1 /* 2 * fs/dcache.c 3 * 4 * Complete reimplementation 5 * (C) 1997 Thomas Schoebel-Theuer, 6 * with heavy changes by Linus Torvalds 7 */ 8 9 /* 10 * Notes on the allocation strategy: 11 * 12 * The dcache is a master of the icache - whenever a dcache entry 13 * exists, the inode will always exist. "iput()" is done either when 14 * the dcache entry is deleted or garbage collected. 15 */ 16 17 #include <linux/ratelimit.h> 18 #include <linux/string.h> 19 #include <linux/mm.h> 20 #include <linux/fs.h> 21 #include <linux/fsnotify.h> 22 #include <linux/slab.h> 23 #include <linux/init.h> 24 #include <linux/hash.h> 25 #include <linux/cache.h> 26 #include <linux/export.h> 27 #include <linux/security.h> 28 #include <linux/seqlock.h> 29 #include <linux/bootmem.h> 30 #include <linux/bit_spinlock.h> 31 #include <linux/rculist_bl.h> 32 #include <linux/list_lru.h> 33 #include "internal.h" 34 #include "mount.h" 35 36 /* 37 * Usage: 38 * dcache->d_inode->i_lock protects: 39 * - i_dentry, d_u.d_alias, d_inode of aliases 40 * dcache_hash_bucket lock protects: 41 * - the dcache hash table 42 * s_roots bl list spinlock protects: 43 * - the s_roots list (see __d_drop) 44 * dentry->d_sb->s_dentry_lru_lock protects: 45 * - the dcache lru lists and counters 46 * d_lock protects: 47 * - d_flags 48 * - d_name 49 * - d_lru 50 * - d_count 51 * - d_unhashed() 52 * - d_parent and d_subdirs 53 * - childrens' d_child and d_parent 54 * - d_u.d_alias, d_inode 55 * 56 * Ordering: 57 * dentry->d_inode->i_lock 58 * dentry->d_lock 59 * dentry->d_sb->s_dentry_lru_lock 60 * dcache_hash_bucket lock 61 * s_roots lock 62 * 63 * If there is an ancestor relationship: 64 * dentry->d_parent->...->d_parent->d_lock 65 * ... 66 * dentry->d_parent->d_lock 67 * dentry->d_lock 68 * 69 * If no ancestor relationship: 70 * arbitrary, since it's serialized on rename_lock 71 */ 72 int sysctl_vfs_cache_pressure __read_mostly = 100; 73 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure); 74 75 __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock); 76 77 EXPORT_SYMBOL(rename_lock); 78 79 static struct kmem_cache *dentry_cache __read_mostly; 80 81 const struct qstr empty_name = QSTR_INIT("", 0); 82 EXPORT_SYMBOL(empty_name); 83 const struct qstr slash_name = QSTR_INIT("/", 1); 84 EXPORT_SYMBOL(slash_name); 85 86 /* 87 * This is the single most critical data structure when it comes 88 * to the dcache: the hashtable for lookups. Somebody should try 89 * to make this good - I've just made it work. 90 * 91 * This hash-function tries to avoid losing too many bits of hash 92 * information, yet avoid using a prime hash-size or similar. 93 */ 94 95 static unsigned int d_hash_shift __read_mostly; 96 97 static struct hlist_bl_head *dentry_hashtable __read_mostly; 98 99 static inline struct hlist_bl_head *d_hash(unsigned int hash) 100 { 101 return dentry_hashtable + (hash >> d_hash_shift); 102 } 103 104 #define IN_LOOKUP_SHIFT 10 105 static struct hlist_bl_head in_lookup_hashtable[1 << IN_LOOKUP_SHIFT]; 106 107 static inline struct hlist_bl_head *in_lookup_hash(const struct dentry *parent, 108 unsigned int hash) 109 { 110 hash += (unsigned long) parent / L1_CACHE_BYTES; 111 return in_lookup_hashtable + hash_32(hash, IN_LOOKUP_SHIFT); 112 } 113 114 115 /* Statistics gathering. */ 116 struct dentry_stat_t dentry_stat = { 117 .age_limit = 45, 118 }; 119 120 static DEFINE_PER_CPU(long, nr_dentry); 121 static DEFINE_PER_CPU(long, nr_dentry_unused); 122 123 #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS) 124 125 /* 126 * Here we resort to our own counters instead of using generic per-cpu counters 127 * for consistency with what the vfs inode code does. We are expected to harvest 128 * better code and performance by having our own specialized counters. 129 * 130 * Please note that the loop is done over all possible CPUs, not over all online 131 * CPUs. The reason for this is that we don't want to play games with CPUs going 132 * on and off. If one of them goes off, we will just keep their counters. 133 * 134 * glommer: See cffbc8a for details, and if you ever intend to change this, 135 * please update all vfs counters to match. 136 */ 137 static long get_nr_dentry(void) 138 { 139 int i; 140 long sum = 0; 141 for_each_possible_cpu(i) 142 sum += per_cpu(nr_dentry, i); 143 return sum < 0 ? 0 : sum; 144 } 145 146 static long get_nr_dentry_unused(void) 147 { 148 int i; 149 long sum = 0; 150 for_each_possible_cpu(i) 151 sum += per_cpu(nr_dentry_unused, i); 152 return sum < 0 ? 0 : sum; 153 } 154 155 int proc_nr_dentry(struct ctl_table *table, int write, void __user *buffer, 156 size_t *lenp, loff_t *ppos) 157 { 158 dentry_stat.nr_dentry = get_nr_dentry(); 159 dentry_stat.nr_unused = get_nr_dentry_unused(); 160 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos); 161 } 162 #endif 163 164 /* 165 * Compare 2 name strings, return 0 if they match, otherwise non-zero. 166 * The strings are both count bytes long, and count is non-zero. 167 */ 168 #ifdef CONFIG_DCACHE_WORD_ACCESS 169 170 #include <asm/word-at-a-time.h> 171 /* 172 * NOTE! 'cs' and 'scount' come from a dentry, so it has a 173 * aligned allocation for this particular component. We don't 174 * strictly need the load_unaligned_zeropad() safety, but it 175 * doesn't hurt either. 176 * 177 * In contrast, 'ct' and 'tcount' can be from a pathname, and do 178 * need the careful unaligned handling. 179 */ 180 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount) 181 { 182 unsigned long a,b,mask; 183 184 for (;;) { 185 a = read_word_at_a_time(cs); 186 b = load_unaligned_zeropad(ct); 187 if (tcount < sizeof(unsigned long)) 188 break; 189 if (unlikely(a != b)) 190 return 1; 191 cs += sizeof(unsigned long); 192 ct += sizeof(unsigned long); 193 tcount -= sizeof(unsigned long); 194 if (!tcount) 195 return 0; 196 } 197 mask = bytemask_from_count(tcount); 198 return unlikely(!!((a ^ b) & mask)); 199 } 200 201 #else 202 203 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount) 204 { 205 do { 206 if (*cs != *ct) 207 return 1; 208 cs++; 209 ct++; 210 tcount--; 211 } while (tcount); 212 return 0; 213 } 214 215 #endif 216 217 static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount) 218 { 219 /* 220 * Be careful about RCU walk racing with rename: 221 * use 'READ_ONCE' to fetch the name pointer. 222 * 223 * NOTE! Even if a rename will mean that the length 224 * was not loaded atomically, we don't care. The 225 * RCU walk will check the sequence count eventually, 226 * and catch it. And we won't overrun the buffer, 227 * because we're reading the name pointer atomically, 228 * and a dentry name is guaranteed to be properly 229 * terminated with a NUL byte. 230 * 231 * End result: even if 'len' is wrong, we'll exit 232 * early because the data cannot match (there can 233 * be no NUL in the ct/tcount data) 234 */ 235 const unsigned char *cs = READ_ONCE(dentry->d_name.name); 236 237 return dentry_string_cmp(cs, ct, tcount); 238 } 239 240 struct external_name { 241 union { 242 atomic_t count; 243 struct rcu_head head; 244 } u; 245 unsigned char name[]; 246 }; 247 248 static inline struct external_name *external_name(struct dentry *dentry) 249 { 250 return container_of(dentry->d_name.name, struct external_name, name[0]); 251 } 252 253 static void __d_free(struct rcu_head *head) 254 { 255 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu); 256 257 kmem_cache_free(dentry_cache, dentry); 258 } 259 260 static void __d_free_external_name(struct rcu_head *head) 261 { 262 struct external_name *name = container_of(head, struct external_name, 263 u.head); 264 265 mod_node_page_state(page_pgdat(virt_to_page(name)), 266 NR_INDIRECTLY_RECLAIMABLE_BYTES, 267 -ksize(name)); 268 269 kfree(name); 270 } 271 272 static void __d_free_external(struct rcu_head *head) 273 { 274 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu); 275 276 __d_free_external_name(&external_name(dentry)->u.head); 277 278 kmem_cache_free(dentry_cache, dentry); 279 } 280 281 static inline int dname_external(const struct dentry *dentry) 282 { 283 return dentry->d_name.name != dentry->d_iname; 284 } 285 286 void take_dentry_name_snapshot(struct name_snapshot *name, struct dentry *dentry) 287 { 288 spin_lock(&dentry->d_lock); 289 if (unlikely(dname_external(dentry))) { 290 struct external_name *p = external_name(dentry); 291 atomic_inc(&p->u.count); 292 spin_unlock(&dentry->d_lock); 293 name->name = p->name; 294 } else { 295 memcpy(name->inline_name, dentry->d_iname, 296 dentry->d_name.len + 1); 297 spin_unlock(&dentry->d_lock); 298 name->name = name->inline_name; 299 } 300 } 301 EXPORT_SYMBOL(take_dentry_name_snapshot); 302 303 void release_dentry_name_snapshot(struct name_snapshot *name) 304 { 305 if (unlikely(name->name != name->inline_name)) { 306 struct external_name *p; 307 p = container_of(name->name, struct external_name, name[0]); 308 if (unlikely(atomic_dec_and_test(&p->u.count))) 309 call_rcu(&p->u.head, __d_free_external_name); 310 } 311 } 312 EXPORT_SYMBOL(release_dentry_name_snapshot); 313 314 static inline void __d_set_inode_and_type(struct dentry *dentry, 315 struct inode *inode, 316 unsigned type_flags) 317 { 318 unsigned flags; 319 320 dentry->d_inode = inode; 321 flags = READ_ONCE(dentry->d_flags); 322 flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU); 323 flags |= type_flags; 324 WRITE_ONCE(dentry->d_flags, flags); 325 } 326 327 static inline void __d_clear_type_and_inode(struct dentry *dentry) 328 { 329 unsigned flags = READ_ONCE(dentry->d_flags); 330 331 flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU); 332 WRITE_ONCE(dentry->d_flags, flags); 333 dentry->d_inode = NULL; 334 } 335 336 static void dentry_free(struct dentry *dentry) 337 { 338 WARN_ON(!hlist_unhashed(&dentry->d_u.d_alias)); 339 if (unlikely(dname_external(dentry))) { 340 struct external_name *p = external_name(dentry); 341 if (likely(atomic_dec_and_test(&p->u.count))) { 342 call_rcu(&dentry->d_u.d_rcu, __d_free_external); 343 return; 344 } 345 } 346 /* if dentry was never visible to RCU, immediate free is OK */ 347 if (!(dentry->d_flags & DCACHE_RCUACCESS)) 348 __d_free(&dentry->d_u.d_rcu); 349 else 350 call_rcu(&dentry->d_u.d_rcu, __d_free); 351 } 352 353 /* 354 * Release the dentry's inode, using the filesystem 355 * d_iput() operation if defined. 356 */ 357 static void dentry_unlink_inode(struct dentry * dentry) 358 __releases(dentry->d_lock) 359 __releases(dentry->d_inode->i_lock) 360 { 361 struct inode *inode = dentry->d_inode; 362 363 raw_write_seqcount_begin(&dentry->d_seq); 364 __d_clear_type_and_inode(dentry); 365 hlist_del_init(&dentry->d_u.d_alias); 366 raw_write_seqcount_end(&dentry->d_seq); 367 spin_unlock(&dentry->d_lock); 368 spin_unlock(&inode->i_lock); 369 if (!inode->i_nlink) 370 fsnotify_inoderemove(inode); 371 if (dentry->d_op && dentry->d_op->d_iput) 372 dentry->d_op->d_iput(dentry, inode); 373 else 374 iput(inode); 375 } 376 377 /* 378 * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry 379 * is in use - which includes both the "real" per-superblock 380 * LRU list _and_ the DCACHE_SHRINK_LIST use. 381 * 382 * The DCACHE_SHRINK_LIST bit is set whenever the dentry is 383 * on the shrink list (ie not on the superblock LRU list). 384 * 385 * The per-cpu "nr_dentry_unused" counters are updated with 386 * the DCACHE_LRU_LIST bit. 387 * 388 * These helper functions make sure we always follow the 389 * rules. d_lock must be held by the caller. 