1 /* 2 * fs/dcache.c 3 * 4 * Complete reimplementation 5 * (C) 1997 Thomas Schoebel-Theuer, 6 * with heavy changes by Linus Torvalds 7 */ 8 9 /* 10 * Notes on the allocation strategy: 11 * 12 * The dcache is a master of the icache - whenever a dcache entry 13 * exists, the inode will always exist. "iput()" is done either when 14 * the dcache entry is deleted or garbage collected. 15 */ 16 17 #include <linux/syscalls.h> 18 #include <linux/string.h> 19 #include <linux/mm.h> 20 #include <linux/fs.h> 21 #include <linux/fsnotify.h> 22 #include <linux/slab.h> 23 #include <linux/init.h> 24 #include <linux/hash.h> 25 #include <linux/cache.h> 26 #include <linux/export.h> 27 #include <linux/mount.h> 28 #include <linux/file.h> 29 #include <asm/uaccess.h> 30 #include <linux/security.h> 31 #include <linux/seqlock.h> 32 #include <linux/swap.h> 33 #include <linux/bootmem.h> 34 #include <linux/fs_struct.h> 35 #include <linux/hardirq.h> 36 #include <linux/bit_spinlock.h> 37 #include <linux/rculist_bl.h> 38 #include <linux/prefetch.h> 39 #include <linux/ratelimit.h> 40 #include "internal.h" 41 #include "mount.h" 42 43 /* 44 * Usage: 45 * dcache->d_inode->i_lock protects: 46 * - i_dentry, d_alias, d_inode of aliases 47 * dcache_hash_bucket lock protects: 48 * - the dcache hash table 49 * s_anon bl list spinlock protects: 50 * - the s_anon list (see __d_drop) 51 * dcache_lru_lock protects: 52 * - the dcache lru lists and counters 53 * d_lock protects: 54 * - d_flags 55 * - d_name 56 * - d_lru 57 * - d_count 58 * - d_unhashed() 59 * - d_parent and d_subdirs 60 * - childrens' d_child and d_parent 61 * - d_alias, d_inode 62 * 63 * Ordering: 64 * dentry->d_inode->i_lock 65 * dentry->d_lock 66 * dcache_lru_lock 67 * dcache_hash_bucket lock 68 * s_anon lock 69 * 70 * If there is an ancestor relationship: 71 * dentry->d_parent->...->d_parent->d_lock 72 * ... 73 * dentry->d_parent->d_lock 74 * dentry->d_lock 75 * 76 * If no ancestor relationship: 77 * if (dentry1 < dentry2) 78 * dentry1->d_lock 79 * dentry2->d_lock 80 */ 81 int sysctl_vfs_cache_pressure __read_mostly = 100; 82 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure); 83 84 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(dcache_lru_lock); 85 __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock); 86 87 EXPORT_SYMBOL(rename_lock); 88 89 static struct kmem_cache *dentry_cache __read_mostly; 90 91 /* 92 * This is the single most critical data structure when it comes 93 * to the dcache: the hashtable for lookups. Somebody should try 94 * to make this good - I've just made it work. 95 * 96 * This hash-function tries to avoid losing too many bits of hash 97 * information, yet avoid using a prime hash-size or similar. 98 */ 99 #define D_HASHBITS d_hash_shift 100 #define D_HASHMASK d_hash_mask 101 102 static unsigned int d_hash_mask __read_mostly; 103 static unsigned int d_hash_shift __read_mostly; 104 105 static struct hlist_bl_head *dentry_hashtable __read_mostly; 106 107 static inline struct hlist_bl_head *d_hash(const struct dentry *parent, 108 unsigned int hash) 109 { 110 hash += (unsigned long) parent / L1_CACHE_BYTES; 111 hash = hash + (hash >> D_HASHBITS); 112 return dentry_hashtable + (hash & D_HASHMASK); 113 } 114 115 /* Statistics gathering. */ 116 struct dentry_stat_t dentry_stat = { 117 .age_limit = 45, 118 }; 119 120 static DEFINE_PER_CPU(unsigned int, nr_dentry); 121 122 #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS) 123 static int get_nr_dentry(void) 124 { 125 int i; 126 int sum = 0; 127 for_each_possible_cpu(i) 128 sum += per_cpu(nr_dentry, i); 129 return sum < 0 ? 0 : sum; 130 } 131 132 int proc_nr_dentry(ctl_table *table, int write, void __user *buffer, 133 size_t *lenp, loff_t *ppos) 134 { 135 dentry_stat.nr_dentry = get_nr_dentry(); 136 return proc_dointvec(table, write, buffer, lenp, ppos); 137 } 138 #endif 139 140 /* 141 * Compare 2 name strings, return 0 if they match, otherwise non-zero. 142 * The strings are both count bytes long, and count is non-zero. 143 */ 144 #ifdef CONFIG_DCACHE_WORD_ACCESS 145 146 #include <asm/word-at-a-time.h> 147 /* 148 * NOTE! 'cs' and 'scount' come from a dentry, so it has a 149 * aligned allocation for this particular component. We don't 150 * strictly need the load_unaligned_zeropad() safety, but it 151 * doesn't hurt either. 152 * 153 * In contrast, 'ct' and 'tcount' can be from a pathname, and do 154 * need the careful unaligned handling. 155 */ 156 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount) 157 { 158 unsigned long a,b,mask; 159 160 for (;;) { 161 a = *(unsigned long *)cs; 162 b = load_unaligned_zeropad(ct); 163 if (tcount < sizeof(unsigned long)) 164 break; 165 if (unlikely(a != b)) 166 return 1; 167 cs += sizeof(unsigned long); 168 ct += sizeof(unsigned long); 169 tcount -= sizeof(unsigned long); 170 if (!tcount) 171 return 0; 172 } 173 mask = ~(~0ul << tcount*8); 174 return unlikely(!!((a ^ b) & mask)); 175 } 176 177 #else 178 179 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount) 180 { 181 do { 182 if (*cs != *ct) 183 return 1; 184 cs++; 185 ct++; 186 tcount--; 187 } while (tcount); 188 return 0; 189 } 190 191 #endif 192 193 static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount) 194 { 195 const unsigned char *cs; 196 /* 197 * Be careful about RCU walk racing with rename: 198 * use ACCESS_ONCE to fetch the name pointer. 199 * 200 * NOTE! Even if a rename will mean that the length 201 * was not loaded atomically, we don't care. The 202 * RCU walk will check the sequence count eventually, 203 * and catch it. And we won't overrun the buffer, 204 * because we're reading the name pointer atomically, 205 * and a dentry name is guaranteed to be properly 206 * terminated with a NUL byte. 207 * 208 * End result: even if 'len' is wrong, we'll exit 209 * early because the data cannot match (there can 210 * be no NUL in the ct/tcount data) 211 */ 212 cs = ACCESS_ONCE(dentry->d_name.name); 213 smp_read_barrier_depends(); 214 return dentry_string_cmp(cs, ct, tcount); 215 } 216 217 static void __d_free(struct rcu_head *head) 218 { 219 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu); 220 221 WARN_ON(!hlist_unhashed(&dentry->d_alias)); 222 if (dname_external(dentry)) 223 kfree(dentry->d_name.name); 224 kmem_cache_free(dentry_cache, dentry); 225 } 226 227 /* 228 * no locks, please. 229 */ 230 static void d_free(struct dentry *dentry) 231 { 232 BUG_ON(dentry->d_count); 233 this_cpu_dec(nr_dentry); 234 if (dentry->d_op && dentry->d_op->d_release) 235 dentry->d_op->d_release(dentry); 236 237 /* if dentry was never visible to RCU, immediate free is OK */ 238 if (!(dentry->d_flags & DCACHE_RCUACCESS)) 239 __d_free(&dentry->d_u.d_rcu); 240 else 241 call_rcu(&dentry->d_u.d_rcu, __d_free); 242 } 243 244 /** 245 * dentry_rcuwalk_barrier - invalidate in-progress rcu-walk lookups 246 * @dentry: the target dentry 247 * After this call, in-progress rcu-walk path lookup will fail. This 248 * should be called after unhashing, and after changing d_inode (if 249 * the dentry has not already been unhashed). 250 */ 251 static inline void dentry_rcuwalk_barrier(struct dentry *dentry) 252 { 253 assert_spin_locked(&dentry->d_lock); 254 /* Go through a barrier */ 255 write_seqcount_barrier(&dentry->d_seq); 256 } 257 258 /* 259 * Release the dentry's inode, using the filesystem 260 * d_iput() operation if defined. Dentry has no refcount 261 * and is unhashed. 262 */ 263 static void dentry_iput(struct dentry * dentry) 264 __releases(dentry->d_lock) 265 __releases(dentry->d_inode->i_lock) 266 { 267 struct inode *inode = dentry->d_inode; 268 if (inode) { 269 dentry->d_inode = NULL; 270 hlist_del_init(&dentry->d_alias); 271 spin_unlock(&dentry->d_lock); 272 spin_unlock(&inode->i_lock); 273 if (!inode->i_nlink) 274 fsnotify_inoderemove(inode); 275 if (dentry->d_op && dentry->d_op->d_iput) 276 dentry->d_op->d_iput(dentry, inode); 277 else 278 iput(inode); 279 } else { 280 spin_unlock(&dentry->d_lock); 281 } 282 } 283 284 /* 285 * Release the dentry's inode, using the filesystem 286 * d_iput() operation if defined. dentry remains in-use. 287 */ 288 static void dentry_unlink_inode(struct dentry * dentry) 289 __releases(dentry->d_lock) 290 __releases(dentry->d_inode->i_lock) 291 { 292 struct inode *inode = dentry->d_inode; 293 dentry->d_inode = NULL; 294 hlist_del_init(&dentry->d_alias); 295 dentry_rcuwalk_barrier(dentry); 296 spin_unlock(&dentry->d_lock); 297 spin_unlock(&inode->i_lock); 298 if (!inode->i_nlink) 299 fsnotify_inoderemove(inode); 300 if (dentry->d_op && dentry->d_op->d_iput) 301 dentry->d_op->d_iput(dentry, inode); 302 else 303 iput(inode); 304 } 305 306 /* 307 * dentry_lru_(add|del|prune|move_tail) must be called with d_lock held. 308 */ 309 static void dentry_lru_add(struct dentry *dentry) 310 { 311 if (list_empty(&dentry->d_lru)) { 312 spin_lock(&dcache_lru_lock); 313 list_add(&dentry->d_lru, &dentry->d_sb->s_dentry_lru); 314 dentry->d_sb->s_nr_dentry_unused++; 315 dentry_stat.nr_unused++; 316 spin_unlock(&dcache_lru_lock); 317 } 318 } 319 320 static void __dentry_lru_del(struct dentry *dentry) 321 { 322 list_del_init(&dentry->d_lru); 323 dentry->d_flags &= ~DCACHE_SHRINK_LIST; 324 dentry->d_sb->s_nr_dentry_unused--; 325 dentry_stat.nr_unused--; 326 } 327 328 /* 329 * Remove a dentry with references from the LRU. 330 */ 331 static void dentry_lru_del(struct dentry *dentry) 332 { 333 if (!list_empty(&dentry->d_lru)) { 334 spin_lock(&dcache_lru_lock); 335 __dentry_lru_del(dentry); 336 spin_unlock(&dcache_lru_lock); 337 } 338 } 339 340 /* 341 * Remove a dentry that is unreferenced and about to be pruned 342 * (unhashed and destroyed) from the LRU, and inform the file system. 343 * This wrapper should be called _prior_ to unhashing a victim dentry. 344 */ 345 static void dentry_lru_prune(struct dentry *dentry) 346 { 347 if (!list_empty(&dentry->d_lru)) { 348 if (dentry->d_flags & DCACHE_OP_PRUNE) 349 dentry->d_op->d_prune(dentry); 350 351 spin_lock(&dcache_lru_lock); 352 __dentry_lru_del(dentry); 353 spin_unlock(&dcache_lru_lock); 354 } 355 } 356 357 static void dentry_lru_move_list(struct dentry *dentry, struct list_head *list) 358 { 359 spin_lock(&dcache_lru_lock); 360 if (list_empty(&dentry->d_lru)) { 361 list_add_tail(&dentry->d_lru, list); 362 dentry->d_sb->s_nr_dentry_unused++; 363 dentry_stat.nr_unused++; 364 } else { 365 list_move_tail(&dentry->d_lru, list); 366 } 367 spin_unlock(&dcache_lru_lock); 368 } 369 370 /** 371 * d_kill - kill dentry and return parent 372 * @dentry: dentry to kill 373 * @parent: parent dentry 374 * 375 * The dentry must already be unhashed and removed from the LRU. 376 * 377 * If this is the root of the dentry tree, return NULL. 378 * 379 * dentry->d_lock and parent->d_lock must be held by caller, and are dropped by 380 * d_kill. 381 */ 382 static struct dentry *d_kill(struct dentry *dentry, struct dentry *parent) 383 __releases(dentry->d_lock) 384 __releases(parent->d_lock) 385 __releases(dentry->d_inode->i_lock) 386 { 387 list_del(&dentry->d_u.d_child); 388 /* 389 * Inform try_to_ascend() that we are no longer attached to the 390 * dentry tree 391 */ 392 dentry->d_flags |= DCACHE_DENTRY_KILLED; 393 if (parent) 394 spin_unlock(&parent->d_lock); 395 dentry_iput(dentry); 396 /* 397 * dentry_iput drops the locks, at which point nobody (except 398 * transient RCU lookups) can reach this dentry. 