xref: /openbmc/linux/fs/dcache.c (revision 97da55fc)
1 /*
2  * fs/dcache.c
3  *
4  * Complete reimplementation
5  * (C) 1997 Thomas Schoebel-Theuer,
6  * with heavy changes by Linus Torvalds
7  */
8 
9 /*
10  * Notes on the allocation strategy:
11  *
12  * The dcache is a master of the icache - whenever a dcache entry
13  * exists, the inode will always exist. "iput()" is done either when
14  * the dcache entry is deleted or garbage collected.
15  */
16 
17 #include <linux/syscalls.h>
18 #include <linux/string.h>
19 #include <linux/mm.h>
20 #include <linux/fs.h>
21 #include <linux/fsnotify.h>
22 #include <linux/slab.h>
23 #include <linux/init.h>
24 #include <linux/hash.h>
25 #include <linux/cache.h>
26 #include <linux/export.h>
27 #include <linux/mount.h>
28 #include <linux/file.h>
29 #include <asm/uaccess.h>
30 #include <linux/security.h>
31 #include <linux/seqlock.h>
32 #include <linux/swap.h>
33 #include <linux/bootmem.h>
34 #include <linux/fs_struct.h>
35 #include <linux/hardirq.h>
36 #include <linux/bit_spinlock.h>
37 #include <linux/rculist_bl.h>
38 #include <linux/prefetch.h>
39 #include <linux/ratelimit.h>
40 #include "internal.h"
41 #include "mount.h"
42 
43 /*
44  * Usage:
45  * dcache->d_inode->i_lock protects:
46  *   - i_dentry, d_alias, d_inode of aliases
47  * dcache_hash_bucket lock protects:
48  *   - the dcache hash table
49  * s_anon bl list spinlock protects:
50  *   - the s_anon list (see __d_drop)
51  * dcache_lru_lock protects:
52  *   - the dcache lru lists and counters
53  * d_lock protects:
54  *   - d_flags
55  *   - d_name
56  *   - d_lru
57  *   - d_count
58  *   - d_unhashed()
59  *   - d_parent and d_subdirs
60  *   - childrens' d_child and d_parent
61  *   - d_alias, d_inode
62  *
63  * Ordering:
64  * dentry->d_inode->i_lock
65  *   dentry->d_lock
66  *     dcache_lru_lock
67  *     dcache_hash_bucket lock
68  *     s_anon lock
69  *
70  * If there is an ancestor relationship:
71  * dentry->d_parent->...->d_parent->d_lock
72  *   ...
73  *     dentry->d_parent->d_lock
74  *       dentry->d_lock
75  *
76  * If no ancestor relationship:
77  * if (dentry1 < dentry2)
78  *   dentry1->d_lock
79  *     dentry2->d_lock
80  */
81 int sysctl_vfs_cache_pressure __read_mostly = 100;
82 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
83 
84 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(dcache_lru_lock);
85 __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
86 
87 EXPORT_SYMBOL(rename_lock);
88 
89 static struct kmem_cache *dentry_cache __read_mostly;
90 
91 /*
92  * This is the single most critical data structure when it comes
93  * to the dcache: the hashtable for lookups. Somebody should try
94  * to make this good - I've just made it work.
95  *
96  * This hash-function tries to avoid losing too many bits of hash
97  * information, yet avoid using a prime hash-size or similar.
98  */
99 #define D_HASHBITS     d_hash_shift
100 #define D_HASHMASK     d_hash_mask
101 
102 static unsigned int d_hash_mask __read_mostly;
103 static unsigned int d_hash_shift __read_mostly;
104 
105 static struct hlist_bl_head *dentry_hashtable __read_mostly;
106 
107 static inline struct hlist_bl_head *d_hash(const struct dentry *parent,
108 					unsigned int hash)
109 {
110 	hash += (unsigned long) parent / L1_CACHE_BYTES;
111 	hash = hash + (hash >> D_HASHBITS);
112 	return dentry_hashtable + (hash & D_HASHMASK);
113 }
114 
115 /* Statistics gathering. */
116 struct dentry_stat_t dentry_stat = {
117 	.age_limit = 45,
118 };
119 
120 static DEFINE_PER_CPU(unsigned int, nr_dentry);
121 
122 #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
123 static int get_nr_dentry(void)
124 {
125 	int i;
126 	int sum = 0;
127 	for_each_possible_cpu(i)
128 		sum += per_cpu(nr_dentry, i);
129 	return sum < 0 ? 0 : sum;
130 }
131 
132 int proc_nr_dentry(ctl_table *table, int write, void __user *buffer,
133 		   size_t *lenp, loff_t *ppos)
134 {
135 	dentry_stat.nr_dentry = get_nr_dentry();
136 	return proc_dointvec(table, write, buffer, lenp, ppos);
137 }
138 #endif
139 
140 /*
141  * Compare 2 name strings, return 0 if they match, otherwise non-zero.
142  * The strings are both count bytes long, and count is non-zero.
143  */
144 #ifdef CONFIG_DCACHE_WORD_ACCESS
145 
146 #include <asm/word-at-a-time.h>
147 /*
148  * NOTE! 'cs' and 'scount' come from a dentry, so it has a
149  * aligned allocation for this particular component. We don't
150  * strictly need the load_unaligned_zeropad() safety, but it
151  * doesn't hurt either.
152  *
153  * In contrast, 'ct' and 'tcount' can be from a pathname, and do
154  * need the careful unaligned handling.
155  */
156 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
157 {
158 	unsigned long a,b,mask;
159 
160 	for (;;) {
161 		a = *(unsigned long *)cs;
162 		b = load_unaligned_zeropad(ct);
163 		if (tcount < sizeof(unsigned long))
164 			break;
165 		if (unlikely(a != b))
166 			return 1;
167 		cs += sizeof(unsigned long);
168 		ct += sizeof(unsigned long);
169 		tcount -= sizeof(unsigned long);
170 		if (!tcount)
171 			return 0;
172 	}
173 	mask = ~(~0ul << tcount*8);
174 	return unlikely(!!((a ^ b) & mask));
175 }
176 
177 #else
178 
179 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
180 {
181 	do {
182 		if (*cs != *ct)
183 			return 1;
184 		cs++;
185 		ct++;
186 		tcount--;
187 	} while (tcount);
188 	return 0;
189 }
190 
191 #endif
192 
193 static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount)
194 {
195 	const unsigned char *cs;
196 	/*
197 	 * Be careful about RCU walk racing with rename:
198 	 * use ACCESS_ONCE to fetch the name pointer.
199 	 *
200 	 * NOTE! Even if a rename will mean that the length
201 	 * was not loaded atomically, we don't care. The
202 	 * RCU walk will check the sequence count eventually,
203 	 * and catch it. And we won't overrun the buffer,
204 	 * because we're reading the name pointer atomically,
205 	 * and a dentry name is guaranteed to be properly
206 	 * terminated with a NUL byte.
207 	 *
208 	 * End result: even if 'len' is wrong, we'll exit
209 	 * early because the data cannot match (there can
210 	 * be no NUL in the ct/tcount data)
211 	 */
212 	cs = ACCESS_ONCE(dentry->d_name.name);
213 	smp_read_barrier_depends();
214 	return dentry_string_cmp(cs, ct, tcount);
215 }
216 
217 static void __d_free(struct rcu_head *head)
218 {
219 	struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
220 
221 	WARN_ON(!hlist_unhashed(&dentry->d_alias));
222 	if (dname_external(dentry))
223 		kfree(dentry->d_name.name);
224 	kmem_cache_free(dentry_cache, dentry);
225 }
226 
227 /*
228  * no locks, please.
229  */
230 static void d_free(struct dentry *dentry)
231 {
232 	BUG_ON(dentry->d_count);
233 	this_cpu_dec(nr_dentry);
234 	if (dentry->d_op && dentry->d_op->d_release)
235 		dentry->d_op->d_release(dentry);
236 
237 	/* if dentry was never visible to RCU, immediate free is OK */
238 	if (!(dentry->d_flags & DCACHE_RCUACCESS))
239 		__d_free(&dentry->d_u.d_rcu);
240 	else
241 		call_rcu(&dentry->d_u.d_rcu, __d_free);
242 }
243 
244 /**
245  * dentry_rcuwalk_barrier - invalidate in-progress rcu-walk lookups
246  * @dentry: the target dentry
247  * After this call, in-progress rcu-walk path lookup will fail. This
248  * should be called after unhashing, and after changing d_inode (if
249  * the dentry has not already been unhashed).
250  */
251 static inline void dentry_rcuwalk_barrier(struct dentry *dentry)
252 {
253 	assert_spin_locked(&dentry->d_lock);
254 	/* Go through a barrier */
255 	write_seqcount_barrier(&dentry->d_seq);
256 }
257 
258 /*
259  * Release the dentry's inode, using the filesystem
260  * d_iput() operation if defined. Dentry has no refcount
261  * and is unhashed.
262  */
263 static void dentry_iput(struct dentry * dentry)
264 	__releases(dentry->d_lock)
265 	__releases(dentry->d_inode->i_lock)
266 {
267 	struct inode *inode = dentry->d_inode;
268 	if (inode) {
269 		dentry->d_inode = NULL;
270 		hlist_del_init(&dentry->d_alias);
271 		spin_unlock(&dentry->d_lock);
272 		spin_unlock(&inode->i_lock);
273 		if (!inode->i_nlink)
274 			fsnotify_inoderemove(inode);
275 		if (dentry->d_op && dentry->d_op->d_iput)
276 			dentry->d_op->d_iput(dentry, inode);
277 		else
278 			iput(inode);
279 	} else {
280 		spin_unlock(&dentry->d_lock);
281 	}
282 }
283 
284 /*
285  * Release the dentry's inode, using the filesystem
286  * d_iput() operation if defined. dentry remains in-use.
287  */
288 static void dentry_unlink_inode(struct dentry * dentry)
289 	__releases(dentry->d_lock)
290 	__releases(dentry->d_inode->i_lock)
291 {
292 	struct inode *inode = dentry->d_inode;
293 	dentry->d_inode = NULL;
294 	hlist_del_init(&dentry->d_alias);
295 	dentry_rcuwalk_barrier(dentry);
296 	spin_unlock(&dentry->d_lock);
297 	spin_unlock(&inode->i_lock);
298 	if (!inode->i_nlink)
299 		fsnotify_inoderemove(inode);
300 	if (dentry->d_op && dentry->d_op->d_iput)
301 		dentry->d_op->d_iput(dentry, inode);
302 	else
303 		iput(inode);
304 }
305 
306 /*
307  * dentry_lru_(add|del|prune|move_tail) must be called with d_lock held.
308  */
309 static void dentry_lru_add(struct dentry *dentry)
310 {
311 	if (list_empty(&dentry->d_lru)) {
312 		spin_lock(&dcache_lru_lock);
313 		list_add(&dentry->d_lru, &dentry->d_sb->s_dentry_lru);
314 		dentry->d_sb->s_nr_dentry_unused++;
315 		dentry_stat.nr_unused++;
316 		spin_unlock(&dcache_lru_lock);
317 	}
318 }
319 
320 static void __dentry_lru_del(struct dentry *dentry)
321 {
322 	list_del_init(&dentry->d_lru);
323 	dentry->d_flags &= ~DCACHE_SHRINK_LIST;
324 	dentry->d_sb->s_nr_dentry_unused--;
325 	dentry_stat.nr_unused--;
326 }
327 
328 /*
329  * Remove a dentry with references from the LRU.
330  */
331 static void dentry_lru_del(struct dentry *dentry)
332 {
333 	if (!list_empty(&dentry->d_lru)) {
334 		spin_lock(&dcache_lru_lock);
335 		__dentry_lru_del(dentry);
336 		spin_unlock(&dcache_lru_lock);
337 	}
338 }
339 
340 /*
341  * Remove a dentry that is unreferenced and about to be pruned
342  * (unhashed and destroyed) from the LRU, and inform the file system.
343  * This wrapper should be called _prior_ to unhashing a victim dentry.
344  */
345 static void dentry_lru_prune(struct dentry *dentry)
346 {
347 	if (!list_empty(&dentry->d_lru)) {
348 		if (dentry->d_flags & DCACHE_OP_PRUNE)
349 			dentry->d_op->d_prune(dentry);
350 
351 		spin_lock(&dcache_lru_lock);
352 		__dentry_lru_del(dentry);
353 		spin_unlock(&dcache_lru_lock);
354 	}
355 }
356 
357 static void dentry_lru_move_list(struct dentry *dentry, struct list_head *list)
358 {
359 	spin_lock(&dcache_lru_lock);
360 	if (list_empty(&dentry->d_lru)) {
361 		list_add_tail(&dentry->d_lru, list);
362 		dentry->d_sb->s_nr_dentry_unused++;
363 		dentry_stat.nr_unused++;
364 	} else {
365 		list_move_tail(&dentry->d_lru, list);
366 	}
367 	spin_unlock(&dcache_lru_lock);
368 }
369 
370 /**
371  * d_kill - kill dentry and return parent
372  * @dentry: dentry to kill
373  * @parent: parent dentry
374  *
375  * The dentry must already be unhashed and removed from the LRU.
376  *
377  * If this is the root of the dentry tree, return NULL.
378  *
379  * dentry->d_lock and parent->d_lock must be held by caller, and are dropped by
380  * d_kill.
381  */
382 static struct dentry *d_kill(struct dentry *dentry, struct dentry *parent)
383 	__releases(dentry->d_lock)
384 	__releases(parent->d_lock)
385 	__releases(dentry->d_inode->i_lock)
386 {
387 	list_del(&dentry->d_u.d_child);
388 	/*
389 	 * Inform try_to_ascend() that we are no longer attached to the
390 	 * dentry tree
391 	 */
392 	dentry->d_flags |= DCACHE_DENTRY_KILLED;
393 	if (parent)
394 		spin_unlock(&parent->d_lock);
395 	dentry_iput(dentry);
396 	/*
397 	 * dentry_iput drops the locks, at which point nobody (except
398 	 * transient RCU lookups) can reach this dentry.
