xref: /openbmc/linux/fs/dcache.c (revision 9cfc5c90)
1 /*
2  * fs/dcache.c
3  *
4  * Complete reimplementation
5  * (C) 1997 Thomas Schoebel-Theuer,
6  * with heavy changes by Linus Torvalds
7  */
8 
9 /*
10  * Notes on the allocation strategy:
11  *
12  * The dcache is a master of the icache - whenever a dcache entry
13  * exists, the inode will always exist. "iput()" is done either when
14  * the dcache entry is deleted or garbage collected.
15  */
16 
17 #include <linux/syscalls.h>
18 #include <linux/string.h>
19 #include <linux/mm.h>
20 #include <linux/fs.h>
21 #include <linux/fsnotify.h>
22 #include <linux/slab.h>
23 #include <linux/init.h>
24 #include <linux/hash.h>
25 #include <linux/cache.h>
26 #include <linux/export.h>
27 #include <linux/mount.h>
28 #include <linux/file.h>
29 #include <asm/uaccess.h>
30 #include <linux/security.h>
31 #include <linux/seqlock.h>
32 #include <linux/swap.h>
33 #include <linux/bootmem.h>
34 #include <linux/fs_struct.h>
35 #include <linux/hardirq.h>
36 #include <linux/bit_spinlock.h>
37 #include <linux/rculist_bl.h>
38 #include <linux/prefetch.h>
39 #include <linux/ratelimit.h>
40 #include <linux/list_lru.h>
41 #include <linux/kasan.h>
42 
43 #include "internal.h"
44 #include "mount.h"
45 
46 /*
47  * Usage:
48  * dcache->d_inode->i_lock protects:
49  *   - i_dentry, d_u.d_alias, d_inode of aliases
50  * dcache_hash_bucket lock protects:
51  *   - the dcache hash table
52  * s_anon bl list spinlock protects:
53  *   - the s_anon list (see __d_drop)
54  * dentry->d_sb->s_dentry_lru_lock protects:
55  *   - the dcache lru lists and counters
56  * d_lock protects:
57  *   - d_flags
58  *   - d_name
59  *   - d_lru
60  *   - d_count
61  *   - d_unhashed()
62  *   - d_parent and d_subdirs
63  *   - childrens' d_child and d_parent
64  *   - d_u.d_alias, d_inode
65  *
66  * Ordering:
67  * dentry->d_inode->i_lock
68  *   dentry->d_lock
69  *     dentry->d_sb->s_dentry_lru_lock
70  *     dcache_hash_bucket lock
71  *     s_anon lock
72  *
73  * If there is an ancestor relationship:
74  * dentry->d_parent->...->d_parent->d_lock
75  *   ...
76  *     dentry->d_parent->d_lock
77  *       dentry->d_lock
78  *
79  * If no ancestor relationship:
80  * if (dentry1 < dentry2)
81  *   dentry1->d_lock
82  *     dentry2->d_lock
83  */
84 int sysctl_vfs_cache_pressure __read_mostly = 100;
85 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
86 
87 __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
88 
89 EXPORT_SYMBOL(rename_lock);
90 
91 static struct kmem_cache *dentry_cache __read_mostly;
92 
93 /*
94  * This is the single most critical data structure when it comes
95  * to the dcache: the hashtable for lookups. Somebody should try
96  * to make this good - I've just made it work.
97  *
98  * This hash-function tries to avoid losing too many bits of hash
99  * information, yet avoid using a prime hash-size or similar.
100  */
101 
102 static unsigned int d_hash_mask __read_mostly;
103 static unsigned int d_hash_shift __read_mostly;
104 
105 static struct hlist_bl_head *dentry_hashtable __read_mostly;
106 
107 static inline struct hlist_bl_head *d_hash(const struct dentry *parent,
108 					unsigned int hash)
109 {
110 	hash += (unsigned long) parent / L1_CACHE_BYTES;
111 	return dentry_hashtable + hash_32(hash, d_hash_shift);
112 }
113 
114 /* Statistics gathering. */
115 struct dentry_stat_t dentry_stat = {
116 	.age_limit = 45,
117 };
118 
119 static DEFINE_PER_CPU(long, nr_dentry);
120 static DEFINE_PER_CPU(long, nr_dentry_unused);
121 
122 #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
123 
124 /*
125  * Here we resort to our own counters instead of using generic per-cpu counters
126  * for consistency with what the vfs inode code does. We are expected to harvest
127  * better code and performance by having our own specialized counters.
128  *
129  * Please note that the loop is done over all possible CPUs, not over all online
130  * CPUs. The reason for this is that we don't want to play games with CPUs going
131  * on and off. If one of them goes off, we will just keep their counters.
132  *
133  * glommer: See cffbc8a for details, and if you ever intend to change this,
134  * please update all vfs counters to match.
135  */
136 static long get_nr_dentry(void)
137 {
138 	int i;
139 	long sum = 0;
140 	for_each_possible_cpu(i)
141 		sum += per_cpu(nr_dentry, i);
142 	return sum < 0 ? 0 : sum;
143 }
144 
145 static long get_nr_dentry_unused(void)
146 {
147 	int i;
148 	long sum = 0;
149 	for_each_possible_cpu(i)
150 		sum += per_cpu(nr_dentry_unused, i);
151 	return sum < 0 ? 0 : sum;
152 }
153 
154 int proc_nr_dentry(struct ctl_table *table, int write, void __user *buffer,
155 		   size_t *lenp, loff_t *ppos)
156 {
157 	dentry_stat.nr_dentry = get_nr_dentry();
158 	dentry_stat.nr_unused = get_nr_dentry_unused();
159 	return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
160 }
161 #endif
162 
163 /*
164  * Compare 2 name strings, return 0 if they match, otherwise non-zero.
165  * The strings are both count bytes long, and count is non-zero.
166  */
167 #ifdef CONFIG_DCACHE_WORD_ACCESS
168 
169 #include <asm/word-at-a-time.h>
170 /*
171  * NOTE! 'cs' and 'scount' come from a dentry, so it has a
172  * aligned allocation for this particular component. We don't
173  * strictly need the load_unaligned_zeropad() safety, but it
174  * doesn't hurt either.
175  *
176  * In contrast, 'ct' and 'tcount' can be from a pathname, and do
177  * need the careful unaligned handling.
178  */
179 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
180 {
181 	unsigned long a,b,mask;
182 
183 	for (;;) {
184 		a = *(unsigned long *)cs;
185 		b = load_unaligned_zeropad(ct);
186 		if (tcount < sizeof(unsigned long))
187 			break;
188 		if (unlikely(a != b))
189 			return 1;
190 		cs += sizeof(unsigned long);
191 		ct += sizeof(unsigned long);
192 		tcount -= sizeof(unsigned long);
193 		if (!tcount)
194 			return 0;
195 	}
196 	mask = bytemask_from_count(tcount);
197 	return unlikely(!!((a ^ b) & mask));
198 }
199 
200 #else
201 
202 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
203 {
204 	do {
205 		if (*cs != *ct)
206 			return 1;
207 		cs++;
208 		ct++;
209 		tcount--;
210 	} while (tcount);
211 	return 0;
212 }
213 
214 #endif
215 
216 static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount)
217 {
218 	const unsigned char *cs;
219 	/*
220 	 * Be careful about RCU walk racing with rename:
221 	 * use ACCESS_ONCE to fetch the name pointer.
222 	 *
223 	 * NOTE! Even if a rename will mean that the length
224 	 * was not loaded atomically, we don't care. The
225 	 * RCU walk will check the sequence count eventually,
226 	 * and catch it. And we won't overrun the buffer,
227 	 * because we're reading the name pointer atomically,
228 	 * and a dentry name is guaranteed to be properly
229 	 * terminated with a NUL byte.
230 	 *
231 	 * End result: even if 'len' is wrong, we'll exit
232 	 * early because the data cannot match (there can
233 	 * be no NUL in the ct/tcount data)
234 	 */
235 	cs = ACCESS_ONCE(dentry->d_name.name);
236 	smp_read_barrier_depends();
237 	return dentry_string_cmp(cs, ct, tcount);
238 }
239 
240 struct external_name {
241 	union {
242 		atomic_t count;
243 		struct rcu_head head;
244 	} u;
245 	unsigned char name[];
246 };
247 
248 static inline struct external_name *external_name(struct dentry *dentry)
249 {
250 	return container_of(dentry->d_name.name, struct external_name, name[0]);
251 }
252 
253 static void __d_free(struct rcu_head *head)
254 {
255 	struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
256 
257 	kmem_cache_free(dentry_cache, dentry);
258 }
259 
260 static void __d_free_external(struct rcu_head *head)
261 {
262 	struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
263 	kfree(external_name(dentry));
264 	kmem_cache_free(dentry_cache, dentry);
265 }
266 
267 static inline int dname_external(const struct dentry *dentry)
268 {
269 	return dentry->d_name.name != dentry->d_iname;
270 }
271 
272 /*
273  * Make sure other CPUs see the inode attached before the type is set.
274  */
275 static inline void __d_set_inode_and_type(struct dentry *dentry,
276 					  struct inode *inode,
277 					  unsigned type_flags)
278 {
279 	unsigned flags;
280 
281 	dentry->d_inode = inode;
282 	smp_wmb();
283 	flags = READ_ONCE(dentry->d_flags);
284 	flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU);
285 	flags |= type_flags;
286 	WRITE_ONCE(dentry->d_flags, flags);
287 }
288 
289 /*
290  * Ideally, we want to make sure that other CPUs see the flags cleared before
291  * the inode is detached, but this is really a violation of RCU principles
292  * since the ordering suggests we should always set inode before flags.
293  *
294  * We should instead replace or discard the entire dentry - but that sucks
295  * performancewise on mass deletion/rename.
296  */
297 static inline void __d_clear_type_and_inode(struct dentry *dentry)
298 {
299 	unsigned flags = READ_ONCE(dentry->d_flags);
300 
301 	flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU);
302 	WRITE_ONCE(dentry->d_flags, flags);
303 	smp_wmb();
304 	dentry->d_inode = NULL;
305 }
306 
307 static void dentry_free(struct dentry *dentry)
308 {
309 	WARN_ON(!hlist_unhashed(&dentry->d_u.d_alias));
310 	if (unlikely(dname_external(dentry))) {
311 		struct external_name *p = external_name(dentry);
312 		if (likely(atomic_dec_and_test(&p->u.count))) {
313 			call_rcu(&dentry->d_u.d_rcu, __d_free_external);
314 			return;
315 		}
316 	}
317 	/* if dentry was never visible to RCU, immediate free is OK */
318 	if (!(dentry->d_flags & DCACHE_RCUACCESS))
319 		__d_free(&dentry->d_u.d_rcu);
320 	else
321 		call_rcu(&dentry->d_u.d_rcu, __d_free);
322 }
323 
324 /**
325  * dentry_rcuwalk_invalidate - invalidate in-progress rcu-walk lookups
326  * @dentry: the target dentry
327  * After this call, in-progress rcu-walk path lookup will fail. This
328  * should be called after unhashing, and after changing d_inode (if
329  * the dentry has not already been unhashed).
330  */
331 static inline void dentry_rcuwalk_invalidate(struct dentry *dentry)
332 {
333 	lockdep_assert_held(&dentry->d_lock);
334 	/* Go through am invalidation barrier */
335 	write_seqcount_invalidate(&dentry->d_seq);
336 }
337 
338 /*
339  * Release the dentry's inode, using the filesystem
340  * d_iput() operation if defined. Dentry has no refcount
341  * and is unhashed.
342  */
343 static void dentry_iput(struct dentry * dentry)
344 	__releases(dentry->d_lock)
345 	__releases(dentry->d_inode->i_lock)
346 {
347 	struct inode *inode = dentry->d_inode;
348 	if (inode) {
349 		__d_clear_type_and_inode(dentry);
350 		hlist_del_init(&dentry->d_u.d_alias);
351 		spin_unlock(&dentry->d_lock);
352 		spin_unlock(&inode->i_lock);
353 		if (!inode->i_nlink)
354 			fsnotify_inoderemove(inode);
355 		if (dentry->d_op && dentry->d_op->d_iput)
356 			dentry->d_op->d_iput(dentry, inode);
357 		else
358 			iput(inode);
359 	} else {
360 		spin_unlock(&dentry->d_lock);
361 	}
362 }
363 
364 /*
365  * Release the dentry's inode, using the filesystem
366  * d_iput() operation if defined. dentry remains in-use.
367  */
368 static void dentry_unlink_inode(struct dentry * dentry)
369 	__releases(dentry->d_lock)
370 	__releases(dentry->d_inode->i_lock)
371 {
372 	struct inode *inode = dentry->d_inode;
373 	__d_clear_type_and_inode(dentry);
374 	hlist_del_init(&dentry->d_u.d_alias);
375 	dentry_rcuwalk_invalidate(dentry);
376 	spin_unlock(&dentry->d_lock);
377 	spin_unlock(&inode->i_lock);
378 	if (!inode->i_nlink)
379 		fsnotify_inoderemove(inode);
380 	if (dentry->d_op && dentry->d_op->d_iput)
381 		dentry->d_op->d_iput(dentry, inode);
382 	else
383 		iput(inode);
384 }
385 
386 /*
387  * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry
388  * is in use - which includes both the "real" per-superblock
389  * LRU list _and_ the DCACHE_SHRINK_LIST use.
390  *
391  * The DCACHE_SHRINK_LIST bit is set whenever the dentry is
392  * on the shrink list (ie not on the superblock LRU list).
393  *
394  * The per-cpu "nr_dentry_unused" counters are updated with
395  * the DCACHE_LRU_LIST bit.
396  *
397  * These helper functions make sure we always follow the
398  * rules. d_lock must be held by the caller.
399  */
400 #define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x))
401 static void d_lru_add(struct dentry *dentry)
402 {
403 	D_FLAG_VERIFY(dentry, 0);
404 	dentry->d_flags |= DCACHE_LRU_LIST;
405 	this_cpu_inc(nr_dentry_unused);
406 	WARN_ON_ONCE(!list_lru_add(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
407 }
408 
409 static void d_lru_del(struct dentry *dentry)
410 {
411 	D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
412 	dentry->d_flags &= ~DCACHE_LRU_LIST;
413 	this_cpu_dec(nr_dentry_unused);
414 	WARN_ON_ONCE(!list_lru_del(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
415 }
416 
417 static void d_shrink_del(struct dentry *dentry)
418 {
419 	D_FLAG_VERIFY(dentry, DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
420 	list_del_init(&dentry->d_lru);
421 	dentry->d_flags &= ~(DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
422 	this_cpu_dec(nr_dentry_unused);
423 }
424 
425 static void d_shrink_add(struct dentry *dentry, struct list_head *list)
426 {
427 	D_FLAG_VERIFY(dentry, 0);
428 	list_add(&dentry->d_lru, list);
429 	dentry->d_flags |= DCACHE_SHRINK_LIST | DCACHE_LRU_LIST;
430 	this_cpu_inc(nr_dentry_unused);
431 }
432 
433 /*
434  * These can only be called under the global LRU lock, ie during the
435  * callback for freeing the LRU list. "isolate" removes it from the
436  * LRU lists entirely, while shrink_move moves it to the indicated
437  * private list.
438  */
439 static void d_lru_isolate(struct list_lru_one *lru, struct dentry *dentry)
440 {
441 	D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
442 	dentry->d_flags &= ~DCACHE_LRU_LIST;
443 	this_cpu_dec(nr_dentry_unused);
444 	list_lru_isolate(lru, &dentry->d_lru);
445 }
446 
447 static void d_lru_shrink_move(struct list_lru_one *lru, struct dentry *dentry,
448 			      struct list_head *list)
449 {
450 	D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
451 	dentry->d_flags |= DCACHE_SHRINK_LIST;
452 	list_lru_isolate_move(lru, &dentry->d_lru, list);
453 }
454 
455 /*
456  * dentry_lru_(add|del)_list) must be called with d_lock held.
