1 /* 2 * fs/dcache.c 3 * 4 * Complete reimplementation 5 * (C) 1997 Thomas Schoebel-Theuer, 6 * with heavy changes by Linus Torvalds 7 */ 8 9 /* 10 * Notes on the allocation strategy: 11 * 12 * The dcache is a master of the icache - whenever a dcache entry 13 * exists, the inode will always exist. "iput()" is done either when 14 * the dcache entry is deleted or garbage collected. 15 */ 16 17 #include <linux/syscalls.h> 18 #include <linux/string.h> 19 #include <linux/mm.h> 20 #include <linux/fs.h> 21 #include <linux/fsnotify.h> 22 #include <linux/slab.h> 23 #include <linux/init.h> 24 #include <linux/hash.h> 25 #include <linux/cache.h> 26 #include <linux/export.h> 27 #include <linux/mount.h> 28 #include <linux/file.h> 29 #include <asm/uaccess.h> 30 #include <linux/security.h> 31 #include <linux/seqlock.h> 32 #include <linux/swap.h> 33 #include <linux/bootmem.h> 34 #include <linux/fs_struct.h> 35 #include <linux/hardirq.h> 36 #include <linux/bit_spinlock.h> 37 #include <linux/rculist_bl.h> 38 #include <linux/prefetch.h> 39 #include <linux/ratelimit.h> 40 #include <linux/list_lru.h> 41 #include <linux/kasan.h> 42 43 #include "internal.h" 44 #include "mount.h" 45 46 /* 47 * Usage: 48 * dcache->d_inode->i_lock protects: 49 * - i_dentry, d_u.d_alias, d_inode of aliases 50 * dcache_hash_bucket lock protects: 51 * - the dcache hash table 52 * s_anon bl list spinlock protects: 53 * - the s_anon list (see __d_drop) 54 * dentry->d_sb->s_dentry_lru_lock protects: 55 * - the dcache lru lists and counters 56 * d_lock protects: 57 * - d_flags 58 * - d_name 59 * - d_lru 60 * - d_count 61 * - d_unhashed() 62 * - d_parent and d_subdirs 63 * - childrens' d_child and d_parent 64 * - d_u.d_alias, d_inode 65 * 66 * Ordering: 67 * dentry->d_inode->i_lock 68 * dentry->d_lock 69 * dentry->d_sb->s_dentry_lru_lock 70 * dcache_hash_bucket lock 71 * s_anon lock 72 * 73 * If there is an ancestor relationship: 74 * dentry->d_parent->...->d_parent->d_lock 75 * ... 76 * dentry->d_parent->d_lock 77 * dentry->d_lock 78 * 79 * If no ancestor relationship: 80 * if (dentry1 < dentry2) 81 * dentry1->d_lock 82 * dentry2->d_lock 83 */ 84 int sysctl_vfs_cache_pressure __read_mostly = 100; 85 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure); 86 87 __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock); 88 89 EXPORT_SYMBOL(rename_lock); 90 91 static struct kmem_cache *dentry_cache __read_mostly; 92 93 /* 94 * This is the single most critical data structure when it comes 95 * to the dcache: the hashtable for lookups. Somebody should try 96 * to make this good - I've just made it work. 97 * 98 * This hash-function tries to avoid losing too many bits of hash 99 * information, yet avoid using a prime hash-size or similar. 100 */ 101 102 static unsigned int d_hash_mask __read_mostly; 103 static unsigned int d_hash_shift __read_mostly; 104 105 static struct hlist_bl_head *dentry_hashtable __read_mostly; 106 107 static inline struct hlist_bl_head *d_hash(const struct dentry *parent, 108 unsigned int hash) 109 { 110 hash += (unsigned long) parent / L1_CACHE_BYTES; 111 return dentry_hashtable + hash_32(hash, d_hash_shift); 112 } 113 114 /* Statistics gathering. */ 115 struct dentry_stat_t dentry_stat = { 116 .age_limit = 45, 117 }; 118 119 static DEFINE_PER_CPU(long, nr_dentry); 120 static DEFINE_PER_CPU(long, nr_dentry_unused); 121 122 #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS) 123 124 /* 125 * Here we resort to our own counters instead of using generic per-cpu counters 126 * for consistency with what the vfs inode code does. We are expected to harvest 127 * better code and performance by having our own specialized counters. 128 * 129 * Please note that the loop is done over all possible CPUs, not over all online 130 * CPUs. The reason for this is that we don't want to play games with CPUs going 131 * on and off. If one of them goes off, we will just keep their counters. 132 * 133 * glommer: See cffbc8a for details, and if you ever intend to change this, 134 * please update all vfs counters to match. 135 */ 136 static long get_nr_dentry(void) 137 { 138 int i; 139 long sum = 0; 140 for_each_possible_cpu(i) 141 sum += per_cpu(nr_dentry, i); 142 return sum < 0 ? 0 : sum; 143 } 144 145 static long get_nr_dentry_unused(void) 146 { 147 int i; 148 long sum = 0; 149 for_each_possible_cpu(i) 150 sum += per_cpu(nr_dentry_unused, i); 151 return sum < 0 ? 0 : sum; 152 } 153 154 int proc_nr_dentry(struct ctl_table *table, int write, void __user *buffer, 155 size_t *lenp, loff_t *ppos) 156 { 157 dentry_stat.nr_dentry = get_nr_dentry(); 158 dentry_stat.nr_unused = get_nr_dentry_unused(); 159 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos); 160 } 161 #endif 162 163 /* 164 * Compare 2 name strings, return 0 if they match, otherwise non-zero. 165 * The strings are both count bytes long, and count is non-zero. 166 */ 167 #ifdef CONFIG_DCACHE_WORD_ACCESS 168 169 #include <asm/word-at-a-time.h> 170 /* 171 * NOTE! 'cs' and 'scount' come from a dentry, so it has a 172 * aligned allocation for this particular component. We don't 173 * strictly need the load_unaligned_zeropad() safety, but it 174 * doesn't hurt either. 175 * 176 * In contrast, 'ct' and 'tcount' can be from a pathname, and do 177 * need the careful unaligned handling. 178 */ 179 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount) 180 { 181 unsigned long a,b,mask; 182 183 for (;;) { 184 a = *(unsigned long *)cs; 185 b = load_unaligned_zeropad(ct); 186 if (tcount < sizeof(unsigned long)) 187 break; 188 if (unlikely(a != b)) 189 return 1; 190 cs += sizeof(unsigned long); 191 ct += sizeof(unsigned long); 192 tcount -= sizeof(unsigned long); 193 if (!tcount) 194 return 0; 195 } 196 mask = bytemask_from_count(tcount); 197 return unlikely(!!((a ^ b) & mask)); 198 } 199 200 #else 201 202 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount) 203 { 204 do { 205 if (*cs != *ct) 206 return 1; 207 cs++; 208 ct++; 209 tcount--; 210 } while (tcount); 211 return 0; 212 } 213 214 #endif 215 216 static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount) 217 { 218 const unsigned char *cs; 219 /* 220 * Be careful about RCU walk racing with rename: 221 * use ACCESS_ONCE to fetch the name pointer. 222 * 223 * NOTE! Even if a rename will mean that the length 224 * was not loaded atomically, we don't care. The 225 * RCU walk will check the sequence count eventually, 226 * and catch it. And we won't overrun the buffer, 227 * because we're reading the name pointer atomically, 228 * and a dentry name is guaranteed to be properly 229 * terminated with a NUL byte. 230 * 231 * End result: even if 'len' is wrong, we'll exit 232 * early because the data cannot match (there can 233 * be no NUL in the ct/tcount data) 234 */ 235 cs = ACCESS_ONCE(dentry->d_name.name); 236 smp_read_barrier_depends(); 237 return dentry_string_cmp(cs, ct, tcount); 238 } 239 240 struct external_name { 241 union { 242 atomic_t count; 243 struct rcu_head head; 244 } u; 245 unsigned char name[]; 246 }; 247 248 static inline struct external_name *external_name(struct dentry *dentry) 249 { 250 return container_of(dentry->d_name.name, struct external_name, name[0]); 251 } 252 253 static void __d_free(struct rcu_head *head) 254 { 255 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu); 256 257 kmem_cache_free(dentry_cache, dentry); 258 } 259 260 static void __d_free_external(struct rcu_head *head) 261 { 262 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu); 263 kfree(external_name(dentry)); 264 kmem_cache_free(dentry_cache, dentry); 265 } 266 267 static inline int dname_external(const struct dentry *dentry) 268 { 269 return dentry->d_name.name != dentry->d_iname; 270 } 271 272 /* 273 * Make sure other CPUs see the inode attached before the type is set. 274 */ 275 static inline void __d_set_inode_and_type(struct dentry *dentry, 276 struct inode *inode, 277 unsigned type_flags) 278 { 279 unsigned flags; 280 281 dentry->d_inode = inode; 282 smp_wmb(); 283 flags = READ_ONCE(dentry->d_flags); 284 flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU); 285 flags |= type_flags; 286 WRITE_ONCE(dentry->d_flags, flags); 287 } 288 289 /* 290 * Ideally, we want to make sure that other CPUs see the flags cleared before 291 * the inode is detached, but this is really a violation of RCU principles 292 * since the ordering suggests we should always set inode before flags. 293 * 294 * We should instead replace or discard the entire dentry - but that sucks 295 * performancewise on mass deletion/rename. 296 */ 297 static inline void __d_clear_type_and_inode(struct dentry *dentry) 298 { 299 unsigned flags = READ_ONCE(dentry->d_flags); 300 301 flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU); 302 WRITE_ONCE(dentry->d_flags, flags); 303 smp_wmb(); 304 dentry->d_inode = NULL; 305 } 306 307 static void dentry_free(struct dentry *dentry) 308 { 309 WARN_ON(!hlist_unhashed(&dentry->d_u.d_alias)); 310 if (unlikely(dname_external(dentry))) { 311 struct external_name *p = external_name(dentry); 312 if (likely(atomic_dec_and_test(&p->u.count))) { 313 call_rcu(&dentry->d_u.d_rcu, __d_free_external); 314 return; 315 } 316 } 317 /* if dentry was never visible to RCU, immediate free is OK */ 318 if (!(dentry->d_flags & DCACHE_RCUACCESS)) 319 __d_free(&dentry->d_u.d_rcu); 320 else 321 call_rcu(&dentry->d_u.d_rcu, __d_free); 322 } 323 324 /** 325 * dentry_rcuwalk_invalidate - invalidate in-progress rcu-walk lookups 326 * @dentry: the target dentry 327 * After this call, in-progress rcu-walk path lookup will fail. This 328 * should be called after unhashing, and after changing d_inode (if 329 * the dentry has not already been unhashed). 330 */ 331 static inline void dentry_rcuwalk_invalidate(struct dentry *dentry) 332 { 333 lockdep_assert_held(&dentry->d_lock); 334 /* Go through am invalidation barrier */ 335 write_seqcount_invalidate(&dentry->d_seq); 336 } 337 338 /* 339 * Release the dentry's inode, using the filesystem 340 * d_iput() operation if defined. Dentry has no refcount 341 * and is unhashed. 342 */ 343 static void dentry_iput(struct dentry * dentry) 344 __releases(dentry->d_lock) 345 __releases(dentry->d_inode->i_lock) 346 { 347 struct inode *inode = dentry->d_inode; 348 if (inode) { 349 __d_clear_type_and_inode(dentry); 350 hlist_del_init(&dentry->d_u.d_alias); 351 spin_unlock(&dentry->d_lock); 352 spin_unlock(&inode->i_lock); 353 if (!inode->i_nlink) 354 fsnotify_inoderemove(inode); 355 if (dentry->d_op && dentry->d_op->d_iput) 356 dentry->d_op->d_iput(dentry, inode); 357 else 358 iput(inode); 359 } else { 360 spin_unlock(&dentry->d_lock); 361 } 362 } 363 364 /* 365 * Release the dentry's inode, using the filesystem 366 * d_iput() operation if defined. dentry remains in-use. 367 */ 368 static void dentry_unlink_inode(struct dentry * dentry) 369 __releases(dentry->d_lock) 370 __releases(dentry->d_inode->i_lock) 371 { 372 struct inode *inode = dentry->d_inode; 373 __d_clear_type_and_inode(dentry); 374 hlist_del_init(&dentry->d_u.d_alias); 375 dentry_rcuwalk_invalidate(dentry); 376 spin_unlock(&dentry->d_lock); 377 spin_unlock(&inode->i_lock); 378 if (!inode->i_nlink) 379 fsnotify_inoderemove(inode); 380 if (dentry->d_op && dentry->d_op->d_iput) 381 dentry->d_op->d_iput(dentry, inode); 382 else 383 iput(inode); 384 } 385 386 /* 387 * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry 388 * is in use - which includes both the "real" per-superblock 389 * LRU list _and_ the DCACHE_SHRINK_LIST use. 390 * 391 * The DCACHE_SHRINK_LIST bit is set whenever the dentry is 392 * on the shrink list (ie not on the superblock LRU list). 393 * 394 * The per-cpu "nr_dentry_unused" counters are updated with 395 * the DCACHE_LRU_LIST bit. 396 * 397 * These helper functions make sure we always follow the 398 * rules. d_lock must be held by the caller. 