xref: /openbmc/linux/fs/dcache.c (revision a8b0ca17)
1 /*
2  * fs/dcache.c
3  *
4  * Complete reimplementation
5  * (C) 1997 Thomas Schoebel-Theuer,
6  * with heavy changes by Linus Torvalds
7  */
8 
9 /*
10  * Notes on the allocation strategy:
11  *
12  * The dcache is a master of the icache - whenever a dcache entry
13  * exists, the inode will always exist. "iput()" is done either when
14  * the dcache entry is deleted or garbage collected.
15  */
16 
17 #include <linux/syscalls.h>
18 #include <linux/string.h>
19 #include <linux/mm.h>
20 #include <linux/fs.h>
21 #include <linux/fsnotify.h>
22 #include <linux/slab.h>
23 #include <linux/init.h>
24 #include <linux/hash.h>
25 #include <linux/cache.h>
26 #include <linux/module.h>
27 #include <linux/mount.h>
28 #include <linux/file.h>
29 #include <asm/uaccess.h>
30 #include <linux/security.h>
31 #include <linux/seqlock.h>
32 #include <linux/swap.h>
33 #include <linux/bootmem.h>
34 #include <linux/fs_struct.h>
35 #include <linux/hardirq.h>
36 #include <linux/bit_spinlock.h>
37 #include <linux/rculist_bl.h>
38 #include <linux/prefetch.h>
39 #include "internal.h"
40 
41 /*
42  * Usage:
43  * dcache->d_inode->i_lock protects:
44  *   - i_dentry, d_alias, d_inode of aliases
45  * dcache_hash_bucket lock protects:
46  *   - the dcache hash table
47  * s_anon bl list spinlock protects:
48  *   - the s_anon list (see __d_drop)
49  * dcache_lru_lock protects:
50  *   - the dcache lru lists and counters
51  * d_lock protects:
52  *   - d_flags
53  *   - d_name
54  *   - d_lru
55  *   - d_count
56  *   - d_unhashed()
57  *   - d_parent and d_subdirs
58  *   - childrens' d_child and d_parent
59  *   - d_alias, d_inode
60  *
61  * Ordering:
62  * dentry->d_inode->i_lock
63  *   dentry->d_lock
64  *     dcache_lru_lock
65  *     dcache_hash_bucket lock
66  *     s_anon lock
67  *
68  * If there is an ancestor relationship:
69  * dentry->d_parent->...->d_parent->d_lock
70  *   ...
71  *     dentry->d_parent->d_lock
72  *       dentry->d_lock
73  *
74  * If no ancestor relationship:
75  * if (dentry1 < dentry2)
76  *   dentry1->d_lock
77  *     dentry2->d_lock
78  */
79 int sysctl_vfs_cache_pressure __read_mostly = 100;
80 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
81 
82 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(dcache_lru_lock);
83 __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
84 
85 EXPORT_SYMBOL(rename_lock);
86 
87 static struct kmem_cache *dentry_cache __read_mostly;
88 
89 /*
90  * This is the single most critical data structure when it comes
91  * to the dcache: the hashtable for lookups. Somebody should try
92  * to make this good - I've just made it work.
93  *
94  * This hash-function tries to avoid losing too many bits of hash
95  * information, yet avoid using a prime hash-size or similar.
96  */
97 #define D_HASHBITS     d_hash_shift
98 #define D_HASHMASK     d_hash_mask
99 
100 static unsigned int d_hash_mask __read_mostly;
101 static unsigned int d_hash_shift __read_mostly;
102 
103 static struct hlist_bl_head *dentry_hashtable __read_mostly;
104 
105 static inline struct hlist_bl_head *d_hash(struct dentry *parent,
106 					unsigned long hash)
107 {
108 	hash += ((unsigned long) parent ^ GOLDEN_RATIO_PRIME) / L1_CACHE_BYTES;
109 	hash = hash ^ ((hash ^ GOLDEN_RATIO_PRIME) >> D_HASHBITS);
110 	return dentry_hashtable + (hash & D_HASHMASK);
111 }
112 
113 /* Statistics gathering. */
114 struct dentry_stat_t dentry_stat = {
115 	.age_limit = 45,
116 };
117 
118 static DEFINE_PER_CPU(unsigned int, nr_dentry);
119 
120 #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
121 static int get_nr_dentry(void)
122 {
123 	int i;
124 	int sum = 0;
125 	for_each_possible_cpu(i)
126 		sum += per_cpu(nr_dentry, i);
127 	return sum < 0 ? 0 : sum;
128 }
129 
130 int proc_nr_dentry(ctl_table *table, int write, void __user *buffer,
131 		   size_t *lenp, loff_t *ppos)
132 {
133 	dentry_stat.nr_dentry = get_nr_dentry();
134 	return proc_dointvec(table, write, buffer, lenp, ppos);
135 }
136 #endif
137 
138 static void __d_free(struct rcu_head *head)
139 {
140 	struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
141 
142 	WARN_ON(!list_empty(&dentry->d_alias));
143 	if (dname_external(dentry))
144 		kfree(dentry->d_name.name);
145 	kmem_cache_free(dentry_cache, dentry);
146 }
147 
148 /*
149  * no locks, please.
150  */
151 static void d_free(struct dentry *dentry)
152 {
153 	BUG_ON(dentry->d_count);
154 	this_cpu_dec(nr_dentry);
155 	if (dentry->d_op && dentry->d_op->d_release)
156 		dentry->d_op->d_release(dentry);
157 
158 	/* if dentry was never visible to RCU, immediate free is OK */
159 	if (!(dentry->d_flags & DCACHE_RCUACCESS))
160 		__d_free(&dentry->d_u.d_rcu);
161 	else
162 		call_rcu(&dentry->d_u.d_rcu, __d_free);
163 }
164 
165 /**
166  * dentry_rcuwalk_barrier - invalidate in-progress rcu-walk lookups
167  * @dentry: the target dentry
168  * After this call, in-progress rcu-walk path lookup will fail. This
169  * should be called after unhashing, and after changing d_inode (if
170  * the dentry has not already been unhashed).
171  */
172 static inline void dentry_rcuwalk_barrier(struct dentry *dentry)
173 {
174 	assert_spin_locked(&dentry->d_lock);
175 	/* Go through a barrier */
176 	write_seqcount_barrier(&dentry->d_seq);
177 }
178 
179 /*
180  * Release the dentry's inode, using the filesystem
181  * d_iput() operation if defined. Dentry has no refcount
182  * and is unhashed.
183  */
184 static void dentry_iput(struct dentry * dentry)
185 	__releases(dentry->d_lock)
186 	__releases(dentry->d_inode->i_lock)
187 {
188 	struct inode *inode = dentry->d_inode;
189 	if (inode) {
190 		dentry->d_inode = NULL;
191 		list_del_init(&dentry->d_alias);
192 		spin_unlock(&dentry->d_lock);
193 		spin_unlock(&inode->i_lock);
194 		if (!inode->i_nlink)
195 			fsnotify_inoderemove(inode);
196 		if (dentry->d_op && dentry->d_op->d_iput)
197 			dentry->d_op->d_iput(dentry, inode);
198 		else
199 			iput(inode);
200 	} else {
201 		spin_unlock(&dentry->d_lock);
202 	}
203 }
204 
205 /*
206  * Release the dentry's inode, using the filesystem
207  * d_iput() operation if defined. dentry remains in-use.
208  */
209 static void dentry_unlink_inode(struct dentry * dentry)
210 	__releases(dentry->d_lock)
211 	__releases(dentry->d_inode->i_lock)
212 {
213 	struct inode *inode = dentry->d_inode;
214 	dentry->d_inode = NULL;
215 	list_del_init(&dentry->d_alias);
216 	dentry_rcuwalk_barrier(dentry);
217 	spin_unlock(&dentry->d_lock);
218 	spin_unlock(&inode->i_lock);
219 	if (!inode->i_nlink)
220 		fsnotify_inoderemove(inode);
221 	if (dentry->d_op && dentry->d_op->d_iput)
222 		dentry->d_op->d_iput(dentry, inode);
223 	else
224 		iput(inode);
225 }
226 
227 /*
228  * dentry_lru_(add|del|move_tail) must be called with d_lock held.
229  */
230 static void dentry_lru_add(struct dentry *dentry)
231 {
232 	if (list_empty(&dentry->d_lru)) {
233 		spin_lock(&dcache_lru_lock);
234 		list_add(&dentry->d_lru, &dentry->d_sb->s_dentry_lru);
235 		dentry->d_sb->s_nr_dentry_unused++;
236 		dentry_stat.nr_unused++;
237 		spin_unlock(&dcache_lru_lock);
238 	}
239 }
240 
241 static void __dentry_lru_del(struct dentry *dentry)
242 {
243 	list_del_init(&dentry->d_lru);
244 	dentry->d_sb->s_nr_dentry_unused--;
245 	dentry_stat.nr_unused--;
246 }
247 
248 static void dentry_lru_del(struct dentry *dentry)
249 {
250 	if (!list_empty(&dentry->d_lru)) {
251 		spin_lock(&dcache_lru_lock);
252 		__dentry_lru_del(dentry);
253 		spin_unlock(&dcache_lru_lock);
254 	}
255 }
256 
257 static void dentry_lru_move_tail(struct dentry *dentry)
258 {
259 	spin_lock(&dcache_lru_lock);
260 	if (list_empty(&dentry->d_lru)) {
261 		list_add_tail(&dentry->d_lru, &dentry->d_sb->s_dentry_lru);
262 		dentry->d_sb->s_nr_dentry_unused++;
263 		dentry_stat.nr_unused++;
264 	} else {
265 		list_move_tail(&dentry->d_lru, &dentry->d_sb->s_dentry_lru);
266 	}
267 	spin_unlock(&dcache_lru_lock);
268 }
269 
270 /**
271  * d_kill - kill dentry and return parent
272  * @dentry: dentry to kill
273  * @parent: parent dentry
274  *
275  * The dentry must already be unhashed and removed from the LRU.
276  *
277  * If this is the root of the dentry tree, return NULL.
278  *
279  * dentry->d_lock and parent->d_lock must be held by caller, and are dropped by
280  * d_kill.
281  */
282 static struct dentry *d_kill(struct dentry *dentry, struct dentry *parent)
283 	__releases(dentry->d_lock)
284 	__releases(parent->d_lock)
285 	__releases(dentry->d_inode->i_lock)
286 {
287 	list_del(&dentry->d_u.d_child);
288 	/*
289 	 * Inform try_to_ascend() that we are no longer attached to the
290 	 * dentry tree
291 	 */
292 	dentry->d_flags |= DCACHE_DISCONNECTED;
293 	if (parent)
294 		spin_unlock(&parent->d_lock);
295 	dentry_iput(dentry);
296 	/*
297 	 * dentry_iput drops the locks, at which point nobody (except
298 	 * transient RCU lookups) can reach this dentry.
299 	 */
300 	d_free(dentry);
301 	return parent;
302 }
303 
304 /**
305  * d_drop - drop a dentry
306  * @dentry: dentry to drop
307  *
308  * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
309  * be found through a VFS lookup any more. Note that this is different from
310  * deleting the dentry - d_delete will try to mark the dentry negative if
311  * possible, giving a successful _negative_ lookup, while d_drop will
312  * just make the cache lookup fail.
313  *
314  * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
315  * reason (NFS timeouts or autofs deletes).
316  *
317  * __d_drop requires dentry->d_lock.
318  */
319 void __d_drop(struct dentry *dentry)
320 {
321 	if (!d_unhashed(dentry)) {
322 		struct hlist_bl_head *b;
323 		if (unlikely(dentry->d_flags & DCACHE_DISCONNECTED))
324 			b = &dentry->d_sb->s_anon;
325 		else
326 			b = d_hash(dentry->d_parent, dentry->d_name.hash);
327 
328 		hlist_bl_lock(b);
329 		__hlist_bl_del(&dentry->d_hash);
330 		dentry->d_hash.pprev = NULL;
331 		hlist_bl_unlock(b);
332 
333 		dentry_rcuwalk_barrier(dentry);
334 	}
335 }
336 EXPORT_SYMBOL(__d_drop);
337 
338 void d_drop(struct dentry *dentry)
339 {
340 	spin_lock(&dentry->d_lock);
341 	__d_drop(dentry);
342 	spin_unlock(&dentry->d_lock);
343 }
344 EXPORT_SYMBOL(d_drop);
345 
346 /*
347  * Finish off a dentry we've decided to kill.
348  * dentry->d_lock must be held, returns with it unlocked.
349  * If ref is non-zero, then decrement the refcount too.
350  * Returns dentry requiring refcount drop, or NULL if we're done.
351  */
352 static inline struct dentry *dentry_kill(struct dentry *dentry, int ref)
353 	__releases(dentry->d_lock)
354 {
355 	struct inode *inode;
356 	struct dentry *parent;
357 
358 	inode = dentry->d_inode;
359 	if (inode && !spin_trylock(&inode->i_lock)) {
360 relock:
361 		spin_unlock(&dentry->d_lock);
362 		cpu_relax();
363 		return dentry; /* try again with same dentry */
364 	}
365 	if (IS_ROOT(dentry))
366 		parent = NULL;
367 	else
368 		parent = dentry->d_parent;
369 	if (parent && !spin_trylock(&parent->d_lock)) {
370 		if (inode)
371 			spin_unlock(&inode->i_lock);
372 		goto relock;
373 	}
374 
375 	if (ref)
376 		dentry->d_count--;
377 	/* if dentry was on the d_lru list delete it from there */
378 	dentry_lru_del(dentry);
379 	/* if it was on the hash then remove it */
380 	__d_drop(dentry);
381 	return d_kill(dentry, parent);
382 }
383 
384 /*
385  * This is dput
386  *
387  * This is complicated by the fact that we do not want to put
388  * dentries that are no longer on any hash chain on the unused
389  * list: we'd much rather just get rid of them immediately.
