULL).
464  */
465 static void ___d_drop(struct dentry *dentry)
466 {
467 	struct hlist_bl_head *b;
468 	/*
469 	 * Hashed dentries are normally on the dentry hashtable,
470 	 * with the exception of those newly allocated by
471 	 * d_obtain_root, which are always IS_ROOT:
472 	 */
473 	if (unlikely(IS_ROOT(dentry)))
474 		b = &dentry->d_sb->s_roots;
475 	else
476 		b = d_hash(dentry->d_name.hash);
477 
478 	hlist_bl_lock(b);
479 	__hlist_bl_del(&dentry->d_hash);
480 	hlist_bl_unlock(b);
481 }
482 
483 void __d_drop(struct dentry *dentry)
484 {
485 	if (!d_unhashed(dentry)) {
486 		___d_drop(dentry);
487 		dentry->d_hash.pprev = NULL;
488 		write_seqcount_invalidate(&dentry->d_seq);
489 	}
490 }
491 EXPORT_SYMBOL(__d_drop);
492 
493 void d_drop(struct dentry *dentry)
494 {
495 	spin_lock(&dentry->d_lock);
496 	__d_drop(dentry);
497 	spin_unlock(&dentry->d_lock);
498 }
499 EXPORT_SYMBOL(d_drop);
500 
501 static inline void dentry_unlist(struct dentry *dentry, struct dentry *parent)
502 {
503 	struct dentry *next;
504 	/*
505 	 * Inform d_walk() and shrink_dentry_list() that we are no longer
506 	 * attached to the dentry tree
507 	 */
508 	dentry->d_flags |= DCACHE_DENTRY_KILLED;
509 	if (unlikely(list_empty(&dentry->d_child)))
510 		return;
511 	__list_del_entry(&dentry->d_child);
512 	/*
513 	 * Cursors can move around the list of children.  While we'd been
514 	 * a normal list member, it didn't matter - ->d_child.next would've
515 	 * been updated.  However, from now on it won't be and for the
516 	 * things like d_walk() it might end up with a nasty surprise.
517 	 * Normally d_walk() doesn't care about cursors moving around -
518 	 * ->d_lock on parent prevents that and since a cursor has no children
519 	 * of its own, we get through it without ever unlocking the parent.
520 	 * There is one exception, though - if we ascend from a child that
521 	 * gets killed as soon as we unlock it, the next sibling is found
522 	 * using the value left in its ->d_child.next.  And if _that_
523 	 * pointed to a cursor, and cursor got moved (e.g. by lseek())
524 	 * before d_walk() regains parent->d_lock, we'll end up skipping
525 	 * everything the cursor had been moved past.
526 	 *
527 	 * Solution: make sure that the pointer left behind in ->d_child.next
528 	 * points to something that won't be moving around.  I.e. skip the
529 	 * cursors.
530 	 */
531 	while (dentry->d_child.next != &parent->d_subdirs) {
532 		next = list_entry(dentry->d_child.next, struct dentry, d_child);
533 		if (likely(!(next->d_flags & DCACHE_DENTRY_CURSOR)))
534 			break;
535 		dentry->d_child.next = next->d_child.next;
536 	}
537 }
538 
539 static void __dentry_kill(struct dentry *dentry)
540 {
541 	struct dentry *parent = NULL;
542 	bool can_free = true;
543 	if (!IS_ROOT(dentry))
544 		parent = dentry->d_parent;
545 
546 	/*
547 	 * The dentry is now unrecoverably dead to the world.
548 	 */
549 	lockref_mark_dead(&dentry->d_lockref);
550 
551 	/*
552 	 * inform the fs via d_prune that this dentry is about to be
553 	 * unhashed and destroyed.
554 	 */
555 	if (dentry->d_flags & DCACHE_OP_PRUNE)
556 		dentry->d_op->d_prune(dentry);
557 
558 	if (dentry->d_flags & DCACHE_LRU_LIST) {
559 		if (!(dentry->d_flags & DCACHE_SHRINK_LIST))
560 			d_lru_del(dentry);
561 	}
562 	/* if it was on the hash then remove it */
563 	__d_drop(dentry);
564 	dentry_unlist(dentry, parent);
565 	if (parent)
566 		spin_unlock(&parent->d_lock);
567 	if (dentry->d_inode)
568 		dentry_unlink_inode(dentry);
569 	else
570 		spin_unlock(&dentry->d_lock);
571 	this_cpu_dec(nr_dentry);
572 	if (dentry->d_op && dentry->d_op->d_release)
573 		dentry->d_op->d_release(dentry);
574 
575 	spin_lock(&dentry->d_lock);
576 	if (dentry->d_flags & DCACHE_SHRINK_LIST) {
577 		dentry->d_flags |= DCACHE_MAY_FREE;
578 		can_free = false;
579 	}
580 	spin_unlock(&dentry->d_lock);
581 	if (likely(can_free))
582 		dentry_free(dentry);
583 }
584 
585 static struct dentry *__lock_parent(struct dentry *dentry)
586 {
587 	struct dentry *parent;
588 	rcu_read_lock();
589 	spin_unlock(&dentry->d_lock);
590 again:
591 	parent = READ_ONCE(dentry->d_parent);
592 	spin_lock(&parent->d_lock);
593 	/*
594 	 * We can't blindly lock dentry until we are sure
595 	 * that we won't violate the locking order.
596 	 * Any changes of dentry->d_parent must have
597 	 * been done with parent->d_lock held, so
598 	 * spin_lock() above is enough of a barrier
599 	 * for checking if it's still our child.
600 	 */
601 	if (unlikely(parent != dentry->d_parent)) {
602 		spin_unlock(&parent->d_lock);
603 		goto again;
604 	}
605 	rcu_read_unlock();
606 	if (parent != dentry)
607 		spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
608 	else
609 		parent = NULL;
610 	return parent;
611 }
612 
613 static inline struct dentry *lock_parent(struct dentry *dentry)
614 {
615 	struct dentry *parent = dentry->d_parent;
616 	if (IS_ROOT(dentry))
617 		return NULL;
618 	if (likely(spin_trylock(&parent->d_lock)))
619 		return parent;
620 	return __lock_parent(dentry);
621 }
622 
623 static inline bool retain_dentry(struct dentry *dentry)
624 {
625 	WARN_ON(d_in_lookup(dentry));
626 
627 	/* Unreachable? Get rid of it */
628 	if (unlikely(d_unhashed(dentry)))
629 		return false;
630 
631 	if (unlikely(dentry->d_flags & DCACHE_DISCONNECTED))
632 		return false;
633 
634 	if (unlikely(dentry->d_flags & DCACHE_OP_DELETE)) {
635 		if (dentry->d_op->d_delete(dentry))
636 			return false;
637 	}
638 	/* retain; LRU fodder */
639 	dentry->d_lockref.count--;
640 	if (unlikely(!(dentry->d_flags & DCACHE_LRU_LIST)))
641 		d_lru_add(dentry);
642 	else if (unlikely(!(dentry->d_flags & DCACHE_REFERENCED)))
643 		dentry->d_flags |= DCACHE_REFERENCED;
644 	return true;
645 }
646 
647 /*
648  * Finish off a dentry we've decided to kill.
649  * dentry->d_lock must be held, returns with it unlocked.
650  * Returns dentry requiring refcount drop, or NULL if we're done.
651  */
652 static struct dentry *dentry_kill(struct dentry *dentry)
653 	__releases(dentry->d_lock)
654 {
655 	struct inode *inode = dentry->d_inode;
656 	struct dentry *parent = NULL;
657 
658 	if (inode && unlikely(!spin_trylock(&inode->i_lock)))
659 		goto slow_positive;
660 
661 	if (!IS_ROOT(dentry)) {
662 		parent = dentry->d_parent;
663 		if (unlikely(!spin_trylock(&parent->d_lock))) {
664 			parent = __lock_parent(dentry);
665 			if (likely(inode || !dentry->d_inode))
666 				goto got_locks;
667 			/* negative that became positive */
668 			if (parent)
669 				spin_unlock(&parent->d_lock);
670 			inode = dentry->d_inode;
671 			goto slow_positive;
672 		}
673 	}
674 	__dentry_kill(dentry);
675 	return parent;
676 
677 slow_positive:
678 	spin_unlock(&dentry->d_lock);
679 	spin_lock(&inode->i_lock);
680 	spin_lock(&dentry->d_lock);
681 	parent = lock_parent(dentry);
682 got_locks:
683 	if (unlikely(dentry->d_lockref.count != 1)) {
684 		dentry->d_lockref.count--;
685 	} else if (likely(!retain_dentry(dentry))) {
686 		__dentry_kill(dentry);
687 		return parent;
688 	}
689 	/* we are keeping it, after all */
690 	if (inode)
691 		spin_unlock(&inode->i_lock);
692 	if (parent)
693 		spin_unlock(&parent->d_lock);
694 	spin_unlock(&dentry->d_lock);
695 	return NULL;
696 }
697 
698 /*
699  * Try to do a lockless dput(), and return whether that was successful.
700  *
701  * If unsuccessful, we return false, having already taken the dentry lock.
702  *
703  * The caller needs to hold the RCU read lock, so that the dentry is
704  * guaranteed to stay around even if the refcount goes down to zero!
705  */
706 static inline bool fast_dput(struct dentry *dentry)
707 {
708 	int ret;
709 	unsigned int d_flags;
710 
711 	/*
712 	 * If we have a d_op->d_delete() operation, we sould not
713 	 * let the dentry count go to zero, so use "put_or_lock".
714 	 */
715 	if (unlikely(dentry->d_flags & DCACHE_OP_DELETE))
716 		return lockref_put_or_lock(&dentry->d_lockref);
717 
718 	/*
719 	 * .. otherwise, we can try to just decrement the
720 	 * lockref optimistically.
721 	 */
722 	ret = lockref_put_return(&dentry->d_lockref);
723 
724 	/*
725 	 * If the lockref_put_return() failed due to the lock being held
726 	 * by somebody else, the fast path has failed. We will need to
727 	 * get the lock, and then check the count again.
728 	 */
729 	if (unlikely(ret < 0)) {
730 		spin_lock(&dentry->d_lock);
731 		if (dentry->d_lockref.count > 1) {
732 			dentry->d_lockref.count--;
733 			spin_unlock(&dentry->d_lock);
734 			return 1;
735 		}
736 		return 0;
737 	}
738 
739 	/*
740 	 * If we weren't the last ref, we're done.
741 	 */
742 	if (ret)
743 		return 1;
744 
745 	/*
746 	 * Careful, careful. The reference count went down
747 	 * to zero, but we don't hold the dentry lock, so
748 	 * somebody else could get it again, and do another
749 	 * dput(), and we need to not race with that.
750 	 *
751 	 * However, there is a very special and common case
752 	 * where we don't care, because there is nothing to
753 	 * do: the dentry is still hashed, it does not have
754 	 * a 'delete' op, and it's referenced and already on
755 	 * the LRU list.
756 	 *
757 	 * NOTE! Since we aren't locked, these values are
758 	 * not "stable". However, it is sufficient that at
759 	 * some point after we dropped the reference the
760 	 * dentry was hashed and the flags had the proper
761 	 * value. Other dentry users may have re-gotten
762 	 * a reference to the dentry and change that, but
763 	 * our work is done - we can leave the dentry
764 	 * around with a zero refcount.
765 	 */
766 	smp_rmb();
767 	d_flags = READ_ONCE(dentry->d_flags);
768 	d_flags &= DCACHE_REFERENCED | DCACHE_LRU_LIST | DCACHE_DISCONNECTED;
769 
770 	/* Nothing to do? Dropping the reference was all we needed? */
771 	if (d_flags == (DCACHE_REFERENCED | DCACHE_LRU_LIST) && !d_unhashed(dentry))
772 		return 1;
773 
774 	/*
775 	 * Not the fast normal case? Get the lock. We've already decremented
776 	 * the refcount, but we'll need to re-check the situation after
777 	 * getting the lock.
778 	 */
779 	spin_lock(&dentry->d_lock);
780 
781 	/*
782 	 * Did somebody else grab a reference to it in the meantime, and
783 	 * we're no longer the last user after all? Alternatively, somebody
784 	 * else could have killed it and marked it dead. Either way, we
785 	 * don't need to do anything else.
786 	 */
787 	if (dentry->d_lockref.count) {
788 		spin_unlock(&dentry->d_lock);
789 		return 1;
790 	}
791 
792 	/*
793 	 * Re-get the reference we optimistically dropped. We hold the
794 	 * lock, and we just tested that it was zero, so we can just
795 	 * set it to 1.
796 	 */
797 	dentry->d_lockref.count = 1;
798 	return 0;
799 }
800 
801 
802 /*
803  * This is dput
804  *
805  * This is complicated by the fact that we do not want to put
806  * dentries that are no longer on any hash chain on the unused
807  * list: we'd much rather just get rid of them immediately.
