xref: /openbmc/linux/fs/dcache.c (revision 95e9fd10)
1 /*
2  * fs/dcache.c
3  *
4  * Complete reimplementation
5  * (C) 1997 Thomas Schoebel-Theuer,
6  * with heavy changes by Linus Torvalds
7  */
8 
9 /*
10  * Notes on the allocation strategy:
11  *
12  * The dcache is a master of the icache - whenever a dcache entry
13  * exists, the inode will always exist. "iput()" is done either when
14  * the dcache entry is deleted or garbage collected.
15  */
16 
17 #include <linux/syscalls.h>
18 #include <linux/string.h>
19 #include <linux/mm.h>
20 #include <linux/fs.h>
21 #include <linux/fsnotify.h>
22 #include <linux/slab.h>
23 #include <linux/init.h>
24 #include <linux/hash.h>
25 #include <linux/cache.h>
26 #include <linux/export.h>
27 #include <linux/mount.h>
28 #include <linux/file.h>
29 #include <asm/uaccess.h>
30 #include <linux/security.h>
31 #include <linux/seqlock.h>
32 #include <linux/swap.h>
33 #include <linux/bootmem.h>
34 #include <linux/fs_struct.h>
35 #include <linux/hardirq.h>
36 #include <linux/bit_spinlock.h>
37 #include <linux/rculist_bl.h>
38 #include <linux/prefetch.h>
39 #include <linux/ratelimit.h>
40 #include "internal.h"
41 #include "mount.h"
42 
43 /*
44  * Usage:
45  * dcache->d_inode->i_lock protects:
46  *   - i_dentry, d_alias, d_inode of aliases
47  * dcache_hash_bucket lock protects:
48  *   - the dcache hash table
49  * s_anon bl list spinlock protects:
50  *   - the s_anon list (see __d_drop)
51  * dcache_lru_lock protects:
52  *   - the dcache lru lists and counters
53  * d_lock protects:
54  *   - d_flags
55  *   - d_name
56  *   - d_lru
57  *   - d_count
58  *   - d_unhashed()
59  *   - d_parent and d_subdirs
60  *   - childrens' d_child and d_parent
61  *   - d_alias, d_inode
62  *
63  * Ordering:
64  * dentry->d_inode->i_lock
65  *   dentry->d_lock
66  *     dcache_lru_lock
67  *     dcache_hash_bucket lock
68  *     s_anon lock
69  *
70  * If there is an ancestor relationship:
71  * dentry->d_parent->...->d_parent->d_lock
72  *   ...
73  *     dentry->d_parent->d_lock
74  *       dentry->d_lock
75  *
76  * If no ancestor relationship:
77  * if (dentry1 < dentry2)
78  *   dentry1->d_lock
79  *     dentry2->d_lock
80  */
81 int sysctl_vfs_cache_pressure __read_mostly = 100;
82 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
83 
84 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(dcache_lru_lock);
85 __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
86 
87 EXPORT_SYMBOL(rename_lock);
88 
89 static struct kmem_cache *dentry_cache __read_mostly;
90 
91 /*
92  * This is the single most critical data structure when it comes
93  * to the dcache: the hashtable for lookups. Somebody should try
94  * to make this good - I've just made it work.
95  *
96  * This hash-function tries to avoid losing too many bits of hash
97  * information, yet avoid using a prime hash-size or similar.
98  */
99 #define D_HASHBITS     d_hash_shift
100 #define D_HASHMASK     d_hash_mask
101 
102 static unsigned int d_hash_mask __read_mostly;
103 static unsigned int d_hash_shift __read_mostly;
104 
105 static struct hlist_bl_head *dentry_hashtable __read_mostly;
106 
107 static inline struct hlist_bl_head *d_hash(const struct dentry *parent,
108 					unsigned int hash)
109 {
110 	hash += (unsigned long) parent / L1_CACHE_BYTES;
111 	hash = hash + (hash >> D_HASHBITS);
112 	return dentry_hashtable + (hash & D_HASHMASK);
113 }
114 
115 /* Statistics gathering. */
116 struct dentry_stat_t dentry_stat = {
117 	.age_limit = 45,
118 };
119 
120 static DEFINE_PER_CPU(unsigned int, nr_dentry);
121 
122 #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
123 static int get_nr_dentry(void)
124 {
125 	int i;
126 	int sum = 0;
127 	for_each_possible_cpu(i)
128 		sum += per_cpu(nr_dentry, i);
129 	return sum < 0 ? 0 : sum;
130 }
131 
132 int proc_nr_dentry(ctl_table *table, int write, void __user *buffer,
133 		   size_t *lenp, loff_t *ppos)
134 {
135 	dentry_stat.nr_dentry = get_nr_dentry();
136 	return proc_dointvec(table, write, buffer, lenp, ppos);
137 }
138 #endif
139 
140 /*
141  * Compare 2 name strings, return 0 if they match, otherwise non-zero.