399 	 */
400 	d_free(dentry);
401 	return parent;
402 }
403 
404 /*
405  * Unhash a dentry without inserting an RCU walk barrier or checking that
406  * dentry->d_lock is locked.  The caller must take care of that, if
407  * appropriate.
408  */
409 static void __d_shrink(struct dentry *dentry)
410 {
411 	if (!d_unhashed(dentry)) {
412 		struct hlist_bl_head *b;
413 		if (unlikely(dentry->d_flags & DCACHE_DISCONNECTED))
414 			b = &dentry->d_sb->s_anon;
415 		else
416 			b = d_hash(dentry->d_parent, dentry->d_name.hash);
417 
418 		hlist_bl_lock(b);
419 		__hlist_bl_del(&dentry->d_hash);
420 		dentry->d_hash.pprev = NULL;
421 		hlist_bl_unlock(b);
422 	}
423 }
424 
425 /**
426  * d_drop - drop a dentry
427  * @dentry: dentry to drop
428  *
429  * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
430  * be found through a VFS lookup any more. Note that this is different from
431  * deleting the dentry - d_delete will try to mark the dentry negative if
432  * possible, giving a successful _negative_ lookup, while d_drop will
433  * just make the cache lookup fail.
434  *
435  * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
436  * reason (NFS timeouts or autofs deletes).
437  *
438  * __d_drop requires dentry->d_lock.
439  */
440 void __d_drop(struct dentry *dentry)
441 {
442 	if (!d_unhashed(dentry)) {
443 		__d_shrink(dentry);
444 		dentry_rcuwalk_barrier(dentry);
445 	}
446 }
447 EXPORT_SYMBOL(__d_drop);
448 
449 void d_drop(struct dentry *dentry)
450 {
451 	spin_lock(&dentry->d_lock);
452 	__d_drop(dentry);
453 	spin_unlock(&dentry->d_lock);
454 }
455 EXPORT_SYMBOL(d_drop);
456 
457 /*
458  * Finish off a dentry we've decided to kill.
459  * dentry->d_lock must be held, returns with it unlocked.
460  * If ref is non-zero, then decrement the refcount too.
461  * Returns dentry requiring refcount drop, or NULL if we're done.
462  */
463 static inline struct dentry *dentry_kill(struct dentry *dentry, int ref)
464 	__releases(dentry->d_lock)
465 {
466 	struct inode *inode;
467 	struct dentry *parent;
468 
469 	inode = dentry->d_inode;
470 	if (inode && !spin_trylock(&inode->i_lock)) {
471 relock:
472 		spin_unlock(&dentry->d_lock);
473 		cpu_relax();
474 		return dentry; /* try again with same dentry */
475 	}
476 	if (IS_ROOT(dentry))
477 		parent = NULL;
478 	else
479 		parent = dentry->d_parent;
480 	if (parent && !spin_trylock(&parent->d_lock)) {
481 		if (inode)
482 			spin_unlock(&inode->i_lock);
483 		goto relock;
484 	}
485 
486 	if (ref)
487 		dentry->d_count--;
488 	/*
489 	 * if dentry was on the d_lru list delete it from there.
490 	 * inform the fs via d_prune that this dentry is about to be
491 	 * unhashed and destroyed.
492 	 */
493 	dentry_lru_prune(dentry);
494 	/* if it was on the hash then remove it */
495 	__d_drop(dentry);
496 	return d_kill(dentry, parent);
497 }
498 
499 /*
500  * This is dput
501  *
502  * This is complicated by the fact that we do not want to put
503  * dentries that are no longer on any hash chain on the unused
504  * list: we'd much rather just get rid of them immediately.
505  *
506  * However, that implies that we have to traverse the dentry
507  * tree upwards to the parents which might _also_ now be
508  * scheduled for deletion (it may have been only waiting for
509  * its last child to go away).
510  *
511  * This tail recursion is done by hand as we don't want to depend
512  * on the compiler to always get this right (gcc generally doesn't).
513  * Real recursion would eat up our stack space.
514  */
515 
516 /*
517  * dput - release a dentry
518  * @dentry: dentry to release
519  *
520  * Release a dentry. This will drop the usage count and if appropriate
521  * call the dentry unlink method as well as removing it from the queues and
522  * releasing its resources. If the parent dentries were scheduled for release
523  * they too may now get deleted.
524  */
525 void dput(struct dentry *dentry)
526 {
527 	if (!dentry)
528 		return;
529 
530 repeat:
531 	if (dentry->d_count == 1)
532 		might_sleep();
533 	spin_lock(&dentry->d_lock);
534 	BUG_ON(!dentry->d_count);
535 	if (dentry->d_count > 1) {
536 		dentry->d_count--;
537 		spin_unlock(&dentry->d_lock);
538 		return;
539 	}
540 
541 	if (dentry->d_flags & DCACHE_OP_DELETE) {
542 		if (dentry->d_op->d_delete(dentry))
543 			goto kill_it;
544 	}
545 
546 	/* Unreachable? Get rid of it */
547  	if (d_unhashed(dentry))
548 		goto kill_it;
549 
550 	dentry->d_flags |= DCACHE_REFERENCED;
551 	dentry_lru_add(dentry);
552 
553 	dentry->d_count--;
554 	spin_unlock(&dentry->d_lock);
555 	return;
556 
557 kill_it:
558 	dentry = dentry_kill(dentry, 1);
559 	if (dentry)
560 		goto repeat;
561 }
562 EXPORT_SYMBOL(dput);
563 
564 /**
565  * d_invalidate - invalidate a dentry
566  * @dentry: dentry to invalidate
567  *
568  * Try to invalidate the dentry if it turns out to be
569  * possible. If there are other dentries that can be
570  * reached through this one we can't delete it and we
571  * return -EBUSY. On success we return 0.
572  *
573  * no dcache lock.
574  */
575 
576 int d_invalidate(struct dentry * dentry)
577 {
578 	/*
579 	 * If it's already been dropped, return OK.
580 	 */
581 	spin_lock(&dentry->d_lock);
582 	if (d_unhashed(dentry)) {
583 		spin_unlock(&dentry->d_lock);
584 		return 0;
585 	}
586 	/*
587 	 * Check whether to do a partial shrink_dcache
588 	 * to get rid of unused child entries.
589 	 */
590 	if (!list_empty(&dentry->d_subdirs)) {
591 		spin_unlock(&dentry->d_lock);
592 		shrink_dcache_parent(dentry);
593 		spin_lock(&dentry->d_lock);
594 	}
595 
596 	/*
597 	 * Somebody else still using it?
598 	 *
599 	 * If it's a directory, we can't drop it
600 	 * for fear of somebody re-populating it
601 	 * with children (even though dropping it
602 	 * would make it unreachable from the root,
603 	 * we might still populate it if it was a
604 	 * working directory or similar).
605 	 * We also need to leave mountpoints alone,
606 	 * directory or not.
607 	 */
608 	if (dentry->d_count > 1 && dentry->d_inode) {
609 		if (S_ISDIR(dentry->d_inode->i_mode) || d_mountpoint(dentry)) {
610 			spin_unlock(&dentry->d_lock);
611 			return -EBUSY;
612 		}
613 	}
614 
615 	__d_drop(dentry);
616 	spin_unlock(&dentry->d_lock);
617 	return 0;
618 }
619 EXPORT_SYMBOL(d_invalidate);
620 
621 /* This must be called with d_lock held */
622 static inline void __dget_dlock(struct dentry *dentry)
623 {
624 	dentry->d_count++;
625 }
626 
627 static inline void __dget(struct dentry *dentry)
628 {
629 	spin_lock(&dentry->d_lock);
630 	__dget_dlock(dentry);
631 	spin_unlock(&dentry->d_lock);
632 }
633 
634 struct dentry *dget_parent(struct dentry *dentry)
635 {
636 	struct dentry *ret;
637 
638 repeat:
639 	/*
640 	 * Don't need rcu_dereference because we re-check it was correct under
641 	 * the lock.
642 	 */
643 	rcu_read_lock();
644 	ret = dentry->d_parent;
645 	spin_lock(&ret->d_lock);
646 	if (unlikely(ret != dentry->d_parent)) {
647 		spin_unlock(&ret->d_lock);
648 		rcu_read_unlock();
649 		goto repeat;
650 	}
651 	rcu_read_unlock();
652 	BUG_ON(!ret->d_count);
653 	ret->d_count++;
654 	spin_unlock(&ret->d_lock);
655 	return ret;
656 }
657 EXPORT_SYMBOL(dget_parent);
658 
659 /**
660  * d_find_alias - grab a hashed alias of inode
661  * @inode: inode in question
662  * @want_discon:  flag, used by d_splice_alias, to request
663  *          that only a DISCONNECTED alias be returned.
664  *
665  * If inode has a hashed alias, or is a directory and has any alias,
666  * acquire the reference to alias and return it. Otherwise return NULL.
667  * Notice that if inode is a directory there can be only one alias and
668  * it can be unhashed only if it has no children, or if it is the root
669  * of a filesystem.
670  *
671  * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
672  * any other hashed alias over that one unless @want_discon is set,
673  * in which case only return an IS_ROOT, DCACHE_DISCONNECTED alias.
674  */
675 static struct dentry *__d_find_alias(struct inode *inode, int want_discon)
676 {
677 	struct dentry *alias, *discon_alias;
678 
679 again:
680 	discon_alias = NULL;
681 	hlist_for_each_entry(alias, &inode->i_dentry, d_alias) {
682 		spin_lock(&alias->d_lock);
683  		if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
684 			if (IS_ROOT(alias) &&
685 			    (alias->d_flags & DCACHE_DISCONNECTED)) {
686 				discon_alias = alias;
687 			} else if (!want_discon) {
688 				__dget_dlock(alias);
689 				spin_unlock(&alias->d_lock);
690 				return alias;
691 			}
692 		}
693 		spin_unlock(&alias->d_lock);
694 	}
695 	if (discon_alias) {
696 		alias = discon_alias;
697 		spin_lock(&alias->d_lock);
698 		if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
699 			if (IS_ROOT(alias) &&
700 			    (alias->d_flags & DCACHE_DISCONNECTED)) {
701 				__dget_dlock(alias);
702 				spin_unlock(&alias->d_lock);
703 				return alias;
704 			}
705 		}
706 		spin_unlock(&alias->d_lock);
707 		goto again;
708 	}
709 	return NULL;
710 }
711 
712 struct dentry *d_find_alias(struct inode *inode)
713 {
714 	struct dentry *de = NULL;
715 
716 	if (!hlist_empty(&inode->i_dentry)) {
717 		spin_lock(&inode->i_lock);
718 		de = __d_find_alias(inode, 0);
719 		spin_unlock(&inode->i_lock);
720 	}
721 	return de;
722 }
723 EXPORT_SYMBOL(d_find_alias);
724 
725 /*
726  *	Try to kill dentries associated with this inode.
727  * WARNING: you must own a reference to inode.
728  */
729 void d_prune_aliases(struct inode *inode)
730 {
731 	struct dentry *dentry;
732 restart:
733 	spin_lock(&inode->i_lock);
734 	hlist_for_each_entry(dentry, &inode->i_dentry, d_alias) {
735 		spin_lock(&dentry->d_lock);
736 		if (!dentry->d_count) {
737 			__dget_dlock(dentry);
738 			__d_drop(dentry);
739 			spin_unlock(&dentry->d_lock);
740 			spin_unlock(&inode->i_lock);
741 			dput(dentry);
742 			goto restart;
743 		}
744 		spin_unlock(&dentry->d_lock);
745 	}
746 	spin_unlock(&inode->i_lock);
747 }
748 EXPORT_SYMBOL(d_prune_aliases);
749 
750 /*
751  * Try to throw away a dentry - free the inode, dput the parent.
752  * Requires dentry->d_lock is held, and dentry->d_count == 0.
753  * Releases dentry->d_lock.
754  *
755  * This may fail if locks cannot be acquired no problem, just try again.
756  */
757 static void try_prune_one_dentry(struct dentry *dentry)
758 	__releases(dentry->d_lock)
759 {
760 	struct dentry *parent;
761 
762 	parent = dentry_kill(dentry, 0);
763 	/*
764 	 * If dentry_kill returns NULL, we have nothing more to do.
765 	 * if it returns the same dentry, trylocks failed. In either
766 	 * case, just loop again.
767 	 *
768 	 * Otherwise, we need to prune ancestors too. This is necessary
769 	 * to prevent quadratic behavior of shrink_dcache_parent(), but
770 	 * is also expected to be beneficial in reducing dentry cache
771 	 * fragmentation.
772 	 */
773 	if (!parent)
774 		return;
775 	if (parent == dentry)
776 		return;
777 
778 	/* Prune ancestors. */
779 	dentry = parent;
780 	while (dentry) {
781 		spin_lock(&dentry->d_lock);
782 		if (dentry->d_count > 1) {
783 			dentry->d_count--;
784 			spin_unlock(&dentry->d_lock);
785 			return;
786 		}
787 		dentry = dentry_kill(dentry, 1);
788 	}
789 }
790 
791 static void shrink_dentry_list(struct list_head *list)
792 {
793 	struct dentry *dentry;
794 
795 	rcu_read_lock();
796 	for (;;) {
797 		dentry = list_entry_rcu(list->prev, struct dentry, d_lru);
798 		if (&dentry->d_lru == list)
799 			break; /* empty */
800 		spin_lock(&dentry->d_lock);
801 		if (dentry != list_entry(list->prev, struct dentry, d_lru)) {
802 			spin_unlock(&dentry->d_lock);
803 			continue;
804 		}
805 
806 		/*
807 		 * We found an inuse dentry which was not removed from
808 		 * the LRU because of laziness during lookup.  Do not free
809 		 * it - just keep it off the LRU list.