808  *
809  * However, that implies that we have to traverse the dentry
810  * tree upwards to the parents which might _also_ now be
811  * scheduled for deletion (it may have been only waiting for
812  * its last child to go away).
813  *
814  * This tail recursion is done by hand as we don't want to depend
815  * on the compiler to always get this right (gcc generally doesn't).
816  * Real recursion would eat up our stack space.
817  */
818 
819 /*
820  * dput - release a dentry
821  * @dentry: dentry to release
822  *
823  * Release a dentry. This will drop the usage count and if appropriate
824  * call the dentry unlink method as well as removing it from the queues and
825  * releasing its resources. If the parent dentries were scheduled for release
826  * they too may now get deleted.
827  */
828 void dput(struct dentry *dentry)
829 {
830 	if (unlikely(!dentry))
831 		return;
832 
833 repeat:
834 	might_sleep();
835 
836 	rcu_read_lock();
837 	if (likely(fast_dput(dentry))) {
838 		rcu_read_unlock();
839 		return;
840 	}
841 
842 	/* Slow case: now with the dentry lock held */
843 	rcu_read_unlock();
844 
845 	if (likely(retain_dentry(dentry))) {
846 		spin_unlock(&dentry->d_lock);
847 		return;
848 	}
849 
850 	dentry = dentry_kill(dentry);
851 	if (dentry) {
852 		cond_resched();
853 		goto repeat;
854 	}
855 }
856 EXPORT_SYMBOL(dput);
857 
858 
859 /* This must be called with d_lock held */
860 static inline void __dget_dlock(struct dentry *dentry)
861 {
862 	dentry->d_lockref.count++;
863 }
864 
865 static inline void __dget(struct dentry *dentry)
866 {
867 	lockref_get(&dentry->d_lockref);
868 }
869 
870 struct dentry *dget_parent(struct dentry *dentry)
871 {
872 	int gotref;
873 	struct dentry *ret;
874 
875 	/*
876 	 * Do optimistic parent lookup without any
877 	 * locking.
878 	 */
879 	rcu_read_lock();
880 	ret = READ_ONCE(dentry->d_parent);
881 	gotref = lockref_get_not_zero(&ret->d_lockref);
882 	rcu_read_unlock();
883 	if (likely(gotref)) {
884 		if (likely(ret == READ_ONCE(dentry->d_parent)))
885 			return ret;
886 		dput(ret);
887 	}
888 
889 repeat:
890 	/*
891 	 * Don't need rcu_dereference because we re-check it was correct under
892 	 * the lock.
893 	 */
894 	rcu_read_lock();
895 	ret = dentry->d_parent;
896 	spin_lock(&ret->d_lock);
897 	if (unlikely(ret != dentry->d_parent)) {
898 		spin_unlock(&ret->d_lock);
899 		rcu_read_unlock();
900 		goto repeat;
901 	}
902 	rcu_read_unlock();
903 	BUG_ON(!ret->d_lockref.count);
904 	ret->d_lockref.count++;
905 	spin_unlock(&ret->d_lock);
906 	return ret;
907 }
908 EXPORT_SYMBOL(dget_parent);
909 
910 /**
911  * d_find_alias - grab a hashed alias of inode
912  * @inode: inode in question
913  *
914  * If inode has a hashed alias, or is a directory and has any alias,
915  * acquire the reference to alias and return it. Otherwise return NULL.
916  * Notice that if inode is a directory there can be only one alias and
917  * it can be unhashed only if it has no children, or if it is the root
918  * of a filesystem, or if the directory was renamed and d_revalidate
919  * was the first vfs operation to notice.
920  *
921  * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
922  * any other hashed alias over that one.
923  */
924 static struct dentry *__d_find_alias(struct inode *inode)
925 {
926 	struct dentry *alias, *discon_alias;
927 
928 again:
929 	discon_alias = NULL;
930 	hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
931 		spin_lock(&alias->d_lock);
932  		if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
933 			if (IS_ROOT(alias) &&
934 			    (alias->d_flags & DCACHE_DISCONNECTED)) {
935 				discon_alias = alias;
936 			} else {
937 				__dget_dlock(alias);
938 				spin_unlock(&alias->d_lock);
939 				return alias;
940 			}
941 		}
942 		spin_unlock(&alias->d_lock);
943 	}
944 	if (discon_alias) {
945 		alias = discon_alias;
946 		spin_lock(&alias->d_lock);
947 		if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
948 			__dget_dlock(alias);
949 			spin_unlock(&alias->d_lock);
950 			return alias;
951 		}
952 		spin_unlock(&alias->d_lock);
953 		goto again;
954 	}
955 	return NULL;
956 }
957 
958 struct dentry *d_find_alias(struct inode *inode)
959 {
960 	struct dentry *de = NULL;
961 
962 	if (!hlist_empty(&inode->i_dentry)) {
963 		spin_lock(&inode->i_lock);
964 		de = __d_find_alias(inode);
965 		spin_unlock(&inode->i_lock);
966 	}
967 	return de;
968 }
969 EXPORT_SYMBOL(d_find_alias);
970 
971 /*
972  *	Try to kill dentries associated with this inode.
973  * WARNING: you must own a reference to inode.
974  */
975 void d_prune_aliases(struct inode *inode)
976 {
977 	struct dentry *dentry;
978 restart:
979 	spin_lock(&inode->i_lock);
980 	hlist_for_each_entry(dentry, &inode->i_dentry, d_u.d_alias) {
981 		spin_lock(&dentry->d_lock);
982 		if (!dentry->d_lockref.count) {
983 			struct dentry *parent = lock_parent(dentry);
984 			if (likely(!dentry->d_lockref.count)) {
985 				__dentry_kill(dentry);
986 				dput(parent);
987 				goto restart;
988 			}
989 			if (parent)
990 				spin_unlock(&parent->d_lock);
991 		}
992 		spin_unlock(&dentry->d_lock);
993 	}
994 	spin_unlock(&inode->i_lock);
995 }
996 EXPORT_SYMBOL(d_prune_aliases);
997 
998 /*
999  * Lock a dentry from shrink list.
1000  * Called under rcu_read_lock() and dentry->d_lock; the former
1001  * guarantees that nothing we access will be freed under us.
1002  * Note that dentry is *not* protected from concurrent dentry_kill(),
1003  * d_delete(), etc.
1004  *
1005  * Return false if dentry has been disrupted or grabbed, leaving
1006  * the caller to kick it off-list.  Otherwise, return true and have
1007  * that dentry's inode and parent both locked.
1008  */
1009 static bool shrink_lock_dentry(struct dentry *dentry)
1010 {
1011 	struct inode *inode;
1012 	struct dentry *parent;
1013 
1014 	if (dentry->d_lockref.count)
1015 		return false;
1016 
1017 	inode = dentry->d_inode;
1018 	if (inode && unlikely(!spin_trylock(&inode->i_lock))) {
1019 		spin_unlock(&dentry->d_lock);
1020 		spin_lock(&inode->i_lock);
1021 		spin_lock(&dentry->d_lock);
1022 		if (unlikely(dentry->d_lockref.count))
1023 			goto out;
1024 		/* changed inode means that somebody had grabbed it */
1025 		if (unlikely(inode != dentry->d_inode))
1026 			goto out;
1027 	}
1028 
1029 	parent = dentry->d_parent;
1030 	if (IS_ROOT(dentry) || likely(spin_trylock(&parent->d_lock)))
1031 		return true;
1032 
1033 	spin_unlock(&dentry->d_lock);
1034 	spin_lock(&parent->d_lock);
1035 	if (unlikely(parent != dentry->d_parent)) {
1036 		spin_unlock(&parent->d_lock);
1037 		spin_lock(&dentry->d_lock);
1038 		goto out;
1039 	}
1040 	spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1041 	if (likely(!dentry->d_lockref.count))
1042 		return true;
1043 	spin_unlock(&parent->d_lock);
1044 out:
1045 	if (inode)
1046 		spin_unlock(&inode->i_lock);
1047 	return false;
1048 }
1049 
1050 static void shrink_dentry_list(struct list_head *list)
1051 {
1052 	while (!list_empty(list)) {
1053 		struct dentry *dentry, *parent;
1054 
1055 		cond_resched();
1056 
1057 		dentry = list_entry(list->prev, struct dentry, d_lru);
1058 		spin_lock(&dentry->d_lock);
1059 		rcu_read_lock();
1060 		if (!shrink_lock_dentry(dentry)) {
1061 			bool can_free = false;
1062 			rcu_read_unlock();
1063 			d_shrink_del(dentry);
1064 			if (dentry->d_lockref.count < 0)
1065 				can_free = dentry->d_flags & DCACHE_MAY_FREE;
1066 			spin_unlock(&dentry->d_lock);
1067 			if (can_free)
1068 				dentry_free(dentry);
1069 			continue;
1070 		}
1071 		rcu_read_unlock();
1072 		d_shrink_del(dentry);
1073 		parent = dentry->d_parent;
1074 		__dentry_kill(dentry);
1075 		if (parent == dentry)
1076 			continue;
1077 		/*
1078 		 * We need to prune ancestors too. This is necessary to prevent
1079 		 * quadratic behavior of shrink_dcache_parent(), but is also
1080 		 * expected to be beneficial in reducing dentry cache
1081 		 * fragmentation.
1082 		 */
1083 		dentry = parent;
1084 		while (dentry && !lockref_put_or_lock(&dentry->d_lockref))
1085 			dentry = dentry_kill(dentry);
1086 	}
1087 }
1088 
1089 static enum lru_status dentry_lru_isolate(struct list_head *item,
1090 		struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
1091 {
1092 	struct list_head *freeable = arg;
1093 	struct dentry	*dentry = container_of(item, struct dentry, d_lru);
1094 
1095 
1096 	/*
1097 	 * we are inverting the lru lock/dentry->d_lock here,
1098 	 * so use a trylock. If we fail to get the lock, just skip
1099 	 * it
1100 	 */
1101 	if (!spin_trylock(&dentry->d_lock))
1102 		return LRU_SKIP;
1103 
1104 	/*
1105 	 * Referenced dentries are still in use. If they have active
1106 	 * counts, just remove them from the LRU. Otherwise give them
1107 	 * another pass through the LRU.
1108 	 */
1109 	if (dentry->d_lockref.count) {
1110 		d_lru_isolate(lru, dentry);
1111 		spin_unlock(&dentry->d_lock);
1112 		return LRU_REMOVED;
1113 	}
1114 
1115 	if (dentry->d_flags & DCACHE_REFERENCED) {
1116 		dentry->d_flags &= ~DCACHE_REFERENCED;
1117 		spin_unlock(&dentry->d_lock);
1118 
1119 		/*
1120 		 * The list move itself will be made by the common LRU code. At
1121 		 * this point, we've dropped the dentry->d_lock but keep the
1122 		 * lru lock. This is safe to do, since every list movement is
1123 		 * protected by the lru lock even if both locks are held.
1124 		 *
1125 		 * This is guaranteed by the fact that all LRU management
1126 		 * functions are intermediated by the LRU API calls like
1127 		 * list_lru_add and list_lru_del. List movement in this file
1128 		 * only ever occur through this functions or through callbacks
1129 		 * like this one, that are called from the LRU API.
1130 		 *
1131 		 * The only exceptions to this are functions like
1132 		 * shrink_dentry_list, and code that first checks for the
1133 		 * DCACHE_SHRINK_LIST flag.  Those are guaranteed to be
1134 		 * operating only with stack provided lists after they are
1135 		 * properly isolated from the main list.  It is thus, always a
1136 		 * local access.
1137 		 */
1138 		return LRU_ROTATE;
1139 	}
1140 
1141 	d_lru_shrink_move(lru, dentry, freeable);
1142 	spin_unlock(&dentry->d_lock);
1143 
1144 	return LRU_REMOVED;
1145 }
1146 
1147 /**
1148  * prune_dcache_sb - shrink the dcache
1149  * @sb: superblock
1150  * @sc: shrink control, passed to list_lru_shrink_walk()
1151  *
1152  * Attempt to shrink the superblock dcache LRU by @sc->nr_to_scan entries. This
1153  * is done when we need more memory and called from the superblock shrinker
1154  * function.
1155  *
1156  * This function may fail to free any resources if all the dentries are in
1157  * use.
1158  */
1159 long prune_dcache_sb(struct super_block *sb, struct shrink_control *sc)
1160 {
1161 	LIST_HEAD(dispose);
1162 	long freed;
1163 
1164 	freed = list_lru_shrink_walk(&sb->s_dentry_lru, sc,
1165 				     dentry_lru_isolate, &dispose);
1166 	shrink_dentry_list(&dispose);
1167 	return freed;
1168 }
1169 
1170 static enum lru_status dentry_lru_isolate_shrink(struct list_head *item,
1171 		struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
1172 {
1173 	struct list_head *freeable = arg;
1174 	struct dentry	*dentry = container_of(item, struct dentry, d_lru);
1175 
1176 	/*
1177 	 * we are inverting the lru lock/dentry->d_lock here,
1178 	 * so use a trylock. If we fail to get the lock, just skip
1179 	 * it
1180 	 */
1181 	if (!spin_trylock(&dentry->d_lock))
1182 		return LRU_SKIP;
1183 
1184 	d_lru_shrink_move(lru, dentry, freeable);
1185 	spin_unlock(&dentry->d_lock);
1186 
1187 	return LRU_REMOVED;
1188 }
1189 
1190 
1191 /**
1192  * shrink_dcache_sb - shrink dcache for a superblock
1193  * @sb: superblock
1194  *
1195  * Shrink the dcache for the specified super block. This is used to free
1196  * the dcache before unmounting a file system.