390  *
391  * However, that implies that we have to traverse the dentry
392  * tree upwards to the parents which might _also_ now be
393  * scheduled for deletion (it may have been only waiting for
394  * its last child to go away).
395  *
396  * This tail recursion is done by hand as we don't want to depend
397  * on the compiler to always get this right (gcc generally doesn't).
398  * Real recursion would eat up our stack space.
399  */
400 
401 /*
402  * dput - release a dentry
403  * @dentry: dentry to release
404  *
405  * Release a dentry. This will drop the usage count and if appropriate
406  * call the dentry unlink method as well as removing it from the queues and
407  * releasing its resources. If the parent dentries were scheduled for release
408  * they too may now get deleted.
409  */
410 void dput(struct dentry *dentry)
411 {
412 	if (!dentry)
413 		return;
414 
415 repeat:
416 	if (dentry->d_count == 1)
417 		might_sleep();
418 	spin_lock(&dentry->d_lock);
419 	BUG_ON(!dentry->d_count);
420 	if (dentry->d_count > 1) {
421 		dentry->d_count--;
422 		spin_unlock(&dentry->d_lock);
423 		return;
424 	}
425 
426 	if (dentry->d_flags & DCACHE_OP_DELETE) {
427 		if (dentry->d_op->d_delete(dentry))
428 			goto kill_it;
429 	}
430 
431 	/* Unreachable? Get rid of it */
432  	if (d_unhashed(dentry))
433 		goto kill_it;
434 
435 	/* Otherwise leave it cached and ensure it's on the LRU */
436 	dentry->d_flags |= DCACHE_REFERENCED;
437 	dentry_lru_add(dentry);
438 
439 	dentry->d_count--;
440 	spin_unlock(&dentry->d_lock);
441 	return;
442 
443 kill_it:
444 	dentry = dentry_kill(dentry, 1);
445 	if (dentry)
446 		goto repeat;
447 }
448 EXPORT_SYMBOL(dput);
449 
450 /**
451  * d_invalidate - invalidate a dentry
452  * @dentry: dentry to invalidate
453  *
454  * Try to invalidate the dentry if it turns out to be
455  * possible. If there are other dentries that can be
456  * reached through this one we can't delete it and we
457  * return -EBUSY. On success we return 0.
458  *
459  * no dcache lock.
460  */
461 
462 int d_invalidate(struct dentry * dentry)
463 {
464 	/*
465 	 * If it's already been dropped, return OK.
466 	 */
467 	spin_lock(&dentry->d_lock);
468 	if (d_unhashed(dentry)) {
469 		spin_unlock(&dentry->d_lock);
470 		return 0;
471 	}
472 	/*
473 	 * Check whether to do a partial shrink_dcache
474 	 * to get rid of unused child entries.
475 	 */
476 	if (!list_empty(&dentry->d_subdirs)) {
477 		spin_unlock(&dentry->d_lock);
478 		shrink_dcache_parent(dentry);
479 		spin_lock(&dentry->d_lock);
480 	}
481 
482 	/*
483 	 * Somebody else still using it?
484 	 *
485 	 * If it's a directory, we can't drop it
486 	 * for fear of somebody re-populating it
487 	 * with children (even though dropping it
488 	 * would make it unreachable from the root,
489 	 * we might still populate it if it was a
490 	 * working directory or similar).
491 	 */
492 	if (dentry->d_count > 1) {
493 		if (dentry->d_inode && S_ISDIR(dentry->d_inode->i_mode)) {
494 			spin_unlock(&dentry->d_lock);
495 			return -EBUSY;
496 		}
497 	}
498 
499 	__d_drop(dentry);
500 	spin_unlock(&dentry->d_lock);
501 	return 0;
502 }
503 EXPORT_SYMBOL(d_invalidate);
504 
505 /* This must be called with d_lock held */
506 static inline void __dget_dlock(struct dentry *dentry)
507 {
508 	dentry->d_count++;
509 }
510 
511 static inline void __dget(struct dentry *dentry)
512 {
513 	spin_lock(&dentry->d_lock);
514 	__dget_dlock(dentry);
515 	spin_unlock(&dentry->d_lock);
516 }
517 
518 struct dentry *dget_parent(struct dentry *dentry)
519 {
520 	struct dentry *ret;
521 
522 repeat:
523 	/*
524 	 * Don't need rcu_dereference because we re-check it was correct under
525 	 * the lock.
526 	 */
527 	rcu_read_lock();
528 	ret = dentry->d_parent;
529 	if (!ret) {
530 		rcu_read_unlock();
531 		goto out;
532 	}
533 	spin_lock(&ret->d_lock);
534 	if (unlikely(ret != dentry->d_parent)) {
535 		spin_unlock(&ret->d_lock);
536 		rcu_read_unlock();
537 		goto repeat;
538 	}
539 	rcu_read_unlock();
540 	BUG_ON(!ret->d_count);
541 	ret->d_count++;
542 	spin_unlock(&ret->d_lock);
543 out:
544 	return ret;
545 }
546 EXPORT_SYMBOL(dget_parent);
547 
548 /**
549  * d_find_alias - grab a hashed alias of inode
550  * @inode: inode in question
551  * @want_discon:  flag, used by d_splice_alias, to request
552  *          that only a DISCONNECTED alias be returned.
553  *
554  * If inode has a hashed alias, or is a directory and has any alias,
555  * acquire the reference to alias and return it. Otherwise return NULL.
556  * Notice that if inode is a directory there can be only one alias and
557  * it can be unhashed only if it has no children, or if it is the root
558  * of a filesystem.
559  *
560  * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
561  * any other hashed alias over that one unless @want_discon is set,
562  * in which case only return an IS_ROOT, DCACHE_DISCONNECTED alias.
563  */
564 static struct dentry *__d_find_alias(struct inode *inode, int want_discon)
565 {
566 	struct dentry *alias, *discon_alias;
567 
568 again:
569 	discon_alias = NULL;
570 	list_for_each_entry(alias, &inode->i_dentry, d_alias) {
571 		spin_lock(&alias->d_lock);
572  		if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
573 			if (IS_ROOT(alias) &&
574 			    (alias->d_flags & DCACHE_DISCONNECTED)) {
575 				discon_alias = alias;
576 			} else if (!want_discon) {
577 				__dget_dlock(alias);
578 				spin_unlock(&alias->d_lock);
579 				return alias;
580 			}
581 		}
582 		spin_unlock(&alias->d_lock);
583 	}
584 	if (discon_alias) {
585 		alias = discon_alias;
586 		spin_lock(&alias->d_lock);
587 		if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
588 			if (IS_ROOT(alias) &&
589 			    (alias->d_flags & DCACHE_DISCONNECTED)) {
590 				__dget_dlock(alias);
591 				spin_unlock(&alias->d_lock);
592 				return alias;
593 			}
594 		}
595 		spin_unlock(&alias->d_lock);
596 		goto again;
597 	}
598 	return NULL;
599 }
600 
601 struct dentry *d_find_alias(struct inode *inode)
602 {
603 	struct dentry *de = NULL;
604 
605 	if (!list_empty(&inode->i_dentry)) {
606 		spin_lock(&inode->i_lock);
607 		de = __d_find_alias(inode, 0);
608 		spin_unlock(&inode->i_lock);
609 	}
610 	return de;
611 }
612 EXPORT_SYMBOL(d_find_alias);
613 
614 /*
615  *	Try to kill dentries associated with this inode.
616  * WARNING: you must own a reference to inode.
617  */
618 void d_prune_aliases(struct inode *inode)
619 {
620 	struct dentry *dentry;
621 restart:
622 	spin_lock(&inode->i_lock);
623 	list_for_each_entry(dentry, &inode->i_dentry, d_alias) {
624 		spin_lock(&dentry->d_lock);
625 		if (!dentry->d_count) {
626 			__dget_dlock(dentry);
627 			__d_drop(dentry);
628 			spin_unlock(&dentry->d_lock);
629 			spin_unlock(&inode->i_lock);
630 			dput(dentry);
631 			goto restart;
632 		}
633 		spin_unlock(&dentry->d_lock);
634 	}
635 	spin_unlock(&inode->i_lock);
636 }
637 EXPORT_SYMBOL(d_prune_aliases);
638 
639 /*
640  * Try to throw away a dentry - free the inode, dput the parent.
641  * Requires dentry->d_lock is held, and dentry->d_count == 0.
642  * Releases dentry->d_lock.
643  *
644  * This may fail if locks cannot be acquired no problem, just try again.
645  */
646 static void try_prune_one_dentry(struct dentry *dentry)
647 	__releases(dentry->d_lock)
648 {
649 	struct dentry *parent;
650 
651 	parent = dentry_kill(dentry, 0);
652 	/*
653 	 * If dentry_kill returns NULL, we have nothing more to do.
654 	 * if it returns the same dentry, trylocks failed. In either
655 	 * case, just loop again.
656 	 *
657 	 * Otherwise, we need to prune ancestors too. This is necessary
658 	 * to prevent quadratic behavior of shrink_dcache_parent(), but
659 	 * is also expected to be beneficial in reducing dentry cache
660 	 * fragmentation.
661 	 */
662 	if (!parent)
663 		return;
664 	if (parent == dentry)
665 		return;
666 
667 	/* Prune ancestors. */
668 	dentry = parent;
669 	while (dentry) {
670 		spin_lock(&dentry->d_lock);
671 		if (dentry->d_count > 1) {
672 			dentry->d_count--;
673 			spin_unlock(&dentry->d_lock);
674 			return;
675 		}
676 		dentry = dentry_kill(dentry, 1);
677 	}
678 }
679 
680 static void shrink_dentry_list(struct list_head *list)
681 {
682 	struct dentry *dentry;
683 
684 	rcu_read_lock();
685 	for (;;) {
686 		dentry = list_entry_rcu(list->prev, struct dentry, d_lru);
687 		if (&dentry->d_lru == list)
688 			break; /* empty */
689 		spin_lock(&dentry->d_lock);
690 		if (dentry != list_entry(list->prev, struct dentry, d_lru)) {
691 			spin_unlock(&dentry->d_lock);
692 			continue;
693 		}
694 
695 		/*
696 		 * We found an inuse dentry which was not removed from
697 		 * the LRU because of laziness during lookup.  Do not free
698 		 * it - just keep it off the LRU list.
699 		 */
700 		if (dentry->d_count) {
701 			dentry_lru_del(dentry);
702 			spin_unlock(&dentry->d_lock);
703 			continue;
704 		}
705 
706 		rcu_read_unlock();
707 
708 		try_prune_one_dentry(dentry);
709 
710 		rcu_read_lock();
711 	}
712 	rcu_read_unlock();
713 }
714 
715 /**
716  * __shrink_dcache_sb - shrink the dentry LRU on a given superblock
717  * @sb:		superblock to shrink dentry LRU.
718  * @count:	number of entries to prune
719  * @flags:	flags to control the dentry processing
720  *
721  * If flags contains DCACHE_REFERENCED reference dentries will not be pruned.
722  */
723 static void __shrink_dcache_sb(struct super_block *sb, int *count, int flags)
724 {
725 	/* called from prune_dcache() and shrink_dcache_parent() */
726 	struct dentry *dentry;
727 	LIST_HEAD(referenced);
728 	LIST_HEAD(tmp);
729 	int cnt = *count;
730 
731 relock:
732 	spin_lock(&dcache_lru_lock);
733 	while (!list_empty(&sb->s_dentry_lru)) {
734 		dentry = list_entry(sb->s_dentry_lru.prev,
735 				struct dentry, d_lru);
736 		BUG_ON(dentry->d_sb != sb);
737 
738 		if (!spin_trylock(&dentry->d_lock)) {
739 			spin_unlock(&dcache_lru_lock);
740 			cpu_relax();
741 			goto relock;
742 		}
743 
744 		/*
745 		 * If we are honouring the DCACHE_REFERENCED flag and the
746 		 * dentry has this flag set, don't free it.  Clear the flag
747 		 * and put it back on the LRU.
748 		 */
749 		if (flags & DCACHE_REFERENCED &&
750 				dentry->d_flags & DCACHE_REFERENCED) {
751 			dentry->d_flags &= ~DCACHE_REFERENCED;
752 			list_move(&dentry->d_lru, &referenced);
753 			spin_unlock(&dentry->d_lock);
754 		} else {
755 			list_move_tail(&dentry->d_lru, &tmp);
756 			spin_unlock(&dentry->d_lock);
757 			if (!--cnt)
758 				break;
759 		}
760 		cond_resched_lock(&dcache_lru_lock);
761 	}
762 	if (!list_empty(&referenced))
763 		list_splice(&referenced, &sb->s_dentry_lru);
764 	spin_unlock(&dcache_lru_lock);
765 
766 	shrink_dentry_list(&tmp);
767 
768 	*count = cnt;
769 }
770 
771 /**
772  * prune_dcache - shrink the dcache
773  * @count: number of entries to try to free
774  *
775  * Shrink the dcache. This is done when we need more memory, or simply when we
776  * need to unmount something (at which point we need to unuse all dentries).
777  *
778  * This function may fail to free any resources if all the dentries are in use.
779  */
780 static void prune_dcache(int count)
781 {
782 	struct super_block *sb, *p = NULL;
783 	int w_count;
784 	int unused = dentry_stat.nr_unused;
785 	int prune_ratio;
786 	int pruned;
787 
788 	if (unused == 0 || count == 0)
789 		return;
790 	if (count >= unused)
791 		prune_ratio = 1;
792 	else
793 		prune_ratio = unused / count;
794 	spin_lock(&sb_lock);
795 	list_for_each_entry(sb, &super_blocks, s_list) {
796 		if (list_empty(&sb->s_instances))
797 			continue;
798 		if (sb->s_nr_dentry_unused == 0)
799 			continue;
800 		sb->s_count++;
801 		/* Now, we reclaim unused dentrins with fairness.