457  */
458 static void dentry_lru_add(struct dentry *dentry)
459 {
460 	if (unlikely(!(dentry->d_flags & DCACHE_LRU_LIST)))
461 		d_lru_add(dentry);
462 }
463 
464 /**
465  * d_drop - drop a dentry
466  * @dentry: dentry to drop
467  *
468  * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
469  * be found through a VFS lookup any more. Note that this is different from
470  * deleting the dentry - d_delete will try to mark the dentry negative if
471  * possible, giving a successful _negative_ lookup, while d_drop will
472  * just make the cache lookup fail.
473  *
474  * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
475  * reason (NFS timeouts or autofs deletes).
476  *
477  * __d_drop requires dentry->d_lock.
478  */
479 void __d_drop(struct dentry *dentry)
480 {
481 	if (!d_unhashed(dentry)) {
482 		struct hlist_bl_head *b;
483 		/*
484 		 * Hashed dentries are normally on the dentry hashtable,
485 		 * with the exception of those newly allocated by
486 		 * d_obtain_alias, which are always IS_ROOT:
487 		 */
488 		if (unlikely(IS_ROOT(dentry)))
489 			b = &dentry->d_sb->s_anon;
490 		else
491 			b = d_hash(dentry->d_parent, dentry->d_name.hash);
492 
493 		hlist_bl_lock(b);
494 		__hlist_bl_del(&dentry->d_hash);
495 		dentry->d_hash.pprev = NULL;
496 		hlist_bl_unlock(b);
497 		dentry_rcuwalk_invalidate(dentry);
498 	}
499 }
500 EXPORT_SYMBOL(__d_drop);
501 
502 void d_drop(struct dentry *dentry)
503 {
504 	spin_lock(&dentry->d_lock);
505 	__d_drop(dentry);
506 	spin_unlock(&dentry->d_lock);
507 }
508 EXPORT_SYMBOL(d_drop);
509 
510 static void __dentry_kill(struct dentry *dentry)
511 {
512 	struct dentry *parent = NULL;
513 	bool can_free = true;
514 	if (!IS_ROOT(dentry))
515 		parent = dentry->d_parent;
516 
517 	/*
518 	 * The dentry is now unrecoverably dead to the world.
519 	 */
520 	lockref_mark_dead(&dentry->d_lockref);
521 
522 	/*
523 	 * inform the fs via d_prune that this dentry is about to be
524 	 * unhashed and destroyed.
525 	 */
526 	if (dentry->d_flags & DCACHE_OP_PRUNE)
527 		dentry->d_op->d_prune(dentry);
528 
529 	if (dentry->d_flags & DCACHE_LRU_LIST) {
530 		if (!(dentry->d_flags & DCACHE_SHRINK_LIST))
531 			d_lru_del(dentry);
532 	}
533 	/* if it was on the hash then remove it */
534 	__d_drop(dentry);
535 	__list_del_entry(&dentry->d_child);
536 	/*
537 	 * Inform d_walk() that we are no longer attached to the
538 	 * dentry tree
539 	 */
540 	dentry->d_flags |= DCACHE_DENTRY_KILLED;
541 	if (parent)
542 		spin_unlock(&parent->d_lock);
543 	dentry_iput(dentry);
544 	/*
545 	 * dentry_iput drops the locks, at which point nobody (except
546 	 * transient RCU lookups) can reach this dentry.
547 	 */
548 	BUG_ON(dentry->d_lockref.count > 0);
549 	this_cpu_dec(nr_dentry);
550 	if (dentry->d_op && dentry->d_op->d_release)
551 		dentry->d_op->d_release(dentry);
552 
553 	spin_lock(&dentry->d_lock);
554 	if (dentry->d_flags & DCACHE_SHRINK_LIST) {
555 		dentry->d_flags |= DCACHE_MAY_FREE;
556 		can_free = false;
557 	}
558 	spin_unlock(&dentry->d_lock);
559 	if (likely(can_free))
560 		dentry_free(dentry);
561 }
562 
563 /*
564  * Finish off a dentry we've decided to kill.
565  * dentry->d_lock must be held, returns with it unlocked.
566  * If ref is non-zero, then decrement the refcount too.
567  * Returns dentry requiring refcount drop, or NULL if we're done.
568  */
569 static struct dentry *dentry_kill(struct dentry *dentry)
570 	__releases(dentry->d_lock)
571 {
572 	struct inode *inode = dentry->d_inode;
573 	struct dentry *parent = NULL;
574 
575 	if (inode && unlikely(!spin_trylock(&inode->i_lock)))
576 		goto failed;
577 
578 	if (!IS_ROOT(dentry)) {
579 		parent = dentry->d_parent;
580 		if (unlikely(!spin_trylock(&parent->d_lock))) {
581 			if (inode)
582 				spin_unlock(&inode->i_lock);
583 			goto failed;
584 		}
585 	}
586 
587 	__dentry_kill(dentry);
588 	return parent;
589 
590 failed:
591 	spin_unlock(&dentry->d_lock);
592 	cpu_relax();
593 	return dentry; /* try again with same dentry */
594 }
595 
596 static inline struct dentry *lock_parent(struct dentry *dentry)
597 {
598 	struct dentry *parent = dentry->d_parent;
599 	if (IS_ROOT(dentry))
600 		return NULL;
601 	if (unlikely(dentry->d_lockref.count < 0))
602 		return NULL;
603 	if (likely(spin_trylock(&parent->d_lock)))
604 		return parent;
605 	rcu_read_lock();
606 	spin_unlock(&dentry->d_lock);
607 again:
608 	parent = ACCESS_ONCE(dentry->d_parent);
609 	spin_lock(&parent->d_lock);
610 	/*
611 	 * We can't blindly lock dentry until we are sure
612 	 * that we won't violate the locking order.
613 	 * Any changes of dentry->d_parent must have
614 	 * been done with parent->d_lock held, so
615 	 * spin_lock() above is enough of a barrier
616 	 * for checking if it's still our child.
617 	 */
618 	if (unlikely(parent != dentry->d_parent)) {
619 		spin_unlock(&parent->d_lock);
620 		goto again;
621 	}
622 	rcu_read_unlock();
623 	if (parent != dentry)
624 		spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
625 	else
626 		parent = NULL;
627 	return parent;
628 }
629 
630 /*
631  * Try to do a lockless dput(), and return whether that was successful.
632  *
633  * If unsuccessful, we return false, having already taken the dentry lock.
634  *
635  * The caller needs to hold the RCU read lock, so that the dentry is
636  * guaranteed to stay around even if the refcount goes down to zero!
637  */
638 static inline bool fast_dput(struct dentry *dentry)
639 {
640 	int ret;
641 	unsigned int d_flags;
642 
643 	/*
644 	 * If we have a d_op->d_delete() operation, we sould not
645 	 * let the dentry count go to zero, so use "put_or_lock".
646 	 */
647 	if (unlikely(dentry->d_flags & DCACHE_OP_DELETE))
648 		return lockref_put_or_lock(&dentry->d_lockref);
649 
650 	/*
651 	 * .. otherwise, we can try to just decrement the
652 	 * lockref optimistically.
653 	 */
654 	ret = lockref_put_return(&dentry->d_lockref);
655 
656 	/*
657 	 * If the lockref_put_return() failed due to the lock being held
658 	 * by somebody else, the fast path has failed. We will need to
659 	 * get the lock, and then check the count again.
660 	 */
661 	if (unlikely(ret < 0)) {
662 		spin_lock(&dentry->d_lock);
663 		if (dentry->d_lockref.count > 1) {
664 			dentry->d_lockref.count--;
665 			spin_unlock(&dentry->d_lock);
666 			return 1;
667 		}
668 		return 0;
669 	}
670 
671 	/*
672 	 * If we weren't the last ref, we're done.
673 	 */
674 	if (ret)
675 		return 1;
676 
677 	/*
678 	 * Careful, careful. The reference count went down
679 	 * to zero, but we don't hold the dentry lock, so
680 	 * somebody else could get it again, and do another
681 	 * dput(), and we need to not race with that.
682 	 *
683 	 * However, there is a very special and common case
684 	 * where we don't care, because there is nothing to
685 	 * do: the dentry is still hashed, it does not have
686 	 * a 'delete' op, and it's referenced and already on
687 	 * the LRU list.
688 	 *
689 	 * NOTE! Since we aren't locked, these values are
690 	 * not "stable". However, it is sufficient that at
691 	 * some point after we dropped the reference the
692 	 * dentry was hashed and the flags had the proper
693 	 * value. Other dentry users may have re-gotten
694 	 * a reference to the dentry and change that, but
695 	 * our work is done - we can leave the dentry
696 	 * around with a zero refcount.
697 	 */
698 	smp_rmb();
699 	d_flags = ACCESS_ONCE(dentry->d_flags);
700 	d_flags &= DCACHE_REFERENCED | DCACHE_LRU_LIST | DCACHE_DISCONNECTED;
701 
702 	/* Nothing to do? Dropping the reference was all we needed? */
703 	if (d_flags == (DCACHE_REFERENCED | DCACHE_LRU_LIST) && !d_unhashed(dentry))
704 		return 1;
705 
706 	/*
707 	 * Not the fast normal case? Get the lock. We've already decremented
708 	 * the refcount, but we'll need to re-check the situation after
709 	 * getting the lock.
710 	 */
711 	spin_lock(&dentry->d_lock);
712 
713 	/*
714 	 * Did somebody else grab a reference to it in the meantime, and
715 	 * we're no longer the last user after all? Alternatively, somebody
716 	 * else could have killed it and marked it dead. Either way, we
717 	 * don't need to do anything else.
718 	 */
719 	if (dentry->d_lockref.count) {
720 		spin_unlock(&dentry->d_lock);
721 		return 1;
722 	}
723 
724 	/*
725 	 * Re-get the reference we optimistically dropped. We hold the
726 	 * lock, and we just tested that it was zero, so we can just
727 	 * set it to 1.
728 	 */
729 	dentry->d_lockref.count = 1;
730 	return 0;
731 }
732 
733 
734 /*
735  * This is dput
736  *
737  * This is complicated by the fact that we do not want to put
738  * dentries that are no longer on any hash chain on the unused
739  * list: we'd much rather just get rid of them immediately.
740  *
741  * However, that implies that we have to traverse the dentry
742  * tree upwards to the parents which might _also_ now be
743  * scheduled for deletion (it may have been only waiting for
744  * its last child to go away).
745  *
746  * This tail recursion is done by hand as we don't want to depend
747  * on the compiler to always get this right (gcc generally doesn't).
748  * Real recursion would eat up our stack space.
749  */
750 
751 /*
752  * dput - release a dentry
753  * @dentry: dentry to release
754  *
755  * Release a dentry. This will drop the usage count and if appropriate
756  * call the dentry unlink method as well as removing it from the queues and
757  * releasing its resources. If the parent dentries were scheduled for release
758  * they too may now get deleted.
759  */
760 void dput(struct dentry *dentry)
761 {
762 	if (unlikely(!dentry))
763 		return;
764 
765 repeat:
766 	rcu_read_lock();
767 	if (likely(fast_dput(dentry))) {
768 		rcu_read_unlock();
769 		return;
770 	}
771 
772 	/* Slow case: now with the dentry lock held */
773 	rcu_read_unlock();
774 
775 	/* Unreachable? Get rid of it */
776 	if (unlikely(d_unhashed(dentry)))
777 		goto kill_it;
778 
779 	if (unlikely(dentry->d_flags & DCACHE_DISCONNECTED))
780 		goto kill_it;
781 
782 	if (unlikely(dentry->d_flags & DCACHE_OP_DELETE)) {
783 		if (dentry->d_op->d_delete(dentry))
784 			goto kill_it;
785 	}
786 
787 	if (!(dentry->d_flags & DCACHE_REFERENCED))
788 		dentry->d_flags |= DCACHE_REFERENCED;
789 	dentry_lru_add(dentry);
790 
791 	dentry->d_lockref.count--;
792 	spin_unlock(&dentry->d_lock);
793 	return;
794 
795 kill_it:
796 	dentry = dentry_kill(dentry);
797 	if (dentry)
798 		goto repeat;
799 }
800 EXPORT_SYMBOL(dput);
801 
802 
803 /* This must be called with d_lock held */
804 static inline void __dget_dlock(struct dentry *dentry)
805 {
806 	dentry->d_lockref.count++;
807 }
808 
809 static inline void __dget(struct dentry *dentry)
810 {
811 	lockref_get(&dentry->d_lockref);
812 }
813 
814 struct dentry *dget_parent(struct dentry *dentry)
815 {
816 	int gotref;
817 	struct dentry *ret;
818 
819 	/*
820 	 * Do optimistic parent lookup without any
821 	 * locking.
822 	 */
823 	rcu_read_lock();
824 	ret = ACCESS_ONCE(dentry->d_parent);
825 	gotref = lockref_get_not_zero(&ret->d_lockref);
826 	rcu_read_unlock();
827 	if (likely(gotref)) {
828 		if (likely(ret == ACCESS_ONCE(dentry->d_parent)))
829 			return ret;
830 		dput(ret);
831 	}
832 
833 repeat:
834 	/*
835 	 * Don't need rcu_dereference because we re-check it was correct under
836 	 * the lock.
837 	 */
838 	rcu_read_lock();
839 	ret = dentry->d_parent;
840 	spin_lock(&ret->d_lock);
841 	if (unlikely(ret != dentry->d_parent)) {
842 		spin_unlock(&ret->d_lock);
843 		rcu_read_unlock();
844 		goto repeat;
845 	}
846 	rcu_read_unlock();
847 	BUG_ON(!ret->d_lockref.count);
848 	ret->d_lockref.count++;
849 	spin_unlock(&ret->d_lock);
850 	return ret;
851 }
852 EXPORT_SYMBOL(dget_parent);
853 
854 /**
855  * d_find_alias - grab a hashed alias of inode
856  * @inode: inode in question
857  *
858  * If inode has a hashed alias, or is a directory and has any alias,
859  * acquire the reference to alias and return it. Otherwise return NULL.
860  * Notice that if inode is a directory there can be only one alias and
861  * it can be unhashed only if it has no children, or if it is the root
862  * of a filesystem, or if the directory was renamed and d_revalidate
863  * was the first vfs operation to notice.
864  *
865  * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
866  * any other hashed alias over that one.
867  */
868 static struct dentry *__d_find_alias(struct inode *inode)
869 {
870 	struct dentry *alias, *discon_alias;
871 
872 again:
873 	discon_alias = NULL;
874 	hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
875 		spin_lock(&alias->d_lock);
876  		if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
877 			if (IS_ROOT(alias) &&
878 			    (alias->d_flags & DCACHE_DISCONNECTED)) {
879 				discon_alias = alias;
880 			} else {
881 				__dget_dlock(alias);
882 				spin_unlock(&alias->d_lock);
883 				return alias;
884 			}
885 		}
886 		spin_unlock(&alias->d_lock);
887 	}
888 	if (discon_alias) {
889 		alias = discon_alias;
890 		spin_lock(&alias->d_lock);
891 		if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
892 			__dget_dlock(alias);
893 			spin_unlock(&alias->d_lock);
894 			return alias;
895 		}
896 		spin_unlock(&alias->d_lock);
897 		goto again;
898 	}
899 	return NULL;
900 }
901 
902 struct dentry *d_find_alias(struct inode *inode)
903 {
904 	struct dentry *de = NULL;
905 
906 	if (!hlist_empty(&inode->i_dentry)) {
907 		spin_lock(&inode->i_lock);
908 		de = __d_find_alias(inode);
909 		spin_unlock(&inode->i_lock);
910 	}
911 	return de;
912 }
913 EXPORT_SYMBOL(d_find_alias);
914 
915 /*
916  *	Try to kill dentries associated with this inode.