810 		 */
811 		if (dentry->d_count) {
812 			dentry_lru_del(dentry);
813 			spin_unlock(&dentry->d_lock);
814 			continue;
815 		}
816 
817 		rcu_read_unlock();
818 
819 		try_prune_one_dentry(dentry);
820 
821 		rcu_read_lock();
822 	}
823 	rcu_read_unlock();
824 }
825 
826 /**
827  * prune_dcache_sb - shrink the dcache
828  * @sb: superblock
829  * @count: number of entries to try to free
830  *
831  * Attempt to shrink the superblock dcache LRU by @count entries. This is
832  * done when we need more memory an called from the superblock shrinker
833  * function.
834  *
835  * This function may fail to free any resources if all the dentries are in
836  * use.
837  */
838 void prune_dcache_sb(struct super_block *sb, int count)
839 {
840 	struct dentry *dentry;
841 	LIST_HEAD(referenced);
842 	LIST_HEAD(tmp);
843 
844 relock:
845 	spin_lock(&dcache_lru_lock);
846 	while (!list_empty(&sb->s_dentry_lru)) {
847 		dentry = list_entry(sb->s_dentry_lru.prev,
848 				struct dentry, d_lru);
849 		BUG_ON(dentry->d_sb != sb);
850 
851 		if (!spin_trylock(&dentry->d_lock)) {
852 			spin_unlock(&dcache_lru_lock);
853 			cpu_relax();
854 			goto relock;
855 		}
856 
857 		if (dentry->d_flags & DCACHE_REFERENCED) {
858 			dentry->d_flags &= ~DCACHE_REFERENCED;
859 			list_move(&dentry->d_lru, &referenced);
860 			spin_unlock(&dentry->d_lock);
861 		} else {
862 			list_move_tail(&dentry->d_lru, &tmp);
863 			dentry->d_flags |= DCACHE_SHRINK_LIST;
864 			spin_unlock(&dentry->d_lock);
865 			if (!--count)
866 				break;
867 		}
868 		cond_resched_lock(&dcache_lru_lock);
869 	}
870 	if (!list_empty(&referenced))
871 		list_splice(&referenced, &sb->s_dentry_lru);
872 	spin_unlock(&dcache_lru_lock);
873 
874 	shrink_dentry_list(&tmp);
875 }
876 
877 /**
878  * shrink_dcache_sb - shrink dcache for a superblock
879  * @sb: superblock
880  *
881  * Shrink the dcache for the specified super block. This is used to free
882  * the dcache before unmounting a file system.
883  */
884 void shrink_dcache_sb(struct super_block *sb)
885 {
886 	LIST_HEAD(tmp);
887 
888 	spin_lock(&dcache_lru_lock);
889 	while (!list_empty(&sb->s_dentry_lru)) {
890 		list_splice_init(&sb->s_dentry_lru, &tmp);
891 		spin_unlock(&dcache_lru_lock);
892 		shrink_dentry_list(&tmp);
893 		spin_lock(&dcache_lru_lock);
894 	}
895 	spin_unlock(&dcache_lru_lock);
896 }
897 EXPORT_SYMBOL(shrink_dcache_sb);
898 
899 /*
900  * destroy a single subtree of dentries for unmount
901  * - see the comments on shrink_dcache_for_umount() for a description of the
902  *   locking
903  */
904 static void shrink_dcache_for_umount_subtree(struct dentry *dentry)
905 {
906 	struct dentry *parent;
907 
908 	BUG_ON(!IS_ROOT(dentry));
909 
910 	for (;;) {
911 		/* descend to the first leaf in the current subtree */
912 		while (!list_empty(&dentry->d_subdirs))
913 			dentry = list_entry(dentry->d_subdirs.next,
914 					    struct dentry, d_u.d_child);
915 
916 		/* consume the dentries from this leaf up through its parents
917 		 * until we find one with children or run out altogether */
918 		do {
919 			struct inode *inode;
920 
921 			/*
922 			 * remove the dentry from the lru, and inform
923 			 * the fs that this dentry is about to be
924 			 * unhashed and destroyed.
925 			 */
926 			dentry_lru_prune(dentry);
927 			__d_shrink(dentry);
928 
929 			if (dentry->d_count != 0) {
930 				printk(KERN_ERR
931 				       "BUG: Dentry %p{i=%lx,n=%s}"
932 				       " still in use (%d)"
933 				       " [unmount of %s %s]\n",
934 				       dentry,
935 				       dentry->d_inode ?
936 				       dentry->d_inode->i_ino : 0UL,
937 				       dentry->d_name.name,
938 				       dentry->d_count,
939 				       dentry->d_sb->s_type->name,
940 				       dentry->d_sb->s_id);
941 				BUG();
942 			}
943 
944 			if (IS_ROOT(dentry)) {
945 				parent = NULL;
946 				list_del(&dentry->d_u.d_child);
947 			} else {
948 				parent = dentry->d_parent;
949 				parent->d_count--;
950 				list_del(&dentry->d_u.d_child);
951 			}
952 
953 			inode = dentry->d_inode;
954 			if (inode) {
955 				dentry->d_inode = NULL;
956 				hlist_del_init(&dentry->d_alias);
957 				if (dentry->d_op && dentry->d_op->d_iput)
958 					dentry->d_op->d_iput(dentry, inode);
959 				else
960 					iput(inode);
961 			}
962 
963 			d_free(dentry);
964 
965 			/* finished when we fall off the top of the tree,
966 			 * otherwise we ascend to the parent and move to the
967 			 * next sibling if there is one */
968 			if (!parent)
969 				return;
970 			dentry = parent;
971 		} while (list_empty(&dentry->d_subdirs));
972 
973 		dentry = list_entry(dentry->d_subdirs.next,
974 				    struct dentry, d_u.d_child);
975 	}
976 }
977 
978 /*
979  * destroy the dentries attached to a superblock on unmounting
980  * - we don't need to use dentry->d_lock because:
981  *   - the superblock is detached from all mountings and open files, so the
982  *     dentry trees will not be rearranged by the VFS
983  *   - s_umount is write-locked, so the memory pressure shrinker will ignore
984  *     any dentries belonging to this superblock that it comes across
985  *   - the filesystem itself is no longer permitted to rearrange the dentries
986  *     in this superblock
987  */
988 void shrink_dcache_for_umount(struct super_block *sb)
989 {
990 	struct dentry *dentry;
991 
992 	if (down_read_trylock(&sb->s_umount))
993 		BUG();
994 
995 	dentry = sb->s_root;
996 	sb->s_root = NULL;
997 	dentry->d_count--;
998 	shrink_dcache_for_umount_subtree(dentry);
999 
1000 	while (!hlist_bl_empty(&sb->s_anon)) {
1001 		dentry = hlist_bl_entry(hlist_bl_first(&sb->s_anon), struct dentry, d_hash);
1002 		shrink_dcache_for_umount_subtree(dentry);
1003 	}
1004 }
1005 
1006 /*
1007  * This tries to ascend one level of parenthood, but
1008  * we can race with renaming, so we need to re-check
1009  * the parenthood after dropping the lock and check
1010  * that the sequence number still matches.
1011  */
1012 static struct dentry *try_to_ascend(struct dentry *old, int locked, unsigned seq)
1013 {
1014 	struct dentry *new = old->d_parent;
1015 
1016 	rcu_read_lock();
1017 	spin_unlock(&old->d_lock);
1018 	spin_lock(&new->d_lock);
1019 
1020 	/*
1021 	 * might go back up the wrong parent if we have had a rename
1022 	 * or deletion
1023 	 */
1024 	if (new != old->d_parent ||
1025 		 (old->d_flags & DCACHE_DENTRY_KILLED) ||
1026 		 (!locked && read_seqretry(&rename_lock, seq))) {
1027 		spin_unlock(&new->d_lock);
1028 		new = NULL;
1029 	}
1030 	rcu_read_unlock();
1031 	return new;
1032 }
1033 
1034 
1035 /*
1036  * Search for at least 1 mount point in the dentry's subdirs.
1037  * We descend to the next level whenever the d_subdirs
1038  * list is non-empty and continue searching.
1039  */
1040 
1041 /**
1042  * have_submounts - check for mounts over a dentry
1043  * @parent: dentry to check.
1044  *
1045  * Return true if the parent or its subdirectories contain
1046  * a mount point
1047  */
1048 int have_submounts(struct dentry *parent)
1049 {
1050 	struct dentry *this_parent;
1051 	struct list_head *next;
1052 	unsigned seq;
1053 	int locked = 0;
1054 
1055 	seq = read_seqbegin(&rename_lock);
1056 again:
1057 	this_parent = parent;
1058 
1059 	if (d_mountpoint(parent))
1060 		goto positive;
1061 	spin_lock(&this_parent->d_lock);
1062 repeat:
1063 	next = this_parent->d_subdirs.next;
1064 resume:
1065 	while (next != &this_parent->d_subdirs) {
1066 		struct list_head *tmp = next;
1067 		struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
1068 		next = tmp->next;
1069 
1070 		spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1071 		/* Have we found a mount point ? */
1072 		if (d_mountpoint(dentry)) {
1073 			spin_unlock(&dentry->d_lock);
1074 			spin_unlock(&this_parent->d_lock);
1075 			goto positive;
1076 		}
1077 		if (!list_empty(&dentry->d_subdirs)) {
1078 			spin_unlock(&this_parent->d_lock);
1079 			spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1080 			this_parent = dentry;
1081 			spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1082 			goto repeat;
1083 		}
1084 		spin_unlock(&dentry->d_lock);
1085 	}
1086 	/*
1087 	 * All done at this level ... ascend and resume the search.
1088 	 */
1089 	if (this_parent != parent) {
1090 		struct dentry *child = this_parent;
1091 		this_parent = try_to_ascend(this_parent, locked, seq);
1092 		if (!this_parent)
1093 			goto rename_retry;
1094 		next = child->d_u.d_child.next;
1095 		goto resume;
1096 	}
1097 	spin_unlock(&this_parent->d_lock);
1098 	if (!locked && read_seqretry(&rename_lock, seq))
1099 		goto rename_retry;
1100 	if (locked)
1101 		write_sequnlock(&rename_lock);
1102 	return 0; /* No mount points found in tree */
1103 positive:
1104 	if (!locked && read_seqretry(&rename_lock, seq))
1105 		goto rename_retry;
1106 	if (locked)
1107 		write_sequnlock(&rename_lock);
1108 	return 1;
1109 
1110 rename_retry:
1111 	if (locked)
1112 		goto again;
1113 	locked = 1;
1114 	write_seqlock(&rename_lock);
1115 	goto again;
1116 }
1117 EXPORT_SYMBOL(have_submounts);
1118 
1119 /*
1120  * Search the dentry child list of the specified parent,
1121  * and move any unused dentries to the end of the unused
1122  * list for prune_dcache(). We descend to the next level
1123  * whenever the d_subdirs list is non-empty and continue
1124  * searching.
1125  *
1126  * It returns zero iff there are no unused children,
1127  * otherwise  it returns the number of children moved to
1128  * the end of the unused list. This may not be the total
1129  * number of unused children, because select_parent can
1130  * drop the lock and return early due to latency
1131  * constraints.
1132  */
1133 static int select_parent(struct dentry *parent, struct list_head *dispose)
1134 {
1135 	struct dentry *this_parent;
1136 	struct list_head *next;
1137 	unsigned seq;
1138 	int found = 0;
1139 	int locked = 0;
1140 
1141 	seq = read_seqbegin(&rename_lock);
1142 again:
1143 	this_parent = parent;
1144 	spin_lock(&this_parent->d_lock);
1145 repeat:
1146 	next = this_parent->d_subdirs.next;
1147 resume:
1148 	while (next != &this_parent->d_subdirs) {
1149 		struct list_head *tmp = next;
1150 		struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
1151 		next = tmp->next;
1152 
1153 		spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1154 
1155 		/*
1156 		 * move only zero ref count dentries to the dispose list.
1157 		 *
1158 		 * Those which are presently on the shrink list, being processed
1159 		 * by shrink_dentry_list(), shouldn't be moved.  Otherwise the
1160 		 * loop in shrink_dcache_parent() might not make any progress
1161 		 * and loop forever.
1162 		 */
1163 		if (dentry->d_count) {
1164 			dentry_lru_del(dentry);
1165 		} else if (!(dentry->d_flags & DCACHE_SHRINK_LIST)) {
1166 			dentry_lru_move_list(dentry, dispose);
1167 			dentry->d_flags |= DCACHE_SHRINK_LIST;
1168 			found++;
1169 		}
1170 		/*
1171 		 * We can return to the caller if we have found some (this
1172 		 * ensures forward progress). We'll be coming back to find
1173 		 * the rest.
1174 		 */
1175 		if (found && need_resched()) {
1176 			spin_unlock(&dentry->d_lock);
1177 			goto out;
1178 		}
1179 
1180 		/*
1181 		 * Descend a level if the d_subdirs list is non-empty.
1182 		 */
1183 		if (!list_empty(&dentry->d_subdirs)) {
1184 			spin_unlock(&this_parent->d_lock);
1185 			spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1186 			this_parent = dentry;
1187 			spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1188 			goto repeat;
1189 		}
1190 
1191 		spin_unlock(&dentry->d_lock);
1192 	}
1193 	/*
1194 	 * All done at this level ... ascend and resume the search.