399 */ 400 #define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x)) 401 static void d_lru_add(struct dentry *dentry) 402 { 403 D_FLAG_VERIFY(dentry, 0); 404 dentry->d_flags |= DCACHE_LRU_LIST; 405 this_cpu_inc(nr_dentry_unused); 406 WARN_ON_ONCE(!list_lru_add(&dentry->d_sb->s_dentry_lru, &dentry->d_lru)); 407 } 408 409 static void d_lru_del(struct dentry *dentry) 410 { 411 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST); 412 dentry->d_flags &= ~DCACHE_LRU_LIST; 413 this_cpu_dec(nr_dentry_unused); 414 WARN_ON_ONCE(!list_lru_del(&dentry->d_sb->s_dentry_lru, &dentry->d_lru)); 415 } 416 417 static void d_shrink_del(struct dentry *dentry) 418 { 419 D_FLAG_VERIFY(dentry, DCACHE_SHRINK_LIST | DCACHE_LRU_LIST); 420 list_del_init(&dentry->d_lru); 421 dentry->d_flags &= ~(DCACHE_SHRINK_LIST | DCACHE_LRU_LIST); 422 this_cpu_dec(nr_dentry_unused); 423 } 424 425 static void d_shrink_add(struct dentry *dentry, struct list_head *list) 426 { 427 D_FLAG_VERIFY(dentry, 0); 428 list_add(&dentry->d_lru, list); 429 dentry->d_flags |= DCACHE_SHRINK_LIST | DCACHE_LRU_LIST; 430 this_cpu_inc(nr_dentry_unused); 431 } 432 433 /* 434 * These can only be called under the global LRU lock, ie during the 435 * callback for freeing the LRU list. "isolate" removes it from the 436 * LRU lists entirely, while shrink_move moves it to the indicated 437 * private list. 438 */ 439 static void d_lru_isolate(struct list_lru_one *lru, struct dentry *dentry) 440 { 441 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST); 442 dentry->d_flags &= ~DCACHE_LRU_LIST; 443 this_cpu_dec(nr_dentry_unused); 444 list_lru_isolate(lru, &dentry->d_lru); 445 } 446 447 static void d_lru_shrink_move(struct list_lru_one *lru, struct dentry *dentry, 448 struct list_head *list) 449 { 450 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST); 451 dentry->d_flags |= DCACHE_SHRINK_LIST; 452 list_lru_isolate_move(lru, &dentry->d_lru, list); 453 } 454 455 /* 456 * dentry_lru_(add|del)_list) must be called with d_lock held. 457 */ 458 static void dentry_lru_add(struct dentry *dentry) 459 { 460 if (unlikely(!(dentry->d_flags & DCACHE_LRU_LIST))) 461 d_lru_add(dentry); 462 } 463 464 /** 465 * d_drop - drop a dentry 466 * @dentry: dentry to drop 467 * 468 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't 469 * be found through a VFS lookup any more. Note that this is different from 470 * deleting the dentry - d_delete will try to mark the dentry negative if 471 * possible, giving a successful _negative_ lookup, while d_drop will 472 * just make the cache lookup fail. 473 * 474 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some 475 * reason (NFS timeouts or autofs deletes). 476 * 477 * __d_drop requires dentry->d_lock. 478 */ 479 void __d_drop(struct dentry *dentry) 480 { 481 if (!d_unhashed(dentry)) { 482 struct hlist_bl_head *b; 483 /* 484 * Hashed dentries are normally on the dentry hashtable, 485 * with the exception of those newly allocated by 486 * d_obtain_alias, which are always IS_ROOT: 487 */ 488 if (unlikely(IS_ROOT(dentry))) 489 b = &dentry->d_sb->s_anon; 490 else 491 b = d_hash(dentry->d_parent, dentry->d_name.hash); 492 493 hlist_bl_lock(b); 494 __hlist_bl_del(&dentry->d_hash); 495 dentry->d_hash.pprev = NULL; 496 hlist_bl_unlock(b); 497 dentry_rcuwalk_invalidate(dentry); 498 } 499 } 500 EXPORT_SYMBOL(__d_drop); 501 502 void d_drop(struct dentry *dentry) 503 { 504 spin_lock(&dentry->d_lock); 505 __d_drop(dentry); 506 spin_unlock(&dentry->d_lock); 507 } 508 EXPORT_SYMBOL(d_drop); 509 510 static void __dentry_kill(struct dentry *dentry) 511 { 512 struct dentry *parent = NULL; 513 bool can_free = true; 514 if (!IS_ROOT(dentry)) 515 parent = dentry->d_parent; 516 517 /* 518 * The dentry is now unrecoverably dead to the world. 519 */ 520 lockref_mark_dead(&dentry->d_lockref); 521 522 /* 523 * inform the fs via d_prune that this dentry is about to be 524 * unhashed and destroyed. 525 */ 526 if (dentry->d_flags & DCACHE_OP_PRUNE) 527 dentry->d_op->d_prune(dentry); 528 529 if (dentry->d_flags & DCACHE_LRU_LIST) { 530 if (!(dentry->d_flags & DCACHE_SHRINK_LIST)) 531 d_lru_del(dentry); 532 } 533 /* if it was on the hash then remove it */ 534 __d_drop(dentry); 535 __list_del_entry(&dentry->d_child); 536 /* 537 * Inform d_walk() that we are no longer attached to the 538 * dentry tree 539 */ 540 dentry->d_flags |= DCACHE_DENTRY_KILLED; 541 if (parent) 542 spin_unlock(&parent->d_lock); 543 dentry_iput(dentry); 544 /* 545 * dentry_iput drops the locks, at which point nobody (except 546 * transient RCU lookups) can reach this dentry. 547 */ 548 BUG_ON(dentry->d_lockref.count > 0); 549 this_cpu_dec(nr_dentry); 550 if (dentry->d_op && dentry->d_op->d_release) 551 dentry->d_op->d_release(dentry); 552 553 spin_lock(&dentry->d_lock); 554 if (dentry->d_flags & DCACHE_SHRINK_LIST) { 555 dentry->d_flags |= DCACHE_MAY_FREE; 556 can_free = false; 557 } 558 spin_unlock(&dentry->d_lock); 559 if (likely(can_free)) 560 dentry_free(dentry); 561 } 562 563 /* 564 * Finish off a dentry we've decided to kill. 565 * dentry->d_lock must be held, returns with it unlocked. 566 * If ref is non-zero, then decrement the refcount too. 567 * Returns dentry requiring refcount drop, or NULL if we're done. 568 */ 569 static struct dentry *dentry_kill(struct dentry *dentry) 570 __releases(dentry->d_lock) 571 { 572 struct inode *inode = dentry->d_inode; 573 struct dentry *parent = NULL; 574 575 if (inode && unlikely(!spin_trylock(&inode->i_lock))) 576 goto failed; 577 578 if (!IS_ROOT(dentry)) { 579 parent = dentry->d_parent; 580 if (unlikely(!spin_trylock(&parent->d_lock))) { 581 if (inode) 582 spin_unlock(&inode->i_lock); 583 goto failed; 584 } 585 } 586 587 __dentry_kill(dentry); 588 return parent; 589 590 failed: 591 spin_unlock(&dentry->d_lock); 592 cpu_relax(); 593 return dentry; /* try again with same dentry */ 594 } 595 596 static inline struct dentry *lock_parent(struct dentry *dentry) 597 { 598 struct dentry *parent = dentry->d_parent; 599 if (IS_ROOT(dentry)) 600 return NULL; 601 if (unlikely(dentry->d_lockref.count < 0)) 602 return NULL; 603 if (likely(spin_trylock(&parent->d_lock))) 604 return parent; 605 rcu_read_lock(); 606 spin_unlock(&dentry->d_lock); 607 again: 608 parent = ACCESS_ONCE(dentry->d_parent); 609 spin_lock(&parent->d_lock); 610 /* 611 * We can't blindly lock dentry until we are sure 612 * that we won't violate the locking order. 613 * Any changes of dentry->d_parent must have 614 * been done with parent->d_lock held, so 615 * spin_lock() above is enough of a barrier 616 * for checking if it's still our child. 617 */ 618 if (unlikely(parent != dentry->d_parent)) { 619 spin_unlock(&parent->d_lock); 620 goto again; 621 } 622 rcu_read_unlock(); 623 if (parent != dentry) 624 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED); 625 else 626 parent = NULL; 627 return parent; 628 } 629 630 /* 631 * Try to do a lockless dput(), and return whether that was successful. 632 * 633 * If unsuccessful, we return false, having already taken the dentry lock. 634 * 635 * The caller needs to hold the RCU read lock, so that the dentry is 636 * guaranteed to stay around even if the refcount goes down to zero! 637 */ 638 static inline bool fast_dput(struct dentry *dentry) 639 { 640 int ret; 641 unsigned int d_flags; 642 643 /* 644 * If we have a d_op->d_delete() operation, we sould not 645 * let the dentry count go to zero, so use "put_or_lock". 646 */ 647 if (unlikely(dentry->d_flags & DCACHE_OP_DELETE)) 648 return lockref_put_or_lock(&dentry->d_lockref); 649 650 /* 651 * .. otherwise, we can try to just decrement the 652 * lockref optimistically. 653 */ 654 ret = lockref_put_return(&dentry->d_lockref); 655 656 /* 657 * If the lockref_put_return() failed due to the lock being held 658 * by somebody else, the fast path has failed. We will need to 659 * get the lock, and then check the count again. 660 */ 661 if (unlikely(ret < 0)) { 662 spin_lock(&dentry->d_lock); 663 if (dentry->d_lockref.count > 1) { 664 dentry->d_lockref.count--; 665 spin_unlock(&dentry->d_lock); 666 return 1; 667 } 668 return 0; 669 } 670 671 /* 672 * If we weren't the last ref, we're done. 673 */ 674 if (ret) 675 return 1; 676 677 /* 678 * Careful, careful. The reference count went down 679 * to zero, but we don't hold the dentry lock, so 680 * somebody else could get it again, and do another 681 * dput(), and we need to not race with that. 682 * 683 * However, there is a very special and common case 684 * where we don't care, because there is nothing to 685 * do: the dentry is still hashed, it does not have 686 * a 'delete' op, and it's referenced and already on 687 * the LRU list. 688 * 689 * NOTE! Since we aren't locked, these values are 690 * not "stable". However, it is sufficient that at 691 * some point after we dropped the reference the 692 * dentry was hashed and the flags had the proper 693 * value. Other dentry users may have re-gotten 694 * a reference to the dentry and change that, but 695 * our work is done - we can leave the dentry 696 * around with a zero refcount. 697 */ 698 smp_rmb(); 699 d_flags = ACCESS_ONCE(dentry->d_flags); 700 d_flags &= DCACHE_REFERENCED | DCACHE_LRU_LIST | DCACHE_DISCONNECTED; 701 702 /* Nothing to do? Dropping the reference was all we needed? */ 703 if (d_flags == (DCACHE_REFERENCED | DCACHE_LRU_LIST) && !d_unhashed(dentry)) 704 return 1; 705 706 /* 707 * Not the fast normal case? Get the lock. We've already decremented 708 * the refcount, but we'll need to re-check the situation after 709 * getting the lock. 710 */ 711 spin_lock(&dentry->d_lock); 712 713 /* 714 * Did somebody else grab a reference to it in the meantime, and 715 * we're no longer the last user after all? Alternatively, somebody 716 * else could have killed it and marked it dead. Either way, we 717 * don't need to do anything else. 718 */ 719 if (dentry->d_lockref.count) { 720 spin_unlock(&dentry->d_lock); 721 return 1; 722 } 723 724 /* 725 * Re-get the reference we optimistically dropped. We hold the 726 * lock, and we just tested that it was zero, so we can just 727 * set it to 1. 728 */ 729 dentry->d_lockref.count = 1; 730 return 0; 731 } 732 733 734 /* 735 * This is dput 736 * 737 * This is complicated by the fact that we do not want to put 738 * dentries that are no longer on any hash chain on the unused 739 * list: we'd much rather just get rid of them immediately. 740 * 741 * However, that implies that we have to traverse the dentry 742 * tree upwards to the parents which might _also_ now be 743 * scheduled for deletion (it may have been only waiting for 744 * its last child to go away). 745 * 746 * This tail recursion is done by hand as we don't want to depend 747 * on the compiler to always get this right (gcc generally doesn't). 748 * Real recursion would eat up our stack space. 749 */ 750 751 /* 752 * dput - release a dentry 753 * @dentry: dentry to release 754 * 755 * Release a dentry. This will drop the usage count and if appropriate 756 * call the dentry unlink method as well as removing it from the queues and 757 * releasing its resources. If the parent dentries were scheduled for release 758 * they too may now get deleted. 759 */ 760 void dput(struct dentry *dentry) 761 { 762 if (unlikely(!dentry)) 763 return; 764 765 repeat: 766 rcu_read_lock(); 767 if (likely(fast_dput(dentry))) { 768 rcu_read_unlock(); 769 return; 770 } 771 772 /* Slow case: now with the dentry lock held */ 773 rcu_read_unlock(); 774 775 /* Unreachable? Get rid of it */ 776 if (unlikely(d_unhashed(dentry))) 777 goto kill_it; 778 779 if (unlikely(dentry->d_flags & DCACHE_DISCONNECTED)) 780 goto kill_it; 781 782 if (unlikely(dentry->d_flags & DCACHE_OP_DELETE)) { 783 if (dentry->d_op->d_delete(dentry)) 784 goto kill_it; 785 } 786 787 if (!(dentry->d_flags & DCACHE_REFERENCED)) 788 dentry->d_flags |= DCACHE_REFERENCED; 789 dentry_lru_add(dentry); 790 791 dentry->d_lockref.count--; 792 spin_unlock(&dentry->d_lock); 793 return; 794 795 kill_it: 796 dentry = dentry_kill(dentry); 797 if (dentry) 798 goto repeat; 799 } 800 EXPORT_SYMBOL(dput); 801 802 803 /* This must be called with d_lock held */ 804 static inline void __dget_dlock(struct dentry *dentry) 805 { 806 dentry->d_lockref.count++; 807 } 808 809 static inline void __dget(struct dentry *dentry) 810 { 811 lockref_get(&dentry->d_lockref); 812 } 813 814 struct dentry *dget_parent(struct dentry *dentry) 815 { 816 int gotref; 817 struct dentry *ret; 818 819 /* 820 * Do optimistic parent lookup without any 821 * locking. 822 */ 823 rcu_read_lock(); 824 ret = ACCESS_ONCE(dentry->d_parent); 825 gotref = lockref_get_not_zero(&ret->d_lockref); 826 rcu_read_unlock(); 827 if (likely(gotref)) { 828 if (likely(ret == ACCESS_ONCE(dentry->d_parent))) 829 return ret; 830 dput(ret); 831 } 832 833 repeat: 834 /* 835 * Don't need rcu_dereference because we re-check it was correct under 836 * the lock. 837 */ 838 rcu_read_lock(); 839 ret = dentry->d_parent; 840 spin_lock(&ret->d_lock); 841 if (unlikely(ret != dentry->d_parent)) { 842 spin_unlock(&ret->d_lock); 843 rcu_read_unlock(); 844 goto repeat; 845 } 846 rcu_read_unlock(); 847 BUG_ON(!ret->d_lockref.count); 848 ret->d_lockref.count++; 849 spin_unlock(&ret->d_lock); 850 return ret; 851 } 852 EXPORT_SYMBOL(dget_parent); 853 854 /** 855 * d_find_alias - grab a hashed alias of inode 856 * @inode: inode in question 857 * 858 * If inode has a hashed alias, or is a directory and has any alias, 859 * acquire the reference to alias and return it. Otherwise return NULL. 860 * Notice that if inode is a directory there can be only one alias and 861 * it can be unhashed only if it has no children, or if it is the root 862 * of a filesystem, or if the directory was renamed and d_revalidate 863 * was the first vfs operation to notice. 