399 */ 400 d_free(dentry); 401 return parent; 402 } 403 404 /* 405 * Unhash a dentry without inserting an RCU walk barrier or checking that 406 * dentry->d_lock is locked. The caller must take care of that, if 407 * appropriate. 408 */ 409 static void __d_shrink(struct dentry *dentry) 410 { 411 if (!d_unhashed(dentry)) { 412 struct hlist_bl_head *b; 413 if (unlikely(dentry->d_flags & DCACHE_DISCONNECTED)) 414 b = &dentry->d_sb->s_anon; 415 else 416 b = d_hash(dentry->d_parent, dentry->d_name.hash); 417 418 hlist_bl_lock(b); 419 __hlist_bl_del(&dentry->d_hash); 420 dentry->d_hash.pprev = NULL; 421 hlist_bl_unlock(b); 422 } 423 } 424 425 /** 426 * d_drop - drop a dentry 427 * @dentry: dentry to drop 428 * 429 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't 430 * be found through a VFS lookup any more. Note that this is different from 431 * deleting the dentry - d_delete will try to mark the dentry negative if 432 * possible, giving a successful _negative_ lookup, while d_drop will 433 * just make the cache lookup fail. 434 * 435 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some 436 * reason (NFS timeouts or autofs deletes). 437 * 438 * __d_drop requires dentry->d_lock. 439 */ 440 void __d_drop(struct dentry *dentry) 441 { 442 if (!d_unhashed(dentry)) { 443 __d_shrink(dentry); 444 dentry_rcuwalk_barrier(dentry); 445 } 446 } 447 EXPORT_SYMBOL(__d_drop); 448 449 void d_drop(struct dentry *dentry) 450 { 451 spin_lock(&dentry->d_lock); 452 __d_drop(dentry); 453 spin_unlock(&dentry->d_lock); 454 } 455 EXPORT_SYMBOL(d_drop); 456 457 /* 458 * Finish off a dentry we've decided to kill. 459 * dentry->d_lock must be held, returns with it unlocked. 460 * If ref is non-zero, then decrement the refcount too. 461 * Returns dentry requiring refcount drop, or NULL if we're done. 462 */ 463 static inline struct dentry *dentry_kill(struct dentry *dentry, int ref) 464 __releases(dentry->d_lock) 465 { 466 struct inode *inode; 467 struct dentry *parent; 468 469 inode = dentry->d_inode; 470 if (inode && !spin_trylock(&inode->i_lock)) { 471 relock: 472 spin_unlock(&dentry->d_lock); 473 cpu_relax(); 474 return dentry; /* try again with same dentry */ 475 } 476 if (IS_ROOT(dentry)) 477 parent = NULL; 478 else 479 parent = dentry->d_parent; 480 if (parent && !spin_trylock(&parent->d_lock)) { 481 if (inode) 482 spin_unlock(&inode->i_lock); 483 goto relock; 484 } 485 486 if (ref) 487 dentry->d_count--; 488 /* 489 * if dentry was on the d_lru list delete it from there. 490 * inform the fs via d_prune that this dentry is about to be 491 * unhashed and destroyed. 492 */ 493 dentry_lru_prune(dentry); 494 /* if it was on the hash then remove it */ 495 __d_drop(dentry); 496 return d_kill(dentry, parent); 497 } 498 499 /* 500 * This is dput 501 * 502 * This is complicated by the fact that we do not want to put 503 * dentries that are no longer on any hash chain on the unused 504 * list: we'd much rather just get rid of them immediately. 505 * 506 * However, that implies that we have to traverse the dentry 507 * tree upwards to the parents which might _also_ now be 508 * scheduled for deletion (it may have been only waiting for 509 * its last child to go away). 510 * 511 * This tail recursion is done by hand as we don't want to depend 512 * on the compiler to always get this right (gcc generally doesn't). 513 * Real recursion would eat up our stack space. 514 */ 515 516 /* 517 * dput - release a dentry 518 * @dentry: dentry to release 519 * 520 * Release a dentry. This will drop the usage count and if appropriate 521 * call the dentry unlink method as well as removing it from the queues and 522 * releasing its resources. If the parent dentries were scheduled for release 523 * they too may now get deleted. 524 */ 525 void dput(struct dentry *dentry) 526 { 527 if (!dentry) 528 return; 529 530 repeat: 531 if (dentry->d_count == 1) 532 might_sleep(); 533 spin_lock(&dentry->d_lock); 534 BUG_ON(!dentry->d_count); 535 if (dentry->d_count > 1) { 536 dentry->d_count--; 537 spin_unlock(&dentry->d_lock); 538 return; 539 } 540 541 if (dentry->d_flags & DCACHE_OP_DELETE) { 542 if (dentry->d_op->d_delete(dentry)) 543 goto kill_it; 544 } 545 546 /* Unreachable? Get rid of it */ 547 if (d_unhashed(dentry)) 548 goto kill_it; 549 550 dentry->d_flags |= DCACHE_REFERENCED; 551 dentry_lru_add(dentry); 552 553 dentry->d_count--; 554 spin_unlock(&dentry->d_lock); 555 return; 556 557 kill_it: 558 dentry = dentry_kill(dentry, 1); 559 if (dentry) 560 goto repeat; 561 } 562 EXPORT_SYMBOL(dput); 563 564 /** 565 * d_invalidate - invalidate a dentry 566 * @dentry: dentry to invalidate 567 * 568 * Try to invalidate the dentry if it turns out to be 569 * possible. If there are other dentries that can be 570 * reached through this one we can't delete it and we 571 * return -EBUSY. On success we return 0. 572 * 573 * no dcache lock. 574 */ 575 576 int d_invalidate(struct dentry * dentry) 577 { 578 /* 579 * If it's already been dropped, return OK. 580 */ 581 spin_lock(&dentry->d_lock); 582 if (d_unhashed(dentry)) { 583 spin_unlock(&dentry->d_lock); 584 return 0; 585 } 586 /* 587 * Check whether to do a partial shrink_dcache 588 * to get rid of unused child entries. 589 */ 590 if (!list_empty(&dentry->d_subdirs)) { 591 spin_unlock(&dentry->d_lock); 592 shrink_dcache_parent(dentry); 593 spin_lock(&dentry->d_lock); 594 } 595 596 /* 597 * Somebody else still using it? 598 * 599 * If it's a directory, we can't drop it 600 * for fear of somebody re-populating it 601 * with children (even though dropping it 602 * would make it unreachable from the root, 603 * we might still populate it if it was a 604 * working directory or similar). 605 * We also need to leave mountpoints alone, 606 * directory or not. 607 */ 608 if (dentry->d_count > 1 && dentry->d_inode) { 609 if (S_ISDIR(dentry->d_inode->i_mode) || d_mountpoint(dentry)) { 610 spin_unlock(&dentry->d_lock); 611 return -EBUSY; 612 } 613 } 614 615 __d_drop(dentry); 616 spin_unlock(&dentry->d_lock); 617 return 0; 618 } 619 EXPORT_SYMBOL(d_invalidate); 620 621 /* This must be called with d_lock held */ 622 static inline void __dget_dlock(struct dentry *dentry) 623 { 624 dentry->d_count++; 625 } 626 627 static inline void __dget(struct dentry *dentry) 628 { 629 spin_lock(&dentry->d_lock); 630 __dget_dlock(dentry); 631 spin_unlock(&dentry->d_lock); 632 } 633 634 struct dentry *dget_parent(struct dentry *dentry) 635 { 636 struct dentry *ret; 637 638 repeat: 639 /* 640 * Don't need rcu_dereference because we re-check it was correct under 641 * the lock. 642 */ 643 rcu_read_lock(); 644 ret = dentry->d_parent; 645 spin_lock(&ret->d_lock); 646 if (unlikely(ret != dentry->d_parent)) { 647 spin_unlock(&ret->d_lock); 648 rcu_read_unlock(); 649 goto repeat; 650 } 651 rcu_read_unlock(); 652 BUG_ON(!ret->d_count); 653 ret->d_count++; 654 spin_unlock(&ret->d_lock); 655 return ret; 656 } 657 EXPORT_SYMBOL(dget_parent); 658 659 /** 660 * d_find_alias - grab a hashed alias of inode 661 * @inode: inode in question 662 * @want_discon: flag, used by d_splice_alias, to request 663 * that only a DISCONNECTED alias be returned. 664 * 665 * If inode has a hashed alias, or is a directory and has any alias, 666 * acquire the reference to alias and return it. Otherwise return NULL. 667 * Notice that if inode is a directory there can be only one alias and 668 * it can be unhashed only if it has no children, or if it is the root 669 * of a filesystem. 670 * 671 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer 672 * any other hashed alias over that one unless @want_discon is set, 673 * in which case only return an IS_ROOT, DCACHE_DISCONNECTED alias. 674 */ 675 static struct dentry *__d_find_alias(struct inode *inode, int want_discon) 676 { 677 struct dentry *alias, *discon_alias; 678 679 again: 680 discon_alias = NULL; 681 hlist_for_each_entry(alias, &inode->i_dentry, d_alias) { 682 spin_lock(&alias->d_lock); 683 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) { 684 if (IS_ROOT(alias) && 685 (alias->d_flags & DCACHE_DISCONNECTED)) { 686 discon_alias = alias; 687 } else if (!want_discon) { 688 __dget_dlock(alias); 689 spin_unlock(&alias->d_lock); 690 return alias; 691 } 692 } 693 spin_unlock(&alias->d_lock); 694 } 695 if (discon_alias) { 696 alias = discon_alias; 697 spin_lock(&alias->d_lock); 698 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) { 699 if (IS_ROOT(alias) && 700 (alias->d_flags & DCACHE_DISCONNECTED)) { 701 __dget_dlock(alias); 702 spin_unlock(&alias->d_lock); 703 return alias; 704 } 705 } 706 spin_unlock(&alias->d_lock); 707 goto again; 708 } 709 return NULL; 710 } 711 712 struct dentry *d_find_alias(struct inode *inode) 713 { 714 struct dentry *de = NULL; 715 716 if (!hlist_empty(&inode->i_dentry)) { 717 spin_lock(&inode->i_lock); 718 de = __d_find_alias(inode, 0); 719 spin_unlock(&inode->i_lock); 720 } 721 return de; 722 } 723 EXPORT_SYMBOL(d_find_alias); 724 725 /* 726 * Try to kill dentries associated with this inode. 727 * WARNING: you must own a reference to inode. 728 */ 729 void d_prune_aliases(struct inode *inode) 730 { 731 struct dentry *dentry; 732 restart: 733 spin_lock(&inode->i_lock); 734 hlist_for_each_entry(dentry, &inode->i_dentry, d_alias) { 735 spin_lock(&dentry->d_lock); 736 if (!dentry->d_count) { 737 __dget_dlock(dentry); 738 __d_drop(dentry); 739 spin_unlock(&dentry->d_lock); 740 spin_unlock(&inode->i_lock); 741 dput(dentry); 742 goto restart; 743 } 744 spin_unlock(&dentry->d_lock); 745 } 746 spin_unlock(&inode->i_lock); 747 } 748 EXPORT_SYMBOL(d_prune_aliases); 749 750 /* 751 * Try to throw away a dentry - free the inode, dput the parent. 752 * Requires dentry->d_lock is held, and dentry->d_count == 0. 753 * Releases dentry->d_lock. 754 * 755 * This may fail if locks cannot be acquired no problem, just try again. 756 */ 757 static void try_prune_one_dentry(struct dentry *dentry) 758 __releases(dentry->d_lock) 759 { 760 struct dentry *parent; 761 762 parent = dentry_kill(dentry, 0); 763 /* 764 * If dentry_kill returns NULL, we have nothing more to do. 765 * if it returns the same dentry, trylocks failed. In either 766 * case, just loop again. 767 * 768 * Otherwise, we need to prune ancestors too. This is necessary 769 * to prevent quadratic behavior of shrink_dcache_parent(), but 770 * is also expected to be beneficial in reducing dentry cache 771 * fragmentation. 772 */ 773 if (!parent) 774 return; 775 if (parent == dentry) 776 return; 777 778 /* Prune ancestors. */ 779 dentry = parent; 780 while (dentry) { 781 spin_lock(&dentry->d_lock); 782 if (dentry->d_count > 1) { 783 dentry->d_count--; 784 spin_unlock(&dentry->d_lock); 785 return; 786 } 787 dentry = dentry_kill(dentry, 1); 788 } 789 } 790 791 static void shrink_dentry_list(struct list_head *list) 792 { 793 struct dentry *dentry; 794 795 rcu_read_lock(); 796 for (;;) { 797 dentry = list_entry_rcu(list->prev, struct dentry, d_lru); 798 if (&dentry->d_lru == list) 799 break; /* empty */ 800 spin_lock(&dentry->d_lock); 801 if (dentry != list_entry(list->prev, struct dentry, d_lru)) { 802 spin_unlock(&dentry->d_lock); 803 continue; 804 } 805 806 /* 807 * We found an inuse dentry which was not removed from 808 * the LRU because of laziness during lookup. Do not free 809 * it - just keep it off the LRU list. 810 */ 811 if (dentry->d_count) { 812 dentry_lru_del(dentry); 813 spin_unlock(&dentry->d_lock); 814 continue; 815 } 816 817 rcu_read_unlock(); 818 819 try_prune_one_dentry(dentry); 820 821 rcu_read_lock(); 822 } 823 rcu_read_unlock(); 824 } 825 826 /** 827 * prune_dcache_sb - shrink the dcache 828 * @sb: superblock 829 * @count: number of entries to try to free 830 * 831 * Attempt to shrink the superblock dcache LRU by @count entries. This is 832 * done when we need more memory an called from the superblock shrinker 833 * function. 