1195 	 */
1196 	if (this_parent != parent) {
1197 		struct dentry *child = this_parent;
1198 		this_parent = try_to_ascend(this_parent, locked, seq);
1199 		if (!this_parent)
1200 			goto rename_retry;
1201 		next = child->d_u.d_child.next;
1202 		goto resume;
1203 	}
1204 out:
1205 	spin_unlock(&this_parent->d_lock);
1206 	if (!locked && read_seqretry(&rename_lock, seq))
1207 		goto rename_retry;
1208 	if (locked)
1209 		write_sequnlock(&rename_lock);
1210 	return found;
1211 
1212 rename_retry:
1213 	if (found)
1214 		return found;
1215 	if (locked)
1216 		goto again;
1217 	locked = 1;
1218 	write_seqlock(&rename_lock);
1219 	goto again;
1220 }
1221 
1222 /**
1223  * shrink_dcache_parent - prune dcache
1224  * @parent: parent of entries to prune
1225  *
1226  * Prune the dcache to remove unused children of the parent dentry.
1227  */
1228 void shrink_dcache_parent(struct dentry * parent)
1229 {
1230 	LIST_HEAD(dispose);
1231 	int found;
1232 
1233 	while ((found = select_parent(parent, &dispose)) != 0)
1234 		shrink_dentry_list(&dispose);
1235 }
1236 EXPORT_SYMBOL(shrink_dcache_parent);
1237 
1238 /**
1239  * __d_alloc	-	allocate a dcache entry
1240  * @sb: filesystem it will belong to
1241  * @name: qstr of the name
1242  *
1243  * Allocates a dentry. It returns %NULL if there is insufficient memory
1244  * available. On a success the dentry is returned. The name passed in is
1245  * copied and the copy passed in may be reused after this call.
1246  */
1247 
1248 struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name)
1249 {
1250 	struct dentry *dentry;
1251 	char *dname;
1252 
1253 	dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
1254 	if (!dentry)
1255 		return NULL;
1256 
1257 	/*
1258 	 * We guarantee that the inline name is always NUL-terminated.
1259 	 * This way the memcpy() done by the name switching in rename
1260 	 * will still always have a NUL at the end, even if we might
1261 	 * be overwriting an internal NUL character
1262 	 */
1263 	dentry->d_iname[DNAME_INLINE_LEN-1] = 0;
1264 	if (name->len > DNAME_INLINE_LEN-1) {
1265 		dname = kmalloc(name->len + 1, GFP_KERNEL);
1266 		if (!dname) {
1267 			kmem_cache_free(dentry_cache, dentry);
1268 			return NULL;
1269 		}
1270 	} else  {
1271 		dname = dentry->d_iname;
1272 	}
1273 
1274 	dentry->d_name.len = name->len;
1275 	dentry->d_name.hash = name->hash;
1276 	memcpy(dname, name->name, name->len);
1277 	dname[name->len] = 0;
1278 
1279 	/* Make sure we always see the terminating NUL character */
1280 	smp_wmb();
1281 	dentry->d_name.name = dname;
1282 
1283 	dentry->d_count = 1;
1284 	dentry->d_flags = 0;
1285 	spin_lock_init(&dentry->d_lock);
1286 	seqcount_init(&dentry->d_seq);
1287 	dentry->d_inode = NULL;
1288 	dentry->d_parent = dentry;
1289 	dentry->d_sb = sb;
1290 	dentry->d_op = NULL;
1291 	dentry->d_fsdata = NULL;
1292 	INIT_HLIST_BL_NODE(&dentry->d_hash);
1293 	INIT_LIST_HEAD(&dentry->d_lru);
1294 	INIT_LIST_HEAD(&dentry->d_subdirs);
1295 	INIT_HLIST_NODE(&dentry->d_alias);
1296 	INIT_LIST_HEAD(&dentry->d_u.d_child);
1297 	d_set_d_op(dentry, dentry->d_sb->s_d_op);
1298 
1299 	this_cpu_inc(nr_dentry);
1300 
1301 	return dentry;
1302 }
1303 
1304 /**
1305  * d_alloc	-	allocate a dcache entry
1306  * @parent: parent of entry to allocate
1307  * @name: qstr of the name
1308  *
1309  * Allocates a dentry. It returns %NULL if there is insufficient memory
1310  * available. On a success the dentry is returned. The name passed in is
1311  * copied and the copy passed in may be reused after this call.
1312  */
1313 struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1314 {
1315 	struct dentry *dentry = __d_alloc(parent->d_sb, name);
1316 	if (!dentry)
1317 		return NULL;
1318 
1319 	spin_lock(&parent->d_lock);
1320 	/*
1321 	 * don't need child lock because it is not subject
1322 	 * to concurrency here
1323 	 */
1324 	__dget_dlock(parent);
1325 	dentry->d_parent = parent;
1326 	list_add(&dentry->d_u.d_child, &parent->d_subdirs);
1327 	spin_unlock(&parent->d_lock);
1328 
1329 	return dentry;
1330 }
1331 EXPORT_SYMBOL(d_alloc);
1332 
1333 struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
1334 {
1335 	struct dentry *dentry = __d_alloc(sb, name);
1336 	if (dentry)
1337 		dentry->d_flags |= DCACHE_DISCONNECTED;
1338 	return dentry;
1339 }
1340 EXPORT_SYMBOL(d_alloc_pseudo);
1341 
1342 struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1343 {
1344 	struct qstr q;
1345 
1346 	q.name = name;
1347 	q.len = strlen(name);
1348 	q.hash = full_name_hash(q.name, q.len);
1349 	return d_alloc(parent, &q);
1350 }
1351 EXPORT_SYMBOL(d_alloc_name);
1352 
1353 void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1354 {
1355 	WARN_ON_ONCE(dentry->d_op);
1356 	WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH	|
1357 				DCACHE_OP_COMPARE	|
1358 				DCACHE_OP_REVALIDATE	|
1359 				DCACHE_OP_WEAK_REVALIDATE	|
1360 				DCACHE_OP_DELETE ));
1361 	dentry->d_op = op;
1362 	if (!op)
1363 		return;
1364 	if (op->d_hash)
1365 		dentry->d_flags |= DCACHE_OP_HASH;
1366 	if (op->d_compare)
1367 		dentry->d_flags |= DCACHE_OP_COMPARE;
1368 	if (op->d_revalidate)
1369 		dentry->d_flags |= DCACHE_OP_REVALIDATE;
1370 	if (op->d_weak_revalidate)
1371 		dentry->d_flags |= DCACHE_OP_WEAK_REVALIDATE;
1372 	if (op->d_delete)
1373 		dentry->d_flags |= DCACHE_OP_DELETE;
1374 	if (op->d_prune)
1375 		dentry->d_flags |= DCACHE_OP_PRUNE;
1376 
1377 }
1378 EXPORT_SYMBOL(d_set_d_op);
1379 
1380 static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1381 {
1382 	spin_lock(&dentry->d_lock);
1383 	if (inode) {
1384 		if (unlikely(IS_AUTOMOUNT(inode)))
1385 			dentry->d_flags |= DCACHE_NEED_AUTOMOUNT;
1386 		hlist_add_head(&dentry->d_alias, &inode->i_dentry);
1387 	}
1388 	dentry->d_inode = inode;
1389 	dentry_rcuwalk_barrier(dentry);
1390 	spin_unlock(&dentry->d_lock);
1391 	fsnotify_d_instantiate(dentry, inode);
1392 }
1393 
1394 /**
1395  * d_instantiate - fill in inode information for a dentry
1396  * @entry: dentry to complete
1397  * @inode: inode to attach to this dentry
1398  *
1399  * Fill in inode information in the entry.
1400  *
1401  * This turns negative dentries into productive full members
1402  * of society.
1403  *
1404  * NOTE! This assumes that the inode count has been incremented
1405  * (or otherwise set) by the caller to indicate that it is now
1406  * in use by the dcache.
1407  */
1408 
1409 void d_instantiate(struct dentry *entry, struct inode * inode)
1410 {
1411 	BUG_ON(!hlist_unhashed(&entry->d_alias));
1412 	if (inode)
1413 		spin_lock(&inode->i_lock);
1414 	__d_instantiate(entry, inode);
1415 	if (inode)
1416 		spin_unlock(&inode->i_lock);
1417 	security_d_instantiate(entry, inode);
1418 }
1419 EXPORT_SYMBOL(d_instantiate);
1420 
1421 /**
1422  * d_instantiate_unique - instantiate a non-aliased dentry
1423  * @entry: dentry to instantiate
1424  * @inode: inode to attach to this dentry
1425  *
1426  * Fill in inode information in the entry. On success, it returns NULL.
1427  * If an unhashed alias of "entry" already exists, then we return the
1428  * aliased dentry instead and drop one reference to inode.
1429  *
1430  * Note that in order to avoid conflicts with rename() etc, the caller
1431  * had better be holding the parent directory semaphore.
1432  *
1433  * This also assumes that the inode count has been incremented
1434  * (or otherwise set) by the caller to indicate that it is now
1435  * in use by the dcache.
1436  */
1437 static struct dentry *__d_instantiate_unique(struct dentry *entry,
1438 					     struct inode *inode)
1439 {
1440 	struct dentry *alias;
1441 	int len = entry->d_name.len;
1442 	const char *name = entry->d_name.name;
1443 	unsigned int hash = entry->d_name.hash;
1444 
1445 	if (!inode) {
1446 		__d_instantiate(entry, NULL);
1447 		return NULL;
1448 	}
1449 
1450 	hlist_for_each_entry(alias, &inode->i_dentry, d_alias) {
1451 		/*
1452 		 * Don't need alias->d_lock here, because aliases with
1453 		 * d_parent == entry->d_parent are not subject to name or
1454 		 * parent changes, because the parent inode i_mutex is held.
1455 		 */
1456 		if (alias->d_name.hash != hash)
1457 			continue;
1458 		if (alias->d_parent != entry->d_parent)
1459 			continue;
1460 		if (alias->d_name.len != len)
1461 			continue;
1462 		if (dentry_cmp(alias, name, len))
1463 			continue;
1464 		__dget(alias);
1465 		return alias;
1466 	}
1467 
1468 	__d_instantiate(entry, inode);
1469 	return NULL;
1470 }
1471 
1472 struct dentry *d_instantiate_unique(struct dentry *entry, struct inode *inode)
1473 {
1474 	struct dentry *result;
1475 
1476 	BUG_ON(!hlist_unhashed(&entry->d_alias));
1477 
1478 	if (inode)
1479 		spin_lock(&inode->i_lock);
1480 	result = __d_instantiate_unique(entry, inode);
1481 	if (inode)
1482 		spin_unlock(&inode->i_lock);
1483 
1484 	if (!result) {
1485 		security_d_instantiate(entry, inode);
1486 		return NULL;
1487 	}
1488 
1489 	BUG_ON(!d_unhashed(result));
1490 	iput(inode);
1491 	return result;
1492 }
1493 
1494 EXPORT_SYMBOL(d_instantiate_unique);
1495 
1496 struct dentry *d_make_root(struct inode *root_inode)
1497 {
1498 	struct dentry *res = NULL;
1499 
1500 	if (root_inode) {
1501 		static const struct qstr name = QSTR_INIT("/", 1);
1502 
1503 		res = __d_alloc(root_inode->i_sb, &name);
1504 		if (res)
1505 			d_instantiate(res, root_inode);
1506 		else
1507 			iput(root_inode);
1508 	}
1509 	return res;
1510 }
1511 EXPORT_SYMBOL(d_make_root);
1512 
1513 static struct dentry * __d_find_any_alias(struct inode *inode)
1514 {
1515 	struct dentry *alias;
1516 
1517 	if (hlist_empty(&inode->i_dentry))
1518 		return NULL;
1519 	alias = hlist_entry(inode->i_dentry.first, struct dentry, d_alias);
1520 	__dget(alias);
1521 	return alias;
1522 }
1523 
1524 /**
1525  * d_find_any_alias - find any alias for a given inode
1526  * @inode: inode to find an alias for
1527  *
1528  * If any aliases exist for the given inode, take and return a
1529  * reference for one of them.  If no aliases exist, return %NULL.
1530  */
1531 struct dentry *d_find_any_alias(struct inode *inode)
1532 {
1533 	struct dentry *de;
1534 
1535 	spin_lock(&inode->i_lock);
1536 	de = __d_find_any_alias(inode);
1537 	spin_unlock(&inode->i_lock);
1538 	return de;
1539 }
1540 EXPORT_SYMBOL(d_find_any_alias);
1541 
1542 /**
1543  * d_obtain_alias - find or allocate a dentry for a given inode
1544  * @inode: inode to allocate the dentry for
1545  *
1546  * Obtain a dentry for an inode resulting from NFS filehandle conversion or
1547  * similar open by handle operations.  The returned dentry may be anonymous,
1548  * or may have a full name (if the inode was already in the cache).
1549  *
1550  * When called on a directory inode, we must ensure that the inode only ever
1551  * has one dentry.  If a dentry is found, that is returned instead of
1552  * allocating a new one.
1553  *
1554  * On successful return, the reference to the inode has been transferred
1555  * to the dentry.  In case of an error the reference on the inode is released.