864 * 865 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer 866 * any other hashed alias over that one. 867 */ 868 static struct dentry *__d_find_alias(struct inode *inode) 869 { 870 struct dentry *alias, *discon_alias; 871 872 again: 873 discon_alias = NULL; 874 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) { 875 spin_lock(&alias->d_lock); 876 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) { 877 if (IS_ROOT(alias) && 878 (alias->d_flags & DCACHE_DISCONNECTED)) { 879 discon_alias = alias; 880 } else { 881 __dget_dlock(alias); 882 spin_unlock(&alias->d_lock); 883 return alias; 884 } 885 } 886 spin_unlock(&alias->d_lock); 887 } 888 if (discon_alias) { 889 alias = discon_alias; 890 spin_lock(&alias->d_lock); 891 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) { 892 __dget_dlock(alias); 893 spin_unlock(&alias->d_lock); 894 return alias; 895 } 896 spin_unlock(&alias->d_lock); 897 goto again; 898 } 899 return NULL; 900 } 901 902 struct dentry *d_find_alias(struct inode *inode) 903 { 904 struct dentry *de = NULL; 905 906 if (!hlist_empty(&inode->i_dentry)) { 907 spin_lock(&inode->i_lock); 908 de = __d_find_alias(inode); 909 spin_unlock(&inode->i_lock); 910 } 911 return de; 912 } 913 EXPORT_SYMBOL(d_find_alias); 914 915 /* 916 * Try to kill dentries associated with this inode. 917 * WARNING: you must own a reference to inode. 918 */ 919 void d_prune_aliases(struct inode *inode) 920 { 921 struct dentry *dentry; 922 restart: 923 spin_lock(&inode->i_lock); 924 hlist_for_each_entry(dentry, &inode->i_dentry, d_u.d_alias) { 925 spin_lock(&dentry->d_lock); 926 if (!dentry->d_lockref.count) { 927 struct dentry *parent = lock_parent(dentry); 928 if (likely(!dentry->d_lockref.count)) { 929 __dentry_kill(dentry); 930 dput(parent); 931 goto restart; 932 } 933 if (parent) 934 spin_unlock(&parent->d_lock); 935 } 936 spin_unlock(&dentry->d_lock); 937 } 938 spin_unlock(&inode->i_lock); 939 } 940 EXPORT_SYMBOL(d_prune_aliases); 941 942 static void shrink_dentry_list(struct list_head *list) 943 { 944 struct dentry *dentry, *parent; 945 946 while (!list_empty(list)) { 947 struct inode *inode; 948 dentry = list_entry(list->prev, struct dentry, d_lru); 949 spin_lock(&dentry->d_lock); 950 parent = lock_parent(dentry); 951 952 /* 953 * The dispose list is isolated and dentries are not accounted 954 * to the LRU here, so we can simply remove it from the list 955 * here regardless of whether it is referenced or not. 956 */ 957 d_shrink_del(dentry); 958 959 /* 960 * We found an inuse dentry which was not removed from 961 * the LRU because of laziness during lookup. Do not free it. 962 */ 963 if (dentry->d_lockref.count > 0) { 964 spin_unlock(&dentry->d_lock); 965 if (parent) 966 spin_unlock(&parent->d_lock); 967 continue; 968 } 969 970 971 if (unlikely(dentry->d_flags & DCACHE_DENTRY_KILLED)) { 972 bool can_free = dentry->d_flags & DCACHE_MAY_FREE; 973 spin_unlock(&dentry->d_lock); 974 if (parent) 975 spin_unlock(&parent->d_lock); 976 if (can_free) 977 dentry_free(dentry); 978 continue; 979 } 980 981 inode = dentry->d_inode; 982 if (inode && unlikely(!spin_trylock(&inode->i_lock))) { 983 d_shrink_add(dentry, list); 984 spin_unlock(&dentry->d_lock); 985 if (parent) 986 spin_unlock(&parent->d_lock); 987 continue; 988 } 989 990 __dentry_kill(dentry); 991 992 /* 993 * We need to prune ancestors too. This is necessary to prevent 994 * quadratic behavior of shrink_dcache_parent(), but is also 995 * expected to be beneficial in reducing dentry cache 996 * fragmentation. 997 */ 998 dentry = parent; 999 while (dentry && !lockref_put_or_lock(&dentry->d_lockref)) { 1000 parent = lock_parent(dentry); 1001 if (dentry->d_lockref.count != 1) { 1002 dentry->d_lockref.count--; 1003 spin_unlock(&dentry->d_lock); 1004 if (parent) 1005 spin_unlock(&parent->d_lock); 1006 break; 1007 } 1008 inode = dentry->d_inode; /* can't be NULL */ 1009 if (unlikely(!spin_trylock(&inode->i_lock))) { 1010 spin_unlock(&dentry->d_lock); 1011 if (parent) 1012 spin_unlock(&parent->d_lock); 1013 cpu_relax(); 1014 continue; 1015 } 1016 __dentry_kill(dentry); 1017 dentry = parent; 1018 } 1019 } 1020 } 1021 1022 static enum lru_status dentry_lru_isolate(struct list_head *item, 1023 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg) 1024 { 1025 struct list_head *freeable = arg; 1026 struct dentry *dentry = container_of(item, struct dentry, d_lru); 1027 1028 1029 /* 1030 * we are inverting the lru lock/dentry->d_lock here, 1031 * so use a trylock. If we fail to get the lock, just skip 1032 * it 1033 */ 1034 if (!spin_trylock(&dentry->d_lock)) 1035 return LRU_SKIP; 1036 1037 /* 1038 * Referenced dentries are still in use. If they have active 1039 * counts, just remove them from the LRU. Otherwise give them 1040 * another pass through the LRU. 1041 */ 1042 if (dentry->d_lockref.count) { 1043 d_lru_isolate(lru, dentry); 1044 spin_unlock(&dentry->d_lock); 1045 return LRU_REMOVED; 1046 } 1047 1048 if (dentry->d_flags & DCACHE_REFERENCED) { 1049 dentry->d_flags &= ~DCACHE_REFERENCED; 1050 spin_unlock(&dentry->d_lock); 1051 1052 /* 1053 * The list move itself will be made by the common LRU code. At 1054 * this point, we've dropped the dentry->d_lock but keep the 1055 * lru lock. This is safe to do, since every list movement is 1056 * protected by the lru lock even if both locks are held. 1057 * 1058 * This is guaranteed by the fact that all LRU management 1059 * functions are intermediated by the LRU API calls like 1060 * list_lru_add and list_lru_del. List movement in this file 1061 * only ever occur through this functions or through callbacks 1062 * like this one, that are called from the LRU API. 1063 * 1064 * The only exceptions to this are functions like 1065 * shrink_dentry_list, and code that first checks for the 1066 * DCACHE_SHRINK_LIST flag. Those are guaranteed to be 1067 * operating only with stack provided lists after they are 1068 * properly isolated from the main list. It is thus, always a 1069 * local access. 1070 */ 1071 return LRU_ROTATE; 1072 } 1073 1074 d_lru_shrink_move(lru, dentry, freeable); 1075 spin_unlock(&dentry->d_lock); 1076 1077 return LRU_REMOVED; 1078 } 1079 1080 /** 1081 * prune_dcache_sb - shrink the dcache 1082 * @sb: superblock 1083 * @sc: shrink control, passed to list_lru_shrink_walk() 1084 * 1085 * Attempt to shrink the superblock dcache LRU by @sc->nr_to_scan entries. This 1086 * is done when we need more memory and called from the superblock shrinker 1087 * function. 1088 * 1089 * This function may fail to free any resources if all the dentries are in 1090 * use. 1091 */ 1092 long prune_dcache_sb(struct super_block *sb, struct shrink_control *sc) 1093 { 1094 LIST_HEAD(dispose); 1095 long freed; 1096 1097 freed = list_lru_shrink_walk(&sb->s_dentry_lru, sc, 1098 dentry_lru_isolate, &dispose); 1099 shrink_dentry_list(&dispose); 1100 return freed; 1101 } 1102 1103 static enum lru_status dentry_lru_isolate_shrink(struct list_head *item, 1104 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg) 1105 { 1106 struct list_head *freeable = arg; 1107 struct dentry *dentry = container_of(item, struct dentry, d_lru); 1108 1109 /* 1110 * we are inverting the lru lock/dentry->d_lock here, 1111 * so use a trylock. If we fail to get the lock, just skip 1112 * it 1113 */ 1114 if (!spin_trylock(&dentry->d_lock)) 1115 return LRU_SKIP; 1116 1117 d_lru_shrink_move(lru, dentry, freeable); 1118 spin_unlock(&dentry->d_lock); 1119 1120 return LRU_REMOVED; 1121 } 1122 1123 1124 /** 1125 * shrink_dcache_sb - shrink dcache for a superblock 1126 * @sb: superblock 1127 * 1128 * Shrink the dcache for the specified super block. This is used to free 1129 * the dcache before unmounting a file system. 1130 */ 1131 void shrink_dcache_sb(struct super_block *sb) 1132 { 1133 long freed; 1134 1135 do { 1136 LIST_HEAD(dispose); 1137 1138 freed = list_lru_walk(&sb->s_dentry_lru, 1139 dentry_lru_isolate_shrink, &dispose, UINT_MAX); 1140 1141 this_cpu_sub(nr_dentry_unused, freed); 1142 shrink_dentry_list(&dispose); 1143 } while (freed > 0); 1144 } 1145 EXPORT_SYMBOL(shrink_dcache_sb); 1146 1147 /** 1148 * enum d_walk_ret - action to talke during tree walk 1149 * @D_WALK_CONTINUE: contrinue walk 1150 * @D_WALK_QUIT: quit walk 1151 * @D_WALK_NORETRY: quit when retry is needed 1152 * @D_WALK_SKIP: skip this dentry and its children 1153 */ 1154 enum d_walk_ret { 1155 D_WALK_CONTINUE, 1156 D_WALK_QUIT, 1157 D_WALK_NORETRY, 1158 D_WALK_SKIP, 1159 }; 1160 1161 /** 1162 * d_walk - walk the dentry tree 1163 * @parent: start of walk 1164 * @data: data passed to @enter() and @finish() 1165 * @enter: callback when first entering the dentry 1166 * @finish: callback when successfully finished the walk 1167 * 1168 * The @enter() and @finish() callbacks are called with d_lock held. 1169 */ 1170 static void d_walk(struct dentry *parent, void *data, 1171 enum d_walk_ret (*enter)(void *, struct dentry *), 1172 void (*finish)(void *)) 1173 { 1174 struct dentry *this_parent; 1175 struct list_head *next; 1176 unsigned seq = 0; 1177 enum d_walk_ret ret; 1178 bool retry = true; 1179 1180 again: 1181 read_seqbegin_or_lock(&rename_lock, &seq); 1182 this_parent = parent; 1183 spin_lock(&this_parent->d_lock); 1184 1185 ret = enter(data, this_parent); 1186 switch (ret) { 1187 case D_WALK_CONTINUE: 1188 break; 1189 case D_WALK_QUIT: 1190 case D_WALK_SKIP: 1191 goto out_unlock; 1192 case D_WALK_NORETRY: 1193 retry = false; 1194 break; 1195 } 1196 repeat: 1197 next = this_parent->d_subdirs.next; 1198 resume: 1199 while (next != &this_parent->d_subdirs) { 1200 struct list_head *tmp = next; 1201 struct dentry *dentry = list_entry(tmp, struct dentry, d_child); 1202 next = tmp->next; 1203 1204 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED); 1205 1206 ret = enter(data, dentry); 1207 switch (ret) { 1208 case D_WALK_CONTINUE: 1209 break; 1210 case D_WALK_QUIT: 1211 spin_unlock(&dentry->d_lock); 1212 goto out_unlock; 1213 case D_WALK_NORETRY: 1214 retry = false; 1215 break; 1216 case D_WALK_SKIP: 1217 spin_unlock(&dentry->d_lock); 1218 continue; 1219 } 1220 1221 if (!list_empty(&dentry->d_subdirs)) { 1222 spin_unlock(&this_parent->d_lock); 1223 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_); 1224 this_parent = dentry; 1225 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_); 1226 goto repeat; 1227 } 1228 spin_unlock(&dentry->d_lock); 1229 } 1230 /* 1231 * All done at this level ... ascend and resume the search. 1232 */ 1233 rcu_read_lock(); 1234 ascend: 1235 if (this_parent != parent) { 1236 struct dentry *child = this_parent; 1237 this_parent = child->d_parent; 1238 1239 spin_unlock(&child->d_lock); 1240 spin_lock(&this_parent->d_lock); 1241 1242 /* might go back up the wrong parent if we have had a rename. */ 1243 if (need_seqretry(&rename_lock, seq)) 1244 goto rename_retry; 1245 /* go into the first sibling still alive */ 1246 do { 1247 next = child->d_child.next; 1248 if (next == &this_parent->d_subdirs) 1249 goto ascend; 1250 child = list_entry(next, struct dentry, d_child); 1251 } while (unlikely(child->d_flags & DCACHE_DENTRY_KILLED)); 1252 rcu_read_unlock(); 1253 goto resume; 1254 } 1255 if (need_seqretry(&rename_lock, seq)) 1256 goto rename_retry; 1257 rcu_read_unlock(); 1258 if (finish) 1259 finish(data); 1260 1261 out_unlock: 1262 spin_unlock(&this_parent->d_lock); 1263 done_seqretry(&rename_lock, seq); 1264 return; 1265 1266 rename_retry: 1267 spin_unlock(&this_parent->d_lock); 1268 rcu_read_unlock(); 1269 BUG_ON(seq & 1); 1270 if (!retry) 1271 return; 1272 seq = 1; 1273 goto again; 1274 } 1275 1276 /* 1277 * Search for at least 1 mount point in the dentry's subdirs. 1278 * We descend to the next level whenever the d_subdirs 1279 * list is non-empty and continue searching. 1280 */ 1281 1282 static enum d_walk_ret check_mount(void *data, struct dentry *dentry) 1283 { 1284 int *ret = data; 1285 if (d_mountpoint(dentry)) { 1286 *ret = 1; 1287 return D_WALK_QUIT; 1288 } 1289 return D_WALK_CONTINUE; 1290 } 1291 1292 /** 1293 * have_submounts - check for mounts over a dentry 1294 * @parent: dentry to check. 1295 * 1296 * Return true if the parent or its subdirectories contain 1297 * a mount point 1298 */ 1299 int have_submounts(struct dentry *parent) 1300 { 1301 int ret = 0; 1302 1303 d_walk(parent, &ret, check_mount, NULL); 1304 1305 return ret; 1306 } 1307 EXPORT_SYMBOL(have_submounts); 1308 1309 /* 1310 * Called by mount code to set a mountpoint and check if the mountpoint is 1311 * reachable (e.g. NFS can unhash a directory dentry and then the complete 1312 * subtree can become unreachable). 1313 * 1314 * Only one of d_invalidate() and d_set_mounted() must succeed. For 1315 * this reason take rename_lock and d_lock on dentry and ancestors. 