834 * 835 * This function may fail to free any resources if all the dentries are in 836 * use. 837 */ 838 void prune_dcache_sb(struct super_block *sb, int count) 839 { 840 struct dentry *dentry; 841 LIST_HEAD(referenced); 842 LIST_HEAD(tmp); 843 844 relock: 845 spin_lock(&dcache_lru_lock); 846 while (!list_empty(&sb->s_dentry_lru)) { 847 dentry = list_entry(sb->s_dentry_lru.prev, 848 struct dentry, d_lru); 849 BUG_ON(dentry->d_sb != sb); 850 851 if (!spin_trylock(&dentry->d_lock)) { 852 spin_unlock(&dcache_lru_lock); 853 cpu_relax(); 854 goto relock; 855 } 856 857 if (dentry->d_flags & DCACHE_REFERENCED) { 858 dentry->d_flags &= ~DCACHE_REFERENCED; 859 list_move(&dentry->d_lru, &referenced); 860 spin_unlock(&dentry->d_lock); 861 } else { 862 list_move_tail(&dentry->d_lru, &tmp); 863 dentry->d_flags |= DCACHE_SHRINK_LIST; 864 spin_unlock(&dentry->d_lock); 865 if (!--count) 866 break; 867 } 868 cond_resched_lock(&dcache_lru_lock); 869 } 870 if (!list_empty(&referenced)) 871 list_splice(&referenced, &sb->s_dentry_lru); 872 spin_unlock(&dcache_lru_lock); 873 874 shrink_dentry_list(&tmp); 875 } 876 877 /** 878 * shrink_dcache_sb - shrink dcache for a superblock 879 * @sb: superblock 880 * 881 * Shrink the dcache for the specified super block. This is used to free 882 * the dcache before unmounting a file system. 883 */ 884 void shrink_dcache_sb(struct super_block *sb) 885 { 886 LIST_HEAD(tmp); 887 888 spin_lock(&dcache_lru_lock); 889 while (!list_empty(&sb->s_dentry_lru)) { 890 list_splice_init(&sb->s_dentry_lru, &tmp); 891 spin_unlock(&dcache_lru_lock); 892 shrink_dentry_list(&tmp); 893 spin_lock(&dcache_lru_lock); 894 } 895 spin_unlock(&dcache_lru_lock); 896 } 897 EXPORT_SYMBOL(shrink_dcache_sb); 898 899 /* 900 * destroy a single subtree of dentries for unmount 901 * - see the comments on shrink_dcache_for_umount() for a description of the 902 * locking 903 */ 904 static void shrink_dcache_for_umount_subtree(struct dentry *dentry) 905 { 906 struct dentry *parent; 907 908 BUG_ON(!IS_ROOT(dentry)); 909 910 for (;;) { 911 /* descend to the first leaf in the current subtree */ 912 while (!list_empty(&dentry->d_subdirs)) 913 dentry = list_entry(dentry->d_subdirs.next, 914 struct dentry, d_u.d_child); 915 916 /* consume the dentries from this leaf up through its parents 917 * until we find one with children or run out altogether */ 918 do { 919 struct inode *inode; 920 921 /* 922 * remove the dentry from the lru, and inform 923 * the fs that this dentry is about to be 924 * unhashed and destroyed. 925 */ 926 dentry_lru_prune(dentry); 927 __d_shrink(dentry); 928 929 if (dentry->d_count != 0) { 930 printk(KERN_ERR 931 "BUG: Dentry %p{i=%lx,n=%s}" 932 " still in use (%d)" 933 " [unmount of %s %s]\n", 934 dentry, 935 dentry->d_inode ? 936 dentry->d_inode->i_ino : 0UL, 937 dentry->d_name.name, 938 dentry->d_count, 939 dentry->d_sb->s_type->name, 940 dentry->d_sb->s_id); 941 BUG(); 942 } 943 944 if (IS_ROOT(dentry)) { 945 parent = NULL; 946 list_del(&dentry->d_u.d_child); 947 } else { 948 parent = dentry->d_parent; 949 parent->d_count--; 950 list_del(&dentry->d_u.d_child); 951 } 952 953 inode = dentry->d_inode; 954 if (inode) { 955 dentry->d_inode = NULL; 956 hlist_del_init(&dentry->d_alias); 957 if (dentry->d_op && dentry->d_op->d_iput) 958 dentry->d_op->d_iput(dentry, inode); 959 else 960 iput(inode); 961 } 962 963 d_free(dentry); 964 965 /* finished when we fall off the top of the tree, 966 * otherwise we ascend to the parent and move to the 967 * next sibling if there is one */ 968 if (!parent) 969 return; 970 dentry = parent; 971 } while (list_empty(&dentry->d_subdirs)); 972 973 dentry = list_entry(dentry->d_subdirs.next, 974 struct dentry, d_u.d_child); 975 } 976 } 977 978 /* 979 * destroy the dentries attached to a superblock on unmounting 980 * - we don't need to use dentry->d_lock because: 981 * - the superblock is detached from all mountings and open files, so the 982 * dentry trees will not be rearranged by the VFS 983 * - s_umount is write-locked, so the memory pressure shrinker will ignore 984 * any dentries belonging to this superblock that it comes across 985 * - the filesystem itself is no longer permitted to rearrange the dentries 986 * in this superblock 987 */ 988 void shrink_dcache_for_umount(struct super_block *sb) 989 { 990 struct dentry *dentry; 991 992 if (down_read_trylock(&sb->s_umount)) 993 BUG(); 994 995 dentry = sb->s_root; 996 sb->s_root = NULL; 997 dentry->d_count--; 998 shrink_dcache_for_umount_subtree(dentry); 999 1000 while (!hlist_bl_empty(&sb->s_anon)) { 1001 dentry = hlist_bl_entry(hlist_bl_first(&sb->s_anon), struct dentry, d_hash); 1002 shrink_dcache_for_umount_subtree(dentry); 1003 } 1004 } 1005 1006 /* 1007 * This tries to ascend one level of parenthood, but 1008 * we can race with renaming, so we need to re-check 1009 * the parenthood after dropping the lock and check 1010 * that the sequence number still matches. 1011 */ 1012 static struct dentry *try_to_ascend(struct dentry *old, int locked, unsigned seq) 1013 { 1014 struct dentry *new = old->d_parent; 1015 1016 rcu_read_lock(); 1017 spin_unlock(&old->d_lock); 1018 spin_lock(&new->d_lock); 1019 1020 /* 1021 * might go back up the wrong parent if we have had a rename 1022 * or deletion 1023 */ 1024 if (new != old->d_parent || 1025 (old->d_flags & DCACHE_DENTRY_KILLED) || 1026 (!locked && read_seqretry(&rename_lock, seq))) { 1027 spin_unlock(&new->d_lock); 1028 new = NULL; 1029 } 1030 rcu_read_unlock(); 1031 return new; 1032 } 1033 1034 1035 /* 1036 * Search for at least 1 mount point in the dentry's subdirs. 1037 * We descend to the next level whenever the d_subdirs 1038 * list is non-empty and continue searching. 1039 */ 1040 1041 /** 1042 * have_submounts - check for mounts over a dentry 1043 * @parent: dentry to check. 1044 * 1045 * Return true if the parent or its subdirectories contain 1046 * a mount point 1047 */ 1048 int have_submounts(struct dentry *parent) 1049 { 1050 struct dentry *this_parent; 1051 struct list_head *next; 1052 unsigned seq; 1053 int locked = 0; 1054 1055 seq = read_seqbegin(&rename_lock); 1056 again: 1057 this_parent = parent; 1058 1059 if (d_mountpoint(parent)) 1060 goto positive; 1061 spin_lock(&this_parent->d_lock); 1062 repeat: 1063 next = this_parent->d_subdirs.next; 1064 resume: 1065 while (next != &this_parent->d_subdirs) { 1066 struct list_head *tmp = next; 1067 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child); 1068 next = tmp->next; 1069 1070 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED); 1071 /* Have we found a mount point ? */ 1072 if (d_mountpoint(dentry)) { 1073 spin_unlock(&dentry->d_lock); 1074 spin_unlock(&this_parent->d_lock); 1075 goto positive; 1076 } 1077 if (!list_empty(&dentry->d_subdirs)) { 1078 spin_unlock(&this_parent->d_lock); 1079 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_); 1080 this_parent = dentry; 1081 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_); 1082 goto repeat; 1083 } 1084 spin_unlock(&dentry->d_lock); 1085 } 1086 /* 1087 * All done at this level ... ascend and resume the search. 1088 */ 1089 if (this_parent != parent) { 1090 struct dentry *child = this_parent; 1091 this_parent = try_to_ascend(this_parent, locked, seq); 1092 if (!this_parent) 1093 goto rename_retry; 1094 next = child->d_u.d_child.next; 1095 goto resume; 1096 } 1097 spin_unlock(&this_parent->d_lock); 1098 if (!locked && read_seqretry(&rename_lock, seq)) 1099 goto rename_retry; 1100 if (locked) 1101 write_sequnlock(&rename_lock); 1102 return 0; /* No mount points found in tree */ 1103 positive: 1104 if (!locked && read_seqretry(&rename_lock, seq)) 1105 goto rename_retry; 1106 if (locked) 1107 write_sequnlock(&rename_lock); 1108 return 1; 1109 1110 rename_retry: 1111 if (locked) 1112 goto again; 1113 locked = 1; 1114 write_seqlock(&rename_lock); 1115 goto again; 1116 } 1117 EXPORT_SYMBOL(have_submounts); 1118 1119 /* 1120 * Search the dentry child list of the specified parent, 1121 * and move any unused dentries to the end of the unused 1122 * list for prune_dcache(). We descend to the next level 1123 * whenever the d_subdirs list is non-empty and continue 1124 * searching. 1125 * 1126 * It returns zero iff there are no unused children, 1127 * otherwise it returns the number of children moved to 1128 * the end of the unused list. This may not be the total 1129 * number of unused children, because select_parent can 1130 * drop the lock and return early due to latency 1131 * constraints. 1132 */ 1133 static int select_parent(struct dentry *parent, struct list_head *dispose) 1134 { 1135 struct dentry *this_parent; 1136 struct list_head *next; 1137 unsigned seq; 1138 int found = 0; 1139 int locked = 0; 1140 1141 seq = read_seqbegin(&rename_lock); 1142 again: 1143 this_parent = parent; 1144 spin_lock(&this_parent->d_lock); 1145 repeat: 1146 next = this_parent->d_subdirs.next; 1147 resume: 1148 while (next != &this_parent->d_subdirs) { 1149 struct list_head *tmp = next; 1150 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child); 1151 next = tmp->next; 1152 1153 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED); 1154 1155 /* 1156 * move only zero ref count dentries to the dispose list. 1157 * 1158 * Those which are presently on the shrink list, being processed 1159 * by shrink_dentry_list(), shouldn't be moved. Otherwise the 1160 * loop in shrink_dcache_parent() might not make any progress 1161 * and loop forever. 1162 */ 1163 if (dentry->d_count) { 1164 dentry_lru_del(dentry); 1165 } else if (!(dentry->d_flags & DCACHE_SHRINK_LIST)) { 1166 dentry_lru_move_list(dentry, dispose); 1167 dentry->d_flags |= DCACHE_SHRINK_LIST; 1168 found++; 1169 } 1170 /* 1171 * We can return to the caller if we have found some (this 1172 * ensures forward progress). We'll be coming back to find 1173 * the rest. 1174 */ 1175 if (found && need_resched()) { 1176 spin_unlock(&dentry->d_lock); 1177 goto out; 1178 } 1179 1180 /* 1181 * Descend a level if the d_subdirs list is non-empty. 1182 */ 1183 if (!list_empty(&dentry->d_subdirs)) { 1184 spin_unlock(&this_parent->d_lock); 1185 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_); 1186 this_parent = dentry; 1187 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_); 1188 goto repeat; 1189 } 1190 1191 spin_unlock(&dentry->d_lock); 1192 } 1193 /* 1194 * All done at this level ... ascend and resume the search. 