1197  */
1198 void shrink_dcache_sb(struct super_block *sb)
1199 {
1200 	long freed;
1201 
1202 	do {
1203 		LIST_HEAD(dispose);
1204 
1205 		freed = list_lru_walk(&sb->s_dentry_lru,
1206 			dentry_lru_isolate_shrink, &dispose, 1024);
1207 
1208 		this_cpu_sub(nr_dentry_unused, freed);
1209 		shrink_dentry_list(&dispose);
1210 	} while (list_lru_count(&sb->s_dentry_lru) > 0);
1211 }
1212 EXPORT_SYMBOL(shrink_dcache_sb);
1213 
1214 /**
1215  * enum d_walk_ret - action to talke during tree walk
1216  * @D_WALK_CONTINUE:	contrinue walk
1217  * @D_WALK_QUIT:	quit walk
1218  * @D_WALK_NORETRY:	quit when retry is needed
1219  * @D_WALK_SKIP:	skip this dentry and its children
1220  */
1221 enum d_walk_ret {
1222 	D_WALK_CONTINUE,
1223 	D_WALK_QUIT,
1224 	D_WALK_NORETRY,
1225 	D_WALK_SKIP,
1226 };
1227 
1228 /**
1229  * d_walk - walk the dentry tree
1230  * @parent:	start of walk
1231  * @data:	data passed to @enter() and @finish()
1232  * @enter:	callback when first entering the dentry
1233  * @finish:	callback when successfully finished the walk
1234  *
1235  * The @enter() and @finish() callbacks are called with d_lock held.
1236  */
1237 static void d_walk(struct dentry *parent, void *data,
1238 		   enum d_walk_ret (*enter)(void *, struct dentry *),
1239 		   void (*finish)(void *))
1240 {
1241 	struct dentry *this_parent;
1242 	struct list_head *next;
1243 	unsigned seq = 0;
1244 	enum d_walk_ret ret;
1245 	bool retry = true;
1246 
1247 again:
1248 	read_seqbegin_or_lock(&rename_lock, &seq);
1249 	this_parent = parent;
1250 	spin_lock(&this_parent->d_lock);
1251 
1252 	ret = enter(data, this_parent);
1253 	switch (ret) {
1254 	case D_WALK_CONTINUE:
1255 		break;
1256 	case D_WALK_QUIT:
1257 	case D_WALK_SKIP:
1258 		goto out_unlock;
1259 	case D_WALK_NORETRY:
1260 		retry = false;
1261 		break;
1262 	}
1263 repeat:
1264 	next = this_parent->d_subdirs.next;
1265 resume:
1266 	while (next != &this_parent->d_subdirs) {
1267 		struct list_head *tmp = next;
1268 		struct dentry *dentry = list_entry(tmp, struct dentry, d_child);
1269 		next = tmp->next;
1270 
1271 		if (unlikely(dentry->d_flags & DCACHE_DENTRY_CURSOR))
1272 			continue;
1273 
1274 		spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1275 
1276 		ret = enter(data, dentry);
1277 		switch (ret) {
1278 		case D_WALK_CONTINUE:
1279 			break;
1280 		case D_WALK_QUIT:
1281 			spin_unlock(&dentry->d_lock);
1282 			goto out_unlock;
1283 		case D_WALK_NORETRY:
1284 			retry = false;
1285 			break;
1286 		case D_WALK_SKIP:
1287 			spin_unlock(&dentry->d_lock);
1288 			continue;
1289 		}
1290 
1291 		if (!list_empty(&dentry->d_subdirs)) {
1292 			spin_unlock(&this_parent->d_lock);
1293 			spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1294 			this_parent = dentry;
1295 			spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1296 			goto repeat;
1297 		}
1298 		spin_unlock(&dentry->d_lock);
1299 	}
1300 	/*
1301 	 * All done at this level ... ascend and resume the search.
1302 	 */
1303 	rcu_read_lock();
1304 ascend:
1305 	if (this_parent != parent) {
1306 		struct dentry *child = this_parent;
1307 		this_parent = child->d_parent;
1308 
1309 		spin_unlock(&child->d_lock);
1310 		spin_lock(&this_parent->d_lock);
1311 
1312 		/* might go back up the wrong parent if we have had a rename. */
1313 		if (need_seqretry(&rename_lock, seq))
1314 			goto rename_retry;
1315 		/* go into the first sibling still alive */
1316 		do {
1317 			next = child->d_child.next;
1318 			if (next == &this_parent->d_subdirs)
1319 				goto ascend;
1320 			child = list_entry(next, struct dentry, d_child);
1321 		} while (unlikely(child->d_flags & DCACHE_DENTRY_KILLED));
1322 		rcu_read_unlock();
1323 		goto resume;
1324 	}
1325 	if (need_seqretry(&rename_lock, seq))
1326 		goto rename_retry;
1327 	rcu_read_unlock();
1328 	if (finish)
1329 		finish(data);
1330 
1331 out_unlock:
1332 	spin_unlock(&this_parent->d_lock);
1333 	done_seqretry(&rename_lock, seq);
1334 	return;
1335 
1336 rename_retry:
1337 	spin_unlock(&this_parent->d_lock);
1338 	rcu_read_unlock();
1339 	BUG_ON(seq & 1);
1340 	if (!retry)
1341 		return;
1342 	seq = 1;
1343 	goto again;
1344 }
1345 
1346 struct check_mount {
1347 	struct vfsmount *mnt;
1348 	unsigned int mounted;
1349 };
1350 
1351 static enum d_walk_ret path_check_mount(void *data, struct dentry *dentry)
1352 {
1353 	struct check_mount *info = data;
1354 	struct path path = { .mnt = info->mnt, .dentry = dentry };
1355 
1356 	if (likely(!d_mountpoint(dentry)))
1357 		return D_WALK_CONTINUE;
1358 	if (__path_is_mountpoint(&path)) {
1359 		info->mounted = 1;
1360 		return D_WALK_QUIT;
1361 	}
1362 	return D_WALK_CONTINUE;
1363 }
1364 
1365 /**
1366  * path_has_submounts - check for mounts over a dentry in the
1367  *                      current namespace.
1368  * @parent: path to check.
1369  *
1370  * Return true if the parent or its subdirectories contain
1371  * a mount point in the current namespace.
1372  */
1373 int path_has_submounts(const struct path *parent)
1374 {
1375 	struct check_mount data = { .mnt = parent->mnt, .mounted = 0 };
1376 
1377 	read_seqlock_excl(&mount_lock);
1378 	d_walk(parent->dentry, &data, path_check_mount, NULL);
1379 	read_sequnlock_excl(&mount_lock);
1380 
1381 	return data.mounted;
1382 }
1383 EXPORT_SYMBOL(path_has_submounts);
1384 
1385 /*
1386  * Called by mount code to set a mountpoint and check if the mountpoint is
1387  * reachable (e.g. NFS can unhash a directory dentry and then the complete
1388  * subtree can become unreachable).
1389  *
1390  * Only one of d_invalidate() and d_set_mounted() must succeed.  For
1391  * this reason take rename_lock and d_lock on dentry and ancestors.
1392  */
1393 int d_set_mounted(struct dentry *dentry)
1394 {
1395 	struct dentry *p;
1396 	int ret = -ENOENT;
1397 	write_seqlock(&rename_lock);
1398 	for (p = dentry->d_parent; !IS_ROOT(p); p = p->d_parent) {
1399 		/* Need exclusion wrt. d_invalidate() */
1400 		spin_lock(&p->d_lock);
1401 		if (unlikely(d_unhashed(p))) {
1402 			spin_unlock(&p->d_lock);
1403 			goto out;
1404 		}
1405 		spin_unlock(&p->d_lock);
1406 	}
1407 	spin_lock(&dentry->d_lock);
1408 	if (!d_unlinked(dentry)) {
1409 		ret = -EBUSY;
1410 		if (!d_mountpoint(dentry)) {
1411 			dentry->d_flags |= DCACHE_MOUNTED;
1412 			ret = 0;
1413 		}
1414 	}
1415  	spin_unlock(&dentry->d_lock);
1416 out:
1417 	write_sequnlock(&rename_lock);
1418 	return ret;
1419 }
1420 
1421 /*
1422  * Search the dentry child list of the specified parent,
1423  * and move any unused dentries to the end of the unused
1424  * list for prune_dcache(). We descend to the next level
1425  * whenever the d_subdirs list is non-empty and continue
1426  * searching.
1427  *
1428  * It returns zero iff there are no unused children,
1429  * otherwise  it returns the number of children moved to
1430  * the end of the unused list. This may not be the total
1431  * number of unused children, because select_parent can
1432  * drop the lock and return early due to latency
1433  * constraints.
1434  */
1435 
1436 struct select_data {
1437 	struct dentry *start;
1438 	struct list_head dispose;
1439 	int found;
1440 };
1441 
1442 static enum d_walk_ret select_collect(void *_data, struct dentry *dentry)
1443 {
1444 	struct select_data *data = _data;
1445 	enum d_walk_ret ret = D_WALK_CONTINUE;
1446 
1447 	if (data->start == dentry)
1448 		goto out;
1449 
1450 	if (dentry->d_flags & DCACHE_SHRINK_LIST) {
1451 		data->found++;
1452 	} else {
1453 		if (dentry->d_flags & DCACHE_LRU_LIST)
1454 			d_lru_del(dentry);
1455 		if (!dentry->d_lockref.count) {
1456 			d_shrink_add(dentry, &data->dispose);
1457 			data->found++;
1458 		}
1459 	}
1460 	/*
1461 	 * We can return to the caller if we have found some (this
1462 	 * ensures forward progress). We'll be coming back to find
1463 	 * the rest.
1464 	 */
1465 	if (!list_empty(&data->dispose))
1466 		ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY;
1467 out:
1468 	return ret;
1469 }
1470 
1471 /**
1472  * shrink_dcache_parent - prune dcache
1473  * @parent: parent of entries to prune
1474  *
1475  * Prune the dcache to remove unused children of the parent dentry.
1476  */
1477 void shrink_dcache_parent(struct dentry *parent)
1478 {
1479 	for (;;) {
1480 		struct select_data data;
1481 
1482 		INIT_LIST_HEAD(&data.dispose);
1483 		data.start = parent;
1484 		data.found = 0;
1485 
1486 		d_walk(parent, &data, select_collect, NULL);
1487 		if (!data.found)
1488 			break;
1489 
1490 		shrink_dentry_list(&data.dispose);
1491 	}
1492 }
1493 EXPORT_SYMBOL(shrink_dcache_parent);
1494 
1495 static enum d_walk_ret umount_check(void *_data, struct dentry *dentry)
1496 {
1497 	/* it has busy descendents; complain about those instead */
1498 	if (!list_empty(&dentry->d_subdirs))
1499 		return D_WALK_CONTINUE;
1500 
1501 	/* root with refcount 1 is fine */
1502 	if (dentry == _data && dentry->d_lockref.count == 1)
1503 		return D_WALK_CONTINUE;
1504 
1505 	printk(KERN_ERR "BUG: Dentry %p{i=%lx,n=%pd} "
1506 			" still in use (%d) [unmount of %s %s]\n",
1507 		       dentry,
1508 		       dentry->d_inode ?