1316 */ 1317 int d_set_mounted(struct dentry *dentry) 1318 { 1319 struct dentry *p; 1320 int ret = -ENOENT; 1321 write_seqlock(&rename_lock); 1322 for (p = dentry->d_parent; !IS_ROOT(p); p = p->d_parent) { 1323 /* Need exclusion wrt. d_invalidate() */ 1324 spin_lock(&p->d_lock); 1325 if (unlikely(d_unhashed(p))) { 1326 spin_unlock(&p->d_lock); 1327 goto out; 1328 } 1329 spin_unlock(&p->d_lock); 1330 } 1331 spin_lock(&dentry->d_lock); 1332 if (!d_unlinked(dentry)) { 1333 dentry->d_flags |= DCACHE_MOUNTED; 1334 ret = 0; 1335 } 1336 spin_unlock(&dentry->d_lock); 1337 out: 1338 write_sequnlock(&rename_lock); 1339 return ret; 1340 } 1341 1342 /* 1343 * Search the dentry child list of the specified parent, 1344 * and move any unused dentries to the end of the unused 1345 * list for prune_dcache(). We descend to the next level 1346 * whenever the d_subdirs list is non-empty and continue 1347 * searching. 1348 * 1349 * It returns zero iff there are no unused children, 1350 * otherwise it returns the number of children moved to 1351 * the end of the unused list. This may not be the total 1352 * number of unused children, because select_parent can 1353 * drop the lock and return early due to latency 1354 * constraints. 1355 */ 1356 1357 struct select_data { 1358 struct dentry *start; 1359 struct list_head dispose; 1360 int found; 1361 }; 1362 1363 static enum d_walk_ret select_collect(void *_data, struct dentry *dentry) 1364 { 1365 struct select_data *data = _data; 1366 enum d_walk_ret ret = D_WALK_CONTINUE; 1367 1368 if (data->start == dentry) 1369 goto out; 1370 1371 if (dentry->d_flags & DCACHE_SHRINK_LIST) { 1372 data->found++; 1373 } else { 1374 if (dentry->d_flags & DCACHE_LRU_LIST) 1375 d_lru_del(dentry); 1376 if (!dentry->d_lockref.count) { 1377 d_shrink_add(dentry, &data->dispose); 1378 data->found++; 1379 } 1380 } 1381 /* 1382 * We can return to the caller if we have found some (this 1383 * ensures forward progress). We'll be coming back to find 1384 * the rest. 1385 */ 1386 if (!list_empty(&data->dispose)) 1387 ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY; 1388 out: 1389 return ret; 1390 } 1391 1392 /** 1393 * shrink_dcache_parent - prune dcache 1394 * @parent: parent of entries to prune 1395 * 1396 * Prune the dcache to remove unused children of the parent dentry. 1397 */ 1398 void shrink_dcache_parent(struct dentry *parent) 1399 { 1400 for (;;) { 1401 struct select_data data; 1402 1403 INIT_LIST_HEAD(&data.dispose); 1404 data.start = parent; 1405 data.found = 0; 1406 1407 d_walk(parent, &data, select_collect, NULL); 1408 if (!data.found) 1409 break; 1410 1411 shrink_dentry_list(&data.dispose); 1412 cond_resched(); 1413 } 1414 } 1415 EXPORT_SYMBOL(shrink_dcache_parent); 1416 1417 static enum d_walk_ret umount_check(void *_data, struct dentry *dentry) 1418 { 1419 /* it has busy descendents; complain about those instead */ 1420 if (!list_empty(&dentry->d_subdirs)) 1421 return D_WALK_CONTINUE; 1422 1423 /* root with refcount 1 is fine */ 1424 if (dentry == _data && dentry->d_lockref.count == 1) 1425 return D_WALK_CONTINUE; 1426 1427 printk(KERN_ERR "BUG: Dentry %p{i=%lx,n=%pd} " 1428 " still in use (%d) [unmount of %s %s]\n", 1429 dentry, 1430 dentry->d_inode ? 1431 dentry->d_inode->i_ino : 0UL, 1432 dentry, 1433 dentry->d_lockref.count, 1434 dentry->d_sb->s_type->name, 1435 dentry->d_sb->s_id); 1436 WARN_ON(1); 1437 return D_WALK_CONTINUE; 1438 } 1439 1440 static void do_one_tree(struct dentry *dentry) 1441 { 1442 shrink_dcache_parent(dentry); 1443 d_walk(dentry, dentry, umount_check, NULL); 1444 d_drop(dentry); 1445 dput(dentry); 1446 } 1447 1448 /* 1449 * destroy the dentries attached to a superblock on unmounting 1450 */ 1451 void shrink_dcache_for_umount(struct super_block *sb) 1452 { 1453 struct dentry *dentry; 1454 1455 WARN(down_read_trylock(&sb->s_umount), "s_umount should've been locked"); 1456 1457 dentry = sb->s_root; 1458 sb->s_root = NULL; 1459 do_one_tree(dentry); 1460 1461 while (!hlist_bl_empty(&sb->s_anon)) { 1462 dentry = dget(hlist_bl_entry(hlist_bl_first(&sb->s_anon), struct dentry, d_hash)); 1463 do_one_tree(dentry); 1464 } 1465 } 1466 1467 struct detach_data { 1468 struct select_data select; 1469 struct dentry *mountpoint; 1470 }; 1471 static enum d_walk_ret detach_and_collect(void *_data, struct dentry *dentry) 1472 { 1473 struct detach_data *data = _data; 1474 1475 if (d_mountpoint(dentry)) { 1476 __dget_dlock(dentry); 1477 data->mountpoint = dentry; 1478 return D_WALK_QUIT; 1479 } 1480 1481 return select_collect(&data->select, dentry); 1482 } 1483 1484 static void check_and_drop(void *_data) 1485 { 1486 struct detach_data *data = _data; 1487 1488 if (!data->mountpoint && !data->select.found) 1489 __d_drop(data->select.start); 1490 } 1491 1492 /** 1493 * d_invalidate - detach submounts, prune dcache, and drop 1494 * @dentry: dentry to invalidate (aka detach, prune and drop) 1495 * 1496 * no dcache lock. 1497 * 1498 * The final d_drop is done as an atomic operation relative to 1499 * rename_lock ensuring there are no races with d_set_mounted. This 1500 * ensures there are no unhashed dentries on the path to a mountpoint. 1501 */ 1502 void d_invalidate(struct dentry *dentry) 1503 { 1504 /* 1505 * If it's already been dropped, return OK. 1506 */ 1507 spin_lock(&dentry->d_lock); 1508 if (d_unhashed(dentry)) { 1509 spin_unlock(&dentry->d_lock); 1510 return; 1511 } 1512 spin_unlock(&dentry->d_lock); 1513 1514 /* Negative dentries can be dropped without further checks */ 1515 if (!dentry->d_inode) { 1516 d_drop(dentry); 1517 return; 1518 } 1519 1520 for (;;) { 1521 struct detach_data data; 1522 1523 data.mountpoint = NULL; 1524 INIT_LIST_HEAD(&data.select.dispose); 1525 data.select.start = dentry; 1526 data.select.found = 0; 1527 1528 d_walk(dentry, &data, detach_and_collect, check_and_drop); 1529 1530 if (data.select.found) 1531 shrink_dentry_list(&data.select.dispose); 1532 1533 if (data.mountpoint) { 1534 detach_mounts(data.mountpoint); 1535 dput(data.mountpoint); 1536 } 1537 1538 if (!data.mountpoint && !data.select.found) 1539 break; 1540 1541 cond_resched(); 1542 } 1543 } 1544 EXPORT_SYMBOL(d_invalidate); 1545 1546 /** 1547 * __d_alloc - allocate a dcache entry 1548 * @sb: filesystem it will belong to 1549 * @name: qstr of the name 1550 * 1551 * Allocates a dentry. It returns %NULL if there is insufficient memory 1552 * available. On a success the dentry is returned. The name passed in is 1553 * copied and the copy passed in may be reused after this call. 1554 */ 1555 1556 struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name) 1557 { 1558 struct dentry *dentry; 1559 char *dname; 1560 1561 dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL); 1562 if (!dentry) 1563 return NULL; 1564 1565 /* 1566 * We guarantee that the inline name is always NUL-terminated. 1567 * This way the memcpy() done by the name switching in rename 1568 * will still always have a NUL at the end, even if we might 1569 * be overwriting an internal NUL character 1570 */ 1571 dentry->d_iname[DNAME_INLINE_LEN-1] = 0; 1572 if (name->len > DNAME_INLINE_LEN-1) { 1573 size_t size = offsetof(struct external_name, name[1]); 1574 struct external_name *p = kmalloc(size + name->len, GFP_KERNEL); 1575 if (!p) { 1576 kmem_cache_free(dentry_cache, dentry); 1577 return NULL; 1578 } 1579 atomic_set(&p->u.count, 1); 1580 dname = p->name; 1581 if (IS_ENABLED(CONFIG_DCACHE_WORD_ACCESS)) 1582 kasan_unpoison_shadow(dname, 1583 round_up(name->len + 1, sizeof(unsigned long))); 1584 } else { 1585 dname = dentry->d_iname; 1586 } 1587 1588 dentry->d_name.len = name->len; 1589 dentry->d_name.hash = name->hash; 1590 memcpy(dname, name->name, name->len); 1591 dname[name->len] = 0; 1592 1593 /* Make sure we always see the terminating NUL character */ 1594 smp_wmb(); 1595 dentry->d_name.name = dname; 1596 1597 dentry->d_lockref.count = 1; 1598 dentry->d_flags = 0; 1599 spin_lock_init(&dentry->d_lock); 1600 seqcount_init(&dentry->d_seq); 1601 dentry->d_inode = NULL; 1602 dentry->d_parent = dentry; 1603 dentry->d_sb = sb; 1604 dentry->d_op = NULL; 1605 dentry->d_fsdata = NULL; 1606 INIT_HLIST_BL_NODE(&dentry->d_hash); 1607 INIT_LIST_HEAD(&dentry->d_lru); 1608 INIT_LIST_HEAD(&dentry->d_subdirs); 1609 INIT_HLIST_NODE(&dentry->d_u.d_alias); 1610 INIT_LIST_HEAD(&dentry->d_child); 1611 d_set_d_op(dentry, dentry->d_sb->s_d_op); 1612 1613 this_cpu_inc(nr_dentry); 1614 1615 return dentry; 1616 } 1617 1618 /** 1619 * d_alloc - allocate a dcache entry 1620 * @parent: parent of entry to allocate 1621 * @name: qstr of the name 1622 * 1623 * Allocates a dentry. It returns %NULL if there is insufficient memory 1624 * available. On a success the dentry is returned. The name passed in is 1625 * copied and the copy passed in may be reused after this call. 1626 */ 1627 struct dentry *d_alloc(struct dentry * parent, const struct qstr *name) 1628 { 1629 struct dentry *dentry = __d_alloc(parent->d_sb, name); 1630 if (!dentry) 1631 return NULL; 1632 1633 spin_lock(&parent->d_lock); 1634 /* 1635 * don't need child lock because it is not subject 1636 * to concurrency here 1637 */ 1638 __dget_dlock(parent); 1639 dentry->d_parent = parent; 1640 list_add(&dentry->d_child, &parent->d_subdirs); 1641 spin_unlock(&parent->d_lock); 1642 1643 return dentry; 1644 } 1645 EXPORT_SYMBOL(d_alloc); 1646 1647 /** 1648 * d_alloc_pseudo - allocate a dentry (for lookup-less filesystems) 1649 * @sb: the superblock 1650 * @name: qstr of the name 1651 * 1652 * For a filesystem that just pins its dentries in memory and never 1653 * performs lookups at all, return an unhashed IS_ROOT dentry. 1654 */ 1655 struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name) 1656 { 1657 return __d_alloc(sb, name); 1658 } 1659 EXPORT_SYMBOL(d_alloc_pseudo); 1660 1661 struct dentry *d_alloc_name(struct dentry *parent, const char *name) 1662 { 1663 struct qstr q; 1664 1665 q.name = name; 1666 q.len = strlen(name); 1667 q.hash = full_name_hash(q.name, q.len); 1668 return d_alloc(parent, &q); 1669 } 1670 EXPORT_SYMBOL(d_alloc_name); 1671 1672 void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op) 1673 { 1674 WARN_ON_ONCE(dentry->d_op); 1675 WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH | 1676 DCACHE_OP_COMPARE | 1677 DCACHE_OP_REVALIDATE | 1678 DCACHE_OP_WEAK_REVALIDATE | 1679 DCACHE_OP_DELETE | 1680 DCACHE_OP_SELECT_INODE)); 1681 dentry->d_op = op; 1682 if (!op) 1683 return; 1684 if (op->d_hash) 1685 dentry->d_flags |= DCACHE_OP_HASH; 1686 if (op->d_compare) 1687 dentry->d_flags |= DCACHE_OP_COMPARE; 1688 if (op->d_revalidate) 1689 dentry->d_flags |= DCACHE_OP_REVALIDATE; 1690 if (op->d_weak_revalidate) 1691 dentry->d_flags |= DCACHE_OP_WEAK_REVALIDATE; 1692 if (op->d_delete) 1693 dentry->d_flags |= DCACHE_OP_DELETE; 1694 if (op->d_prune) 1695 dentry->d_flags |= DCACHE_OP_PRUNE; 1696 if (op->d_select_inode) 1697 dentry->d_flags |= DCACHE_OP_SELECT_INODE; 1698 1699 } 1700 EXPORT_SYMBOL(d_set_d_op); 1701 1702 1703 /* 1704 * d_set_fallthru - Mark a dentry as falling through to a lower layer 1705 * @dentry - The dentry to mark 1706 * 1707 * Mark a dentry as falling through to the lower layer (as set with 1708 * d_pin_lower()). This flag may be recorded on the medium. 1709 */ 1710 void d_set_fallthru(struct dentry *dentry) 1711 { 1712 spin_lock(&dentry->d_lock); 1713 dentry->d_flags |= DCACHE_FALLTHRU; 1714 spin_unlock(&dentry->d_lock); 1715 } 1716 EXPORT_SYMBOL(d_set_fallthru); 1717 1718 static unsigned d_flags_for_inode(struct inode *inode) 1719 { 1720 unsigned add_flags = DCACHE_REGULAR_TYPE; 1721 1722 if (!inode) 1723 return DCACHE_MISS_TYPE; 1724 1725 if (S_ISDIR(inode->i_mode)) { 1726 add_flags = DCACHE_DIRECTORY_TYPE; 1727 if (unlikely(!(inode->i_opflags & IOP_LOOKUP))) { 1728 if (unlikely(!inode->i_op->lookup)) 1729 add_flags = DCACHE_AUTODIR_TYPE; 1730 else 1731 inode->i_opflags |= IOP_LOOKUP; 1732 } 1733 goto type_determined; 1734 } 1735 1736 if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) { 1737 if (unlikely(inode->i_op->follow_link)) { 1738 add_flags = DCACHE_SYMLINK_TYPE; 1739 goto type_determined; 1740 } 1741 inode->i_opflags |= IOP_NOFOLLOW; 1742 } 1743 1744 if (unlikely(!S_ISREG(inode->i_mode))) 1745 add_flags = DCACHE_SPECIAL_TYPE; 1746 1747 type_determined: 1748 if (unlikely(IS_AUTOMOUNT(inode))) 1749 add_flags |= DCACHE_NEED_AUTOMOUNT; 1750 return add_flags; 1751 } 1752 1753 static void __d_instantiate(struct dentry *dentry, struct inode *inode) 1754 { 1755 unsigned add_flags = d_flags_for_inode(inode); 1756 1757 spin_lock(&dentry->d_lock); 1758 if (inode) 1759 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry); 1760 __d_set_inode_and_type(dentry, inode, add_flags); 1761 dentry_rcuwalk_invalidate(dentry); 1762 spin_unlock(&dentry->d_lock); 1763 fsnotify_d_instantiate(dentry, inode); 1764 } 1765 1766 /** 1767 * d_instantiate - fill in inode information for a dentry 1768 * @entry: dentry to complete 1769 * @inode: inode to attach to this dentry 1770 * 1771 * Fill in inode information in the entry. 1772 * 1773 * This turns negative dentries into productive full members 1774 * of society. 