1195 */ 1196 if (this_parent != parent) { 1197 struct dentry *child = this_parent; 1198 this_parent = try_to_ascend(this_parent, locked, seq); 1199 if (!this_parent) 1200 goto rename_retry; 1201 next = child->d_u.d_child.next; 1202 goto resume; 1203 } 1204 out: 1205 spin_unlock(&this_parent->d_lock); 1206 if (!locked && read_seqretry(&rename_lock, seq)) 1207 goto rename_retry; 1208 if (locked) 1209 write_sequnlock(&rename_lock); 1210 return found; 1211 1212 rename_retry: 1213 if (found) 1214 return found; 1215 if (locked) 1216 goto again; 1217 locked = 1; 1218 write_seqlock(&rename_lock); 1219 goto again; 1220 } 1221 1222 /** 1223 * shrink_dcache_parent - prune dcache 1224 * @parent: parent of entries to prune 1225 * 1226 * Prune the dcache to remove unused children of the parent dentry. 1227 */ 1228 void shrink_dcache_parent(struct dentry * parent) 1229 { 1230 LIST_HEAD(dispose); 1231 int found; 1232 1233 while ((found = select_parent(parent, &dispose)) != 0) 1234 shrink_dentry_list(&dispose); 1235 } 1236 EXPORT_SYMBOL(shrink_dcache_parent); 1237 1238 /** 1239 * __d_alloc - allocate a dcache entry 1240 * @sb: filesystem it will belong to 1241 * @name: qstr of the name 1242 * 1243 * Allocates a dentry. It returns %NULL if there is insufficient memory 1244 * available. On a success the dentry is returned. The name passed in is 1245 * copied and the copy passed in may be reused after this call. 1246 */ 1247 1248 struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name) 1249 { 1250 struct dentry *dentry; 1251 char *dname; 1252 1253 dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL); 1254 if (!dentry) 1255 return NULL; 1256 1257 /* 1258 * We guarantee that the inline name is always NUL-terminated. 1259 * This way the memcpy() done by the name switching in rename 1260 * will still always have a NUL at the end, even if we might 1261 * be overwriting an internal NUL character 1262 */ 1263 dentry->d_iname[DNAME_INLINE_LEN-1] = 0; 1264 if (name->len > DNAME_INLINE_LEN-1) { 1265 dname = kmalloc(name->len + 1, GFP_KERNEL); 1266 if (!dname) { 1267 kmem_cache_free(dentry_cache, dentry); 1268 return NULL; 1269 } 1270 } else { 1271 dname = dentry->d_iname; 1272 } 1273 1274 dentry->d_name.len = name->len; 1275 dentry->d_name.hash = name->hash; 1276 memcpy(dname, name->name, name->len); 1277 dname[name->len] = 0; 1278 1279 /* Make sure we always see the terminating NUL character */ 1280 smp_wmb(); 1281 dentry->d_name.name = dname; 1282 1283 dentry->d_count = 1; 1284 dentry->d_flags = 0; 1285 spin_lock_init(&dentry->d_lock); 1286 seqcount_init(&dentry->d_seq); 1287 dentry->d_inode = NULL; 1288 dentry->d_parent = dentry; 1289 dentry->d_sb = sb; 1290 dentry->d_op = NULL; 1291 dentry->d_fsdata = NULL; 1292 INIT_HLIST_BL_NODE(&dentry->d_hash); 1293 INIT_LIST_HEAD(&dentry->d_lru); 1294 INIT_LIST_HEAD(&dentry->d_subdirs); 1295 INIT_HLIST_NODE(&dentry->d_alias); 1296 INIT_LIST_HEAD(&dentry->d_u.d_child); 1297 d_set_d_op(dentry, dentry->d_sb->s_d_op); 1298 1299 this_cpu_inc(nr_dentry); 1300 1301 return dentry; 1302 } 1303 1304 /** 1305 * d_alloc - allocate a dcache entry 1306 * @parent: parent of entry to allocate 1307 * @name: qstr of the name 1308 * 1309 * Allocates a dentry. It returns %NULL if there is insufficient memory 1310 * available. On a success the dentry is returned. The name passed in is 1311 * copied and the copy passed in may be reused after this call. 1312 */ 1313 struct dentry *d_alloc(struct dentry * parent, const struct qstr *name) 1314 { 1315 struct dentry *dentry = __d_alloc(parent->d_sb, name); 1316 if (!dentry) 1317 return NULL; 1318 1319 spin_lock(&parent->d_lock); 1320 /* 1321 * don't need child lock because it is not subject 1322 * to concurrency here 1323 */ 1324 __dget_dlock(parent); 1325 dentry->d_parent = parent; 1326 list_add(&dentry->d_u.d_child, &parent->d_subdirs); 1327 spin_unlock(&parent->d_lock); 1328 1329 return dentry; 1330 } 1331 EXPORT_SYMBOL(d_alloc); 1332 1333 struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name) 1334 { 1335 struct dentry *dentry = __d_alloc(sb, name); 1336 if (dentry) 1337 dentry->d_flags |= DCACHE_DISCONNECTED; 1338 return dentry; 1339 } 1340 EXPORT_SYMBOL(d_alloc_pseudo); 1341 1342 struct dentry *d_alloc_name(struct dentry *parent, const char *name) 1343 { 1344 struct qstr q; 1345 1346 q.name = name; 1347 q.len = strlen(name); 1348 q.hash = full_name_hash(q.name, q.len); 1349 return d_alloc(parent, &q); 1350 } 1351 EXPORT_SYMBOL(d_alloc_name); 1352 1353 void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op) 1354 { 1355 WARN_ON_ONCE(dentry->d_op); 1356 WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH | 1357 DCACHE_OP_COMPARE | 1358 DCACHE_OP_REVALIDATE | 1359 DCACHE_OP_WEAK_REVALIDATE | 1360 DCACHE_OP_DELETE )); 1361 dentry->d_op = op; 1362 if (!op) 1363 return; 1364 if (op->d_hash) 1365 dentry->d_flags |= DCACHE_OP_HASH; 1366 if (op->d_compare) 1367 dentry->d_flags |= DCACHE_OP_COMPARE; 1368 if (op->d_revalidate) 1369 dentry->d_flags |= DCACHE_OP_REVALIDATE; 1370 if (op->d_weak_revalidate) 1371 dentry->d_flags |= DCACHE_OP_WEAK_REVALIDATE; 1372 if (op->d_delete) 1373 dentry->d_flags |= DCACHE_OP_DELETE; 1374 if (op->d_prune) 1375 dentry->d_flags |= DCACHE_OP_PRUNE; 1376 1377 } 1378 EXPORT_SYMBOL(d_set_d_op); 1379 1380 static void __d_instantiate(struct dentry *dentry, struct inode *inode) 1381 { 1382 spin_lock(&dentry->d_lock); 1383 if (inode) { 1384 if (unlikely(IS_AUTOMOUNT(inode))) 1385 dentry->d_flags |= DCACHE_NEED_AUTOMOUNT; 1386 hlist_add_head(&dentry->d_alias, &inode->i_dentry); 1387 } 1388 dentry->d_inode = inode; 1389 dentry_rcuwalk_barrier(dentry); 1390 spin_unlock(&dentry->d_lock); 1391 fsnotify_d_instantiate(dentry, inode); 1392 } 1393 1394 /** 1395 * d_instantiate - fill in inode information for a dentry 1396 * @entry: dentry to complete 1397 * @inode: inode to attach to this dentry 1398 * 1399 * Fill in inode information in the entry. 1400 * 1401 * This turns negative dentries into productive full members 1402 * of society. 1403 * 1404 * NOTE! This assumes that the inode count has been incremented 1405 * (or otherwise set) by the caller to indicate that it is now 1406 * in use by the dcache. 1407 */ 1408 1409 void d_instantiate(struct dentry *entry, struct inode * inode) 1410 { 1411 BUG_ON(!hlist_unhashed(&entry->d_alias)); 1412 if (inode) 1413 spin_lock(&inode->i_lock); 1414 __d_instantiate(entry, inode); 1415 if (inode) 1416 spin_unlock(&inode->i_lock); 1417 security_d_instantiate(entry, inode); 1418 } 1419 EXPORT_SYMBOL(d_instantiate); 1420 1421 /** 1422 * d_instantiate_unique - instantiate a non-aliased dentry 1423 * @entry: dentry to instantiate 1424 * @inode: inode to attach to this dentry 1425 * 1426 * Fill in inode information in the entry. On success, it returns NULL. 1427 * If an unhashed alias of "entry" already exists, then we return the 1428 * aliased dentry instead and drop one reference to inode. 1429 * 1430 * Note that in order to avoid conflicts with rename() etc, the caller 1431 * had better be holding the parent directory semaphore. 1432 * 1433 * This also assumes that the inode count has been incremented 1434 * (or otherwise set) by the caller to indicate that it is now 1435 * in use by the dcache. 1436 */ 1437 static struct dentry *__d_instantiate_unique(struct dentry *entry, 1438 struct inode *inode) 1439 { 1440 struct dentry *alias; 1441 int len = entry->d_name.len; 1442 const char *name = entry->d_name.name; 1443 unsigned int hash = entry->d_name.hash; 1444 1445 if (!inode) { 1446 __d_instantiate(entry, NULL); 1447 return NULL; 1448 } 1449 1450 hlist_for_each_entry(alias, &inode->i_dentry, d_alias) { 1451 /* 1452 * Don't need alias->d_lock here, because aliases with 1453 * d_parent == entry->d_parent are not subject to name or 1454 * parent changes, because the parent inode i_mutex is held. 1455 */ 1456 if (alias->d_name.hash != hash) 1457 continue; 1458 if (alias->d_parent != entry->d_parent) 1459 continue; 1460 if (alias->d_name.len != len) 1461 continue; 1462 if (dentry_cmp(alias, name, len)) 1463 continue; 1464 __dget(alias); 1465 return alias; 1466 } 1467 1468 __d_instantiate(entry, inode); 1469 return NULL; 1470 } 1471 1472 struct dentry *d_instantiate_unique(struct dentry *entry, struct inode *inode) 1473 { 1474 struct dentry *result; 1475 1476 BUG_ON(!hlist_unhashed(&entry->d_alias)); 1477 1478 if (inode) 1479 spin_lock(&inode->i_lock); 1480 result = __d_instantiate_unique(entry, inode); 1481 if (inode) 1482 spin_unlock(&inode->i_lock); 1483 1484 if (!result) { 1485 security_d_instantiate(entry, inode); 1486 return NULL; 1487 } 1488 1489 BUG_ON(!d_unhashed(result)); 1490 iput(inode); 1491 return result; 1492 } 1493 1494 EXPORT_SYMBOL(d_instantiate_unique); 1495 1496 struct dentry *d_make_root(struct inode *root_inode) 1497 { 1498 struct dentry *res = NULL; 1499 1500 if (root_inode) { 1501 static const struct qstr name = QSTR_INIT("/", 1); 1502 1503 res = __d_alloc(root_inode->i_sb, &name); 1504 if (res) 1505 d_instantiate(res, root_inode); 1506 else 1507 iput(root_inode); 1508 } 1509 return res; 1510 } 1511 EXPORT_SYMBOL(d_make_root); 1512 1513 static struct dentry * __d_find_any_alias(struct inode *inode) 1514 { 1515 struct dentry *alias; 1516 1517 if (hlist_empty(&inode->i_dentry)) 1518 return NULL; 1519 alias = hlist_entry(inode->i_dentry.first, struct dentry, d_alias); 1520 __dget(alias); 1521 return alias; 1522 } 1523 1524 /** 1525 * d_find_any_alias - find any alias for a given inode 1526 * @inode: inode to find an alias for 1527 * 1528 * If any aliases exist for the given inode, take and return a 1529 * reference for one of them. If no aliases exist, return %NULL. 1530 */ 1531 struct dentry *d_find_any_alias(struct inode *inode) 1532 { 1533 struct dentry *de; 1534 1535 spin_lock(&inode->i_lock); 1536 de = __d_find_any_alias(inode); 1537 spin_unlock(&inode->i_lock); 1538 return de; 1539 } 1540 EXPORT_SYMBOL(d_find_any_alias); 1541 1542 /** 1543 * d_obtain_alias - find or allocate a dentry for a given inode 1544 * @inode: inode to allocate the dentry for 1545 * 1546 * Obtain a dentry for an inode resulting from NFS filehandle conversion or 1547 * similar open by handle operations. The returned dentry may be anonymous, 1548 * or may have a full name (if the inode was already in the cache). 1549 * 1550 * When called on a directory inode, we must ensure that the inode only ever 1551 * has one dentry. If a dentry is found, that is returned instead of 1552 * allocating a new one. 1553 * 1554 * On successful return, the reference to the inode has been transferred 1555 * to the dentry. In case of an error the reference on the inode is released. 1556 * To make it easier to use in export operations a %NULL or IS_ERR inode may 1557 * be passed in and will be the error will be propagate to the return value, 1558 * with a %NULL @inode replaced by ERR_PTR(-ESTALE). 