390 */ 391 #define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x)) 392 static void d_lru_add(struct dentry *dentry) 393 { 394 D_FLAG_VERIFY(dentry, 0); 395 dentry->d_flags |= DCACHE_LRU_LIST; 396 this_cpu_inc(nr_dentry_unused); 397 WARN_ON_ONCE(!list_lru_add(&dentry->d_sb->s_dentry_lru, &dentry->d_lru)); 398 } 399 400 static void d_lru_del(struct dentry *dentry) 401 { 402 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST); 403 dentry->d_flags &= ~DCACHE_LRU_LIST; 404 this_cpu_dec(nr_dentry_unused); 405 WARN_ON_ONCE(!list_lru_del(&dentry->d_sb->s_dentry_lru, &dentry->d_lru)); 406 } 407 408 static void d_shrink_del(struct dentry *dentry) 409 { 410 D_FLAG_VERIFY(dentry, DCACHE_SHRINK_LIST | DCACHE_LRU_LIST); 411 list_del_init(&dentry->d_lru); 412 dentry->d_flags &= ~(DCACHE_SHRINK_LIST | DCACHE_LRU_LIST); 413 this_cpu_dec(nr_dentry_unused); 414 } 415 416 static void d_shrink_add(struct dentry *dentry, struct list_head *list) 417 { 418 D_FLAG_VERIFY(dentry, 0); 419 list_add(&dentry->d_lru, list); 420 dentry->d_flags |= DCACHE_SHRINK_LIST | DCACHE_LRU_LIST; 421 this_cpu_inc(nr_dentry_unused); 422 } 423 424 /* 425 * These can only be called under the global LRU lock, ie during the 426 * callback for freeing the LRU list. "isolate" removes it from the 427 * LRU lists entirely, while shrink_move moves it to the indicated 428 * private list. 429 */ 430 static void d_lru_isolate(struct list_lru_one *lru, struct dentry *dentry) 431 { 432 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST); 433 dentry->d_flags &= ~DCACHE_LRU_LIST; 434 this_cpu_dec(nr_dentry_unused); 435 list_lru_isolate(lru, &dentry->d_lru); 436 } 437 438 static void d_lru_shrink_move(struct list_lru_one *lru, struct dentry *dentry, 439 struct list_head *list) 440 { 441 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST); 442 dentry->d_flags |= DCACHE_SHRINK_LIST; 443 list_lru_isolate_move(lru, &dentry->d_lru, list); 444 } 445 446 /** 447 * d_drop - drop a dentry 448 * @dentry: dentry to drop 449 * 450 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't 451 * be found through a VFS lookup any more. Note that this is different from 452 * deleting the dentry - d_delete will try to mark the dentry negative if 453 * possible, giving a successful _negative_ lookup, while d_drop will 454 * just make the cache lookup fail. 455 * 456 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some 457 * reason (NFS timeouts or autofs deletes). 458 * 459 * __d_drop requires dentry->d_lock 460 * ___d_drop doesn't mark dentry as "unhashed" 461 * (dentry->d_hash.pprev will be LIST_POISON2, not NULL). 462 */ 463 static void ___d_drop(struct dentry *dentry) 464 { 465 struct hlist_bl_head *b; 466 /* 467 * Hashed dentries are normally on the dentry hashtable, 468 * with the exception of those newly allocated by 469 * d_obtain_root, which are always IS_ROOT: 470 */ 471 if (unlikely(IS_ROOT(dentry))) 472 b = &dentry->d_sb->s_roots; 473 else 474 b = d_hash(dentry->d_name.hash); 475 476 hlist_bl_lock(b); 477 __hlist_bl_del(&dentry->d_hash); 478 hlist_bl_unlock(b); 479 } 480 481 void __d_drop(struct dentry *dentry) 482 { 483 if (!d_unhashed(dentry)) { 484 ___d_drop(dentry); 485 dentry->d_hash.pprev = NULL; 486 write_seqcount_invalidate(&dentry->d_seq); 487 } 488 } 489 EXPORT_SYMBOL(__d_drop); 490 491 void d_drop(struct dentry *dentry) 492 { 493 spin_lock(&dentry->d_lock); 494 __d_drop(dentry); 495 spin_unlock(&dentry->d_lock); 496 } 497 EXPORT_SYMBOL(d_drop); 498 499 static inline void dentry_unlist(struct dentry *dentry, struct dentry *parent) 500 { 501 struct dentry *next; 502 /* 503 * Inform d_walk() and shrink_dentry_list() that we are no longer 504 * attached to the dentry tree 505 */ 506 dentry->d_flags |= DCACHE_DENTRY_KILLED; 507 if (unlikely(list_empty(&dentry->d_child))) 508 return; 509 __list_del_entry(&dentry->d_child); 510 /* 511 * Cursors can move around the list of children. While we'd been 512 * a normal list member, it didn't matter - ->d_child.next would've 513 * been updated. However, from now on it won't be and for the 514 * things like d_walk() it might end up with a nasty surprise. 515 * Normally d_walk() doesn't care about cursors moving around - 516 * ->d_lock on parent prevents that and since a cursor has no children 517 * of its own, we get through it without ever unlocking the parent. 518 * There is one exception, though - if we ascend from a child that 519 * gets killed as soon as we unlock it, the next sibling is found 520 * using the value left in its ->d_child.next. And if _that_ 521 * pointed to a cursor, and cursor got moved (e.g. by lseek()) 522 * before d_walk() regains parent->d_lock, we'll end up skipping 523 * everything the cursor had been moved past. 524 * 525 * Solution: make sure that the pointer left behind in ->d_child.next 526 * points to something that won't be moving around. I.e. skip the 527 * cursors. 528 */ 529 while (dentry->d_child.next != &parent->d_subdirs) { 530 next = list_entry(dentry->d_child.next, struct dentry, d_child); 531 if (likely(!(next->d_flags & DCACHE_DENTRY_CURSOR))) 532 break; 533 dentry->d_child.next = next->d_child.next; 534 } 535 } 536 537 static void __dentry_kill(struct dentry *dentry) 538 { 539 struct dentry *parent = NULL; 540 bool can_free = true; 541 if (!IS_ROOT(dentry)) 542 parent = dentry->d_parent; 543 544 /* 545 * The dentry is now unrecoverably dead to the world. 546 */ 547 lockref_mark_dead(&dentry->d_lockref); 548 549 /* 550 * inform the fs via d_prune that this dentry is about to be 551 * unhashed and destroyed. 552 */ 553 if (dentry->d_flags & DCACHE_OP_PRUNE) 554 dentry->d_op->d_prune(dentry); 555 556 if (dentry->d_flags & DCACHE_LRU_LIST) { 557 if (!(dentry->d_flags & DCACHE_SHRINK_LIST)) 558 d_lru_del(dentry); 559 } 560 /* if it was on the hash then remove it */ 561 __d_drop(dentry); 562 dentry_unlist(dentry, parent); 563 if (parent) 564 spin_unlock(&parent->d_lock); 565 if (dentry->d_inode) 566 dentry_unlink_inode(dentry); 567 else 568 spin_unlock(&dentry->d_lock); 569 this_cpu_dec(nr_dentry); 570 if (dentry->d_op && dentry->d_op->d_release) 571 dentry->d_op->d_release(dentry); 572 573 spin_lock(&dentry->d_lock); 574 if (dentry->d_flags & DCACHE_SHRINK_LIST) { 575 dentry->d_flags |= DCACHE_MAY_FREE; 576 can_free = false; 577 } 578 spin_unlock(&dentry->d_lock); 579 if (likely(can_free)) 580 dentry_free(dentry); 581 cond_resched(); 582 } 583 584 static struct dentry *__lock_parent(struct dentry *dentry) 585 { 586 struct dentry *parent; 587 rcu_read_lock(); 588 spin_unlock(&dentry->d_lock); 589 again: 590 parent = READ_ONCE(dentry->d_parent); 591 spin_lock(&parent->d_lock); 592 /* 593 * We can't blindly lock dentry until we are sure 594 * that we won't violate the locking order. 595 * Any changes of dentry->d_parent must have 596 * been done with parent->d_lock held, so 597 * spin_lock() above is enough of a barrier 598 * for checking if it's still our child. 599 */ 600 if (unlikely(parent != dentry->d_parent)) { 601 spin_unlock(&parent->d_lock); 602 goto again; 603 } 604 rcu_read_unlock(); 605 if (parent != dentry) 606 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED); 607 else 608 parent = NULL; 609 return parent; 610 } 611 612 static inline struct dentry *lock_parent(struct dentry *dentry) 613 { 614 struct dentry *parent = dentry->d_parent; 615 if (IS_ROOT(dentry)) 616 return NULL; 617 if (likely(spin_trylock(&parent->d_lock))) 618 return parent; 619 return __lock_parent(dentry); 620 } 621 622 static inline bool retain_dentry(struct dentry *dentry) 623 { 624 WARN_ON(d_in_lookup(dentry)); 625 626 /* Unreachable? Get rid of it */ 627 if (unlikely(d_unhashed(dentry))) 628 return false; 629 630 if (unlikely(dentry->d_flags & DCACHE_DISCONNECTED)) 631 return false; 632 633 if (unlikely(dentry->d_flags & DCACHE_OP_DELETE)) { 634 if (dentry->d_op->d_delete(dentry)) 635 return false; 636 } 637 /* retain; LRU fodder */ 638 dentry->d_lockref.count--; 639 if (unlikely(!(dentry->d_flags & DCACHE_LRU_LIST))) 640 d_lru_add(dentry); 641 else if (unlikely(!(dentry->d_flags & DCACHE_REFERENCED))) 642 dentry->d_flags |= DCACHE_REFERENCED; 643 return true; 644 } 645 646 /* 647 * Finish off a dentry we've decided to kill. 648 * dentry->d_lock must be held, returns with it unlocked. 649 * Returns dentry requiring refcount drop, or NULL if we're done. 650 */ 651 static struct dentry *dentry_kill(struct dentry *dentry) 652 __releases(dentry->d_lock) 653 { 654 struct inode *inode = dentry->d_inode; 655 struct dentry *parent = NULL; 656 657 if (inode && unlikely(!spin_trylock(&inode->i_lock))) 658 goto slow_positive; 659 660 if (!IS_ROOT(dentry)) { 661 parent = dentry->d_parent; 662 if (unlikely(!spin_trylock(&parent->d_lock))) { 663 parent = __lock_parent(dentry); 664 if (likely(inode || !dentry->d_inode)) 665 goto got_locks; 666 /* negative that became positive */ 667 if (parent) 668 spin_unlock(&parent->d_lock); 669 inode = dentry->d_inode; 670 goto slow_positive; 671 } 672 } 673 __dentry_kill(dentry); 674 return parent; 675 676 slow_positive: 677 spin_unlock(&dentry->d_lock); 678 spin_lock(&inode->i_lock); 679 spin_lock(&dentry->d_lock); 680 parent = lock_parent(dentry); 681 got_locks: 682 if (unlikely(dentry->d_lockref.count != 1)) { 683 dentry->d_lockref.count--; 684 } else if (likely(!retain_dentry(dentry))) { 685 __dentry_kill(dentry); 686 return parent; 687 } 688 /* we are keeping it, after all */ 689 if (inode) 690 spin_unlock(&inode->i_lock); 691 if (parent) 692 spin_unlock(&parent->d_lock); 693 spin_unlock(&dentry->d_lock); 694 return NULL; 695 } 696 697 /* 698 * Try to do a lockless dput(), and return whether that was successful. 699 * 700 * If unsuccessful, we return false, having already taken the dentry lock. 701 * 702 * The caller needs to hold the RCU read lock, so that the dentry is 703 * guaranteed to stay around even if the refcount goes down to zero! 704 */ 705 static inline bool fast_dput(struct dentry *dentry) 706 { 707 int ret; 708 unsigned int d_flags; 709 710 /* 711 * If we have a d_op->d_delete() operation, we sould not 712 * let the dentry count go to zero, so use "put_or_lock". 713 */ 714 if (unlikely(dentry->d_flags & DCACHE_OP_DELETE)) 715 return lockref_put_or_lock(&dentry->d_lockref); 716 717 /* 718 * .. otherwise, we can try to just decrement the 719 * lockref optimistically. 720 */ 721 ret = lockref_put_return(&dentry->d_lockref); 722 723 /* 724 * If the lockref_put_return() failed due to the lock being held 725 * by somebody else, the fast path has failed. We will need to 726 * get the lock, and then check the count again. 727 */ 728 if (unlikely(ret < 0)) { 729 spin_lock(&dentry->d_lock); 730 if (dentry->d_lockref.count > 1) { 731 dentry->d_lockref.count--; 732 spin_unlock(&dentry->d_lock); 733 return true; 734 } 735 return false; 736 } 737 738 /* 739 * If we weren't the last ref, we're done. 740 */ 741 if (ret) 742 return true; 743 744 /* 745 * Careful, careful. The reference count went down 746 * to zero, but we don't hold the dentry lock, so 747 * somebody else could get it again, and do another 748 * dput(), and we need to not race with that. 749 * 750 * However, there is a very special and common case 751 * where we don't care, because there is nothing to 752 * do: the dentry is still hashed, it does not have 753 * a 'delete' op, and it's referenced and already on 754 * the LRU list. 755 * 756 * NOTE! Since we aren't locked, these values are 757 * not "stable". However, it is sufficient that at 758 * some point after we dropped the reference the 759 * dentry was hashed and the flags had the proper 760 * value. Other dentry users may have re-gotten 761 * a reference to the dentry and change that, but 762 * our work is done - we can leave the dentry 763 * around with a zero refcount. 