802 		 * We reclaim them same percentage from each superblock.
803 		 * We calculate number of dentries to scan on this sb
804 		 * as follows, but the implementation is arranged to avoid
805 		 * overflows:
806 		 * number of dentries to scan on this sb =
807 		 * count * (number of dentries on this sb /
808 		 * number of dentries in the machine)
809 		 */
810 		spin_unlock(&sb_lock);
811 		if (prune_ratio != 1)
812 			w_count = (sb->s_nr_dentry_unused / prune_ratio) + 1;
813 		else
814 			w_count = sb->s_nr_dentry_unused;
815 		pruned = w_count;
816 		/*
817 		 * We need to be sure this filesystem isn't being unmounted,
818 		 * otherwise we could race with generic_shutdown_super(), and
819 		 * end up holding a reference to an inode while the filesystem
820 		 * is unmounted.  So we try to get s_umount, and make sure
821 		 * s_root isn't NULL.
822 		 */
823 		if (down_read_trylock(&sb->s_umount)) {
824 			if ((sb->s_root != NULL) &&
825 			    (!list_empty(&sb->s_dentry_lru))) {
826 				__shrink_dcache_sb(sb, &w_count,
827 						DCACHE_REFERENCED);
828 				pruned -= w_count;
829 			}
830 			up_read(&sb->s_umount);
831 		}
832 		spin_lock(&sb_lock);
833 		if (p)
834 			__put_super(p);
835 		count -= pruned;
836 		p = sb;
837 		/* more work left to do? */
838 		if (count <= 0)
839 			break;
840 	}
841 	if (p)
842 		__put_super(p);
843 	spin_unlock(&sb_lock);
844 }
845 
846 /**
847  * shrink_dcache_sb - shrink dcache for a superblock
848  * @sb: superblock
849  *
850  * Shrink the dcache for the specified super block. This is used to free
851  * the dcache before unmounting a file system.
852  */
853 void shrink_dcache_sb(struct super_block *sb)
854 {
855 	LIST_HEAD(tmp);
856 
857 	spin_lock(&dcache_lru_lock);
858 	while (!list_empty(&sb->s_dentry_lru)) {
859 		list_splice_init(&sb->s_dentry_lru, &tmp);
860 		spin_unlock(&dcache_lru_lock);
861 		shrink_dentry_list(&tmp);
862 		spin_lock(&dcache_lru_lock);
863 	}
864 	spin_unlock(&dcache_lru_lock);
865 }
866 EXPORT_SYMBOL(shrink_dcache_sb);
867 
868 /*
869  * destroy a single subtree of dentries for unmount
870  * - see the comments on shrink_dcache_for_umount() for a description of the
871  *   locking
872  */
873 static void shrink_dcache_for_umount_subtree(struct dentry *dentry)
874 {
875 	struct dentry *parent;
876 	unsigned detached = 0;
877 
878 	BUG_ON(!IS_ROOT(dentry));
879 
880 	/* detach this root from the system */
881 	spin_lock(&dentry->d_lock);
882 	dentry_lru_del(dentry);
883 	__d_drop(dentry);
884 	spin_unlock(&dentry->d_lock);
885 
886 	for (;;) {
887 		/* descend to the first leaf in the current subtree */
888 		while (!list_empty(&dentry->d_subdirs)) {
889 			struct dentry *loop;
890 
891 			/* this is a branch with children - detach all of them
892 			 * from the system in one go */
893 			spin_lock(&dentry->d_lock);
894 			list_for_each_entry(loop, &dentry->d_subdirs,
895 					    d_u.d_child) {
896 				spin_lock_nested(&loop->d_lock,
897 						DENTRY_D_LOCK_NESTED);
898 				dentry_lru_del(loop);
899 				__d_drop(loop);
900 				spin_unlock(&loop->d_lock);
901 			}
902 			spin_unlock(&dentry->d_lock);
903 
904 			/* move to the first child */
905 			dentry = list_entry(dentry->d_subdirs.next,
906 					    struct dentry, d_u.d_child);
907 		}
908 
909 		/* consume the dentries from this leaf up through its parents
910 		 * until we find one with children or run out altogether */
911 		do {
912 			struct inode *inode;
913 
914 			if (dentry->d_count != 0) {
915 				printk(KERN_ERR
916 				       "BUG: Dentry %p{i=%lx,n=%s}"
917 				       " still in use (%d)"
918 				       " [unmount of %s %s]\n",
919 				       dentry,
920 				       dentry->d_inode ?
921 				       dentry->d_inode->i_ino : 0UL,
922 				       dentry->d_name.name,
923 				       dentry->d_count,
924 				       dentry->d_sb->s_type->name,
925 				       dentry->d_sb->s_id);
926 				BUG();
927 			}
928 
929 			if (IS_ROOT(dentry)) {
930 				parent = NULL;
931 				list_del(&dentry->d_u.d_child);
932 			} else {
933 				parent = dentry->d_parent;
934 				spin_lock(&parent->d_lock);
935 				parent->d_count--;
936 				list_del(&dentry->d_u.d_child);
937 				spin_unlock(&parent->d_lock);
938 			}
939 
940 			detached++;
941 
942 			inode = dentry->d_inode;
943 			if (inode) {
944 				dentry->d_inode = NULL;
945 				list_del_init(&dentry->d_alias);
946 				if (dentry->d_op && dentry->d_op->d_iput)
947 					dentry->d_op->d_iput(dentry, inode);
948 				else
949 					iput(inode);
950 			}
951 
952 			d_free(dentry);
953 
954 			/* finished when we fall off the top of the tree,
955 			 * otherwise we ascend to the parent and move to the
956 			 * next sibling if there is one */
957 			if (!parent)
958 				return;
959 			dentry = parent;
960 		} while (list_empty(&dentry->d_subdirs));
961 
962 		dentry = list_entry(dentry->d_subdirs.next,
963 				    struct dentry, d_u.d_child);
964 	}
965 }
966 
967 /*
968  * destroy the dentries attached to a superblock on unmounting
969  * - we don't need to use dentry->d_lock because:
970  *   - the superblock is detached from all mountings and open files, so the
971  *     dentry trees will not be rearranged by the VFS
972  *   - s_umount is write-locked, so the memory pressure shrinker will ignore
973  *     any dentries belonging to this superblock that it comes across
974  *   - the filesystem itself is no longer permitted to rearrange the dentries
975  *     in this superblock
976  */
977 void shrink_dcache_for_umount(struct super_block *sb)
978 {
979 	struct dentry *dentry;
980 
981 	if (down_read_trylock(&sb->s_umount))
982 		BUG();
983 
984 	dentry = sb->s_root;
985 	sb->s_root = NULL;
986 	spin_lock(&dentry->d_lock);
987 	dentry->d_count--;
988 	spin_unlock(&dentry->d_lock);
989 	shrink_dcache_for_umount_subtree(dentry);
990 
991 	while (!hlist_bl_empty(&sb->s_anon)) {
992 		dentry = hlist_bl_entry(hlist_bl_first(&sb->s_anon), struct dentry, d_hash);
993 		shrink_dcache_for_umount_subtree(dentry);
994 	}
995 }
996 
997 /*
998  * This tries to ascend one level of parenthood, but
999  * we can race with renaming, so we need to re-check
1000  * the parenthood after dropping the lock and check
1001  * that the sequence number still matches.
1002  */
1003 static struct dentry *try_to_ascend(struct dentry *old, int locked, unsigned seq)
1004 {
1005 	struct dentry *new = old->d_parent;
1006 
1007 	rcu_read_lock();
1008 	spin_unlock(&old->d_lock);
1009 	spin_lock(&new->d_lock);
1010 
1011 	/*
1012 	 * might go back up the wrong parent if we have had a rename
1013 	 * or deletion
1014 	 */
1015 	if (new != old->d_parent ||
1016 		 (old->d_flags & DCACHE_DISCONNECTED) ||
1017 		 (!locked && read_seqretry(&rename_lock, seq))) {
1018 		spin_unlock(&new->d_lock);
1019 		new = NULL;
1020 	}
1021 	rcu_read_unlock();
1022 	return new;
1023 }
1024 
1025 
1026 /*
1027  * Search for at least 1 mount point in the dentry's subdirs.
1028  * We descend to the next level whenever the d_subdirs
1029  * list is non-empty and continue searching.
1030  */
1031 
1032 /**
1033  * have_submounts - check for mounts over a dentry
1034  * @parent: dentry to check.
1035  *
1036  * Return true if the parent or its subdirectories contain
1037  * a mount point
1038  */
1039 int have_submounts(struct dentry *parent)
1040 {
1041 	struct dentry *this_parent;
1042 	struct list_head *next;
1043 	unsigned seq;
1044 	int locked = 0;
1045 
1046 	seq = read_seqbegin(&rename_lock);
1047 again:
1048 	this_parent = parent;
1049 
1050 	if (d_mountpoint(parent))
1051 		goto positive;
1052 	spin_lock(&this_parent->d_lock);
1053 repeat:
1054 	next = this_parent->d_subdirs.next;
1055 resume:
1056 	while (next != &this_parent->d_subdirs) {
1057 		struct list_head *tmp = next;
1058 		struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
1059 		next = tmp->next;
1060 
1061 		spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1062 		/* Have we found a mount point ? */
1063 		if (d_mountpoint(dentry)) {
1064 			spin_unlock(&dentry->d_lock);
1065 			spin_unlock(&this_parent->d_lock);
1066 			goto positive;
1067 		}
1068 		if (!list_empty(&dentry->d_subdirs)) {
1069 			spin_unlock(&this_parent->d_lock);
1070 			spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1071 			this_parent = dentry;
1072 			spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1073 			goto repeat;
1074 		}
1075 		spin_unlock(&dentry->d_lock);
1076 	}
1077 	/*
1078 	 * All done at this level ... ascend and resume the search.
1079 	 */
1080 	if (this_parent != parent) {
1081 		struct dentry *child = this_parent;
1082 		this_parent = try_to_ascend(this_parent, locked, seq);
1083 		if (!this_parent)
1084 			goto rename_retry;
1085 		next = child->d_u.d_child.next;
1086 		goto resume;
1087 	}
1088 	spin_unlock(&this_parent->d_lock);
1089 	if (!locked && read_seqretry(&rename_lock, seq))
1090 		goto rename_retry;
1091 	if (locked)
1092 		write_sequnlock(&rename_lock);
1093 	return 0; /* No mount points found in tree */
1094 positive:
1095 	if (!locked && read_seqretry(&rename_lock, seq))
1096 		goto rename_retry;
1097 	if (locked)
1098 		write_sequnlock(&rename_lock);
1099 	return 1;
1100 
1101 rename_retry:
1102 	locked = 1;
1103 	write_seqlock(&rename_lock);
1104 	goto again;
1105 }
1106 EXPORT_SYMBOL(have_submounts);
1107 
1108 /*
1109  * Search the dentry child list for the specified parent,
1110  * and move any unused dentries to the end of the unused
1111  * list for prune_dcache(). We descend to the next level
1112  * whenever the d_subdirs list is non-empty and continue
1113  * searching.
1114  *
1115  * It returns zero iff there are no unused children,
1116  * otherwise  it returns the number of children moved to
1117  * the end of the unused list. This may not be the total
1118  * number of unused children, because select_parent can
1119  * drop the lock and return early due to latency
1120  * constraints.
1121  */
1122 static int select_parent(struct dentry * parent)
1123 {
1124 	struct dentry *this_parent;
1125 	struct list_head *next;
1126 	unsigned seq;
1127 	int found = 0;
1128 	int locked = 0;
1129 
1130 	seq = read_seqbegin(&rename_lock);
1131 again:
1132 	this_parent = parent;
1133 	spin_lock(&this_parent->d_lock);
1134 repeat:
1135 	next = this_parent->d_subdirs.next;
1136 resume:
1137 	while (next != &this_parent->d_subdirs) {
1138 		struct list_head *tmp = next;
1139 		struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
1140 		next = tmp->next;
1141 
1142 		spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1143 
1144 		/*
1145 		 * move only zero ref count dentries to the end
1146 		 * of the unused list for prune_dcache
1147 		 */
1148 		if (!dentry->d_count) {
1149 			dentry_lru_move_tail(dentry);
1150 			found++;
1151 		} else {
1152 			dentry_lru_del(dentry);
1153 		}
1154 
1155 		/*
1156 		 * We can return to the caller if we have found some (this
1157 		 * ensures forward progress). We'll be coming back to find
1158 		 * the rest.
1159 		 */
1160 		if (found && need_resched()) {
1161 			spin_unlock(&dentry->d_lock);
1162 			goto out;
1163 		}
1164 
1165 		/*
1166 		 * Descend a level if the d_subdirs list is non-empty.
1167 		 */
1168 		if (!list_empty(&dentry->d_subdirs)) {
1169 			spin_unlock(&this_parent->d_lock);
1170 			spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1171 			this_parent = dentry;
1172 			spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1173 			goto repeat;
1174 		}
1175 
1176 		spin_unlock(&dentry->d_lock);
1177 	}
1178 	/*
1179 	 * All done at this level ... ascend and resume the search.