1556  * To make it easier to use in export operations a %NULL or IS_ERR inode may
1557  * be passed in and will be the error will be propagate to the return value,
1558  * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
1559  */
1560 struct dentry *d_obtain_alias(struct inode *inode)
1561 {
1562 	static const struct qstr anonstring = QSTR_INIT("/", 1);
1563 	struct dentry *tmp;
1564 	struct dentry *res;
1565 
1566 	if (!inode)
1567 		return ERR_PTR(-ESTALE);
1568 	if (IS_ERR(inode))
1569 		return ERR_CAST(inode);
1570 
1571 	res = d_find_any_alias(inode);
1572 	if (res)
1573 		goto out_iput;
1574 
1575 	tmp = __d_alloc(inode->i_sb, &anonstring);
1576 	if (!tmp) {
1577 		res = ERR_PTR(-ENOMEM);
1578 		goto out_iput;
1579 	}
1580 
1581 	spin_lock(&inode->i_lock);
1582 	res = __d_find_any_alias(inode);
1583 	if (res) {
1584 		spin_unlock(&inode->i_lock);
1585 		dput(tmp);
1586 		goto out_iput;
1587 	}
1588 
1589 	/* attach a disconnected dentry */
1590 	spin_lock(&tmp->d_lock);
1591 	tmp->d_inode = inode;
1592 	tmp->d_flags |= DCACHE_DISCONNECTED;
1593 	hlist_add_head(&tmp->d_alias, &inode->i_dentry);
1594 	hlist_bl_lock(&tmp->d_sb->s_anon);
1595 	hlist_bl_add_head(&tmp->d_hash, &tmp->d_sb->s_anon);
1596 	hlist_bl_unlock(&tmp->d_sb->s_anon);
1597 	spin_unlock(&tmp->d_lock);
1598 	spin_unlock(&inode->i_lock);
1599 	security_d_instantiate(tmp, inode);
1600 
1601 	return tmp;
1602 
1603  out_iput:
1604 	if (res && !IS_ERR(res))
1605 		security_d_instantiate(res, inode);
1606 	iput(inode);
1607 	return res;
1608 }
1609 EXPORT_SYMBOL(d_obtain_alias);
1610 
1611 /**
1612  * d_splice_alias - splice a disconnected dentry into the tree if one exists
1613  * @inode:  the inode which may have a disconnected dentry
1614  * @dentry: a negative dentry which we want to point to the inode.
1615  *
1616  * If inode is a directory and has a 'disconnected' dentry (i.e. IS_ROOT and
1617  * DCACHE_DISCONNECTED), then d_move that in place of the given dentry
1618  * and return it, else simply d_add the inode to the dentry and return NULL.
1619  *
1620  * This is needed in the lookup routine of any filesystem that is exportable
1621  * (via knfsd) so that we can build dcache paths to directories effectively.
1622  *
1623  * If a dentry was found and moved, then it is returned.  Otherwise NULL
1624  * is returned.  This matches the expected return value of ->lookup.
1625  *
1626  */
1627 struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
1628 {
1629 	struct dentry *new = NULL;
1630 
1631 	if (IS_ERR(inode))
1632 		return ERR_CAST(inode);
1633 
1634 	if (inode && S_ISDIR(inode->i_mode)) {
1635 		spin_lock(&inode->i_lock);
1636 		new = __d_find_alias(inode, 1);
1637 		if (new) {
1638 			BUG_ON(!(new->d_flags & DCACHE_DISCONNECTED));
1639 			spin_unlock(&inode->i_lock);
1640 			security_d_instantiate(new, inode);
1641 			d_move(new, dentry);
1642 			iput(inode);
1643 		} else {
1644 			/* already taking inode->i_lock, so d_add() by hand */
1645 			__d_instantiate(dentry, inode);
1646 			spin_unlock(&inode->i_lock);
1647 			security_d_instantiate(dentry, inode);
1648 			d_rehash(dentry);
1649 		}
1650 	} else
1651 		d_add(dentry, inode);
1652 	return new;
1653 }
1654 EXPORT_SYMBOL(d_splice_alias);
1655 
1656 /**
1657  * d_add_ci - lookup or allocate new dentry with case-exact name
1658  * @inode:  the inode case-insensitive lookup has found
1659  * @dentry: the negative dentry that was passed to the parent's lookup func
1660  * @name:   the case-exact name to be associated with the returned dentry
1661  *
1662  * This is to avoid filling the dcache with case-insensitive names to the
1663  * same inode, only the actual correct case is stored in the dcache for
1664  * case-insensitive filesystems.
1665  *
1666  * For a case-insensitive lookup match and if the the case-exact dentry
1667  * already exists in in the dcache, use it and return it.
1668  *
1669  * If no entry exists with the exact case name, allocate new dentry with
1670  * the exact case, and return the spliced entry.
1671  */
1672 struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
1673 			struct qstr *name)
1674 {
1675 	struct dentry *found;
1676 	struct dentry *new;
1677 
1678 	/*
1679 	 * First check if a dentry matching the name already exists,
1680 	 * if not go ahead and create it now.
1681 	 */
1682 	found = d_hash_and_lookup(dentry->d_parent, name);
1683 	if (unlikely(IS_ERR(found)))
1684 		goto err_out;
1685 	if (!found) {
1686 		new = d_alloc(dentry->d_parent, name);
1687 		if (!new) {
1688 			found = ERR_PTR(-ENOMEM);
1689 			goto err_out;
1690 		}
1691 
1692 		found = d_splice_alias(inode, new);
1693 		if (found) {
1694 			dput(new);
1695 			return found;
1696 		}
1697 		return new;
1698 	}
1699 
1700 	/*
1701 	 * If a matching dentry exists, and it's not negative use it.
1702 	 *
1703 	 * Decrement the reference count to balance the iget() done
1704 	 * earlier on.
1705 	 */
1706 	if (found->d_inode) {
1707 		if (unlikely(found->d_inode != inode)) {
1708 			/* This can't happen because bad inodes are unhashed. */
1709 			BUG_ON(!is_bad_inode(inode));
1710 			BUG_ON(!is_bad_inode(found->d_inode));
1711 		}
1712 		iput(inode);
1713 		return found;
1714 	}
1715 
1716 	/*
1717 	 * Negative dentry: instantiate it unless the inode is a directory and
1718 	 * already has a dentry.
1719 	 */
1720 	new = d_splice_alias(inode, found);
1721 	if (new) {
1722 		dput(found);
1723 		found = new;
1724 	}
1725 	return found;
1726 
1727 err_out:
1728 	iput(inode);
1729 	return found;
1730 }
1731 EXPORT_SYMBOL(d_add_ci);
1732 
1733 /*
1734  * Do the slow-case of the dentry name compare.
1735  *
1736  * Unlike the dentry_cmp() function, we need to atomically
1737  * load the name, length and inode information, so that the
1738  * filesystem can rely on them, and can use the 'name' and
1739  * 'len' information without worrying about walking off the
1740  * end of memory etc.
1741  *
1742  * Thus the read_seqcount_retry() and the "duplicate" info
1743  * in arguments (the low-level filesystem should not look
1744  * at the dentry inode or name contents directly, since
1745  * rename can change them while we're in RCU mode).
1746  */
1747 enum slow_d_compare {
1748 	D_COMP_OK,
1749 	D_COMP_NOMATCH,
1750 	D_COMP_SEQRETRY,
1751 };
1752 
1753 static noinline enum slow_d_compare slow_dentry_cmp(
1754 		const struct dentry *parent,
1755 		struct inode *inode,
1756 		struct dentry *dentry,
1757 		unsigned int seq,
1758 		const struct qstr *name)
1759 {
1760 	int tlen = dentry->d_name.len;
1761 	const char *tname = dentry->d_name.name;
1762 	struct inode *i = dentry->d_inode;
1763 
1764 	if (read_seqcount_retry(&dentry->d_seq, seq)) {
1765 		cpu_relax();
1766 		return D_COMP_SEQRETRY;
1767 	}
1768 	if (parent->d_op->d_compare(parent, inode,
1769 				dentry, i,
1770 				tlen, tname, name))
1771 		return D_COMP_NOMATCH;
1772 	return D_COMP_OK;
1773 }
1774 
1775 /**
1776  * __d_lookup_rcu - search for a dentry (racy, store-free)
1777  * @parent: parent dentry
1778  * @name: qstr of name we wish to find
1779  * @seqp: returns d_seq value at the point where the dentry was found
1780  * @inode: returns dentry->d_inode when the inode was found valid.
1781  * Returns: dentry, or NULL
1782  *
1783  * __d_lookup_rcu is the dcache lookup function for rcu-walk name
1784  * resolution (store-free path walking) design described in
1785  * Documentation/filesystems/path-lookup.txt.
1786  *
1787  * This is not to be used outside core vfs.
1788  *
1789  * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
1790  * held, and rcu_read_lock held. The returned dentry must not be stored into
1791  * without taking d_lock and checking d_seq sequence count against @seq
1792  * returned here.
1793  *
1794  * A refcount may be taken on the found dentry with the __d_rcu_to_refcount
1795  * function.
1796  *
1797  * Alternatively, __d_lookup_rcu may be called again to look up the child of
1798  * the returned dentry, so long as its parent's seqlock is checked after the
1799  * child is looked up. Thus, an interlocking stepping of sequence lock checks
1800  * is formed, giving integrity down the path walk.
1801  *
1802  * NOTE! The caller *has* to check the resulting dentry against the sequence
1803  * number we've returned before using any of the resulting dentry state!
1804  */
1805 struct dentry *__d_lookup_rcu(const struct dentry *parent,
1806 				const struct qstr *name,
1807 				unsigned *seqp, struct inode *inode)
1808 {
1809 	u64 hashlen = name->hash_len;
1810 	const unsigned char *str = name->name;
1811 	struct hlist_bl_head *b = d_hash(parent, hashlen_hash(hashlen));
1812 	struct hlist_bl_node *node;
1813 	struct dentry *dentry;
1814 
1815 	/*
1816 	 * Note: There is significant duplication with __d_lookup_rcu which is
1817 	 * required to prevent single threaded performance regressions
1818 	 * especially on architectures where smp_rmb (in seqcounts) are costly.
1819 	 * Keep the two functions in sync.
1820 	 */
1821 
1822 	/*
1823 	 * The hash list is protected using RCU.
1824 	 *
1825 	 * Carefully use d_seq when comparing a candidate dentry, to avoid
1826 	 * races with d_move().
1827 	 *
1828 	 * It is possible that concurrent renames can mess up our list
1829 	 * walk here and result in missing our dentry, resulting in the
1830 	 * false-negative result. d_lookup() protects against concurrent
1831 	 * renames using rename_lock seqlock.
1832 	 *
1833 	 * See Documentation/filesystems/path-lookup.txt for more details.
1834 	 */
1835 	hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
1836 		unsigned seq;
1837 
1838 seqretry:
1839 		/*
1840 		 * The dentry sequence count protects us from concurrent
1841 		 * renames, and thus protects inode, parent and name fields.
1842 		 *
1843 		 * The caller must perform a seqcount check in order
1844 		 * to do anything useful with the returned dentry,
1845 		 * including using the 'd_inode' pointer.
1846 		 *
1847 		 * NOTE! We do a "raw" seqcount_begin here. That means that
1848 		 * we don't wait for the sequence count to stabilize if it
1849 		 * is in the middle of a sequence change. If we do the slow
1850 		 * dentry compare, we will do seqretries until it is stable,
1851 		 * and if we end up with a successful lookup, we actually
1852 		 * want to exit RCU lookup anyway.
1853 		 */
1854 		seq = raw_seqcount_begin(&dentry->d_seq);
1855 		if (dentry->d_parent != parent)
1856 			continue;
1857 		if (d_unhashed(dentry))
1858 			continue;
1859 		*seqp = seq;
1860 
1861 		if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) {
1862 			if (dentry->d_name.hash != hashlen_hash(hashlen))
1863 				continue;
1864 			switch (slow_dentry_cmp(parent, inode, dentry, seq, name)) {
1865 			case D_COMP_OK:
1866 				return dentry;
1867 			case D_COMP_NOMATCH:
1868 				continue;
1869 			default:
1870 				goto seqretry;
1871 			}
1872 		}
1873 
1874 		if (dentry->d_name.hash_len != hashlen)
1875 			continue;
1876 		if (!dentry_cmp(dentry, str, hashlen_len(hashlen)))
1877 			return dentry;
1878 	}
1879 	return NULL;
1880 }
1881 
1882 /**
1883  * d_lookup - search for a dentry
1884  * @parent: parent dentry
1885  * @name: qstr of name we wish to find
1886  * Returns: dentry, or NULL
1887  *
1888  * d_lookup searches the children of the parent dentry for the name in
1889  * question. If the dentry is found its reference count is incremented and the
1890  * dentry is returned. The caller must use dput to free the entry when it has
1891  * finished using it. %NULL is returned if the dentry does not exist.
1892  */
1893 struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name)
1894 {
1895 	struct dentry *dentry;
1896 	unsigned seq;
1897 
1898         do {
1899                 seq = read_seqbegin(&rename_lock);
1900                 dentry = __d_lookup(parent, name);
1901                 if (dentry)
1902 			break;
1903 	} while (read_seqretry(&rename_lock, seq));
1904 	return dentry;
1905 }
1906 EXPORT_SYMBOL(d_lookup);
1907 
1908 /**
1909  * __d_lookup - search for a dentry (racy)
1910  * @parent: parent dentry
1911  * @name: qstr of name we wish to find
1912  * Returns: dentry, or NULL
1913  *
1914  * __d_lookup is like d_lookup, however it may (rarely) return a
1915  * false-negative result due to unrelated rename activity.
1916  *
1917  * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
1918  * however it must be used carefully, eg. with a following d_lookup in
1919  * the case of failure.
1920  *
1921  * __d_lookup callers must be commented.
1922  */
1923 struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name)
1924 {
1925 	unsigned int len = name->len;
1926 	unsigned int hash = name->hash;
1927 	const unsigned char *str = name->name;
1928 	struct hlist_bl_head *b = d_hash(parent, hash);
1929 	struct hlist_bl_node *node;
1930 	struct dentry *found = NULL;
1931 	struct dentry *dentry;
1932 
1933 	/*
1934 	 * Note: There is significant duplication with __d_lookup_rcu which is
1935 	 * required to prevent single threaded performance regressions
1936 	 * especially on architectures where smp_rmb (in seqcounts) are costly.
1937 	 * Keep the two functions in sync.
1938 	 */
1939 
1940 	/*
1941 	 * The hash list is protected using RCU.
1942 	 *
1943 	 * Take d_lock when comparing a candidate dentry, to avoid races
1944 	 * with d_move().