1509 		       dentry->d_inode->i_ino : 0UL,
1510 		       dentry,
1511 		       dentry->d_lockref.count,
1512 		       dentry->d_sb->s_type->name,
1513 		       dentry->d_sb->s_id);
1514 	WARN_ON(1);
1515 	return D_WALK_CONTINUE;
1516 }
1517 
1518 static void do_one_tree(struct dentry *dentry)
1519 {
1520 	shrink_dcache_parent(dentry);
1521 	d_walk(dentry, dentry, umount_check, NULL);
1522 	d_drop(dentry);
1523 	dput(dentry);
1524 }
1525 
1526 /*
1527  * destroy the dentries attached to a superblock on unmounting
1528  */
1529 void shrink_dcache_for_umount(struct super_block *sb)
1530 {
1531 	struct dentry *dentry;
1532 
1533 	WARN(down_read_trylock(&sb->s_umount), "s_umount should've been locked");
1534 
1535 	dentry = sb->s_root;
1536 	sb->s_root = NULL;
1537 	do_one_tree(dentry);
1538 
1539 	while (!hlist_bl_empty(&sb->s_roots)) {
1540 		dentry = dget(hlist_bl_entry(hlist_bl_first(&sb->s_roots), struct dentry, d_hash));
1541 		do_one_tree(dentry);
1542 	}
1543 }
1544 
1545 struct detach_data {
1546 	struct select_data select;
1547 	struct dentry *mountpoint;
1548 };
1549 static enum d_walk_ret detach_and_collect(void *_data, struct dentry *dentry)
1550 {
1551 	struct detach_data *data = _data;
1552 
1553 	if (d_mountpoint(dentry)) {
1554 		__dget_dlock(dentry);
1555 		data->mountpoint = dentry;
1556 		return D_WALK_QUIT;
1557 	}
1558 
1559 	return select_collect(&data->select, dentry);
1560 }
1561 
1562 static void check_and_drop(void *_data)
1563 {
1564 	struct detach_data *data = _data;
1565 
1566 	if (!data->mountpoint && list_empty(&data->select.dispose))
1567 		__d_drop(data->select.start);
1568 }
1569 
1570 /**
1571  * d_invalidate - detach submounts, prune dcache, and drop
1572  * @dentry: dentry to invalidate (aka detach, prune and drop)
1573  *
1574  * no dcache lock.
1575  *
1576  * The final d_drop is done as an atomic operation relative to
1577  * rename_lock ensuring there are no races with d_set_mounted.  This
1578  * ensures there are no unhashed dentries on the path to a mountpoint.
1579  */
1580 void d_invalidate(struct dentry *dentry)
1581 {
1582 	/*
1583 	 * If it's already been dropped, return OK.
1584 	 */
1585 	spin_lock(&dentry->d_lock);
1586 	if (d_unhashed(dentry)) {
1587 		spin_unlock(&dentry->d_lock);
1588 		return;
1589 	}
1590 	spin_unlock(&dentry->d_lock);
1591 
1592 	/* Negative dentries can be dropped without further checks */
1593 	if (!dentry->d_inode) {
1594 		d_drop(dentry);
1595 		return;
1596 	}
1597 
1598 	for (;;) {
1599 		struct detach_data data;
1600 
1601 		data.mountpoint = NULL;
1602 		INIT_LIST_HEAD(&data.select.dispose);
1603 		data.select.start = dentry;
1604 		data.select.found = 0;
1605 
1606 		d_walk(dentry, &data, detach_and_collect, check_and_drop);
1607 
1608 		if (!list_empty(&data.select.dispose))
1609 			shrink_dentry_list(&data.select.dispose);
1610 		else if (!data.mountpoint)
1611 			return;
1612 
1613 		if (data.mountpoint) {
1614 			detach_mounts(data.mountpoint);
1615 			dput(data.mountpoint);
1616 		}
1617 	}
1618 }
1619 EXPORT_SYMBOL(d_invalidate);
1620 
1621 /**
1622  * __d_alloc	-	allocate a dcache entry
1623  * @sb: filesystem it will belong to
1624  * @name: qstr of the name
1625  *
1626  * Allocates a dentry. It returns %NULL if there is insufficient memory
1627  * available. On a success the dentry is returned. The name passed in is
1628  * copied and the copy passed in may be reused after this call.
1629  */
1630 
1631 struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name)
1632 {
1633 	struct external_name *ext = NULL;
1634 	struct dentry *dentry;
1635 	char *dname;
1636 	int err;
1637 
1638 	dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
1639 	if (!dentry)
1640 		return NULL;
1641 
1642 	/*
1643 	 * We guarantee that the inline name is always NUL-terminated.
1644 	 * This way the memcpy() done by the name switching in rename
1645 	 * will still always have a NUL at the end, even if we might
1646 	 * be overwriting an internal NUL character
1647 	 */
1648 	dentry->d_iname[DNAME_INLINE_LEN-1] = 0;
1649 	if (unlikely(!name)) {
1650 		name = &slash_name;
1651 		dname = dentry->d_iname;
1652 	} else if (name->len > DNAME_INLINE_LEN-1) {
1653 		size_t size = offsetof(struct external_name, name[1]);
1654 
1655 		ext = kmalloc(size + name->len, GFP_KERNEL_ACCOUNT);
1656 		if (!ext) {
1657 			kmem_cache_free(dentry_cache, dentry);
1658 			return NULL;
1659 		}
1660 		atomic_set(&ext->u.count, 1);
1661 		dname = ext->name;
1662 	} else  {
1663 		dname = dentry->d_iname;
1664 	}
1665 
1666 	dentry->d_name.len = name->len;
1667 	dentry->d_name.hash = name->hash;
1668 	memcpy(dname, name->name, name->len);
1669 	dname[name->len] = 0;
1670 
1671 	/* Make sure we always see the terminating NUL character */
1672 	smp_store_release(&dentry->d_name.name, dname); /* ^^^ */
1673 
1674 	dentry->d_lockref.count = 1;
1675 	dentry->d_flags = 0;
1676 	spin_lock_init(&dentry->d_lock);
1677 	seqcount_init(&dentry->d_seq);
1678 	dentry->d_inode = NULL;
1679 	dentry->d_parent = dentry;
1680 	dentry->d_sb = sb;
1681 	dentry->d_op = NULL;
1682 	dentry->d_fsdata = NULL;
1683 	INIT_HLIST_BL_NODE(&dentry->d_hash);
1684 	INIT_LIST_HEAD(&dentry->d_lru);
1685 	INIT_LIST_HEAD(&dentry->d_subdirs);
1686 	INIT_HLIST_NODE(&dentry->d_u.d_alias);
1687 	INIT_LIST_HEAD(&dentry->d_child);
1688 	d_set_d_op(dentry, dentry->d_sb->s_d_op);
1689 
1690 	if (dentry->d_op && dentry->d_op->d_init) {
1691 		err = dentry->d_op->d_init(dentry);
1692 		if (err) {
1693 			if (dname_external(dentry))
1694 				kfree(external_name(dentry));
1695 			kmem_cache_free(dentry_cache, dentry);
1696 			return NULL;
1697 		}
1698 	}
1699 
1700 	if (unlikely(ext)) {
1701 		pg_data_t *pgdat = page_pgdat(virt_to_page(ext));
1702 		mod_node_page_state(pgdat, NR_INDIRECTLY_RECLAIMABLE_BYTES,
1703 				    ksize(ext));
1704 	}
1705 
1706 	this_cpu_inc(nr_dentry);
1707 
1708 	return dentry;
1709 }
1710 
1711 /**
1712  * d_alloc	-	allocate a dcache entry
1713  * @parent: parent of entry to allocate
1714  * @name: qstr of the name
1715  *
1716  * Allocates a dentry. It returns %NULL if there is insufficient memory
1717  * available. On a success the dentry is returned. The name passed in is
1718  * copied and the copy passed in may be reused after this call.
1719  */
1720 struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1721 {
1722 	struct dentry *dentry = __d_alloc(parent->d_sb, name);
1723 	if (!dentry)
1724 		return NULL;
1725 	dentry->d_flags |= DCACHE_RCUACCESS;
1726 	spin_lock(&parent->d_lock);
1727 	/*
1728 	 * don't need child lock because it is not subject
1729 	 * to concurrency here
1730 	 */
1731 	__dget_dlock(parent);
1732 	dentry->d_parent = parent;
1733 	list_add(&dentry->d_child, &parent->d_subdirs);
1734 	spin_unlock(&parent->d_lock);
1735 
1736 	return dentry;
1737 }
1738 EXPORT_SYMBOL(d_alloc);
1739 
1740 struct dentry *d_alloc_anon(struct super_block *sb)
1741 {
1742 	return __d_alloc(sb, NULL);
1743 }
1744 EXPORT_SYMBOL(d_alloc_anon);
1745 
1746 struct dentry *d_alloc_cursor(struct dentry * parent)
1747 {
1748 	struct dentry *dentry = d_alloc_anon(parent->d_sb);
1749 	if (dentry) {
1750 		dentry->d_flags |= DCACHE_RCUACCESS | DCACHE_DENTRY_CURSOR;
1751 		dentry->d_parent = dget(parent);
1752 	}
1753 	return dentry;
1754 }
1755 
1756 /**
1757  * d_alloc_pseudo - allocate a dentry (for lookup-less filesystems)
1758  * @sb: the superblock
1759  * @name: qstr of the name
1760  *
1761  * For a filesystem that just pins its dentries in memory and never
1762  * performs lookups at all, return an unhashed IS_ROOT dentry.
1763  */
1764 struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
1765 {
1766 	return __d_alloc(sb, name);
1767 }
1768 EXPORT_SYMBOL(d_alloc_pseudo);
1769 
1770 struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1771 {
1772 	struct qstr q;
1773 
1774 	q.name = name;
1775 	q.hash_len = hashlen_string(parent, name);
1776 	return d_alloc(parent, &q);
1777 }
1778 EXPORT_SYMBOL(d_alloc_name);
1779 
1780 void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1781 {
1782 	WARN_ON_ONCE(dentry->d_op);
1783 	WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH	|
1784 				DCACHE_OP_COMPARE	|
1785 				DCACHE_OP_REVALIDATE	|
1786 				DCACHE_OP_WEAK_REVALIDATE	|
1787 				DCACHE_OP_DELETE	|
1788 				DCACHE_OP_REAL));
1789 	dentry->d_op = op;
1790 	if (!op)
1791 		return;
1792 	if (op->d_hash)
1793 		dentry->d_flags |= DCACHE_OP_HASH;
1794 	if (op->d_compare)
1795 		dentry->d_flags |= DCACHE_OP_COMPARE;
1796 	if (op->d_revalidate)
1797 		dentry->d_flags |= DCACHE_OP_REVALIDATE;
1798 	if (op->d_weak_revalidate)
1799 		dentry->d_flags |= DCACHE_OP_WEAK_REVALIDATE;
1800 	if (op->d_delete)
1801 		dentry->d_flags |= DCACHE_OP_DELETE;
1802 	if (op->d_prune)
1803 		dentry->d_flags |= DCACHE_OP_PRUNE;
1804 	if (op->d_real)
1805 		dentry->d_flags |= DCACHE_OP_REAL;
1806 
1807 }
1808 EXPORT_SYMBOL(d_set_d_op);
1809 
1810 
1811 /*
1812  * d_set_fallthru - Mark a dentry as falling through to a lower layer
1813  * @dentry - The dentry to mark
1814  *
1815  * Mark a dentry as falling through to the lower layer (as set with
1816  * d_pin_lower()).  This flag may be recorded on the medium.
1817  */
1818 void d_set_fallthru(struct dentry *dentry)
1819 {
1820 	spin_lock(&dentry->d_lock);
1821 	dentry->d_flags |= DCACHE_FALLTHRU;
1822 	spin_unlock(&dentry->d_lock);
1823 }
1824 EXPORT_SYMBOL(d_set_fallthru);
1825 
1826 static unsigned d_flags_for_inode(struct inode *inode)
1827 {
1828 	unsigned add_flags = DCACHE_REGULAR_TYPE;
1829 
1830 	if (!inode)
1831 		return DCACHE_MISS_TYPE;
1832 
1833 	if (S_ISDIR(inode->i_mode)) {
1834 		add_flags = DCACHE_DIRECTORY_TYPE;
1835 		if (unlikely(!(inode->i_opflags & IOP_LOOKUP))) {
1836 			if (unlikely(!inode->i_op->lookup))
1837 				add_flags = DCACHE_AUTODIR_TYPE;
1838 			else
1839 				inode->i_opflags |= IOP_LOOKUP;
1840 		}
1841 		goto type_determined;
1842 	}
1843 
1844 	if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) {
1845 		if (unlikely(inode->i_op->get_link)) {
1846 			add_flags = DCACHE_SYMLINK_TYPE;
1847 			goto type_determined;
1848 		}
1849 		inode->i_opflags |= IOP_NOFOLLOW;
1850 	}
1851 
1852 	if (unlikely(!S_ISREG(inode->i_mode)))
1853 		add_flags = DCACHE_SPECIAL_TYPE;
1854 
1855 type_determined:
1856 	if (unlikely(IS_AUTOMOUNT(inode)))
1857 		add_flags |= DCACHE_NEED_AUTOMOUNT;
1858 	return add_flags;
1859 }
1860 
1861 static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1862 {
1863 	unsigned add_flags = d_flags_for_inode(inode);
1864 	WARN_ON(d_in_lookup(dentry));
1865 
1866 	spin_lock(&dentry->d_lock);
1867 	hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
1868 	raw_write_seqcount_begin(&dentry->d_seq);
1869 	__d_set_inode_and_type(dentry, inode, add_flags);
1870 	raw_write_seqcount_end(&dentry->d_seq);
1871 	fsnotify_update_flags(dentry);
1872 	spin_unlock(&dentry->d_lock);
1873 }
1874 
1875 /**
1876  * d_instantiate - fill in inode information for a dentry
1877  * @entry: dentry to complete
1878  * @inode: inode to attach to this dentry
1879  *
1880  * Fill in inode information in the entry.