917  * WARNING: you must own a reference to inode.
918  */
919 void d_prune_aliases(struct inode *inode)
920 {
921 	struct dentry *dentry;
922 restart:
923 	spin_lock(&inode->i_lock);
924 	hlist_for_each_entry(dentry, &inode->i_dentry, d_u.d_alias) {
925 		spin_lock(&dentry->d_lock);
926 		if (!dentry->d_lockref.count) {
927 			struct dentry *parent = lock_parent(dentry);
928 			if (likely(!dentry->d_lockref.count)) {
929 				__dentry_kill(dentry);
930 				dput(parent);
931 				goto restart;
932 			}
933 			if (parent)
934 				spin_unlock(&parent->d_lock);
935 		}
936 		spin_unlock(&dentry->d_lock);
937 	}
938 	spin_unlock(&inode->i_lock);
939 }
940 EXPORT_SYMBOL(d_prune_aliases);
941 
942 static void shrink_dentry_list(struct list_head *list)
943 {
944 	struct dentry *dentry, *parent;
945 
946 	while (!list_empty(list)) {
947 		struct inode *inode;
948 		dentry = list_entry(list->prev, struct dentry, d_lru);
949 		spin_lock(&dentry->d_lock);
950 		parent = lock_parent(dentry);
951 
952 		/*
953 		 * The dispose list is isolated and dentries are not accounted
954 		 * to the LRU here, so we can simply remove it from the list
955 		 * here regardless of whether it is referenced or not.
956 		 */
957 		d_shrink_del(dentry);
958 
959 		/*
960 		 * We found an inuse dentry which was not removed from
961 		 * the LRU because of laziness during lookup. Do not free it.
962 		 */
963 		if (dentry->d_lockref.count > 0) {
964 			spin_unlock(&dentry->d_lock);
965 			if (parent)
966 				spin_unlock(&parent->d_lock);
967 			continue;
968 		}
969 
970 
971 		if (unlikely(dentry->d_flags & DCACHE_DENTRY_KILLED)) {
972 			bool can_free = dentry->d_flags & DCACHE_MAY_FREE;
973 			spin_unlock(&dentry->d_lock);
974 			if (parent)
975 				spin_unlock(&parent->d_lock);
976 			if (can_free)
977 				dentry_free(dentry);
978 			continue;
979 		}
980 
981 		inode = dentry->d_inode;
982 		if (inode && unlikely(!spin_trylock(&inode->i_lock))) {
983 			d_shrink_add(dentry, list);
984 			spin_unlock(&dentry->d_lock);
985 			if (parent)
986 				spin_unlock(&parent->d_lock);
987 			continue;
988 		}
989 
990 		__dentry_kill(dentry);
991 
992 		/*
993 		 * We need to prune ancestors too. This is necessary to prevent
994 		 * quadratic behavior of shrink_dcache_parent(), but is also
995 		 * expected to be beneficial in reducing dentry cache
996 		 * fragmentation.
997 		 */
998 		dentry = parent;
999 		while (dentry && !lockref_put_or_lock(&dentry->d_lockref)) {
1000 			parent = lock_parent(dentry);
1001 			if (dentry->d_lockref.count != 1) {
1002 				dentry->d_lockref.count--;
1003 				spin_unlock(&dentry->d_lock);
1004 				if (parent)
1005 					spin_unlock(&parent->d_lock);
1006 				break;
1007 			}
1008 			inode = dentry->d_inode;	/* can't be NULL */
1009 			if (unlikely(!spin_trylock(&inode->i_lock))) {
1010 				spin_unlock(&dentry->d_lock);
1011 				if (parent)
1012 					spin_unlock(&parent->d_lock);
1013 				cpu_relax();
1014 				continue;
1015 			}
1016 			__dentry_kill(dentry);
1017 			dentry = parent;
1018 		}
1019 	}
1020 }
1021 
1022 static enum lru_status dentry_lru_isolate(struct list_head *item,
1023 		struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
1024 {
1025 	struct list_head *freeable = arg;
1026 	struct dentry	*dentry = container_of(item, struct dentry, d_lru);
1027 
1028 
1029 	/*
1030 	 * we are inverting the lru lock/dentry->d_lock here,
1031 	 * so use a trylock. If we fail to get the lock, just skip
1032 	 * it
1033 	 */
1034 	if (!spin_trylock(&dentry->d_lock))
1035 		return LRU_SKIP;
1036 
1037 	/*
1038 	 * Referenced dentries are still in use. If they have active
1039 	 * counts, just remove them from the LRU. Otherwise give them
1040 	 * another pass through the LRU.
1041 	 */
1042 	if (dentry->d_lockref.count) {
1043 		d_lru_isolate(lru, dentry);
1044 		spin_unlock(&dentry->d_lock);
1045 		return LRU_REMOVED;
1046 	}
1047 
1048 	if (dentry->d_flags & DCACHE_REFERENCED) {
1049 		dentry->d_flags &= ~DCACHE_REFERENCED;
1050 		spin_unlock(&dentry->d_lock);
1051 
1052 		/*
1053 		 * The list move itself will be made by the common LRU code. At
1054 		 * this point, we've dropped the dentry->d_lock but keep the
1055 		 * lru lock. This is safe to do, since every list movement is
1056 		 * protected by the lru lock even if both locks are held.
1057 		 *
1058 		 * This is guaranteed by the fact that all LRU management
1059 		 * functions are intermediated by the LRU API calls like
1060 		 * list_lru_add and list_lru_del. List movement in this file
1061 		 * only ever occur through this functions or through callbacks
1062 		 * like this one, that are called from the LRU API.
1063 		 *
1064 		 * The only exceptions to this are functions like
1065 		 * shrink_dentry_list, and code that first checks for the
1066 		 * DCACHE_SHRINK_LIST flag.  Those are guaranteed to be
1067 		 * operating only with stack provided lists after they are
1068 		 * properly isolated from the main list.  It is thus, always a
1069 		 * local access.
1070 		 */
1071 		return LRU_ROTATE;
1072 	}
1073 
1074 	d_lru_shrink_move(lru, dentry, freeable);
1075 	spin_unlock(&dentry->d_lock);
1076 
1077 	return LRU_REMOVED;
1078 }
1079 
1080 /**
1081  * prune_dcache_sb - shrink the dcache
1082  * @sb: superblock
1083  * @sc: shrink control, passed to list_lru_shrink_walk()
1084  *
1085  * Attempt to shrink the superblock dcache LRU by @sc->nr_to_scan entries. This
1086  * is done when we need more memory and called from the superblock shrinker
1087  * function.
1088  *
1089  * This function may fail to free any resources if all the dentries are in
1090  * use.
1091  */
1092 long prune_dcache_sb(struct super_block *sb, struct shrink_control *sc)
1093 {
1094 	LIST_HEAD(dispose);
1095 	long freed;
1096 
1097 	freed = list_lru_shrink_walk(&sb->s_dentry_lru, sc,
1098 				     dentry_lru_isolate, &dispose);
1099 	shrink_dentry_list(&dispose);
1100 	return freed;
1101 }
1102 
1103 static enum lru_status dentry_lru_isolate_shrink(struct list_head *item,
1104 		struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
1105 {
1106 	struct list_head *freeable = arg;
1107 	struct dentry	*dentry = container_of(item, struct dentry, d_lru);
1108 
1109 	/*
1110 	 * we are inverting the lru lock/dentry->d_lock here,
1111 	 * so use a trylock. If we fail to get the lock, just skip
1112 	 * it
1113 	 */
1114 	if (!spin_trylock(&dentry->d_lock))
1115 		return LRU_SKIP;
1116 
1117 	d_lru_shrink_move(lru, dentry, freeable);
1118 	spin_unlock(&dentry->d_lock);
1119 
1120 	return LRU_REMOVED;
1121 }
1122 
1123 
1124 /**
1125  * shrink_dcache_sb - shrink dcache for a superblock
1126  * @sb: superblock
1127  *
1128  * Shrink the dcache for the specified super block. This is used to free
1129  * the dcache before unmounting a file system.
1130  */
1131 void shrink_dcache_sb(struct super_block *sb)
1132 {
1133 	long freed;
1134 
1135 	do {
1136 		LIST_HEAD(dispose);
1137 
1138 		freed = list_lru_walk(&sb->s_dentry_lru,
1139 			dentry_lru_isolate_shrink, &dispose, UINT_MAX);
1140 
1141 		this_cpu_sub(nr_dentry_unused, freed);
1142 		shrink_dentry_list(&dispose);
1143 	} while (freed > 0);
1144 }
1145 EXPORT_SYMBOL(shrink_dcache_sb);
1146 
1147 /**
1148  * enum d_walk_ret - action to talke during tree walk
1149  * @D_WALK_CONTINUE:	contrinue walk
1150  * @D_WALK_QUIT:	quit walk
1151  * @D_WALK_NORETRY:	quit when retry is needed
1152  * @D_WALK_SKIP:	skip this dentry and its children
1153  */
1154 enum d_walk_ret {
1155 	D_WALK_CONTINUE,
1156 	D_WALK_QUIT,
1157 	D_WALK_NORETRY,
1158 	D_WALK_SKIP,
1159 };
1160 
1161 /**
1162  * d_walk - walk the dentry tree
1163  * @parent:	start of walk
1164  * @data:	data passed to @enter() and @finish()
1165  * @enter:	callback when first entering the dentry
1166  * @finish:	callback when successfully finished the walk
1167  *
1168  * The @enter() and @finish() callbacks are called with d_lock held.
1169  */
1170 static void d_walk(struct dentry *parent, void *data,
1171 		   enum d_walk_ret (*enter)(void *, struct dentry *),
1172 		   void (*finish)(void *))
1173 {
1174 	struct dentry *this_parent;
1175 	struct list_head *next;
1176 	unsigned seq = 0;
1177 	enum d_walk_ret ret;
1178 	bool retry = true;
1179 
1180 again:
1181 	read_seqbegin_or_lock(&rename_lock, &seq);
1182 	this_parent = parent;
1183 	spin_lock(&this_parent->d_lock);
1184 
1185 	ret = enter(data, this_parent);
1186 	switch (ret) {
1187 	case D_WALK_CONTINUE:
1188 		break;
1189 	case D_WALK_QUIT:
1190 	case D_WALK_SKIP:
1191 		goto out_unlock;
1192 	case D_WALK_NORETRY:
1193 		retry = false;
1194 		break;
1195 	}
1196 repeat:
1197 	next = this_parent->d_subdirs.next;
1198 resume:
1199 	while (next != &this_parent->d_subdirs) {
1200 		struct list_head *tmp = next;
1201 		struct dentry *dentry = list_entry(tmp, struct dentry, d_child);
1202 		next = tmp->next;
1203 
1204 		spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1205 
1206 		ret = enter(data, dentry);
1207 		switch (ret) {
1208 		case D_WALK_CONTINUE:
1209 			break;
1210 		case D_WALK_QUIT:
1211 			spin_unlock(&dentry->d_lock);
1212 			goto out_unlock;
1213 		case D_WALK_NORETRY:
1214 			retry = false;
1215 			break;
1216 		case D_WALK_SKIP:
1217 			spin_unlock(&dentry->d_lock);
1218 			continue;
1219 		}
1220 
1221 		if (!list_empty(&dentry->d_subdirs)) {
1222 			spin_unlock(&this_parent->d_lock);
1223 			spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1224 			this_parent = dentry;
1225 			spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1226 			goto repeat;
1227 		}
1228 		spin_unlock(&dentry->d_lock);
1229 	}
1230 	/*
1231 	 * All done at this level ... ascend and resume the search.
1232 	 */
1233 	rcu_read_lock();
1234 ascend:
1235 	if (this_parent != parent) {
1236 		struct dentry *child = this_parent;
1237 		this_parent = child->d_parent;
1238 
1239 		spin_unlock(&child->d_lock);
1240 		spin_lock(&this_parent->d_lock);
1241 
1242 		/* might go back up the wrong parent if we have had a rename. */
1243 		if (need_seqretry(&rename_lock, seq))
1244 			goto rename_retry;
1245 		/* go into the first sibling still alive */
1246 		do {
1247 			next = child->d_child.next;
1248 			if (next == &this_parent->d_subdirs)
1249 				goto ascend;
1250 			child = list_entry(next, struct dentry, d_child);
1251 		} while (unlikely(child->d_flags & DCACHE_DENTRY_KILLED));
1252 		rcu_read_unlock();
1253 		goto resume;
1254 	}
1255 	if (need_seqretry(&rename_lock, seq))
1256 		goto rename_retry;
1257 	rcu_read_unlock();
1258 	if (finish)
1259 		finish(data);
1260 
1261 out_unlock:
1262 	spin_unlock(&this_parent->d_lock);
1263 	done_seqretry(&rename_lock, seq);
1264 	return;
1265 
1266 rename_retry:
1267 	spin_unlock(&this_parent->d_lock);
1268 	rcu_read_unlock();
1269 	BUG_ON(seq & 1);
1270 	if (!retry)
1271 		return;
1272 	seq = 1;
1273 	goto again;
1274 }
1275 
1276 /*
1277  * Search for at least 1 mount point in the dentry's subdirs.
1278  * We descend to the next level whenever the d_subdirs
1279  * list is non-empty and continue searching.
1280  */
1281 
1282 static enum d_walk_ret check_mount(void *data, struct dentry *dentry)
1283 {
1284 	int *ret = data;
1285 	if (d_mountpoint(dentry)) {
1286 		*ret = 1;
1287 		return D_WALK_QUIT;
1288 	}
1289 	return D_WALK_CONTINUE;
1290 }
1291 
1292 /**
1293  * have_submounts - check for mounts over a dentry
1294  * @parent: dentry to check.
1295  *
1296  * Return true if the parent or its subdirectories contain
1297  * a mount point
1298  */
1299 int have_submounts(struct dentry *parent)
1300 {
1301 	int ret = 0;
1302 
1303 	d_walk(parent, &ret, check_mount, NULL);
1304 
1305 	return ret;
1306 }
1307 EXPORT_SYMBOL(have_submounts);
1308 
1309 /*
1310  * Called by mount code to set a mountpoint and check if the mountpoint is
1311  * reachable (e.g. NFS can unhash a directory dentry and then the complete
1312  * subtree can become unreachable).
1313  *
1314  * Only one of d_invalidate() and d_set_mounted() must succeed.  For
1315  * this reason take rename_lock and d_lock on dentry and ancestors.
1316  */
1317 int d_set_mounted(struct dentry *dentry)
1318 {
1319 	struct dentry *p;
1320 	int ret = -ENOENT;
1321 	write_seqlock(&rename_lock);
1322 	for (p = dentry->d_parent; !IS_ROOT(p); p = p->d_parent) {
1323 		/* Need exclusion wrt. d_invalidate() */
1324 		spin_lock(&p->d_lock);
1325 		if (unlikely(d_unhashed(p))) {
1326 			spin_unlock(&p->d_lock);
1327 			goto out;
1328 		}
1329 		spin_unlock(&p->d_lock);
1330 	}
1331 	spin_lock(&dentry->d_lock);
1332 	if (!d_unlinked(dentry)) {
1333 		dentry->d_flags |= DCACHE_MOUNTED;
1334 		ret = 0;
1335 	}
1336  	spin_unlock(&dentry->d_lock);
1337 out:
1338 	write_sequnlock(&rename_lock);
1339 	return ret;
1340 }
1341 
1342 /*
1343  * Search the dentry child list of the specified parent,
1344  * and move any unused dentries to the end of the unused
1345  * list for prune_dcache(). We descend to the next level
1346  * whenever the d_subdirs list is non-empty and continue
1347  * searching.