764 */ 765 smp_rmb(); 766 d_flags = READ_ONCE(dentry->d_flags); 767 d_flags &= DCACHE_REFERENCED | DCACHE_LRU_LIST | DCACHE_DISCONNECTED; 768 769 /* Nothing to do? Dropping the reference was all we needed? */ 770 if (d_flags == (DCACHE_REFERENCED | DCACHE_LRU_LIST) && !d_unhashed(dentry)) 771 return true; 772 773 /* 774 * Not the fast normal case? Get the lock. We've already decremented 775 * the refcount, but we'll need to re-check the situation after 776 * getting the lock. 777 */ 778 spin_lock(&dentry->d_lock); 779 780 /* 781 * Did somebody else grab a reference to it in the meantime, and 782 * we're no longer the last user after all? Alternatively, somebody 783 * else could have killed it and marked it dead. Either way, we 784 * don't need to do anything else. 785 */ 786 if (dentry->d_lockref.count) { 787 spin_unlock(&dentry->d_lock); 788 return true; 789 } 790 791 /* 792 * Re-get the reference we optimistically dropped. We hold the 793 * lock, and we just tested that it was zero, so we can just 794 * set it to 1. 795 */ 796 dentry->d_lockref.count = 1; 797 return false; 798 } 799 800 801 /* 802 * This is dput 803 * 804 * This is complicated by the fact that we do not want to put 805 * dentries that are no longer on any hash chain on the unused 806 * list: we'd much rather just get rid of them immediately. 807 * 808 * However, that implies that we have to traverse the dentry 809 * tree upwards to the parents which might _also_ now be 810 * scheduled for deletion (it may have been only waiting for 811 * its last child to go away). 812 * 813 * This tail recursion is done by hand as we don't want to depend 814 * on the compiler to always get this right (gcc generally doesn't). 815 * Real recursion would eat up our stack space. 816 */ 817 818 /* 819 * dput - release a dentry 820 * @dentry: dentry to release 821 * 822 * Release a dentry. This will drop the usage count and if appropriate 823 * call the dentry unlink method as well as removing it from the queues and 824 * releasing its resources. If the parent dentries were scheduled for release 825 * they too may now get deleted. 826 */ 827 void dput(struct dentry *dentry) 828 { 829 while (dentry) { 830 might_sleep(); 831 832 rcu_read_lock(); 833 if (likely(fast_dput(dentry))) { 834 rcu_read_unlock(); 835 return; 836 } 837 838 /* Slow case: now with the dentry lock held */ 839 rcu_read_unlock(); 840 841 if (likely(retain_dentry(dentry))) { 842 spin_unlock(&dentry->d_lock); 843 return; 844 } 845 846 dentry = dentry_kill(dentry); 847 } 848 } 849 EXPORT_SYMBOL(dput); 850 851 852 /* This must be called with d_lock held */ 853 static inline void __dget_dlock(struct dentry *dentry) 854 { 855 dentry->d_lockref.count++; 856 } 857 858 static inline void __dget(struct dentry *dentry) 859 { 860 lockref_get(&dentry->d_lockref); 861 } 862 863 struct dentry *dget_parent(struct dentry *dentry) 864 { 865 int gotref; 866 struct dentry *ret; 867 868 /* 869 * Do optimistic parent lookup without any 870 * locking. 871 */ 872 rcu_read_lock(); 873 ret = READ_ONCE(dentry->d_parent); 874 gotref = lockref_get_not_zero(&ret->d_lockref); 875 rcu_read_unlock(); 876 if (likely(gotref)) { 877 if (likely(ret == READ_ONCE(dentry->d_parent))) 878 return ret; 879 dput(ret); 880 } 881 882 repeat: 883 /* 884 * Don't need rcu_dereference because we re-check it was correct under 885 * the lock. 886 */ 887 rcu_read_lock(); 888 ret = dentry->d_parent; 889 spin_lock(&ret->d_lock); 890 if (unlikely(ret != dentry->d_parent)) { 891 spin_unlock(&ret->d_lock); 892 rcu_read_unlock(); 893 goto repeat; 894 } 895 rcu_read_unlock(); 896 BUG_ON(!ret->d_lockref.count); 897 ret->d_lockref.count++; 898 spin_unlock(&ret->d_lock); 899 return ret; 900 } 901 EXPORT_SYMBOL(dget_parent); 902 903 static struct dentry * __d_find_any_alias(struct inode *inode) 904 { 905 struct dentry *alias; 906 907 if (hlist_empty(&inode->i_dentry)) 908 return NULL; 909 alias = hlist_entry(inode->i_dentry.first, struct dentry, d_u.d_alias); 910 __dget(alias); 911 return alias; 912 } 913 914 /** 915 * d_find_any_alias - find any alias for a given inode 916 * @inode: inode to find an alias for 917 * 918 * If any aliases exist for the given inode, take and return a 919 * reference for one of them. If no aliases exist, return %NULL. 920 */ 921 struct dentry *d_find_any_alias(struct inode *inode) 922 { 923 struct dentry *de; 924 925 spin_lock(&inode->i_lock); 926 de = __d_find_any_alias(inode); 927 spin_unlock(&inode->i_lock); 928 return de; 929 } 930 EXPORT_SYMBOL(d_find_any_alias); 931 932 /** 933 * d_find_alias - grab a hashed alias of inode 934 * @inode: inode in question 935 * 936 * If inode has a hashed alias, or is a directory and has any alias, 937 * acquire the reference to alias and return it. Otherwise return NULL. 938 * Notice that if inode is a directory there can be only one alias and 939 * it can be unhashed only if it has no children, or if it is the root 940 * of a filesystem, or if the directory was renamed and d_revalidate 941 * was the first vfs operation to notice. 942 * 943 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer 944 * any other hashed alias over that one. 945 */ 946 static struct dentry *__d_find_alias(struct inode *inode) 947 { 948 struct dentry *alias; 949 950 if (S_ISDIR(inode->i_mode)) 951 return __d_find_any_alias(inode); 952 953 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) { 954 spin_lock(&alias->d_lock); 955 if (!d_unhashed(alias)) { 956 __dget_dlock(alias); 957 spin_unlock(&alias->d_lock); 958 return alias; 959 } 960 spin_unlock(&alias->d_lock); 961 } 962 return NULL; 963 } 964 965 struct dentry *d_find_alias(struct inode *inode) 966 { 967 struct dentry *de = NULL; 968 969 if (!hlist_empty(&inode->i_dentry)) { 970 spin_lock(&inode->i_lock); 971 de = __d_find_alias(inode); 972 spin_unlock(&inode->i_lock); 973 } 974 return de; 975 } 976 EXPORT_SYMBOL(d_find_alias); 977 978 /* 979 * Try to kill dentries associated with this inode. 980 * WARNING: you must own a reference to inode. 981 */ 982 void d_prune_aliases(struct inode *inode) 983 { 984 struct dentry *dentry; 985 restart: 986 spin_lock(&inode->i_lock); 987 hlist_for_each_entry(dentry, &inode->i_dentry, d_u.d_alias) { 988 spin_lock(&dentry->d_lock); 989 if (!dentry->d_lockref.count) { 990 struct dentry *parent = lock_parent(dentry); 991 if (likely(!dentry->d_lockref.count)) { 992 __dentry_kill(dentry); 993 dput(parent); 994 goto restart; 995 } 996 if (parent) 997 spin_unlock(&parent->d_lock); 998 } 999 spin_unlock(&dentry->d_lock); 1000 } 1001 spin_unlock(&inode->i_lock); 1002 } 1003 EXPORT_SYMBOL(d_prune_aliases); 1004 1005 /* 1006 * Lock a dentry from shrink list. 1007 * Called under rcu_read_lock() and dentry->d_lock; the former 1008 * guarantees that nothing we access will be freed under us. 1009 * Note that dentry is *not* protected from concurrent dentry_kill(), 1010 * d_delete(), etc. 1011 * 1012 * Return false if dentry has been disrupted or grabbed, leaving 1013 * the caller to kick it off-list. Otherwise, return true and have 1014 * that dentry's inode and parent both locked. 1015 */ 1016 static bool shrink_lock_dentry(struct dentry *dentry) 1017 { 1018 struct inode *inode; 1019 struct dentry *parent; 1020 1021 if (dentry->d_lockref.count) 1022 return false; 1023 1024 inode = dentry->d_inode; 1025 if (inode && unlikely(!spin_trylock(&inode->i_lock))) { 1026 spin_unlock(&dentry->d_lock); 1027 spin_lock(&inode->i_lock); 1028 spin_lock(&dentry->d_lock); 1029 if (unlikely(dentry->d_lockref.count)) 1030 goto out; 1031 /* changed inode means that somebody had grabbed it */ 1032 if (unlikely(inode != dentry->d_inode)) 1033 goto out; 1034 } 1035 1036 parent = dentry->d_parent; 1037 if (IS_ROOT(dentry) || likely(spin_trylock(&parent->d_lock))) 1038 return true; 1039 1040 spin_unlock(&dentry->d_lock); 1041 spin_lock(&parent->d_lock); 1042 if (unlikely(parent != dentry->d_parent)) { 1043 spin_unlock(&parent->d_lock); 1044 spin_lock(&dentry->d_lock); 1045 goto out; 1046 } 1047 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED); 1048 if (likely(!dentry->d_lockref.count)) 1049 return true; 1050 spin_unlock(&parent->d_lock); 1051 out: 1052 if (inode) 1053 spin_unlock(&inode->i_lock); 1054 return false; 1055 } 1056 1057 static void shrink_dentry_list(struct list_head *list) 1058 { 1059 while (!list_empty(list)) { 1060 struct dentry *dentry, *parent; 1061 1062 dentry = list_entry(list->prev, struct dentry, d_lru); 1063 spin_lock(&dentry->d_lock); 1064 rcu_read_lock(); 1065 if (!shrink_lock_dentry(dentry)) { 1066 bool can_free = false; 1067 rcu_read_unlock(); 1068 d_shrink_del(dentry); 1069 if (dentry->d_lockref.count < 0) 1070 can_free = dentry->d_flags & DCACHE_MAY_FREE; 1071 spin_unlock(&dentry->d_lock); 1072 if (can_free) 1073 dentry_free(dentry); 1074 continue; 1075 } 1076 rcu_read_unlock(); 1077 d_shrink_del(dentry); 1078 parent = dentry->d_parent; 1079 __dentry_kill(dentry); 1080 if (parent == dentry) 1081 continue; 1082 /* 1083 * We need to prune ancestors too. This is necessary to prevent 1084 * quadratic behavior of shrink_dcache_parent(), but is also 1085 * expected to be beneficial in reducing dentry cache 1086 * fragmentation. 1087 */ 1088 dentry = parent; 1089 while (dentry && !lockref_put_or_lock(&dentry->d_lockref)) 1090 dentry = dentry_kill(dentry); 1091 } 1092 } 1093 1094 static enum lru_status dentry_lru_isolate(struct list_head *item, 1095 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg) 1096 { 1097 struct list_head *freeable = arg; 1098 struct dentry *dentry = container_of(item, struct dentry, d_lru); 1099 1100 1101 /* 1102 * we are inverting the lru lock/dentry->d_lock here, 1103 * so use a trylock. If we fail to get the lock, just skip 1104 * it 1105 */ 1106 if (!spin_trylock(&dentry->d_lock)) 1107 return LRU_SKIP; 1108 1109 /* 1110 * Referenced dentries are still in use. If they have active 1111 * counts, just remove them from the LRU. Otherwise give them 1112 * another pass through the LRU. 1113 */ 1114 if (dentry->d_lockref.count) { 1115 d_lru_isolate(lru, dentry); 1116 spin_unlock(&dentry->d_lock); 1117 return LRU_REMOVED; 1118 } 1119 1120 if (dentry->d_flags & DCACHE_REFERENCED) { 1121 dentry->d_flags &= ~DCACHE_REFERENCED; 1122 spin_unlock(&dentry->d_lock); 1123 1124 /* 1125 * The list move itself will be made by the common LRU code. At 1126 * this point, we've dropped the dentry->d_lock but keep the 1127 * lru lock. This is safe to do, since every list movement is 1128 * protected by the lru lock even if both locks are held. 1129 * 1130 * This is guaranteed by the fact that all LRU management 1131 * functions are intermediated by the LRU API calls like 1132 * list_lru_add and list_lru_del. List movement in this file 1133 * only ever occur through this functions or through callbacks 1134 * like this one, that are called from the LRU API. 1135 * 1136 * The only exceptions to this are functions like 1137 * shrink_dentry_list, and code that first checks for the 1138 * DCACHE_SHRINK_LIST flag. Those are guaranteed to be 1139 * operating only with stack provided lists after they are 1140 * properly isolated from the main list. It is thus, always a 1141 * local access. 1142 */ 1143 return LRU_ROTATE; 1144 } 1145 1146 d_lru_shrink_move(lru, dentry, freeable); 1147 spin_unlock(&dentry->d_lock); 1148 1149 return LRU_REMOVED; 1150 } 1151 1152 /** 1153 * prune_dcache_sb - shrink the dcache 1154 * @sb: superblock 1155 * @sc: shrink control, passed to list_lru_shrink_walk() 1156 * 1157 * Attempt to shrink the superblock dcache LRU by @sc->nr_to_scan entries. This 1158 * is done when we need more memory and called from the superblock shrinker 1159 * function. 