1881  *
1882  * This turns negative dentries into productive full members
1883  * of society.
1884  *
1885  * NOTE! This assumes that the inode count has been incremented
1886  * (or otherwise set) by the caller to indicate that it is now
1887  * in use by the dcache.
1888  */
1889 
1890 void d_instantiate(struct dentry *entry, struct inode * inode)
1891 {
1892 	BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
1893 	if (inode) {
1894 		security_d_instantiate(entry, inode);
1895 		spin_lock(&inode->i_lock);
1896 		__d_instantiate(entry, inode);
1897 		spin_unlock(&inode->i_lock);
1898 	}
1899 }
1900 EXPORT_SYMBOL(d_instantiate);
1901 
1902 /*
1903  * This should be equivalent to d_instantiate() + unlock_new_inode(),
1904  * with lockdep-related part of unlock_new_inode() done before
1905  * anything else.  Use that instead of open-coding d_instantiate()/
1906  * unlock_new_inode() combinations.
1907  */
1908 void d_instantiate_new(struct dentry *entry, struct inode *inode)
1909 {
1910 	BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
1911 	BUG_ON(!inode);
1912 	lockdep_annotate_inode_mutex_key(inode);
1913 	security_d_instantiate(entry, inode);
1914 	spin_lock(&inode->i_lock);
1915 	__d_instantiate(entry, inode);
1916 	WARN_ON(!(inode->i_state & I_NEW));
1917 	inode->i_state &= ~I_NEW;
1918 	smp_mb();
1919 	wake_up_bit(&inode->i_state, __I_NEW);
1920 	spin_unlock(&inode->i_lock);
1921 }
1922 EXPORT_SYMBOL(d_instantiate_new);
1923 
1924 /**
1925  * d_instantiate_no_diralias - instantiate a non-aliased dentry
1926  * @entry: dentry to complete
1927  * @inode: inode to attach to this dentry
1928  *
1929  * Fill in inode information in the entry.  If a directory alias is found, then
1930  * return an error (and drop inode).  Together with d_materialise_unique() this
1931  * guarantees that a directory inode may never have more than one alias.
1932  */
1933 int d_instantiate_no_diralias(struct dentry *entry, struct inode *inode)
1934 {
1935 	BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
1936 
1937 	security_d_instantiate(entry, inode);
1938 	spin_lock(&inode->i_lock);
1939 	if (S_ISDIR(inode->i_mode) && !hlist_empty(&inode->i_dentry)) {
1940 		spin_unlock(&inode->i_lock);
1941 		iput(inode);
1942 		return -EBUSY;
1943 	}
1944 	__d_instantiate(entry, inode);
1945 	spin_unlock(&inode->i_lock);
1946 
1947 	return 0;
1948 }
1949 EXPORT_SYMBOL(d_instantiate_no_diralias);
1950 
1951 struct dentry *d_make_root(struct inode *root_inode)
1952 {
1953 	struct dentry *res = NULL;
1954 
1955 	if (root_inode) {
1956 		res = d_alloc_anon(root_inode->i_sb);
1957 		if (res)
1958 			d_instantiate(res, root_inode);
1959 		else
1960 			iput(root_inode);
1961 	}
1962 	return res;
1963 }
1964 EXPORT_SYMBOL(d_make_root);
1965 
1966 static struct dentry * __d_find_any_alias(struct inode *inode)
1967 {
1968 	struct dentry *alias;
1969 
1970 	if (hlist_empty(&inode->i_dentry))
1971 		return NULL;
1972 	alias = hlist_entry(inode->i_dentry.first, struct dentry, d_u.d_alias);
1973 	__dget(alias);
1974 	return alias;
1975 }
1976 
1977 /**
1978  * d_find_any_alias - find any alias for a given inode
1979  * @inode: inode to find an alias for
1980  *
1981  * If any aliases exist for the given inode, take and return a
1982  * reference for one of them.  If no aliases exist, return %NULL.
1983  */
1984 struct dentry *d_find_any_alias(struct inode *inode)
1985 {
1986 	struct dentry *de;
1987 
1988 	spin_lock(&inode->i_lock);
1989 	de = __d_find_any_alias(inode);
1990 	spin_unlock(&inode->i_lock);
1991 	return de;
1992 }
1993 EXPORT_SYMBOL(d_find_any_alias);
1994 
1995 static struct dentry *__d_instantiate_anon(struct dentry *dentry,
1996 					   struct inode *inode,
1997 					   bool disconnected)
1998 {
1999 	struct dentry *res;
2000 	unsigned add_flags;
2001 
2002 	security_d_instantiate(dentry, inode);
2003 	spin_lock(&inode->i_lock);
2004 	res = __d_find_any_alias(inode);
2005 	if (res) {
2006 		spin_unlock(&inode->i_lock);
2007 		dput(dentry);
2008 		goto out_iput;
2009 	}
2010 
2011 	/* attach a disconnected dentry */
2012 	add_flags = d_flags_for_inode(inode);
2013 
2014 	if (disconnected)
2015 		add_flags |= DCACHE_DISCONNECTED;
2016 
2017 	spin_lock(&dentry->d_lock);
2018 	__d_set_inode_and_type(dentry, inode, add_flags);
2019 	hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
2020 	if (!disconnected) {
2021 		hlist_bl_lock(&dentry->d_sb->s_roots);
2022 		hlist_bl_add_head(&dentry->d_hash, &dentry->d_sb->s_roots);
2023 		hlist_bl_unlock(&dentry->d_sb->s_roots);
2024 	}
2025 	spin_unlock(&dentry->d_lock);
2026 	spin_unlock(&inode->i_lock);
2027 
2028 	return dentry;
2029 
2030  out_iput:
2031 	iput(inode);
2032 	return res;
2033 }
2034 
2035 struct dentry *d_instantiate_anon(struct dentry *dentry, struct inode *inode)
2036 {
2037 	return __d_instantiate_anon(dentry, inode, true);
2038 }
2039 EXPORT_SYMBOL(d_instantiate_anon);
2040 
2041 static struct dentry *__d_obtain_alias(struct inode *inode, bool disconnected)
2042 {
2043 	struct dentry *tmp;
2044 	struct dentry *res;
2045 
2046 	if (!inode)
2047 		return ERR_PTR(-ESTALE);
2048 	if (IS_ERR(inode))
2049 		return ERR_CAST(inode);
2050 
2051 	res = d_find_any_alias(inode);
2052 	if (res)
2053 		goto out_iput;
2054 
2055 	tmp = d_alloc_anon(inode->i_sb);
2056 	if (!tmp) {
2057 		res = ERR_PTR(-ENOMEM);
2058 		goto out_iput;
2059 	}
2060 
2061 	return __d_instantiate_anon(tmp, inode, disconnected);
2062 
2063 out_iput:
2064 	iput(inode);
2065 	return res;
2066 }
2067 
2068 /**
2069  * d_obtain_alias - find or allocate a DISCONNECTED dentry for a given inode
2070  * @inode: inode to allocate the dentry for
2071  *
2072  * Obtain a dentry for an inode resulting from NFS filehandle conversion or
2073  * similar open by handle operations.  The returned dentry may be anonymous,
2074  * or may have a full name (if the inode was already in the cache).
2075  *
2076  * When called on a directory inode, we must ensure that the inode only ever
2077  * has one dentry.  If a dentry is found, that is returned instead of
2078  * allocating a new one.
2079  *
2080  * On successful return, the reference to the inode has been transferred
2081  * to the dentry.  In case of an error the reference on the inode is released.
2082  * To make it easier to use in export operations a %NULL or IS_ERR inode may
2083  * be passed in and the error will be propagated to the return value,
2084  * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
2085  */
2086 struct dentry *d_obtain_alias(struct inode *inode)
2087 {
2088 	return __d_obtain_alias(inode, true);
2089 }
2090 EXPORT_SYMBOL(d_obtain_alias);
2091 
2092 /**
2093  * d_obtain_root - find or allocate a dentry for a given inode
2094  * @inode: inode to allocate the dentry for
2095  *
2096  * Obtain an IS_ROOT dentry for the root of a filesystem.
2097  *
2098  * We must ensure that directory inodes only ever have one dentry.  If a
2099  * dentry is found, that is returned instead of allocating a new one.
2100  *
2101  * On successful return, the reference to the inode has been transferred
2102  * to the dentry.  In case of an error the reference on the inode is
2103  * released.  A %NULL or IS_ERR inode may be passed in and will be the
2104  * error will be propagate to the return value, with a %NULL @inode
2105  * replaced by ERR_PTR(-ESTALE).
2106  */
2107 struct dentry *d_obtain_root(struct inode *inode)
2108 {
2109 	return __d_obtain_alias(inode, false);
2110 }
2111 EXPORT_SYMBOL(d_obtain_root);
2112 
2113 /**
2114  * d_add_ci - lookup or allocate new dentry with case-exact name
2115  * @inode:  the inode case-insensitive lookup has found
2116  * @dentry: the negative dentry that was passed to the parent's lookup func
2117  * @name:   the case-exact name to be associated with the returned dentry
2118  *
2119  * This is to avoid filling the dcache with case-insensitive names to the
2120  * same inode, only the actual correct case is stored in the dcache for
2121  * case-insensitive filesystems.
2122  *
2123  * For a case-insensitive lookup match and if the the case-exact dentry
2124  * already exists in in the dcache, use it and return it.
2125  *
2126  * If no entry exists with the exact case name, allocate new dentry with
2127  * the exact case, and return the spliced entry.
2128  */
2129 struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
2130 			struct qstr *name)
2131 {
2132 	struct dentry *found, *res;
2133 
2134 	/*
2135 	 * First check if a dentry matching the name already exists,
2136 	 * if not go ahead and create it now.
2137 	 */
2138 	found = d_hash_and_lookup(dentry->d_parent, name);
2139 	if (found) {
2140 		iput(inode);
2141 		return found;
2142 	}
2143 	if (d_in_lookup(dentry)) {
2144 		found = d_alloc_parallel(dentry->d_parent, name,
2145 					dentry->d_wait);
2146 		if (IS_ERR(found) || !d_in_lookup(found)) {
2147 			iput(inode);
2148 			return found;
2149 		}
2150 	} else {
2151 		found = d_alloc(dentry->d_parent, name);
2152 		if (!found) {
2153 			iput(inode);
2154 			return ERR_PTR(-ENOMEM);
2155 		}
2156 	}
2157 	res = d_splice_alias(inode, found);
2158 	if (res) {
2159 		dput(found);
2160 		return res;
2161 	}
2162 	return found;
2163 }
2164 EXPORT_SYMBOL(d_add_ci);
2165 
2166 
2167 static inline bool d_same_name(const struct dentry *dentry,
2168 				const struct dentry *parent,
2169 				const struct qstr *name)
2170 {
2171 	if (likely(!(parent->d_flags & DCACHE_OP_COMPARE))) {
2172 		if (dentry->d_name.len != name->len)
2173 			return false;
2174 		return dentry_cmp(dentry, name->name, name->len) == 0;
2175 	}
2176 	return parent->d_op->d_compare(dentry,
2177 				       dentry->d_name.len, dentry->d_name.name,
2178 				       name) == 0;
2179 }
2180 
2181 /**
2182  * __d_lookup_rcu - search for a dentry (racy, store-free)
2183  * @parent: parent dentry
2184  * @name: qstr of name we wish to find
2185  * @seqp: returns d_seq value at the point where the dentry was found
2186  * Returns: dentry, or NULL
2187  *
2188  * __d_lookup_rcu is the dcache lookup function for rcu-walk name
2189  * resolution (store-free path walking) design described in
2190  * Documentation/filesystems/path-lookup.txt.
2191  *
2192  * This is not to be used outside core vfs.
2193  *
2194  * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
2195  * held, and rcu_read_lock held. The returned dentry must not be stored into
2196  * without taking d_lock and checking d_seq sequence count against @seq
2197  * returned here.
2198  *
2199  * A refcount may be taken on the found dentry with the d_rcu_to_refcount
2200  * function.
2201  *
2202  * Alternatively, __d_lookup_rcu may be called again to look up the child of
2203  * the returned dentry, so long as its parent's seqlock is checked after the
2204  * child is looked up. Thus, an interlocking stepping of sequence lock checks
2205  * is formed, giving integrity down the path walk.
2206  *
2207  * NOTE! The caller *has* to check the resulting dentry against the sequence
2208  * number we've returned before using any of the resulting dentry state!
2209  */
2210 struct dentry *__d_lookup_rcu(const struct dentry *parent,
2211 				const struct qstr *name,
2212 				unsigned *seqp)
2213 {
2214 	u64 hashlen = name->hash_len;
2215 	const unsigned char *str = name->name;
2216 	struct hlist_bl_head *b = d_hash(hashlen_hash(hashlen));
2217 	struct hlist_bl_node *node;
2218 	struct dentry *dentry;
2219 
2220 	/*
2221 	 * Note: There is significant duplication with __d_lookup_rcu which is
2222 	 * required to prevent single threaded performance regressions
2223 	 * especially on architectures where smp_rmb (in seqcounts) are costly.