1348  *
1349  * It returns zero iff there are no unused children,
1350  * otherwise  it returns the number of children moved to
1351  * the end of the unused list. This may not be the total
1352  * number of unused children, because select_parent can
1353  * drop the lock and return early due to latency
1354  * constraints.
1355  */
1356 
1357 struct select_data {
1358 	struct dentry *start;
1359 	struct list_head dispose;
1360 	int found;
1361 };
1362 
1363 static enum d_walk_ret select_collect(void *_data, struct dentry *dentry)
1364 {
1365 	struct select_data *data = _data;
1366 	enum d_walk_ret ret = D_WALK_CONTINUE;
1367 
1368 	if (data->start == dentry)
1369 		goto out;
1370 
1371 	if (dentry->d_flags & DCACHE_SHRINK_LIST) {
1372 		data->found++;
1373 	} else {
1374 		if (dentry->d_flags & DCACHE_LRU_LIST)
1375 			d_lru_del(dentry);
1376 		if (!dentry->d_lockref.count) {
1377 			d_shrink_add(dentry, &data->dispose);
1378 			data->found++;
1379 		}
1380 	}
1381 	/*
1382 	 * We can return to the caller if we have found some (this
1383 	 * ensures forward progress). We'll be coming back to find
1384 	 * the rest.
1385 	 */
1386 	if (!list_empty(&data->dispose))
1387 		ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY;
1388 out:
1389 	return ret;
1390 }
1391 
1392 /**
1393  * shrink_dcache_parent - prune dcache
1394  * @parent: parent of entries to prune
1395  *
1396  * Prune the dcache to remove unused children of the parent dentry.
1397  */
1398 void shrink_dcache_parent(struct dentry *parent)
1399 {
1400 	for (;;) {
1401 		struct select_data data;
1402 
1403 		INIT_LIST_HEAD(&data.dispose);
1404 		data.start = parent;
1405 		data.found = 0;
1406 
1407 		d_walk(parent, &data, select_collect, NULL);
1408 		if (!data.found)
1409 			break;
1410 
1411 		shrink_dentry_list(&data.dispose);
1412 		cond_resched();
1413 	}
1414 }
1415 EXPORT_SYMBOL(shrink_dcache_parent);
1416 
1417 static enum d_walk_ret umount_check(void *_data, struct dentry *dentry)
1418 {
1419 	/* it has busy descendents; complain about those instead */
1420 	if (!list_empty(&dentry->d_subdirs))
1421 		return D_WALK_CONTINUE;
1422 
1423 	/* root with refcount 1 is fine */
1424 	if (dentry == _data && dentry->d_lockref.count == 1)
1425 		return D_WALK_CONTINUE;
1426 
1427 	printk(KERN_ERR "BUG: Dentry %p{i=%lx,n=%pd} "
1428 			" still in use (%d) [unmount of %s %s]\n",
1429 		       dentry,
1430 		       dentry->d_inode ?
1431 		       dentry->d_inode->i_ino : 0UL,
1432 		       dentry,
1433 		       dentry->d_lockref.count,
1434 		       dentry->d_sb->s_type->name,
1435 		       dentry->d_sb->s_id);
1436 	WARN_ON(1);
1437 	return D_WALK_CONTINUE;
1438 }
1439 
1440 static void do_one_tree(struct dentry *dentry)
1441 {
1442 	shrink_dcache_parent(dentry);
1443 	d_walk(dentry, dentry, umount_check, NULL);
1444 	d_drop(dentry);
1445 	dput(dentry);
1446 }
1447 
1448 /*
1449  * destroy the dentries attached to a superblock on unmounting
1450  */
1451 void shrink_dcache_for_umount(struct super_block *sb)
1452 {
1453 	struct dentry *dentry;
1454 
1455 	WARN(down_read_trylock(&sb->s_umount), "s_umount should've been locked");
1456 
1457 	dentry = sb->s_root;
1458 	sb->s_root = NULL;
1459 	do_one_tree(dentry);
1460 
1461 	while (!hlist_bl_empty(&sb->s_anon)) {
1462 		dentry = dget(hlist_bl_entry(hlist_bl_first(&sb->s_anon), struct dentry, d_hash));
1463 		do_one_tree(dentry);
1464 	}
1465 }
1466 
1467 struct detach_data {
1468 	struct select_data select;
1469 	struct dentry *mountpoint;
1470 };
1471 static enum d_walk_ret detach_and_collect(void *_data, struct dentry *dentry)
1472 {
1473 	struct detach_data *data = _data;
1474 
1475 	if (d_mountpoint(dentry)) {
1476 		__dget_dlock(dentry);
1477 		data->mountpoint = dentry;
1478 		return D_WALK_QUIT;
1479 	}
1480 
1481 	return select_collect(&data->select, dentry);
1482 }
1483 
1484 static void check_and_drop(void *_data)
1485 {
1486 	struct detach_data *data = _data;
1487 
1488 	if (!data->mountpoint && !data->select.found)
1489 		__d_drop(data->select.start);
1490 }
1491 
1492 /**
1493  * d_invalidate - detach submounts, prune dcache, and drop
1494  * @dentry: dentry to invalidate (aka detach, prune and drop)
1495  *
1496  * no dcache lock.
1497  *
1498  * The final d_drop is done as an atomic operation relative to
1499  * rename_lock ensuring there are no races with d_set_mounted.  This
1500  * ensures there are no unhashed dentries on the path to a mountpoint.
1501  */
1502 void d_invalidate(struct dentry *dentry)
1503 {
1504 	/*
1505 	 * If it's already been dropped, return OK.
1506 	 */
1507 	spin_lock(&dentry->d_lock);
1508 	if (d_unhashed(dentry)) {
1509 		spin_unlock(&dentry->d_lock);
1510 		return;
1511 	}
1512 	spin_unlock(&dentry->d_lock);
1513 
1514 	/* Negative dentries can be dropped without further checks */
1515 	if (!dentry->d_inode) {
1516 		d_drop(dentry);
1517 		return;
1518 	}
1519 
1520 	for (;;) {
1521 		struct detach_data data;
1522 
1523 		data.mountpoint = NULL;
1524 		INIT_LIST_HEAD(&data.select.dispose);
1525 		data.select.start = dentry;
1526 		data.select.found = 0;
1527 
1528 		d_walk(dentry, &data, detach_and_collect, check_and_drop);
1529 
1530 		if (data.select.found)
1531 			shrink_dentry_list(&data.select.dispose);
1532 
1533 		if (data.mountpoint) {
1534 			detach_mounts(data.mountpoint);
1535 			dput(data.mountpoint);
1536 		}
1537 
1538 		if (!data.mountpoint && !data.select.found)
1539 			break;
1540 
1541 		cond_resched();
1542 	}
1543 }
1544 EXPORT_SYMBOL(d_invalidate);
1545 
1546 /**
1547  * __d_alloc	-	allocate a dcache entry
1548  * @sb: filesystem it will belong to
1549  * @name: qstr of the name
1550  *
1551  * Allocates a dentry. It returns %NULL if there is insufficient memory
1552  * available. On a success the dentry is returned. The name passed in is
1553  * copied and the copy passed in may be reused after this call.
1554  */
1555 
1556 struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name)
1557 {
1558 	struct dentry *dentry;
1559 	char *dname;
1560 
1561 	dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
1562 	if (!dentry)
1563 		return NULL;
1564 
1565 	/*
1566 	 * We guarantee that the inline name is always NUL-terminated.
1567 	 * This way the memcpy() done by the name switching in rename
1568 	 * will still always have a NUL at the end, even if we might
1569 	 * be overwriting an internal NUL character
1570 	 */
1571 	dentry->d_iname[DNAME_INLINE_LEN-1] = 0;
1572 	if (name->len > DNAME_INLINE_LEN-1) {
1573 		size_t size = offsetof(struct external_name, name[1]);
1574 		struct external_name *p = kmalloc(size + name->len, GFP_KERNEL);
1575 		if (!p) {
1576 			kmem_cache_free(dentry_cache, dentry);
1577 			return NULL;
1578 		}
1579 		atomic_set(&p->u.count, 1);
1580 		dname = p->name;
1581 		if (IS_ENABLED(CONFIG_DCACHE_WORD_ACCESS))
1582 			kasan_unpoison_shadow(dname,
1583 				round_up(name->len + 1,	sizeof(unsigned long)));
1584 	} else  {
1585 		dname = dentry->d_iname;
1586 	}
1587 
1588 	dentry->d_name.len = name->len;
1589 	dentry->d_name.hash = name->hash;
1590 	memcpy(dname, name->name, name->len);
1591 	dname[name->len] = 0;
1592 
1593 	/* Make sure we always see the terminating NUL character */
1594 	smp_wmb();
1595 	dentry->d_name.name = dname;
1596 
1597 	dentry->d_lockref.count = 1;
1598 	dentry->d_flags = 0;
1599 	spin_lock_init(&dentry->d_lock);
1600 	seqcount_init(&dentry->d_seq);
1601 	dentry->d_inode = NULL;
1602 	dentry->d_parent = dentry;
1603 	dentry->d_sb = sb;
1604 	dentry->d_op = NULL;
1605 	dentry->d_fsdata = NULL;
1606 	INIT_HLIST_BL_NODE(&dentry->d_hash);
1607 	INIT_LIST_HEAD(&dentry->d_lru);
1608 	INIT_LIST_HEAD(&dentry->d_subdirs);
1609 	INIT_HLIST_NODE(&dentry->d_u.d_alias);
1610 	INIT_LIST_HEAD(&dentry->d_child);
1611 	d_set_d_op(dentry, dentry->d_sb->s_d_op);
1612 
1613 	this_cpu_inc(nr_dentry);
1614 
1615 	return dentry;
1616 }
1617 
1618 /**
1619  * d_alloc	-	allocate a dcache entry
1620  * @parent: parent of entry to allocate
1621  * @name: qstr of the name
1622  *
1623  * Allocates a dentry. It returns %NULL if there is insufficient memory
1624  * available. On a success the dentry is returned. The name passed in is
1625  * copied and the copy passed in may be reused after this call.
1626  */
1627 struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1628 {
1629 	struct dentry *dentry = __d_alloc(parent->d_sb, name);
1630 	if (!dentry)
1631 		return NULL;
1632 
1633 	spin_lock(&parent->d_lock);
1634 	/*
1635 	 * don't need child lock because it is not subject
1636 	 * to concurrency here
1637 	 */
1638 	__dget_dlock(parent);
1639 	dentry->d_parent = parent;
1640 	list_add(&dentry->d_child, &parent->d_subdirs);
1641 	spin_unlock(&parent->d_lock);
1642 
1643 	return dentry;
1644 }
1645 EXPORT_SYMBOL(d_alloc);
1646 
1647 /**
1648  * d_alloc_pseudo - allocate a dentry (for lookup-less filesystems)
1649  * @sb: the superblock
1650  * @name: qstr of the name
1651  *
1652  * For a filesystem that just pins its dentries in memory and never
1653  * performs lookups at all, return an unhashed IS_ROOT dentry.
1654  */
1655 struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
1656 {
1657 	return __d_alloc(sb, name);
1658 }
1659 EXPORT_SYMBOL(d_alloc_pseudo);
1660 
1661 struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1662 {
1663 	struct qstr q;
1664 
1665 	q.name = name;
1666 	q.len = strlen(name);
1667 	q.hash = full_name_hash(q.name, q.len);
1668 	return d_alloc(parent, &q);
1669 }
1670 EXPORT_SYMBOL(d_alloc_name);
1671 
1672 void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1673 {
1674 	WARN_ON_ONCE(dentry->d_op);
1675 	WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH	|
1676 				DCACHE_OP_COMPARE	|
1677 				DCACHE_OP_REVALIDATE	|
1678 				DCACHE_OP_WEAK_REVALIDATE	|
1679 				DCACHE_OP_DELETE	|
1680 				DCACHE_OP_SELECT_INODE));
1681 	dentry->d_op = op;
1682 	if (!op)
1683 		return;
1684 	if (op->d_hash)
1685 		dentry->d_flags |= DCACHE_OP_HASH;
1686 	if (op->d_compare)
1687 		dentry->d_flags |= DCACHE_OP_COMPARE;
1688 	if (op->d_revalidate)
1689 		dentry->d_flags |= DCACHE_OP_REVALIDATE;
1690 	if (op->d_weak_revalidate)
1691 		dentry->d_flags |= DCACHE_OP_WEAK_REVALIDATE;
1692 	if (op->d_delete)
1693 		dentry->d_flags |= DCACHE_OP_DELETE;
1694 	if (op->d_prune)
1695 		dentry->d_flags |= DCACHE_OP_PRUNE;
1696 	if (op->d_select_inode)
1697 		dentry->d_flags |= DCACHE_OP_SELECT_INODE;
1698 
1699 }
1700 EXPORT_SYMBOL(d_set_d_op);
1701 
1702 
1703 /*
1704  * d_set_fallthru - Mark a dentry as falling through to a lower layer
1705  * @dentry - The dentry to mark
1706  *
1707  * Mark a dentry as falling through to the lower layer (as set with
1708  * d_pin_lower()).  This flag may be recorded on the medium.
1709  */
1710 void d_set_fallthru(struct dentry *dentry)
1711 {
1712 	spin_lock(&dentry->d_lock);
1713 	dentry->d_flags |= DCACHE_FALLTHRU;
1714 	spin_unlock(&dentry->d_lock);
1715 }
1716 EXPORT_SYMBOL(d_set_fallthru);
1717 
1718 static unsigned d_flags_for_inode(struct inode *inode)
1719 {
1720 	unsigned add_flags = DCACHE_REGULAR_TYPE;
1721 
1722 	if (!inode)
1723 		return DCACHE_MISS_TYPE;
1724 
1725 	if (S_ISDIR(inode->i_mode)) {
1726 		add_flags = DCACHE_DIRECTORY_TYPE;
1727 		if (unlikely(!(inode->i_opflags & IOP_LOOKUP))) {
1728 			if (unlikely(!inode->i_op->lookup))
1729 				add_flags = DCACHE_AUTODIR_TYPE;
1730 			else
1731 				inode->i_opflags |= IOP_LOOKUP;
1732 		}
1733 		goto type_determined;
1734 	}
1735 
1736 	if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) {
1737 		if (unlikely(inode->i_op->follow_link)) {
1738 			add_flags = DCACHE_SYMLINK_TYPE;
1739 			goto type_determined;
1740 		}
1741 		inode->i_opflags |= IOP_NOFOLLOW;
1742 	}
1743 
1744 	if (unlikely(!S_ISREG(inode->i_mode)))
1745 		add_flags = DCACHE_SPECIAL_TYPE;
1746 
1747 type_determined:
1748 	if (unlikely(IS_AUTOMOUNT(inode)))
1749 		add_flags |= DCACHE_NEED_AUTOMOUNT;
1750 	return add_flags;
1751 }
1752 
1753 static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1754 {
1755 	unsigned add_flags = d_flags_for_inode(inode);
1756 
1757 	spin_lock(&dentry->d_lock);
1758 	if (inode)
1759 		hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
1760 	__d_set_inode_and_type(dentry, inode, add_flags);
1761 	dentry_rcuwalk_invalidate(dentry);
1762 	spin_unlock(&dentry->d_lock);
1763 	fsnotify_d_instantiate(dentry, inode);
1764 }
1765 
1766 /**
1767  * d_instantiate - fill in inode information for a dentry
1768  * @entry: dentry to complete
1769  * @inode: inode to attach to this dentry
1770  *
1771  * Fill in inode information in the entry.