142  * The strings are both count bytes long, and count is non-zero.
143  */
144 #ifdef CONFIG_DCACHE_WORD_ACCESS
145 
146 #include <asm/word-at-a-time.h>
147 /*
148  * NOTE! 'cs' and 'scount' come from a dentry, so it has a
149  * aligned allocation for this particular component. We don't
150  * strictly need the load_unaligned_zeropad() safety, but it
151  * doesn't hurt either.
152  *
153  * In contrast, 'ct' and 'tcount' can be from a pathname, and do
154  * need the careful unaligned handling.
155  */
156 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
157 {
158 	unsigned long a,b,mask;
159 
160 	for (;;) {
161 		a = *(unsigned long *)cs;
162 		b = load_unaligned_zeropad(ct);
163 		if (tcount < sizeof(unsigned long))
164 			break;
165 		if (unlikely(a != b))
166 			return 1;
167 		cs += sizeof(unsigned long);
168 		ct += sizeof(unsigned long);
169 		tcount -= sizeof(unsigned long);
170 		if (!tcount)
171 			return 0;
172 	}
173 	mask = ~(~0ul << tcount*8);
174 	return unlikely(!!((a ^ b) & mask));
175 }
176 
177 #else
178 
179 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
180 {
181 	do {
182 		if (*cs != *ct)
183 			return 1;
184 		cs++;
185 		ct++;
186 		tcount--;
187 	} while (tcount);
188 	return 0;
189 }
190 
191 #endif
192 
193 static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount)
194 {
195 	const unsigned char *cs;
196 	/*
197 	 * Be careful about RCU walk racing with rename:
198 	 * use ACCESS_ONCE to fetch the name pointer.
199 	 *
200 	 * NOTE! Even if a rename will mean that the length
201 	 * was not loaded atomically, we don't care. The
202 	 * RCU walk will check the sequence count eventually,
203 	 * and catch it. And we won't overrun the buffer,
204 	 * because we're reading the name pointer atomically,
205 	 * and a dentry name is guaranteed to be properly
206 	 * terminated with a NUL byte.
207 	 *
208 	 * End result: even if 'len' is wrong, we'll exit
209 	 * early because the data cannot match (there can
210 	 * be no NUL in the ct/tcount data)
211 	 */
212 	cs = ACCESS_ONCE(dentry->d_name.name);
213 	smp_read_barrier_depends();
214 	return dentry_string_cmp(cs, ct, tcount);
215 }
216 
217 static void __d_free(struct rcu_head *head)
218 {
219 	struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
220 
221 	WARN_ON(!hlist_unhashed(&dentry->d_alias));
222 	if (dname_external(dentry))
223 		kfree(dentry->d_name.name);
224 	kmem_cache_free(dentry_cache, dentry);
225 }
226 
227 /*
228  * no locks, please.
229  */
230 static void d_free(struct dentry *dentry)
231 {
232 	BUG_ON(dentry->d_count);
233 	this_cpu_dec(nr_dentry);
234 	if (dentry->d_op && dentry->d_op->d_release)
235 		dentry->d_op->d_release(dentry);
236 
237 	/* if dentry was never visible to RCU, immediate free is OK */
238 	if (!(dentry->d_flags & DCACHE_RCUACCESS))
239 		__d_free(&dentry->d_u.d_rcu);
240 	else
241 		call_rcu(&dentry->d_u.d_rcu, __d_free);
242 }
243 
244 /**
245  * dentry_rcuwalk_barrier - invalidate in-progress rcu-walk lookups
246  * @dentry: the target dentry
247  * After this call, in-progress rcu-walk path lookup will fail. This
248  * should be called after unhashing, and after changing d_inode (if
249  * the dentry has not already been unhashed).