1775 * 1776 * NOTE! This assumes that the inode count has been incremented 1777 * (or otherwise set) by the caller to indicate that it is now 1778 * in use by the dcache. 1779 */ 1780 1781 void d_instantiate(struct dentry *entry, struct inode * inode) 1782 { 1783 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias)); 1784 if (inode) 1785 spin_lock(&inode->i_lock); 1786 __d_instantiate(entry, inode); 1787 if (inode) 1788 spin_unlock(&inode->i_lock); 1789 security_d_instantiate(entry, inode); 1790 } 1791 EXPORT_SYMBOL(d_instantiate); 1792 1793 /** 1794 * d_instantiate_unique - instantiate a non-aliased dentry 1795 * @entry: dentry to instantiate 1796 * @inode: inode to attach to this dentry 1797 * 1798 * Fill in inode information in the entry. On success, it returns NULL. 1799 * If an unhashed alias of "entry" already exists, then we return the 1800 * aliased dentry instead and drop one reference to inode. 1801 * 1802 * Note that in order to avoid conflicts with rename() etc, the caller 1803 * had better be holding the parent directory semaphore. 1804 * 1805 * This also assumes that the inode count has been incremented 1806 * (or otherwise set) by the caller to indicate that it is now 1807 * in use by the dcache. 1808 */ 1809 static struct dentry *__d_instantiate_unique(struct dentry *entry, 1810 struct inode *inode) 1811 { 1812 struct dentry *alias; 1813 int len = entry->d_name.len; 1814 const char *name = entry->d_name.name; 1815 unsigned int hash = entry->d_name.hash; 1816 1817 if (!inode) { 1818 __d_instantiate(entry, NULL); 1819 return NULL; 1820 } 1821 1822 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) { 1823 /* 1824 * Don't need alias->d_lock here, because aliases with 1825 * d_parent == entry->d_parent are not subject to name or 1826 * parent changes, because the parent inode i_mutex is held. 1827 */ 1828 if (alias->d_name.hash != hash) 1829 continue; 1830 if (alias->d_parent != entry->d_parent) 1831 continue; 1832 if (alias->d_name.len != len) 1833 continue; 1834 if (dentry_cmp(alias, name, len)) 1835 continue; 1836 __dget(alias); 1837 return alias; 1838 } 1839 1840 __d_instantiate(entry, inode); 1841 return NULL; 1842 } 1843 1844 struct dentry *d_instantiate_unique(struct dentry *entry, struct inode *inode) 1845 { 1846 struct dentry *result; 1847 1848 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias)); 1849 1850 if (inode) 1851 spin_lock(&inode->i_lock); 1852 result = __d_instantiate_unique(entry, inode); 1853 if (inode) 1854 spin_unlock(&inode->i_lock); 1855 1856 if (!result) { 1857 security_d_instantiate(entry, inode); 1858 return NULL; 1859 } 1860 1861 BUG_ON(!d_unhashed(result)); 1862 iput(inode); 1863 return result; 1864 } 1865 1866 EXPORT_SYMBOL(d_instantiate_unique); 1867 1868 /** 1869 * d_instantiate_no_diralias - instantiate a non-aliased dentry 1870 * @entry: dentry to complete 1871 * @inode: inode to attach to this dentry 1872 * 1873 * Fill in inode information in the entry. If a directory alias is found, then 1874 * return an error (and drop inode). Together with d_materialise_unique() this 1875 * guarantees that a directory inode may never have more than one alias. 1876 */ 1877 int d_instantiate_no_diralias(struct dentry *entry, struct inode *inode) 1878 { 1879 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias)); 1880 1881 spin_lock(&inode->i_lock); 1882 if (S_ISDIR(inode->i_mode) && !hlist_empty(&inode->i_dentry)) { 1883 spin_unlock(&inode->i_lock); 1884 iput(inode); 1885 return -EBUSY; 1886 } 1887 __d_instantiate(entry, inode); 1888 spin_unlock(&inode->i_lock); 1889 security_d_instantiate(entry, inode); 1890 1891 return 0; 1892 } 1893 EXPORT_SYMBOL(d_instantiate_no_diralias); 1894 1895 struct dentry *d_make_root(struct inode *root_inode) 1896 { 1897 struct dentry *res = NULL; 1898 1899 if (root_inode) { 1900 static const struct qstr name = QSTR_INIT("/", 1); 1901 1902 res = __d_alloc(root_inode->i_sb, &name); 1903 if (res) 1904 d_instantiate(res, root_inode); 1905 else 1906 iput(root_inode); 1907 } 1908 return res; 1909 } 1910 EXPORT_SYMBOL(d_make_root); 1911 1912 static struct dentry * __d_find_any_alias(struct inode *inode) 1913 { 1914 struct dentry *alias; 1915 1916 if (hlist_empty(&inode->i_dentry)) 1917 return NULL; 1918 alias = hlist_entry(inode->i_dentry.first, struct dentry, d_u.d_alias); 1919 __dget(alias); 1920 return alias; 1921 } 1922 1923 /** 1924 * d_find_any_alias - find any alias for a given inode 1925 * @inode: inode to find an alias for 1926 * 1927 * If any aliases exist for the given inode, take and return a 1928 * reference for one of them. If no aliases exist, return %NULL. 1929 */ 1930 struct dentry *d_find_any_alias(struct inode *inode) 1931 { 1932 struct dentry *de; 1933 1934 spin_lock(&inode->i_lock); 1935 de = __d_find_any_alias(inode); 1936 spin_unlock(&inode->i_lock); 1937 return de; 1938 } 1939 EXPORT_SYMBOL(d_find_any_alias); 1940 1941 static struct dentry *__d_obtain_alias(struct inode *inode, int disconnected) 1942 { 1943 static const struct qstr anonstring = QSTR_INIT("/", 1); 1944 struct dentry *tmp; 1945 struct dentry *res; 1946 unsigned add_flags; 1947 1948 if (!inode) 1949 return ERR_PTR(-ESTALE); 1950 if (IS_ERR(inode)) 1951 return ERR_CAST(inode); 1952 1953 res = d_find_any_alias(inode); 1954 if (res) 1955 goto out_iput; 1956 1957 tmp = __d_alloc(inode->i_sb, &anonstring); 1958 if (!tmp) { 1959 res = ERR_PTR(-ENOMEM); 1960 goto out_iput; 1961 } 1962 1963 spin_lock(&inode->i_lock); 1964 res = __d_find_any_alias(inode); 1965 if (res) { 1966 spin_unlock(&inode->i_lock); 1967 dput(tmp); 1968 goto out_iput; 1969 } 1970 1971 /* attach a disconnected dentry */ 1972 add_flags = d_flags_for_inode(inode); 1973 1974 if (disconnected) 1975 add_flags |= DCACHE_DISCONNECTED; 1976 1977 spin_lock(&tmp->d_lock); 1978 __d_set_inode_and_type(tmp, inode, add_flags); 1979 hlist_add_head(&tmp->d_u.d_alias, &inode->i_dentry); 1980 hlist_bl_lock(&tmp->d_sb->s_anon); 1981 hlist_bl_add_head(&tmp->d_hash, &tmp->d_sb->s_anon); 1982 hlist_bl_unlock(&tmp->d_sb->s_anon); 1983 spin_unlock(&tmp->d_lock); 1984 spin_unlock(&inode->i_lock); 1985 security_d_instantiate(tmp, inode); 1986 1987 return tmp; 1988 1989 out_iput: 1990 if (res && !IS_ERR(res)) 1991 security_d_instantiate(res, inode); 1992 iput(inode); 1993 return res; 1994 } 1995 1996 /** 1997 * d_obtain_alias - find or allocate a DISCONNECTED dentry for a given inode 1998 * @inode: inode to allocate the dentry for 1999 * 2000 * Obtain a dentry for an inode resulting from NFS filehandle conversion or 2001 * similar open by handle operations. The returned dentry may be anonymous, 2002 * or may have a full name (if the inode was already in the cache). 2003 * 2004 * When called on a directory inode, we must ensure that the inode only ever 2005 * has one dentry. If a dentry is found, that is returned instead of 2006 * allocating a new one. 2007 * 2008 * On successful return, the reference to the inode has been transferred 2009 * to the dentry. In case of an error the reference on the inode is released. 2010 * To make it easier to use in export operations a %NULL or IS_ERR inode may 2011 * be passed in and the error will be propagated to the return value, 2012 * with a %NULL @inode replaced by ERR_PTR(-ESTALE). 2013 */ 2014 struct dentry *d_obtain_alias(struct inode *inode) 2015 { 2016 return __d_obtain_alias(inode, 1); 2017 } 2018 EXPORT_SYMBOL(d_obtain_alias); 2019 2020 /** 2021 * d_obtain_root - find or allocate a dentry for a given inode 2022 * @inode: inode to allocate the dentry for 2023 * 2024 * Obtain an IS_ROOT dentry for the root of a filesystem. 2025 * 2026 * We must ensure that directory inodes only ever have one dentry. If a 2027 * dentry is found, that is returned instead of allocating a new one. 2028 * 2029 * On successful return, the reference to the inode has been transferred 2030 * to the dentry. In case of an error the reference on the inode is 2031 * released. A %NULL or IS_ERR inode may be passed in and will be the 2032 * error will be propagate to the return value, with a %NULL @inode 2033 * replaced by ERR_PTR(-ESTALE). 2034 */ 2035 struct dentry *d_obtain_root(struct inode *inode) 2036 { 2037 return __d_obtain_alias(inode, 0); 2038 } 2039 EXPORT_SYMBOL(d_obtain_root); 2040 2041 /** 2042 * d_add_ci - lookup or allocate new dentry with case-exact name 2043 * @inode: the inode case-insensitive lookup has found 2044 * @dentry: the negative dentry that was passed to the parent's lookup func 2045 * @name: the case-exact name to be associated with the returned dentry 2046 * 2047 * This is to avoid filling the dcache with case-insensitive names to the 2048 * same inode, only the actual correct case is stored in the dcache for 2049 * case-insensitive filesystems. 2050 * 2051 * For a case-insensitive lookup match and if the the case-exact dentry 2052 * already exists in in the dcache, use it and return it. 2053 * 2054 * If no entry exists with the exact case name, allocate new dentry with 2055 * the exact case, and return the spliced entry. 2056 */ 2057 struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode, 2058 struct qstr *name) 2059 { 2060 struct dentry *found; 2061 struct dentry *new; 2062 2063 /* 2064 * First check if a dentry matching the name already exists, 2065 * if not go ahead and create it now. 2066 */ 2067 found = d_hash_and_lookup(dentry->d_parent, name); 2068 if (!found) { 2069 new = d_alloc(dentry->d_parent, name); 2070 if (!new) { 2071 found = ERR_PTR(-ENOMEM); 2072 } else { 2073 found = d_splice_alias(inode, new); 2074 if (found) { 2075 dput(new); 2076 return found; 2077 } 2078 return new; 2079 } 2080 } 2081 iput(inode); 2082 return found; 2083 } 2084 EXPORT_SYMBOL(d_add_ci); 2085 2086 /* 2087 * Do the slow-case of the dentry name compare. 2088 * 2089 * Unlike the dentry_cmp() function, we need to atomically 2090 * load the name and length information, so that the 2091 * filesystem can rely on them, and can use the 'name' and 2092 * 'len' information without worrying about walking off the 2093 * end of memory etc. 2094 * 2095 * Thus the read_seqcount_retry() and the "duplicate" info 2096 * in arguments (the low-level filesystem should not look 2097 * at the dentry inode or name contents directly, since 2098 * rename can change them while we're in RCU mode). 2099 */ 2100 enum slow_d_compare { 2101 D_COMP_OK, 2102 D_COMP_NOMATCH, 2103 D_COMP_SEQRETRY, 2104 }; 2105 2106 static noinline enum slow_d_compare slow_dentry_cmp( 2107 const struct dentry *parent, 2108 struct dentry *dentry, 2109 unsigned int seq, 2110 const struct qstr *name) 2111 { 2112 int tlen = dentry->d_name.len; 2113 const char *tname = dentry->d_name.name; 2114 2115 if (read_seqcount_retry(&dentry->d_seq, seq)) { 2116 cpu_relax(); 2117 return D_COMP_SEQRETRY; 2118 } 2119 if (parent->d_op->d_compare(parent, dentry, tlen, tname, name)) 2120 return D_COMP_NOMATCH; 2121 return D_COMP_OK; 2122 } 2123 2124 /** 2125 * __d_lookup_rcu - search for a dentry (racy, store-free) 2126 * @parent: parent dentry 2127 * @name: qstr of name we wish to find 2128 * @seqp: returns d_seq value at the point where the dentry was found 2129 * Returns: dentry, or NULL 2130 * 2131 * __d_lookup_rcu is the dcache lookup function for rcu-walk name 2132 * resolution (store-free path walking) design described in 2133 * Documentation/filesystems/path-lookup.txt. 2134 * 2135 * This is not to be used outside core vfs. 2136 * 2137 * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock 2138 * held, and rcu_read_lock held. The returned dentry must not be stored into 2139 * without taking d_lock and checking d_seq sequence count against @seq 2140 * returned here. 2141 * 2142 * A refcount may be taken on the found dentry with the d_rcu_to_refcount 2143 * function. 2144 * 2145 * Alternatively, __d_lookup_rcu may be called again to look up the child of 2146 * the returned dentry, so long as its parent's seqlock is checked after the 2147 * child is looked up. Thus, an interlocking stepping of sequence lock checks 2148 * is formed, giving integrity down the path walk. 2149 * 2150 * NOTE! The caller *has* to check the resulting dentry against the sequence 2151 * number we've returned before using any of the resulting dentry state! 2152 */ 2153 struct dentry *__d_lookup_rcu(const struct dentry *parent, 2154 const struct qstr *name, 2155 unsigned *seqp) 2156 { 2157 u64 hashlen = name->hash_len; 2158 const unsigned char *str = name->name; 2159 struct hlist_bl_head *b = d_hash(parent, hashlen_hash(hashlen)); 2160 struct hlist_bl_node *node; 2161 struct dentry *dentry; 2162 2163 /* 2164 * Note: There is significant duplication with __d_lookup_rcu which is 2165 * required to prevent single threaded performance regressions 2166 * especially on architectures where smp_rmb (in seqcounts) are costly. 