1772  *
1773  * This turns negative dentries into productive full members
1774  * of society.
1775  *
1776  * NOTE! This assumes that the inode count has been incremented
1777  * (or otherwise set) by the caller to indicate that it is now
1778  * in use by the dcache.
1779  */
1780 
1781 void d_instantiate(struct dentry *entry, struct inode * inode)
1782 {
1783 	BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
1784 	if (inode)
1785 		spin_lock(&inode->i_lock);
1786 	__d_instantiate(entry, inode);
1787 	if (inode)
1788 		spin_unlock(&inode->i_lock);
1789 	security_d_instantiate(entry, inode);
1790 }
1791 EXPORT_SYMBOL(d_instantiate);
1792 
1793 /**
1794  * d_instantiate_unique - instantiate a non-aliased dentry
1795  * @entry: dentry to instantiate
1796  * @inode: inode to attach to this dentry
1797  *
1798  * Fill in inode information in the entry. On success, it returns NULL.
1799  * If an unhashed alias of "entry" already exists, then we return the
1800  * aliased dentry instead and drop one reference to inode.
1801  *
1802  * Note that in order to avoid conflicts with rename() etc, the caller
1803  * had better be holding the parent directory semaphore.
1804  *
1805  * This also assumes that the inode count has been incremented
1806  * (or otherwise set) by the caller to indicate that it is now
1807  * in use by the dcache.
1808  */
1809 static struct dentry *__d_instantiate_unique(struct dentry *entry,
1810 					     struct inode *inode)
1811 {
1812 	struct dentry *alias;
1813 	int len = entry->d_name.len;
1814 	const char *name = entry->d_name.name;
1815 	unsigned int hash = entry->d_name.hash;
1816 
1817 	if (!inode) {
1818 		__d_instantiate(entry, NULL);
1819 		return NULL;
1820 	}
1821 
1822 	hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
1823 		/*
1824 		 * Don't need alias->d_lock here, because aliases with
1825 		 * d_parent == entry->d_parent are not subject to name or
1826 		 * parent changes, because the parent inode i_mutex is held.
1827 		 */
1828 		if (alias->d_name.hash != hash)
1829 			continue;
1830 		if (alias->d_parent != entry->d_parent)
1831 			continue;
1832 		if (alias->d_name.len != len)
1833 			continue;
1834 		if (dentry_cmp(alias, name, len))
1835 			continue;
1836 		__dget(alias);
1837 		return alias;
1838 	}
1839 
1840 	__d_instantiate(entry, inode);
1841 	return NULL;
1842 }
1843 
1844 struct dentry *d_instantiate_unique(struct dentry *entry, struct inode *inode)
1845 {
1846 	struct dentry *result;
1847 
1848 	BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
1849 
1850 	if (inode)
1851 		spin_lock(&inode->i_lock);
1852 	result = __d_instantiate_unique(entry, inode);
1853 	if (inode)
1854 		spin_unlock(&inode->i_lock);
1855 
1856 	if (!result) {
1857 		security_d_instantiate(entry, inode);
1858 		return NULL;
1859 	}
1860 
1861 	BUG_ON(!d_unhashed(result));
1862 	iput(inode);
1863 	return result;
1864 }
1865 
1866 EXPORT_SYMBOL(d_instantiate_unique);
1867 
1868 /**
1869  * d_instantiate_no_diralias - instantiate a non-aliased dentry
1870  * @entry: dentry to complete
1871  * @inode: inode to attach to this dentry
1872  *
1873  * Fill in inode information in the entry.  If a directory alias is found, then
1874  * return an error (and drop inode).  Together with d_materialise_unique() this
1875  * guarantees that a directory inode may never have more than one alias.
1876  */
1877 int d_instantiate_no_diralias(struct dentry *entry, struct inode *inode)
1878 {
1879 	BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
1880 
1881 	spin_lock(&inode->i_lock);
1882 	if (S_ISDIR(inode->i_mode) && !hlist_empty(&inode->i_dentry)) {
1883 		spin_unlock(&inode->i_lock);
1884 		iput(inode);
1885 		return -EBUSY;
1886 	}
1887 	__d_instantiate(entry, inode);
1888 	spin_unlock(&inode->i_lock);
1889 	security_d_instantiate(entry, inode);
1890 
1891 	return 0;
1892 }
1893 EXPORT_SYMBOL(d_instantiate_no_diralias);
1894 
1895 struct dentry *d_make_root(struct inode *root_inode)
1896 {
1897 	struct dentry *res = NULL;
1898 
1899 	if (root_inode) {
1900 		static const struct qstr name = QSTR_INIT("/", 1);
1901 
1902 		res = __d_alloc(root_inode->i_sb, &name);
1903 		if (res)
1904 			d_instantiate(res, root_inode);
1905 		else
1906 			iput(root_inode);
1907 	}
1908 	return res;
1909 }
1910 EXPORT_SYMBOL(d_make_root);
1911 
1912 static struct dentry * __d_find_any_alias(struct inode *inode)
1913 {
1914 	struct dentry *alias;
1915 
1916 	if (hlist_empty(&inode->i_dentry))
1917 		return NULL;
1918 	alias = hlist_entry(inode->i_dentry.first, struct dentry, d_u.d_alias);
1919 	__dget(alias);
1920 	return alias;
1921 }
1922 
1923 /**
1924  * d_find_any_alias - find any alias for a given inode
1925  * @inode: inode to find an alias for
1926  *
1927  * If any aliases exist for the given inode, take and return a
1928  * reference for one of them.  If no aliases exist, return %NULL.
1929  */
1930 struct dentry *d_find_any_alias(struct inode *inode)
1931 {
1932 	struct dentry *de;
1933 
1934 	spin_lock(&inode->i_lock);
1935 	de = __d_find_any_alias(inode);
1936 	spin_unlock(&inode->i_lock);
1937 	return de;
1938 }
1939 EXPORT_SYMBOL(d_find_any_alias);
1940 
1941 static struct dentry *__d_obtain_alias(struct inode *inode, int disconnected)
1942 {
1943 	static const struct qstr anonstring = QSTR_INIT("/", 1);
1944 	struct dentry *tmp;
1945 	struct dentry *res;
1946 	unsigned add_flags;
1947 
1948 	if (!inode)
1949 		return ERR_PTR(-ESTALE);
1950 	if (IS_ERR(inode))
1951 		return ERR_CAST(inode);
1952 
1953 	res = d_find_any_alias(inode);
1954 	if (res)
1955 		goto out_iput;
1956 
1957 	tmp = __d_alloc(inode->i_sb, &anonstring);
1958 	if (!tmp) {
1959 		res = ERR_PTR(-ENOMEM);
1960 		goto out_iput;
1961 	}
1962 
1963 	spin_lock(&inode->i_lock);
1964 	res = __d_find_any_alias(inode);
1965 	if (res) {
1966 		spin_unlock(&inode->i_lock);
1967 		dput(tmp);
1968 		goto out_iput;
1969 	}
1970 
1971 	/* attach a disconnected dentry */
1972 	add_flags = d_flags_for_inode(inode);
1973 
1974 	if (disconnected)
1975 		add_flags |= DCACHE_DISCONNECTED;
1976 
1977 	spin_lock(&tmp->d_lock);
1978 	__d_set_inode_and_type(tmp, inode, add_flags);
1979 	hlist_add_head(&tmp->d_u.d_alias, &inode->i_dentry);
1980 	hlist_bl_lock(&tmp->d_sb->s_anon);
1981 	hlist_bl_add_head(&tmp->d_hash, &tmp->d_sb->s_anon);
1982 	hlist_bl_unlock(&tmp->d_sb->s_anon);
1983 	spin_unlock(&tmp->d_lock);
1984 	spin_unlock(&inode->i_lock);
1985 	security_d_instantiate(tmp, inode);
1986 
1987 	return tmp;
1988 
1989  out_iput:
1990 	if (res && !IS_ERR(res))
1991 		security_d_instantiate(res, inode);
1992 	iput(inode);
1993 	return res;
1994 }
1995 
1996 /**
1997  * d_obtain_alias - find or allocate a DISCONNECTED dentry for a given inode
1998  * @inode: inode to allocate the dentry for
1999  *
2000  * Obtain a dentry for an inode resulting from NFS filehandle conversion or
2001  * similar open by handle operations.  The returned dentry may be anonymous,
2002  * or may have a full name (if the inode was already in the cache).
2003  *
2004  * When called on a directory inode, we must ensure that the inode only ever
2005  * has one dentry.  If a dentry is found, that is returned instead of
2006  * allocating a new one.
2007  *
2008  * On successful return, the reference to the inode has been transferred
2009  * to the dentry.  In case of an error the reference on the inode is released.
2010  * To make it easier to use in export operations a %NULL or IS_ERR inode may
2011  * be passed in and the error will be propagated to the return value,
2012  * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
2013  */
2014 struct dentry *d_obtain_alias(struct inode *inode)
2015 {
2016 	return __d_obtain_alias(inode, 1);
2017 }
2018 EXPORT_SYMBOL(d_obtain_alias);
2019 
2020 /**
2021  * d_obtain_root - find or allocate a dentry for a given inode
2022  * @inode: inode to allocate the dentry for
2023  *
2024  * Obtain an IS_ROOT dentry for the root of a filesystem.
2025  *
2026  * We must ensure that directory inodes only ever have one dentry.  If a
2027  * dentry is found, that is returned instead of allocating a new one.
2028  *
2029  * On successful return, the reference to the inode has been transferred
2030  * to the dentry.  In case of an error the reference on the inode is
2031  * released.  A %NULL or IS_ERR inode may be passed in and will be the
2032  * error will be propagate to the return value, with a %NULL @inode
2033  * replaced by ERR_PTR(-ESTALE).
2034  */
2035 struct dentry *d_obtain_root(struct inode *inode)
2036 {
2037 	return __d_obtain_alias(inode, 0);
2038 }
2039 EXPORT_SYMBOL(d_obtain_root);
2040 
2041 /**
2042  * d_add_ci - lookup or allocate new dentry with case-exact name
2043  * @inode:  the inode case-insensitive lookup has found
2044  * @dentry: the negative dentry that was passed to the parent's lookup func
2045  * @name:   the case-exact name to be associated with the returned dentry
2046  *
2047  * This is to avoid filling the dcache with case-insensitive names to the
2048  * same inode, only the actual correct case is stored in the dcache for
2049  * case-insensitive filesystems.
2050  *
2051  * For a case-insensitive lookup match and if the the case-exact dentry
2052  * already exists in in the dcache, use it and return it.
2053  *
2054  * If no entry exists with the exact case name, allocate new dentry with
2055  * the exact case, and return the spliced entry.
2056  */
2057 struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
2058 			struct qstr *name)
2059 {
2060 	struct dentry *found;
2061 	struct dentry *new;
2062 
2063 	/*
2064 	 * First check if a dentry matching the name already exists,
2065 	 * if not go ahead and create it now.
2066 	 */
2067 	found = d_hash_and_lookup(dentry->d_parent, name);
2068 	if (!found) {
2069 		new = d_alloc(dentry->d_parent, name);
2070 		if (!new) {
2071 			found = ERR_PTR(-ENOMEM);
2072 		} else {
2073 			found = d_splice_alias(inode, new);
2074 			if (found) {
2075 				dput(new);
2076 				return found;
2077 			}
2078 			return new;
2079 		}
2080 	}
2081 	iput(inode);
2082 	return found;
2083 }
2084 EXPORT_SYMBOL(d_add_ci);
2085 
2086 /*
2087  * Do the slow-case of the dentry name compare.
2088  *
2089  * Unlike the dentry_cmp() function, we need to atomically
2090  * load the name and length information, so that the
2091  * filesystem can rely on them, and can use the 'name' and
2092  * 'len' information without worrying about walking off the
2093  * end of memory etc.
2094  *
2095  * Thus the read_seqcount_retry() and the "duplicate" info
2096  * in arguments (the low-level filesystem should not look
2097  * at the dentry inode or name contents directly, since
2098  * rename can change them while we're in RCU mode).
2099  */
2100 enum slow_d_compare {
2101 	D_COMP_OK,
2102 	D_COMP_NOMATCH,
2103 	D_COMP_SEQRETRY,
2104 };
2105 
2106 static noinline enum slow_d_compare slow_dentry_cmp(
2107 		const struct dentry *parent,
2108 		struct dentry *dentry,
2109 		unsigned int seq,
2110 		const struct qstr *name)
2111 {
2112 	int tlen = dentry->d_name.len;
2113 	const char *tname = dentry->d_name.name;
2114 
2115 	if (read_seqcount_retry(&dentry->d_seq, seq)) {
2116 		cpu_relax();
2117 		return D_COMP_SEQRETRY;
2118 	}
2119 	if (parent->d_op->d_compare(parent, dentry, tlen, tname, name))
2120 		return D_COMP_NOMATCH;
2121 	return D_COMP_OK;
2122 }
2123 
2124 /**
2125  * __d_lookup_rcu - search for a dentry (racy, store-free)
2126  * @parent: parent dentry
2127  * @name: qstr of name we wish to find
2128  * @seqp: returns d_seq value at the point where the dentry was found
2129  * Returns: dentry, or NULL
2130  *
2131  * __d_lookup_rcu is the dcache lookup function for rcu-walk name
2132  * resolution (store-free path walking) design described in
2133  * Documentation/filesystems/path-lookup.txt.
2134  *
2135  * This is not to be used outside core vfs.
2136  *
2137  * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
2138  * held, and rcu_read_lock held. The returned dentry must not be stored into
2139  * without taking d_lock and checking d_seq sequence count against @seq
2140  * returned here.
2141  *
2142  * A refcount may be taken on the found dentry with the d_rcu_to_refcount
2143  * function.
2144  *
2145  * Alternatively, __d_lookup_rcu may be called again to look up the child of
2146  * the returned dentry, so long as its parent's seqlock is checked after the
2147  * child is looked up. Thus, an interlocking stepping of sequence lock checks
2148  * is formed, giving integrity down the path walk.
2149  *
2150  * NOTE! The caller *has* to check the resulting dentry against the sequence
2151  * number we've returned before using any of the resulting dentry state!
2152  */
2153 struct dentry *__d_lookup_rcu(const struct dentry *parent,
2154 				const struct qstr *name,
2155 				unsigned *seqp)
2156 {
2157 	u64 hashlen = name->hash_len;
2158 	const unsigned char *str = name->name;
2159 	struct hlist_bl_head *b = d_hash(parent, hashlen_hash(hashlen));
2160 	struct hlist_bl_node *node;
2161 	struct dentry *dentry;
2162 
2163 	/*
2164 	 * Note: There is significant duplication with __d_lookup_rcu which is
2165 	 * required to prevent single threaded performance regressions
2166 	 * especially on architectures where smp_rmb (in seqcounts) are costly.
2167 	 * Keep the two functions in sync.
2168 	 */
2169 
2170 	/*
2171 	 * The hash list is protected using RCU.
2172 	 *
2173 	 * Carefully use d_seq when comparing a candidate dentry, to avoid
2174 	 * races with d_move().
2175 	 *
2176 	 * It is possible that concurrent renames can mess up our list
2177 	 * walk here and result in missing our dentry, resulting in the
2178 	 * false-negative result. d_lookup() protects against concurrent
2179 	 * renames using rename_lock seqlock.
2180 	 *
2181 	 * See Documentation/filesystems/path-lookup.txt for more details.