250  */
251 static inline void dentry_rcuwalk_barrier(struct dentry *dentry)
252 {
253 	assert_spin_locked(&dentry->d_lock);
254 	/* Go through a barrier */
255 	write_seqcount_barrier(&dentry->d_seq);
256 }
257 
258 /*
259  * Release the dentry's inode, using the filesystem
260  * d_iput() operation if defined. Dentry has no refcount
261  * and is unhashed.
262  */
263 static void dentry_iput(struct dentry * dentry)
264 	__releases(dentry->d_lock)
265 	__releases(dentry->d_inode->i_lock)
266 {
267 	struct inode *inode = dentry->d_inode;
268 	if (inode) {
269 		dentry->d_inode = NULL;
270 		hlist_del_init(&dentry->d_alias);
271 		spin_unlock(&dentry->d_lock);
272 		spin_unlock(&inode->i_lock);
273 		if (!inode->i_nlink)
274 			fsnotify_inoderemove(inode);
275 		if (dentry->d_op && dentry->d_op->d_iput)
276 			dentry->d_op->d_iput(dentry, inode);
277 		else
278 			iput(inode);
279 	} else {
280 		spin_unlock(&dentry->d_lock);
281 	}
282 }
283 
284 /*
285  * Release the dentry's inode, using the filesystem
286  * d_iput() operation if defined. dentry remains in-use.
287  */
288 static void dentry_unlink_inode(struct dentry * dentry)
289 	__releases(dentry->d_lock)
290 	__releases(dentry->d_inode->i_lock)
291 {
292 	struct inode *inode = dentry->d_inode;
293 	dentry->d_inode = NULL;
294 	hlist_del_init(&dentry->d_alias);
295 	dentry_rcuwalk_barrier(dentry);
296 	spin_unlock(&dentry->d_lock);
297 	spin_unlock(&inode->i_lock);
298 	if (!inode->i_nlink)
299 		fsnotify_inoderemove(inode);
300 	if (dentry->d_op && dentry->d_op->d_iput)
301 		dentry->d_op->d_iput(dentry, inode);
302 	else
303 		iput(inode);
304 }
305 
306 /*
307  * dentry_lru_(add|del|prune|move_tail) must be called with d_lock held.
308  */
309 static void dentry_lru_add(struct dentry *dentry)
310 {
311 	if (list_empty(&dentry->d_lru)) {
312 		spin_lock(&dcache_lru_lock);
313 		list_add(&dentry->d_lru, &dentry->d_sb->s_dentry_lru);
314 		dentry->d_sb->s_nr_dentry_unused++;
315 		dentry_stat.nr_unused++;
316 		spin_unlock(&dcache_lru_lock);
317 	}
318 }
319 
320 static void __dentry_lru_del(struct dentry *dentry)
321 {
322 	list_del_init(&dentry->d_lru);
323 	dentry->d_flags &= ~DCACHE_SHRINK_LIST;
324 	dentry->d_sb->s_nr_dentry_unused--;
325 	dentry_stat.nr_unused--;
326 }
327 
328 /*
329  * Remove a dentry with references from the LRU.
330  */
331 static void dentry_lru_del(struct dentry *dentry)
332 {
333 	if (!list_empty(&dentry->d_lru)) {
334 		spin_lock(&dcache_lru_lock);
335 		__dentry_lru_del(dentry);
336 		spin_unlock(&dcache_lru_lock);
337 	}
338 }
339 
340 /*
341  * Remove a dentry that is unreferenced and about to be pruned
342  * (unhashed and destroyed) from the LRU, and inform the file system.
343  * This wrapper should be called _prior_ to unhashing a victim dentry.
344  */
345 static void dentry_lru_prune(struct dentry *dentry)
346 {
347 	if (!list_empty(&dentry->d_lru)) {
348 		if (dentry->d_flags & DCACHE_OP_PRUNE)
349 			dentry->d_op->d_prune(dentry);
350 
351 		spin_lock(&dcache_lru_lock);
352 		__dentry_lru_del(dentry);
353 		spin_unlock(&dcache_lru_lock);
354 	}
355 }
356 
357 static void dentry_lru_move_list(struct dentry *dentry, struct list_head *list)
358 {
359 	spin_lock(&dcache_lru_lock);
360 	if (list_empty(&dentry->d_lru)) {
361 		list_add_tail(&dentry->d_lru, list);
362 		dentry->d_sb->s_nr_dentry_unused++;
363 		dentry_stat.nr_unused++;
364 	} else {
365 		list_move_tail(&dentry->d_lru, list);
366 	}
367 	spin_unlock(&dcache_lru_lock);
368 }
369 
370 /**
371  * d_kill - kill dentry and return parent
372  * @dentry: dentry to kill
373  * @parent: parent dentry
374  *
375  * The dentry must already be unhashed and removed from the LRU.