2167 * Keep the two functions in sync. 2168 */ 2169 2170 /* 2171 * The hash list is protected using RCU. 2172 * 2173 * Carefully use d_seq when comparing a candidate dentry, to avoid 2174 * races with d_move(). 2175 * 2176 * It is possible that concurrent renames can mess up our list 2177 * walk here and result in missing our dentry, resulting in the 2178 * false-negative result. d_lookup() protects against concurrent 2179 * renames using rename_lock seqlock. 2180 * 2181 * See Documentation/filesystems/path-lookup.txt for more details. 2182 */ 2183 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) { 2184 unsigned seq; 2185 2186 seqretry: 2187 /* 2188 * The dentry sequence count protects us from concurrent 2189 * renames, and thus protects parent and name fields. 2190 * 2191 * The caller must perform a seqcount check in order 2192 * to do anything useful with the returned dentry. 2193 * 2194 * NOTE! We do a "raw" seqcount_begin here. That means that 2195 * we don't wait for the sequence count to stabilize if it 2196 * is in the middle of a sequence change. If we do the slow 2197 * dentry compare, we will do seqretries until it is stable, 2198 * and if we end up with a successful lookup, we actually 2199 * want to exit RCU lookup anyway. 2200 */ 2201 seq = raw_seqcount_begin(&dentry->d_seq); 2202 if (dentry->d_parent != parent) 2203 continue; 2204 if (d_unhashed(dentry)) 2205 continue; 2206 2207 if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) { 2208 if (dentry->d_name.hash != hashlen_hash(hashlen)) 2209 continue; 2210 *seqp = seq; 2211 switch (slow_dentry_cmp(parent, dentry, seq, name)) { 2212 case D_COMP_OK: 2213 return dentry; 2214 case D_COMP_NOMATCH: 2215 continue; 2216 default: 2217 goto seqretry; 2218 } 2219 } 2220 2221 if (dentry->d_name.hash_len != hashlen) 2222 continue; 2223 *seqp = seq; 2224 if (!dentry_cmp(dentry, str, hashlen_len(hashlen))) 2225 return dentry; 2226 } 2227 return NULL; 2228 } 2229 2230 /** 2231 * d_lookup - search for a dentry 2232 * @parent: parent dentry 2233 * @name: qstr of name we wish to find 2234 * Returns: dentry, or NULL 2235 * 2236 * d_lookup searches the children of the parent dentry for the name in 2237 * question. If the dentry is found its reference count is incremented and the 2238 * dentry is returned. The caller must use dput to free the entry when it has 2239 * finished using it. %NULL is returned if the dentry does not exist. 2240 */ 2241 struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name) 2242 { 2243 struct dentry *dentry; 2244 unsigned seq; 2245 2246 do { 2247 seq = read_seqbegin(&rename_lock); 2248 dentry = __d_lookup(parent, name); 2249 if (dentry) 2250 break; 2251 } while (read_seqretry(&rename_lock, seq)); 2252 return dentry; 2253 } 2254 EXPORT_SYMBOL(d_lookup); 2255 2256 /** 2257 * __d_lookup - search for a dentry (racy) 2258 * @parent: parent dentry 2259 * @name: qstr of name we wish to find 2260 * Returns: dentry, or NULL 2261 * 2262 * __d_lookup is like d_lookup, however it may (rarely) return a 2263 * false-negative result due to unrelated rename activity. 2264 * 2265 * __d_lookup is slightly faster by avoiding rename_lock read seqlock, 2266 * however it must be used carefully, eg. with a following d_lookup in 2267 * the case of failure. 2268 * 2269 * __d_lookup callers must be commented. 2270 */ 2271 struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name) 2272 { 2273 unsigned int len = name->len; 2274 unsigned int hash = name->hash; 2275 const unsigned char *str = name->name; 2276 struct hlist_bl_head *b = d_hash(parent, hash); 2277 struct hlist_bl_node *node; 2278 struct dentry *found = NULL; 2279 struct dentry *dentry; 2280 2281 /* 2282 * Note: There is significant duplication with __d_lookup_rcu which is 2283 * required to prevent single threaded performance regressions 2284 * especially on architectures where smp_rmb (in seqcounts) are costly. 2285 * Keep the two functions in sync. 2286 */ 2287 2288 /* 2289 * The hash list is protected using RCU. 2290 * 2291 * Take d_lock when comparing a candidate dentry, to avoid races 2292 * with d_move(). 2293 * 2294 * It is possible that concurrent renames can mess up our list 2295 * walk here and result in missing our dentry, resulting in the 2296 * false-negative result. d_lookup() protects against concurrent 2297 * renames using rename_lock seqlock. 2298 * 2299 * See Documentation/filesystems/path-lookup.txt for more details. 2300 */ 2301 rcu_read_lock(); 2302 2303 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) { 2304 2305 if (dentry->d_name.hash != hash) 2306 continue; 2307 2308 spin_lock(&dentry->d_lock); 2309 if (dentry->d_parent != parent) 2310 goto next; 2311 if (d_unhashed(dentry)) 2312 goto next; 2313 2314 /* 2315 * It is safe to compare names since d_move() cannot 2316 * change the qstr (protected by d_lock). 2317 */ 2318 if (parent->d_flags & DCACHE_OP_COMPARE) { 2319 int tlen = dentry->d_name.len; 2320 const char *tname = dentry->d_name.name; 2321 if (parent->d_op->d_compare(parent, dentry, tlen, tname, name)) 2322 goto next; 2323 } else { 2324 if (dentry->d_name.len != len) 2325 goto next; 2326 if (dentry_cmp(dentry, str, len)) 2327 goto next; 2328 } 2329 2330 dentry->d_lockref.count++; 2331 found = dentry; 2332 spin_unlock(&dentry->d_lock); 2333 break; 2334 next: 2335 spin_unlock(&dentry->d_lock); 2336 } 2337 rcu_read_unlock(); 2338 2339 return found; 2340 } 2341 2342 /** 2343 * d_hash_and_lookup - hash the qstr then search for a dentry 2344 * @dir: Directory to search in 2345 * @name: qstr of name we wish to find 2346 * 2347 * On lookup failure NULL is returned; on bad name - ERR_PTR(-error) 2348 */ 2349 struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name) 2350 { 2351 /* 2352 * Check for a fs-specific hash function. Note that we must 2353 * calculate the standard hash first, as the d_op->d_hash() 2354 * routine may choose to leave the hash value unchanged. 2355 */ 2356 name->hash = full_name_hash(name->name, name->len); 2357 if (dir->d_flags & DCACHE_OP_HASH) { 2358 int err = dir->d_op->d_hash(dir, name); 2359 if (unlikely(err < 0)) 2360 return ERR_PTR(err); 2361 } 2362 return d_lookup(dir, name); 2363 } 2364 EXPORT_SYMBOL(d_hash_and_lookup); 2365 2366 /* 2367 * When a file is deleted, we have two options: 2368 * - turn this dentry into a negative dentry 2369 * - unhash this dentry and free it. 2370 * 2371 * Usually, we want to just turn this into 2372 * a negative dentry, but if anybody else is 2373 * currently using the dentry or the inode 2374 * we can't do that and we fall back on removing 2375 * it from the hash queues and waiting for 2376 * it to be deleted later when it has no users 2377 */ 2378 2379 /** 2380 * d_delete - delete a dentry 2381 * @dentry: The dentry to delete 2382 * 2383 * Turn the dentry into a negative dentry if possible, otherwise 2384 * remove it from the hash queues so it can be deleted later 2385 */ 2386 2387 void d_delete(struct dentry * dentry) 2388 { 2389 struct inode *inode; 2390 int isdir = 0; 2391 /* 2392 * Are we the only user? 2393 */ 2394 again: 2395 spin_lock(&dentry->d_lock); 2396 inode = dentry->d_inode; 2397 isdir = S_ISDIR(inode->i_mode); 2398 if (dentry->d_lockref.count == 1) { 2399 if (!spin_trylock(&inode->i_lock)) { 2400 spin_unlock(&dentry->d_lock); 2401 cpu_relax(); 2402 goto again; 2403 } 2404 dentry->d_flags &= ~DCACHE_CANT_MOUNT; 2405 dentry_unlink_inode(dentry); 2406 fsnotify_nameremove(dentry, isdir); 2407 return; 2408 } 2409 2410 if (!d_unhashed(dentry)) 2411 __d_drop(dentry); 2412 2413 spin_unlock(&dentry->d_lock); 2414 2415 fsnotify_nameremove(dentry, isdir); 2416 } 2417 EXPORT_SYMBOL(d_delete); 2418 2419 static void __d_rehash(struct dentry * entry, struct hlist_bl_head *b) 2420 { 2421 BUG_ON(!d_unhashed(entry)); 2422 hlist_bl_lock(b); 2423 entry->d_flags |= DCACHE_RCUACCESS; 2424 hlist_bl_add_head_rcu(&entry->d_hash, b); 2425 hlist_bl_unlock(b); 2426 } 2427 2428 static void _d_rehash(struct dentry * entry) 2429 { 2430 __d_rehash(entry, d_hash(entry->d_parent, entry->d_name.hash)); 2431 } 2432 2433 /** 2434 * d_rehash - add an entry back to the hash 2435 * @entry: dentry to add to the hash 2436 * 2437 * Adds a dentry to the hash according to its name. 2438 */ 2439 2440 void d_rehash(struct dentry * entry) 2441 { 2442 spin_lock(&entry->d_lock); 2443 _d_rehash(entry); 2444 spin_unlock(&entry->d_lock); 2445 } 2446 EXPORT_SYMBOL(d_rehash); 2447 2448 /** 2449 * dentry_update_name_case - update case insensitive dentry with a new name 2450 * @dentry: dentry to be updated 2451 * @name: new name 2452 * 2453 * Update a case insensitive dentry with new case of name. 2454 * 2455 * dentry must have been returned by d_lookup with name @name. Old and new 2456 * name lengths must match (ie. no d_compare which allows mismatched name 2457 * lengths). 2458 * 2459 * Parent inode i_mutex must be held over d_lookup and into this call (to 2460 * keep renames and concurrent inserts, and readdir(2) away). 2461 */ 2462 void dentry_update_name_case(struct dentry *dentry, struct qstr *name) 2463 { 2464 BUG_ON(!mutex_is_locked(&dentry->d_parent->d_inode->i_mutex)); 2465 BUG_ON(dentry->d_name.len != name->len); /* d_lookup gives this */ 2466 2467 spin_lock(&dentry->d_lock); 2468 write_seqcount_begin(&dentry->d_seq); 2469 memcpy((unsigned char *)dentry->d_name.name, name->name, name->len); 2470 write_seqcount_end(&dentry->d_seq); 2471 spin_unlock(&dentry->d_lock); 2472 } 2473 EXPORT_SYMBOL(dentry_update_name_case); 2474 2475 static void swap_names(struct dentry *dentry, struct dentry *target) 2476 { 2477 if (unlikely(dname_external(target))) { 2478 if (unlikely(dname_external(dentry))) { 2479 /* 2480 * Both external: swap the pointers 2481 */ 2482 swap(target->d_name.name, dentry->d_name.name); 2483 } else { 2484 /* 2485 * dentry:internal, target:external. Steal target's 2486 * storage and make target internal. 2487 */ 2488 memcpy(target->d_iname, dentry->d_name.name, 2489 dentry->d_name.len + 1); 2490 dentry->d_name.name = target->d_name.name; 2491 target->d_name.name = target->d_iname; 2492 } 2493 } else { 2494 if (unlikely(dname_external(dentry))) { 2495 /* 2496 * dentry:external, target:internal. Give dentry's 2497 * storage to target and make dentry internal 2498 */ 2499 memcpy(dentry->d_iname, target->d_name.name, 2500 target->d_name.len + 1); 2501 target->d_name.name = dentry->d_name.name; 2502 dentry->d_name.name = dentry->d_iname; 2503 } else { 2504 /* 2505 * Both are internal. 2506 */ 2507 unsigned int i; 2508 BUILD_BUG_ON(!IS_ALIGNED(DNAME_INLINE_LEN, sizeof(long))); 2509 kmemcheck_mark_initialized(dentry->d_iname, DNAME_INLINE_LEN); 2510 kmemcheck_mark_initialized(target->d_iname, DNAME_INLINE_LEN); 2511 for (i = 0; i < DNAME_INLINE_LEN / sizeof(long); i++) { 2512 swap(((long *) &dentry->d_iname)[i], 2513 ((long *) &target->d_iname)[i]); 2514 } 2515 } 2516 } 2517 swap(dentry->d_name.hash_len, target->d_name.hash_len); 2518 } 2519 2520 static void copy_name(struct dentry *dentry, struct dentry *target) 2521 { 2522 struct external_name *old_name = NULL; 2523 if (unlikely(dname_external(dentry))) 2524 old_name = external_name(dentry); 2525 if (unlikely(dname_external(target))) { 2526 atomic_inc(&external_name(target)->u.count); 2527 dentry->d_name = target->d_name; 2528 } else { 2529 memcpy(dentry->d_iname, target->d_name.name, 2530 target->d_name.len + 1); 2531 dentry->d_name.name = dentry->d_iname; 2532 dentry->d_name.hash_len = target->d_name.hash_len; 2533 } 2534 if (old_name && likely(atomic_dec_and_test(&old_name->u.count))) 2535 kfree_rcu(old_name, u.head); 2536 } 2537 2538 static void dentry_lock_for_move(struct dentry *dentry, struct dentry *target) 2539 { 2540 /* 2541 * XXXX: do we really need to take target->d_lock? 2542 */ 2543 if (IS_ROOT(dentry) || dentry->d_parent == target->d_parent) 2544 spin_lock(&target->d_parent->d_lock); 2545 else { 2546 if (d_ancestor(dentry->d_parent, target->d_parent)) { 2547 spin_lock(&dentry->d_parent->d_lock); 2548 spin_lock_nested(&target->d_parent->d_lock, 2549 DENTRY_D_LOCK_NESTED); 2550 } else { 2551 spin_lock(&target->d_parent->d_lock); 2552 spin_lock_nested(&dentry->d_parent->d_lock, 2553 DENTRY_D_LOCK_NESTED); 2554 } 2555 } 2556 if (target < dentry) { 2557 spin_lock_nested(&target->d_lock, 2); 2558 spin_lock_nested(&dentry->d_lock, 3); 2559 } else { 2560 spin_lock_nested(&dentry->d_lock, 2); 2561 spin_lock_nested(&target->d_lock, 3); 2562 } 2563 } 2564 2565 static void dentry_unlock_for_move(struct dentry *dentry, struct dentry *target) 2566 { 2567 if (target->d_parent != dentry->d_parent) 2568 spin_unlock(&dentry->d_parent->d_lock); 2569 if (target->d_parent != target) 2570 spin_unlock(&target->d_parent->d_lock); 2571 spin_unlock(&target->d_lock); 2572 spin_unlock(&dentry->d_lock); 2573 } 2574 2575 /* 2576 * When switching names, the actual string doesn't strictly have to 2577 * be preserved in the target - because we're dropping the target 2578 * anyway. As such, we can just do a simple memcpy() to copy over 2579 * the new name before we switch, unless we are going to rehash 2580 * it. Note that if we *do* unhash the target, we are not allowed 2581 * to rehash it without giving it a new name/hash key - whether 2582 * we swap or overwrite the names here, resulting name won't match 2583 * the reality in filesystem; it's only there for d_path() purposes. 