1945 	 *
1946 	 * It is possible that concurrent renames can mess up our list
1947 	 * walk here and result in missing our dentry, resulting in the
1948 	 * false-negative result. d_lookup() protects against concurrent
1949 	 * renames using rename_lock seqlock.
1950 	 *
1951 	 * See Documentation/filesystems/path-lookup.txt for more details.
1952 	 */
1953 	rcu_read_lock();
1954 
1955 	hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
1956 
1957 		if (dentry->d_name.hash != hash)
1958 			continue;
1959 
1960 		spin_lock(&dentry->d_lock);
1961 		if (dentry->d_parent != parent)
1962 			goto next;
1963 		if (d_unhashed(dentry))
1964 			goto next;
1965 
1966 		/*
1967 		 * It is safe to compare names since d_move() cannot
1968 		 * change the qstr (protected by d_lock).
1969 		 */
1970 		if (parent->d_flags & DCACHE_OP_COMPARE) {
1971 			int tlen = dentry->d_name.len;
1972 			const char *tname = dentry->d_name.name;
1973 			if (parent->d_op->d_compare(parent, parent->d_inode,
1974 						dentry, dentry->d_inode,
1975 						tlen, tname, name))
1976 				goto next;
1977 		} else {
1978 			if (dentry->d_name.len != len)
1979 				goto next;
1980 			if (dentry_cmp(dentry, str, len))
1981 				goto next;
1982 		}
1983 
1984 		dentry->d_count++;
1985 		found = dentry;
1986 		spin_unlock(&dentry->d_lock);
1987 		break;
1988 next:
1989 		spin_unlock(&dentry->d_lock);
1990  	}
1991  	rcu_read_unlock();
1992 
1993  	return found;
1994 }
1995 
1996 /**
1997  * d_hash_and_lookup - hash the qstr then search for a dentry
1998  * @dir: Directory to search in
1999  * @name: qstr of name we wish to find
2000  *
2001  * On lookup failure NULL is returned; on bad name - ERR_PTR(-error)
2002  */
2003 struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
2004 {
2005 	/*
2006 	 * Check for a fs-specific hash function. Note that we must
2007 	 * calculate the standard hash first, as the d_op->d_hash()
2008 	 * routine may choose to leave the hash value unchanged.
2009 	 */
2010 	name->hash = full_name_hash(name->name, name->len);
2011 	if (dir->d_flags & DCACHE_OP_HASH) {
2012 		int err = dir->d_op->d_hash(dir, dir->d_inode, name);
2013 		if (unlikely(err < 0))
2014 			return ERR_PTR(err);
2015 	}
2016 	return d_lookup(dir, name);
2017 }
2018 EXPORT_SYMBOL(d_hash_and_lookup);
2019 
2020 /**
2021  * d_validate - verify dentry provided from insecure source (deprecated)
2022  * @dentry: The dentry alleged to be valid child of @dparent
2023  * @dparent: The parent dentry (known to be valid)
2024  *
2025  * An insecure source has sent us a dentry, here we verify it and dget() it.
2026  * This is used by ncpfs in its readdir implementation.
2027  * Zero is returned in the dentry is invalid.
2028  *
2029  * This function is slow for big directories, and deprecated, do not use it.
2030  */
2031 int d_validate(struct dentry *dentry, struct dentry *dparent)
2032 {
2033 	struct dentry *child;
2034 
2035 	spin_lock(&dparent->d_lock);
2036 	list_for_each_entry(child, &dparent->d_subdirs, d_u.d_child) {
2037 		if (dentry == child) {
2038 			spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
2039 			__dget_dlock(dentry);
2040 			spin_unlock(&dentry->d_lock);
2041 			spin_unlock(&dparent->d_lock);
2042 			return 1;
2043 		}
2044 	}
2045 	spin_unlock(&dparent->d_lock);
2046 
2047 	return 0;
2048 }
2049 EXPORT_SYMBOL(d_validate);
2050 
2051 /*
2052  * When a file is deleted, we have two options:
2053  * - turn this dentry into a negative dentry
2054  * - unhash this dentry and free it.
2055  *
2056  * Usually, we want to just turn this into
2057  * a negative dentry, but if anybody else is
2058  * currently using the dentry or the inode
2059  * we can't do that and we fall back on removing
2060  * it from the hash queues and waiting for
2061  * it to be deleted later when it has no users
2062  */
2063 
2064 /**
2065  * d_delete - delete a dentry
2066  * @dentry: The dentry to delete
2067  *
2068  * Turn the dentry into a negative dentry if possible, otherwise
2069  * remove it from the hash queues so it can be deleted later
2070  */
2071 
2072 void d_delete(struct dentry * dentry)
2073 {
2074 	struct inode *inode;
2075 	int isdir = 0;
2076 	/*
2077 	 * Are we the only user?
2078 	 */
2079 again:
2080 	spin_lock(&dentry->d_lock);
2081 	inode = dentry->d_inode;
2082 	isdir = S_ISDIR(inode->i_mode);
2083 	if (dentry->d_count == 1) {
2084 		if (!spin_trylock(&inode->i_lock)) {
2085 			spin_unlock(&dentry->d_lock);
2086 			cpu_relax();
2087 			goto again;
2088 		}
2089 		dentry->d_flags &= ~DCACHE_CANT_MOUNT;
2090 		dentry_unlink_inode(dentry);
2091 		fsnotify_nameremove(dentry, isdir);
2092 		return;
2093 	}
2094 
2095 	if (!d_unhashed(dentry))
2096 		__d_drop(dentry);
2097 
2098 	spin_unlock(&dentry->d_lock);
2099 
2100 	fsnotify_nameremove(dentry, isdir);
2101 }
2102 EXPORT_SYMBOL(d_delete);
2103 
2104 static void __d_rehash(struct dentry * entry, struct hlist_bl_head *b)
2105 {
2106 	BUG_ON(!d_unhashed(entry));
2107 	hlist_bl_lock(b);
2108 	entry->d_flags |= DCACHE_RCUACCESS;
2109 	hlist_bl_add_head_rcu(&entry->d_hash, b);
2110 	hlist_bl_unlock(b);
2111 }
2112 
2113 static void _d_rehash(struct dentry * entry)
2114 {
2115 	__d_rehash(entry, d_hash(entry->d_parent, entry->d_name.hash));
2116 }
2117 
2118 /**
2119  * d_rehash	- add an entry back to the hash
2120  * @entry: dentry to add to the hash
2121  *
2122  * Adds a dentry to the hash according to its name.
2123  */
2124 
2125 void d_rehash(struct dentry * entry)
2126 {
2127 	spin_lock(&entry->d_lock);
2128 	_d_rehash(entry);
2129 	spin_unlock(&entry->d_lock);
2130 }
2131 EXPORT_SYMBOL(d_rehash);
2132 
2133 /**
2134  * dentry_update_name_case - update case insensitive dentry with a new name
2135  * @dentry: dentry to be updated
2136  * @name: new name
2137  *
2138  * Update a case insensitive dentry with new case of name.
2139  *
2140  * dentry must have been returned by d_lookup with name @name. Old and new
2141  * name lengths must match (ie. no d_compare which allows mismatched name
2142  * lengths).
2143  *
2144  * Parent inode i_mutex must be held over d_lookup and into this call (to
2145  * keep renames and concurrent inserts, and readdir(2) away).
2146  */
2147 void dentry_update_name_case(struct dentry *dentry, struct qstr *name)
2148 {
2149 	BUG_ON(!mutex_is_locked(&dentry->d_parent->d_inode->i_mutex));
2150 	BUG_ON(dentry->d_name.len != name->len); /* d_lookup gives this */
2151 
2152 	spin_lock(&dentry->d_lock);
2153 	write_seqcount_begin(&dentry->d_seq);
2154 	memcpy((unsigned char *)dentry->d_name.name, name->name, name->len);
2155 	write_seqcount_end(&dentry->d_seq);
2156 	spin_unlock(&dentry->d_lock);
2157 }
2158 EXPORT_SYMBOL(dentry_update_name_case);
2159 
2160 static void switch_names(struct dentry *dentry, struct dentry *target)
2161 {
2162 	if (dname_external(target)) {
2163 		if (dname_external(dentry)) {
2164 			/*
2165 			 * Both external: swap the pointers
2166 			 */
2167 			swap(target->d_name.name, dentry->d_name.name);
2168 		} else {
2169 			/*
2170 			 * dentry:internal, target:external.  Steal target's
2171 			 * storage and make target internal.
2172 			 */
2173 			memcpy(target->d_iname, dentry->d_name.name,
2174 					dentry->d_name.len + 1);
2175 			dentry->d_name.name = target->d_name.name;
2176 			target->d_name.name = target->d_iname;
2177 		}
2178 	} else {
2179 		if (dname_external(dentry)) {
2180 			/*
2181 			 * dentry:external, target:internal.  Give dentry's
2182 			 * storage to target and make dentry internal
2183 			 */
2184 			memcpy(dentry->d_iname, target->d_name.name,
2185 					target->d_name.len + 1);
2186 			target->d_name.name = dentry->d_name.name;
2187 			dentry->d_name.name = dentry->d_iname;
2188 		} else {
2189 			/*
2190 			 * Both are internal.  Just copy target to dentry
2191 			 */
2192 			memcpy(dentry->d_iname, target->d_name.name,
2193 					target->d_name.len + 1);
2194 			dentry->d_name.len = target->d_name.len;
2195 			return;
2196 		}
2197 	}
2198 	swap(dentry->d_name.len, target->d_name.len);
2199 }
2200 
2201 static void dentry_lock_for_move(struct dentry *dentry, struct dentry *target)
2202 {
2203 	/*
2204 	 * XXXX: do we really need to take target->d_lock?
2205 	 */
2206 	if (IS_ROOT(dentry) || dentry->d_parent == target->d_parent)
2207 		spin_lock(&target->d_parent->d_lock);
2208 	else {
2209 		if (d_ancestor(dentry->d_parent, target->d_parent)) {
2210 			spin_lock(&dentry->d_parent->d_lock);
2211 			spin_lock_nested(&target->d_parent->d_lock,
2212 						DENTRY_D_LOCK_NESTED);
2213 		} else {
2214 			spin_lock(&target->d_parent->d_lock);
2215 			spin_lock_nested(&dentry->d_parent->d_lock,
2216 						DENTRY_D_LOCK_NESTED);
2217 		}
2218 	}
2219 	if (target < dentry) {
2220 		spin_lock_nested(&target->d_lock, 2);
2221 		spin_lock_nested(&dentry->d_lock, 3);
2222 	} else {
2223 		spin_lock_nested(&dentry->d_lock, 2);
2224 		spin_lock_nested(&target->d_lock, 3);
2225 	}
2226 }
2227 
2228 static void dentry_unlock_parents_for_move(struct dentry *dentry,
2229 					struct dentry *target)
2230 {
2231 	if (target->d_parent != dentry->d_parent)
2232 		spin_unlock(&dentry->d_parent->d_lock);
2233 	if (target->d_parent != target)
2234 		spin_unlock(&target->d_parent->d_lock);
2235 }
2236 
2237 /*
2238  * When switching names, the actual string doesn't strictly have to
2239  * be preserved in the target - because we're dropping the target
2240  * anyway. As such, we can just do a simple memcpy() to copy over
2241  * the new name before we switch.
2242  *
2243  * Note that we have to be a lot more careful about getting the hash
2244  * switched - we have to switch the hash value properly even if it
2245  * then no longer matches the actual (corrupted) string of the target.
2246  * The hash value has to match the hash queue that the dentry is on..
2247  */
2248 /*
2249  * __d_move - move a dentry
2250  * @dentry: entry to move
2251  * @target: new dentry
2252  *
2253  * Update the dcache to reflect the move of a file name. Negative
2254  * dcache entries should not be moved in this way. Caller must hold
2255  * rename_lock, the i_mutex of the source and target directories,
2256  * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
2257  */
2258 static void __d_move(struct dentry * dentry, struct dentry * target)
2259 {
2260 	if (!dentry->d_inode)
2261 		printk(KERN_WARNING "VFS: moving negative dcache entry\n");
2262 
2263 	BUG_ON(d_ancestor(dentry, target));
2264 	BUG_ON(d_ancestor(target, dentry));
2265 
2266 	dentry_lock_for_move(dentry, target);
2267 
2268 	write_seqcount_begin(&dentry->d_seq);
2269 	write_seqcount_begin(&target->d_seq);
2270 
2271 	/* __d_drop does write_seqcount_barrier, but they're OK to nest. */
2272 
2273 	/*
2274 	 * Move the dentry to the target hash queue. Don't bother checking
2275 	 * for the same hash queue because of how unlikely it is.
2276 	 */
2277 	__d_drop(dentry);
2278 	__d_rehash(dentry, d_hash(target->d_parent, target->d_name.hash));
2279 
2280 	/* Unhash the target: dput() will then get rid of it */
2281 	__d_drop(target);
2282 
2283 	list_del(&dentry->d_u.d_child);
2284 	list_del(&target->d_u.d_child);
2285 
2286 	/* Switch the names.. */
2287 	switch_names(dentry, target);
2288 	swap(dentry->d_name.hash, target->d_name.hash);
2289 
2290 	/* ... and switch the parents */
2291 	if (IS_ROOT(dentry)) {
2292 		dentry->d_parent = target->d_parent;
2293 		target->d_parent = target;
2294 		INIT_LIST_HEAD(&target->d_u.d_child);
2295 	} else {
2296 		swap(dentry->d_parent, target->d_parent);
2297 
2298 		/* And add them back to the (new) parent lists */
2299 		list_add(&target->d_u.d_child, &target->d_parent->d_subdirs);
2300 	}
2301 
2302 	list_add(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs);
2303 
2304 	write_seqcount_end(&target->d_seq);
2305 	write_seqcount_end(&dentry->d_seq);
2306 
2307 	dentry_unlock_parents_for_move(dentry, target);
2308 	spin_unlock(&target->d_lock);
2309 	fsnotify_d_move(dentry);
2310 	spin_unlock(&dentry->d_lock);
2311 }
2312 
2313 /*
2314  * d_move - move a dentry
2315  * @dentry: entry to move
2316  * @target: new dentry
2317  *
2318  * Update the dcache to reflect the move of a file name. Negative
2319  * dcache entries should not be moved in this way. See the locking
2320  * requirements for __d_move.