1559 */ 1560 struct dentry *d_obtain_alias(struct inode *inode) 1561 { 1562 static const struct qstr anonstring = QSTR_INIT("/", 1); 1563 struct dentry *tmp; 1564 struct dentry *res; 1565 1566 if (!inode) 1567 return ERR_PTR(-ESTALE); 1568 if (IS_ERR(inode)) 1569 return ERR_CAST(inode); 1570 1571 res = d_find_any_alias(inode); 1572 if (res) 1573 goto out_iput; 1574 1575 tmp = __d_alloc(inode->i_sb, &anonstring); 1576 if (!tmp) { 1577 res = ERR_PTR(-ENOMEM); 1578 goto out_iput; 1579 } 1580 1581 spin_lock(&inode->i_lock); 1582 res = __d_find_any_alias(inode); 1583 if (res) { 1584 spin_unlock(&inode->i_lock); 1585 dput(tmp); 1586 goto out_iput; 1587 } 1588 1589 /* attach a disconnected dentry */ 1590 spin_lock(&tmp->d_lock); 1591 tmp->d_inode = inode; 1592 tmp->d_flags |= DCACHE_DISCONNECTED; 1593 hlist_add_head(&tmp->d_alias, &inode->i_dentry); 1594 hlist_bl_lock(&tmp->d_sb->s_anon); 1595 hlist_bl_add_head(&tmp->d_hash, &tmp->d_sb->s_anon); 1596 hlist_bl_unlock(&tmp->d_sb->s_anon); 1597 spin_unlock(&tmp->d_lock); 1598 spin_unlock(&inode->i_lock); 1599 security_d_instantiate(tmp, inode); 1600 1601 return tmp; 1602 1603 out_iput: 1604 if (res && !IS_ERR(res)) 1605 security_d_instantiate(res, inode); 1606 iput(inode); 1607 return res; 1608 } 1609 EXPORT_SYMBOL(d_obtain_alias); 1610 1611 /** 1612 * d_splice_alias - splice a disconnected dentry into the tree if one exists 1613 * @inode: the inode which may have a disconnected dentry 1614 * @dentry: a negative dentry which we want to point to the inode. 1615 * 1616 * If inode is a directory and has a 'disconnected' dentry (i.e. IS_ROOT and 1617 * DCACHE_DISCONNECTED), then d_move that in place of the given dentry 1618 * and return it, else simply d_add the inode to the dentry and return NULL. 1619 * 1620 * This is needed in the lookup routine of any filesystem that is exportable 1621 * (via knfsd) so that we can build dcache paths to directories effectively. 1622 * 1623 * If a dentry was found and moved, then it is returned. Otherwise NULL 1624 * is returned. This matches the expected return value of ->lookup. 1625 * 1626 */ 1627 struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry) 1628 { 1629 struct dentry *new = NULL; 1630 1631 if (IS_ERR(inode)) 1632 return ERR_CAST(inode); 1633 1634 if (inode && S_ISDIR(inode->i_mode)) { 1635 spin_lock(&inode->i_lock); 1636 new = __d_find_alias(inode, 1); 1637 if (new) { 1638 BUG_ON(!(new->d_flags & DCACHE_DISCONNECTED)); 1639 spin_unlock(&inode->i_lock); 1640 security_d_instantiate(new, inode); 1641 d_move(new, dentry); 1642 iput(inode); 1643 } else { 1644 /* already taking inode->i_lock, so d_add() by hand */ 1645 __d_instantiate(dentry, inode); 1646 spin_unlock(&inode->i_lock); 1647 security_d_instantiate(dentry, inode); 1648 d_rehash(dentry); 1649 } 1650 } else 1651 d_add(dentry, inode); 1652 return new; 1653 } 1654 EXPORT_SYMBOL(d_splice_alias); 1655 1656 /** 1657 * d_add_ci - lookup or allocate new dentry with case-exact name 1658 * @inode: the inode case-insensitive lookup has found 1659 * @dentry: the negative dentry that was passed to the parent's lookup func 1660 * @name: the case-exact name to be associated with the returned dentry 1661 * 1662 * This is to avoid filling the dcache with case-insensitive names to the 1663 * same inode, only the actual correct case is stored in the dcache for 1664 * case-insensitive filesystems. 1665 * 1666 * For a case-insensitive lookup match and if the the case-exact dentry 1667 * already exists in in the dcache, use it and return it. 1668 * 1669 * If no entry exists with the exact case name, allocate new dentry with 1670 * the exact case, and return the spliced entry. 1671 */ 1672 struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode, 1673 struct qstr *name) 1674 { 1675 struct dentry *found; 1676 struct dentry *new; 1677 1678 /* 1679 * First check if a dentry matching the name already exists, 1680 * if not go ahead and create it now. 1681 */ 1682 found = d_hash_and_lookup(dentry->d_parent, name); 1683 if (unlikely(IS_ERR(found))) 1684 goto err_out; 1685 if (!found) { 1686 new = d_alloc(dentry->d_parent, name); 1687 if (!new) { 1688 found = ERR_PTR(-ENOMEM); 1689 goto err_out; 1690 } 1691 1692 found = d_splice_alias(inode, new); 1693 if (found) { 1694 dput(new); 1695 return found; 1696 } 1697 return new; 1698 } 1699 1700 /* 1701 * If a matching dentry exists, and it's not negative use it. 1702 * 1703 * Decrement the reference count to balance the iget() done 1704 * earlier on. 1705 */ 1706 if (found->d_inode) { 1707 if (unlikely(found->d_inode != inode)) { 1708 /* This can't happen because bad inodes are unhashed. */ 1709 BUG_ON(!is_bad_inode(inode)); 1710 BUG_ON(!is_bad_inode(found->d_inode)); 1711 } 1712 iput(inode); 1713 return found; 1714 } 1715 1716 /* 1717 * Negative dentry: instantiate it unless the inode is a directory and 1718 * already has a dentry. 1719 */ 1720 new = d_splice_alias(inode, found); 1721 if (new) { 1722 dput(found); 1723 found = new; 1724 } 1725 return found; 1726 1727 err_out: 1728 iput(inode); 1729 return found; 1730 } 1731 EXPORT_SYMBOL(d_add_ci); 1732 1733 /* 1734 * Do the slow-case of the dentry name compare. 1735 * 1736 * Unlike the dentry_cmp() function, we need to atomically 1737 * load the name, length and inode information, so that the 1738 * filesystem can rely on them, and can use the 'name' and 1739 * 'len' information without worrying about walking off the 1740 * end of memory etc. 1741 * 1742 * Thus the read_seqcount_retry() and the "duplicate" info 1743 * in arguments (the low-level filesystem should not look 1744 * at the dentry inode or name contents directly, since 1745 * rename can change them while we're in RCU mode). 1746 */ 1747 enum slow_d_compare { 1748 D_COMP_OK, 1749 D_COMP_NOMATCH, 1750 D_COMP_SEQRETRY, 1751 }; 1752 1753 static noinline enum slow_d_compare slow_dentry_cmp( 1754 const struct dentry *parent, 1755 struct inode *inode, 1756 struct dentry *dentry, 1757 unsigned int seq, 1758 const struct qstr *name) 1759 { 1760 int tlen = dentry->d_name.len; 1761 const char *tname = dentry->d_name.name; 1762 struct inode *i = dentry->d_inode; 1763 1764 if (read_seqcount_retry(&dentry->d_seq, seq)) { 1765 cpu_relax(); 1766 return D_COMP_SEQRETRY; 1767 } 1768 if (parent->d_op->d_compare(parent, inode, 1769 dentry, i, 1770 tlen, tname, name)) 1771 return D_COMP_NOMATCH; 1772 return D_COMP_OK; 1773 } 1774 1775 /** 1776 * __d_lookup_rcu - search for a dentry (racy, store-free) 1777 * @parent: parent dentry 1778 * @name: qstr of name we wish to find 1779 * @seqp: returns d_seq value at the point where the dentry was found 1780 * @inode: returns dentry->d_inode when the inode was found valid. 1781 * Returns: dentry, or NULL 1782 * 1783 * __d_lookup_rcu is the dcache lookup function for rcu-walk name 1784 * resolution (store-free path walking) design described in 1785 * Documentation/filesystems/path-lookup.txt. 1786 * 1787 * This is not to be used outside core vfs. 1788 * 1789 * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock 1790 * held, and rcu_read_lock held. The returned dentry must not be stored into 1791 * without taking d_lock and checking d_seq sequence count against @seq 1792 * returned here. 1793 * 1794 * A refcount may be taken on the found dentry with the __d_rcu_to_refcount 1795 * function. 1796 * 1797 * Alternatively, __d_lookup_rcu may be called again to look up the child of 1798 * the returned dentry, so long as its parent's seqlock is checked after the 1799 * child is looked up. Thus, an interlocking stepping of sequence lock checks 1800 * is formed, giving integrity down the path walk. 1801 * 1802 * NOTE! The caller *has* to check the resulting dentry against the sequence 1803 * number we've returned before using any of the resulting dentry state! 1804 */ 1805 struct dentry *__d_lookup_rcu(const struct dentry *parent, 1806 const struct qstr *name, 1807 unsigned *seqp, struct inode *inode) 1808 { 1809 u64 hashlen = name->hash_len; 1810 const unsigned char *str = name->name; 1811 struct hlist_bl_head *b = d_hash(parent, hashlen_hash(hashlen)); 1812 struct hlist_bl_node *node; 1813 struct dentry *dentry; 1814 1815 /* 1816 * Note: There is significant duplication with __d_lookup_rcu which is 1817 * required to prevent single threaded performance regressions 1818 * especially on architectures where smp_rmb (in seqcounts) are costly. 1819 * Keep the two functions in sync. 1820 */ 1821 1822 /* 1823 * The hash list is protected using RCU. 1824 * 1825 * Carefully use d_seq when comparing a candidate dentry, to avoid 1826 * races with d_move(). 1827 * 1828 * It is possible that concurrent renames can mess up our list 1829 * walk here and result in missing our dentry, resulting in the 1830 * false-negative result. d_lookup() protects against concurrent 1831 * renames using rename_lock seqlock. 1832 * 1833 * See Documentation/filesystems/path-lookup.txt for more details. 1834 */ 1835 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) { 1836 unsigned seq; 1837 1838 seqretry: 1839 /* 1840 * The dentry sequence count protects us from concurrent 1841 * renames, and thus protects inode, parent and name fields. 1842 * 1843 * The caller must perform a seqcount check in order 1844 * to do anything useful with the returned dentry, 1845 * including using the 'd_inode' pointer. 1846 * 1847 * NOTE! We do a "raw" seqcount_begin here. That means that 1848 * we don't wait for the sequence count to stabilize if it 1849 * is in the middle of a sequence change. If we do the slow 1850 * dentry compare, we will do seqretries until it is stable, 1851 * and if we end up with a successful lookup, we actually 1852 * want to exit RCU lookup anyway. 1853 */ 1854 seq = raw_seqcount_begin(&dentry->d_seq); 1855 if (dentry->d_parent != parent) 1856 continue; 1857 if (d_unhashed(dentry)) 1858 continue; 1859 *seqp = seq; 1860 1861 if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) { 1862 if (dentry->d_name.hash != hashlen_hash(hashlen)) 1863 continue; 1864 switch (slow_dentry_cmp(parent, inode, dentry, seq, name)) { 1865 case D_COMP_OK: 1866 return dentry; 1867 case D_COMP_NOMATCH: 1868 continue; 1869 default: 1870 goto seqretry; 1871 } 1872 } 1873 1874 if (dentry->d_name.hash_len != hashlen) 1875 continue; 1876 if (!dentry_cmp(dentry, str, hashlen_len(hashlen))) 1877 return dentry; 1878 } 1879 return NULL; 1880 } 1881 1882 /** 1883 * d_lookup - search for a dentry 1884 * @parent: parent dentry 1885 * @name: qstr of name we wish to find 1886 * Returns: dentry, or NULL 1887 * 1888 * d_lookup searches the children of the parent dentry for the name in 1889 * question. If the dentry is found its reference count is incremented and the 1890 * dentry is returned. The caller must use dput to free the entry when it has 1891 * finished using it. %NULL is returned if the dentry does not exist. 1892 */ 1893 struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name) 1894 { 1895 struct dentry *dentry; 1896 unsigned seq; 1897 1898 do { 1899 seq = read_seqbegin(&rename_lock); 1900 dentry = __d_lookup(parent, name); 1901 if (dentry) 1902 break; 1903 } while (read_seqretry(&rename_lock, seq)); 1904 return dentry; 1905 } 1906 EXPORT_SYMBOL(d_lookup); 1907 1908 /** 1909 * __d_lookup - search for a dentry (racy) 1910 * @parent: parent dentry 1911 * @name: qstr of name we wish to find 1912 * Returns: dentry, or NULL 1913 * 1914 * __d_lookup is like d_lookup, however it may (rarely) return a 1915 * false-negative result due to unrelated rename activity. 1916 * 1917 * __d_lookup is slightly faster by avoiding rename_lock read seqlock, 1918 * however it must be used carefully, eg. with a following d_lookup in 1919 * the case of failure. 1920 * 1921 * __d_lookup callers must be commented. 