2584 * Note that all of this is happening under rename_lock, so the 2585 * any hash lookup seeing it in the middle of manipulations will 2586 * be discarded anyway. So we do not care what happens to the hash 2587 * key in that case. 2588 */ 2589 /* 2590 * __d_move - move a dentry 2591 * @dentry: entry to move 2592 * @target: new dentry 2593 * @exchange: exchange the two dentries 2594 * 2595 * Update the dcache to reflect the move of a file name. Negative 2596 * dcache entries should not be moved in this way. Caller must hold 2597 * rename_lock, the i_mutex of the source and target directories, 2598 * and the sb->s_vfs_rename_mutex if they differ. See lock_rename(). 2599 */ 2600 static void __d_move(struct dentry *dentry, struct dentry *target, 2601 bool exchange) 2602 { 2603 if (!dentry->d_inode) 2604 printk(KERN_WARNING "VFS: moving negative dcache entry\n"); 2605 2606 BUG_ON(d_ancestor(dentry, target)); 2607 BUG_ON(d_ancestor(target, dentry)); 2608 2609 dentry_lock_for_move(dentry, target); 2610 2611 write_seqcount_begin(&dentry->d_seq); 2612 write_seqcount_begin_nested(&target->d_seq, DENTRY_D_LOCK_NESTED); 2613 2614 /* __d_drop does write_seqcount_barrier, but they're OK to nest. */ 2615 2616 /* 2617 * Move the dentry to the target hash queue. Don't bother checking 2618 * for the same hash queue because of how unlikely it is. 2619 */ 2620 __d_drop(dentry); 2621 __d_rehash(dentry, d_hash(target->d_parent, target->d_name.hash)); 2622 2623 /* 2624 * Unhash the target (d_delete() is not usable here). If exchanging 2625 * the two dentries, then rehash onto the other's hash queue. 2626 */ 2627 __d_drop(target); 2628 if (exchange) { 2629 __d_rehash(target, 2630 d_hash(dentry->d_parent, dentry->d_name.hash)); 2631 } 2632 2633 /* Switch the names.. */ 2634 if (exchange) 2635 swap_names(dentry, target); 2636 else 2637 copy_name(dentry, target); 2638 2639 /* ... and switch them in the tree */ 2640 if (IS_ROOT(dentry)) { 2641 /* splicing a tree */ 2642 dentry->d_parent = target->d_parent; 2643 target->d_parent = target; 2644 list_del_init(&target->d_child); 2645 list_move(&dentry->d_child, &dentry->d_parent->d_subdirs); 2646 } else { 2647 /* swapping two dentries */ 2648 swap(dentry->d_parent, target->d_parent); 2649 list_move(&target->d_child, &target->d_parent->d_subdirs); 2650 list_move(&dentry->d_child, &dentry->d_parent->d_subdirs); 2651 if (exchange) 2652 fsnotify_d_move(target); 2653 fsnotify_d_move(dentry); 2654 } 2655 2656 write_seqcount_end(&target->d_seq); 2657 write_seqcount_end(&dentry->d_seq); 2658 2659 dentry_unlock_for_move(dentry, target); 2660 } 2661 2662 /* 2663 * d_move - move a dentry 2664 * @dentry: entry to move 2665 * @target: new dentry 2666 * 2667 * Update the dcache to reflect the move of a file name. Negative 2668 * dcache entries should not be moved in this way. See the locking 2669 * requirements for __d_move. 2670 */ 2671 void d_move(struct dentry *dentry, struct dentry *target) 2672 { 2673 write_seqlock(&rename_lock); 2674 __d_move(dentry, target, false); 2675 write_sequnlock(&rename_lock); 2676 } 2677 EXPORT_SYMBOL(d_move); 2678 2679 /* 2680 * d_exchange - exchange two dentries 2681 * @dentry1: first dentry 2682 * @dentry2: second dentry 2683 */ 2684 void d_exchange(struct dentry *dentry1, struct dentry *dentry2) 2685 { 2686 write_seqlock(&rename_lock); 2687 2688 WARN_ON(!dentry1->d_inode); 2689 WARN_ON(!dentry2->d_inode); 2690 WARN_ON(IS_ROOT(dentry1)); 2691 WARN_ON(IS_ROOT(dentry2)); 2692 2693 __d_move(dentry1, dentry2, true); 2694 2695 write_sequnlock(&rename_lock); 2696 } 2697 2698 /** 2699 * d_ancestor - search for an ancestor 2700 * @p1: ancestor dentry 2701 * @p2: child dentry 2702 * 2703 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is 2704 * an ancestor of p2, else NULL. 2705 */ 2706 struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2) 2707 { 2708 struct dentry *p; 2709 2710 for (p = p2; !IS_ROOT(p); p = p->d_parent) { 2711 if (p->d_parent == p1) 2712 return p; 2713 } 2714 return NULL; 2715 } 2716 2717 /* 2718 * This helper attempts to cope with remotely renamed directories 2719 * 2720 * It assumes that the caller is already holding 2721 * dentry->d_parent->d_inode->i_mutex, and rename_lock 2722 * 2723 * Note: If ever the locking in lock_rename() changes, then please 2724 * remember to update this too... 2725 */ 2726 static int __d_unalias(struct inode *inode, 2727 struct dentry *dentry, struct dentry *alias) 2728 { 2729 struct mutex *m1 = NULL, *m2 = NULL; 2730 int ret = -ESTALE; 2731 2732 /* If alias and dentry share a parent, then no extra locks required */ 2733 if (alias->d_parent == dentry->d_parent) 2734 goto out_unalias; 2735 2736 /* See lock_rename() */ 2737 if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex)) 2738 goto out_err; 2739 m1 = &dentry->d_sb->s_vfs_rename_mutex; 2740 if (!mutex_trylock(&alias->d_parent->d_inode->i_mutex)) 2741 goto out_err; 2742 m2 = &alias->d_parent->d_inode->i_mutex; 2743 out_unalias: 2744 __d_move(alias, dentry, false); 2745 ret = 0; 2746 out_err: 2747 if (m2) 2748 mutex_unlock(m2); 2749 if (m1) 2750 mutex_unlock(m1); 2751 return ret; 2752 } 2753 2754 /** 2755 * d_splice_alias - splice a disconnected dentry into the tree if one exists 2756 * @inode: the inode which may have a disconnected dentry 2757 * @dentry: a negative dentry which we want to point to the inode. 2758 * 2759 * If inode is a directory and has an IS_ROOT alias, then d_move that in 2760 * place of the given dentry and return it, else simply d_add the inode 2761 * to the dentry and return NULL. 2762 * 2763 * If a non-IS_ROOT directory is found, the filesystem is corrupt, and 2764 * we should error out: directories can't have multiple aliases. 2765 * 2766 * This is needed in the lookup routine of any filesystem that is exportable 2767 * (via knfsd) so that we can build dcache paths to directories effectively. 2768 * 2769 * If a dentry was found and moved, then it is returned. Otherwise NULL 2770 * is returned. This matches the expected return value of ->lookup. 2771 * 2772 * Cluster filesystems may call this function with a negative, hashed dentry. 2773 * In that case, we know that the inode will be a regular file, and also this 2774 * will only occur during atomic_open. So we need to check for the dentry 2775 * being already hashed only in the final case. 2776 */ 2777 struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry) 2778 { 2779 if (IS_ERR(inode)) 2780 return ERR_CAST(inode); 2781 2782 BUG_ON(!d_unhashed(dentry)); 2783 2784 if (!inode) { 2785 __d_instantiate(dentry, NULL); 2786 goto out; 2787 } 2788 spin_lock(&inode->i_lock); 2789 if (S_ISDIR(inode->i_mode)) { 2790 struct dentry *new = __d_find_any_alias(inode); 2791 if (unlikely(new)) { 2792 /* The reference to new ensures it remains an alias */ 2793 spin_unlock(&inode->i_lock); 2794 write_seqlock(&rename_lock); 2795 if (unlikely(d_ancestor(new, dentry))) { 2796 write_sequnlock(&rename_lock); 2797 dput(new); 2798 new = ERR_PTR(-ELOOP); 2799 pr_warn_ratelimited( 2800 "VFS: Lookup of '%s' in %s %s" 2801 " would have caused loop\n", 2802 dentry->d_name.name, 2803 inode->i_sb->s_type->name, 2804 inode->i_sb->s_id); 2805 } else if (!IS_ROOT(new)) { 2806 int err = __d_unalias(inode, dentry, new); 2807 write_sequnlock(&rename_lock); 2808 if (err) { 2809 dput(new); 2810 new = ERR_PTR(err); 2811 } 2812 } else { 2813 __d_move(new, dentry, false); 2814 write_sequnlock(&rename_lock); 2815 security_d_instantiate(new, inode); 2816 } 2817 iput(inode); 2818 return new; 2819 } 2820 } 2821 /* already taking inode->i_lock, so d_add() by hand */ 2822 __d_instantiate(dentry, inode); 2823 spin_unlock(&inode->i_lock); 2824 out: 2825 security_d_instantiate(dentry, inode); 2826 d_rehash(dentry); 2827 return NULL; 2828 } 2829 EXPORT_SYMBOL(d_splice_alias); 2830 2831 static int prepend(char **buffer, int *buflen, const char *str, int namelen) 2832 { 2833 *buflen -= namelen; 2834 if (*buflen < 0) 2835 return -ENAMETOOLONG; 2836 *buffer -= namelen; 2837 memcpy(*buffer, str, namelen); 2838 return 0; 2839 } 2840 2841 /** 2842 * prepend_name - prepend a pathname in front of current buffer pointer 2843 * @buffer: buffer pointer 2844 * @buflen: allocated length of the buffer 2845 * @name: name string and length qstr structure 2846 * 2847 * With RCU path tracing, it may race with d_move(). Use ACCESS_ONCE() to 2848 * make sure that either the old or the new name pointer and length are 2849 * fetched. However, there may be mismatch between length and pointer. 2850 * The length cannot be trusted, we need to copy it byte-by-byte until 2851 * the length is reached or a null byte is found. It also prepends "/" at 2852 * the beginning of the name. The sequence number check at the caller will 2853 * retry it again when a d_move() does happen. So any garbage in the buffer 2854 * due to mismatched pointer and length will be discarded. 2855 * 2856 * Data dependency barrier is needed to make sure that we see that terminating 2857 * NUL. Alpha strikes again, film at 11... 2858 */ 2859 static int prepend_name(char **buffer, int *buflen, struct qstr *name) 2860 { 2861 const char *dname = ACCESS_ONCE(name->name); 2862 u32 dlen = ACCESS_ONCE(name->len); 2863 char *p; 2864 2865 smp_read_barrier_depends(); 2866 2867 *buflen -= dlen + 1; 2868 if (*buflen < 0) 2869 return -ENAMETOOLONG; 2870 p = *buffer -= dlen + 1; 2871 *p++ = '/'; 2872 while (dlen--) { 2873 char c = *dname++; 2874 if (!c) 2875 break; 2876 *p++ = c; 2877 } 2878 return 0; 2879 } 2880 2881 /** 2882 * prepend_path - Prepend path string to a buffer 2883 * @path: the dentry/vfsmount to report 2884 * @root: root vfsmnt/dentry 2885 * @buffer: pointer to the end of the buffer 2886 * @buflen: pointer to buffer length 2887 * 2888 * The function will first try to write out the pathname without taking any 2889 * lock other than the RCU read lock to make sure that dentries won't go away. 2890 * It only checks the sequence number of the global rename_lock as any change 2891 * in the dentry's d_seq will be preceded by changes in the rename_lock 2892 * sequence number. If the sequence number had been changed, it will restart 2893 * the whole pathname back-tracing sequence again by taking the rename_lock. 2894 * In this case, there is no need to take the RCU read lock as the recursive 2895 * parent pointer references will keep the dentry chain alive as long as no 2896 * rename operation is performed. 2897 */ 2898 static int prepend_path(const struct path *path, 2899 const struct path *root, 2900 char **buffer, int *buflen) 2901 { 2902 struct dentry *dentry; 2903 struct vfsmount *vfsmnt; 2904 struct mount *mnt; 2905 int error = 0; 2906 unsigned seq, m_seq = 0; 2907 char *bptr; 2908 int blen; 2909 2910 rcu_read_lock(); 2911 restart_mnt: 2912 read_seqbegin_or_lock(&mount_lock, &m_seq); 2913 seq = 0; 2914 rcu_read_lock(); 2915 restart: 2916 bptr = *buffer; 2917 blen = *buflen; 2918 error = 0; 2919 dentry = path->dentry; 2920 vfsmnt = path->mnt; 2921 mnt = real_mount(vfsmnt); 2922 read_seqbegin_or_lock(&rename_lock, &seq); 2923 while (dentry != root->dentry || vfsmnt != root->mnt) { 2924 struct dentry * parent; 2925 2926 if (dentry == vfsmnt->mnt_root || IS_ROOT(dentry)) { 2927 struct mount *parent = ACCESS_ONCE(mnt->mnt_parent); 2928 /* Escaped? */ 2929 if (dentry != vfsmnt->mnt_root) { 2930 bptr = *buffer; 2931 blen = *buflen; 2932 error = 3; 2933 break; 2934 } 2935 /* Global root? */ 2936 if (mnt != parent) { 2937 dentry = ACCESS_ONCE(mnt->mnt_mountpoint); 2938 mnt = parent; 2939 vfsmnt = &mnt->mnt; 2940 continue; 2941 } 2942 if (!error) 2943 error = is_mounted(vfsmnt) ? 1 : 2; 2944 break; 2945 } 2946 parent = dentry->d_parent; 2947 prefetch(parent); 2948 error = prepend_name(&bptr, &blen, &dentry->d_name); 2949 if (error) 2950 break; 2951 2952 dentry = parent; 2953 } 2954 if (!(seq & 1)) 2955 rcu_read_unlock(); 2956 if (need_seqretry(&rename_lock, seq)) { 2957 seq = 1; 2958 goto restart; 2959 } 2960 done_seqretry(&rename_lock, seq); 2961 2962 if (!(m_seq & 1)) 2963 rcu_read_unlock(); 2964 if (need_seqretry(&mount_lock, m_seq)) { 2965 m_seq = 1; 2966 goto restart_mnt; 2967 } 2968 done_seqretry(&mount_lock, m_seq); 2969 2970 if (error >= 0 && bptr == *buffer) { 2971 if (--blen < 0) 2972 error = -ENAMETOOLONG; 2973 else 2974 *--bptr = '/'; 2975 } 2976 *buffer = bptr; 2977 *buflen = blen; 2978 return error; 2979 } 2980 2981 /** 2982 * __d_path - return the path of a dentry 2983 * @path: the dentry/vfsmount to report 2984 * @root: root vfsmnt/dentry 2985 * @buf: buffer to return value in 2986 * @buflen: buffer length 2987 * 2988 * Convert a dentry into an ASCII path name. 2989 * 2990 * Returns a pointer into the buffer or an error code if the 2991 * path was too long. 2992 * 2993 * "buflen" should be positive. 