2321  */
2322 void d_move(struct dentry *dentry, struct dentry *target)
2323 {
2324 	write_seqlock(&rename_lock);
2325 	__d_move(dentry, target);
2326 	write_sequnlock(&rename_lock);
2327 }
2328 EXPORT_SYMBOL(d_move);
2329 
2330 /**
2331  * d_ancestor - search for an ancestor
2332  * @p1: ancestor dentry
2333  * @p2: child dentry
2334  *
2335  * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2336  * an ancestor of p2, else NULL.
2337  */
2338 struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
2339 {
2340 	struct dentry *p;
2341 
2342 	for (p = p2; !IS_ROOT(p); p = p->d_parent) {
2343 		if (p->d_parent == p1)
2344 			return p;
2345 	}
2346 	return NULL;
2347 }
2348 
2349 /*
2350  * This helper attempts to cope with remotely renamed directories
2351  *
2352  * It assumes that the caller is already holding
2353  * dentry->d_parent->d_inode->i_mutex, inode->i_lock and rename_lock
2354  *
2355  * Note: If ever the locking in lock_rename() changes, then please
2356  * remember to update this too...
2357  */
2358 static struct dentry *__d_unalias(struct inode *inode,
2359 		struct dentry *dentry, struct dentry *alias)
2360 {
2361 	struct mutex *m1 = NULL, *m2 = NULL;
2362 	struct dentry *ret = ERR_PTR(-EBUSY);
2363 
2364 	/* If alias and dentry share a parent, then no extra locks required */
2365 	if (alias->d_parent == dentry->d_parent)
2366 		goto out_unalias;
2367 
2368 	/* See lock_rename() */
2369 	if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
2370 		goto out_err;
2371 	m1 = &dentry->d_sb->s_vfs_rename_mutex;
2372 	if (!mutex_trylock(&alias->d_parent->d_inode->i_mutex))
2373 		goto out_err;
2374 	m2 = &alias->d_parent->d_inode->i_mutex;
2375 out_unalias:
2376 	if (likely(!d_mountpoint(alias))) {
2377 		__d_move(alias, dentry);
2378 		ret = alias;
2379 	}
2380 out_err:
2381 	spin_unlock(&inode->i_lock);
2382 	if (m2)
2383 		mutex_unlock(m2);
2384 	if (m1)
2385 		mutex_unlock(m1);
2386 	return ret;
2387 }
2388 
2389 /*
2390  * Prepare an anonymous dentry for life in the superblock's dentry tree as a
2391  * named dentry in place of the dentry to be replaced.
2392  * returns with anon->d_lock held!
2393  */
2394 static void __d_materialise_dentry(struct dentry *dentry, struct dentry *anon)
2395 {
2396 	struct dentry *dparent;
2397 
2398 	dentry_lock_for_move(anon, dentry);
2399 
2400 	write_seqcount_begin(&dentry->d_seq);
2401 	write_seqcount_begin(&anon->d_seq);
2402 
2403 	dparent = dentry->d_parent;
2404 
2405 	switch_names(dentry, anon);
2406 	swap(dentry->d_name.hash, anon->d_name.hash);
2407 
2408 	dentry->d_parent = dentry;
2409 	list_del_init(&dentry->d_u.d_child);
2410 	anon->d_parent = dparent;
2411 	list_del(&anon->d_u.d_child);
2412 	list_add(&anon->d_u.d_child, &dparent->d_subdirs);
2413 
2414 	write_seqcount_end(&dentry->d_seq);
2415 	write_seqcount_end(&anon->d_seq);
2416 
2417 	dentry_unlock_parents_for_move(anon, dentry);
2418 	spin_unlock(&dentry->d_lock);
2419 
2420 	/* anon->d_lock still locked, returns locked */
2421 	anon->d_flags &= ~DCACHE_DISCONNECTED;
2422 }
2423 
2424 /**
2425  * d_materialise_unique - introduce an inode into the tree
2426  * @dentry: candidate dentry
2427  * @inode: inode to bind to the dentry, to which aliases may be attached
2428  *
2429  * Introduces an dentry into the tree, substituting an extant disconnected
2430  * root directory alias in its place if there is one. Caller must hold the
2431  * i_mutex of the parent directory.
2432  */
2433 struct dentry *d_materialise_unique(struct dentry *dentry, struct inode *inode)
2434 {
2435 	struct dentry *actual;
2436 
2437 	BUG_ON(!d_unhashed(dentry));
2438 
2439 	if (!inode) {
2440 		actual = dentry;
2441 		__d_instantiate(dentry, NULL);
2442 		d_rehash(actual);
2443 		goto out_nolock;
2444 	}
2445 
2446 	spin_lock(&inode->i_lock);
2447 
2448 	if (S_ISDIR(inode->i_mode)) {
2449 		struct dentry *alias;
2450 
2451 		/* Does an aliased dentry already exist? */
2452 		alias = __d_find_alias(inode, 0);
2453 		if (alias) {
2454 			actual = alias;
2455 			write_seqlock(&rename_lock);
2456 
2457 			if (d_ancestor(alias, dentry)) {
2458 				/* Check for loops */
2459 				actual = ERR_PTR(-ELOOP);
2460 				spin_unlock(&inode->i_lock);
2461 			} else if (IS_ROOT(alias)) {
2462 				/* Is this an anonymous mountpoint that we
2463 				 * could splice into our tree? */
2464 				__d_materialise_dentry(dentry, alias);
2465 				write_sequnlock(&rename_lock);
2466 				__d_drop(alias);
2467 				goto found;
2468 			} else {
2469 				/* Nope, but we must(!) avoid directory
2470 				 * aliasing. This drops inode->i_lock */
2471 				actual = __d_unalias(inode, dentry, alias);
2472 			}
2473 			write_sequnlock(&rename_lock);
2474 			if (IS_ERR(actual)) {
2475 				if (PTR_ERR(actual) == -ELOOP)
2476 					pr_warn_ratelimited(
2477 						"VFS: Lookup of '%s' in %s %s"
2478 						" would have caused loop\n",
2479 						dentry->d_name.name,
2480 						inode->i_sb->s_type->name,
2481 						inode->i_sb->s_id);
2482 				dput(alias);
2483 			}
2484 			goto out_nolock;
2485 		}
2486 	}
2487 
2488 	/* Add a unique reference */
2489 	actual = __d_instantiate_unique(dentry, inode);
2490 	if (!actual)
2491 		actual = dentry;
2492 	else
2493 		BUG_ON(!d_unhashed(actual));
2494 
2495 	spin_lock(&actual->d_lock);
2496 found:
2497 	_d_rehash(actual);
2498 	spin_unlock(&actual->d_lock);
2499 	spin_unlock(&inode->i_lock);
2500 out_nolock:
2501 	if (actual == dentry) {
2502 		security_d_instantiate(dentry, inode);
2503 		return NULL;
2504 	}
2505 
2506 	iput(inode);
2507 	return actual;
2508 }
2509 EXPORT_SYMBOL_GPL(d_materialise_unique);
2510 
2511 static int prepend(char **buffer, int *buflen, const char *str, int namelen)
2512 {
2513 	*buflen -= namelen;
2514 	if (*buflen < 0)
2515 		return -ENAMETOOLONG;
2516 	*buffer -= namelen;
2517 	memcpy(*buffer, str, namelen);
2518 	return 0;
2519 }
2520 
2521 static int prepend_name(char **buffer, int *buflen, struct qstr *name)
2522 {
2523 	return prepend(buffer, buflen, name->name, name->len);
2524 }
2525 
2526 /**
2527  * prepend_path - Prepend path string to a buffer
2528  * @path: the dentry/vfsmount to report
2529  * @root: root vfsmnt/dentry
2530  * @buffer: pointer to the end of the buffer
2531  * @buflen: pointer to buffer length
2532  *
2533  * Caller holds the rename_lock.
2534  */
2535 static int prepend_path(const struct path *path,
2536 			const struct path *root,
2537 			char **buffer, int *buflen)
2538 {
2539 	struct dentry *dentry = path->dentry;
2540 	struct vfsmount *vfsmnt = path->mnt;
2541 	struct mount *mnt = real_mount(vfsmnt);
2542 	bool slash = false;
2543 	int error = 0;
2544 
2545 	br_read_lock(&vfsmount_lock);
2546 	while (dentry != root->dentry || vfsmnt != root->mnt) {
2547 		struct dentry * parent;
2548 
2549 		if (dentry == vfsmnt->mnt_root || IS_ROOT(dentry)) {
2550 			/* Global root? */
2551 			if (!mnt_has_parent(mnt))
2552 				goto global_root;
2553 			dentry = mnt->mnt_mountpoint;
2554 			mnt = mnt->mnt_parent;
2555 			vfsmnt = &mnt->mnt;
2556 			continue;
2557 		}
2558 		parent = dentry->d_parent;
2559 		prefetch(parent);
2560 		spin_lock(&dentry->d_lock);
2561 		error = prepend_name(buffer, buflen, &dentry->d_name);
2562 		spin_unlock(&dentry->d_lock);
2563 		if (!error)
2564 			error = prepend(buffer, buflen, "/", 1);
2565 		if (error)
2566 			break;
2567 
2568 		slash = true;
2569 		dentry = parent;
2570 	}
2571 
2572 	if (!error && !slash)
2573 		error = prepend(buffer, buflen, "/", 1);
2574 
2575 out:
2576 	br_read_unlock(&vfsmount_lock);
2577 	return error;
2578 
2579 global_root:
2580 	/*
2581 	 * Filesystems needing to implement special "root names"
2582 	 * should do so with ->d_dname()
2583 	 */
2584 	if (IS_ROOT(dentry) &&
2585 	    (dentry->d_name.len != 1 || dentry->d_name.name[0] != '/')) {
2586 		WARN(1, "Root dentry has weird name <%.*s>\n",
2587 		     (int) dentry->d_name.len, dentry->d_name.name);
2588 	}
2589 	if (!slash)
2590 		error = prepend(buffer, buflen, "/", 1);
2591 	if (!error)
2592 		error = is_mounted(vfsmnt) ? 1 : 2;
2593 	goto out;
2594 }
2595 
2596 /**
2597  * __d_path - return the path of a dentry
2598  * @path: the dentry/vfsmount to report
2599  * @root: root vfsmnt/dentry
2600  * @buf: buffer to return value in
2601  * @buflen: buffer length
2602  *
2603  * Convert a dentry into an ASCII path name.
2604  *
2605  * Returns a pointer into the buffer or an error code if the
2606  * path was too long.
2607  *
2608  * "buflen" should be positive.
2609  *
2610  * If the path is not reachable from the supplied root, return %NULL.
2611  */
2612 char *__d_path(const struct path *path,
2613 	       const struct path *root,
2614 	       char *buf, int buflen)
2615 {
2616 	char *res = buf + buflen;
2617 	int error;
2618 
2619 	prepend(&res, &buflen, "\0", 1);
2620 	write_seqlock(&rename_lock);
2621 	error = prepend_path(path, root, &res, &buflen);
2622 	write_sequnlock(&rename_lock);
2623 
2624 	if (error < 0)
2625 		return ERR_PTR(error);
2626 	if (error > 0)
2627 		return NULL;
2628 	return res;
2629 }
2630 
2631 char *d_absolute_path(const struct path *path,
2632 	       char *buf, int buflen)
2633 {
2634 	struct path root = {};
2635 	char *res = buf + buflen;
2636 	int error;
2637 
2638 	prepend(&res, &buflen, "\0", 1);
2639 	write_seqlock(&rename_lock);
2640 	error = prepend_path(path, &root, &res, &buflen);
2641 	write_sequnlock(&rename_lock);
2642 
2643 	if (error > 1)
2644 		error = -EINVAL;
2645 	if (error < 0)
2646 		return ERR_PTR(error);
2647 	return res;
2648 }
2649 
2650 /*
2651  * same as __d_path but appends "(deleted)" for unlinked files.
2652  */
2653 static int path_with_deleted(const struct path *path,
2654 			     const struct path *root,
2655 			     char **buf, int *buflen)
2656 {
2657 	prepend(buf, buflen, "\0", 1);
2658 	if (d_unlinked(path->dentry)) {
2659 		int error = prepend(buf, buflen, " (deleted)", 10);
2660 		if (error)
2661 			return error;
2662 	}
2663 
2664 	return prepend_path(path, root, buf, buflen);
2665 }
2666 
2667 static int prepend_unreachable(char **buffer, int *buflen)
2668 {
2669 	return prepend(buffer, buflen, "(unreachable)", 13);
2670 }
2671 
2672 /**
2673  * d_path - return the path of a dentry
2674  * @path: path to report
2675  * @buf: buffer to return value in
2676  * @buflen: buffer length
2677  *
2678  * Convert a dentry into an ASCII path name. If the entry has been deleted
2679  * the string " (deleted)" is appended. Note that this is ambiguous.
2680  *
2681  * Returns a pointer into the buffer or an error code if the path was
2682  * too long. Note: Callers should use the returned pointer, not the passed
2683  * in buffer, to use the name! The implementation often starts at an offset
2684  * into the buffer, and may leave 0 bytes at the start.
2685  *
2686  * "buflen" should be positive.