2224 	 * Keep the two functions in sync.
2225 	 */
2226 
2227 	/*
2228 	 * The hash list is protected using RCU.
2229 	 *
2230 	 * Carefully use d_seq when comparing a candidate dentry, to avoid
2231 	 * races with d_move().
2232 	 *
2233 	 * It is possible that concurrent renames can mess up our list
2234 	 * walk here and result in missing our dentry, resulting in the
2235 	 * false-negative result. d_lookup() protects against concurrent
2236 	 * renames using rename_lock seqlock.
2237 	 *
2238 	 * See Documentation/filesystems/path-lookup.txt for more details.
2239 	 */
2240 	hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2241 		unsigned seq;
2242 
2243 seqretry:
2244 		/*
2245 		 * The dentry sequence count protects us from concurrent
2246 		 * renames, and thus protects parent and name fields.
2247 		 *
2248 		 * The caller must perform a seqcount check in order
2249 		 * to do anything useful with the returned dentry.
2250 		 *
2251 		 * NOTE! We do a "raw" seqcount_begin here. That means that
2252 		 * we don't wait for the sequence count to stabilize if it
2253 		 * is in the middle of a sequence change. If we do the slow
2254 		 * dentry compare, we will do seqretries until it is stable,
2255 		 * and if we end up with a successful lookup, we actually
2256 		 * want to exit RCU lookup anyway.
2257 		 *
2258 		 * Note that raw_seqcount_begin still *does* smp_rmb(), so
2259 		 * we are still guaranteed NUL-termination of ->d_name.name.
2260 		 */
2261 		seq = raw_seqcount_begin(&dentry->d_seq);
2262 		if (dentry->d_parent != parent)
2263 			continue;
2264 		if (d_unhashed(dentry))
2265 			continue;
2266 
2267 		if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) {
2268 			int tlen;
2269 			const char *tname;
2270 			if (dentry->d_name.hash != hashlen_hash(hashlen))
2271 				continue;
2272 			tlen = dentry->d_name.len;
2273 			tname = dentry->d_name.name;
2274 			/* we want a consistent (name,len) pair */
2275 			if (read_seqcount_retry(&dentry->d_seq, seq)) {
2276 				cpu_relax();
2277 				goto seqretry;
2278 			}
2279 			if (parent->d_op->d_compare(dentry,
2280 						    tlen, tname, name) != 0)
2281 				continue;
2282 		} else {
2283 			if (dentry->d_name.hash_len != hashlen)
2284 				continue;
2285 			if (dentry_cmp(dentry, str, hashlen_len(hashlen)) != 0)
2286 				continue;
2287 		}
2288 		*seqp = seq;
2289 		return dentry;
2290 	}
2291 	return NULL;
2292 }
2293 
2294 /**
2295  * d_lookup - search for a dentry
2296  * @parent: parent dentry
2297  * @name: qstr of name we wish to find
2298  * Returns: dentry, or NULL
2299  *
2300  * d_lookup searches the children of the parent dentry for the name in
2301  * question. If the dentry is found its reference count is incremented and the
2302  * dentry is returned. The caller must use dput to free the entry when it has
2303  * finished using it. %NULL is returned if the dentry does not exist.
2304  */
2305 struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name)
2306 {
2307 	struct dentry *dentry;
2308 	unsigned seq;
2309 
2310 	do {
2311 		seq = read_seqbegin(&rename_lock);
2312 		dentry = __d_lookup(parent, name);
2313 		if (dentry)
2314 			break;
2315 	} while (read_seqretry(&rename_lock, seq));
2316 	return dentry;
2317 }
2318 EXPORT_SYMBOL(d_lookup);
2319 
2320 /**
2321  * __d_lookup - search for a dentry (racy)
2322  * @parent: parent dentry
2323  * @name: qstr of name we wish to find
2324  * Returns: dentry, or NULL
2325  *
2326  * __d_lookup is like d_lookup, however it may (rarely) return a
2327  * false-negative result due to unrelated rename activity.
2328  *
2329  * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
2330  * however it must be used carefully, eg. with a following d_lookup in
2331  * the case of failure.
2332  *
2333  * __d_lookup callers must be commented.
2334  */
2335 struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name)
2336 {
2337 	unsigned int hash = name->hash;
2338 	struct hlist_bl_head *b = d_hash(hash);
2339 	struct hlist_bl_node *node;
2340 	struct dentry *found = NULL;
2341 	struct dentry *dentry;
2342 
2343 	/*
2344 	 * Note: There is significant duplication with __d_lookup_rcu which is
2345 	 * required to prevent single threaded performance regressions
2346 	 * especially on architectures where smp_rmb (in seqcounts) are costly.
2347 	 * Keep the two functions in sync.
2348 	 */
2349 
2350 	/*
2351 	 * The hash list is protected using RCU.
2352 	 *
2353 	 * Take d_lock when comparing a candidate dentry, to avoid races
2354 	 * with d_move().
2355 	 *
2356 	 * It is possible that concurrent renames can mess up our list
2357 	 * walk here and result in missing our dentry, resulting in the
2358 	 * false-negative result. d_lookup() protects against concurrent
2359 	 * renames using rename_lock seqlock.
2360 	 *
2361 	 * See Documentation/filesystems/path-lookup.txt for more details.
2362 	 */
2363 	rcu_read_lock();
2364 
2365 	hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2366 
2367 		if (dentry->d_name.hash != hash)
2368 			continue;
2369 
2370 		spin_lock(&dentry->d_lock);
2371 		if (dentry->d_parent != parent)
2372 			goto next;
2373 		if (d_unhashed(dentry))
2374 			goto next;
2375 
2376 		if (!d_same_name(dentry, parent, name))
2377 			goto next;
2378 
2379 		dentry->d_lockref.count++;
2380 		found = dentry;
2381 		spin_unlock(&dentry->d_lock);
2382 		break;
2383 next:
2384 		spin_unlock(&dentry->d_lock);
2385  	}
2386  	rcu_read_unlock();
2387 
2388  	return found;
2389 }
2390 
2391 /**
2392  * d_hash_and_lookup - hash the qstr then search for a dentry
2393  * @dir: Directory to search in
2394  * @name: qstr of name we wish to find
2395  *
2396  * On lookup failure NULL is returned; on bad name - ERR_PTR(-error)
2397  */
2398 struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
2399 {
2400 	/*
2401 	 * Check for a fs-specific hash function. Note that we must
2402 	 * calculate the standard hash first, as the d_op->d_hash()
2403 	 * routine may choose to leave the hash value unchanged.
2404 	 */
2405 	name->hash = full_name_hash(dir, name->name, name->len);
2406 	if (dir->d_flags & DCACHE_OP_HASH) {
2407 		int err = dir->d_op->d_hash(dir, name);
2408 		if (unlikely(err < 0))
2409 			return ERR_PTR(err);
2410 	}
2411 	return d_lookup(dir, name);
2412 }
2413 EXPORT_SYMBOL(d_hash_and_lookup);
2414 
2415 /*
2416  * When a file is deleted, we have two options:
2417  * - turn this dentry into a negative dentry
2418  * - unhash this dentry and free it.
2419  *
2420  * Usually, we want to just turn this into
2421  * a negative dentry, but if anybody else is
2422  * currently using the dentry or the inode
2423  * we can't do that and we fall back on removing
2424  * it from the hash queues and waiting for
2425  * it to be deleted later when it has no users
2426  */
2427 
2428 /**
2429  * d_delete - delete a dentry
2430  * @dentry: The dentry to delete
2431  *
2432  * Turn the dentry into a negative dentry if possible, otherwise
2433  * remove it from the hash queues so it can be deleted later
2434  */
2435 
2436 void d_delete(struct dentry * dentry)
2437 {
2438 	struct inode *inode = dentry->d_inode;
2439 	int isdir = d_is_dir(dentry);
2440 
2441 	spin_lock(&inode->i_lock);
2442 	spin_lock(&dentry->d_lock);
2443 	/*
2444 	 * Are we the only user?
2445 	 */
2446 	if (dentry->d_lockref.count == 1) {
2447 		dentry->d_flags &= ~DCACHE_CANT_MOUNT;
2448 		dentry_unlink_inode(dentry);
2449 	} else {
2450 		__d_drop(dentry);
2451 		spin_unlock(&dentry->d_lock);
2452 		spin_unlock(&inode->i_lock);
2453 	}
2454 	fsnotify_nameremove(dentry, isdir);
2455 }
2456 EXPORT_SYMBOL(d_delete);
2457 
2458 static void __d_rehash(struct dentry *entry)
2459 {
2460 	struct hlist_bl_head *b = d_hash(entry->d_name.hash);
2461 
2462 	hlist_bl_lock(b);
2463 	hlist_bl_add_head_rcu(&entry->d_hash, b);
2464 	hlist_bl_unlock(b);
2465 }
2466 
2467 /**
2468  * d_rehash	- add an entry back to the hash
2469  * @entry: dentry to add to the hash
2470  *
2471  * Adds a dentry to the hash according to its name.
2472  */
2473 
2474 void d_rehash(struct dentry * entry)
2475 {
2476 	spin_lock(&entry->d_lock);
2477 	__d_rehash(entry);
2478 	spin_unlock(&entry->d_lock);
2479 }
2480 EXPORT_SYMBOL(d_rehash);
2481 
2482 static inline unsigned start_dir_add(struct inode *dir)
2483 {
2484 
2485 	for (;;) {
2486 		unsigned n = dir->i_dir_seq;
2487 		if (!(n & 1) && cmpxchg(&dir->i_dir_seq, n, n + 1) == n)
2488 			return n;
2489 		cpu_relax();
2490 	}
2491 }
2492 
2493 static inline void end_dir_add(struct inode *dir, unsigned n)
2494 {
2495 	smp_store_release(&dir->i_dir_seq, n + 2);
2496 }
2497 
2498 static void d_wait_lookup(struct dentry *dentry)
2499 {
2500 	if (d_in_lookup(dentry)) {
2501 		DECLARE_WAITQUEUE(wait, current);
2502 		add_wait_queue(dentry->d_wait, &wait);
2503 		do {
2504 			set_current_state(TASK_UNINTERRUPTIBLE);
2505 			spin_unlock(&dentry->d_lock);
2506 			schedule();
2507 			spin_lock(&dentry->d_lock);
2508 		} while (d_in_lookup(dentry));
2509 	}
2510 }
2511 
2512 struct dentry *d_alloc_parallel(struct dentry *parent,
2513 				const struct qstr *name,
2514 				wait_queue_head_t *wq)
2515 {
2516 	unsigned int hash = name->hash;
2517 	struct hlist_bl_head *b = in_lookup_hash(parent, hash);
2518 	struct hlist_bl_node *node;
2519 	struct dentry *new = d_alloc(parent, name);
2520 	struct dentry *dentry;
2521 	unsigned seq, r_seq, d_seq;
2522 
2523 	if (unlikely(!new))
2524 		return ERR_PTR(-ENOMEM);
2525 
2526 retry:
2527 	rcu_read_lock();
2528 	seq = smp_load_acquire(&parent->d_inode->i_dir_seq);
2529 	r_seq = read_seqbegin(&rename_lock);
2530 	dentry = __d_lookup_rcu(parent, name, &d_seq);
2531 	if (unlikely(dentry)) {
2532 		if (!lockref_get_not_dead(&dentry->d_lockref)) {
2533 			rcu_read_unlock();
2534 			goto retry;
2535 		}
2536 		if (read_seqcount_retry(&dentry->d_seq, d_seq)) {
2537 			rcu_read_unlock();
2538 			dput(dentry);
2539 			goto retry;
2540 		}
2541 		rcu_read_unlock();
2542 		dput(new);
2543 		return dentry;
2544 	}
2545 	if (unlikely(read_seqretry(&rename_lock, r_seq))) {
2546 		rcu_read_unlock();
2547 		goto retry;
2548 	}
2549 
2550 	if (unlikely(seq & 1)) {
2551 		rcu_read_unlock();
2552 		goto retry;
2553 	}
2554 
2555 	hlist_bl_lock(b);
2556 	if (unlikely(READ_ONCE(parent->d_inode->i_dir_seq) != seq)) {
2557 		hlist_bl_unlock(b);
2558 		rcu_read_unlock();
2559 		goto retry;
2560 	}
2561 	/*
2562 	 * No changes for the parent since the beginning of d_lookup().
2563 	 * Since all removals from the chain happen with hlist_bl_lock(),
2564 	 * any potential in-lookup matches are going to stay here until
2565 	 * we unlock the chain.  All fields are stable in everything
2566 	 * we encounter.