2994 * 2995 * If the path is not reachable from the supplied root, return %NULL. 2996 */ 2997 char *__d_path(const struct path *path, 2998 const struct path *root, 2999 char *buf, int buflen) 3000 { 3001 char *res = buf + buflen; 3002 int error; 3003 3004 prepend(&res, &buflen, "\0", 1); 3005 error = prepend_path(path, root, &res, &buflen); 3006 3007 if (error < 0) 3008 return ERR_PTR(error); 3009 if (error > 0) 3010 return NULL; 3011 return res; 3012 } 3013 3014 char *d_absolute_path(const struct path *path, 3015 char *buf, int buflen) 3016 { 3017 struct path root = {}; 3018 char *res = buf + buflen; 3019 int error; 3020 3021 prepend(&res, &buflen, "\0", 1); 3022 error = prepend_path(path, &root, &res, &buflen); 3023 3024 if (error > 1) 3025 error = -EINVAL; 3026 if (error < 0) 3027 return ERR_PTR(error); 3028 return res; 3029 } 3030 3031 /* 3032 * same as __d_path but appends "(deleted)" for unlinked files. 3033 */ 3034 static int path_with_deleted(const struct path *path, 3035 const struct path *root, 3036 char **buf, int *buflen) 3037 { 3038 prepend(buf, buflen, "\0", 1); 3039 if (d_unlinked(path->dentry)) { 3040 int error = prepend(buf, buflen, " (deleted)", 10); 3041 if (error) 3042 return error; 3043 } 3044 3045 return prepend_path(path, root, buf, buflen); 3046 } 3047 3048 static int prepend_unreachable(char **buffer, int *buflen) 3049 { 3050 return prepend(buffer, buflen, "(unreachable)", 13); 3051 } 3052 3053 static void get_fs_root_rcu(struct fs_struct *fs, struct path *root) 3054 { 3055 unsigned seq; 3056 3057 do { 3058 seq = read_seqcount_begin(&fs->seq); 3059 *root = fs->root; 3060 } while (read_seqcount_retry(&fs->seq, seq)); 3061 } 3062 3063 /** 3064 * d_path - return the path of a dentry 3065 * @path: path to report 3066 * @buf: buffer to return value in 3067 * @buflen: buffer length 3068 * 3069 * Convert a dentry into an ASCII path name. If the entry has been deleted 3070 * the string " (deleted)" is appended. Note that this is ambiguous. 3071 * 3072 * Returns a pointer into the buffer or an error code if the path was 3073 * too long. Note: Callers should use the returned pointer, not the passed 3074 * in buffer, to use the name! The implementation often starts at an offset 3075 * into the buffer, and may leave 0 bytes at the start. 3076 * 3077 * "buflen" should be positive. 3078 */ 3079 char *d_path(const struct path *path, char *buf, int buflen) 3080 { 3081 char *res = buf + buflen; 3082 struct path root; 3083 int error; 3084 3085 /* 3086 * We have various synthetic filesystems that never get mounted. On 3087 * these filesystems dentries are never used for lookup purposes, and 3088 * thus don't need to be hashed. They also don't need a name until a 3089 * user wants to identify the object in /proc/pid/fd/. The little hack 3090 * below allows us to generate a name for these objects on demand: 3091 * 3092 * Some pseudo inodes are mountable. When they are mounted 3093 * path->dentry == path->mnt->mnt_root. In that case don't call d_dname 3094 * and instead have d_path return the mounted path. 3095 */ 3096 if (path->dentry->d_op && path->dentry->d_op->d_dname && 3097 (!IS_ROOT(path->dentry) || path->dentry != path->mnt->mnt_root)) 3098 return path->dentry->d_op->d_dname(path->dentry, buf, buflen); 3099 3100 rcu_read_lock(); 3101 get_fs_root_rcu(current->fs, &root); 3102 error = path_with_deleted(path, &root, &res, &buflen); 3103 rcu_read_unlock(); 3104 3105 if (error < 0) 3106 res = ERR_PTR(error); 3107 return res; 3108 } 3109 EXPORT_SYMBOL(d_path); 3110 3111 /* 3112 * Helper function for dentry_operations.d_dname() members 3113 */ 3114 char *dynamic_dname(struct dentry *dentry, char *buffer, int buflen, 3115 const char *fmt, ...) 3116 { 3117 va_list args; 3118 char temp[64]; 3119 int sz; 3120 3121 va_start(args, fmt); 3122 sz = vsnprintf(temp, sizeof(temp), fmt, args) + 1; 3123 va_end(args); 3124 3125 if (sz > sizeof(temp) || sz > buflen) 3126 return ERR_PTR(-ENAMETOOLONG); 3127 3128 buffer += buflen - sz; 3129 return memcpy(buffer, temp, sz); 3130 } 3131 3132 char *simple_dname(struct dentry *dentry, char *buffer, int buflen) 3133 { 3134 char *end = buffer + buflen; 3135 /* these dentries are never renamed, so d_lock is not needed */ 3136 if (prepend(&end, &buflen, " (deleted)", 11) || 3137 prepend(&end, &buflen, dentry->d_name.name, dentry->d_name.len) || 3138 prepend(&end, &buflen, "/", 1)) 3139 end = ERR_PTR(-ENAMETOOLONG); 3140 return end; 3141 } 3142 EXPORT_SYMBOL(simple_dname); 3143 3144 /* 3145 * Write full pathname from the root of the filesystem into the buffer. 3146 */ 3147 static char *__dentry_path(struct dentry *d, char *buf, int buflen) 3148 { 3149 struct dentry *dentry; 3150 char *end, *retval; 3151 int len, seq = 0; 3152 int error = 0; 3153 3154 if (buflen < 2) 3155 goto Elong; 3156 3157 rcu_read_lock(); 3158 restart: 3159 dentry = d; 3160 end = buf + buflen; 3161 len = buflen; 3162 prepend(&end, &len, "\0", 1); 3163 /* Get '/' right */ 3164 retval = end-1; 3165 *retval = '/'; 3166 read_seqbegin_or_lock(&rename_lock, &seq); 3167 while (!IS_ROOT(dentry)) { 3168 struct dentry *parent = dentry->d_parent; 3169 3170 prefetch(parent); 3171 error = prepend_name(&end, &len, &dentry->d_name); 3172 if (error) 3173 break; 3174 3175 retval = end; 3176 dentry = parent; 3177 } 3178 if (!(seq & 1)) 3179 rcu_read_unlock(); 3180 if (need_seqretry(&rename_lock, seq)) { 3181 seq = 1; 3182 goto restart; 3183 } 3184 done_seqretry(&rename_lock, seq); 3185 if (error) 3186 goto Elong; 3187 return retval; 3188 Elong: 3189 return ERR_PTR(-ENAMETOOLONG); 3190 } 3191 3192 char *dentry_path_raw(struct dentry *dentry, char *buf, int buflen) 3193 { 3194 return __dentry_path(dentry, buf, buflen); 3195 } 3196 EXPORT_SYMBOL(dentry_path_raw); 3197 3198 char *dentry_path(struct dentry *dentry, char *buf, int buflen) 3199 { 3200 char *p = NULL; 3201 char *retval; 3202 3203 if (d_unlinked(dentry)) { 3204 p = buf + buflen; 3205 if (prepend(&p, &buflen, "//deleted", 10) != 0) 3206 goto Elong; 3207 buflen++; 3208 } 3209 retval = __dentry_path(dentry, buf, buflen); 3210 if (!IS_ERR(retval) && p) 3211 *p = '/'; /* restore '/' overriden with '\0' */ 3212 return retval; 3213 Elong: 3214 return ERR_PTR(-ENAMETOOLONG); 3215 } 3216 3217 static void get_fs_root_and_pwd_rcu(struct fs_struct *fs, struct path *root, 3218 struct path *pwd) 3219 { 3220 unsigned seq; 3221 3222 do { 3223 seq = read_seqcount_begin(&fs->seq); 3224 *root = fs->root; 3225 *pwd = fs->pwd; 3226 } while (read_seqcount_retry(&fs->seq, seq)); 3227 } 3228 3229 /* 3230 * NOTE! The user-level library version returns a 3231 * character pointer. The kernel system call just 3232 * returns the length of the buffer filled (which 3233 * includes the ending '\0' character), or a negative 3234 * error value. So libc would do something like 3235 * 3236 * char *getcwd(char * buf, size_t size) 3237 * { 3238 * int retval; 3239 * 3240 * retval = sys_getcwd(buf, size); 3241 * if (retval >= 0) 3242 * return buf; 3243 * errno = -retval; 3244 * return NULL; 3245 * } 3246 */ 3247 SYSCALL_DEFINE2(getcwd, char __user *, buf, unsigned long, size) 3248 { 3249 int error; 3250 struct path pwd, root; 3251 char *page = __getname(); 3252 3253 if (!page) 3254 return -ENOMEM; 3255 3256 rcu_read_lock(); 3257 get_fs_root_and_pwd_rcu(current->fs, &root, &pwd); 3258 3259 error = -ENOENT; 3260 if (!d_unlinked(pwd.dentry)) { 3261 unsigned long len; 3262 char *cwd = page + PATH_MAX; 3263 int buflen = PATH_MAX; 3264 3265 prepend(&cwd, &buflen, "\0", 1); 3266 error = prepend_path(&pwd, &root, &cwd, &buflen); 3267 rcu_read_unlock(); 3268 3269 if (error < 0) 3270 goto out; 3271 3272 /* Unreachable from current root */ 3273 if (error > 0) { 3274 error = prepend_unreachable(&cwd, &buflen); 3275 if (error) 3276 goto out; 3277 } 3278 3279 error = -ERANGE; 3280 len = PATH_MAX + page - cwd; 3281 if (len <= size) { 3282 error = len; 3283 if (copy_to_user(buf, cwd, len)) 3284 error = -EFAULT; 3285 } 3286 } else { 3287 rcu_read_unlock(); 3288 } 3289 3290 out: 3291 __putname(page); 3292 return error; 3293 } 3294 3295 /* 3296 * Test whether new_dentry is a subdirectory of old_dentry. 3297 * 3298 * Trivially implemented using the dcache structure 3299 */ 3300 3301 /** 3302 * is_subdir - is new dentry a subdirectory of old_dentry 3303 * @new_dentry: new dentry 3304 * @old_dentry: old dentry 3305 * 3306 * Returns 1 if new_dentry is a subdirectory of the parent (at any depth). 3307 * Returns 0 otherwise. 3308 * Caller must ensure that "new_dentry" is pinned before calling is_subdir() 3309 */ 3310 3311 int is_subdir(struct dentry *new_dentry, struct dentry *old_dentry) 3312 { 3313 int result; 3314 unsigned seq; 3315 3316 if (new_dentry == old_dentry) 3317 return 1; 3318 3319 do { 3320 /* for restarting inner loop in case of seq retry */ 3321 seq = read_seqbegin(&rename_lock); 3322 /* 3323 * Need rcu_readlock to protect against the d_parent trashing 3324 * due to d_move 3325 */ 3326 rcu_read_lock(); 3327 if (d_ancestor(old_dentry, new_dentry)) 3328 result = 1; 3329 else 3330 result = 0; 3331 rcu_read_unlock(); 3332 } while (read_seqretry(&rename_lock, seq)); 3333 3334 return result; 3335 } 3336 3337 static enum d_walk_ret d_genocide_kill(void *data, struct dentry *dentry) 3338 { 3339 struct dentry *root = data; 3340 if (dentry != root) { 3341 if (d_unhashed(dentry) || !dentry->d_inode) 3342 return D_WALK_SKIP; 3343 3344 if (!(dentry->d_flags & DCACHE_GENOCIDE)) { 3345 dentry->d_flags |= DCACHE_GENOCIDE; 3346 dentry->d_lockref.count--; 3347 } 3348 } 3349 return D_WALK_CONTINUE; 3350 } 3351 3352 void d_genocide(struct dentry *parent) 3353 { 3354 d_walk(parent, parent, d_genocide_kill, NULL); 3355 } 3356 3357 void d_tmpfile(struct dentry *dentry, struct inode *inode) 3358 { 3359 inode_dec_link_count(inode); 3360 BUG_ON(dentry->d_name.name != dentry->d_iname || 3361 !hlist_unhashed(&dentry->d_u.d_alias) || 3362 !d_unlinked(dentry)); 3363 spin_lock(&dentry->d_parent->d_lock); 3364 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED); 3365 dentry->d_name.len = sprintf(dentry->d_iname, "#%llu", 3366 (unsigned long long)inode->i_ino); 3367 spin_unlock(&dentry->d_lock); 3368 spin_unlock(&dentry->d_parent->d_lock); 3369 d_instantiate(dentry, inode); 3370 } 3371 EXPORT_SYMBOL(d_tmpfile); 3372 3373 static __initdata unsigned long dhash_entries; 3374 static int __init set_dhash_entries(char *str) 3375 { 3376 if (!str) 3377 return 0; 3378 dhash_entries = simple_strtoul(str, &str, 0); 3379 return 1; 3380 } 3381 __setup("dhash_entries=", set_dhash_entries); 3382 3383 static void __init dcache_init_early(void) 3384 { 3385 unsigned int loop; 3386 3387 /* If hashes are distributed across NUMA nodes, defer 3388 * hash allocation until vmalloc space is available. 3389 */ 3390 if (hashdist) 3391 return; 3392 3393 dentry_hashtable = 3394 alloc_large_system_hash("Dentry cache", 3395 sizeof(struct hlist_bl_head), 3396 dhash_entries, 3397 13, 3398 HASH_EARLY, 3399 &d_hash_shift, 3400 &d_hash_mask, 3401 0, 3402 0); 3403 3404 for (loop = 0; loop < (1U << d_hash_shift); loop++) 3405 INIT_HLIST_BL_HEAD(dentry_hashtable + loop); 3406 } 3407 3408 static void __init dcache_init(void) 3409 { 3410 unsigned int loop; 3411 3412 /* 3413 * A constructor could be added for stable state like the lists, 3414 * but it is probably not worth it because of the cache nature 3415 * of the dcache. 3416 */ 3417 dentry_cache = KMEM_CACHE(dentry, 3418 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD); 3419 3420 /* Hash may have been set up in dcache_init_early */ 3421 if (!hashdist) 3422 return; 3423 3424 dentry_hashtable = 3425 alloc_large_system_hash("Dentry cache", 3426 sizeof(struct hlist_bl_head), 3427 dhash_entries, 3428 13, 3429 0, 3430 &d_hash_shift, 3431 &d_hash_mask, 3432 0, 3433 0); 3434 3435 for (loop = 0; loop < (1U << d_hash_shift); loop++) 3436 INIT_HLIST_BL_HEAD(dentry_hashtable + loop); 3437 } 3438 3439 /* SLAB cache for __getname() consumers */ 3440 struct kmem_cache *names_cachep __read_mostly; 3441 EXPORT_SYMBOL(names_cachep); 3442 3443 EXPORT_SYMBOL(d_genocide); 3444 3445 void __init vfs_caches_init_early(void) 3446 { 3447 dcache_init_early(); 3448 inode_init_early(); 3449 } 3450 3451 void __init vfs_caches_init(void) 3452 { 3453 names_cachep = kmem_cache_create("names_cache", PATH_MAX, 0, 3454 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL); 3455 3456 dcache_init(); 3457 inode_init(); 3458 files_init(); 3459 files_maxfiles_init(); 3460 mnt_init(); 3461 bdev_cache_init(); 3462 chrdev_init(); 3463 } 3464