376  *
377  * If this is the root of the dentry tree, return NULL.
378  *
379  * dentry->d_lock and parent->d_lock must be held by caller, and are dropped by
380  * d_kill.
381  */
382 static struct dentry *d_kill(struct dentry *dentry, struct dentry *parent)
383 	__releases(dentry->d_lock)
384 	__releases(parent->d_lock)
385 	__releases(dentry->d_inode->i_lock)
386 {
387 	list_del(&dentry->d_u.d_child);
388 	/*
389 	 * Inform try_to_ascend() that we are no longer attached to the
390 	 * dentry tree
391 	 */
392 	dentry->d_flags |= DCACHE_DISCONNECTED;
393 	if (parent)
394 		spin_unlock(&parent->d_lock);
395 	dentry_iput(dentry);
396 	/*
397 	 * dentry_iput drops the locks, at which point nobody (except
398 	 * transient RCU lookups) can reach this dentry.
399 	 */
400 	d_free(dentry);
401 	return parent;
402 }
403 
404 /*
405  * Unhash a dentry without inserting an RCU walk barrier or checking that
406  * dentry->d_lock is locked.  The caller must take care of that, if
407  * appropriate.
408  */
409 static void __d_shrink(struct dentry *dentry)
410 {
411 	if (!d_unhashed(dentry)) {
412 		struct hlist_bl_head *b;
413 		if (unlikely(dentry->d_flags & DCACHE_DISCONNECTED))
414 			b = &dentry->d_sb->s_anon;
415 		else
416 			b = d_hash(dentry->d_parent, dentry->d_name.hash);
417 
418 		hlist_bl_lock(b);
419 		__hlist_bl_del(&dentry->d_hash);
420 		dentry->d_hash.pprev = NULL;
421 		hlist_bl_unlock(b);
422 	}
423 }
424 
425 /**
426  * d_drop - drop a dentry
427  * @dentry: dentry to drop
428  *
429  * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
430  * be found through a VFS lookup any more. Note that this is different from
431  * deleting the dentry - d_delete will try to mark the dentry negative if
432  * possible, giving a successful _negative_ lookup, while d_drop will
433  * just make the cache lookup fail.
434  *
435  * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
436  * reason (NFS timeouts or autofs deletes).
437  *
438  * __d_drop requires dentry->d_lock.
439  */
440 void __d_drop(struct dentry *dentry)
441 {
442 	if (!d_unhashed(dentry)) {
443 		__d_shrink(dentry);
444 		dentry_rcuwalk_barrier(dentry);
445 	}
446 }
447 EXPORT_SYMBOL(__d_drop);
448 
449 void d_drop(struct dentry *dentry)
450 {
451 	spin_lock(&dentry->d_lock);
452 	__d_drop(dentry);
453 	spin_unlock(&dentry->d_lock);
454 }
455 EXPORT_SYMBOL(d_drop);
456 
457 /*
458  * d_clear_need_lookup - drop a dentry from cache and clear the need lookup flag
459  * @dentry: dentry to drop
460  *
461  * This is called when we do a lookup on a placeholder dentry that needed to be
462  * looked up.  The dentry should have been hashed in order for it to be found by
463  * the lookup code, but now needs to be unhashed while we do the actual lookup
464  * and clear the DCACHE_NEED_LOOKUP flag.
465  */
466 void d_clear_need_lookup(struct dentry *dentry)
467 {
468 	spin_lock(&dentry->d_lock);
469 	__d_drop(dentry);
470 	dentry->d_flags &= ~DCACHE_NEED_LOOKUP;
471 	spin_unlock(&dentry->d_lock);
472 }
473 EXPORT_SYMBOL(d_clear_need_lookup);
474 
475 /*
476  * Finish off a dentry we've decided to kill.