1180 	 */
1181 	if (this_parent != parent) {
1182 		struct dentry *child = this_parent;
1183 		this_parent = try_to_ascend(this_parent, locked, seq);
1184 		if (!this_parent)
1185 			goto rename_retry;
1186 		next = child->d_u.d_child.next;
1187 		goto resume;
1188 	}
1189 out:
1190 	spin_unlock(&this_parent->d_lock);
1191 	if (!locked && read_seqretry(&rename_lock, seq))
1192 		goto rename_retry;
1193 	if (locked)
1194 		write_sequnlock(&rename_lock);
1195 	return found;
1196 
1197 rename_retry:
1198 	if (found)
1199 		return found;
1200 	locked = 1;
1201 	write_seqlock(&rename_lock);
1202 	goto again;
1203 }
1204 
1205 /**
1206  * shrink_dcache_parent - prune dcache
1207  * @parent: parent of entries to prune
1208  *
1209  * Prune the dcache to remove unused children of the parent dentry.
1210  */
1211 
1212 void shrink_dcache_parent(struct dentry * parent)
1213 {
1214 	struct super_block *sb = parent->d_sb;
1215 	int found;
1216 
1217 	while ((found = select_parent(parent)) != 0)
1218 		__shrink_dcache_sb(sb, &found, 0);
1219 }
1220 EXPORT_SYMBOL(shrink_dcache_parent);
1221 
1222 /*
1223  * Scan `sc->nr_slab_to_reclaim' dentries and return the number which remain.
1224  *
1225  * We need to avoid reentering the filesystem if the caller is performing a
1226  * GFP_NOFS allocation attempt.  One example deadlock is:
1227  *
1228  * ext2_new_block->getblk->GFP->shrink_dcache_memory->prune_dcache->
1229  * prune_one_dentry->dput->dentry_iput->iput->inode->i_sb->s_op->put_inode->
1230  * ext2_discard_prealloc->ext2_free_blocks->lock_super->DEADLOCK.
1231  *
1232  * In this case we return -1 to tell the caller that we baled.
1233  */
1234 static int shrink_dcache_memory(struct shrinker *shrink,
1235 				struct shrink_control *sc)
1236 {
1237 	int nr = sc->nr_to_scan;
1238 	gfp_t gfp_mask = sc->gfp_mask;
1239 
1240 	if (nr) {
1241 		if (!(gfp_mask & __GFP_FS))
1242 			return -1;
1243 		prune_dcache(nr);
1244 	}
1245 
1246 	return (dentry_stat.nr_unused / 100) * sysctl_vfs_cache_pressure;
1247 }
1248 
1249 static struct shrinker dcache_shrinker = {
1250 	.shrink = shrink_dcache_memory,
1251 	.seeks = DEFAULT_SEEKS,
1252 };
1253 
1254 /**
1255  * d_alloc	-	allocate a dcache entry
1256  * @parent: parent of entry to allocate
1257  * @name: qstr of the name
1258  *
1259  * Allocates a dentry. It returns %NULL if there is insufficient memory
1260  * available. On a success the dentry is returned. The name passed in is
1261  * copied and the copy passed in may be reused after this call.
1262  */
1263 
1264 struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1265 {
1266 	struct dentry *dentry;
1267 	char *dname;
1268 
1269 	dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
1270 	if (!dentry)
1271 		return NULL;
1272 
1273 	if (name->len > DNAME_INLINE_LEN-1) {
1274 		dname = kmalloc(name->len + 1, GFP_KERNEL);
1275 		if (!dname) {
1276 			kmem_cache_free(dentry_cache, dentry);
1277 			return NULL;
1278 		}
1279 	} else  {
1280 		dname = dentry->d_iname;
1281 	}
1282 	dentry->d_name.name = dname;
1283 
1284 	dentry->d_name.len = name->len;
1285 	dentry->d_name.hash = name->hash;
1286 	memcpy(dname, name->name, name->len);
1287 	dname[name->len] = 0;
1288 
1289 	dentry->d_count = 1;
1290 	dentry->d_flags = 0;
1291 	spin_lock_init(&dentry->d_lock);
1292 	seqcount_init(&dentry->d_seq);
1293 	dentry->d_inode = NULL;
1294 	dentry->d_parent = NULL;
1295 	dentry->d_sb = NULL;
1296 	dentry->d_op = NULL;
1297 	dentry->d_fsdata = NULL;
1298 	INIT_HLIST_BL_NODE(&dentry->d_hash);
1299 	INIT_LIST_HEAD(&dentry->d_lru);
1300 	INIT_LIST_HEAD(&dentry->d_subdirs);
1301 	INIT_LIST_HEAD(&dentry->d_alias);
1302 	INIT_LIST_HEAD(&dentry->d_u.d_child);
1303 
1304 	if (parent) {
1305 		spin_lock(&parent->d_lock);
1306 		/*
1307 		 * don't need child lock because it is not subject
1308 		 * to concurrency here
1309 		 */
1310 		__dget_dlock(parent);
1311 		dentry->d_parent = parent;
1312 		dentry->d_sb = parent->d_sb;
1313 		d_set_d_op(dentry, dentry->d_sb->s_d_op);
1314 		list_add(&dentry->d_u.d_child, &parent->d_subdirs);
1315 		spin_unlock(&parent->d_lock);
1316 	}
1317 
1318 	this_cpu_inc(nr_dentry);
1319 
1320 	return dentry;
1321 }
1322 EXPORT_SYMBOL(d_alloc);
1323 
1324 struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
1325 {
1326 	struct dentry *dentry = d_alloc(NULL, name);
1327 	if (dentry) {
1328 		dentry->d_sb = sb;
1329 		d_set_d_op(dentry, dentry->d_sb->s_d_op);
1330 		dentry->d_parent = dentry;
1331 		dentry->d_flags |= DCACHE_DISCONNECTED;
1332 	}
1333 	return dentry;
1334 }
1335 EXPORT_SYMBOL(d_alloc_pseudo);
1336 
1337 struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1338 {
1339 	struct qstr q;
1340 
1341 	q.name = name;
1342 	q.len = strlen(name);
1343 	q.hash = full_name_hash(q.name, q.len);
1344 	return d_alloc(parent, &q);
1345 }
1346 EXPORT_SYMBOL(d_alloc_name);
1347 
1348 void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1349 {
1350 	WARN_ON_ONCE(dentry->d_op);
1351 	WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH	|
1352 				DCACHE_OP_COMPARE	|
1353 				DCACHE_OP_REVALIDATE	|
1354 				DCACHE_OP_DELETE ));
1355 	dentry->d_op = op;
1356 	if (!op)
1357 		return;
1358 	if (op->d_hash)
1359 		dentry->d_flags |= DCACHE_OP_HASH;
1360 	if (op->d_compare)
1361 		dentry->d_flags |= DCACHE_OP_COMPARE;
1362 	if (op->d_revalidate)
1363 		dentry->d_flags |= DCACHE_OP_REVALIDATE;
1364 	if (op->d_delete)
1365 		dentry->d_flags |= DCACHE_OP_DELETE;
1366 
1367 }
1368 EXPORT_SYMBOL(d_set_d_op);
1369 
1370 static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1371 {
1372 	spin_lock(&dentry->d_lock);
1373 	if (inode) {
1374 		if (unlikely(IS_AUTOMOUNT(inode)))
1375 			dentry->d_flags |= DCACHE_NEED_AUTOMOUNT;
1376 		list_add(&dentry->d_alias, &inode->i_dentry);
1377 	}
1378 	dentry->d_inode = inode;
1379 	dentry_rcuwalk_barrier(dentry);
1380 	spin_unlock(&dentry->d_lock);
1381 	fsnotify_d_instantiate(dentry, inode);
1382 }
1383 
1384 /**
1385  * d_instantiate - fill in inode information for a dentry
1386  * @entry: dentry to complete
1387  * @inode: inode to attach to this dentry
1388  *
1389  * Fill in inode information in the entry.
1390  *
1391  * This turns negative dentries into productive full members
1392  * of society.
1393  *
1394  * NOTE! This assumes that the inode count has been incremented
1395  * (or otherwise set) by the caller to indicate that it is now
1396  * in use by the dcache.
1397  */
1398 
1399 void d_instantiate(struct dentry *entry, struct inode * inode)
1400 {
1401 	BUG_ON(!list_empty(&entry->d_alias));
1402 	if (inode)
1403 		spin_lock(&inode->i_lock);
1404 	__d_instantiate(entry, inode);
1405 	if (inode)
1406 		spin_unlock(&inode->i_lock);
1407 	security_d_instantiate(entry, inode);
1408 }
1409 EXPORT_SYMBOL(d_instantiate);
1410 
1411 /**
1412  * d_instantiate_unique - instantiate a non-aliased dentry
1413  * @entry: dentry to instantiate
1414  * @inode: inode to attach to this dentry
1415  *
1416  * Fill in inode information in the entry. On success, it returns NULL.
1417  * If an unhashed alias of "entry" already exists, then we return the
1418  * aliased dentry instead and drop one reference to inode.
1419  *
1420  * Note that in order to avoid conflicts with rename() etc, the caller
1421  * had better be holding the parent directory semaphore.
1422  *
1423  * This also assumes that the inode count has been incremented
1424  * (or otherwise set) by the caller to indicate that it is now
1425  * in use by the dcache.
1426  */
1427 static struct dentry *__d_instantiate_unique(struct dentry *entry,
1428 					     struct inode *inode)
1429 {
1430 	struct dentry *alias;
1431 	int len = entry->d_name.len;
1432 	const char *name = entry->d_name.name;
1433 	unsigned int hash = entry->d_name.hash;
1434 
1435 	if (!inode) {
1436 		__d_instantiate(entry, NULL);
1437 		return NULL;
1438 	}
1439 
1440 	list_for_each_entry(alias, &inode->i_dentry, d_alias) {
1441 		struct qstr *qstr = &alias->d_name;
1442 
1443 		/*
1444 		 * Don't need alias->d_lock here, because aliases with
1445 		 * d_parent == entry->d_parent are not subject to name or
1446 		 * parent changes, because the parent inode i_mutex is held.
1447 		 */
1448 		if (qstr->hash != hash)
1449 			continue;
1450 		if (alias->d_parent != entry->d_parent)
1451 			continue;
1452 		if (dentry_cmp(qstr->name, qstr->len, name, len))
1453 			continue;
1454 		__dget(alias);
1455 		return alias;
1456 	}
1457 
1458 	__d_instantiate(entry, inode);
1459 	return NULL;
1460 }
1461 
1462 struct dentry *d_instantiate_unique(struct dentry *entry, struct inode *inode)
1463 {
1464 	struct dentry *result;
1465 
1466 	BUG_ON(!list_empty(&entry->d_alias));
1467 
1468 	if (inode)
1469 		spin_lock(&inode->i_lock);
1470 	result = __d_instantiate_unique(entry, inode);
1471 	if (inode)
1472 		spin_unlock(&inode->i_lock);
1473 
1474 	if (!result) {
1475 		security_d_instantiate(entry, inode);
1476 		return NULL;
1477 	}
1478 
1479 	BUG_ON(!d_unhashed(result));
1480 	iput(inode);
1481 	return result;
1482 }
1483 
1484 EXPORT_SYMBOL(d_instantiate_unique);
1485 
1486 /**
1487  * d_alloc_root - allocate root dentry
1488  * @root_inode: inode to allocate the root for
1489  *
1490  * Allocate a root ("/") dentry for the inode given. The inode is
1491  * instantiated and returned. %NULL is returned if there is insufficient
1492  * memory or the inode passed is %NULL.
1493  */
1494 
1495 struct dentry * d_alloc_root(struct inode * root_inode)
1496 {
1497 	struct dentry *res = NULL;
1498 
1499 	if (root_inode) {
1500 		static const struct qstr name = { .name = "/", .len = 1 };
1501 
1502 		res = d_alloc(NULL, &name);
1503 		if (res) {
1504 			res->d_sb = root_inode->i_sb;
1505 			d_set_d_op(res, res->d_sb->s_d_op);
1506 			res->d_parent = res;
1507 			d_instantiate(res, root_inode);
1508 		}
1509 	}
1510 	return res;
1511 }
1512 EXPORT_SYMBOL(d_alloc_root);
1513 
1514 static struct dentry * __d_find_any_alias(struct inode *inode)
1515 {
1516 	struct dentry *alias;
1517 
1518 	if (list_empty(&inode->i_dentry))
1519 		return NULL;
1520 	alias = list_first_entry(&inode->i_dentry, struct dentry, d_alias);
1521 	__dget(alias);
1522 	return alias;
1523 }
1524 
1525 static struct dentry * d_find_any_alias(struct inode *inode)
1526 {
1527 	struct dentry *de;
1528 
1529 	spin_lock(&inode->i_lock);
1530 	de = __d_find_any_alias(inode);
1531 	spin_unlock(&inode->i_lock);
1532 	return de;
1533 }
1534 
1535 
1536 /**
1537  * d_obtain_alias - find or allocate a dentry for a given inode
1538  * @inode: inode to allocate the dentry for
1539  *
1540  * Obtain a dentry for an inode resulting from NFS filehandle conversion or
1541  * similar open by handle operations.  The returned dentry may be anonymous,
1542  * or may have a full name (if the inode was already in the cache).
1543  *
1544  * When called on a directory inode, we must ensure that the inode only ever
1545  * has one dentry.  If a dentry is found, that is returned instead of
1546  * allocating a new one.
1547  *
1548  * On successful return, the reference to the inode has been transferred
1549  * to the dentry.  In case of an error the reference on the inode is released.