1160 * 1161 * This function may fail to free any resources if all the dentries are in 1162 * use. 1163 */ 1164 long prune_dcache_sb(struct super_block *sb, struct shrink_control *sc) 1165 { 1166 LIST_HEAD(dispose); 1167 long freed; 1168 1169 freed = list_lru_shrink_walk(&sb->s_dentry_lru, sc, 1170 dentry_lru_isolate, &dispose); 1171 shrink_dentry_list(&dispose); 1172 return freed; 1173 } 1174 1175 static enum lru_status dentry_lru_isolate_shrink(struct list_head *item, 1176 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg) 1177 { 1178 struct list_head *freeable = arg; 1179 struct dentry *dentry = container_of(item, struct dentry, d_lru); 1180 1181 /* 1182 * we are inverting the lru lock/dentry->d_lock here, 1183 * so use a trylock. If we fail to get the lock, just skip 1184 * it 1185 */ 1186 if (!spin_trylock(&dentry->d_lock)) 1187 return LRU_SKIP; 1188 1189 d_lru_shrink_move(lru, dentry, freeable); 1190 spin_unlock(&dentry->d_lock); 1191 1192 return LRU_REMOVED; 1193 } 1194 1195 1196 /** 1197 * shrink_dcache_sb - shrink dcache for a superblock 1198 * @sb: superblock 1199 * 1200 * Shrink the dcache for the specified super block. This is used to free 1201 * the dcache before unmounting a file system. 1202 */ 1203 void shrink_dcache_sb(struct super_block *sb) 1204 { 1205 long freed; 1206 1207 do { 1208 LIST_HEAD(dispose); 1209 1210 freed = list_lru_walk(&sb->s_dentry_lru, 1211 dentry_lru_isolate_shrink, &dispose, 1024); 1212 1213 this_cpu_sub(nr_dentry_unused, freed); 1214 shrink_dentry_list(&dispose); 1215 } while (list_lru_count(&sb->s_dentry_lru) > 0); 1216 } 1217 EXPORT_SYMBOL(shrink_dcache_sb); 1218 1219 /** 1220 * enum d_walk_ret - action to talke during tree walk 1221 * @D_WALK_CONTINUE: contrinue walk 1222 * @D_WALK_QUIT: quit walk 1223 * @D_WALK_NORETRY: quit when retry is needed 1224 * @D_WALK_SKIP: skip this dentry and its children 1225 */ 1226 enum d_walk_ret { 1227 D_WALK_CONTINUE, 1228 D_WALK_QUIT, 1229 D_WALK_NORETRY, 1230 D_WALK_SKIP, 1231 }; 1232 1233 /** 1234 * d_walk - walk the dentry tree 1235 * @parent: start of walk 1236 * @data: data passed to @enter() and @finish() 1237 * @enter: callback when first entering the dentry 1238 * 1239 * The @enter() callbacks are called with d_lock held. 1240 */ 1241 static void d_walk(struct dentry *parent, void *data, 1242 enum d_walk_ret (*enter)(void *, struct dentry *)) 1243 { 1244 struct dentry *this_parent; 1245 struct list_head *next; 1246 unsigned seq = 0; 1247 enum d_walk_ret ret; 1248 bool retry = true; 1249 1250 again: 1251 read_seqbegin_or_lock(&rename_lock, &seq); 1252 this_parent = parent; 1253 spin_lock(&this_parent->d_lock); 1254 1255 ret = enter(data, this_parent); 1256 switch (ret) { 1257 case D_WALK_CONTINUE: 1258 break; 1259 case D_WALK_QUIT: 1260 case D_WALK_SKIP: 1261 goto out_unlock; 1262 case D_WALK_NORETRY: 1263 retry = false; 1264 break; 1265 } 1266 repeat: 1267 next = this_parent->d_subdirs.next; 1268 resume: 1269 while (next != &this_parent->d_subdirs) { 1270 struct list_head *tmp = next; 1271 struct dentry *dentry = list_entry(tmp, struct dentry, d_child); 1272 next = tmp->next; 1273 1274 if (unlikely(dentry->d_flags & DCACHE_DENTRY_CURSOR)) 1275 continue; 1276 1277 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED); 1278 1279 ret = enter(data, dentry); 1280 switch (ret) { 1281 case D_WALK_CONTINUE: 1282 break; 1283 case D_WALK_QUIT: 1284 spin_unlock(&dentry->d_lock); 1285 goto out_unlock; 1286 case D_WALK_NORETRY: 1287 retry = false; 1288 break; 1289 case D_WALK_SKIP: 1290 spin_unlock(&dentry->d_lock); 1291 continue; 1292 } 1293 1294 if (!list_empty(&dentry->d_subdirs)) { 1295 spin_unlock(&this_parent->d_lock); 1296 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_); 1297 this_parent = dentry; 1298 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_); 1299 goto repeat; 1300 } 1301 spin_unlock(&dentry->d_lock); 1302 } 1303 /* 1304 * All done at this level ... ascend and resume the search. 1305 */ 1306 rcu_read_lock(); 1307 ascend: 1308 if (this_parent != parent) { 1309 struct dentry *child = this_parent; 1310 this_parent = child->d_parent; 1311 1312 spin_unlock(&child->d_lock); 1313 spin_lock(&this_parent->d_lock); 1314 1315 /* might go back up the wrong parent if we have had a rename. */ 1316 if (need_seqretry(&rename_lock, seq)) 1317 goto rename_retry; 1318 /* go into the first sibling still alive */ 1319 do { 1320 next = child->d_child.next; 1321 if (next == &this_parent->d_subdirs) 1322 goto ascend; 1323 child = list_entry(next, struct dentry, d_child); 1324 } while (unlikely(child->d_flags & DCACHE_DENTRY_KILLED)); 1325 rcu_read_unlock(); 1326 goto resume; 1327 } 1328 if (need_seqretry(&rename_lock, seq)) 1329 goto rename_retry; 1330 rcu_read_unlock(); 1331 1332 out_unlock: 1333 spin_unlock(&this_parent->d_lock); 1334 done_seqretry(&rename_lock, seq); 1335 return; 1336 1337 rename_retry: 1338 spin_unlock(&this_parent->d_lock); 1339 rcu_read_unlock(); 1340 BUG_ON(seq & 1); 1341 if (!retry) 1342 return; 1343 seq = 1; 1344 goto again; 1345 } 1346 1347 struct check_mount { 1348 struct vfsmount *mnt; 1349 unsigned int mounted; 1350 }; 1351 1352 static enum d_walk_ret path_check_mount(void *data, struct dentry *dentry) 1353 { 1354 struct check_mount *info = data; 1355 struct path path = { .mnt = info->mnt, .dentry = dentry }; 1356 1357 if (likely(!d_mountpoint(dentry))) 1358 return D_WALK_CONTINUE; 1359 if (__path_is_mountpoint(&path)) { 1360 info->mounted = 1; 1361 return D_WALK_QUIT; 1362 } 1363 return D_WALK_CONTINUE; 1364 } 1365 1366 /** 1367 * path_has_submounts - check for mounts over a dentry in the 1368 * current namespace. 1369 * @parent: path to check. 1370 * 1371 * Return true if the parent or its subdirectories contain 1372 * a mount point in the current namespace. 1373 */ 1374 int path_has_submounts(const struct path *parent) 1375 { 1376 struct check_mount data = { .mnt = parent->mnt, .mounted = 0 }; 1377 1378 read_seqlock_excl(&mount_lock); 1379 d_walk(parent->dentry, &data, path_check_mount); 1380 read_sequnlock_excl(&mount_lock); 1381 1382 return data.mounted; 1383 } 1384 EXPORT_SYMBOL(path_has_submounts); 1385 1386 /* 1387 * Called by mount code to set a mountpoint and check if the mountpoint is 1388 * reachable (e.g. NFS can unhash a directory dentry and then the complete 1389 * subtree can become unreachable). 1390 * 1391 * Only one of d_invalidate() and d_set_mounted() must succeed. For 1392 * this reason take rename_lock and d_lock on dentry and ancestors. 1393 */ 1394 int d_set_mounted(struct dentry *dentry) 1395 { 1396 struct dentry *p; 1397 int ret = -ENOENT; 1398 write_seqlock(&rename_lock); 1399 for (p = dentry->d_parent; !IS_ROOT(p); p = p->d_parent) { 1400 /* Need exclusion wrt. d_invalidate() */ 1401 spin_lock(&p->d_lock); 1402 if (unlikely(d_unhashed(p))) { 1403 spin_unlock(&p->d_lock); 1404 goto out; 1405 } 1406 spin_unlock(&p->d_lock); 1407 } 1408 spin_lock(&dentry->d_lock); 1409 if (!d_unlinked(dentry)) { 1410 ret = -EBUSY; 1411 if (!d_mountpoint(dentry)) { 1412 dentry->d_flags |= DCACHE_MOUNTED; 1413 ret = 0; 1414 } 1415 } 1416 spin_unlock(&dentry->d_lock); 1417 out: 1418 write_sequnlock(&rename_lock); 1419 return ret; 1420 } 1421 1422 /* 1423 * Search the dentry child list of the specified parent, 1424 * and move any unused dentries to the end of the unused 1425 * list for prune_dcache(). We descend to the next level 1426 * whenever the d_subdirs list is non-empty and continue 1427 * searching. 1428 * 1429 * It returns zero iff there are no unused children, 1430 * otherwise it returns the number of children moved to 1431 * the end of the unused list. This may not be the total 1432 * number of unused children, because select_parent can 1433 * drop the lock and return early due to latency 1434 * constraints. 1435 */ 1436 1437 struct select_data { 1438 struct dentry *start; 1439 struct list_head dispose; 1440 int found; 1441 }; 1442 1443 static enum d_walk_ret select_collect(void *_data, struct dentry *dentry) 1444 { 1445 struct select_data *data = _data; 1446 enum d_walk_ret ret = D_WALK_CONTINUE; 1447 1448 if (data->start == dentry) 1449 goto out; 1450 1451 if (dentry->d_flags & DCACHE_SHRINK_LIST) { 1452 data->found++; 1453 } else { 1454 if (dentry->d_flags & DCACHE_LRU_LIST) 1455 d_lru_del(dentry); 1456 if (!dentry->d_lockref.count) { 1457 d_shrink_add(dentry, &data->dispose); 1458 data->found++; 1459 } 1460 } 1461 /* 1462 * We can return to the caller if we have found some (this 1463 * ensures forward progress). We'll be coming back to find 1464 * the rest. 1465 */ 1466 if (!list_empty(&data->dispose)) 1467 ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY; 1468 out: 1469 return ret; 1470 } 1471 1472 /** 1473 * shrink_dcache_parent - prune dcache 1474 * @parent: parent of entries to prune 1475 * 1476 * Prune the dcache to remove unused children of the parent dentry. 1477 */ 1478 void shrink_dcache_parent(struct dentry *parent) 1479 { 1480 for (;;) { 1481 struct select_data data; 1482 1483 INIT_LIST_HEAD(&data.dispose); 1484 data.start = parent; 1485 data.found = 0; 1486 1487 d_walk(parent, &data, select_collect); 1488 1489 if (!list_empty(&data.dispose)) { 1490 shrink_dentry_list(&data.dispose); 1491 continue; 1492 } 1493 1494 cond_resched(); 1495 if (!data.found) 1496 break; 1497 } 1498 } 1499 EXPORT_SYMBOL(shrink_dcache_parent); 1500 1501 static enum d_walk_ret umount_check(void *_data, struct dentry *dentry) 1502 { 1503 /* it has busy descendents; complain about those instead */ 1504 if (!list_empty(&dentry->d_subdirs)) 1505 return D_WALK_CONTINUE; 1506 1507 /* root with refcount 1 is fine */ 1508 if (dentry == _data && dentry->d_lockref.count == 1) 1509 return D_WALK_CONTINUE; 1510 1511 printk(KERN_ERR "BUG: Dentry %p{i=%lx,n=%pd} " 1512 " still in use (%d) [unmount of %s %s]\n", 1513 dentry, 1514 dentry->d_inode ? 1515 dentry->d_inode->i_ino : 0UL, 1516 dentry, 1517 dentry->d_lockref.count, 1518 dentry->d_sb->s_type->name, 1519 dentry->d_sb->s_id); 1520 WARN_ON(1); 1521 return D_WALK_CONTINUE; 1522 } 1523 1524 static void do_one_tree(struct dentry *dentry) 1525 { 1526 shrink_dcache_parent(dentry); 1527 d_walk(dentry, dentry, umount_check); 1528 d_drop(dentry); 1529 dput(dentry); 1530 } 1531 1532 /* 1533 * destroy the dentries attached to a superblock on unmounting 1534 */ 1535 void shrink_dcache_for_umount(struct super_block *sb) 1536 { 1537 struct dentry *dentry; 1538 1539 WARN(down_read_trylock(&sb->s_umount), "s_umount should've been locked"); 1540 1541 dentry = sb->s_root; 1542 sb->s_root = NULL; 1543 do_one_tree(dentry); 1544 1545 while (!hlist_bl_empty(&sb->s_roots)) { 1546 dentry = dget(hlist_bl_entry(hlist_bl_first(&sb->s_roots), struct dentry, d_hash)); 1547 do_one_tree(dentry); 1548 } 1549 } 1550 1551 static enum d_walk_ret find_submount(void *_data, struct dentry *dentry) 1552 { 1553 struct dentry **victim = _data; 1554 if (d_mountpoint(dentry)) { 1555 __dget_dlock(dentry); 1556 *victim = dentry; 1557 return D_WALK_QUIT; 1558 } 1559 return D_WALK_CONTINUE; 1560 } 1561 1562 /** 1563 * d_invalidate - detach submounts, prune dcache, and drop 1564 * @dentry: dentry to invalidate (aka detach, prune and drop) 1565 */ 1566 void d_invalidate(struct dentry *dentry) 1567 { 1568 bool had_submounts = false; 1569 spin_lock(&dentry->d_lock); 1570 if (d_unhashed(dentry)) { 1571 spin_unlock(&dentry->d_lock); 1572 return; 1573 } 1574 __d_drop(dentry); 1575 spin_unlock(&dentry->d_lock); 1576 1577 /* Negative dentries can be dropped without further checks */ 1578 if (!dentry->d_inode) 1579 return; 1580 1581 shrink_dcache_parent(dentry); 1582 for (;;) { 1583 struct dentry *victim = NULL; 1584 d_walk(dentry, &victim, find_submount); 1585 if (!victim) { 1586 if (had_submounts) 1587 shrink_dcache_parent(dentry); 1588 return; 1589 } 1590 had_submounts = true; 1591 detach_mounts(victim); 1592 dput(victim); 1593 } 1594 } 1595 EXPORT_SYMBOL(d_invalidate); 1596 1597 /** 1598 * __d_alloc - allocate a dcache entry 1599 * @sb: filesystem it will belong to 1600 * @name: qstr of the name 1601 * 1602 * Allocates a dentry. It returns %NULL if there is insufficient memory 1603 * available. On a success the dentry is returned. The name passed in is 1604 * copied and the copy passed in may be reused after this call. 1605 */ 1606 1607 struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name) 1608 { 1609 struct external_name *ext = NULL; 1610 struct dentry *dentry; 1611 char *dname; 1612 int err; 1613 1614 dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL); 1615 if (!dentry) 1616 return NULL; 1617 1618 /* 1619 * We guarantee that the inline name is always NUL-terminated. 