477  * dentry->d_lock must be held, returns with it unlocked.
478  * If ref is non-zero, then decrement the refcount too.
479  * Returns dentry requiring refcount drop, or NULL if we're done.
480  */
481 static inline struct dentry *dentry_kill(struct dentry *dentry, int ref)
482 	__releases(dentry->d_lock)
483 {
484 	struct inode *inode;
485 	struct dentry *parent;
486 
487 	inode = dentry->d_inode;
488 	if (inode && !spin_trylock(&inode->i_lock)) {
489 relock:
490 		spin_unlock(&dentry->d_lock);
491 		cpu_relax();
492 		return dentry; /* try again with same dentry */
493 	}
494 	if (IS_ROOT(dentry))
495 		parent = NULL;
496 	else
497 		parent = dentry->d_parent;
498 	if (parent && !spin_trylock(&parent->d_lock)) {
499 		if (inode)
500 			spin_unlock(&inode->i_lock);
501 		goto relock;
502 	}
503 
504 	if (ref)
505 		dentry->d_count--;
506 	/*
507 	 * if dentry was on the d_lru list delete it from there.
508 	 * inform the fs via d_prune that this dentry is about to be
509 	 * unhashed and destroyed.
510 	 */
511 	dentry_lru_prune(dentry);
512 	/* if it was on the hash then remove it */
513 	__d_drop(dentry);
514 	return d_kill(dentry, parent);
515 }
516 
517 /*
518  * This is dput
519  *
520  * This is complicated by the fact that we do not want to put
521  * dentries that are no longer on any hash chain on the unused
522  * list: we'd much rather just get rid of them immediately.
523  *
524  * However, that implies that we have to traverse the dentry
525  * tree upwards to the parents which might _also_ now be
526  * scheduled for deletion (it may have been only waiting for
527  * its last child to go away).
528  *
529  * This tail recursion is done by hand as we don't want to depend
530  * on the compiler to always get this right (gcc generally doesn't).
531  * Real recursion would eat up our stack space.
532  */
533 
534 /*
535  * dput - release a dentry
536  * @dentry: dentry to release
537  *
538  * Release a dentry. This will drop the usage count and if appropriate
539  * call the dentry unlink method as well as removing it from the queues and
540  * releasing its resources. If the parent dentries were scheduled for release
541  * they too may now get deleted.
542  */
543 void dput(struct dentry *dentry)
544 {
545 	if (!dentry)
546 		return;
547 
548 repeat:
549 	if (dentry->d_count == 1)
550 		might_sleep();
551 	spin_lock(&dentry->d_lock);
552 	BUG_ON(!dentry->d_count);
553 	if (dentry->d_count > 1) {
554 		dentry->d_count--;
555 		spin_unlock(&dentry->d_lock);
556 		return;
557 	}
558 
559 	if (dentry->d_flags & DCACHE_OP_DELETE) {
560 		if (dentry->d_op->d_delete(dentry))
561 			goto kill_it;
562 	}
563 
564 	/* Unreachable? Get rid of it */
565  	if (d_unhashed(dentry))
566 		goto kill_it;
567 
568 	/*
569 	 * If this dentry needs lookup, don't set the referenced flag so that it
570 	 * is more likely to be cleaned up by the dcache shrinker in case of
571 	 * memory pressure.
572 	 */
573 	if (!d_need_lookup(dentry))
574 		dentry->d_flags |= DCACHE_REFERENCED;
575 	dentry_lru_add(dentry);
576 
577 	dentry->d_count--;
578 	spin_unlock(&dentry->d_lock);
579 	return;
580 
581 kill_it:
582 	dentry = dentry_kill(dentry, 1);
583 	if (dentry)
584 		goto repeat;
585 }
586 EXPORT_SYMBOL(dput);
587 
588 /**
589  * d_invalidate - invalidate a dentry
590  * @dentry: dentry to invalidate
591  *
592  * Try to invalidate the dentry if it turns out to be
593  * possible. If there are other dentries that can be
594  * reached through this one we can't delete it and we
595  * return -EBUSY. On success we return 0.
596  *
597  * no dcache lock.
598  */
599 
600 int d_invalidate(struct dentry * dentry)
601 {
602 	/*
603 	 * If it's already been dropped, return OK.