2567 	 */
2568 	hlist_bl_for_each_entry(dentry, node, b, d_u.d_in_lookup_hash) {
2569 		if (dentry->d_name.hash != hash)
2570 			continue;
2571 		if (dentry->d_parent != parent)
2572 			continue;
2573 		if (!d_same_name(dentry, parent, name))
2574 			continue;
2575 		hlist_bl_unlock(b);
2576 		/* now we can try to grab a reference */
2577 		if (!lockref_get_not_dead(&dentry->d_lockref)) {
2578 			rcu_read_unlock();
2579 			goto retry;
2580 		}
2581 
2582 		rcu_read_unlock();
2583 		/*
2584 		 * somebody is likely to be still doing lookup for it;
2585 		 * wait for them to finish
2586 		 */
2587 		spin_lock(&dentry->d_lock);
2588 		d_wait_lookup(dentry);
2589 		/*
2590 		 * it's not in-lookup anymore; in principle we should repeat
2591 		 * everything from dcache lookup, but it's likely to be what
2592 		 * d_lookup() would've found anyway.  If it is, just return it;
2593 		 * otherwise we really have to repeat the whole thing.
2594 		 */
2595 		if (unlikely(dentry->d_name.hash != hash))
2596 			goto mismatch;
2597 		if (unlikely(dentry->d_parent != parent))
2598 			goto mismatch;
2599 		if (unlikely(d_unhashed(dentry)))
2600 			goto mismatch;
2601 		if (unlikely(!d_same_name(dentry, parent, name)))
2602 			goto mismatch;
2603 		/* OK, it *is* a hashed match; return it */
2604 		spin_unlock(&dentry->d_lock);
2605 		dput(new);
2606 		return dentry;
2607 	}
2608 	rcu_read_unlock();
2609 	/* we can't take ->d_lock here; it's OK, though. */
2610 	new->d_flags |= DCACHE_PAR_LOOKUP;
2611 	new->d_wait = wq;
2612 	hlist_bl_add_head_rcu(&new->d_u.d_in_lookup_hash, b);
2613 	hlist_bl_unlock(b);
2614 	return new;
2615 mismatch:
2616 	spin_unlock(&dentry->d_lock);
2617 	dput(dentry);
2618 	goto retry;
2619 }
2620 EXPORT_SYMBOL(d_alloc_parallel);
2621 
2622 void __d_lookup_done(struct dentry *dentry)
2623 {
2624 	struct hlist_bl_head *b = in_lookup_hash(dentry->d_parent,
2625 						 dentry->d_name.hash);
2626 	hlist_bl_lock(b);
2627 	dentry->d_flags &= ~DCACHE_PAR_LOOKUP;
2628 	__hlist_bl_del(&dentry->d_u.d_in_lookup_hash);
2629 	wake_up_all(dentry->d_wait);
2630 	dentry->d_wait = NULL;
2631 	hlist_bl_unlock(b);
2632 	INIT_HLIST_NODE(&dentry->d_u.d_alias);
2633 	INIT_LIST_HEAD(&dentry->d_lru);
2634 }
2635 EXPORT_SYMBOL(__d_lookup_done);
2636 
2637 /* inode->i_lock held if inode is non-NULL */
2638 
2639 static inline void __d_add(struct dentry *dentry, struct inode *inode)
2640 {
2641 	struct inode *dir = NULL;
2642 	unsigned n;
2643 	spin_lock(&dentry->d_lock);
2644 	if (unlikely(d_in_lookup(dentry))) {
2645 		dir = dentry->d_parent->d_inode;
2646 		n = start_dir_add(dir);
2647 		__d_lookup_done(dentry);
2648 	}
2649 	if (inode) {
2650 		unsigned add_flags = d_flags_for_inode(inode);
2651 		hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
2652 		raw_write_seqcount_begin(&dentry->d_seq);
2653 		__d_set_inode_and_type(dentry, inode, add_flags);
2654 		raw_write_seqcount_end(&dentry->d_seq);
2655 		fsnotify_update_flags(dentry);
2656 	}
2657 	__d_rehash(dentry);
2658 	if (dir)
2659 		end_dir_add(dir, n);
2660 	spin_unlock(&dentry->d_lock);
2661 	if (inode)
2662 		spin_unlock(&inode->i_lock);
2663 }
2664 
2665 /**
2666  * d_add - add dentry to hash queues
2667  * @entry: dentry to add
2668  * @inode: The inode to attach to this dentry
2669  *
2670  * This adds the entry to the hash queues and initializes @inode.
2671  * The entry was actually filled in earlier during d_alloc().
2672  */
2673 
2674 void d_add(struct dentry *entry, struct inode *inode)
2675 {
2676 	if (inode) {
2677 		security_d_instantiate(entry, inode);
2678 		spin_lock(&inode->i_lock);
2679 	}
2680 	__d_add(entry, inode);
2681 }
2682 EXPORT_SYMBOL(d_add);
2683 
2684 /**
2685  * d_exact_alias - find and hash an exact unhashed alias
2686  * @entry: dentry to add
2687  * @inode: The inode to go with this dentry
2688  *
2689  * If an unhashed dentry with the same name/parent and desired
2690  * inode already exists, hash and return it.  Otherwise, return
2691  * NULL.
2692  *
2693  * Parent directory should be locked.
2694  */
2695 struct dentry *d_exact_alias(struct dentry *entry, struct inode *inode)
2696 {
2697 	struct dentry *alias;
2698 	unsigned int hash = entry->d_name.hash;
2699 
2700 	spin_lock(&inode->i_lock);
2701 	hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
2702 		/*
2703 		 * Don't need alias->d_lock here, because aliases with
2704 		 * d_parent == entry->d_parent are not subject to name or
2705 		 * parent changes, because the parent inode i_mutex is held.
2706 		 */
2707 		if (alias->d_name.hash != hash)
2708 			continue;
2709 		if (alias->d_parent != entry->d_parent)
2710 			continue;
2711 		if (!d_same_name(alias, entry->d_parent, &entry->d_name))
2712 			continue;
2713 		spin_lock(&alias->d_lock);
2714 		if (!d_unhashed(alias)) {
2715 			spin_unlock(&alias->d_lock);
2716 			alias = NULL;
2717 		} else {
2718 			__dget_dlock(alias);
2719 			__d_rehash(alias);
2720 			spin_unlock(&alias->d_lock);
2721 		}
2722 		spin_unlock(&inode->i_lock);
2723 		return alias;
2724 	}
2725 	spin_unlock(&inode->i_lock);
2726 	return NULL;
2727 }
2728 EXPORT_SYMBOL(d_exact_alias);
2729 
2730 /**
2731  * dentry_update_name_case - update case insensitive dentry with a new name
2732  * @dentry: dentry to be updated
2733  * @name: new name
2734  *
2735  * Update a case insensitive dentry with new case of name.
2736  *
2737  * dentry must have been returned by d_lookup with name @name. Old and new
2738  * name lengths must match (ie. no d_compare which allows mismatched name
2739  * lengths).
2740  *
2741  * Parent inode i_mutex must be held over d_lookup and into this call (to
2742  * keep renames and concurrent inserts, and readdir(2) away).
2743  */
2744 void dentry_update_name_case(struct dentry *dentry, const struct qstr *name)
2745 {
2746 	BUG_ON(!inode_is_locked(dentry->d_parent->d_inode));
2747 	BUG_ON(dentry->d_name.len != name->len); /* d_lookup gives this */
2748 
2749 	spin_lock(&dentry->d_lock);
2750 	write_seqcount_begin(&dentry->d_seq);
2751 	memcpy((unsigned char *)dentry->d_name.name, name->name, name->len);
2752 	write_seqcount_end(&dentry->d_seq);
2753 	spin_unlock(&dentry->d_lock);
2754 }
2755 EXPORT_SYMBOL(dentry_update_name_case);
2756 
2757 static void swap_names(struct dentry *dentry, struct dentry *target)
2758 {
2759 	if (unlikely(dname_external(target))) {
2760 		if (unlikely(dname_external(dentry))) {
2761 			/*
2762 			 * Both external: swap the pointers
2763 			 */
2764 			swap(target->d_name.name, dentry->d_name.name);
2765 		} else {
2766 			/*
2767 			 * dentry:internal, target:external.  Steal target's
2768 			 * storage and make target internal.
2769 			 */
2770 			memcpy(target->d_iname, dentry->d_name.name,
2771 					dentry->d_name.len + 1);
2772 			dentry->d_name.name = target->d_name.name;
2773 			target->d_name.name = target->d_iname;
2774 		}
2775 	} else {
2776 		if (unlikely(dname_external(dentry))) {
2777 			/*
2778 			 * dentry:external, target:internal.  Give dentry's
2779 			 * storage to target and make dentry internal
2780 			 */
2781 			memcpy(dentry->d_iname, target->d_name.name,
2782 					target->d_name.len + 1);
2783 			target->d_name.name = dentry->d_name.name;
2784 			dentry->d_name.name = dentry->d_iname;
2785 		} else {
2786 			/*
2787 			 * Both are internal.
2788 			 */
2789 			unsigned int i;
2790 			BUILD_BUG_ON(!IS_ALIGNED(DNAME_INLINE_LEN, sizeof(long)));
2791 			for (i = 0; i < DNAME_INLINE_LEN / sizeof(long); i++) {
2792 				swap(((long *) &dentry->d_iname)[i],
2793 				     ((long *) &target->d_iname)[i]);
2794 			}
2795 		}
2796 	}
2797 	swap(dentry->d_name.hash_len, target->d_name.hash_len);
2798 }
2799 
2800 static void copy_name(struct dentry *dentry, struct dentry *target)
2801 {
2802 	struct external_name *old_name = NULL;
2803 	if (unlikely(dname_external(dentry)))
2804 		old_name = external_name(dentry);
2805 	if (unlikely(dname_external(target))) {
2806 		atomic_inc(&external_name(target)->u.count);
2807 		dentry->d_name = target->d_name;
2808 	} else {
2809 		memcpy(dentry->d_iname, target->d_name.name,
2810 				target->d_name.len + 1);
2811 		dentry->d_name.name = dentry->d_iname;
2812 		dentry->d_name.hash_len = target->d_name.hash_len;
2813 	}
2814 	if (old_name && likely(atomic_dec_and_test(&old_name->u.count)))
2815 		call_rcu(&old_name->u.head, __d_free_external_name);
2816 }
2817 
2818 /*
2819  * __d_move - move a dentry
2820  * @dentry: entry to move
2821  * @target: new dentry
2822  * @exchange: exchange the two dentries
2823  *
2824  * Update the dcache to reflect the move of a file name. Negative
2825  * dcache entries should not be moved in this way. Caller must hold
2826  * rename_lock, the i_mutex of the source and target directories,
2827  * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
2828  */
2829 static void __d_move(struct dentry *dentry, struct dentry *target,
2830 		     bool exchange)
2831 {
2832 	struct dentry *old_parent, *p;
2833 	struct inode *dir = NULL;
2834 	unsigned n;
2835 
2836 	WARN_ON(!dentry->d_inode);
2837 	if (WARN_ON(dentry == target))
2838 		return;
2839 
2840 	BUG_ON(d_ancestor(target, dentry));
2841 	old_parent = dentry->d_parent;
2842 	p = d_ancestor(old_parent, target);
2843 	if (IS_ROOT(dentry)) {
2844 		BUG_ON(p);
2845 		spin_lock(&target->d_parent->d_lock);
2846 	} else if (!p) {
2847 		/* target is not a descendent of dentry->d_parent */
2848 		spin_lock(&target->d_parent->d_lock);
2849 		spin_lock_nested(&old_parent->d_lock, DENTRY_D_LOCK_NESTED);
2850 	} else {
2851 		BUG_ON(p == dentry);
2852 		spin_lock(&old_parent->d_lock);
2853 		if (p != target)
2854 			spin_lock_nested(&target->d_parent->d_lock,
2855 					DENTRY_D_LOCK_NESTED);
2856 	}
2857 	spin_lock_nested(&dentry->d_lock, 2);
2858 	spin_lock_nested(&target->d_lock, 3);
2859 
2860 	if (unlikely(d_in_lookup(target))) {
2861 		dir = target->d_parent->d_inode;
2862 		n = start_dir_add(dir);
2863 		__d_lookup_done(target);
2864 	}
2865 
2866 	write_seqcount_begin(&dentry->d_seq);
2867 	write_seqcount_begin_nested(&target->d_seq, DENTRY_D_LOCK_NESTED);
2868 
2869 	/* unhash both */
2870 	if (!d_unhashed(dentry))
2871 		___d_drop(dentry);
2872 	if (!d_unhashed(target))
2873 		___d_drop(target);
2874 
2875 	/* ... and switch them in the tree */
2876 	dentry->d_parent = target->d_parent;
2877 	if (!exchange) {
2878 		copy_name(dentry, target);
2879 		target->d_hash.pprev = NULL;
2880 		dentry->d_parent->d_lockref.count++;
2881 		if (dentry == old_parent)
2882 			dentry->d_flags |= DCACHE_RCUACCESS;
2883 		else
2884 			WARN_ON(!--old_parent->d_lockref.count);
2885 	} else {
2886 		target->d_parent = old_parent;
2887 		swap_names(dentry, target);
2888 		list_move(&target->d_child, &target->d_parent->d_subdirs);
2889 		__d_rehash(target);
2890 		fsnotify_update_flags(target);
2891 	}
2892 	list_move(&dentry->d_child, &dentry->d_parent->d_subdirs);
2893 	__d_rehash(dentry);
2894 	fsnotify_update_flags(dentry);
2895 
2896 	write_seqcount_end(&target->d_seq);
2897 	write_seqcount_end(&dentry->d_seq);
2898 
2899 	if (dir)
2900 		end_dir_add(dir, n);
2901 
2902 	if (dentry->d_parent != old_parent)
2903 		spin_unlock(&dentry->d_parent->d_lock);
2904 	if (dentry != old_parent)
2905 		spin_unlock(&old_parent->d_lock);
2906 	spin_unlock(&target->d_lock);
2907 	spin_unlock(&dentry->d_lock);
2908 }
2909 
2910 /*
2911  * d_move - move a dentry
2912  * @dentry: entry to move
2913  * @target: new dentry
2914  *
2915  * Update the dcache to reflect the move of a file name. Negative
2916  * dcache entries should not be moved in this way. See the locking
2917  * requirements for __d_move.