1550  * To make it easier to use in export operations a %NULL or IS_ERR inode may
1551  * be passed in and will be the error will be propagate to the return value,
1552  * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
1553  */
1554 struct dentry *d_obtain_alias(struct inode *inode)
1555 {
1556 	static const struct qstr anonstring = { .name = "" };
1557 	struct dentry *tmp;
1558 	struct dentry *res;
1559 
1560 	if (!inode)
1561 		return ERR_PTR(-ESTALE);
1562 	if (IS_ERR(inode))
1563 		return ERR_CAST(inode);
1564 
1565 	res = d_find_any_alias(inode);
1566 	if (res)
1567 		goto out_iput;
1568 
1569 	tmp = d_alloc(NULL, &anonstring);
1570 	if (!tmp) {
1571 		res = ERR_PTR(-ENOMEM);
1572 		goto out_iput;
1573 	}
1574 	tmp->d_parent = tmp; /* make sure dput doesn't croak */
1575 
1576 
1577 	spin_lock(&inode->i_lock);
1578 	res = __d_find_any_alias(inode);
1579 	if (res) {
1580 		spin_unlock(&inode->i_lock);
1581 		dput(tmp);
1582 		goto out_iput;
1583 	}
1584 
1585 	/* attach a disconnected dentry */
1586 	spin_lock(&tmp->d_lock);
1587 	tmp->d_sb = inode->i_sb;
1588 	d_set_d_op(tmp, tmp->d_sb->s_d_op);
1589 	tmp->d_inode = inode;
1590 	tmp->d_flags |= DCACHE_DISCONNECTED;
1591 	list_add(&tmp->d_alias, &inode->i_dentry);
1592 	hlist_bl_lock(&tmp->d_sb->s_anon);
1593 	hlist_bl_add_head(&tmp->d_hash, &tmp->d_sb->s_anon);
1594 	hlist_bl_unlock(&tmp->d_sb->s_anon);
1595 	spin_unlock(&tmp->d_lock);
1596 	spin_unlock(&inode->i_lock);
1597 	security_d_instantiate(tmp, inode);
1598 
1599 	return tmp;
1600 
1601  out_iput:
1602 	if (res && !IS_ERR(res))
1603 		security_d_instantiate(res, inode);
1604 	iput(inode);
1605 	return res;
1606 }
1607 EXPORT_SYMBOL(d_obtain_alias);
1608 
1609 /**
1610  * d_splice_alias - splice a disconnected dentry into the tree if one exists
1611  * @inode:  the inode which may have a disconnected dentry
1612  * @dentry: a negative dentry which we want to point to the inode.
1613  *
1614  * If inode is a directory and has a 'disconnected' dentry (i.e. IS_ROOT and
1615  * DCACHE_DISCONNECTED), then d_move that in place of the given dentry
1616  * and return it, else simply d_add the inode to the dentry and return NULL.
1617  *
1618  * This is needed in the lookup routine of any filesystem that is exportable
1619  * (via knfsd) so that we can build dcache paths to directories effectively.
1620  *
1621  * If a dentry was found and moved, then it is returned.  Otherwise NULL
1622  * is returned.  This matches the expected return value of ->lookup.
1623  *
1624  */
1625 struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
1626 {
1627 	struct dentry *new = NULL;
1628 
1629 	if (inode && S_ISDIR(inode->i_mode)) {
1630 		spin_lock(&inode->i_lock);
1631 		new = __d_find_alias(inode, 1);
1632 		if (new) {
1633 			BUG_ON(!(new->d_flags & DCACHE_DISCONNECTED));
1634 			spin_unlock(&inode->i_lock);
1635 			security_d_instantiate(new, inode);
1636 			d_move(new, dentry);
1637 			iput(inode);
1638 		} else {
1639 			/* already taking inode->i_lock, so d_add() by hand */
1640 			__d_instantiate(dentry, inode);
1641 			spin_unlock(&inode->i_lock);
1642 			security_d_instantiate(dentry, inode);
1643 			d_rehash(dentry);
1644 		}
1645 	} else
1646 		d_add(dentry, inode);
1647 	return new;
1648 }
1649 EXPORT_SYMBOL(d_splice_alias);
1650 
1651 /**
1652  * d_add_ci - lookup or allocate new dentry with case-exact name
1653  * @inode:  the inode case-insensitive lookup has found
1654  * @dentry: the negative dentry that was passed to the parent's lookup func
1655  * @name:   the case-exact name to be associated with the returned dentry
1656  *
1657  * This is to avoid filling the dcache with case-insensitive names to the
1658  * same inode, only the actual correct case is stored in the dcache for
1659  * case-insensitive filesystems.
1660  *
1661  * For a case-insensitive lookup match and if the the case-exact dentry
1662  * already exists in in the dcache, use it and return it.
1663  *
1664  * If no entry exists with the exact case name, allocate new dentry with
1665  * the exact case, and return the spliced entry.
1666  */
1667 struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
1668 			struct qstr *name)
1669 {
1670 	int error;
1671 	struct dentry *found;
1672 	struct dentry *new;
1673 
1674 	/*
1675 	 * First check if a dentry matching the name already exists,
1676 	 * if not go ahead and create it now.
1677 	 */
1678 	found = d_hash_and_lookup(dentry->d_parent, name);
1679 	if (!found) {
1680 		new = d_alloc(dentry->d_parent, name);
1681 		if (!new) {
1682 			error = -ENOMEM;
1683 			goto err_out;
1684 		}
1685 
1686 		found = d_splice_alias(inode, new);
1687 		if (found) {
1688 			dput(new);
1689 			return found;
1690 		}
1691 		return new;
1692 	}
1693 
1694 	/*
1695 	 * If a matching dentry exists, and it's not negative use it.
1696 	 *
1697 	 * Decrement the reference count to balance the iget() done
1698 	 * earlier on.
1699 	 */
1700 	if (found->d_inode) {
1701 		if (unlikely(found->d_inode != inode)) {
1702 			/* This can't happen because bad inodes are unhashed. */
1703 			BUG_ON(!is_bad_inode(inode));
1704 			BUG_ON(!is_bad_inode(found->d_inode));
1705 		}
1706 		iput(inode);
1707 		return found;
1708 	}
1709 
1710 	/*
1711 	 * Negative dentry: instantiate it unless the inode is a directory and
1712 	 * already has a dentry.
1713 	 */
1714 	spin_lock(&inode->i_lock);
1715 	if (!S_ISDIR(inode->i_mode) || list_empty(&inode->i_dentry)) {
1716 		__d_instantiate(found, inode);
1717 		spin_unlock(&inode->i_lock);
1718 		security_d_instantiate(found, inode);
1719 		return found;
1720 	}
1721 
1722 	/*
1723 	 * In case a directory already has a (disconnected) entry grab a
1724 	 * reference to it, move it in place and use it.
1725 	 */
1726 	new = list_entry(inode->i_dentry.next, struct dentry, d_alias);
1727 	__dget(new);
1728 	spin_unlock(&inode->i_lock);
1729 	security_d_instantiate(found, inode);
1730 	d_move(new, found);
1731 	iput(inode);
1732 	dput(found);
1733 	return new;
1734 
1735 err_out:
1736 	iput(inode);
1737 	return ERR_PTR(error);
1738 }
1739 EXPORT_SYMBOL(d_add_ci);
1740 
1741 /**
1742  * __d_lookup_rcu - search for a dentry (racy, store-free)
1743  * @parent: parent dentry
1744  * @name: qstr of name we wish to find
1745  * @seq: returns d_seq value at the point where the dentry was found
1746  * @inode: returns dentry->d_inode when the inode was found valid.
1747  * Returns: dentry, or NULL
1748  *
1749  * __d_lookup_rcu is the dcache lookup function for rcu-walk name
1750  * resolution (store-free path walking) design described in
1751  * Documentation/filesystems/path-lookup.txt.
1752  *
1753  * This is not to be used outside core vfs.
1754  *
1755  * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
1756  * held, and rcu_read_lock held. The returned dentry must not be stored into
1757  * without taking d_lock and checking d_seq sequence count against @seq
1758  * returned here.
1759  *
1760  * A refcount may be taken on the found dentry with the __d_rcu_to_refcount
1761  * function.
1762  *
1763  * Alternatively, __d_lookup_rcu may be called again to look up the child of
1764  * the returned dentry, so long as its parent's seqlock is checked after the
1765  * child is looked up. Thus, an interlocking stepping of sequence lock checks
1766  * is formed, giving integrity down the path walk.
1767  */
1768 struct dentry *__d_lookup_rcu(struct dentry *parent, struct qstr *name,
1769 				unsigned *seq, struct inode **inode)
1770 {
1771 	unsigned int len = name->len;
1772 	unsigned int hash = name->hash;
1773 	const unsigned char *str = name->name;
1774 	struct hlist_bl_head *b = d_hash(parent, hash);
1775 	struct hlist_bl_node *node;
1776 	struct dentry *dentry;
1777 
1778 	/*
1779 	 * Note: There is significant duplication with __d_lookup_rcu which is
1780 	 * required to prevent single threaded performance regressions
1781 	 * especially on architectures where smp_rmb (in seqcounts) are costly.
1782 	 * Keep the two functions in sync.
1783 	 */
1784 
1785 	/*
1786 	 * The hash list is protected using RCU.
1787 	 *
1788 	 * Carefully use d_seq when comparing a candidate dentry, to avoid
1789 	 * races with d_move().
1790 	 *
1791 	 * It is possible that concurrent renames can mess up our list
1792 	 * walk here and result in missing our dentry, resulting in the
1793 	 * false-negative result. d_lookup() protects against concurrent
1794 	 * renames using rename_lock seqlock.
1795 	 *
1796 	 * See Documentation/filesystems/path-lookup.txt for more details.
1797 	 */
1798 	hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
1799 		struct inode *i;
1800 		const char *tname;
1801 		int tlen;
1802 
1803 		if (dentry->d_name.hash != hash)
1804 			continue;
1805 
1806 seqretry:
1807 		*seq = read_seqcount_begin(&dentry->d_seq);
1808 		if (dentry->d_parent != parent)
1809 			continue;
1810 		if (d_unhashed(dentry))
1811 			continue;
1812 		tlen = dentry->d_name.len;
1813 		tname = dentry->d_name.name;
1814 		i = dentry->d_inode;
1815 		prefetch(tname);
1816 		if (i)
1817 			prefetch(i);
1818 		/*
1819 		 * This seqcount check is required to ensure name and
1820 		 * len are loaded atomically, so as not to walk off the
1821 		 * edge of memory when walking. If we could load this
1822 		 * atomically some other way, we could drop this check.
1823 		 */
1824 		if (read_seqcount_retry(&dentry->d_seq, *seq))
1825 			goto seqretry;
1826 		if (parent->d_flags & DCACHE_OP_COMPARE) {
1827 			if (parent->d_op->d_compare(parent, *inode,
1828 						dentry, i,
1829 						tlen, tname, name))
1830 				continue;
1831 		} else {
1832 			if (dentry_cmp(tname, tlen, str, len))
1833 				continue;
1834 		}
1835 		/*
1836 		 * No extra seqcount check is required after the name
1837 		 * compare. The caller must perform a seqcount check in
1838 		 * order to do anything useful with the returned dentry
1839 		 * anyway.
1840 		 */
1841 		*inode = i;
1842 		return dentry;
1843 	}
1844 	return NULL;
1845 }
1846 
1847 /**
1848  * d_lookup - search for a dentry
1849  * @parent: parent dentry
1850  * @name: qstr of name we wish to find
1851  * Returns: dentry, or NULL
1852  *
1853  * d_lookup searches the children of the parent dentry for the name in
1854  * question. If the dentry is found its reference count is incremented and the
1855  * dentry is returned. The caller must use dput to free the entry when it has
1856  * finished using it. %NULL is returned if the dentry does not exist.
1857  */
1858 struct dentry *d_lookup(struct dentry *parent, struct qstr *name)
1859 {
1860 	struct dentry *dentry;
1861 	unsigned seq;
1862 
1863         do {
1864                 seq = read_seqbegin(&rename_lock);
1865                 dentry = __d_lookup(parent, name);
1866                 if (dentry)
1867 			break;
1868 	} while (read_seqretry(&rename_lock, seq));
1869 	return dentry;
1870 }
1871 EXPORT_SYMBOL(d_lookup);
1872 
1873 /**
1874  * __d_lookup - search for a dentry (racy)
1875  * @parent: parent dentry
1876  * @name: qstr of name we wish to find
1877  * Returns: dentry, or NULL
1878  *
1879  * __d_lookup is like d_lookup, however it may (rarely) return a
1880  * false-negative result due to unrelated rename activity.
1881  *
1882  * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
1883  * however it must be used carefully, eg. with a following d_lookup in
1884  * the case of failure.
1885  *
1886  * __d_lookup callers must be commented.
1887  */
1888 struct dentry *__d_lookup(struct dentry *parent, struct qstr *name)
1889 {
1890 	unsigned int len = name->len;
1891 	unsigned int hash = name->hash;
1892 	const unsigned char *str = name->name;
1893 	struct hlist_bl_head *b = d_hash(parent, hash);
1894 	struct hlist_bl_node *node;
1895 	struct dentry *found = NULL;
1896 	struct dentry *dentry;
1897 
1898 	/*
1899 	 * Note: There is significant duplication with __d_lookup_rcu which is
1900 	 * required to prevent single threaded performance regressions
1901 	 * especially on architectures where smp_rmb (in seqcounts) are costly.
1902 	 * Keep the two functions in sync.
1903 	 */
1904 
1905 	/*
1906 	 * The hash list is protected using RCU.
1907 	 *
1908 	 * Take d_lock when comparing a candidate dentry, to avoid races
1909 	 * with d_move().
1910 	 *
1911 	 * It is possible that concurrent renames can mess up our list
1912 	 * walk here and result in missing our dentry, resulting in the
1913 	 * false-negative result. d_lookup() protects against concurrent
1914 	 * renames using rename_lock seqlock.
1915 	 *
1916 	 * See Documentation/filesystems/path-lookup.txt for more details.
1917 	 */
1918 	rcu_read_lock();
1919 
1920 	hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
1921 		const char *tname;
1922 		int tlen;
1923 
1924 		if (dentry->d_name.hash != hash)
1925 			continue;
1926 
1927 		spin_lock(&dentry->d_lock);
1928 		if (dentry->d_parent != parent)
1929 			goto next;
1930 		if (d_unhashed(dentry))
1931 			goto next;
1932 
1933 		/*
1934 		 * It is safe to compare names since d_move() cannot
1935 		 * change the qstr (protected by d_lock).