604 	 */
605 	spin_lock(&dentry->d_lock);
606 	if (d_unhashed(dentry)) {
607 		spin_unlock(&dentry->d_lock);
608 		return 0;
609 	}
610 	/*
611 	 * Check whether to do a partial shrink_dcache
612 	 * to get rid of unused child entries.
613 	 */
614 	if (!list_empty(&dentry->d_subdirs)) {
615 		spin_unlock(&dentry->d_lock);
616 		shrink_dcache_parent(dentry);
617 		spin_lock(&dentry->d_lock);
618 	}
619 
620 	/*
621 	 * Somebody else still using it?
622 	 *
623 	 * If it's a directory, we can't drop it
624 	 * for fear of somebody re-populating it
625 	 * with children (even though dropping it
626 	 * would make it unreachable from the root,
627 	 * we might still populate it if it was a
628 	 * working directory or similar).
629 	 * We also need to leave mountpoints alone,
630 	 * directory or not.
631 	 */
632 	if (dentry->d_count > 1 && dentry->d_inode) {
633 		if (S_ISDIR(dentry->d_inode->i_mode) || d_mountpoint(dentry)) {
634 			spin_unlock(&dentry->d_lock);
635 			return -EBUSY;
636 		}
637 	}
638 
639 	__d_drop(dentry);
640 	spin_unlock(&dentry->d_lock);
641 	return 0;
642 }
643 EXPORT_SYMBOL(d_invalidate);
644 
645 /* This must be called with d_lock held */
646 static inline void __dget_dlock(struct dentry *dentry)
647 {
648 	dentry->d_count++;
649 }
650 
651 static inline void __dget(struct dentry *dentry)
652 {
653 	spin_lock(&dentry->d_lock);
654 	__dget_dlock(dentry);
655 	spin_unlock(&dentry->d_lock);
656 }
657 
658 struct dentry *dget_parent(struct dentry *dentry)
659 {
660 	struct dentry *ret;
661 
662 repeat:
663 	/*
664 	 * Don't need rcu_dereference because we re-check it was correct under
665 	 * the lock.
666 	 */
667 	rcu_read_lock();
668 	ret = dentry->d_parent;
669 	spin_lock(&ret->d_lock);
670 	if (unlikely(ret != dentry->d_parent)) {
671 		spin_unlock(&ret->d_lock);
672 		rcu_read_unlock();
673 		goto repeat;
674 	}
675 	rcu_read_unlock();
676 	BUG_ON(!ret->d_count);
677 	ret->d_count++;
678 	spin_unlock(&ret->d_lock);
679 	return ret;
680 }
681 EXPORT_SYMBOL(dget_parent);
682 
683 /**
684  * d_find_alias - grab a hashed alias of inode
685  * @inode: inode in question
686  * @want_discon:  flag, used by d_splice_alias, to request
687  *          that only a DISCONNECTED alias be returned.
688  *
689  * If inode has a hashed alias, or is a directory and has any alias,
690  * acquire the reference to alias and return it. Otherwise return NULL.
691  * Notice that if inode is a directory there can be only one alias and
692  * it can be unhashed only if it has no children, or if it is the root
693  * of a filesystem.
694  *
695  * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
696  * any other hashed alias over that one unless @want_discon is set,
697  * in which case only return an IS_ROOT, DCACHE_DISCONNECTED alias.
698  */
699 static struct dentry *__d_find_alias(struct inode *inode, int want_discon)
700 {
701 	struct dentry *alias, *discon_alias;
702 	struct hlist_node *p;
703 
704 again:
705 	discon_alias = NULL;
706 	hlist_for_each_entry(alias, p, &inode->i_dentry, d_alias) {
707 		spin_lock(&alias->d_lock);
708  		if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
709 			if (IS_ROOT(alias) &&
710 			    (alias->d_flags & DCACHE_DISCONNECTED)) {
711 				discon_alias = alias;
712 			} else if (!want_discon) {
713 				__dget_dlock(alias);
714 				spin_unlock(&alias->d_lock);
715 				return alias;
716 			}
717 		}
718 		spin_unlock(&alias->d_lock);
719 	}
720 	if (discon_alias) {
721 		alias = discon_alias;
722 		spin_lock(&alias->d_lock);
723 		if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
724 			if (IS_ROOT(alias) &&
725 			    (alias->d_flags & DCACHE_DISCONNECTED)) {
726 				__dget_dlock(alias);
727 				spin_unlock(&alias->d_lock);
728 				return alias;
729 			}
730 		}
731 		spin_unlock(&alias->d_lock);
732 		goto again;
733 	}
734 	return NULL;
735 }
736 
737 struct dentry *d_find_alias(struct inode *inode)
738 {
739 	struct dentry *de = NULL;
740 
741 	if (!hlist_empty(&inode->i_dentry)) {
742 		spin_lock(&inode->i_lock);
743 		de = __d_find_alias(inode, 0);
744 		spin_unlock(&inode->i_lock);
745 	}
746 	return de;
747 }
748 EXPORT_SYMBOL(d_find_alias);
749 
750 /*
751  *	Try to kill dentries associated with this inode.