2687  */
2688 char *d_path(const struct path *path, char *buf, int buflen)
2689 {
2690 	char *res = buf + buflen;
2691 	struct path root;
2692 	int error;
2693 
2694 	/*
2695 	 * We have various synthetic filesystems that never get mounted.  On
2696 	 * these filesystems dentries are never used for lookup purposes, and
2697 	 * thus don't need to be hashed.  They also don't need a name until a
2698 	 * user wants to identify the object in /proc/pid/fd/.  The little hack
2699 	 * below allows us to generate a name for these objects on demand:
2700 	 */
2701 	if (path->dentry->d_op && path->dentry->d_op->d_dname)
2702 		return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
2703 
2704 	get_fs_root(current->fs, &root);
2705 	write_seqlock(&rename_lock);
2706 	error = path_with_deleted(path, &root, &res, &buflen);
2707 	if (error < 0)
2708 		res = ERR_PTR(error);
2709 	write_sequnlock(&rename_lock);
2710 	path_put(&root);
2711 	return res;
2712 }
2713 EXPORT_SYMBOL(d_path);
2714 
2715 /*
2716  * Helper function for dentry_operations.d_dname() members
2717  */
2718 char *dynamic_dname(struct dentry *dentry, char *buffer, int buflen,
2719 			const char *fmt, ...)
2720 {
2721 	va_list args;
2722 	char temp[64];
2723 	int sz;
2724 
2725 	va_start(args, fmt);
2726 	sz = vsnprintf(temp, sizeof(temp), fmt, args) + 1;
2727 	va_end(args);
2728 
2729 	if (sz > sizeof(temp) || sz > buflen)
2730 		return ERR_PTR(-ENAMETOOLONG);
2731 
2732 	buffer += buflen - sz;
2733 	return memcpy(buffer, temp, sz);
2734 }
2735 
2736 /*
2737  * Write full pathname from the root of the filesystem into the buffer.
2738  */
2739 static char *__dentry_path(struct dentry *dentry, char *buf, int buflen)
2740 {
2741 	char *end = buf + buflen;
2742 	char *retval;
2743 
2744 	prepend(&end, &buflen, "\0", 1);
2745 	if (buflen < 1)
2746 		goto Elong;
2747 	/* Get '/' right */
2748 	retval = end-1;
2749 	*retval = '/';
2750 
2751 	while (!IS_ROOT(dentry)) {
2752 		struct dentry *parent = dentry->d_parent;
2753 		int error;
2754 
2755 		prefetch(parent);
2756 		spin_lock(&dentry->d_lock);
2757 		error = prepend_name(&end, &buflen, &dentry->d_name);
2758 		spin_unlock(&dentry->d_lock);
2759 		if (error != 0 || prepend(&end, &buflen, "/", 1) != 0)
2760 			goto Elong;
2761 
2762 		retval = end;
2763 		dentry = parent;
2764 	}
2765 	return retval;
2766 Elong:
2767 	return ERR_PTR(-ENAMETOOLONG);
2768 }
2769 
2770 char *dentry_path_raw(struct dentry *dentry, char *buf, int buflen)
2771 {
2772 	char *retval;
2773 
2774 	write_seqlock(&rename_lock);
2775 	retval = __dentry_path(dentry, buf, buflen);
2776 	write_sequnlock(&rename_lock);
2777 
2778 	return retval;
2779 }
2780 EXPORT_SYMBOL(dentry_path_raw);
2781 
2782 char *dentry_path(struct dentry *dentry, char *buf, int buflen)
2783 {
2784 	char *p = NULL;
2785 	char *retval;
2786 
2787 	write_seqlock(&rename_lock);
2788 	if (d_unlinked(dentry)) {
2789 		p = buf + buflen;
2790 		if (prepend(&p, &buflen, "//deleted", 10) != 0)
2791 			goto Elong;
2792 		buflen++;
2793 	}
2794 	retval = __dentry_path(dentry, buf, buflen);
2795 	write_sequnlock(&rename_lock);
2796 	if (!IS_ERR(retval) && p)
2797 		*p = '/';	/* restore '/' overriden with '\0' */
2798 	return retval;
2799 Elong:
2800 	return ERR_PTR(-ENAMETOOLONG);
2801 }
2802 
2803 /*
2804  * NOTE! The user-level library version returns a
2805  * character pointer. The kernel system call just
2806  * returns the length of the buffer filled (which
2807  * includes the ending '\0' character), or a negative
2808  * error value. So libc would do something like
2809  *
2810  *	char *getcwd(char * buf, size_t size)
2811  *	{
2812  *		int retval;
2813  *
2814  *		retval = sys_getcwd(buf, size);
2815  *		if (retval >= 0)
2816  *			return buf;
2817  *		errno = -retval;
2818  *		return NULL;
2819  *	}
2820  */
2821 SYSCALL_DEFINE2(getcwd, char __user *, buf, unsigned long, size)
2822 {
2823 	int error;
2824 	struct path pwd, root;
2825 	char *page = (char *) __get_free_page(GFP_USER);
2826 
2827 	if (!page)
2828 		return -ENOMEM;
2829 
2830 	get_fs_root_and_pwd(current->fs, &root, &pwd);
2831 
2832 	error = -ENOENT;
2833 	write_seqlock(&rename_lock);
2834 	if (!d_unlinked(pwd.dentry)) {
2835 		unsigned long len;
2836 		char *cwd = page + PAGE_SIZE;
2837 		int buflen = PAGE_SIZE;
2838 
2839 		prepend(&cwd, &buflen, "\0", 1);
2840 		error = prepend_path(&pwd, &root, &cwd, &buflen);
2841 		write_sequnlock(&rename_lock);
2842 
2843 		if (error < 0)
2844 			goto out;
2845 
2846 		/* Unreachable from current root */
2847 		if (error > 0) {
2848 			error = prepend_unreachable(&cwd, &buflen);
2849 			if (error)
2850 				goto out;
2851 		}
2852 
2853 		error = -ERANGE;
2854 		len = PAGE_SIZE + page - cwd;
2855 		if (len <= size) {
2856 			error = len;
2857 			if (copy_to_user(buf, cwd, len))
2858 				error = -EFAULT;
2859 		}
2860 	} else {
2861 		write_sequnlock(&rename_lock);
2862 	}
2863 
2864 out:
2865 	path_put(&pwd);
2866 	path_put(&root);
2867 	free_page((unsigned long) page);
2868 	return error;
2869 }
2870 
2871 /*
2872  * Test whether new_dentry is a subdirectory of old_dentry.
2873  *
2874  * Trivially implemented using the dcache structure
2875  */
2876 
2877 /**
2878  * is_subdir - is new dentry a subdirectory of old_dentry
2879  * @new_dentry: new dentry
2880  * @old_dentry: old dentry
2881  *
2882  * Returns 1 if new_dentry is a subdirectory of the parent (at any depth).
2883  * Returns 0 otherwise.
2884  * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
2885  */
2886 
2887 int is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
2888 {
2889 	int result;
2890 	unsigned seq;
2891 
2892 	if (new_dentry == old_dentry)
2893 		return 1;
2894 
2895 	do {
2896 		/* for restarting inner loop in case of seq retry */
2897 		seq = read_seqbegin(&rename_lock);
2898 		/*
2899 		 * Need rcu_readlock to protect against the d_parent trashing
2900 		 * due to d_move
2901 		 */
2902 		rcu_read_lock();
2903 		if (d_ancestor(old_dentry, new_dentry))
2904 			result = 1;
2905 		else
2906 			result = 0;
2907 		rcu_read_unlock();
2908 	} while (read_seqretry(&rename_lock, seq));
2909 
2910 	return result;
2911 }
2912 
2913 void d_genocide(struct dentry *root)
2914 {
2915 	struct dentry *this_parent;
2916 	struct list_head *next;
2917 	unsigned seq;
2918 	int locked = 0;
2919 
2920 	seq = read_seqbegin(&rename_lock);
2921 again:
2922 	this_parent = root;
2923 	spin_lock(&this_parent->d_lock);
2924 repeat:
2925 	next = this_parent->d_subdirs.next;
2926 resume:
2927 	while (next != &this_parent->d_subdirs) {
2928 		struct list_head *tmp = next;
2929 		struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
2930 		next = tmp->next;
2931 
2932 		spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
2933 		if (d_unhashed(dentry) || !dentry->d_inode) {
2934 			spin_unlock(&dentry->d_lock);
2935 			continue;
2936 		}
2937 		if (!list_empty(&dentry->d_subdirs)) {
2938 			spin_unlock(&this_parent->d_lock);
2939 			spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
2940 			this_parent = dentry;
2941 			spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
2942 			goto repeat;
2943 		}
2944 		if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
2945 			dentry->d_flags |= DCACHE_GENOCIDE;
2946 			dentry->d_count--;
2947 		}
2948 		spin_unlock(&dentry->d_lock);
2949 	}
2950 	if (this_parent != root) {
2951 		struct dentry *child = this_parent;
2952 		if (!(this_parent->d_flags & DCACHE_GENOCIDE)) {
2953 			this_parent->d_flags |= DCACHE_GENOCIDE;
2954 			this_parent->d_count--;
2955 		}
2956 		this_parent = try_to_ascend(this_parent, locked, seq);
2957 		if (!this_parent)
2958 			goto rename_retry;
2959 		next = child->d_u.d_child.next;
2960 		goto resume;
2961 	}
2962 	spin_unlock(&this_parent->d_lock);
2963 	if (!locked && read_seqretry(&rename_lock, seq))
2964 		goto rename_retry;
2965 	if (locked)
2966 		write_sequnlock(&rename_lock);
2967 	return;
2968 
2969 rename_retry:
2970 	if (locked)
2971 		goto again;
2972 	locked = 1;
2973 	write_seqlock(&rename_lock);
2974 	goto again;
2975 }
2976 
2977 /**
2978  * find_inode_number - check for dentry with name
2979  * @dir: directory to check
2980  * @name: Name to find.
2981  *
2982  * Check whether a dentry already exists for the given name,
2983  * and return the inode number if it has an inode. Otherwise
2984  * 0 is returned.
2985  *
2986  * This routine is used to post-process directory listings for
2987  * filesystems using synthetic inode numbers, and is necessary
2988  * to keep getcwd() working.
2989  */
2990 
2991 ino_t find_inode_number(struct dentry *dir, struct qstr *name)
2992 {
2993 	struct dentry * dentry;
2994 	ino_t ino = 0;
2995 
2996 	dentry = d_hash_and_lookup(dir, name);
2997 	if (!IS_ERR_OR_NULL(dentry)) {
2998 		if (dentry->d_inode)
2999 			ino = dentry->d_inode->i_ino;
3000 		dput(dentry);
3001 	}
3002 	return ino;
3003 }
3004 EXPORT_SYMBOL(find_inode_number);
3005 
3006 static __initdata unsigned long dhash_entries;
3007 static int __init set_dhash_entries(char *str)
3008 {
3009 	if (!str)
3010 		return 0;
3011 	dhash_entries = simple_strtoul(str, &str, 0);
3012 	return 1;
3013 }
3014 __setup("dhash_entries=", set_dhash_entries);
3015 
3016 static void __init dcache_init_early(void)
3017 {
3018 	unsigned int loop;
3019 
3020 	/* If hashes are distributed across NUMA nodes, defer
3021 	 * hash allocation until vmalloc space is available.
3022 	 */
3023 	if (hashdist)
3024 		return;
3025 
3026 	dentry_hashtable =
3027 		alloc_large_system_hash("Dentry cache",
3028 					sizeof(struct hlist_bl_head),
3029 					dhash_entries,
3030 					13,
3031 					HASH_EARLY,
3032 					&d_hash_shift,
3033 					&d_hash_mask,
3034 					0,
3035 					0);
3036 
3037 	for (loop = 0; loop < (1U << d_hash_shift); loop++)
3038 		INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
3039 }
3040 
3041 static void __init dcache_init(void)
3042 {
3043 	unsigned int loop;
3044 
3045 	/*
3046 	 * A constructor could be added for stable state like the lists,
3047 	 * but it is probably not worth it because of the cache nature
3048 	 * of the dcache.
3049 	 */
3050 	dentry_cache = KMEM_CACHE(dentry,
3051 		SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD);
3052 
3053 	/* Hash may have been set up in dcache_init_early */
3054 	if (!hashdist)
3055 		return;
3056 
3057 	dentry_hashtable =
3058 		alloc_large_system_hash("Dentry cache",
3059 					sizeof(struct hlist_bl_head),
3060 					dhash_entries,
3061 					13,
3062 					0,
3063 					&d_hash_shift,
3064 					&d_hash_mask,
3065 					0,
3066 					0);
3067 
3068 	for (loop = 0; loop < (1U << d_hash_shift); loop++)
3069 		INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
3070 }
3071 
3072 /* SLAB cache for __getname() consumers */
3073 struct kmem_cache *names_cachep __read_mostly;
3074 EXPORT_SYMBOL(names_cachep);
3075 
3076 EXPORT_SYMBOL(d_genocide);
3077 
3078 void __init vfs_caches_init_early(void)
3079 {
3080 	dcache_init_early();
3081 	inode_init_early();
3082 }
3083 
3084 void __init vfs_caches_init(unsigned long mempages)
3085 {
3086 	unsigned long reserve;
3087 
3088 	/* Base hash sizes on available memory, with a reserve equal to
3089            150% of current kernel size */
3090 
3091 	reserve = min((mempages - nr_free_pages()) * 3/2, mempages - 1);
3092 	mempages -= reserve;
3093 
3094 	names_cachep = kmem_cache_create("names_cache", PATH_MAX, 0,
3095 			SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
3096 
3097 	dcache_init();
3098 	inode_init();
3099 	files_init(mempages);
3100 	mnt_init();
3101 	bdev_cache_init();
3102 	chrdev_init();
3103 }
3104