1936 		 */
1937 		tlen = dentry->d_name.len;
1938 		tname = dentry->d_name.name;
1939 		if (parent->d_flags & DCACHE_OP_COMPARE) {
1940 			if (parent->d_op->d_compare(parent, parent->d_inode,
1941 						dentry, dentry->d_inode,
1942 						tlen, tname, name))
1943 				goto next;
1944 		} else {
1945 			if (dentry_cmp(tname, tlen, str, len))
1946 				goto next;
1947 		}
1948 
1949 		dentry->d_count++;
1950 		found = dentry;
1951 		spin_unlock(&dentry->d_lock);
1952 		break;
1953 next:
1954 		spin_unlock(&dentry->d_lock);
1955  	}
1956  	rcu_read_unlock();
1957 
1958  	return found;
1959 }
1960 
1961 /**
1962  * d_hash_and_lookup - hash the qstr then search for a dentry
1963  * @dir: Directory to search in
1964  * @name: qstr of name we wish to find
1965  *
1966  * On hash failure or on lookup failure NULL is returned.
1967  */
1968 struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
1969 {
1970 	struct dentry *dentry = NULL;
1971 
1972 	/*
1973 	 * Check for a fs-specific hash function. Note that we must
1974 	 * calculate the standard hash first, as the d_op->d_hash()
1975 	 * routine may choose to leave the hash value unchanged.
1976 	 */
1977 	name->hash = full_name_hash(name->name, name->len);
1978 	if (dir->d_flags & DCACHE_OP_HASH) {
1979 		if (dir->d_op->d_hash(dir, dir->d_inode, name) < 0)
1980 			goto out;
1981 	}
1982 	dentry = d_lookup(dir, name);
1983 out:
1984 	return dentry;
1985 }
1986 
1987 /**
1988  * d_validate - verify dentry provided from insecure source (deprecated)
1989  * @dentry: The dentry alleged to be valid child of @dparent
1990  * @dparent: The parent dentry (known to be valid)
1991  *
1992  * An insecure source has sent us a dentry, here we verify it and dget() it.
1993  * This is used by ncpfs in its readdir implementation.
1994  * Zero is returned in the dentry is invalid.
1995  *
1996  * This function is slow for big directories, and deprecated, do not use it.
1997  */
1998 int d_validate(struct dentry *dentry, struct dentry *dparent)
1999 {
2000 	struct dentry *child;
2001 
2002 	spin_lock(&dparent->d_lock);
2003 	list_for_each_entry(child, &dparent->d_subdirs, d_u.d_child) {
2004 		if (dentry == child) {
2005 			spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
2006 			__dget_dlock(dentry);
2007 			spin_unlock(&dentry->d_lock);
2008 			spin_unlock(&dparent->d_lock);
2009 			return 1;
2010 		}
2011 	}
2012 	spin_unlock(&dparent->d_lock);
2013 
2014 	return 0;
2015 }
2016 EXPORT_SYMBOL(d_validate);
2017 
2018 /*
2019  * When a file is deleted, we have two options:
2020  * - turn this dentry into a negative dentry
2021  * - unhash this dentry and free it.
2022  *
2023  * Usually, we want to just turn this into
2024  * a negative dentry, but if anybody else is
2025  * currently using the dentry or the inode
2026  * we can't do that and we fall back on removing
2027  * it from the hash queues and waiting for
2028  * it to be deleted later when it has no users
2029  */
2030 
2031 /**
2032  * d_delete - delete a dentry
2033  * @dentry: The dentry to delete
2034  *
2035  * Turn the dentry into a negative dentry if possible, otherwise
2036  * remove it from the hash queues so it can be deleted later
2037  */
2038 
2039 void d_delete(struct dentry * dentry)
2040 {
2041 	struct inode *inode;
2042 	int isdir = 0;
2043 	/*
2044 	 * Are we the only user?
2045 	 */
2046 again:
2047 	spin_lock(&dentry->d_lock);
2048 	inode = dentry->d_inode;
2049 	isdir = S_ISDIR(inode->i_mode);
2050 	if (dentry->d_count == 1) {
2051 		if (inode && !spin_trylock(&inode->i_lock)) {
2052 			spin_unlock(&dentry->d_lock);
2053 			cpu_relax();
2054 			goto again;
2055 		}
2056 		dentry->d_flags &= ~DCACHE_CANT_MOUNT;
2057 		dentry_unlink_inode(dentry);
2058 		fsnotify_nameremove(dentry, isdir);
2059 		return;
2060 	}
2061 
2062 	if (!d_unhashed(dentry))
2063 		__d_drop(dentry);
2064 
2065 	spin_unlock(&dentry->d_lock);
2066 
2067 	fsnotify_nameremove(dentry, isdir);
2068 }
2069 EXPORT_SYMBOL(d_delete);
2070 
2071 static void __d_rehash(struct dentry * entry, struct hlist_bl_head *b)
2072 {
2073 	BUG_ON(!d_unhashed(entry));
2074 	hlist_bl_lock(b);
2075 	entry->d_flags |= DCACHE_RCUACCESS;
2076 	hlist_bl_add_head_rcu(&entry->d_hash, b);
2077 	hlist_bl_unlock(b);
2078 }
2079 
2080 static void _d_rehash(struct dentry * entry)
2081 {
2082 	__d_rehash(entry, d_hash(entry->d_parent, entry->d_name.hash));
2083 }
2084 
2085 /**
2086  * d_rehash	- add an entry back to the hash
2087  * @entry: dentry to add to the hash
2088  *
2089  * Adds a dentry to the hash according to its name.
2090  */
2091 
2092 void d_rehash(struct dentry * entry)
2093 {
2094 	spin_lock(&entry->d_lock);
2095 	_d_rehash(entry);
2096 	spin_unlock(&entry->d_lock);
2097 }
2098 EXPORT_SYMBOL(d_rehash);
2099 
2100 /**
2101  * dentry_update_name_case - update case insensitive dentry with a new name
2102  * @dentry: dentry to be updated
2103  * @name: new name
2104  *
2105  * Update a case insensitive dentry with new case of name.
2106  *
2107  * dentry must have been returned by d_lookup with name @name. Old and new
2108  * name lengths must match (ie. no d_compare which allows mismatched name
2109  * lengths).
2110  *
2111  * Parent inode i_mutex must be held over d_lookup and into this call (to
2112  * keep renames and concurrent inserts, and readdir(2) away).
2113  */
2114 void dentry_update_name_case(struct dentry *dentry, struct qstr *name)
2115 {
2116 	BUG_ON(!mutex_is_locked(&dentry->d_parent->d_inode->i_mutex));
2117 	BUG_ON(dentry->d_name.len != name->len); /* d_lookup gives this */
2118 
2119 	spin_lock(&dentry->d_lock);
2120 	write_seqcount_begin(&dentry->d_seq);
2121 	memcpy((unsigned char *)dentry->d_name.name, name->name, name->len);
2122 	write_seqcount_end(&dentry->d_seq);
2123 	spin_unlock(&dentry->d_lock);
2124 }
2125 EXPORT_SYMBOL(dentry_update_name_case);
2126 
2127 static void switch_names(struct dentry *dentry, struct dentry *target)
2128 {
2129 	if (dname_external(target)) {
2130 		if (dname_external(dentry)) {
2131 			/*
2132 			 * Both external: swap the pointers
2133 			 */
2134 			swap(target->d_name.name, dentry->d_name.name);
2135 		} else {
2136 			/*
2137 			 * dentry:internal, target:external.  Steal target's
2138 			 * storage and make target internal.
2139 			 */
2140 			memcpy(target->d_iname, dentry->d_name.name,
2141 					dentry->d_name.len + 1);
2142 			dentry->d_name.name = target->d_name.name;
2143 			target->d_name.name = target->d_iname;
2144 		}
2145 	} else {
2146 		if (dname_external(dentry)) {
2147 			/*
2148 			 * dentry:external, target:internal.  Give dentry's
2149 			 * storage to target and make dentry internal
2150 			 */
2151 			memcpy(dentry->d_iname, target->d_name.name,
2152 					target->d_name.len + 1);
2153 			target->d_name.name = dentry->d_name.name;
2154 			dentry->d_name.name = dentry->d_iname;
2155 		} else {
2156 			/*
2157 			 * Both are internal.  Just copy target to dentry
2158 			 */
2159 			memcpy(dentry->d_iname, target->d_name.name,
2160 					target->d_name.len + 1);
2161 			dentry->d_name.len = target->d_name.len;
2162 			return;
2163 		}
2164 	}
2165 	swap(dentry->d_name.len, target->d_name.len);
2166 }
2167 
2168 static void dentry_lock_for_move(struct dentry *dentry, struct dentry *target)
2169 {
2170 	/*
2171 	 * XXXX: do we really need to take target->d_lock?
2172 	 */
2173 	if (IS_ROOT(dentry) || dentry->d_parent == target->d_parent)
2174 		spin_lock(&target->d_parent->d_lock);
2175 	else {
2176 		if (d_ancestor(dentry->d_parent, target->d_parent)) {
2177 			spin_lock(&dentry->d_parent->d_lock);
2178 			spin_lock_nested(&target->d_parent->d_lock,
2179 						DENTRY_D_LOCK_NESTED);
2180 		} else {
2181 			spin_lock(&target->d_parent->d_lock);
2182 			spin_lock_nested(&dentry->d_parent->d_lock,
2183 						DENTRY_D_LOCK_NESTED);
2184 		}
2185 	}
2186 	if (target < dentry) {
2187 		spin_lock_nested(&target->d_lock, 2);
2188 		spin_lock_nested(&dentry->d_lock, 3);
2189 	} else {
2190 		spin_lock_nested(&dentry->d_lock, 2);
2191 		spin_lock_nested(&target->d_lock, 3);
2192 	}
2193 }
2194 
2195 static void dentry_unlock_parents_for_move(struct dentry *dentry,
2196 					struct dentry *target)
2197 {
2198 	if (target->d_parent != dentry->d_parent)
2199 		spin_unlock(&dentry->d_parent->d_lock);
2200 	if (target->d_parent != target)
2201 		spin_unlock(&target->d_parent->d_lock);
2202 }
2203 
2204 /*
2205  * When switching names, the actual string doesn't strictly have to
2206  * be preserved in the target - because we're dropping the target
2207  * anyway. As such, we can just do a simple memcpy() to copy over
2208  * the new name before we switch.
2209  *
2210  * Note that we have to be a lot more careful about getting the hash
2211  * switched - we have to switch the hash value properly even if it
2212  * then no longer matches the actual (corrupted) string of the target.
2213  * The hash value has to match the hash queue that the dentry is on..
2214  */
2215 /*
2216  * d_move - move a dentry
2217  * @dentry: entry to move
2218  * @target: new dentry
2219  *
2220  * Update the dcache to reflect the move of a file name. Negative
2221  * dcache entries should not be moved in this way.
2222  */
2223 void d_move(struct dentry * dentry, struct dentry * target)
2224 {
2225 	if (!dentry->d_inode)
2226 		printk(KERN_WARNING "VFS: moving negative dcache entry\n");
2227 
2228 	BUG_ON(d_ancestor(dentry, target));
2229 	BUG_ON(d_ancestor(target, dentry));
2230 
2231 	write_seqlock(&rename_lock);
2232 
2233 	dentry_lock_for_move(dentry, target);
2234 
2235 	write_seqcount_begin(&dentry->d_seq);
2236 	write_seqcount_begin(&target->d_seq);
2237 
2238 	/* __d_drop does write_seqcount_barrier, but they're OK to nest. */
2239 
2240 	/*
2241 	 * Move the dentry to the target hash queue. Don't bother checking
2242 	 * for the same hash queue because of how unlikely it is.
2243 	 */
2244 	__d_drop(dentry);
2245 	__d_rehash(dentry, d_hash(target->d_parent, target->d_name.hash));
2246 
2247 	/* Unhash the target: dput() will then get rid of it */
2248 	__d_drop(target);
2249 
2250 	list_del(&dentry->d_u.d_child);
2251 	list_del(&target->d_u.d_child);
2252 
2253 	/* Switch the names.. */
2254 	switch_names(dentry, target);
2255 	swap(dentry->d_name.hash, target->d_name.hash);
2256 
2257 	/* ... and switch the parents */
2258 	if (IS_ROOT(dentry)) {
2259 		dentry->d_parent = target->d_parent;
2260 		target->d_parent = target;
2261 		INIT_LIST_HEAD(&target->d_u.d_child);
2262 	} else {
2263 		swap(dentry->d_parent, target->d_parent);
2264 
2265 		/* And add them back to the (new) parent lists */
2266 		list_add(&target->d_u.d_child, &target->d_parent->d_subdirs);
2267 	}
2268 
2269 	list_add(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs);
2270 
2271 	write_seqcount_end(&target->d_seq);
2272 	write_seqcount_end(&dentry->d_seq);
2273 
2274 	dentry_unlock_parents_for_move(dentry, target);
2275 	spin_unlock(&target->d_lock);
2276 	fsnotify_d_move(dentry);
2277 	spin_unlock(&dentry->d_lock);
2278 	write_sequnlock(&rename_lock);
2279 }
2280 EXPORT_SYMBOL(d_move);
2281 
2282 /**
2283  * d_ancestor - search for an ancestor
2284  * @p1: ancestor dentry
2285  * @p2: child dentry
2286  *
2287  * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2288  * an ancestor of p2, else NULL.