2918  */
2919 void d_move(struct dentry *dentry, struct dentry *target)
2920 {
2921 	write_seqlock(&rename_lock);
2922 	__d_move(dentry, target, false);
2923 	write_sequnlock(&rename_lock);
2924 }
2925 EXPORT_SYMBOL(d_move);
2926 
2927 /*
2928  * d_exchange - exchange two dentries
2929  * @dentry1: first dentry
2930  * @dentry2: second dentry
2931  */
2932 void d_exchange(struct dentry *dentry1, struct dentry *dentry2)
2933 {
2934 	write_seqlock(&rename_lock);
2935 
2936 	WARN_ON(!dentry1->d_inode);
2937 	WARN_ON(!dentry2->d_inode);
2938 	WARN_ON(IS_ROOT(dentry1));
2939 	WARN_ON(IS_ROOT(dentry2));
2940 
2941 	__d_move(dentry1, dentry2, true);
2942 
2943 	write_sequnlock(&rename_lock);
2944 }
2945 
2946 /**
2947  * d_ancestor - search for an ancestor
2948  * @p1: ancestor dentry
2949  * @p2: child dentry
2950  *
2951  * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2952  * an ancestor of p2, else NULL.
2953  */
2954 struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
2955 {
2956 	struct dentry *p;
2957 
2958 	for (p = p2; !IS_ROOT(p); p = p->d_parent) {
2959 		if (p->d_parent == p1)
2960 			return p;
2961 	}
2962 	return NULL;
2963 }
2964 
2965 /*
2966  * This helper attempts to cope with remotely renamed directories
2967  *
2968  * It assumes that the caller is already holding
2969  * dentry->d_parent->d_inode->i_mutex, and rename_lock
2970  *
2971  * Note: If ever the locking in lock_rename() changes, then please
2972  * remember to update this too...
2973  */
2974 static int __d_unalias(struct inode *inode,
2975 		struct dentry *dentry, struct dentry *alias)
2976 {
2977 	struct mutex *m1 = NULL;
2978 	struct rw_semaphore *m2 = NULL;
2979 	int ret = -ESTALE;
2980 
2981 	/* If alias and dentry share a parent, then no extra locks required */
2982 	if (alias->d_parent == dentry->d_parent)
2983 		goto out_unalias;
2984 
2985 	/* See lock_rename() */
2986 	if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
2987 		goto out_err;
2988 	m1 = &dentry->d_sb->s_vfs_rename_mutex;
2989 	if (!inode_trylock_shared(alias->d_parent->d_inode))
2990 		goto out_err;
2991 	m2 = &alias->d_parent->d_inode->i_rwsem;
2992 out_unalias:
2993 	__d_move(alias, dentry, false);
2994 	ret = 0;
2995 out_err:
2996 	if (m2)
2997 		up_read(m2);
2998 	if (m1)
2999 		mutex_unlock(m1);
3000 	return ret;
3001 }
3002 
3003 /**
3004  * d_splice_alias - splice a disconnected dentry into the tree if one exists
3005  * @inode:  the inode which may have a disconnected dentry
3006  * @dentry: a negative dentry which we want to point to the inode.
3007  *
3008  * If inode is a directory and has an IS_ROOT alias, then d_move that in
3009  * place of the given dentry and return it, else simply d_add the inode
3010  * to the dentry and return NULL.
3011  *
3012  * If a non-IS_ROOT directory is found, the filesystem is corrupt, and
3013  * we should error out: directories can't have multiple aliases.
3014  *
3015  * This is needed in the lookup routine of any filesystem that is exportable
3016  * (via knfsd) so that we can build dcache paths to directories effectively.
3017  *
3018  * If a dentry was found and moved, then it is returned.  Otherwise NULL
3019  * is returned.  This matches the expected return value of ->lookup.
3020  *
3021  * Cluster filesystems may call this function with a negative, hashed dentry.
3022  * In that case, we know that the inode will be a regular file, and also this
3023  * will only occur during atomic_open. So we need to check for the dentry
3024  * being already hashed only in the final case.
3025  */
3026 struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
3027 {
3028 	if (IS_ERR(inode))
3029 		return ERR_CAST(inode);
3030 
3031 	BUG_ON(!d_unhashed(dentry));
3032 
3033 	if (!inode)
3034 		goto out;
3035 
3036 	security_d_instantiate(dentry, inode);
3037 	spin_lock(&inode->i_lock);
3038 	if (S_ISDIR(inode->i_mode)) {
3039 		struct dentry *new = __d_find_any_alias(inode);
3040 		if (unlikely(new)) {
3041 			/* The reference to new ensures it remains an alias */
3042 			spin_unlock(&inode->i_lock);
3043 			write_seqlock(&rename_lock);
3044 			if (unlikely(d_ancestor(new, dentry))) {
3045 				write_sequnlock(&rename_lock);
3046 				dput(new);
3047 				new = ERR_PTR(-ELOOP);
3048 				pr_warn_ratelimited(
3049 					"VFS: Lookup of '%s' in %s %s"
3050 					" would have caused loop\n",
3051 					dentry->d_name.name,
3052 					inode->i_sb->s_type->name,
3053 					inode->i_sb->s_id);
3054 			} else if (!IS_ROOT(new)) {
3055 				struct dentry *old_parent = dget(new->d_parent);
3056 				int err = __d_unalias(inode, dentry, new);
3057 				write_sequnlock(&rename_lock);
3058 				if (err) {
3059 					dput(new);
3060 					new = ERR_PTR(err);
3061 				}
3062 				dput(old_parent);
3063 			} else {
3064 				__d_move(new, dentry, false);
3065 				write_sequnlock(&rename_lock);
3066 			}
3067 			iput(inode);
3068 			return new;
3069 		}
3070 	}
3071 out:
3072 	__d_add(dentry, inode);
3073 	return NULL;
3074 }
3075 EXPORT_SYMBOL(d_splice_alias);
3076 
3077 /*
3078  * Test whether new_dentry is a subdirectory of old_dentry.
3079  *
3080  * Trivially implemented using the dcache structure
3081  */
3082 
3083 /**
3084  * is_subdir - is new dentry a subdirectory of old_dentry
3085  * @new_dentry: new dentry
3086  * @old_dentry: old dentry
3087  *
3088  * Returns true if new_dentry is a subdirectory of the parent (at any depth).
3089  * Returns false otherwise.
3090  * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
3091  */
3092 
3093 bool is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
3094 {
3095 	bool result;
3096 	unsigned seq;
3097 
3098 	if (new_dentry == old_dentry)
3099 		return true;
3100 
3101 	do {
3102 		/* for restarting inner loop in case of seq retry */
3103 		seq = read_seqbegin(&rename_lock);
3104 		/*
3105 		 * Need rcu_readlock to protect against the d_parent trashing
3106 		 * due to d_move
3107 		 */
3108 		rcu_read_lock();
3109 		if (d_ancestor(old_dentry, new_dentry))
3110 			result = true;
3111 		else
3112 			result = false;
3113 		rcu_read_unlock();
3114 	} while (read_seqretry(&rename_lock, seq));
3115 
3116 	return result;
3117 }
3118 EXPORT_SYMBOL(is_subdir);
3119 
3120 static enum d_walk_ret d_genocide_kill(void *data, struct dentry *dentry)
3121 {
3122 	struct dentry *root = data;
3123 	if (dentry != root) {
3124 		if (d_unhashed(dentry) || !dentry->d_inode)
3125 			return D_WALK_SKIP;
3126 
3127 		if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
3128 			dentry->d_flags |= DCACHE_GENOCIDE;
3129 			dentry->d_lockref.count--;
3130 		}
3131 	}
3132 	return D_WALK_CONTINUE;
3133 }
3134 
3135 void d_genocide(struct dentry *parent)
3136 {
3137 	d_walk(parent, parent, d_genocide_kill, NULL);
3138 }
3139 
3140 EXPORT_SYMBOL(d_genocide);
3141 
3142 void d_tmpfile(struct dentry *dentry, struct inode *inode)
3143 {
3144 	inode_dec_link_count(inode);
3145 	BUG_ON(dentry->d_name.name != dentry->d_iname ||
3146 		!hlist_unhashed(&dentry->d_u.d_alias) ||
3147 		!d_unlinked(dentry));
3148 	spin_lock(&dentry->d_parent->d_lock);
3149 	spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
3150 	dentry->d_name.len = sprintf(dentry->d_iname, "#%llu",
3151 				(unsigned long long)inode->i_ino);
3152 	spin_unlock(&dentry->d_lock);
3153 	spin_unlock(&dentry->d_parent->d_lock);
3154 	d_instantiate(dentry, inode);
3155 }
3156 EXPORT_SYMBOL(d_tmpfile);
3157 
3158 static __initdata unsigned long dhash_entries;
3159 static int __init set_dhash_entries(char *str)
3160 {
3161 	if (!str)
3162 		return 0;
3163 	dhash_entries = simple_strtoul(str, &str, 0);
3164 	return 1;
3165 }
3166 __setup("dhash_entries=", set_dhash_entries);
3167 
3168 static void __init dcache_init_early(void)
3169 {
3170 	/* If hashes are distributed across NUMA nodes, defer
3171 	 * hash allocation until vmalloc space is available.
3172 	 */
3173 	if (hashdist)
3174 		return;
3175 
3176 	dentry_hashtable =
3177 		alloc_large_system_hash("Dentry cache",
3178 					sizeof(struct hlist_bl_head),
3179 					dhash_entries,
3180 					13,
3181 					HASH_EARLY | HASH_ZERO,
3182 					&d_hash_shift,
3183 					NULL,
3184 					0,
3185 					0);
3186 	d_hash_shift = 32 - d_hash_shift;
3187 }
3188 
3189 static void __init dcache_init(void)
3190 {
3191 	/*
3192 	 * A constructor could be added for stable state like the lists,
3193 	 * but it is probably not worth it because of the cache nature
3194 	 * of the dcache.
3195 	 */
3196 	dentry_cache = KMEM_CACHE_USERCOPY(dentry,
3197 		SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD|SLAB_ACCOUNT,
3198 		d_iname);
3199 
3200 	/* Hash may have been set up in dcache_init_early */
3201 	if (!hashdist)
3202 		return;
3203 
3204 	dentry_hashtable =
3205 		alloc_large_system_hash("Dentry cache",
3206 					sizeof(struct hlist_bl_head),
3207 					dhash_entries,
3208 					13,
3209 					HASH_ZERO,
3210 					&d_hash_shift,
3211 					NULL,
3212 					0,
3213 					0);
3214 	d_hash_shift = 32 - d_hash_shift;
3215 }
3216 
3217 /* SLAB cache for __getname() consumers */
3218 struct kmem_cache *names_cachep __read_mostly;
3219 EXPORT_SYMBOL(names_cachep);
3220 
3221 void __init vfs_caches_init_early(void)
3222 {
3223 	int i;
3224 
3225 	for (i = 0; i < ARRAY_SIZE(in_lookup_hashtable); i++)
3226 		INIT_HLIST_BL_HEAD(&in_lookup_hashtable[i]);
3227 
3228 	dcache_init_early();
3229 	inode_init_early();
3230 }
3231 
3232 void __init vfs_caches_init(void)
3233 {
3234 	names_cachep = kmem_cache_create_usercopy("names_cache", PATH_MAX, 0,
3235 			SLAB_HWCACHE_ALIGN|SLAB_PANIC, 0, PATH_MAX, NULL);
3236 
3237 	dcache_init();
3238 	inode_init();
3239 	files_init();
3240 	files_maxfiles_init();
3241 	mnt_init();
3242 	bdev_cache_init();
3243 	chrdev_init();
3244 }
3245