752  * WARNING: you must own a reference to inode.
753  */
754 void d_prune_aliases(struct inode *inode)
755 {
756 	struct dentry *dentry;
757 	struct hlist_node *p;
758 restart:
759 	spin_lock(&inode->i_lock);
760 	hlist_for_each_entry(dentry, p, &inode->i_dentry, d_alias) {
761 		spin_lock(&dentry->d_lock);
762 		if (!dentry->d_count) {
763 			__dget_dlock(dentry);
764 			__d_drop(dentry);
765 			spin_unlock(&dentry->d_lock);
766 			spin_unlock(&inode->i_lock);
767 			dput(dentry);
768 			goto restart;
769 		}
770 		spin_unlock(&dentry->d_lock);
771 	}
772 	spin_unlock(&inode->i_lock);
773 }
774 EXPORT_SYMBOL(d_prune_aliases);
775 
776 /*
777  * Try to throw away a dentry - free the inode, dput the parent.
778  * Requires dentry->d_lock is held, and dentry->d_count == 0.
779  * Releases dentry->d_lock.
780  *
781  * This may fail if locks cannot be acquired no problem, just try again.
782  */
783 static void try_prune_one_dentry(struct dentry *dentry)
784 	__releases(dentry->d_lock)
785 {
786 	struct dentry *parent;
787 
788 	parent = dentry_kill(dentry, 0);
789 	/*
790 	 * If dentry_kill returns NULL, we have nothing more to do.
791 	 * if it returns the same dentry, trylocks failed. In either
792 	 * case, just loop again.
793 	 *
794 	 * Otherwise, we need to prune ancestors too. This is necessary
795 	 * to prevent quadratic behavior of shrink_dcache_parent(), but
796 	 * is also expected to be beneficial in reducing dentry cache
797 	 * fragmentation.
798 	 */
799 	if (!parent)
800 		return;
801 	if (parent == dentry)
802 		return;
803 
804 	/* Prune ancestors. */
805 	dentry = parent;
806 	while (dentry) {
807 		spin_lock(&dentry->d_lock);
808 		if (dentry->d_count > 1) {
809 			dentry->d_count--;
810 			spin_unlock(&dentry->d_lock);
811 			return;
812 		}
813 		dentry = dentry_kill(dentry, 1);
814 	}
815 }
816 
817 static void shrink_dentry_list(struct list_head *list)
818 {
819 	struct dentry *dentry;
820 
821 	rcu_read_lock();
822 	for (;;) {
823 		dentry = list_entry_rcu(list->prev, struct dentry, d_lru);
824 		if (&dentry->d_lru == list)
825 			break; /* empty */
826 		spin_lock(&dentry->d_lock);
827 		if (dentry != list_entry(list->prev, struct dentry, d_lru)) {
828 			spin_unlock(&dentry->d_lock);
829 			continue;
830 		}
831 
832 		/*
833 		 * We found an inuse dentry which was not removed from
834 		 * the LRU because of laziness during lookup.  Do not free
835 		 * it - just keep it off the LRU list.
836 		 */
837 		if (dentry->d_count) {
838 			dentry_lru_del(dentry);
839 			spin_unlock(&dentry->d_lock);
840 			continue;
841 		}
842 
843 		rcu_read_unlock();
844 
845 		try_prune_one_dentry(dentry);
846 
847 		rcu_read_lock();
848 	}
849 	rcu_read_unlock();
850 }
851 
852 /**
853  * prune_dcache_sb - shrink the dcache
854  * @sb: superblock
855  * @count: number of entries to try to free
856  *
857  * Attempt to shrink the superblock dcache LRU by @count entries. This is
858  * done when we need more memory an called from the superblock shrinker
859  * function.