1922 */ 1923 struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name) 1924 { 1925 unsigned int len = name->len; 1926 unsigned int hash = name->hash; 1927 const unsigned char *str = name->name; 1928 struct hlist_bl_head *b = d_hash(parent, hash); 1929 struct hlist_bl_node *node; 1930 struct dentry *found = NULL; 1931 struct dentry *dentry; 1932 1933 /* 1934 * Note: There is significant duplication with __d_lookup_rcu which is 1935 * required to prevent single threaded performance regressions 1936 * especially on architectures where smp_rmb (in seqcounts) are costly. 1937 * Keep the two functions in sync. 1938 */ 1939 1940 /* 1941 * The hash list is protected using RCU. 1942 * 1943 * Take d_lock when comparing a candidate dentry, to avoid races 1944 * with d_move(). 1945 * 1946 * It is possible that concurrent renames can mess up our list 1947 * walk here and result in missing our dentry, resulting in the 1948 * false-negative result. d_lookup() protects against concurrent 1949 * renames using rename_lock seqlock. 1950 * 1951 * See Documentation/filesystems/path-lookup.txt for more details. 1952 */ 1953 rcu_read_lock(); 1954 1955 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) { 1956 1957 if (dentry->d_name.hash != hash) 1958 continue; 1959 1960 spin_lock(&dentry->d_lock); 1961 if (dentry->d_parent != parent) 1962 goto next; 1963 if (d_unhashed(dentry)) 1964 goto next; 1965 1966 /* 1967 * It is safe to compare names since d_move() cannot 1968 * change the qstr (protected by d_lock). 1969 */ 1970 if (parent->d_flags & DCACHE_OP_COMPARE) { 1971 int tlen = dentry->d_name.len; 1972 const char *tname = dentry->d_name.name; 1973 if (parent->d_op->d_compare(parent, parent->d_inode, 1974 dentry, dentry->d_inode, 1975 tlen, tname, name)) 1976 goto next; 1977 } else { 1978 if (dentry->d_name.len != len) 1979 goto next; 1980 if (dentry_cmp(dentry, str, len)) 1981 goto next; 1982 } 1983 1984 dentry->d_count++; 1985 found = dentry; 1986 spin_unlock(&dentry->d_lock); 1987 break; 1988 next: 1989 spin_unlock(&dentry->d_lock); 1990 } 1991 rcu_read_unlock(); 1992 1993 return found; 1994 } 1995 1996 /** 1997 * d_hash_and_lookup - hash the qstr then search for a dentry 1998 * @dir: Directory to search in 1999 * @name: qstr of name we wish to find 2000 * 2001 * On lookup failure NULL is returned; on bad name - ERR_PTR(-error) 2002 */ 2003 struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name) 2004 { 2005 /* 2006 * Check for a fs-specific hash function. Note that we must 2007 * calculate the standard hash first, as the d_op->d_hash() 2008 * routine may choose to leave the hash value unchanged. 2009 */ 2010 name->hash = full_name_hash(name->name, name->len); 2011 if (dir->d_flags & DCACHE_OP_HASH) { 2012 int err = dir->d_op->d_hash(dir, dir->d_inode, name); 2013 if (unlikely(err < 0)) 2014 return ERR_PTR(err); 2015 } 2016 return d_lookup(dir, name); 2017 } 2018 EXPORT_SYMBOL(d_hash_and_lookup); 2019 2020 /** 2021 * d_validate - verify dentry provided from insecure source (deprecated) 2022 * @dentry: The dentry alleged to be valid child of @dparent 2023 * @dparent: The parent dentry (known to be valid) 2024 * 2025 * An insecure source has sent us a dentry, here we verify it and dget() it. 2026 * This is used by ncpfs in its readdir implementation. 2027 * Zero is returned in the dentry is invalid. 2028 * 2029 * This function is slow for big directories, and deprecated, do not use it. 2030 */ 2031 int d_validate(struct dentry *dentry, struct dentry *dparent) 2032 { 2033 struct dentry *child; 2034 2035 spin_lock(&dparent->d_lock); 2036 list_for_each_entry(child, &dparent->d_subdirs, d_u.d_child) { 2037 if (dentry == child) { 2038 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED); 2039 __dget_dlock(dentry); 2040 spin_unlock(&dentry->d_lock); 2041 spin_unlock(&dparent->d_lock); 2042 return 1; 2043 } 2044 } 2045 spin_unlock(&dparent->d_lock); 2046 2047 return 0; 2048 } 2049 EXPORT_SYMBOL(d_validate); 2050 2051 /* 2052 * When a file is deleted, we have two options: 2053 * - turn this dentry into a negative dentry 2054 * - unhash this dentry and free it. 2055 * 2056 * Usually, we want to just turn this into 2057 * a negative dentry, but if anybody else is 2058 * currently using the dentry or the inode 2059 * we can't do that and we fall back on removing 2060 * it from the hash queues and waiting for 2061 * it to be deleted later when it has no users 2062 */ 2063 2064 /** 2065 * d_delete - delete a dentry 2066 * @dentry: The dentry to delete 2067 * 2068 * Turn the dentry into a negative dentry if possible, otherwise 2069 * remove it from the hash queues so it can be deleted later 2070 */ 2071 2072 void d_delete(struct dentry * dentry) 2073 { 2074 struct inode *inode; 2075 int isdir = 0; 2076 /* 2077 * Are we the only user? 2078 */ 2079 again: 2080 spin_lock(&dentry->d_lock); 2081 inode = dentry->d_inode; 2082 isdir = S_ISDIR(inode->i_mode); 2083 if (dentry->d_count == 1) { 2084 if (!spin_trylock(&inode->i_lock)) { 2085 spin_unlock(&dentry->d_lock); 2086 cpu_relax(); 2087 goto again; 2088 } 2089 dentry->d_flags &= ~DCACHE_CANT_MOUNT; 2090 dentry_unlink_inode(dentry); 2091 fsnotify_nameremove(dentry, isdir); 2092 return; 2093 } 2094 2095 if (!d_unhashed(dentry)) 2096 __d_drop(dentry); 2097 2098 spin_unlock(&dentry->d_lock); 2099 2100 fsnotify_nameremove(dentry, isdir); 2101 } 2102 EXPORT_SYMBOL(d_delete); 2103 2104 static void __d_rehash(struct dentry * entry, struct hlist_bl_head *b) 2105 { 2106 BUG_ON(!d_unhashed(entry)); 2107 hlist_bl_lock(b); 2108 entry->d_flags |= DCACHE_RCUACCESS; 2109 hlist_bl_add_head_rcu(&entry->d_hash, b); 2110 hlist_bl_unlock(b); 2111 } 2112 2113 static void _d_rehash(struct dentry * entry) 2114 { 2115 __d_rehash(entry, d_hash(entry->d_parent, entry->d_name.hash)); 2116 } 2117 2118 /** 2119 * d_rehash - add an entry back to the hash 2120 * @entry: dentry to add to the hash 2121 * 2122 * Adds a dentry to the hash according to its name. 2123 */ 2124 2125 void d_rehash(struct dentry * entry) 2126 { 2127 spin_lock(&entry->d_lock); 2128 _d_rehash(entry); 2129 spin_unlock(&entry->d_lock); 2130 } 2131 EXPORT_SYMBOL(d_rehash); 2132 2133 /** 2134 * dentry_update_name_case - update case insensitive dentry with a new name 2135 * @dentry: dentry to be updated 2136 * @name: new name 2137 * 2138 * Update a case insensitive dentry with new case of name. 2139 * 2140 * dentry must have been returned by d_lookup with name @name. Old and new 2141 * name lengths must match (ie. no d_compare which allows mismatched name 2142 * lengths). 2143 * 2144 * Parent inode i_mutex must be held over d_lookup and into this call (to 2145 * keep renames and concurrent inserts, and readdir(2) away). 2146 */ 2147 void dentry_update_name_case(struct dentry *dentry, struct qstr *name) 2148 { 2149 BUG_ON(!mutex_is_locked(&dentry->d_parent->d_inode->i_mutex)); 2150 BUG_ON(dentry->d_name.len != name->len); /* d_lookup gives this */ 2151 2152 spin_lock(&dentry->d_lock); 2153 write_seqcount_begin(&dentry->d_seq); 2154 memcpy((unsigned char *)dentry->d_name.name, name->name, name->len); 2155 write_seqcount_end(&dentry->d_seq); 2156 spin_unlock(&dentry->d_lock); 2157 } 2158 EXPORT_SYMBOL(dentry_update_name_case); 2159 2160 static void switch_names(struct dentry *dentry, struct dentry *target) 2161 { 2162 if (dname_external(target)) { 2163 if (dname_external(dentry)) { 2164 /* 2165 * Both external: swap the pointers 2166 */ 2167 swap(target->d_name.name, dentry->d_name.name); 2168 } else { 2169 /* 2170 * dentry:internal, target:external. Steal target's 2171 * storage and make target internal. 2172 */ 2173 memcpy(target->d_iname, dentry->d_name.name, 2174 dentry->d_name.len + 1); 2175 dentry->d_name.name = target->d_name.name; 2176 target->d_name.name = target->d_iname; 2177 } 2178 } else { 2179 if (dname_external(dentry)) { 2180 /* 2181 * dentry:external, target:internal. Give dentry's 2182 * storage to target and make dentry internal 2183 */ 2184 memcpy(dentry->d_iname, target->d_name.name, 2185 target->d_name.len + 1); 2186 target->d_name.name = dentry->d_name.name; 2187 dentry->d_name.name = dentry->d_iname; 2188 } else { 2189 /* 2190 * Both are internal. Just copy target to dentry 2191 */ 2192 memcpy(dentry->d_iname, target->d_name.name, 2193 target->d_name.len + 1); 2194 dentry->d_name.len = target->d_name.len; 2195 return; 2196 } 2197 } 2198 swap(dentry->d_name.len, target->d_name.len); 2199 } 2200 2201 static void dentry_lock_for_move(struct dentry *dentry, struct dentry *target) 2202 { 2203 /* 2204 * XXXX: do we really need to take target->d_lock? 2205 */ 2206 if (IS_ROOT(dentry) || dentry->d_parent == target->d_parent) 2207 spin_lock(&target->d_parent->d_lock); 2208 else { 2209 if (d_ancestor(dentry->d_parent, target->d_parent)) { 2210 spin_lock(&dentry->d_parent->d_lock); 2211 spin_lock_nested(&target->d_parent->d_lock, 2212 DENTRY_D_LOCK_NESTED); 2213 } else { 2214 spin_lock(&target->d_parent->d_lock); 2215 spin_lock_nested(&dentry->d_parent->d_lock, 2216 DENTRY_D_LOCK_NESTED); 2217 } 2218 } 2219 if (target < dentry) { 2220 spin_lock_nested(&target->d_lock, 2); 2221 spin_lock_nested(&dentry->d_lock, 3); 2222 } else { 2223 spin_lock_nested(&dentry->d_lock, 2); 2224 spin_lock_nested(&target->d_lock, 3); 2225 } 2226 } 2227 2228 static void dentry_unlock_parents_for_move(struct dentry *dentry, 2229 struct dentry *target) 2230 { 2231 if (target->d_parent != dentry->d_parent) 2232 spin_unlock(&dentry->d_parent->d_lock); 2233 if (target->d_parent != target) 2234 spin_unlock(&target->d_parent->d_lock); 2235 } 2236 2237 /* 2238 * When switching names, the actual string doesn't strictly have to 2239 * be preserved in the target - because we're dropping the target 2240 * anyway. As such, we can just do a simple memcpy() to copy over 2241 * the new name before we switch. 2242 * 2243 * Note that we have to be a lot more careful about getting the hash 2244 * switched - we have to switch the hash value properly even if it 2245 * then no longer matches the actual (corrupted) string of the target. 2246 * The hash value has to match the hash queue that the dentry is on.. 2247 */ 2248 /* 2249 * __d_move - move a dentry 2250 * @dentry: entry to move 2251 * @target: new dentry 2252 * 2253 * Update the dcache to reflect the move of a file name. Negative 2254 * dcache entries should not be moved in this way. Caller must hold 2255 * rename_lock, the i_mutex of the source and target directories, 2256 * and the sb->s_vfs_rename_mutex if they differ. See lock_rename(). 