1620 * This way the memcpy() done by the name switching in rename 1621 * will still always have a NUL at the end, even if we might 1622 * be overwriting an internal NUL character 1623 */ 1624 dentry->d_iname[DNAME_INLINE_LEN-1] = 0; 1625 if (unlikely(!name)) { 1626 name = &slash_name; 1627 dname = dentry->d_iname; 1628 } else if (name->len > DNAME_INLINE_LEN-1) { 1629 size_t size = offsetof(struct external_name, name[1]); 1630 1631 ext = kmalloc(size + name->len, GFP_KERNEL_ACCOUNT); 1632 if (!ext) { 1633 kmem_cache_free(dentry_cache, dentry); 1634 return NULL; 1635 } 1636 atomic_set(&ext->u.count, 1); 1637 dname = ext->name; 1638 } else { 1639 dname = dentry->d_iname; 1640 } 1641 1642 dentry->d_name.len = name->len; 1643 dentry->d_name.hash = name->hash; 1644 memcpy(dname, name->name, name->len); 1645 dname[name->len] = 0; 1646 1647 /* Make sure we always see the terminating NUL character */ 1648 smp_store_release(&dentry->d_name.name, dname); /* ^^^ */ 1649 1650 dentry->d_lockref.count = 1; 1651 dentry->d_flags = 0; 1652 spin_lock_init(&dentry->d_lock); 1653 seqcount_init(&dentry->d_seq); 1654 dentry->d_inode = NULL; 1655 dentry->d_parent = dentry; 1656 dentry->d_sb = sb; 1657 dentry->d_op = NULL; 1658 dentry->d_fsdata = NULL; 1659 INIT_HLIST_BL_NODE(&dentry->d_hash); 1660 INIT_LIST_HEAD(&dentry->d_lru); 1661 INIT_LIST_HEAD(&dentry->d_subdirs); 1662 INIT_HLIST_NODE(&dentry->d_u.d_alias); 1663 INIT_LIST_HEAD(&dentry->d_child); 1664 d_set_d_op(dentry, dentry->d_sb->s_d_op); 1665 1666 if (dentry->d_op && dentry->d_op->d_init) { 1667 err = dentry->d_op->d_init(dentry); 1668 if (err) { 1669 if (dname_external(dentry)) 1670 kfree(external_name(dentry)); 1671 kmem_cache_free(dentry_cache, dentry); 1672 return NULL; 1673 } 1674 } 1675 1676 if (unlikely(ext)) { 1677 pg_data_t *pgdat = page_pgdat(virt_to_page(ext)); 1678 mod_node_page_state(pgdat, NR_INDIRECTLY_RECLAIMABLE_BYTES, 1679 ksize(ext)); 1680 } 1681 1682 this_cpu_inc(nr_dentry); 1683 1684 return dentry; 1685 } 1686 1687 /** 1688 * d_alloc - allocate a dcache entry 1689 * @parent: parent of entry to allocate 1690 * @name: qstr of the name 1691 * 1692 * Allocates a dentry. It returns %NULL if there is insufficient memory 1693 * available. On a success the dentry is returned. The name passed in is 1694 * copied and the copy passed in may be reused after this call. 1695 */ 1696 struct dentry *d_alloc(struct dentry * parent, const struct qstr *name) 1697 { 1698 struct dentry *dentry = __d_alloc(parent->d_sb, name); 1699 if (!dentry) 1700 return NULL; 1701 dentry->d_flags |= DCACHE_RCUACCESS; 1702 spin_lock(&parent->d_lock); 1703 /* 1704 * don't need child lock because it is not subject 1705 * to concurrency here 1706 */ 1707 __dget_dlock(parent); 1708 dentry->d_parent = parent; 1709 list_add(&dentry->d_child, &parent->d_subdirs); 1710 spin_unlock(&parent->d_lock); 1711 1712 return dentry; 1713 } 1714 EXPORT_SYMBOL(d_alloc); 1715 1716 struct dentry *d_alloc_anon(struct super_block *sb) 1717 { 1718 return __d_alloc(sb, NULL); 1719 } 1720 EXPORT_SYMBOL(d_alloc_anon); 1721 1722 struct dentry *d_alloc_cursor(struct dentry * parent) 1723 { 1724 struct dentry *dentry = d_alloc_anon(parent->d_sb); 1725 if (dentry) { 1726 dentry->d_flags |= DCACHE_RCUACCESS | DCACHE_DENTRY_CURSOR; 1727 dentry->d_parent = dget(parent); 1728 } 1729 return dentry; 1730 } 1731 1732 /** 1733 * d_alloc_pseudo - allocate a dentry (for lookup-less filesystems) 1734 * @sb: the superblock 1735 * @name: qstr of the name 1736 * 1737 * For a filesystem that just pins its dentries in memory and never 1738 * performs lookups at all, return an unhashed IS_ROOT dentry. 1739 */ 1740 struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name) 1741 { 1742 return __d_alloc(sb, name); 1743 } 1744 EXPORT_SYMBOL(d_alloc_pseudo); 1745 1746 struct dentry *d_alloc_name(struct dentry *parent, const char *name) 1747 { 1748 struct qstr q; 1749 1750 q.name = name; 1751 q.hash_len = hashlen_string(parent, name); 1752 return d_alloc(parent, &q); 1753 } 1754 EXPORT_SYMBOL(d_alloc_name); 1755 1756 void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op) 1757 { 1758 WARN_ON_ONCE(dentry->d_op); 1759 WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH | 1760 DCACHE_OP_COMPARE | 1761 DCACHE_OP_REVALIDATE | 1762 DCACHE_OP_WEAK_REVALIDATE | 1763 DCACHE_OP_DELETE | 1764 DCACHE_OP_REAL)); 1765 dentry->d_op = op; 1766 if (!op) 1767 return; 1768 if (op->d_hash) 1769 dentry->d_flags |= DCACHE_OP_HASH; 1770 if (op->d_compare) 1771 dentry->d_flags |= DCACHE_OP_COMPARE; 1772 if (op->d_revalidate) 1773 dentry->d_flags |= DCACHE_OP_REVALIDATE; 1774 if (op->d_weak_revalidate) 1775 dentry->d_flags |= DCACHE_OP_WEAK_REVALIDATE; 1776 if (op->d_delete) 1777 dentry->d_flags |= DCACHE_OP_DELETE; 1778 if (op->d_prune) 1779 dentry->d_flags |= DCACHE_OP_PRUNE; 1780 if (op->d_real) 1781 dentry->d_flags |= DCACHE_OP_REAL; 1782 1783 } 1784 EXPORT_SYMBOL(d_set_d_op); 1785 1786 1787 /* 1788 * d_set_fallthru - Mark a dentry as falling through to a lower layer 1789 * @dentry - The dentry to mark 1790 * 1791 * Mark a dentry as falling through to the lower layer (as set with 1792 * d_pin_lower()). This flag may be recorded on the medium. 1793 */ 1794 void d_set_fallthru(struct dentry *dentry) 1795 { 1796 spin_lock(&dentry->d_lock); 1797 dentry->d_flags |= DCACHE_FALLTHRU; 1798 spin_unlock(&dentry->d_lock); 1799 } 1800 EXPORT_SYMBOL(d_set_fallthru); 1801 1802 static unsigned d_flags_for_inode(struct inode *inode) 1803 { 1804 unsigned add_flags = DCACHE_REGULAR_TYPE; 1805 1806 if (!inode) 1807 return DCACHE_MISS_TYPE; 1808 1809 if (S_ISDIR(inode->i_mode)) { 1810 add_flags = DCACHE_DIRECTORY_TYPE; 1811 if (unlikely(!(inode->i_opflags & IOP_LOOKUP))) { 1812 if (unlikely(!inode->i_op->lookup)) 1813 add_flags = DCACHE_AUTODIR_TYPE; 1814 else 1815 inode->i_opflags |= IOP_LOOKUP; 1816 } 1817 goto type_determined; 1818 } 1819 1820 if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) { 1821 if (unlikely(inode->i_op->get_link)) { 1822 add_flags = DCACHE_SYMLINK_TYPE; 1823 goto type_determined; 1824 } 1825 inode->i_opflags |= IOP_NOFOLLOW; 1826 } 1827 1828 if (unlikely(!S_ISREG(inode->i_mode))) 1829 add_flags = DCACHE_SPECIAL_TYPE; 1830 1831 type_determined: 1832 if (unlikely(IS_AUTOMOUNT(inode))) 1833 add_flags |= DCACHE_NEED_AUTOMOUNT; 1834 return add_flags; 1835 } 1836 1837 static void __d_instantiate(struct dentry *dentry, struct inode *inode) 1838 { 1839 unsigned add_flags = d_flags_for_inode(inode); 1840 WARN_ON(d_in_lookup(dentry)); 1841 1842 spin_lock(&dentry->d_lock); 1843 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry); 1844 raw_write_seqcount_begin(&dentry->d_seq); 1845 __d_set_inode_and_type(dentry, inode, add_flags); 1846 raw_write_seqcount_end(&dentry->d_seq); 1847 fsnotify_update_flags(dentry); 1848 spin_unlock(&dentry->d_lock); 1849 } 1850 1851 /** 1852 * d_instantiate - fill in inode information for a dentry 1853 * @entry: dentry to complete 1854 * @inode: inode to attach to this dentry 1855 * 1856 * Fill in inode information in the entry. 1857 * 1858 * This turns negative dentries into productive full members 1859 * of society. 1860 * 1861 * NOTE! This assumes that the inode count has been incremented 1862 * (or otherwise set) by the caller to indicate that it is now 1863 * in use by the dcache. 1864 */ 1865 1866 void d_instantiate(struct dentry *entry, struct inode * inode) 1867 { 1868 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias)); 1869 if (inode) { 1870 security_d_instantiate(entry, inode); 1871 spin_lock(&inode->i_lock); 1872 __d_instantiate(entry, inode); 1873 spin_unlock(&inode->i_lock); 1874 } 1875 } 1876 EXPORT_SYMBOL(d_instantiate); 1877 1878 /* 1879 * This should be equivalent to d_instantiate() + unlock_new_inode(), 1880 * with lockdep-related part of unlock_new_inode() done before 1881 * anything else. Use that instead of open-coding d_instantiate()/ 1882 * unlock_new_inode() combinations. 1883 */ 1884 void d_instantiate_new(struct dentry *entry, struct inode *inode) 1885 { 1886 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias)); 1887 BUG_ON(!inode); 1888 lockdep_annotate_inode_mutex_key(inode); 1889 security_d_instantiate(entry, inode); 1890 spin_lock(&inode->i_lock); 1891 __d_instantiate(entry, inode); 1892 WARN_ON(!(inode->i_state & I_NEW)); 1893 inode->i_state &= ~I_NEW & ~I_CREATING; 1894 smp_mb(); 1895 wake_up_bit(&inode->i_state, __I_NEW); 1896 spin_unlock(&inode->i_lock); 1897 } 1898 EXPORT_SYMBOL(d_instantiate_new); 1899 1900 struct dentry *d_make_root(struct inode *root_inode) 1901 { 1902 struct dentry *res = NULL; 1903 1904 if (root_inode) { 1905 res = d_alloc_anon(root_inode->i_sb); 1906 if (res) { 1907 res->d_flags |= DCACHE_RCUACCESS; 1908 d_instantiate(res, root_inode); 1909 } else { 1910 iput(root_inode); 1911 } 1912 } 1913 return res; 1914 } 1915 EXPORT_SYMBOL(d_make_root); 1916 1917 static struct dentry *__d_instantiate_anon(struct dentry *dentry, 1918 struct inode *inode, 1919 bool disconnected) 1920 { 1921 struct dentry *res; 1922 unsigned add_flags; 1923 1924 security_d_instantiate(dentry, inode); 1925 spin_lock(&inode->i_lock); 1926 res = __d_find_any_alias(inode); 1927 if (res) { 1928 spin_unlock(&inode->i_lock); 1929 dput(dentry); 1930 goto out_iput; 1931 } 1932 1933 /* attach a disconnected dentry */ 1934 add_flags = d_flags_for_inode(inode); 1935 1936 if (disconnected) 1937 add_flags |= DCACHE_DISCONNECTED; 1938 1939 spin_lock(&dentry->d_lock); 1940 __d_set_inode_and_type(dentry, inode, add_flags); 1941 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry); 1942 if (!disconnected) { 1943 hlist_bl_lock(&dentry->d_sb->s_roots); 1944 hlist_bl_add_head(&dentry->d_hash, &dentry->d_sb->s_roots); 1945 hlist_bl_unlock(&dentry->d_sb->s_roots); 1946 } 1947 spin_unlock(&dentry->d_lock); 1948 spin_unlock(&inode->i_lock); 1949 1950 return dentry; 1951 1952 out_iput: 1953 iput(inode); 1954 return res; 1955 } 1956 1957 struct dentry *d_instantiate_anon(struct dentry *dentry, struct inode *inode) 1958 { 1959 return __d_instantiate_anon(dentry, inode, true); 1960 } 1961 EXPORT_SYMBOL(d_instantiate_anon); 1962 1963 static struct dentry *__d_obtain_alias(struct inode *inode, bool disconnected) 1964 { 1965 struct dentry *tmp; 1966 struct dentry *res; 1967 1968 if (!inode) 1969 return ERR_PTR(-ESTALE); 1970 if (IS_ERR(inode)) 1971 return ERR_CAST(inode); 1972 1973 res = d_find_any_alias(inode); 1974 if (res) 1975 goto out_iput; 1976 1977 tmp = d_alloc_anon(inode->i_sb); 1978 if (!tmp) { 1979 res = ERR_PTR(-ENOMEM); 1980 goto out_iput; 1981 } 1982 1983 return __d_instantiate_anon(tmp, inode, disconnected); 1984 1985 out_iput: 1986 iput(inode); 1987 return res; 1988 } 1989 1990 /** 1991 * d_obtain_alias - find or allocate a DISCONNECTED dentry for a given inode 1992 * @inode: inode to allocate the dentry for 1993 * 1994 * Obtain a dentry for an inode resulting from NFS filehandle conversion or 1995 * similar open by handle operations. The returned dentry may be anonymous, 1996 * or may have a full name (if the inode was already in the cache). 