2182 	 */
2183 	hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2184 		unsigned seq;
2185 
2186 seqretry:
2187 		/*
2188 		 * The dentry sequence count protects us from concurrent
2189 		 * renames, and thus protects parent and name fields.
2190 		 *
2191 		 * The caller must perform a seqcount check in order
2192 		 * to do anything useful with the returned dentry.
2193 		 *
2194 		 * NOTE! We do a "raw" seqcount_begin here. That means that
2195 		 * we don't wait for the sequence count to stabilize if it
2196 		 * is in the middle of a sequence change. If we do the slow
2197 		 * dentry compare, we will do seqretries until it is stable,
2198 		 * and if we end up with a successful lookup, we actually
2199 		 * want to exit RCU lookup anyway.
2200 		 */
2201 		seq = raw_seqcount_begin(&dentry->d_seq);
2202 		if (dentry->d_parent != parent)
2203 			continue;
2204 		if (d_unhashed(dentry))
2205 			continue;
2206 
2207 		if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) {
2208 			if (dentry->d_name.hash != hashlen_hash(hashlen))
2209 				continue;
2210 			*seqp = seq;
2211 			switch (slow_dentry_cmp(parent, dentry, seq, name)) {
2212 			case D_COMP_OK:
2213 				return dentry;
2214 			case D_COMP_NOMATCH:
2215 				continue;
2216 			default:
2217 				goto seqretry;
2218 			}
2219 		}
2220 
2221 		if (dentry->d_name.hash_len != hashlen)
2222 			continue;
2223 		*seqp = seq;
2224 		if (!dentry_cmp(dentry, str, hashlen_len(hashlen)))
2225 			return dentry;
2226 	}
2227 	return NULL;
2228 }
2229 
2230 /**
2231  * d_lookup - search for a dentry
2232  * @parent: parent dentry
2233  * @name: qstr of name we wish to find
2234  * Returns: dentry, or NULL
2235  *
2236  * d_lookup searches the children of the parent dentry for the name in
2237  * question. If the dentry is found its reference count is incremented and the
2238  * dentry is returned. The caller must use dput to free the entry when it has
2239  * finished using it. %NULL is returned if the dentry does not exist.
2240  */
2241 struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name)
2242 {
2243 	struct dentry *dentry;
2244 	unsigned seq;
2245 
2246 	do {
2247 		seq = read_seqbegin(&rename_lock);
2248 		dentry = __d_lookup(parent, name);
2249 		if (dentry)
2250 			break;
2251 	} while (read_seqretry(&rename_lock, seq));
2252 	return dentry;
2253 }
2254 EXPORT_SYMBOL(d_lookup);
2255 
2256 /**
2257  * __d_lookup - search for a dentry (racy)
2258  * @parent: parent dentry
2259  * @name: qstr of name we wish to find
2260  * Returns: dentry, or NULL
2261  *
2262  * __d_lookup is like d_lookup, however it may (rarely) return a
2263  * false-negative result due to unrelated rename activity.
2264  *
2265  * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
2266  * however it must be used carefully, eg. with a following d_lookup in
2267  * the case of failure.
2268  *
2269  * __d_lookup callers must be commented.
2270  */
2271 struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name)
2272 {
2273 	unsigned int len = name->len;
2274 	unsigned int hash = name->hash;
2275 	const unsigned char *str = name->name;
2276 	struct hlist_bl_head *b = d_hash(parent, hash);
2277 	struct hlist_bl_node *node;
2278 	struct dentry *found = NULL;
2279 	struct dentry *dentry;
2280 
2281 	/*
2282 	 * Note: There is significant duplication with __d_lookup_rcu which is
2283 	 * required to prevent single threaded performance regressions
2284 	 * especially on architectures where smp_rmb (in seqcounts) are costly.
2285 	 * Keep the two functions in sync.
2286 	 */
2287 
2288 	/*
2289 	 * The hash list is protected using RCU.
2290 	 *
2291 	 * Take d_lock when comparing a candidate dentry, to avoid races
2292 	 * with d_move().
2293 	 *
2294 	 * It is possible that concurrent renames can mess up our list
2295 	 * walk here and result in missing our dentry, resulting in the
2296 	 * false-negative result. d_lookup() protects against concurrent
2297 	 * renames using rename_lock seqlock.
2298 	 *
2299 	 * See Documentation/filesystems/path-lookup.txt for more details.
2300 	 */
2301 	rcu_read_lock();
2302 
2303 	hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2304 
2305 		if (dentry->d_name.hash != hash)
2306 			continue;
2307 
2308 		spin_lock(&dentry->d_lock);
2309 		if (dentry->d_parent != parent)
2310 			goto next;
2311 		if (d_unhashed(dentry))
2312 			goto next;
2313 
2314 		/*
2315 		 * It is safe to compare names since d_move() cannot
2316 		 * change the qstr (protected by d_lock).
2317 		 */
2318 		if (parent->d_flags & DCACHE_OP_COMPARE) {
2319 			int tlen = dentry->d_name.len;
2320 			const char *tname = dentry->d_name.name;
2321 			if (parent->d_op->d_compare(parent, dentry, tlen, tname, name))
2322 				goto next;
2323 		} else {
2324 			if (dentry->d_name.len != len)
2325 				goto next;
2326 			if (dentry_cmp(dentry, str, len))
2327 				goto next;
2328 		}
2329 
2330 		dentry->d_lockref.count++;
2331 		found = dentry;
2332 		spin_unlock(&dentry->d_lock);
2333 		break;
2334 next:
2335 		spin_unlock(&dentry->d_lock);
2336  	}
2337  	rcu_read_unlock();
2338 
2339  	return found;
2340 }
2341 
2342 /**
2343  * d_hash_and_lookup - hash the qstr then search for a dentry
2344  * @dir: Directory to search in
2345  * @name: qstr of name we wish to find
2346  *
2347  * On lookup failure NULL is returned; on bad name - ERR_PTR(-error)
2348  */
2349 struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
2350 {
2351 	/*
2352 	 * Check for a fs-specific hash function. Note that we must
2353 	 * calculate the standard hash first, as the d_op->d_hash()
2354 	 * routine may choose to leave the hash value unchanged.
2355 	 */
2356 	name->hash = full_name_hash(name->name, name->len);
2357 	if (dir->d_flags & DCACHE_OP_HASH) {
2358 		int err = dir->d_op->d_hash(dir, name);
2359 		if (unlikely(err < 0))
2360 			return ERR_PTR(err);
2361 	}
2362 	return d_lookup(dir, name);
2363 }
2364 EXPORT_SYMBOL(d_hash_and_lookup);
2365 
2366 /*
2367  * When a file is deleted, we have two options:
2368  * - turn this dentry into a negative dentry
2369  * - unhash this dentry and free it.
2370  *
2371  * Usually, we want to just turn this into
2372  * a negative dentry, but if anybody else is
2373  * currently using the dentry or the inode
2374  * we can't do that and we fall back on removing
2375  * it from the hash queues and waiting for
2376  * it to be deleted later when it has no users
2377  */
2378 
2379 /**
2380  * d_delete - delete a dentry
2381  * @dentry: The dentry to delete
2382  *
2383  * Turn the dentry into a negative dentry if possible, otherwise
2384  * remove it from the hash queues so it can be deleted later
2385  */
2386 
2387 void d_delete(struct dentry * dentry)
2388 {
2389 	struct inode *inode;
2390 	int isdir = 0;
2391 	/*
2392 	 * Are we the only user?
2393 	 */
2394 again:
2395 	spin_lock(&dentry->d_lock);
2396 	inode = dentry->d_inode;
2397 	isdir = S_ISDIR(inode->i_mode);
2398 	if (dentry->d_lockref.count == 1) {
2399 		if (!spin_trylock(&inode->i_lock)) {
2400 			spin_unlock(&dentry->d_lock);
2401 			cpu_relax();
2402 			goto again;
2403 		}
2404 		dentry->d_flags &= ~DCACHE_CANT_MOUNT;
2405 		dentry_unlink_inode(dentry);
2406 		fsnotify_nameremove(dentry, isdir);
2407 		return;
2408 	}
2409 
2410 	if (!d_unhashed(dentry))
2411 		__d_drop(dentry);
2412 
2413 	spin_unlock(&dentry->d_lock);
2414 
2415 	fsnotify_nameremove(dentry, isdir);
2416 }
2417 EXPORT_SYMBOL(d_delete);
2418 
2419 static void __d_rehash(struct dentry * entry, struct hlist_bl_head *b)
2420 {
2421 	BUG_ON(!d_unhashed(entry));
2422 	hlist_bl_lock(b);
2423 	entry->d_flags |= DCACHE_RCUACCESS;
2424 	hlist_bl_add_head_rcu(&entry->d_hash, b);
2425 	hlist_bl_unlock(b);
2426 }
2427 
2428 static void _d_rehash(struct dentry * entry)
2429 {
2430 	__d_rehash(entry, d_hash(entry->d_parent, entry->d_name.hash));
2431 }
2432 
2433 /**
2434  * d_rehash	- add an entry back to the hash
2435  * @entry: dentry to add to the hash
2436  *
2437  * Adds a dentry to the hash according to its name.
2438  */
2439 
2440 void d_rehash(struct dentry * entry)
2441 {
2442 	spin_lock(&entry->d_lock);
2443 	_d_rehash(entry);
2444 	spin_unlock(&entry->d_lock);
2445 }
2446 EXPORT_SYMBOL(d_rehash);
2447 
2448 /**
2449  * dentry_update_name_case - update case insensitive dentry with a new name
2450  * @dentry: dentry to be updated
2451  * @name: new name
2452  *
2453  * Update a case insensitive dentry with new case of name.
2454  *
2455  * dentry must have been returned by d_lookup with name @name. Old and new
2456  * name lengths must match (ie. no d_compare which allows mismatched name
2457  * lengths).
2458  *
2459  * Parent inode i_mutex must be held over d_lookup and into this call (to
2460  * keep renames and concurrent inserts, and readdir(2) away).
2461  */
2462 void dentry_update_name_case(struct dentry *dentry, struct qstr *name)
2463 {
2464 	BUG_ON(!mutex_is_locked(&dentry->d_parent->d_inode->i_mutex));
2465 	BUG_ON(dentry->d_name.len != name->len); /* d_lookup gives this */
2466 
2467 	spin_lock(&dentry->d_lock);
2468 	write_seqcount_begin(&dentry->d_seq);
2469 	memcpy((unsigned char *)dentry->d_name.name, name->name, name->len);
2470 	write_seqcount_end(&dentry->d_seq);
2471 	spin_unlock(&dentry->d_lock);
2472 }
2473 EXPORT_SYMBOL(dentry_update_name_case);
2474 
2475 static void swap_names(struct dentry *dentry, struct dentry *target)
2476 {
2477 	if (unlikely(dname_external(target))) {
2478 		if (unlikely(dname_external(dentry))) {
2479 			/*
2480 			 * Both external: swap the pointers
2481 			 */
2482 			swap(target->d_name.name, dentry->d_name.name);
2483 		} else {
2484 			/*
2485 			 * dentry:internal, target:external.  Steal target's
2486 			 * storage and make target internal.
2487 			 */
2488 			memcpy(target->d_iname, dentry->d_name.name,
2489 					dentry->d_name.len + 1);
2490 			dentry->d_name.name = target->d_name.name;
2491 			target->d_name.name = target->d_iname;
2492 		}
2493 	} else {
2494 		if (unlikely(dname_external(dentry))) {
2495 			/*
2496 			 * dentry:external, target:internal.  Give dentry's
2497 			 * storage to target and make dentry internal
2498 			 */
2499 			memcpy(dentry->d_iname, target->d_name.name,
2500 					target->d_name.len + 1);
2501 			target->d_name.name = dentry->d_name.name;
2502 			dentry->d_name.name = dentry->d_iname;
2503 		} else {
2504 			/*
2505 			 * Both are internal.
2506 			 */
2507 			unsigned int i;
2508 			BUILD_BUG_ON(!IS_ALIGNED(DNAME_INLINE_LEN, sizeof(long)));
2509 			kmemcheck_mark_initialized(dentry->d_iname, DNAME_INLINE_LEN);
2510 			kmemcheck_mark_initialized(target->d_iname, DNAME_INLINE_LEN);
2511 			for (i = 0; i < DNAME_INLINE_LEN / sizeof(long); i++) {
2512 				swap(((long *) &dentry->d_iname)[i],
2513 				     ((long *) &target->d_iname)[i]);
2514 			}
2515 		}
2516 	}
2517 	swap(dentry->d_name.hash_len, target->d_name.hash_len);
2518 }
2519 
2520 static void copy_name(struct dentry *dentry, struct dentry *target)
2521 {
2522 	struct external_name *old_name = NULL;
2523 	if (unlikely(dname_external(dentry)))
2524 		old_name = external_name(dentry);
2525 	if (unlikely(dname_external(target))) {
2526 		atomic_inc(&external_name(target)->u.count);
2527 		dentry->d_name = target->d_name;
2528 	} else {
2529 		memcpy(dentry->d_iname, target->d_name.name,
2530 				target->d_name.len + 1);
2531 		dentry->d_name.name = dentry->d_iname;
2532 		dentry->d_name.hash_len = target->d_name.hash_len;
2533 	}
2534 	if (old_name && likely(atomic_dec_and_test(&old_name->u.count)))
2535 		kfree_rcu(old_name, u.head);
2536 }
2537 
2538 static void dentry_lock_for_move(struct dentry *dentry, struct dentry *target)
2539 {
2540 	/*
2541 	 * XXXX: do we really need to take target->d_lock?
2542 	 */
2543 	if (IS_ROOT(dentry) || dentry->d_parent == target->d_parent)
2544 		spin_lock(&target->d_parent->d_lock);
2545 	else {
2546 		if (d_ancestor(dentry->d_parent, target->d_parent)) {
2547 			spin_lock(&dentry->d_parent->d_lock);
2548 			spin_lock_nested(&target->d_parent->d_lock,
2549 						DENTRY_D_LOCK_NESTED);
2550 		} else {
2551 			spin_lock(&target->d_parent->d_lock);
2552 			spin_lock_nested(&dentry->d_parent->d_lock,
2553 						DENTRY_D_LOCK_NESTED);
2554 		}
2555 	}
2556 	if (target < dentry) {
2557 		spin_lock_nested(&target->d_lock, 2);
2558 		spin_lock_nested(&dentry->d_lock, 3);
2559 	} else {
2560 		spin_lock_nested(&dentry->d_lock, 2);
2561 		spin_lock_nested(&target->d_lock, 3);
2562 	}
2563 }
2564 
2565 static void dentry_unlock_for_move(struct dentry *dentry, struct dentry *target)
2566 {
2567 	if (target->d_parent != dentry->d_parent)
2568 		spin_unlock(&dentry->d_parent->d_lock);
2569 	if (target->d_parent != target)
2570 		spin_unlock(&target->d_parent->d_lock);
2571 	spin_unlock(&target->d_lock);
2572 	spin_unlock(&dentry->d_lock);
2573 }
2574 
2575 /*
2576  * When switching names, the actual string doesn't strictly have to
2577  * be preserved in the target - because we're dropping the target
2578  * anyway. As such, we can just do a simple memcpy() to copy over
2579  * the new name before we switch, unless we are going to rehash
2580  * it.  Note that if we *do* unhash the target, we are not allowed
2581  * to rehash it without giving it a new name/hash key - whether
2582  * we swap or overwrite the names here, resulting name won't match
2583  * the reality in filesystem; it's only there for d_path() purposes.