2257 */ 2258 static void __d_move(struct dentry * dentry, struct dentry * target) 2259 { 2260 if (!dentry->d_inode) 2261 printk(KERN_WARNING "VFS: moving negative dcache entry\n"); 2262 2263 BUG_ON(d_ancestor(dentry, target)); 2264 BUG_ON(d_ancestor(target, dentry)); 2265 2266 dentry_lock_for_move(dentry, target); 2267 2268 write_seqcount_begin(&dentry->d_seq); 2269 write_seqcount_begin(&target->d_seq); 2270 2271 /* __d_drop does write_seqcount_barrier, but they're OK to nest. */ 2272 2273 /* 2274 * Move the dentry to the target hash queue. Don't bother checking 2275 * for the same hash queue because of how unlikely it is. 2276 */ 2277 __d_drop(dentry); 2278 __d_rehash(dentry, d_hash(target->d_parent, target->d_name.hash)); 2279 2280 /* Unhash the target: dput() will then get rid of it */ 2281 __d_drop(target); 2282 2283 list_del(&dentry->d_u.d_child); 2284 list_del(&target->d_u.d_child); 2285 2286 /* Switch the names.. */ 2287 switch_names(dentry, target); 2288 swap(dentry->d_name.hash, target->d_name.hash); 2289 2290 /* ... and switch the parents */ 2291 if (IS_ROOT(dentry)) { 2292 dentry->d_parent = target->d_parent; 2293 target->d_parent = target; 2294 INIT_LIST_HEAD(&target->d_u.d_child); 2295 } else { 2296 swap(dentry->d_parent, target->d_parent); 2297 2298 /* And add them back to the (new) parent lists */ 2299 list_add(&target->d_u.d_child, &target->d_parent->d_subdirs); 2300 } 2301 2302 list_add(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs); 2303 2304 write_seqcount_end(&target->d_seq); 2305 write_seqcount_end(&dentry->d_seq); 2306 2307 dentry_unlock_parents_for_move(dentry, target); 2308 spin_unlock(&target->d_lock); 2309 fsnotify_d_move(dentry); 2310 spin_unlock(&dentry->d_lock); 2311 } 2312 2313 /* 2314 * d_move - move a dentry 2315 * @dentry: entry to move 2316 * @target: new dentry 2317 * 2318 * Update the dcache to reflect the move of a file name. Negative 2319 * dcache entries should not be moved in this way. See the locking 2320 * requirements for __d_move. 2321 */ 2322 void d_move(struct dentry *dentry, struct dentry *target) 2323 { 2324 write_seqlock(&rename_lock); 2325 __d_move(dentry, target); 2326 write_sequnlock(&rename_lock); 2327 } 2328 EXPORT_SYMBOL(d_move); 2329 2330 /** 2331 * d_ancestor - search for an ancestor 2332 * @p1: ancestor dentry 2333 * @p2: child dentry 2334 * 2335 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is 2336 * an ancestor of p2, else NULL. 2337 */ 2338 struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2) 2339 { 2340 struct dentry *p; 2341 2342 for (p = p2; !IS_ROOT(p); p = p->d_parent) { 2343 if (p->d_parent == p1) 2344 return p; 2345 } 2346 return NULL; 2347 } 2348 2349 /* 2350 * This helper attempts to cope with remotely renamed directories 2351 * 2352 * It assumes that the caller is already holding 2353 * dentry->d_parent->d_inode->i_mutex, inode->i_lock and rename_lock 2354 * 2355 * Note: If ever the locking in lock_rename() changes, then please 2356 * remember to update this too... 2357 */ 2358 static struct dentry *__d_unalias(struct inode *inode, 2359 struct dentry *dentry, struct dentry *alias) 2360 { 2361 struct mutex *m1 = NULL, *m2 = NULL; 2362 struct dentry *ret = ERR_PTR(-EBUSY); 2363 2364 /* If alias and dentry share a parent, then no extra locks required */ 2365 if (alias->d_parent == dentry->d_parent) 2366 goto out_unalias; 2367 2368 /* See lock_rename() */ 2369 if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex)) 2370 goto out_err; 2371 m1 = &dentry->d_sb->s_vfs_rename_mutex; 2372 if (!mutex_trylock(&alias->d_parent->d_inode->i_mutex)) 2373 goto out_err; 2374 m2 = &alias->d_parent->d_inode->i_mutex; 2375 out_unalias: 2376 if (likely(!d_mountpoint(alias))) { 2377 __d_move(alias, dentry); 2378 ret = alias; 2379 } 2380 out_err: 2381 spin_unlock(&inode->i_lock); 2382 if (m2) 2383 mutex_unlock(m2); 2384 if (m1) 2385 mutex_unlock(m1); 2386 return ret; 2387 } 2388 2389 /* 2390 * Prepare an anonymous dentry for life in the superblock's dentry tree as a 2391 * named dentry in place of the dentry to be replaced. 2392 * returns with anon->d_lock held! 2393 */ 2394 static void __d_materialise_dentry(struct dentry *dentry, struct dentry *anon) 2395 { 2396 struct dentry *dparent; 2397 2398 dentry_lock_for_move(anon, dentry); 2399 2400 write_seqcount_begin(&dentry->d_seq); 2401 write_seqcount_begin(&anon->d_seq); 2402 2403 dparent = dentry->d_parent; 2404 2405 switch_names(dentry, anon); 2406 swap(dentry->d_name.hash, anon->d_name.hash); 2407 2408 dentry->d_parent = dentry; 2409 list_del_init(&dentry->d_u.d_child); 2410 anon->d_parent = dparent; 2411 list_del(&anon->d_u.d_child); 2412 list_add(&anon->d_u.d_child, &dparent->d_subdirs); 2413 2414 write_seqcount_end(&dentry->d_seq); 2415 write_seqcount_end(&anon->d_seq); 2416 2417 dentry_unlock_parents_for_move(anon, dentry); 2418 spin_unlock(&dentry->d_lock); 2419 2420 /* anon->d_lock still locked, returns locked */ 2421 anon->d_flags &= ~DCACHE_DISCONNECTED; 2422 } 2423 2424 /** 2425 * d_materialise_unique - introduce an inode into the tree 2426 * @dentry: candidate dentry 2427 * @inode: inode to bind to the dentry, to which aliases may be attached 2428 * 2429 * Introduces an dentry into the tree, substituting an extant disconnected 2430 * root directory alias in its place if there is one. Caller must hold the 2431 * i_mutex of the parent directory. 2432 */ 2433 struct dentry *d_materialise_unique(struct dentry *dentry, struct inode *inode) 2434 { 2435 struct dentry *actual; 2436 2437 BUG_ON(!d_unhashed(dentry)); 2438 2439 if (!inode) { 2440 actual = dentry; 2441 __d_instantiate(dentry, NULL); 2442 d_rehash(actual); 2443 goto out_nolock; 2444 } 2445 2446 spin_lock(&inode->i_lock); 2447 2448 if (S_ISDIR(inode->i_mode)) { 2449 struct dentry *alias; 2450 2451 /* Does an aliased dentry already exist? */ 2452 alias = __d_find_alias(inode, 0); 2453 if (alias) { 2454 actual = alias; 2455 write_seqlock(&rename_lock); 2456 2457 if (d_ancestor(alias, dentry)) { 2458 /* Check for loops */ 2459 actual = ERR_PTR(-ELOOP); 2460 spin_unlock(&inode->i_lock); 2461 } else if (IS_ROOT(alias)) { 2462 /* Is this an anonymous mountpoint that we 2463 * could splice into our tree? */ 2464 __d_materialise_dentry(dentry, alias); 2465 write_sequnlock(&rename_lock); 2466 __d_drop(alias); 2467 goto found; 2468 } else { 2469 /* Nope, but we must(!) avoid directory 2470 * aliasing. This drops inode->i_lock */ 2471 actual = __d_unalias(inode, dentry, alias); 2472 } 2473 write_sequnlock(&rename_lock); 2474 if (IS_ERR(actual)) { 2475 if (PTR_ERR(actual) == -ELOOP) 2476 pr_warn_ratelimited( 2477 "VFS: Lookup of '%s' in %s %s" 2478 " would have caused loop\n", 2479 dentry->d_name.name, 2480 inode->i_sb->s_type->name, 2481 inode->i_sb->s_id); 2482 dput(alias); 2483 } 2484 goto out_nolock; 2485 } 2486 } 2487 2488 /* Add a unique reference */ 2489 actual = __d_instantiate_unique(dentry, inode); 2490 if (!actual) 2491 actual = dentry; 2492 else 2493 BUG_ON(!d_unhashed(actual)); 2494 2495 spin_lock(&actual->d_lock); 2496 found: 2497 _d_rehash(actual); 2498 spin_unlock(&actual->d_lock); 2499 spin_unlock(&inode->i_lock); 2500 out_nolock: 2501 if (actual == dentry) { 2502 security_d_instantiate(dentry, inode); 2503 return NULL; 2504 } 2505 2506 iput(inode); 2507 return actual; 2508 } 2509 EXPORT_SYMBOL_GPL(d_materialise_unique); 2510 2511 static int prepend(char **buffer, int *buflen, const char *str, int namelen) 2512 { 2513 *buflen -= namelen; 2514 if (*buflen < 0) 2515 return -ENAMETOOLONG; 2516 *buffer -= namelen; 2517 memcpy(*buffer, str, namelen); 2518 return 0; 2519 } 2520 2521 static int prepend_name(char **buffer, int *buflen, struct qstr *name) 2522 { 2523 return prepend(buffer, buflen, name->name, name->len); 2524 } 2525 2526 /** 2527 * prepend_path - Prepend path string to a buffer 2528 * @path: the dentry/vfsmount to report 2529 * @root: root vfsmnt/dentry 2530 * @buffer: pointer to the end of the buffer 2531 * @buflen: pointer to buffer length 2532 * 2533 * Caller holds the rename_lock. 2534 */ 2535 static int prepend_path(const struct path *path, 2536 const struct path *root, 2537 char **buffer, int *buflen) 2538 { 2539 struct dentry *dentry = path->dentry; 2540 struct vfsmount *vfsmnt = path->mnt; 2541 struct mount *mnt = real_mount(vfsmnt); 2542 bool slash = false; 2543 int error = 0; 2544 2545 br_read_lock(&vfsmount_lock); 2546 while (dentry != root->dentry || vfsmnt != root->mnt) { 2547 struct dentry * parent; 2548 2549 if (dentry == vfsmnt->mnt_root || IS_ROOT(dentry)) { 2550 /* Global root? */ 2551 if (!mnt_has_parent(mnt)) 2552 goto global_root; 2553 dentry = mnt->mnt_mountpoint; 2554 mnt = mnt->mnt_parent; 2555 vfsmnt = &mnt->mnt; 2556 continue; 2557 } 2558 parent = dentry->d_parent; 2559 prefetch(parent); 2560 spin_lock(&dentry->d_lock); 2561 error = prepend_name(buffer, buflen, &dentry->d_name); 2562 spin_unlock(&dentry->d_lock); 2563 if (!error) 2564 error = prepend(buffer, buflen, "/", 1); 2565 if (error) 2566 break; 2567 2568 slash = true; 2569 dentry = parent; 2570 } 2571 2572 if (!error && !slash) 2573 error = prepend(buffer, buflen, "/", 1); 2574 2575 out: 2576 br_read_unlock(&vfsmount_lock); 2577 return error; 2578 2579 global_root: 2580 /* 2581 * Filesystems needing to implement special "root names" 2582 * should do so with ->d_dname() 2583 */ 2584 if (IS_ROOT(dentry) && 2585 (dentry->d_name.len != 1 || dentry->d_name.name[0] != '/')) { 2586 WARN(1, "Root dentry has weird name <%.*s>\n", 2587 (int) dentry->d_name.len, dentry->d_name.name); 2588 } 2589 if (!slash) 2590 error = prepend(buffer, buflen, "/", 1); 2591 if (!error) 2592 error = is_mounted(vfsmnt) ? 1 : 2; 2593 goto out; 2594 } 2595 2596 /** 2597 * __d_path - return the path of a dentry 2598 * @path: the dentry/vfsmount to report 2599 * @root: root vfsmnt/dentry 2600 * @buf: buffer to return value in 2601 * @buflen: buffer length 2602 * 2603 * Convert a dentry into an ASCII path name. 2604 * 2605 * Returns a pointer into the buffer or an error code if the 2606 * path was too long. 2607 * 2608 * "buflen" should be positive. 2609 * 2610 * If the path is not reachable from the supplied root, return %NULL. 2611 */ 2612 char *__d_path(const struct path *path, 2613 const struct path *root, 2614 char *buf, int buflen) 2615 { 2616 char *res = buf + buflen; 2617 int error; 2618 2619 prepend(&res, &buflen, "\0", 1); 2620 write_seqlock(&rename_lock); 2621 error = prepend_path(path, root, &res, &buflen); 2622 write_sequnlock(&rename_lock); 2623 2624 if (error < 0) 2625 return ERR_PTR(error); 2626 if (error > 0) 2627 return NULL; 2628 return res; 2629 } 2630 2631 char *d_absolute_path(const struct path *path, 2632 char *buf, int buflen) 2633 { 2634 struct path root = {}; 2635 char *res = buf + buflen; 2636 int error; 2637 2638 prepend(&res, &buflen, "\0", 1); 2639 write_seqlock(&rename_lock); 2640 error = prepend_path(path, &root, &res, &buflen); 2641 write_sequnlock(&rename_lock); 2642 2643 if (error > 1) 2644 error = -EINVAL; 2645 if (error < 0) 2646 return ERR_PTR(error); 2647 return res; 2648 } 2649 2650 /* 2651 * same as __d_path but appends "(deleted)" for unlinked files. 2652 */ 2653 static int path_with_deleted(const struct path *path, 2654 const struct path *root, 2655 char **buf, int *buflen) 2656 { 2657 prepend(buf, buflen, "\0", 1); 2658 if (d_unlinked(path->dentry)) { 2659 int error = prepend(buf, buflen, " (deleted)", 10); 2660 if (error) 2661 return error; 2662 } 2663 2664 return prepend_path(path, root, buf, buflen); 2665 } 2666 2667 static int prepend_unreachable(char **buffer, int *buflen) 2668 { 2669 return prepend(buffer, buflen, "(unreachable)", 13); 2670 } 2671 2672 /** 2673 * d_path - return the path of a dentry 2674 * @path: path to report 2675 * @buf: buffer to return value in 2676 * @buflen: buffer length 2677 * 2678 * Convert a dentry into an ASCII path name. If the entry has been deleted 2679 * the string " (deleted)" is appended. Note that this is ambiguous. 