1997 * 1998 * When called on a directory inode, we must ensure that the inode only ever 1999 * has one dentry. If a dentry is found, that is returned instead of 2000 * allocating a new one. 2001 * 2002 * On successful return, the reference to the inode has been transferred 2003 * to the dentry. In case of an error the reference on the inode is released. 2004 * To make it easier to use in export operations a %NULL or IS_ERR inode may 2005 * be passed in and the error will be propagated to the return value, 2006 * with a %NULL @inode replaced by ERR_PTR(-ESTALE). 2007 */ 2008 struct dentry *d_obtain_alias(struct inode *inode) 2009 { 2010 return __d_obtain_alias(inode, true); 2011 } 2012 EXPORT_SYMBOL(d_obtain_alias); 2013 2014 /** 2015 * d_obtain_root - find or allocate a dentry for a given inode 2016 * @inode: inode to allocate the dentry for 2017 * 2018 * Obtain an IS_ROOT dentry for the root of a filesystem. 2019 * 2020 * We must ensure that directory inodes only ever have one dentry. If a 2021 * dentry is found, that is returned instead of allocating a new one. 2022 * 2023 * On successful return, the reference to the inode has been transferred 2024 * to the dentry. In case of an error the reference on the inode is 2025 * released. A %NULL or IS_ERR inode may be passed in and will be the 2026 * error will be propagate to the return value, with a %NULL @inode 2027 * replaced by ERR_PTR(-ESTALE). 2028 */ 2029 struct dentry *d_obtain_root(struct inode *inode) 2030 { 2031 return __d_obtain_alias(inode, false); 2032 } 2033 EXPORT_SYMBOL(d_obtain_root); 2034 2035 /** 2036 * d_add_ci - lookup or allocate new dentry with case-exact name 2037 * @inode: the inode case-insensitive lookup has found 2038 * @dentry: the negative dentry that was passed to the parent's lookup func 2039 * @name: the case-exact name to be associated with the returned dentry 2040 * 2041 * This is to avoid filling the dcache with case-insensitive names to the 2042 * same inode, only the actual correct case is stored in the dcache for 2043 * case-insensitive filesystems. 2044 * 2045 * For a case-insensitive lookup match and if the the case-exact dentry 2046 * already exists in in the dcache, use it and return it. 2047 * 2048 * If no entry exists with the exact case name, allocate new dentry with 2049 * the exact case, and return the spliced entry. 2050 */ 2051 struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode, 2052 struct qstr *name) 2053 { 2054 struct dentry *found, *res; 2055 2056 /* 2057 * First check if a dentry matching the name already exists, 2058 * if not go ahead and create it now. 2059 */ 2060 found = d_hash_and_lookup(dentry->d_parent, name); 2061 if (found) { 2062 iput(inode); 2063 return found; 2064 } 2065 if (d_in_lookup(dentry)) { 2066 found = d_alloc_parallel(dentry->d_parent, name, 2067 dentry->d_wait); 2068 if (IS_ERR(found) || !d_in_lookup(found)) { 2069 iput(inode); 2070 return found; 2071 } 2072 } else { 2073 found = d_alloc(dentry->d_parent, name); 2074 if (!found) { 2075 iput(inode); 2076 return ERR_PTR(-ENOMEM); 2077 } 2078 } 2079 res = d_splice_alias(inode, found); 2080 if (res) { 2081 dput(found); 2082 return res; 2083 } 2084 return found; 2085 } 2086 EXPORT_SYMBOL(d_add_ci); 2087 2088 2089 static inline bool d_same_name(const struct dentry *dentry, 2090 const struct dentry *parent, 2091 const struct qstr *name) 2092 { 2093 if (likely(!(parent->d_flags & DCACHE_OP_COMPARE))) { 2094 if (dentry->d_name.len != name->len) 2095 return false; 2096 return dentry_cmp(dentry, name->name, name->len) == 0; 2097 } 2098 return parent->d_op->d_compare(dentry, 2099 dentry->d_name.len, dentry->d_name.name, 2100 name) == 0; 2101 } 2102 2103 /** 2104 * __d_lookup_rcu - search for a dentry (racy, store-free) 2105 * @parent: parent dentry 2106 * @name: qstr of name we wish to find 2107 * @seqp: returns d_seq value at the point where the dentry was found 2108 * Returns: dentry, or NULL 2109 * 2110 * __d_lookup_rcu is the dcache lookup function for rcu-walk name 2111 * resolution (store-free path walking) design described in 2112 * Documentation/filesystems/path-lookup.txt. 2113 * 2114 * This is not to be used outside core vfs. 2115 * 2116 * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock 2117 * held, and rcu_read_lock held. The returned dentry must not be stored into 2118 * without taking d_lock and checking d_seq sequence count against @seq 2119 * returned here. 2120 * 2121 * A refcount may be taken on the found dentry with the d_rcu_to_refcount 2122 * function. 2123 * 2124 * Alternatively, __d_lookup_rcu may be called again to look up the child of 2125 * the returned dentry, so long as its parent's seqlock is checked after the 2126 * child is looked up. Thus, an interlocking stepping of sequence lock checks 2127 * is formed, giving integrity down the path walk. 2128 * 2129 * NOTE! The caller *has* to check the resulting dentry against the sequence 2130 * number we've returned before using any of the resulting dentry state! 2131 */ 2132 struct dentry *__d_lookup_rcu(const struct dentry *parent, 2133 const struct qstr *name, 2134 unsigned *seqp) 2135 { 2136 u64 hashlen = name->hash_len; 2137 const unsigned char *str = name->name; 2138 struct hlist_bl_head *b = d_hash(hashlen_hash(hashlen)); 2139 struct hlist_bl_node *node; 2140 struct dentry *dentry; 2141 2142 /* 2143 * Note: There is significant duplication with __d_lookup_rcu which is 2144 * required to prevent single threaded performance regressions 2145 * especially on architectures where smp_rmb (in seqcounts) are costly. 2146 * Keep the two functions in sync. 2147 */ 2148 2149 /* 2150 * The hash list is protected using RCU. 2151 * 2152 * Carefully use d_seq when comparing a candidate dentry, to avoid 2153 * races with d_move(). 2154 * 2155 * It is possible that concurrent renames can mess up our list 2156 * walk here and result in missing our dentry, resulting in the 2157 * false-negative result. d_lookup() protects against concurrent 2158 * renames using rename_lock seqlock. 2159 * 2160 * See Documentation/filesystems/path-lookup.txt for more details. 2161 */ 2162 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) { 2163 unsigned seq; 2164 2165 seqretry: 2166 /* 2167 * The dentry sequence count protects us from concurrent 2168 * renames, and thus protects parent and name fields. 2169 * 2170 * The caller must perform a seqcount check in order 2171 * to do anything useful with the returned dentry. 2172 * 2173 * NOTE! We do a "raw" seqcount_begin here. That means that 2174 * we don't wait for the sequence count to stabilize if it 2175 * is in the middle of a sequence change. If we do the slow 2176 * dentry compare, we will do seqretries until it is stable, 2177 * and if we end up with a successful lookup, we actually 2178 * want to exit RCU lookup anyway. 2179 * 2180 * Note that raw_seqcount_begin still *does* smp_rmb(), so 2181 * we are still guaranteed NUL-termination of ->d_name.name. 2182 */ 2183 seq = raw_seqcount_begin(&dentry->d_seq); 2184 if (dentry->d_parent != parent) 2185 continue; 2186 if (d_unhashed(dentry)) 2187 continue; 2188 2189 if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) { 2190 int tlen; 2191 const char *tname; 2192 if (dentry->d_name.hash != hashlen_hash(hashlen)) 2193 continue; 2194 tlen = dentry->d_name.len; 2195 tname = dentry->d_name.name; 2196 /* we want a consistent (name,len) pair */ 2197 if (read_seqcount_retry(&dentry->d_seq, seq)) { 2198 cpu_relax(); 2199 goto seqretry; 2200 } 2201 if (parent->d_op->d_compare(dentry, 2202 tlen, tname, name) != 0) 2203 continue; 2204 } else { 2205 if (dentry->d_name.hash_len != hashlen) 2206 continue; 2207 if (dentry_cmp(dentry, str, hashlen_len(hashlen)) != 0) 2208 continue; 2209 } 2210 *seqp = seq; 2211 return dentry; 2212 } 2213 return NULL; 2214 } 2215 2216 /** 2217 * d_lookup - search for a dentry 2218 * @parent: parent dentry 2219 * @name: qstr of name we wish to find 2220 * Returns: dentry, or NULL 2221 * 2222 * d_lookup searches the children of the parent dentry for the name in 2223 * question. If the dentry is found its reference count is incremented and the 2224 * dentry is returned. The caller must use dput to free the entry when it has 2225 * finished using it. %NULL is returned if the dentry does not exist. 2226 */ 2227 struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name) 2228 { 2229 struct dentry *dentry; 2230 unsigned seq; 2231 2232 do { 2233 seq = read_seqbegin(&rename_lock); 2234 dentry = __d_lookup(parent, name); 2235 if (dentry) 2236 break; 2237 } while (read_seqretry(&rename_lock, seq)); 2238 return dentry; 2239 } 2240 EXPORT_SYMBOL(d_lookup); 2241 2242 /** 2243 * __d_lookup - search for a dentry (racy) 2244 * @parent: parent dentry 2245 * @name: qstr of name we wish to find 2246 * Returns: dentry, or NULL 2247 * 2248 * __d_lookup is like d_lookup, however it may (rarely) return a 2249 * false-negative result due to unrelated rename activity. 2250 * 2251 * __d_lookup is slightly faster by avoiding rename_lock read seqlock, 2252 * however it must be used carefully, eg. with a following d_lookup in 2253 * the case of failure. 2254 * 2255 * __d_lookup callers must be commented. 2256 */ 2257 struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name) 2258 { 2259 unsigned int hash = name->hash; 2260 struct hlist_bl_head *b = d_hash(hash); 2261 struct hlist_bl_node *node; 2262 struct dentry *found = NULL; 2263 struct dentry *dentry; 2264 2265 /* 2266 * Note: There is significant duplication with __d_lookup_rcu which is 2267 * required to prevent single threaded performance regressions 2268 * especially on architectures where smp_rmb (in seqcounts) are costly. 2269 * Keep the two functions in sync. 2270 */ 2271 2272 /* 2273 * The hash list is protected using RCU. 2274 * 2275 * Take d_lock when comparing a candidate dentry, to avoid races 2276 * with d_move(). 2277 * 2278 * It is possible that concurrent renames can mess up our list 2279 * walk here and result in missing our dentry, resulting in the 2280 * false-negative result. d_lookup() protects against concurrent 2281 * renames using rename_lock seqlock. 2282 * 2283 * See Documentation/filesystems/path-lookup.txt for more details. 2284 */ 2285 rcu_read_lock(); 2286 2287 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) { 2288 2289 if (dentry->d_name.hash != hash) 2290 continue; 2291 2292 spin_lock(&dentry->d_lock); 2293 if (dentry->d_parent != parent) 2294 goto next; 2295 if (d_unhashed(dentry)) 2296 goto next; 2297 2298 if (!d_same_name(dentry, parent, name)) 2299 goto next; 2300 2301 dentry->d_lockref.count++; 2302 found = dentry; 2303 spin_unlock(&dentry->d_lock); 2304 break; 2305 next: 2306 spin_unlock(&dentry->d_lock); 2307 } 2308 rcu_read_unlock(); 2309 2310 return found; 2311 } 2312 2313 /** 2314 * d_hash_and_lookup - hash the qstr then search for a dentry 2315 * @dir: Directory to search in 2316 * @name: qstr of name we wish to find 2317 * 2318 * On lookup failure NULL is returned; on bad name - ERR_PTR(-error) 2319 */ 2320 struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name) 2321 { 2322 /* 2323 * Check for a fs-specific hash function. Note that we must 2324 * calculate the standard hash first, as the d_op->d_hash() 2325 * routine may choose to leave the hash value unchanged. 