2584  * Note that all of this is happening under rename_lock, so the
2585  * any hash lookup seeing it in the middle of manipulations will
2586  * be discarded anyway.  So we do not care what happens to the hash
2587  * key in that case.
2588  */
2589 /*
2590  * __d_move - move a dentry
2591  * @dentry: entry to move
2592  * @target: new dentry
2593  * @exchange: exchange the two dentries
2594  *
2595  * Update the dcache to reflect the move of a file name. Negative
2596  * dcache entries should not be moved in this way. Caller must hold
2597  * rename_lock, the i_mutex of the source and target directories,
2598  * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
2599  */
2600 static void __d_move(struct dentry *dentry, struct dentry *target,
2601 		     bool exchange)
2602 {
2603 	if (!dentry->d_inode)
2604 		printk(KERN_WARNING "VFS: moving negative dcache entry\n");
2605 
2606 	BUG_ON(d_ancestor(dentry, target));
2607 	BUG_ON(d_ancestor(target, dentry));
2608 
2609 	dentry_lock_for_move(dentry, target);
2610 
2611 	write_seqcount_begin(&dentry->d_seq);
2612 	write_seqcount_begin_nested(&target->d_seq, DENTRY_D_LOCK_NESTED);
2613 
2614 	/* __d_drop does write_seqcount_barrier, but they're OK to nest. */
2615 
2616 	/*
2617 	 * Move the dentry to the target hash queue. Don't bother checking
2618 	 * for the same hash queue because of how unlikely it is.
2619 	 */
2620 	__d_drop(dentry);
2621 	__d_rehash(dentry, d_hash(target->d_parent, target->d_name.hash));
2622 
2623 	/*
2624 	 * Unhash the target (d_delete() is not usable here).  If exchanging
2625 	 * the two dentries, then rehash onto the other's hash queue.
2626 	 */
2627 	__d_drop(target);
2628 	if (exchange) {
2629 		__d_rehash(target,
2630 			   d_hash(dentry->d_parent, dentry->d_name.hash));
2631 	}
2632 
2633 	/* Switch the names.. */
2634 	if (exchange)
2635 		swap_names(dentry, target);
2636 	else
2637 		copy_name(dentry, target);
2638 
2639 	/* ... and switch them in the tree */
2640 	if (IS_ROOT(dentry)) {
2641 		/* splicing a tree */
2642 		dentry->d_parent = target->d_parent;
2643 		target->d_parent = target;
2644 		list_del_init(&target->d_child);
2645 		list_move(&dentry->d_child, &dentry->d_parent->d_subdirs);
2646 	} else {
2647 		/* swapping two dentries */
2648 		swap(dentry->d_parent, target->d_parent);
2649 		list_move(&target->d_child, &target->d_parent->d_subdirs);
2650 		list_move(&dentry->d_child, &dentry->d_parent->d_subdirs);
2651 		if (exchange)
2652 			fsnotify_d_move(target);
2653 		fsnotify_d_move(dentry);
2654 	}
2655 
2656 	write_seqcount_end(&target->d_seq);
2657 	write_seqcount_end(&dentry->d_seq);
2658 
2659 	dentry_unlock_for_move(dentry, target);
2660 }
2661 
2662 /*
2663  * d_move - move a dentry
2664  * @dentry: entry to move
2665  * @target: new dentry
2666  *
2667  * Update the dcache to reflect the move of a file name. Negative
2668  * dcache entries should not be moved in this way. See the locking
2669  * requirements for __d_move.
2670  */
2671 void d_move(struct dentry *dentry, struct dentry *target)
2672 {
2673 	write_seqlock(&rename_lock);
2674 	__d_move(dentry, target, false);
2675 	write_sequnlock(&rename_lock);
2676 }
2677 EXPORT_SYMBOL(d_move);
2678 
2679 /*
2680  * d_exchange - exchange two dentries
2681  * @dentry1: first dentry
2682  * @dentry2: second dentry
2683  */
2684 void d_exchange(struct dentry *dentry1, struct dentry *dentry2)
2685 {
2686 	write_seqlock(&rename_lock);
2687 
2688 	WARN_ON(!dentry1->d_inode);
2689 	WARN_ON(!dentry2->d_inode);
2690 	WARN_ON(IS_ROOT(dentry1));
2691 	WARN_ON(IS_ROOT(dentry2));
2692 
2693 	__d_move(dentry1, dentry2, true);
2694 
2695 	write_sequnlock(&rename_lock);
2696 }
2697 
2698 /**
2699  * d_ancestor - search for an ancestor
2700  * @p1: ancestor dentry
2701  * @p2: child dentry
2702  *
2703  * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2704  * an ancestor of p2, else NULL.
2705  */
2706 struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
2707 {
2708 	struct dentry *p;
2709 
2710 	for (p = p2; !IS_ROOT(p); p = p->d_parent) {
2711 		if (p->d_parent == p1)
2712 			return p;
2713 	}
2714 	return NULL;
2715 }
2716 
2717 /*
2718  * This helper attempts to cope with remotely renamed directories
2719  *
2720  * It assumes that the caller is already holding
2721  * dentry->d_parent->d_inode->i_mutex, and rename_lock
2722  *
2723  * Note: If ever the locking in lock_rename() changes, then please
2724  * remember to update this too...
2725  */
2726 static int __d_unalias(struct inode *inode,
2727 		struct dentry *dentry, struct dentry *alias)
2728 {
2729 	struct mutex *m1 = NULL, *m2 = NULL;
2730 	int ret = -ESTALE;
2731 
2732 	/* If alias and dentry share a parent, then no extra locks required */
2733 	if (alias->d_parent == dentry->d_parent)
2734 		goto out_unalias;
2735 
2736 	/* See lock_rename() */
2737 	if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
2738 		goto out_err;
2739 	m1 = &dentry->d_sb->s_vfs_rename_mutex;
2740 	if (!mutex_trylock(&alias->d_parent->d_inode->i_mutex))
2741 		goto out_err;
2742 	m2 = &alias->d_parent->d_inode->i_mutex;
2743 out_unalias:
2744 	__d_move(alias, dentry, false);
2745 	ret = 0;
2746 out_err:
2747 	if (m2)
2748 		mutex_unlock(m2);
2749 	if (m1)
2750 		mutex_unlock(m1);
2751 	return ret;
2752 }
2753 
2754 /**
2755  * d_splice_alias - splice a disconnected dentry into the tree if one exists
2756  * @inode:  the inode which may have a disconnected dentry
2757  * @dentry: a negative dentry which we want to point to the inode.
2758  *
2759  * If inode is a directory and has an IS_ROOT alias, then d_move that in
2760  * place of the given dentry and return it, else simply d_add the inode
2761  * to the dentry and return NULL.
2762  *
2763  * If a non-IS_ROOT directory is found, the filesystem is corrupt, and
2764  * we should error out: directories can't have multiple aliases.
2765  *
2766  * This is needed in the lookup routine of any filesystem that is exportable
2767  * (via knfsd) so that we can build dcache paths to directories effectively.
2768  *
2769  * If a dentry was found and moved, then it is returned.  Otherwise NULL
2770  * is returned.  This matches the expected return value of ->lookup.
2771  *
2772  * Cluster filesystems may call this function with a negative, hashed dentry.
2773  * In that case, we know that the inode will be a regular file, and also this
2774  * will only occur during atomic_open. So we need to check for the dentry
2775  * being already hashed only in the final case.
2776  */
2777 struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
2778 {
2779 	if (IS_ERR(inode))
2780 		return ERR_CAST(inode);
2781 
2782 	BUG_ON(!d_unhashed(dentry));
2783 
2784 	if (!inode) {
2785 		__d_instantiate(dentry, NULL);
2786 		goto out;
2787 	}
2788 	spin_lock(&inode->i_lock);
2789 	if (S_ISDIR(inode->i_mode)) {
2790 		struct dentry *new = __d_find_any_alias(inode);
2791 		if (unlikely(new)) {
2792 			/* The reference to new ensures it remains an alias */
2793 			spin_unlock(&inode->i_lock);
2794 			write_seqlock(&rename_lock);
2795 			if (unlikely(d_ancestor(new, dentry))) {
2796 				write_sequnlock(&rename_lock);
2797 				dput(new);
2798 				new = ERR_PTR(-ELOOP);
2799 				pr_warn_ratelimited(
2800 					"VFS: Lookup of '%s' in %s %s"
2801 					" would have caused loop\n",
2802 					dentry->d_name.name,
2803 					inode->i_sb->s_type->name,
2804 					inode->i_sb->s_id);
2805 			} else if (!IS_ROOT(new)) {
2806 				int err = __d_unalias(inode, dentry, new);
2807 				write_sequnlock(&rename_lock);
2808 				if (err) {
2809 					dput(new);
2810 					new = ERR_PTR(err);
2811 				}
2812 			} else {
2813 				__d_move(new, dentry, false);
2814 				write_sequnlock(&rename_lock);
2815 				security_d_instantiate(new, inode);
2816 			}
2817 			iput(inode);
2818 			return new;
2819 		}
2820 	}
2821 	/* already taking inode->i_lock, so d_add() by hand */
2822 	__d_instantiate(dentry, inode);
2823 	spin_unlock(&inode->i_lock);
2824 out:
2825 	security_d_instantiate(dentry, inode);
2826 	d_rehash(dentry);
2827 	return NULL;
2828 }
2829 EXPORT_SYMBOL(d_splice_alias);
2830 
2831 static int prepend(char **buffer, int *buflen, const char *str, int namelen)
2832 {
2833 	*buflen -= namelen;
2834 	if (*buflen < 0)
2835 		return -ENAMETOOLONG;
2836 	*buffer -= namelen;
2837 	memcpy(*buffer, str, namelen);
2838 	return 0;
2839 }
2840 
2841 /**
2842  * prepend_name - prepend a pathname in front of current buffer pointer
2843  * @buffer: buffer pointer
2844  * @buflen: allocated length of the buffer
2845  * @name:   name string and length qstr structure
2846  *
2847  * With RCU path tracing, it may race with d_move(). Use ACCESS_ONCE() to
2848  * make sure that either the old or the new name pointer and length are
2849  * fetched. However, there may be mismatch between length and pointer.
2850  * The length cannot be trusted, we need to copy it byte-by-byte until
2851  * the length is reached or a null byte is found. It also prepends "/" at
2852  * the beginning of the name. The sequence number check at the caller will
2853  * retry it again when a d_move() does happen. So any garbage in the buffer
2854  * due to mismatched pointer and length will be discarded.
2855  *
2856  * Data dependency barrier is needed to make sure that we see that terminating
2857  * NUL.  Alpha strikes again, film at 11...
2858  */
2859 static int prepend_name(char **buffer, int *buflen, struct qstr *name)
2860 {
2861 	const char *dname = ACCESS_ONCE(name->name);
2862 	u32 dlen = ACCESS_ONCE(name->len);
2863 	char *p;
2864 
2865 	smp_read_barrier_depends();
2866 
2867 	*buflen -= dlen + 1;
2868 	if (*buflen < 0)
2869 		return -ENAMETOOLONG;
2870 	p = *buffer -= dlen + 1;
2871 	*p++ = '/';
2872 	while (dlen--) {
2873 		char c = *dname++;
2874 		if (!c)
2875 			break;
2876 		*p++ = c;
2877 	}
2878 	return 0;
2879 }
2880 
2881 /**
2882  * prepend_path - Prepend path string to a buffer
2883  * @path: the dentry/vfsmount to report
2884  * @root: root vfsmnt/dentry
2885  * @buffer: pointer to the end of the buffer
2886  * @buflen: pointer to buffer length
2887  *
2888  * The function will first try to write out the pathname without taking any
2889  * lock other than the RCU read lock to make sure that dentries won't go away.
2890  * It only checks the sequence number of the global rename_lock as any change
2891  * in the dentry's d_seq will be preceded by changes in the rename_lock
2892  * sequence number. If the sequence number had been changed, it will restart
2893  * the whole pathname back-tracing sequence again by taking the rename_lock.
2894  * In this case, there is no need to take the RCU read lock as the recursive
2895  * parent pointer references will keep the dentry chain alive as long as no
2896  * rename operation is performed.
2897  */
2898 static int prepend_path(const struct path *path,
2899 			const struct path *root,
2900 			char **buffer, int *buflen)
2901 {
2902 	struct dentry *dentry;
2903 	struct vfsmount *vfsmnt;
2904 	struct mount *mnt;
2905 	int error = 0;
2906 	unsigned seq, m_seq = 0;
2907 	char *bptr;
2908 	int blen;
2909 
2910 	rcu_read_lock();
2911 restart_mnt:
2912 	read_seqbegin_or_lock(&mount_lock, &m_seq);
2913 	seq = 0;
2914 	rcu_read_lock();
2915 restart:
2916 	bptr = *buffer;
2917 	blen = *buflen;
2918 	error = 0;
2919 	dentry = path->dentry;
2920 	vfsmnt = path->mnt;
2921 	mnt = real_mount(vfsmnt);
2922 	read_seqbegin_or_lock(&rename_lock, &seq);
2923 	while (dentry != root->dentry || vfsmnt != root->mnt) {
2924 		struct dentry * parent;
2925 
2926 		if (dentry == vfsmnt->mnt_root || IS_ROOT(dentry)) {
2927 			struct mount *parent = ACCESS_ONCE(mnt->mnt_parent);
2928 			/* Escaped? */
2929 			if (dentry != vfsmnt->mnt_root) {
2930 				bptr = *buffer;
2931 				blen = *buflen;
2932 				error = 3;
2933 				break;
2934 			}
2935 			/* Global root? */
2936 			if (mnt != parent) {
2937 				dentry = ACCESS_ONCE(mnt->mnt_mountpoint);
2938 				mnt = parent;
2939 				vfsmnt = &mnt->mnt;
2940 				continue;
2941 			}
2942 			if (!error)
2943 				error = is_mounted(vfsmnt) ? 1 : 2;
2944 			break;
2945 		}
2946 		parent = dentry->d_parent;
2947 		prefetch(parent);
2948 		error = prepend_name(&bptr, &blen, &dentry->d_name);
2949 		if (error)
2950 			break;
2951 
2952 		dentry = parent;
2953 	}
2954 	if (!(seq & 1))
2955 		rcu_read_unlock();
2956 	if (need_seqretry(&rename_lock, seq)) {
2957 		seq = 1;
2958 		goto restart;
2959 	}
2960 	done_seqretry(&rename_lock, seq);
2961 
2962 	if (!(m_seq & 1))
2963 		rcu_read_unlock();
2964 	if (need_seqretry(&mount_lock, m_seq)) {
2965 		m_seq = 1;
2966 		goto restart_mnt;
2967 	}
2968 	done_seqretry(&mount_lock, m_seq);
2969 
2970 	if (error >= 0 && bptr == *buffer) {
2971 		if (--blen < 0)
2972 			error = -ENAMETOOLONG;
2973 		else
2974 			*--bptr = '/';
2975 	}
2976 	*buffer = bptr;
2977 	*buflen = blen;
2978 	return error;
2979 }
2980 
2981 /**
2982  * __d_path - return the path of a dentry
2983  * @path: the dentry/vfsmount to report
2984  * @root: root vfsmnt/dentry
2985  * @buf: buffer to return value in
2986  * @buflen: buffer length
2987  *
2988  * Convert a dentry into an ASCII path name.
2989  *
2990  * Returns a pointer into the buffer or an error code if the
2991  * path was too long.
2992  *
2993  * "buflen" should be positive.
2994  *
2995  * If the path is not reachable from the supplied root, return %NULL.