2289  */
2290 struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
2291 {
2292 	struct dentry *p;
2293 
2294 	for (p = p2; !IS_ROOT(p); p = p->d_parent) {
2295 		if (p->d_parent == p1)
2296 			return p;
2297 	}
2298 	return NULL;
2299 }
2300 
2301 /*
2302  * This helper attempts to cope with remotely renamed directories
2303  *
2304  * It assumes that the caller is already holding
2305  * dentry->d_parent->d_inode->i_mutex and the inode->i_lock
2306  *
2307  * Note: If ever the locking in lock_rename() changes, then please
2308  * remember to update this too...
2309  */
2310 static struct dentry *__d_unalias(struct inode *inode,
2311 		struct dentry *dentry, struct dentry *alias)
2312 {
2313 	struct mutex *m1 = NULL, *m2 = NULL;
2314 	struct dentry *ret;
2315 
2316 	/* If alias and dentry share a parent, then no extra locks required */
2317 	if (alias->d_parent == dentry->d_parent)
2318 		goto out_unalias;
2319 
2320 	/* Check for loops */
2321 	ret = ERR_PTR(-ELOOP);
2322 	if (d_ancestor(alias, dentry))
2323 		goto out_err;
2324 
2325 	/* See lock_rename() */
2326 	ret = ERR_PTR(-EBUSY);
2327 	if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
2328 		goto out_err;
2329 	m1 = &dentry->d_sb->s_vfs_rename_mutex;
2330 	if (!mutex_trylock(&alias->d_parent->d_inode->i_mutex))
2331 		goto out_err;
2332 	m2 = &alias->d_parent->d_inode->i_mutex;
2333 out_unalias:
2334 	d_move(alias, dentry);
2335 	ret = alias;
2336 out_err:
2337 	spin_unlock(&inode->i_lock);
2338 	if (m2)
2339 		mutex_unlock(m2);
2340 	if (m1)
2341 		mutex_unlock(m1);
2342 	return ret;
2343 }
2344 
2345 /*
2346  * Prepare an anonymous dentry for life in the superblock's dentry tree as a
2347  * named dentry in place of the dentry to be replaced.
2348  * returns with anon->d_lock held!
2349  */
2350 static void __d_materialise_dentry(struct dentry *dentry, struct dentry *anon)
2351 {
2352 	struct dentry *dparent, *aparent;
2353 
2354 	dentry_lock_for_move(anon, dentry);
2355 
2356 	write_seqcount_begin(&dentry->d_seq);
2357 	write_seqcount_begin(&anon->d_seq);
2358 
2359 	dparent = dentry->d_parent;
2360 	aparent = anon->d_parent;
2361 
2362 	switch_names(dentry, anon);
2363 	swap(dentry->d_name.hash, anon->d_name.hash);
2364 
2365 	dentry->d_parent = (aparent == anon) ? dentry : aparent;
2366 	list_del(&dentry->d_u.d_child);
2367 	if (!IS_ROOT(dentry))
2368 		list_add(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs);
2369 	else
2370 		INIT_LIST_HEAD(&dentry->d_u.d_child);
2371 
2372 	anon->d_parent = (dparent == dentry) ? anon : dparent;
2373 	list_del(&anon->d_u.d_child);
2374 	if (!IS_ROOT(anon))
2375 		list_add(&anon->d_u.d_child, &anon->d_parent->d_subdirs);
2376 	else
2377 		INIT_LIST_HEAD(&anon->d_u.d_child);
2378 
2379 	write_seqcount_end(&dentry->d_seq);
2380 	write_seqcount_end(&anon->d_seq);
2381 
2382 	dentry_unlock_parents_for_move(anon, dentry);
2383 	spin_unlock(&dentry->d_lock);
2384 
2385 	/* anon->d_lock still locked, returns locked */
2386 	anon->d_flags &= ~DCACHE_DISCONNECTED;
2387 }
2388 
2389 /**
2390  * d_materialise_unique - introduce an inode into the tree
2391  * @dentry: candidate dentry
2392  * @inode: inode to bind to the dentry, to which aliases may be attached
2393  *
2394  * Introduces an dentry into the tree, substituting an extant disconnected
2395  * root directory alias in its place if there is one
2396  */
2397 struct dentry *d_materialise_unique(struct dentry *dentry, struct inode *inode)
2398 {
2399 	struct dentry *actual;
2400 
2401 	BUG_ON(!d_unhashed(dentry));
2402 
2403 	if (!inode) {
2404 		actual = dentry;
2405 		__d_instantiate(dentry, NULL);
2406 		d_rehash(actual);
2407 		goto out_nolock;
2408 	}
2409 
2410 	spin_lock(&inode->i_lock);
2411 
2412 	if (S_ISDIR(inode->i_mode)) {
2413 		struct dentry *alias;
2414 
2415 		/* Does an aliased dentry already exist? */
2416 		alias = __d_find_alias(inode, 0);
2417 		if (alias) {
2418 			actual = alias;
2419 			/* Is this an anonymous mountpoint that we could splice
2420 			 * into our tree? */
2421 			if (IS_ROOT(alias)) {
2422 				__d_materialise_dentry(dentry, alias);
2423 				__d_drop(alias);
2424 				goto found;
2425 			}
2426 			/* Nope, but we must(!) avoid directory aliasing */
2427 			actual = __d_unalias(inode, dentry, alias);
2428 			if (IS_ERR(actual))
2429 				dput(alias);
2430 			goto out_nolock;
2431 		}
2432 	}
2433 
2434 	/* Add a unique reference */
2435 	actual = __d_instantiate_unique(dentry, inode);
2436 	if (!actual)
2437 		actual = dentry;
2438 	else
2439 		BUG_ON(!d_unhashed(actual));
2440 
2441 	spin_lock(&actual->d_lock);
2442 found:
2443 	_d_rehash(actual);
2444 	spin_unlock(&actual->d_lock);
2445 	spin_unlock(&inode->i_lock);
2446 out_nolock:
2447 	if (actual == dentry) {
2448 		security_d_instantiate(dentry, inode);
2449 		return NULL;
2450 	}
2451 
2452 	iput(inode);
2453 	return actual;
2454 }
2455 EXPORT_SYMBOL_GPL(d_materialise_unique);
2456 
2457 static int prepend(char **buffer, int *buflen, const char *str, int namelen)
2458 {
2459 	*buflen -= namelen;
2460 	if (*buflen < 0)
2461 		return -ENAMETOOLONG;
2462 	*buffer -= namelen;
2463 	memcpy(*buffer, str, namelen);
2464 	return 0;
2465 }
2466 
2467 static int prepend_name(char **buffer, int *buflen, struct qstr *name)
2468 {
2469 	return prepend(buffer, buflen, name->name, name->len);
2470 }
2471 
2472 /**
2473  * prepend_path - Prepend path string to a buffer
2474  * @path: the dentry/vfsmount to report
2475  * @root: root vfsmnt/dentry (may be modified by this function)
2476  * @buffer: pointer to the end of the buffer
2477  * @buflen: pointer to buffer length
2478  *
2479  * Caller holds the rename_lock.
2480  *
2481  * If path is not reachable from the supplied root, then the value of
2482  * root is changed (without modifying refcounts).
2483  */
2484 static int prepend_path(const struct path *path, struct path *root,
2485 			char **buffer, int *buflen)
2486 {
2487 	struct dentry *dentry = path->dentry;
2488 	struct vfsmount *vfsmnt = path->mnt;
2489 	bool slash = false;
2490 	int error = 0;
2491 
2492 	br_read_lock(vfsmount_lock);
2493 	while (dentry != root->dentry || vfsmnt != root->mnt) {
2494 		struct dentry * parent;
2495 
2496 		if (dentry == vfsmnt->mnt_root || IS_ROOT(dentry)) {
2497 			/* Global root? */
2498 			if (vfsmnt->mnt_parent == vfsmnt) {
2499 				goto global_root;
2500 			}
2501 			dentry = vfsmnt->mnt_mountpoint;
2502 			vfsmnt = vfsmnt->mnt_parent;
2503 			continue;
2504 		}
2505 		parent = dentry->d_parent;
2506 		prefetch(parent);
2507 		spin_lock(&dentry->d_lock);
2508 		error = prepend_name(buffer, buflen, &dentry->d_name);
2509 		spin_unlock(&dentry->d_lock);
2510 		if (!error)
2511 			error = prepend(buffer, buflen, "/", 1);
2512 		if (error)
2513 			break;
2514 
2515 		slash = true;
2516 		dentry = parent;
2517 	}
2518 
2519 out:
2520 	if (!error && !slash)
2521 		error = prepend(buffer, buflen, "/", 1);
2522 
2523 	br_read_unlock(vfsmount_lock);
2524 	return error;
2525 
2526 global_root:
2527 	/*
2528 	 * Filesystems needing to implement special "root names"
2529 	 * should do so with ->d_dname()
2530 	 */
2531 	if (IS_ROOT(dentry) &&
2532 	    (dentry->d_name.len != 1 || dentry->d_name.name[0] != '/')) {
2533 		WARN(1, "Root dentry has weird name <%.*s>\n",
2534 		     (int) dentry->d_name.len, dentry->d_name.name);
2535 	}
2536 	root->mnt = vfsmnt;
2537 	root->dentry = dentry;
2538 	goto out;
2539 }
2540 
2541 /**
2542  * __d_path - return the path of a dentry
2543  * @path: the dentry/vfsmount to report
2544  * @root: root vfsmnt/dentry (may be modified by this function)
2545  * @buf: buffer to return value in
2546  * @buflen: buffer length
2547  *
2548  * Convert a dentry into an ASCII path name.
2549  *
2550  * Returns a pointer into the buffer or an error code if the
2551  * path was too long.
2552  *
2553  * "buflen" should be positive.
2554  *
2555  * If path is not reachable from the supplied root, then the value of
2556  * root is changed (without modifying refcounts).
2557  */
2558 char *__d_path(const struct path *path, struct path *root,
2559 	       char *buf, int buflen)
2560 {
2561 	char *res = buf + buflen;
2562 	int error;
2563 
2564 	prepend(&res, &buflen, "\0", 1);
2565 	write_seqlock(&rename_lock);
2566 	error = prepend_path(path, root, &res, &buflen);
2567 	write_sequnlock(&rename_lock);
2568 
2569 	if (error)
2570 		return ERR_PTR(error);
2571 	return res;
2572 }
2573 
2574 /*
2575  * same as __d_path but appends "(deleted)" for unlinked files.
2576  */
2577 static int path_with_deleted(const struct path *path, struct path *root,
2578 				 char **buf, int *buflen)
2579 {
2580 	prepend(buf, buflen, "\0", 1);
2581 	if (d_unlinked(path->dentry)) {
2582 		int error = prepend(buf, buflen, " (deleted)", 10);
2583 		if (error)
2584 			return error;
2585 	}
2586 
2587 	return prepend_path(path, root, buf, buflen);
2588 }
2589 
2590 static int prepend_unreachable(char **buffer, int *buflen)
2591 {
2592 	return prepend(buffer, buflen, "(unreachable)", 13);
2593 }
2594 
2595 /**
2596  * d_path - return the path of a dentry
2597  * @path: path to report
2598  * @buf: buffer to return value in
2599  * @buflen: buffer length
2600  *
2601  * Convert a dentry into an ASCII path name. If the entry has been deleted
2602  * the string " (deleted)" is appended. Note that this is ambiguous.
2603  *
2604  * Returns a pointer into the buffer or an error code if the path was
2605  * too long. Note: Callers should use the returned pointer, not the passed
2606  * in buffer, to use the name! The implementation often starts at an offset
2607  * into the buffer, and may leave 0 bytes at the start.
2608  *
2609  * "buflen" should be positive.
2610  */
2611 char *d_path(const struct path *path, char *buf, int buflen)
2612 {
2613 	char *res = buf + buflen;
2614 	struct path root;
2615 	struct path tmp;
2616 	int error;
2617 
2618 	/*
2619 	 * We have various synthetic filesystems that never get mounted.  On
2620 	 * these filesystems dentries are never used for lookup purposes, and
2621 	 * thus don't need to be hashed.  They also don't need a name until a
2622 	 * user wants to identify the object in /proc/pid/fd/.  The little hack
2623 	 * below allows us to generate a name for these objects on demand:
2624 	 */
2625 	if (path->dentry->d_op && path->dentry->d_op->d_dname)
2626 		return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
2627 
2628 	get_fs_root(current->fs, &root);
2629 	write_seqlock(&rename_lock);
2630 	tmp = root;
2631 	error = path_with_deleted(path, &tmp, &res, &buflen);
2632 	if (error)
2633 		res = ERR_PTR(error);
2634 	write_sequnlock(&rename_lock);
2635 	path_put(&root);
2636 	return res;
2637 }
2638 EXPORT_SYMBOL(d_path);
2639 
2640 /**
2641  * d_path_with_unreachable - return the path of a dentry
2642  * @path: path to report
2643  * @buf: buffer to return value in
2644  * @buflen: buffer length
2645  *
2646  * The difference from d_path() is that this prepends "(unreachable)"
2647  * to paths which are unreachable from the current process' root.
2648  */
2649 char *d_path_with_unreachable(const struct path *path, char *buf, int buflen)
2650 {
2651 	char *res = buf + buflen;
2652 	struct path root;
2653 	struct path tmp;
2654 	int error;
2655 
2656 	if (path->dentry->d_op && path->dentry->d_op->d_dname)
2657 		return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
2658 
2659 	get_fs_root(current->fs, &root);
2660 	write_seqlock(&rename_lock);
2661 	tmp = root;
2662 	error = path_with_deleted(path, &tmp, &res, &buflen);
2663 	if (!error && !path_equal(&tmp, &root))
2664 		error = prepend_unreachable(&res, &buflen);
2665 	write_sequnlock(&rename_lock);
2666 	path_put(&root);
2667 	if (error)
2668 		res =  ERR_PTR(error);
2669 
2670 	return res;
2671 }
2672 
2673 /*
2674  * Helper function for dentry_operations.d_dname() members
2675  */
2676 char *dynamic_dname(struct dentry *dentry, char *buffer, int buflen,
2677 			const char *fmt, ...)