2680 * 2681 * Returns a pointer into the buffer or an error code if the path was 2682 * too long. Note: Callers should use the returned pointer, not the passed 2683 * in buffer, to use the name! The implementation often starts at an offset 2684 * into the buffer, and may leave 0 bytes at the start. 2685 * 2686 * "buflen" should be positive. 2687 */ 2688 char *d_path(const struct path *path, char *buf, int buflen) 2689 { 2690 char *res = buf + buflen; 2691 struct path root; 2692 int error; 2693 2694 /* 2695 * We have various synthetic filesystems that never get mounted. On 2696 * these filesystems dentries are never used for lookup purposes, and 2697 * thus don't need to be hashed. They also don't need a name until a 2698 * user wants to identify the object in /proc/pid/fd/. The little hack 2699 * below allows us to generate a name for these objects on demand: 2700 */ 2701 if (path->dentry->d_op && path->dentry->d_op->d_dname) 2702 return path->dentry->d_op->d_dname(path->dentry, buf, buflen); 2703 2704 get_fs_root(current->fs, &root); 2705 write_seqlock(&rename_lock); 2706 error = path_with_deleted(path, &root, &res, &buflen); 2707 if (error < 0) 2708 res = ERR_PTR(error); 2709 write_sequnlock(&rename_lock); 2710 path_put(&root); 2711 return res; 2712 } 2713 EXPORT_SYMBOL(d_path); 2714 2715 /* 2716 * Helper function for dentry_operations.d_dname() members 2717 */ 2718 char *dynamic_dname(struct dentry *dentry, char *buffer, int buflen, 2719 const char *fmt, ...) 2720 { 2721 va_list args; 2722 char temp[64]; 2723 int sz; 2724 2725 va_start(args, fmt); 2726 sz = vsnprintf(temp, sizeof(temp), fmt, args) + 1; 2727 va_end(args); 2728 2729 if (sz > sizeof(temp) || sz > buflen) 2730 return ERR_PTR(-ENAMETOOLONG); 2731 2732 buffer += buflen - sz; 2733 return memcpy(buffer, temp, sz); 2734 } 2735 2736 /* 2737 * Write full pathname from the root of the filesystem into the buffer. 2738 */ 2739 static char *__dentry_path(struct dentry *dentry, char *buf, int buflen) 2740 { 2741 char *end = buf + buflen; 2742 char *retval; 2743 2744 prepend(&end, &buflen, "\0", 1); 2745 if (buflen < 1) 2746 goto Elong; 2747 /* Get '/' right */ 2748 retval = end-1; 2749 *retval = '/'; 2750 2751 while (!IS_ROOT(dentry)) { 2752 struct dentry *parent = dentry->d_parent; 2753 int error; 2754 2755 prefetch(parent); 2756 spin_lock(&dentry->d_lock); 2757 error = prepend_name(&end, &buflen, &dentry->d_name); 2758 spin_unlock(&dentry->d_lock); 2759 if (error != 0 || prepend(&end, &buflen, "/", 1) != 0) 2760 goto Elong; 2761 2762 retval = end; 2763 dentry = parent; 2764 } 2765 return retval; 2766 Elong: 2767 return ERR_PTR(-ENAMETOOLONG); 2768 } 2769 2770 char *dentry_path_raw(struct dentry *dentry, char *buf, int buflen) 2771 { 2772 char *retval; 2773 2774 write_seqlock(&rename_lock); 2775 retval = __dentry_path(dentry, buf, buflen); 2776 write_sequnlock(&rename_lock); 2777 2778 return retval; 2779 } 2780 EXPORT_SYMBOL(dentry_path_raw); 2781 2782 char *dentry_path(struct dentry *dentry, char *buf, int buflen) 2783 { 2784 char *p = NULL; 2785 char *retval; 2786 2787 write_seqlock(&rename_lock); 2788 if (d_unlinked(dentry)) { 2789 p = buf + buflen; 2790 if (prepend(&p, &buflen, "//deleted", 10) != 0) 2791 goto Elong; 2792 buflen++; 2793 } 2794 retval = __dentry_path(dentry, buf, buflen); 2795 write_sequnlock(&rename_lock); 2796 if (!IS_ERR(retval) && p) 2797 *p = '/'; /* restore '/' overriden with '\0' */ 2798 return retval; 2799 Elong: 2800 return ERR_PTR(-ENAMETOOLONG); 2801 } 2802 2803 /* 2804 * NOTE! The user-level library version returns a 2805 * character pointer. The kernel system call just 2806 * returns the length of the buffer filled (which 2807 * includes the ending '\0' character), or a negative 2808 * error value. So libc would do something like 2809 * 2810 * char *getcwd(char * buf, size_t size) 2811 * { 2812 * int retval; 2813 * 2814 * retval = sys_getcwd(buf, size); 2815 * if (retval >= 0) 2816 * return buf; 2817 * errno = -retval; 2818 * return NULL; 2819 * } 2820 */ 2821 SYSCALL_DEFINE2(getcwd, char __user *, buf, unsigned long, size) 2822 { 2823 int error; 2824 struct path pwd, root; 2825 char *page = (char *) __get_free_page(GFP_USER); 2826 2827 if (!page) 2828 return -ENOMEM; 2829 2830 get_fs_root_and_pwd(current->fs, &root, &pwd); 2831 2832 error = -ENOENT; 2833 write_seqlock(&rename_lock); 2834 if (!d_unlinked(pwd.dentry)) { 2835 unsigned long len; 2836 char *cwd = page + PAGE_SIZE; 2837 int buflen = PAGE_SIZE; 2838 2839 prepend(&cwd, &buflen, "\0", 1); 2840 error = prepend_path(&pwd, &root, &cwd, &buflen); 2841 write_sequnlock(&rename_lock); 2842 2843 if (error < 0) 2844 goto out; 2845 2846 /* Unreachable from current root */ 2847 if (error > 0) { 2848 error = prepend_unreachable(&cwd, &buflen); 2849 if (error) 2850 goto out; 2851 } 2852 2853 error = -ERANGE; 2854 len = PAGE_SIZE + page - cwd; 2855 if (len <= size) { 2856 error = len; 2857 if (copy_to_user(buf, cwd, len)) 2858 error = -EFAULT; 2859 } 2860 } else { 2861 write_sequnlock(&rename_lock); 2862 } 2863 2864 out: 2865 path_put(&pwd); 2866 path_put(&root); 2867 free_page((unsigned long) page); 2868 return error; 2869 } 2870 2871 /* 2872 * Test whether new_dentry is a subdirectory of old_dentry. 2873 * 2874 * Trivially implemented using the dcache structure 2875 */ 2876 2877 /** 2878 * is_subdir - is new dentry a subdirectory of old_dentry 2879 * @new_dentry: new dentry 2880 * @old_dentry: old dentry 2881 * 2882 * Returns 1 if new_dentry is a subdirectory of the parent (at any depth). 2883 * Returns 0 otherwise. 2884 * Caller must ensure that "new_dentry" is pinned before calling is_subdir() 2885 */ 2886 2887 int is_subdir(struct dentry *new_dentry, struct dentry *old_dentry) 2888 { 2889 int result; 2890 unsigned seq; 2891 2892 if (new_dentry == old_dentry) 2893 return 1; 2894 2895 do { 2896 /* for restarting inner loop in case of seq retry */ 2897 seq = read_seqbegin(&rename_lock); 2898 /* 2899 * Need rcu_readlock to protect against the d_parent trashing 2900 * due to d_move 2901 */ 2902 rcu_read_lock(); 2903 if (d_ancestor(old_dentry, new_dentry)) 2904 result = 1; 2905 else 2906 result = 0; 2907 rcu_read_unlock(); 2908 } while (read_seqretry(&rename_lock, seq)); 2909 2910 return result; 2911 } 2912 2913 void d_genocide(struct dentry *root) 2914 { 2915 struct dentry *this_parent; 2916 struct list_head *next; 2917 unsigned seq; 2918 int locked = 0; 2919 2920 seq = read_seqbegin(&rename_lock); 2921 again: 2922 this_parent = root; 2923 spin_lock(&this_parent->d_lock); 2924 repeat: 2925 next = this_parent->d_subdirs.next; 2926 resume: 2927 while (next != &this_parent->d_subdirs) { 2928 struct list_head *tmp = next; 2929 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child); 2930 next = tmp->next; 2931 2932 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED); 2933 if (d_unhashed(dentry) || !dentry->d_inode) { 2934 spin_unlock(&dentry->d_lock); 2935 continue; 2936 } 2937 if (!list_empty(&dentry->d_subdirs)) { 2938 spin_unlock(&this_parent->d_lock); 2939 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_); 2940 this_parent = dentry; 2941 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_); 2942 goto repeat; 2943 } 2944 if (!(dentry->d_flags & DCACHE_GENOCIDE)) { 2945 dentry->d_flags |= DCACHE_GENOCIDE; 2946 dentry->d_count--; 2947 } 2948 spin_unlock(&dentry->d_lock); 2949 } 2950 if (this_parent != root) { 2951 struct dentry *child = this_parent; 2952 if (!(this_parent->d_flags & DCACHE_GENOCIDE)) { 2953 this_parent->d_flags |= DCACHE_GENOCIDE; 2954 this_parent->d_count--; 2955 } 2956 this_parent = try_to_ascend(this_parent, locked, seq); 2957 if (!this_parent) 2958 goto rename_retry; 2959 next = child->d_u.d_child.next; 2960 goto resume; 2961 } 2962 spin_unlock(&this_parent->d_lock); 2963 if (!locked && read_seqretry(&rename_lock, seq)) 2964 goto rename_retry; 2965 if (locked) 2966 write_sequnlock(&rename_lock); 2967 return; 2968 2969 rename_retry: 2970 if (locked) 2971 goto again; 2972 locked = 1; 2973 write_seqlock(&rename_lock); 2974 goto again; 2975 } 2976 2977 /** 2978 * find_inode_number - check for dentry with name 2979 * @dir: directory to check 2980 * @name: Name to find. 2981 * 2982 * Check whether a dentry already exists for the given name, 2983 * and return the inode number if it has an inode. Otherwise 2984 * 0 is returned. 2985 * 2986 * This routine is used to post-process directory listings for 2987 * filesystems using synthetic inode numbers, and is necessary 2988 * to keep getcwd() working. 2989 */ 2990 2991 ino_t find_inode_number(struct dentry *dir, struct qstr *name) 2992 { 2993 struct dentry * dentry; 2994 ino_t ino = 0; 2995 2996 dentry = d_hash_and_lookup(dir, name); 2997 if (!IS_ERR_OR_NULL(dentry)) { 2998 if (dentry->d_inode) 2999 ino = dentry->d_inode->i_ino; 3000 dput(dentry); 3001 } 3002 return ino; 3003 } 3004 EXPORT_SYMBOL(find_inode_number); 3005 3006 static __initdata unsigned long dhash_entries; 3007 static int __init set_dhash_entries(char *str) 3008 { 3009 if (!str) 3010 return 0; 3011 dhash_entries = simple_strtoul(str, &str, 0); 3012 return 1; 3013 } 3014 __setup("dhash_entries=", set_dhash_entries); 3015 3016 static void __init dcache_init_early(void) 3017 { 3018 unsigned int loop; 3019 3020 /* If hashes are distributed across NUMA nodes, defer 3021 * hash allocation until vmalloc space is available. 3022 */ 3023 if (hashdist) 3024 return; 3025 3026 dentry_hashtable = 3027 alloc_large_system_hash("Dentry cache", 3028 sizeof(struct hlist_bl_head), 3029 dhash_entries, 3030 13, 3031 HASH_EARLY, 3032 &d_hash_shift, 3033 &d_hash_mask, 3034 0, 3035 0); 3036 3037 for (loop = 0; loop < (1U << d_hash_shift); loop++) 3038 INIT_HLIST_BL_HEAD(dentry_hashtable + loop); 3039 } 3040 3041 static void __init dcache_init(void) 3042 { 3043 unsigned int loop; 3044 3045 /* 3046 * A constructor could be added for stable state like the lists, 3047 * but it is probably not worth it because of the cache nature 3048 * of the dcache. 3049 */ 3050 dentry_cache = KMEM_CACHE(dentry, 3051 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD); 3052 3053 /* Hash may have been set up in dcache_init_early */ 3054 if (!hashdist) 3055 return; 3056 3057 dentry_hashtable = 3058 alloc_large_system_hash("Dentry cache", 3059 sizeof(struct hlist_bl_head), 3060 dhash_entries, 3061 13, 3062 0, 3063 &d_hash_shift, 3064 &d_hash_mask, 3065 0, 3066 0); 3067 3068 for (loop = 0; loop < (1U << d_hash_shift); loop++) 3069 INIT_HLIST_BL_HEAD(dentry_hashtable + loop); 3070 } 3071 3072 /* SLAB cache for __getname() consumers */ 3073 struct kmem_cache *names_cachep __read_mostly; 3074 EXPORT_SYMBOL(names_cachep); 3075 3076 EXPORT_SYMBOL(d_genocide); 3077 3078 void __init vfs_caches_init_early(void) 3079 { 3080 dcache_init_early(); 3081 inode_init_early(); 3082 } 3083 3084 void __init vfs_caches_init(unsigned long mempages) 3085 { 3086 unsigned long reserve; 3087 3088 /* Base hash sizes on available memory, with a reserve equal to 3089 150% of current kernel size */ 3090 3091 reserve = min((mempages - nr_free_pages()) * 3/2, mempages - 1); 3092 mempages -= reserve; 3093 3094 names_cachep = kmem_cache_create("names_cache", PATH_MAX, 0, 3095 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL); 3096 3097 dcache_init(); 3098 inode_init(); 3099 files_init(mempages); 3100 mnt_init(); 3101 bdev_cache_init(); 3102 chrdev_init(); 3103 } 3104