2996  */
2997 char *__d_path(const struct path *path,
2998 	       const struct path *root,
2999 	       char *buf, int buflen)
3000 {
3001 	char *res = buf + buflen;
3002 	int error;
3003 
3004 	prepend(&res, &buflen, "\0", 1);
3005 	error = prepend_path(path, root, &res, &buflen);
3006 
3007 	if (error < 0)
3008 		return ERR_PTR(error);
3009 	if (error > 0)
3010 		return NULL;
3011 	return res;
3012 }
3013 
3014 char *d_absolute_path(const struct path *path,
3015 	       char *buf, int buflen)
3016 {
3017 	struct path root = {};
3018 	char *res = buf + buflen;
3019 	int error;
3020 
3021 	prepend(&res, &buflen, "\0", 1);
3022 	error = prepend_path(path, &root, &res, &buflen);
3023 
3024 	if (error > 1)
3025 		error = -EINVAL;
3026 	if (error < 0)
3027 		return ERR_PTR(error);
3028 	return res;
3029 }
3030 
3031 /*
3032  * same as __d_path but appends "(deleted)" for unlinked files.
3033  */
3034 static int path_with_deleted(const struct path *path,
3035 			     const struct path *root,
3036 			     char **buf, int *buflen)
3037 {
3038 	prepend(buf, buflen, "\0", 1);
3039 	if (d_unlinked(path->dentry)) {
3040 		int error = prepend(buf, buflen, " (deleted)", 10);
3041 		if (error)
3042 			return error;
3043 	}
3044 
3045 	return prepend_path(path, root, buf, buflen);
3046 }
3047 
3048 static int prepend_unreachable(char **buffer, int *buflen)
3049 {
3050 	return prepend(buffer, buflen, "(unreachable)", 13);
3051 }
3052 
3053 static void get_fs_root_rcu(struct fs_struct *fs, struct path *root)
3054 {
3055 	unsigned seq;
3056 
3057 	do {
3058 		seq = read_seqcount_begin(&fs->seq);
3059 		*root = fs->root;
3060 	} while (read_seqcount_retry(&fs->seq, seq));
3061 }
3062 
3063 /**
3064  * d_path - return the path of a dentry
3065  * @path: path to report
3066  * @buf: buffer to return value in
3067  * @buflen: buffer length
3068  *
3069  * Convert a dentry into an ASCII path name. If the entry has been deleted
3070  * the string " (deleted)" is appended. Note that this is ambiguous.
3071  *
3072  * Returns a pointer into the buffer or an error code if the path was
3073  * too long. Note: Callers should use the returned pointer, not the passed
3074  * in buffer, to use the name! The implementation often starts at an offset
3075  * into the buffer, and may leave 0 bytes at the start.
3076  *
3077  * "buflen" should be positive.
3078  */
3079 char *d_path(const struct path *path, char *buf, int buflen)
3080 {
3081 	char *res = buf + buflen;
3082 	struct path root;
3083 	int error;
3084 
3085 	/*
3086 	 * We have various synthetic filesystems that never get mounted.  On
3087 	 * these filesystems dentries are never used for lookup purposes, and
3088 	 * thus don't need to be hashed.  They also don't need a name until a
3089 	 * user wants to identify the object in /proc/pid/fd/.  The little hack
3090 	 * below allows us to generate a name for these objects on demand:
3091 	 *
3092 	 * Some pseudo inodes are mountable.  When they are mounted
3093 	 * path->dentry == path->mnt->mnt_root.  In that case don't call d_dname
3094 	 * and instead have d_path return the mounted path.
3095 	 */
3096 	if (path->dentry->d_op && path->dentry->d_op->d_dname &&
3097 	    (!IS_ROOT(path->dentry) || path->dentry != path->mnt->mnt_root))
3098 		return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
3099 
3100 	rcu_read_lock();
3101 	get_fs_root_rcu(current->fs, &root);
3102 	error = path_with_deleted(path, &root, &res, &buflen);
3103 	rcu_read_unlock();
3104 
3105 	if (error < 0)
3106 		res = ERR_PTR(error);
3107 	return res;
3108 }
3109 EXPORT_SYMBOL(d_path);
3110 
3111 /*
3112  * Helper function for dentry_operations.d_dname() members
3113  */
3114 char *dynamic_dname(struct dentry *dentry, char *buffer, int buflen,
3115 			const char *fmt, ...)
3116 {
3117 	va_list args;
3118 	char temp[64];
3119 	int sz;
3120 
3121 	va_start(args, fmt);
3122 	sz = vsnprintf(temp, sizeof(temp), fmt, args) + 1;
3123 	va_end(args);
3124 
3125 	if (sz > sizeof(temp) || sz > buflen)
3126 		return ERR_PTR(-ENAMETOOLONG);
3127 
3128 	buffer += buflen - sz;
3129 	return memcpy(buffer, temp, sz);
3130 }
3131 
3132 char *simple_dname(struct dentry *dentry, char *buffer, int buflen)
3133 {
3134 	char *end = buffer + buflen;
3135 	/* these dentries are never renamed, so d_lock is not needed */
3136 	if (prepend(&end, &buflen, " (deleted)", 11) ||
3137 	    prepend(&end, &buflen, dentry->d_name.name, dentry->d_name.len) ||
3138 	    prepend(&end, &buflen, "/", 1))
3139 		end = ERR_PTR(-ENAMETOOLONG);
3140 	return end;
3141 }
3142 EXPORT_SYMBOL(simple_dname);
3143 
3144 /*
3145  * Write full pathname from the root of the filesystem into the buffer.
3146  */
3147 static char *__dentry_path(struct dentry *d, char *buf, int buflen)
3148 {
3149 	struct dentry *dentry;
3150 	char *end, *retval;
3151 	int len, seq = 0;
3152 	int error = 0;
3153 
3154 	if (buflen < 2)
3155 		goto Elong;
3156 
3157 	rcu_read_lock();
3158 restart:
3159 	dentry = d;
3160 	end = buf + buflen;
3161 	len = buflen;
3162 	prepend(&end, &len, "\0", 1);
3163 	/* Get '/' right */
3164 	retval = end-1;
3165 	*retval = '/';
3166 	read_seqbegin_or_lock(&rename_lock, &seq);
3167 	while (!IS_ROOT(dentry)) {
3168 		struct dentry *parent = dentry->d_parent;
3169 
3170 		prefetch(parent);
3171 		error = prepend_name(&end, &len, &dentry->d_name);
3172 		if (error)
3173 			break;
3174 
3175 		retval = end;
3176 		dentry = parent;
3177 	}
3178 	if (!(seq & 1))
3179 		rcu_read_unlock();
3180 	if (need_seqretry(&rename_lock, seq)) {
3181 		seq = 1;
3182 		goto restart;
3183 	}
3184 	done_seqretry(&rename_lock, seq);
3185 	if (error)
3186 		goto Elong;
3187 	return retval;
3188 Elong:
3189 	return ERR_PTR(-ENAMETOOLONG);
3190 }
3191 
3192 char *dentry_path_raw(struct dentry *dentry, char *buf, int buflen)
3193 {
3194 	return __dentry_path(dentry, buf, buflen);
3195 }
3196 EXPORT_SYMBOL(dentry_path_raw);
3197 
3198 char *dentry_path(struct dentry *dentry, char *buf, int buflen)
3199 {
3200 	char *p = NULL;
3201 	char *retval;
3202 
3203 	if (d_unlinked(dentry)) {
3204 		p = buf + buflen;
3205 		if (prepend(&p, &buflen, "//deleted", 10) != 0)
3206 			goto Elong;
3207 		buflen++;
3208 	}
3209 	retval = __dentry_path(dentry, buf, buflen);
3210 	if (!IS_ERR(retval) && p)
3211 		*p = '/';	/* restore '/' overriden with '\0' */
3212 	return retval;
3213 Elong:
3214 	return ERR_PTR(-ENAMETOOLONG);
3215 }
3216 
3217 static void get_fs_root_and_pwd_rcu(struct fs_struct *fs, struct path *root,
3218 				    struct path *pwd)
3219 {
3220 	unsigned seq;
3221 
3222 	do {
3223 		seq = read_seqcount_begin(&fs->seq);
3224 		*root = fs->root;
3225 		*pwd = fs->pwd;
3226 	} while (read_seqcount_retry(&fs->seq, seq));
3227 }
3228 
3229 /*
3230  * NOTE! The user-level library version returns a
3231  * character pointer. The kernel system call just
3232  * returns the length of the buffer filled (which
3233  * includes the ending '\0' character), or a negative
3234  * error value. So libc would do something like
3235  *
3236  *	char *getcwd(char * buf, size_t size)
3237  *	{
3238  *		int retval;
3239  *
3240  *		retval = sys_getcwd(buf, size);
3241  *		if (retval >= 0)
3242  *			return buf;
3243  *		errno = -retval;
3244  *		return NULL;
3245  *	}
3246  */
3247 SYSCALL_DEFINE2(getcwd, char __user *, buf, unsigned long, size)
3248 {
3249 	int error;
3250 	struct path pwd, root;
3251 	char *page = __getname();
3252 
3253 	if (!page)
3254 		return -ENOMEM;
3255 
3256 	rcu_read_lock();
3257 	get_fs_root_and_pwd_rcu(current->fs, &root, &pwd);
3258 
3259 	error = -ENOENT;
3260 	if (!d_unlinked(pwd.dentry)) {
3261 		unsigned long len;
3262 		char *cwd = page + PATH_MAX;
3263 		int buflen = PATH_MAX;
3264 
3265 		prepend(&cwd, &buflen, "\0", 1);
3266 		error = prepend_path(&pwd, &root, &cwd, &buflen);
3267 		rcu_read_unlock();
3268 
3269 		if (error < 0)
3270 			goto out;
3271 
3272 		/* Unreachable from current root */
3273 		if (error > 0) {
3274 			error = prepend_unreachable(&cwd, &buflen);
3275 			if (error)
3276 				goto out;
3277 		}
3278 
3279 		error = -ERANGE;
3280 		len = PATH_MAX + page - cwd;
3281 		if (len <= size) {
3282 			error = len;
3283 			if (copy_to_user(buf, cwd, len))
3284 				error = -EFAULT;
3285 		}
3286 	} else {
3287 		rcu_read_unlock();
3288 	}
3289 
3290 out:
3291 	__putname(page);
3292 	return error;
3293 }
3294 
3295 /*
3296  * Test whether new_dentry is a subdirectory of old_dentry.
3297  *
3298  * Trivially implemented using the dcache structure
3299  */
3300 
3301 /**
3302  * is_subdir - is new dentry a subdirectory of old_dentry
3303  * @new_dentry: new dentry
3304  * @old_dentry: old dentry
3305  *
3306  * Returns 1 if new_dentry is a subdirectory of the parent (at any depth).
3307  * Returns 0 otherwise.
3308  * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
3309  */
3310 
3311 int is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
3312 {
3313 	int result;
3314 	unsigned seq;
3315 
3316 	if (new_dentry == old_dentry)
3317 		return 1;
3318 
3319 	do {
3320 		/* for restarting inner loop in case of seq retry */
3321 		seq = read_seqbegin(&rename_lock);
3322 		/*
3323 		 * Need rcu_readlock to protect against the d_parent trashing
3324 		 * due to d_move
3325 		 */
3326 		rcu_read_lock();
3327 		if (d_ancestor(old_dentry, new_dentry))
3328 			result = 1;
3329 		else
3330 			result = 0;
3331 		rcu_read_unlock();
3332 	} while (read_seqretry(&rename_lock, seq));
3333 
3334 	return result;
3335 }
3336 
3337 static enum d_walk_ret d_genocide_kill(void *data, struct dentry *dentry)
3338 {
3339 	struct dentry *root = data;
3340 	if (dentry != root) {
3341 		if (d_unhashed(dentry) || !dentry->d_inode)
3342 			return D_WALK_SKIP;
3343 
3344 		if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
3345 			dentry->d_flags |= DCACHE_GENOCIDE;
3346 			dentry->d_lockref.count--;
3347 		}
3348 	}
3349 	return D_WALK_CONTINUE;
3350 }
3351 
3352 void d_genocide(struct dentry *parent)
3353 {
3354 	d_walk(parent, parent, d_genocide_kill, NULL);
3355 }
3356 
3357 void d_tmpfile(struct dentry *dentry, struct inode *inode)
3358 {
3359 	inode_dec_link_count(inode);
3360 	BUG_ON(dentry->d_name.name != dentry->d_iname ||
3361 		!hlist_unhashed(&dentry->d_u.d_alias) ||
3362 		!d_unlinked(dentry));
3363 	spin_lock(&dentry->d_parent->d_lock);
3364 	spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
3365 	dentry->d_name.len = sprintf(dentry->d_iname, "#%llu",
3366 				(unsigned long long)inode->i_ino);
3367 	spin_unlock(&dentry->d_lock);
3368 	spin_unlock(&dentry->d_parent->d_lock);
3369 	d_instantiate(dentry, inode);
3370 }
3371 EXPORT_SYMBOL(d_tmpfile);
3372 
3373 static __initdata unsigned long dhash_entries;
3374 static int __init set_dhash_entries(char *str)
3375 {
3376 	if (!str)
3377 		return 0;
3378 	dhash_entries = simple_strtoul(str, &str, 0);
3379 	return 1;
3380 }
3381 __setup("dhash_entries=", set_dhash_entries);
3382 
3383 static void __init dcache_init_early(void)
3384 {
3385 	unsigned int loop;
3386 
3387 	/* If hashes are distributed across NUMA nodes, defer
3388 	 * hash allocation until vmalloc space is available.
3389 	 */
3390 	if (hashdist)
3391 		return;
3392 
3393 	dentry_hashtable =
3394 		alloc_large_system_hash("Dentry cache",
3395 					sizeof(struct hlist_bl_head),
3396 					dhash_entries,
3397 					13,
3398 					HASH_EARLY,
3399 					&d_hash_shift,
3400 					&d_hash_mask,
3401 					0,
3402 					0);
3403 
3404 	for (loop = 0; loop < (1U << d_hash_shift); loop++)
3405 		INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
3406 }
3407 
3408 static void __init dcache_init(void)
3409 {
3410 	unsigned int loop;
3411 
3412 	/*
3413 	 * A constructor could be added for stable state like the lists,
3414 	 * but it is probably not worth it because of the cache nature
3415 	 * of the dcache.
3416 	 */
3417 	dentry_cache = KMEM_CACHE(dentry,
3418 		SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD);
3419 
3420 	/* Hash may have been set up in dcache_init_early */
3421 	if (!hashdist)
3422 		return;
3423 
3424 	dentry_hashtable =
3425 		alloc_large_system_hash("Dentry cache",
3426 					sizeof(struct hlist_bl_head),
3427 					dhash_entries,
3428 					13,
3429 					0,
3430 					&d_hash_shift,
3431 					&d_hash_mask,
3432 					0,
3433 					0);
3434 
3435 	for (loop = 0; loop < (1U << d_hash_shift); loop++)
3436 		INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
3437 }
3438 
3439 /* SLAB cache for __getname() consumers */
3440 struct kmem_cache *names_cachep __read_mostly;
3441 EXPORT_SYMBOL(names_cachep);
3442 
3443 EXPORT_SYMBOL(d_genocide);
3444 
3445 void __init vfs_caches_init_early(void)
3446 {
3447 	dcache_init_early();
3448 	inode_init_early();
3449 }
3450 
3451 void __init vfs_caches_init(void)
3452 {
3453 	names_cachep = kmem_cache_create("names_cache", PATH_MAX, 0,
3454 			SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
3455 
3456 	dcache_init();
3457 	inode_init();
3458 	files_init();
3459 	files_maxfiles_init();
3460 	mnt_init();
3461 	bdev_cache_init();
3462 	chrdev_init();
3463 }
3464