2678 {
2679 	va_list args;
2680 	char temp[64];
2681 	int sz;
2682 
2683 	va_start(args, fmt);
2684 	sz = vsnprintf(temp, sizeof(temp), fmt, args) + 1;
2685 	va_end(args);
2686 
2687 	if (sz > sizeof(temp) || sz > buflen)
2688 		return ERR_PTR(-ENAMETOOLONG);
2689 
2690 	buffer += buflen - sz;
2691 	return memcpy(buffer, temp, sz);
2692 }
2693 
2694 /*
2695  * Write full pathname from the root of the filesystem into the buffer.
2696  */
2697 static char *__dentry_path(struct dentry *dentry, char *buf, int buflen)
2698 {
2699 	char *end = buf + buflen;
2700 	char *retval;
2701 
2702 	prepend(&end, &buflen, "\0", 1);
2703 	if (buflen < 1)
2704 		goto Elong;
2705 	/* Get '/' right */
2706 	retval = end-1;
2707 	*retval = '/';
2708 
2709 	while (!IS_ROOT(dentry)) {
2710 		struct dentry *parent = dentry->d_parent;
2711 		int error;
2712 
2713 		prefetch(parent);
2714 		spin_lock(&dentry->d_lock);
2715 		error = prepend_name(&end, &buflen, &dentry->d_name);
2716 		spin_unlock(&dentry->d_lock);
2717 		if (error != 0 || prepend(&end, &buflen, "/", 1) != 0)
2718 			goto Elong;
2719 
2720 		retval = end;
2721 		dentry = parent;
2722 	}
2723 	return retval;
2724 Elong:
2725 	return ERR_PTR(-ENAMETOOLONG);
2726 }
2727 
2728 char *dentry_path_raw(struct dentry *dentry, char *buf, int buflen)
2729 {
2730 	char *retval;
2731 
2732 	write_seqlock(&rename_lock);
2733 	retval = __dentry_path(dentry, buf, buflen);
2734 	write_sequnlock(&rename_lock);
2735 
2736 	return retval;
2737 }
2738 EXPORT_SYMBOL(dentry_path_raw);
2739 
2740 char *dentry_path(struct dentry *dentry, char *buf, int buflen)
2741 {
2742 	char *p = NULL;
2743 	char *retval;
2744 
2745 	write_seqlock(&rename_lock);
2746 	if (d_unlinked(dentry)) {
2747 		p = buf + buflen;
2748 		if (prepend(&p, &buflen, "//deleted", 10) != 0)
2749 			goto Elong;
2750 		buflen++;
2751 	}
2752 	retval = __dentry_path(dentry, buf, buflen);
2753 	write_sequnlock(&rename_lock);
2754 	if (!IS_ERR(retval) && p)
2755 		*p = '/';	/* restore '/' overriden with '\0' */
2756 	return retval;
2757 Elong:
2758 	return ERR_PTR(-ENAMETOOLONG);
2759 }
2760 
2761 /*
2762  * NOTE! The user-level library version returns a
2763  * character pointer. The kernel system call just
2764  * returns the length of the buffer filled (which
2765  * includes the ending '\0' character), or a negative
2766  * error value. So libc would do something like
2767  *
2768  *	char *getcwd(char * buf, size_t size)
2769  *	{
2770  *		int retval;
2771  *
2772  *		retval = sys_getcwd(buf, size);
2773  *		if (retval >= 0)
2774  *			return buf;
2775  *		errno = -retval;
2776  *		return NULL;
2777  *	}
2778  */
2779 SYSCALL_DEFINE2(getcwd, char __user *, buf, unsigned long, size)
2780 {
2781 	int error;
2782 	struct path pwd, root;
2783 	char *page = (char *) __get_free_page(GFP_USER);
2784 
2785 	if (!page)
2786 		return -ENOMEM;
2787 
2788 	get_fs_root_and_pwd(current->fs, &root, &pwd);
2789 
2790 	error = -ENOENT;
2791 	write_seqlock(&rename_lock);
2792 	if (!d_unlinked(pwd.dentry)) {
2793 		unsigned long len;
2794 		struct path tmp = root;
2795 		char *cwd = page + PAGE_SIZE;
2796 		int buflen = PAGE_SIZE;
2797 
2798 		prepend(&cwd, &buflen, "\0", 1);
2799 		error = prepend_path(&pwd, &tmp, &cwd, &buflen);
2800 		write_sequnlock(&rename_lock);
2801 
2802 		if (error)
2803 			goto out;
2804 
2805 		/* Unreachable from current root */
2806 		if (!path_equal(&tmp, &root)) {
2807 			error = prepend_unreachable(&cwd, &buflen);
2808 			if (error)
2809 				goto out;
2810 		}
2811 
2812 		error = -ERANGE;
2813 		len = PAGE_SIZE + page - cwd;
2814 		if (len <= size) {
2815 			error = len;
2816 			if (copy_to_user(buf, cwd, len))
2817 				error = -EFAULT;
2818 		}
2819 	} else {
2820 		write_sequnlock(&rename_lock);
2821 	}
2822 
2823 out:
2824 	path_put(&pwd);
2825 	path_put(&root);
2826 	free_page((unsigned long) page);
2827 	return error;
2828 }
2829 
2830 /*
2831  * Test whether new_dentry is a subdirectory of old_dentry.
2832  *
2833  * Trivially implemented using the dcache structure
2834  */
2835 
2836 /**
2837  * is_subdir - is new dentry a subdirectory of old_dentry
2838  * @new_dentry: new dentry
2839  * @old_dentry: old dentry
2840  *
2841  * Returns 1 if new_dentry is a subdirectory of the parent (at any depth).
2842  * Returns 0 otherwise.
2843  * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
2844  */
2845 
2846 int is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
2847 {
2848 	int result;
2849 	unsigned seq;
2850 
2851 	if (new_dentry == old_dentry)
2852 		return 1;
2853 
2854 	do {
2855 		/* for restarting inner loop in case of seq retry */
2856 		seq = read_seqbegin(&rename_lock);
2857 		/*
2858 		 * Need rcu_readlock to protect against the d_parent trashing
2859 		 * due to d_move
2860 		 */
2861 		rcu_read_lock();
2862 		if (d_ancestor(old_dentry, new_dentry))
2863 			result = 1;
2864 		else
2865 			result = 0;
2866 		rcu_read_unlock();
2867 	} while (read_seqretry(&rename_lock, seq));
2868 
2869 	return result;
2870 }
2871 
2872 int path_is_under(struct path *path1, struct path *path2)
2873 {
2874 	struct vfsmount *mnt = path1->mnt;
2875 	struct dentry *dentry = path1->dentry;
2876 	int res;
2877 
2878 	br_read_lock(vfsmount_lock);
2879 	if (mnt != path2->mnt) {
2880 		for (;;) {
2881 			if (mnt->mnt_parent == mnt) {
2882 				br_read_unlock(vfsmount_lock);
2883 				return 0;
2884 			}
2885 			if (mnt->mnt_parent == path2->mnt)
2886 				break;
2887 			mnt = mnt->mnt_parent;
2888 		}
2889 		dentry = mnt->mnt_mountpoint;
2890 	}
2891 	res = is_subdir(dentry, path2->dentry);
2892 	br_read_unlock(vfsmount_lock);
2893 	return res;
2894 }
2895 EXPORT_SYMBOL(path_is_under);
2896 
2897 void d_genocide(struct dentry *root)
2898 {
2899 	struct dentry *this_parent;
2900 	struct list_head *next;
2901 	unsigned seq;
2902 	int locked = 0;
2903 
2904 	seq = read_seqbegin(&rename_lock);
2905 again:
2906 	this_parent = root;
2907 	spin_lock(&this_parent->d_lock);
2908 repeat:
2909 	next = this_parent->d_subdirs.next;
2910 resume:
2911 	while (next != &this_parent->d_subdirs) {
2912 		struct list_head *tmp = next;
2913 		struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
2914 		next = tmp->next;
2915 
2916 		spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
2917 		if (d_unhashed(dentry) || !dentry->d_inode) {
2918 			spin_unlock(&dentry->d_lock);
2919 			continue;
2920 		}
2921 		if (!list_empty(&dentry->d_subdirs)) {
2922 			spin_unlock(&this_parent->d_lock);
2923 			spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
2924 			this_parent = dentry;
2925 			spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
2926 			goto repeat;
2927 		}
2928 		if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
2929 			dentry->d_flags |= DCACHE_GENOCIDE;
2930 			dentry->d_count--;
2931 		}
2932 		spin_unlock(&dentry->d_lock);
2933 	}
2934 	if (this_parent != root) {
2935 		struct dentry *child = this_parent;
2936 		if (!(this_parent->d_flags & DCACHE_GENOCIDE)) {
2937 			this_parent->d_flags |= DCACHE_GENOCIDE;
2938 			this_parent->d_count--;
2939 		}
2940 		this_parent = try_to_ascend(this_parent, locked, seq);
2941 		if (!this_parent)
2942 			goto rename_retry;
2943 		next = child->d_u.d_child.next;
2944 		goto resume;
2945 	}
2946 	spin_unlock(&this_parent->d_lock);
2947 	if (!locked && read_seqretry(&rename_lock, seq))
2948 		goto rename_retry;
2949 	if (locked)
2950 		write_sequnlock(&rename_lock);
2951 	return;
2952 
2953 rename_retry:
2954 	locked = 1;
2955 	write_seqlock(&rename_lock);
2956 	goto again;
2957 }
2958 
2959 /**
2960  * find_inode_number - check for dentry with name
2961  * @dir: directory to check
2962  * @name: Name to find.
2963  *
2964  * Check whether a dentry already exists for the given name,
2965  * and return the inode number if it has an inode. Otherwise
2966  * 0 is returned.
2967  *
2968  * This routine is used to post-process directory listings for
2969  * filesystems using synthetic inode numbers, and is necessary
2970  * to keep getcwd() working.
2971  */
2972 
2973 ino_t find_inode_number(struct dentry *dir, struct qstr *name)
2974 {
2975 	struct dentry * dentry;
2976 	ino_t ino = 0;
2977 
2978 	dentry = d_hash_and_lookup(dir, name);
2979 	if (dentry) {
2980 		if (dentry->d_inode)
2981 			ino = dentry->d_inode->i_ino;
2982 		dput(dentry);
2983 	}
2984 	return ino;
2985 }
2986 EXPORT_SYMBOL(find_inode_number);
2987 
2988 static __initdata unsigned long dhash_entries;
2989 static int __init set_dhash_entries(char *str)
2990 {
2991 	if (!str)
2992 		return 0;
2993 	dhash_entries = simple_strtoul(str, &str, 0);
2994 	return 1;
2995 }
2996 __setup("dhash_entries=", set_dhash_entries);
2997 
2998 static void __init dcache_init_early(void)
2999 {
3000 	int loop;
3001 
3002 	/* If hashes are distributed across NUMA nodes, defer
3003 	 * hash allocation until vmalloc space is available.
3004 	 */
3005 	if (hashdist)
3006 		return;
3007 
3008 	dentry_hashtable =
3009 		alloc_large_system_hash("Dentry cache",
3010 					sizeof(struct hlist_bl_head),
3011 					dhash_entries,
3012 					13,
3013 					HASH_EARLY,
3014 					&d_hash_shift,
3015 					&d_hash_mask,
3016 					0);
3017 
3018 	for (loop = 0; loop < (1 << d_hash_shift); loop++)
3019 		INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
3020 }
3021 
3022 static void __init dcache_init(void)
3023 {
3024 	int loop;
3025 
3026 	/*
3027 	 * A constructor could be added for stable state like the lists,
3028 	 * but it is probably not worth it because of the cache nature
3029 	 * of the dcache.
3030 	 */
3031 	dentry_cache = KMEM_CACHE(dentry,
3032 		SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD);
3033 
3034 	register_shrinker(&dcache_shrinker);
3035 
3036 	/* Hash may have been set up in dcache_init_early */
3037 	if (!hashdist)
3038 		return;
3039 
3040 	dentry_hashtable =
3041 		alloc_large_system_hash("Dentry cache",
3042 					sizeof(struct hlist_bl_head),
3043 					dhash_entries,
3044 					13,
3045 					0,
3046 					&d_hash_shift,
3047 					&d_hash_mask,
3048 					0);
3049 
3050 	for (loop = 0; loop < (1 << d_hash_shift); loop++)
3051 		INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
3052 }
3053 
3054 /* SLAB cache for __getname() consumers */
3055 struct kmem_cache *names_cachep __read_mostly;
3056 EXPORT_SYMBOL(names_cachep);
3057 
3058 EXPORT_SYMBOL(d_genocide);
3059 
3060 void __init vfs_caches_init_early(void)
3061 {
3062 	dcache_init_early();
3063 	inode_init_early();
3064 }
3065 
3066 void __init vfs_caches_init(unsigned long mempages)
3067 {
3068 	unsigned long reserve;
3069 
3070 	/* Base hash sizes on available memory, with a reserve equal to
3071            150% of current kernel size */
3072 
3073 	reserve = min((mempages - nr_free_pages()) * 3/2, mempages - 1);
3074 	mempages -= reserve;
3075 
3076 	names_cachep = kmem_cache_create("names_cache", PATH_MAX, 0,
3077 			SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
3078 
3079 	dcache_init();
3080 	inode_init();
3081 	files_init(mempages);
3082 	mnt_init();
3083 	bdev_cache_init();
3084 	chrdev_init();
3085 }
3086