2326 */ 2327 name->hash = full_name_hash(dir, name->name, name->len); 2328 if (dir->d_flags & DCACHE_OP_HASH) { 2329 int err = dir->d_op->d_hash(dir, name); 2330 if (unlikely(err < 0)) 2331 return ERR_PTR(err); 2332 } 2333 return d_lookup(dir, name); 2334 } 2335 EXPORT_SYMBOL(d_hash_and_lookup); 2336 2337 /* 2338 * When a file is deleted, we have two options: 2339 * - turn this dentry into a negative dentry 2340 * - unhash this dentry and free it. 2341 * 2342 * Usually, we want to just turn this into 2343 * a negative dentry, but if anybody else is 2344 * currently using the dentry or the inode 2345 * we can't do that and we fall back on removing 2346 * it from the hash queues and waiting for 2347 * it to be deleted later when it has no users 2348 */ 2349 2350 /** 2351 * d_delete - delete a dentry 2352 * @dentry: The dentry to delete 2353 * 2354 * Turn the dentry into a negative dentry if possible, otherwise 2355 * remove it from the hash queues so it can be deleted later 2356 */ 2357 2358 void d_delete(struct dentry * dentry) 2359 { 2360 struct inode *inode = dentry->d_inode; 2361 int isdir = d_is_dir(dentry); 2362 2363 spin_lock(&inode->i_lock); 2364 spin_lock(&dentry->d_lock); 2365 /* 2366 * Are we the only user? 2367 */ 2368 if (dentry->d_lockref.count == 1) { 2369 dentry->d_flags &= ~DCACHE_CANT_MOUNT; 2370 dentry_unlink_inode(dentry); 2371 } else { 2372 __d_drop(dentry); 2373 spin_unlock(&dentry->d_lock); 2374 spin_unlock(&inode->i_lock); 2375 } 2376 fsnotify_nameremove(dentry, isdir); 2377 } 2378 EXPORT_SYMBOL(d_delete); 2379 2380 static void __d_rehash(struct dentry *entry) 2381 { 2382 struct hlist_bl_head *b = d_hash(entry->d_name.hash); 2383 2384 hlist_bl_lock(b); 2385 hlist_bl_add_head_rcu(&entry->d_hash, b); 2386 hlist_bl_unlock(b); 2387 } 2388 2389 /** 2390 * d_rehash - add an entry back to the hash 2391 * @entry: dentry to add to the hash 2392 * 2393 * Adds a dentry to the hash according to its name. 2394 */ 2395 2396 void d_rehash(struct dentry * entry) 2397 { 2398 spin_lock(&entry->d_lock); 2399 __d_rehash(entry); 2400 spin_unlock(&entry->d_lock); 2401 } 2402 EXPORT_SYMBOL(d_rehash); 2403 2404 static inline unsigned start_dir_add(struct inode *dir) 2405 { 2406 2407 for (;;) { 2408 unsigned n = dir->i_dir_seq; 2409 if (!(n & 1) && cmpxchg(&dir->i_dir_seq, n, n + 1) == n) 2410 return n; 2411 cpu_relax(); 2412 } 2413 } 2414 2415 static inline void end_dir_add(struct inode *dir, unsigned n) 2416 { 2417 smp_store_release(&dir->i_dir_seq, n + 2); 2418 } 2419 2420 static void d_wait_lookup(struct dentry *dentry) 2421 { 2422 if (d_in_lookup(dentry)) { 2423 DECLARE_WAITQUEUE(wait, current); 2424 add_wait_queue(dentry->d_wait, &wait); 2425 do { 2426 set_current_state(TASK_UNINTERRUPTIBLE); 2427 spin_unlock(&dentry->d_lock); 2428 schedule(); 2429 spin_lock(&dentry->d_lock); 2430 } while (d_in_lookup(dentry)); 2431 } 2432 } 2433 2434 struct dentry *d_alloc_parallel(struct dentry *parent, 2435 const struct qstr *name, 2436 wait_queue_head_t *wq) 2437 { 2438 unsigned int hash = name->hash; 2439 struct hlist_bl_head *b = in_lookup_hash(parent, hash); 2440 struct hlist_bl_node *node; 2441 struct dentry *new = d_alloc(parent, name); 2442 struct dentry *dentry; 2443 unsigned seq, r_seq, d_seq; 2444 2445 if (unlikely(!new)) 2446 return ERR_PTR(-ENOMEM); 2447 2448 retry: 2449 rcu_read_lock(); 2450 seq = smp_load_acquire(&parent->d_inode->i_dir_seq); 2451 r_seq = read_seqbegin(&rename_lock); 2452 dentry = __d_lookup_rcu(parent, name, &d_seq); 2453 if (unlikely(dentry)) { 2454 if (!lockref_get_not_dead(&dentry->d_lockref)) { 2455 rcu_read_unlock(); 2456 goto retry; 2457 } 2458 if (read_seqcount_retry(&dentry->d_seq, d_seq)) { 2459 rcu_read_unlock(); 2460 dput(dentry); 2461 goto retry; 2462 } 2463 rcu_read_unlock(); 2464 dput(new); 2465 return dentry; 2466 } 2467 if (unlikely(read_seqretry(&rename_lock, r_seq))) { 2468 rcu_read_unlock(); 2469 goto retry; 2470 } 2471 2472 if (unlikely(seq & 1)) { 2473 rcu_read_unlock(); 2474 goto retry; 2475 } 2476 2477 hlist_bl_lock(b); 2478 if (unlikely(READ_ONCE(parent->d_inode->i_dir_seq) != seq)) { 2479 hlist_bl_unlock(b); 2480 rcu_read_unlock(); 2481 goto retry; 2482 } 2483 /* 2484 * No changes for the parent since the beginning of d_lookup(). 2485 * Since all removals from the chain happen with hlist_bl_lock(), 2486 * any potential in-lookup matches are going to stay here until 2487 * we unlock the chain. All fields are stable in everything 2488 * we encounter. 2489 */ 2490 hlist_bl_for_each_entry(dentry, node, b, d_u.d_in_lookup_hash) { 2491 if (dentry->d_name.hash != hash) 2492 continue; 2493 if (dentry->d_parent != parent) 2494 continue; 2495 if (!d_same_name(dentry, parent, name)) 2496 continue; 2497 hlist_bl_unlock(b); 2498 /* now we can try to grab a reference */ 2499 if (!lockref_get_not_dead(&dentry->d_lockref)) { 2500 rcu_read_unlock(); 2501 goto retry; 2502 } 2503 2504 rcu_read_unlock(); 2505 /* 2506 * somebody is likely to be still doing lookup for it; 2507 * wait for them to finish 2508 */ 2509 spin_lock(&dentry->d_lock); 2510 d_wait_lookup(dentry); 2511 /* 2512 * it's not in-lookup anymore; in principle we should repeat 2513 * everything from dcache lookup, but it's likely to be what 2514 * d_lookup() would've found anyway. If it is, just return it; 2515 * otherwise we really have to repeat the whole thing. 2516 */ 2517 if (unlikely(dentry->d_name.hash != hash)) 2518 goto mismatch; 2519 if (unlikely(dentry->d_parent != parent)) 2520 goto mismatch; 2521 if (unlikely(d_unhashed(dentry))) 2522 goto mismatch; 2523 if (unlikely(!d_same_name(dentry, parent, name))) 2524 goto mismatch; 2525 /* OK, it *is* a hashed match; return it */ 2526 spin_unlock(&dentry->d_lock); 2527 dput(new); 2528 return dentry; 2529 } 2530 rcu_read_unlock(); 2531 /* we can't take ->d_lock here; it's OK, though. */ 2532 new->d_flags |= DCACHE_PAR_LOOKUP; 2533 new->d_wait = wq; 2534 hlist_bl_add_head_rcu(&new->d_u.d_in_lookup_hash, b); 2535 hlist_bl_unlock(b); 2536 return new; 2537 mismatch: 2538 spin_unlock(&dentry->d_lock); 2539 dput(dentry); 2540 goto retry; 2541 } 2542 EXPORT_SYMBOL(d_alloc_parallel); 2543 2544 void __d_lookup_done(struct dentry *dentry) 2545 { 2546 struct hlist_bl_head *b = in_lookup_hash(dentry->d_parent, 2547 dentry->d_name.hash); 2548 hlist_bl_lock(b); 2549 dentry->d_flags &= ~DCACHE_PAR_LOOKUP; 2550 __hlist_bl_del(&dentry->d_u.d_in_lookup_hash); 2551 wake_up_all(dentry->d_wait); 2552 dentry->d_wait = NULL; 2553 hlist_bl_unlock(b); 2554 INIT_HLIST_NODE(&dentry->d_u.d_alias); 2555 INIT_LIST_HEAD(&dentry->d_lru); 2556 } 2557 EXPORT_SYMBOL(__d_lookup_done); 2558 2559 /* inode->i_lock held if inode is non-NULL */ 2560 2561 static inline void __d_add(struct dentry *dentry, struct inode *inode) 2562 { 2563 struct inode *dir = NULL; 2564 unsigned n; 2565 spin_lock(&dentry->d_lock); 2566 if (unlikely(d_in_lookup(dentry))) { 2567 dir = dentry->d_parent->d_inode; 2568 n = start_dir_add(dir); 2569 __d_lookup_done(dentry); 2570 } 2571 if (inode) { 2572 unsigned add_flags = d_flags_for_inode(inode); 2573 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry); 2574 raw_write_seqcount_begin(&dentry->d_seq); 2575 __d_set_inode_and_type(dentry, inode, add_flags); 2576 raw_write_seqcount_end(&dentry->d_seq); 2577 fsnotify_update_flags(dentry); 2578 } 2579 __d_rehash(dentry); 2580 if (dir) 2581 end_dir_add(dir, n); 2582 spin_unlock(&dentry->d_lock); 2583 if (inode) 2584 spin_unlock(&inode->i_lock); 2585 } 2586 2587 /** 2588 * d_add - add dentry to hash queues 2589 * @entry: dentry to add 2590 * @inode: The inode to attach to this dentry 2591 * 2592 * This adds the entry to the hash queues and initializes @inode. 2593 * The entry was actually filled in earlier during d_alloc(). 2594 */ 2595 2596 void d_add(struct dentry *entry, struct inode *inode) 2597 { 2598 if (inode) { 2599 security_d_instantiate(entry, inode); 2600 spin_lock(&inode->i_lock); 2601 } 2602 __d_add(entry, inode); 2603 } 2604 EXPORT_SYMBOL(d_add); 2605 2606 /** 2607 * d_exact_alias - find and hash an exact unhashed alias 2608 * @entry: dentry to add 2609 * @inode: The inode to go with this dentry 2610 * 2611 * If an unhashed dentry with the same name/parent and desired 2612 * inode already exists, hash and return it. Otherwise, return 2613 * NULL. 2614 * 2615 * Parent directory should be locked. 2616 */ 2617 struct dentry *d_exact_alias(struct dentry *entry, struct inode *inode) 2618 { 2619 struct dentry *alias; 2620 unsigned int hash = entry->d_name.hash; 2621 2622 spin_lock(&inode->i_lock); 2623 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) { 2624 /* 2625 * Don't need alias->d_lock here, because aliases with 2626 * d_parent == entry->d_parent are not subject to name or 2627 * parent changes, because the parent inode i_mutex is held. 2628 */ 2629 if (alias->d_name.hash != hash) 2630 continue; 2631 if (alias->d_parent != entry->d_parent) 2632 continue; 2633 if (!d_same_name(alias, entry->d_parent, &entry->d_name)) 2634 continue; 2635 spin_lock(&alias->d_lock); 2636 if (!d_unhashed(alias)) { 2637 spin_unlock(&alias->d_lock); 2638 alias = NULL; 2639 } else { 2640 __dget_dlock(alias); 2641 __d_rehash(alias); 2642 spin_unlock(&alias->d_lock); 2643 } 2644 spin_unlock(&inode->i_lock); 2645 return alias; 2646 } 2647 spin_unlock(&inode->i_lock); 2648 return NULL; 2649 } 2650 EXPORT_SYMBOL(d_exact_alias); 2651 2652 static void swap_names(struct dentry *dentry, struct dentry *target) 2653 { 2654 if (unlikely(dname_external(target))) { 2655 if (unlikely(dname_external(dentry))) { 2656 /* 2657 * Both external: swap the pointers 2658 */ 2659 swap(target->d_name.name, dentry->d_name.name); 2660 } else { 2661 /* 2662 * dentry:internal, target:external. Steal target's 2663 * storage and make target internal. 2664 */ 2665 memcpy(target->d_iname, dentry->d_name.name, 2666 dentry->d_name.len + 1); 2667 dentry->d_name.name = target->d_name.name; 2668 target->d_name.name = target->d_iname; 2669 } 2670 } else { 2671 if (unlikely(dname_external(dentry))) { 2672 /* 2673 * dentry:external, target:internal. Give dentry's 2674 * storage to target and make dentry internal 2675 */ 2676 memcpy(dentry->d_iname, target->d_name.name, 2677 target->d_name.len + 1); 2678 target->d_name.name = dentry->d_name.name; 2679 dentry->d_name.name = dentry->d_iname; 2680 } else { 2681 /* 2682 * Both are internal. 2683 */ 2684 unsigned int i; 2685 BUILD_BUG_ON(!IS_ALIGNED(DNAME_INLINE_LEN, sizeof(long))); 2686 for (i = 0; i < DNAME_INLINE_LEN / sizeof(long); i++) { 2687 swap(((long *) &dentry->d_iname)[i], 2688 ((long *) &target->d_iname)[i]); 2689 } 2690 } 2691 } 2692 swap(dentry->d_name.hash_len, target->d_name.hash_len); 2693 } 2694 2695 static void copy_name(struct dentry *dentry, struct dentry *target) 2696 { 2697 struct external_name *old_name = NULL; 2698 if (unlikely(dname_external(dentry))) 2699 old_name = external_name(dentry); 2700 if (unlikely(dname_external(target))) { 2701 atomic_inc(&external_name(target)->u.count); 2702 dentry->d_name = target->d_name; 2703 } else { 2704 memcpy(dentry->d_iname, target->d_name.name, 2705 target->d_name.len + 1); 2706 dentry->d_name.name = dentry->d_iname; 2707 dentry->d_name.hash_len = target->d_name.hash_len; 2708 } 2709 if (old_name && likely(atomic_dec_and_test(&old_name->u.count))) 2710 call_rcu(&old_name->u.head, __d_free_external_name); 2711 } 2712 2713 /* 2714 * __d_move - move a dentry 2715 * @dentry: entry to move 2716 * @target: new dentry 2717 * @exchange: exchange the two dentries 2718 * 2719 * Update the dcache to reflect the move of a file name. Negative 2720 * dcache entries should not be moved in this way. Caller must hold 2721 * rename_lock, the i_mutex of the source and target directories, 2722 * and the sb->s_vfs_rename_mutex if they differ. See lock_rename(). 2723 */ 2724 static void __d_move(struct dentry *dentry, struct dentry *target, 2725 bool exchange) 2726 { 2727 struct dentry *old_parent, *p; 2728 struct inode *dir = NULL; 2729 unsigned n; 2730 2731 WARN_ON(!dentry->d_inode); 2732 if (WARN_ON(dentry == target)) 2733 return; 2734 2735 BUG_ON(d_ancestor(target, dentry)); 2736 old_parent = dentry->d_parent; 2737 p = d_ancestor(old_parent, target); 2738 if (IS_ROOT(dentry)) { 2739 BUG_ON(p); 2740 spin_lock(&target->d_parent->d_lock); 2741 } else if (!p) { 2742 /* target is not a descendent of dentry->d_parent */ 2743 spin_lock(&target->d_parent->d_lock); 2744 spin_lock_nested(&old_parent->d_lock, DENTRY_D_LOCK_NESTED); 2745 } else { 2746 BUG_ON(p == dentry); 2747 spin_lock(&old_parent->d_lock); 2748 if (p != target) 2749 spin_lock_nested(&target->d_parent->d_lock, 2750 DENTRY_D_LOCK_NESTED); 2751 } 2752 spin_lock_nested(&dentry->d_lock, 2); 2753 spin_lock_nested(&target->d_lock, 3); 2754 2755 if (unlikely(d_in_lookup(target))) { 2756 dir = target->d_parent->d_inode; 2757 n = start_dir_add(dir); 2758 __d_lookup_done(target); 2759 } 2760 2761 write_seqcount_begin(&dentry->d_seq); 2762 write_seqcount_begin_nested(&target->d_seq, DENTRY_D_LOCK_NESTED); 2763 2764 /* unhash both */ 2765 if (!d_unhashed(dentry)) 2766 ___d_drop(dentry); 2767 if (!d_unhashed(target)) 2768 ___d_drop(target); 2769 2770 /* ... and switch them in the tree */ 2771 dentry->d_parent = target->d_parent; 2772 if (!exchange) { 2773 copy_name(dentry, target); 2774 target->d_hash.pprev = NULL; 2775 dentry->d_parent->d_lockref.count++; 2776 if (dentry == old_parent) 2777 dentry->d_flags |= DCACHE_RCUACCESS; 2778 else 2779 WARN_ON(!--old_parent->d_lockref.count); 2780 } else { 2781 target->d_parent = old_parent; 2782 swap_names(dentry, target); 2783 list_move(&target->d_child, &target->d_parent->d_subdirs); 2784 __d_rehash(target); 2785 fsnotify_update_flags(target); 2786 } 2787 list_move(&dentry->d_child, &dentry->d_parent->d_subdirs); 2788 __d_rehash(dentry); 2789 fsnotify_update_flags(dentry); 2790 2791 write_seqcount_end(&target->d_seq); 2792 write_seqcount_end(&dentry->d_seq); 2793 2794 if (dir) 2795 end_dir_add(dir, n); 2796 2797 if (dentry->d_parent != old_parent) 2798 spin_unlock(&dentry->d_parent->d_lock); 2799 if (dentry != old_parent) 2800 spin_unlock(&old_parent->d_lock); 2801 spin_unlock(&target->d_lock); 2802 spin_unlock(&dentry->d_lock); 2803 } 2804 2805 /* 2806 * d_move - move a dentry 2807 * @dentry: entry to move 2808 * @target: new dentry 2809 * 2810 * Update the dcache to reflect the move of a file name. Negative 2811 * dcache entries should not be moved in this way. See the locking 2812 * requirements for __d_move. 2813 */ 2814 void d_move(struct dentry *dentry, struct dentry *target) 2815 { 2816 write_seqlock(&rename_lock); 2817 __d_move(dentry, target, false); 2818 write_sequnlock(&rename_lock); 2819 } 2820 EXPORT_SYMBOL(d_move); 2821 2822 /* 2823 * d_exchange - exchange two dentries 2824 * @dentry1: first dentry 2825 * @dentry2: second dentry 2826 */ 2827 void d_exchange(struct dentry *dentry1, struct dentry *dentry2) 2828 { 2829 write_seqlock(&rename_lock); 2830 2831 WARN_ON(!dentry1->d_inode); 2832 WARN_ON(!dentry2->d_inode); 2833 WARN_ON(IS_ROOT(dentry1)); 2834 WARN_ON(IS_ROOT(dentry2)); 2835 2836 __d_move(dentry1, dentry2, true); 2837 2838 write_sequnlock(&rename_lock); 2839 } 2840 2841 /** 2842 * d_ancestor - search for an ancestor 2843 * @p1: ancestor dentry 2844 * @p2: child dentry 2845 * 2846 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is 2847 * an ancestor of p2, else NULL. 2848 */ 2849 struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2) 2850 { 2851 struct dentry *p; 2852 2853 for (p = p2; !IS_ROOT(p); p = p->d_parent) { 2854 if (p->d_parent == p1) 2855 return p; 2856 } 2857 return NULL; 2858 } 2859 2860 /* 2861 * This helper attempts to cope with remotely renamed directories 2862 * 2863 * It assumes that the caller is already holding 2864 * dentry->d_parent->d_inode->i_mutex, and rename_lock 2865 * 2866 * Note: If ever the locking in lock_rename() changes, then please 2867 * remember to update this too... 2868 */ 2869 static int __d_unalias(struct inode *inode, 2870 struct dentry *dentry, struct dentry *alias) 2871 { 2872 struct mutex *m1 = NULL; 2873 struct rw_semaphore *m2 = NULL; 2874 int ret = -ESTALE; 2875 2876 /* If alias and dentry share a parent, then no extra locks required */ 2877 if (alias->d_parent == dentry->d_parent) 2878 goto out_unalias; 2879 2880 /* See lock_rename() */ 2881 if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex)) 2882 goto out_err; 2883 m1 = &dentry->d_sb->s_vfs_rename_mutex; 2884 if (!inode_trylock_shared(alias->d_parent->d_inode)) 2885 goto out_err; 2886 m2 = &alias->d_parent->d_inode->i_rwsem; 2887 out_unalias: 2888 __d_move(alias, dentry, false); 2889 ret = 0; 2890 out_err: 2891 if (m2) 2892 up_read(m2); 2893 if (m1) 2894 mutex_unlock(m1); 2895 return ret; 2896 } 2897 2898 /** 2899 * d_splice_alias - splice a disconnected dentry into the tree if one exists 2900 * @inode: the inode which may have a disconnected dentry 2901 * @dentry: a negative dentry which we want to point to the inode. 2902 * 2903 * If inode is a directory and has an IS_ROOT alias, then d_move that in 2904 * place of the given dentry and return it, else simply d_add the inode 2905 * to the dentry and return NULL. 2906 * 2907 * If a non-IS_ROOT directory is found, the filesystem is corrupt, and 2908 * we should error out: directories can't have multiple aliases. 2909 * 2910 * This is needed in the lookup routine of any filesystem that is exportable 2911 * (via knfsd) so that we can build dcache paths to directories effectively. 2912 * 2913 * If a dentry was found and moved, then it is returned. Otherwise NULL 2914 * is returned. This matches the expected return value of ->lookup. 2915 * 2916 * Cluster filesystems may call this function with a negative, hashed dentry. 2917 * In that case, we know that the inode will be a regular file, and also this 2918 * will only occur during atomic_open. So we need to check for the dentry 2919 * being already hashed only in the final case. 2920 */ 2921 struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry) 2922 { 2923 if (IS_ERR(inode)) 2924 return ERR_CAST(inode); 2925 2926 BUG_ON(!d_unhashed(dentry)); 2927 2928 if (!inode) 2929 goto out; 2930 2931 security_d_instantiate(dentry, inode); 2932 spin_lock(&inode->i_lock); 2933 if (S_ISDIR(inode->i_mode)) { 2934 struct dentry *new = __d_find_any_alias(inode); 2935 if (unlikely(new)) { 2936 /* The reference to new ensures it remains an alias */ 2937 spin_unlock(&inode->i_lock); 2938 write_seqlock(&rename_lock); 2939 if (unlikely(d_ancestor(new, dentry))) { 2940 write_sequnlock(&rename_lock); 2941 dput(new); 2942 new = ERR_PTR(-ELOOP); 2943 pr_warn_ratelimited( 2944 "VFS: Lookup of '%s' in %s %s" 2945 " would have caused loop\n", 2946 dentry->d_name.name, 2947 inode->i_sb->s_type->name, 2948 inode->i_sb->s_id); 2949 } else if (!IS_ROOT(new)) { 2950 struct dentry *old_parent = dget(new->d_parent); 2951 int err = __d_unalias(inode, dentry, new); 2952 write_sequnlock(&rename_lock); 2953 if (err) { 2954 dput(new); 2955 new = ERR_PTR(err); 2956 } 2957 dput(old_parent); 2958 } else { 2959 __d_move(new, dentry, false); 2960 write_sequnlock(&rename_lock); 2961 } 2962 iput(inode); 2963 return new; 2964 } 2965 } 2966 out: 2967 __d_add(dentry, inode); 2968 return NULL; 2969 } 2970 EXPORT_SYMBOL(d_splice_alias); 2971 2972 /* 2973 * Test whether new_dentry is a subdirectory of old_dentry. 2974 * 2975 * Trivially implemented using the dcache structure 2976 */ 2977 2978 /** 2979 * is_subdir - is new dentry a subdirectory of old_dentry 2980 * @new_dentry: new dentry 2981 * @old_dentry: old dentry 2982 * 2983 * Returns true if new_dentry is a subdirectory of the parent (at any depth). 2984 * Returns false otherwise. 2985 * Caller must ensure that "new_dentry" is pinned before calling is_subdir() 2986 */ 2987 2988 bool is_subdir(struct dentry *new_dentry, struct dentry *old_dentry) 2989 { 2990 bool result; 2991 unsigned seq; 2992 2993 if (new_dentry == old_dentry) 2994 return true; 2995 2996 do { 2997 /* for restarting inner loop in case of seq retry */ 2998 seq = read_seqbegin(&rename_lock); 2999 /* 3000 * Need rcu_readlock to protect against the d_parent trashing 3001 * due to d_move 3002 */ 3003 rcu_read_lock(); 3004 if (d_ancestor(old_dentry, new_dentry)) 3005 result = true; 3006 else 3007 result = false; 3008 rcu_read_unlock(); 3009 } while (read_seqretry(&rename_lock, seq)); 3010 3011 return result; 3012 } 3013 EXPORT_SYMBOL(is_subdir); 3014 3015 static enum d_walk_ret d_genocide_kill(void *data, struct dentry *dentry) 3016 { 3017 struct dentry *root = data; 3018 if (dentry != root) { 3019 if (d_unhashed(dentry) || !dentry->d_inode) 3020 return D_WALK_SKIP; 3021 3022 if (!(dentry->d_flags & DCACHE_GENOCIDE)) { 3023 dentry->d_flags |= DCACHE_GENOCIDE; 3024 dentry->d_lockref.count--; 3025 } 3026 } 3027 return D_WALK_CONTINUE; 3028 } 3029 3030 void d_genocide(struct dentry *parent) 3031 { 3032 d_walk(parent, parent, d_genocide_kill); 3033 } 3034 3035 EXPORT_SYMBOL(d_genocide); 3036 3037 void d_tmpfile(struct dentry *dentry, struct inode *inode) 3038 { 3039 inode_dec_link_count(inode); 3040 BUG_ON(dentry->d_name.name != dentry->d_iname || 3041 !hlist_unhashed(&dentry->d_u.d_alias) || 3042 !d_unlinked(dentry)); 3043 spin_lock(&dentry->d_parent->d_lock); 3044 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED); 3045 dentry->d_name.len = sprintf(dentry->d_iname, "#%llu", 3046 (unsigned long long)inode->i_ino); 3047 spin_unlock(&dentry->d_lock); 3048 spin_unlock(&dentry->d_parent->d_lock); 3049 d_instantiate(dentry, inode); 3050 } 3051 EXPORT_SYMBOL(d_tmpfile); 3052 3053 static __initdata unsigned long dhash_entries; 3054 static int __init set_dhash_entries(char *str) 3055 { 3056 if (!str) 3057 return 0; 3058 dhash_entries = simple_strtoul(str, &str, 0); 3059 return 1; 3060 } 3061 __setup("dhash_entries=", set_dhash_entries); 3062 3063 static void __init dcache_init_early(void) 3064 { 3065 /* If hashes are distributed across NUMA nodes, defer 3066 * hash allocation until vmalloc space is available. 3067 */ 3068 if (hashdist) 3069 return; 3070 3071 dentry_hashtable = 3072 alloc_large_system_hash("Dentry cache", 3073 sizeof(struct hlist_bl_head), 3074 dhash_entries, 3075 13, 3076 HASH_EARLY | HASH_ZERO, 3077 &d_hash_shift, 3078 NULL, 3079 0, 3080 0); 3081 d_hash_shift = 32 - d_hash_shift; 3082 } 3083 3084 static void __init dcache_init(void) 3085 { 3086 /* 3087 * A constructor could be added for stable state like the lists, 3088 * but it is probably not worth it because of the cache nature 3089 * of the dcache. 3090 */ 3091 dentry_cache = KMEM_CACHE_USERCOPY(dentry, 3092 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD|SLAB_ACCOUNT, 3093 d_iname); 3094 3095 /* Hash may have been set up in dcache_init_early */ 3096 if (!hashdist) 3097 return; 3098 3099 dentry_hashtable = 3100 alloc_large_system_hash("Dentry cache", 3101 sizeof(struct hlist_bl_head), 3102 dhash_entries, 3103 13, 3104 HASH_ZERO, 3105 &d_hash_shift, 3106 NULL, 3107 0, 3108 0); 3109 d_hash_shift = 32 - d_hash_shift; 3110 } 3111 3112 /* SLAB cache for __getname() consumers */ 3113 struct kmem_cache *names_cachep __read_mostly; 3114 EXPORT_SYMBOL(names_cachep); 3115 3116 void __init vfs_caches_init_early(void) 3117 { 3118 int i; 3119 3120 for (i = 0; i < ARRAY_SIZE(in_lookup_hashtable); i++) 3121 INIT_HLIST_BL_HEAD(&in_lookup_hashtable[i]); 3122 3123 dcache_init_early(); 3124 inode_init_early(); 3125 } 3126 3127 void __init vfs_caches_init(void) 3128 { 3129 names_cachep = kmem_cache_create_usercopy("names_cache", PATH_MAX, 0, 3130 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 0, PATH_MAX, NULL); 3131 3132 dcache_init(); 3133 inode_init(); 3134 files_init(); 3135 files_maxfiles_init(); 3136 mnt_init(); 3137 bdev_cache_init(); 3138 chrdev_init(); 3139 } 3140