860  *
861  * This function may fail to free any resources if all the dentries are in
862  * use.
863  */
864 void prune_dcache_sb(struct super_block *sb, int count)
865 {
866 	struct dentry *dentry;
867 	LIST_HEAD(referenced);
868 	LIST_HEAD(tmp);
869 
870 relock:
871 	spin_lock(&dcache_lru_lock);
872 	while (!list_empty(&sb->s_dentry_lru)) {
873 		dentry = list_entry(sb->s_dentry_lru.prev,
874 				struct dentry, d_lru);
875 		BUG_ON(dentry->d_sb != sb);
876 
877 		if (!spin_trylock(&dentry->d_lock)) {
878 			spin_unlock(&dcache_lru_lock);
879 			cpu_relax();
880 			goto relock;
881 		}
882 
883 		if (dentry->d_flags & DCACHE_REFERENCED) {
884 			dentry->d_flags &= ~DCACHE_REFERENCED;
885 			list_move(&dentry->d_lru, &referenced);
886 			spin_unlock(&dentry->d_lock);
887 		} else {
888 			list_move_tail(&dentry->d_lru, &tmp);
889 			dentry->d_flags |= DCACHE_SHRINK_LIST;
890 			spin_unlock(&dentry->d_lock);
891 			if (!--count)
892 				break;
893 		}
894 		cond_resched_lock(&dcache_lru_lock);
895 	}
896 	if (!list_empty(&referenced))
897 		list_splice(&referenced, &sb->s_dentry_lru);
898 	spin_unlock(&dcache_lru_lock);
899 
900 	shrink_dentry_list(&tmp);
901 }
902 
903 /**
904  * shrink_dcache_sb - shrink dcache for a superblock
905  * @sb: superblock
906  *
907  * Shrink the dcache for the specified super block. This is used to free
908  * the dcache before unmounting a file system.
909  */
910 void shrink_dcache_sb(struct super_block *sb)
911 {
912 	LIST_HEAD(tmp);
913 
914 	spin_lock(&dcache_lru_lock);
915 	while (!list_empty(&sb->s_dentry_lru)) {
916 		list_splice_init(&sb->s_dentry_lru, &tmp);
917 		spin_unlock(&dcache_lru_lock);
918 		shrink_dentry_list(&tmp);
919 		spin_lock(&dcache_lru_lock);
920 	}
921 	spin_unlock(&dcache_lru_lock);
922 }
923 EXPORT_SYMBOL(shrink_dcache_sb);
924 
925 /*
926  * destroy a single subtree of dentries for unmount
927  * - see the comments on shrink_dcache_for_umount() for a description of the
928  *   locking
929  */
930 static void shrink_dcache_for_umount_subtree(struct dentry *dentry)
931 {
932 	struct dentry *parent;
933 
934 	BUG_ON(!IS_ROOT(dentry));
935 
936 	for (;;) {
937 		/* descend to the first leaf in the current subtree */
938 		while (!list_empty(&dentry->d_subdirs))
939 			dentry = list_entry(dentry->d_subdirs.next,
940 					    struct dentry, d_u.d_child);
941 
942 		/* consume the dentries from this leaf up through its parents
943 		 * until we find one with children or run out altogether */
944 		do {
945 			struct inode *inode;
946 
947 			/*
948 			 * remove the dentry from the lru, and inform
949 			 * the fs that this dentry is about to be
950 			 * unhashed and destroyed.
951 			 */
952 			dentry_lru_prune(dentry);
953 			__d_shrink(dentry);
954 
955 			if (dentry->d_count != 0) {
956 				printk(KERN_ERR
957 				       "BUG: Dentry %p{i=%lx,n=%s}"
958 				       " still in use (%d)"
959 				       " [unmount of %s %s]\n",
960 				       dentry,
961 				       dentry->d_inode ?
962 				       dentry->d_inode->i_ino : 0UL,
963 				       dentry->d_name.name,
964 				       dentry->d_count,
965 				       dentry->d_sb->s_type->name,
966 				       dentry->d_sb->s_id);
967 				BUG();
968 			}
969 
970 			if (IS_ROOT(dentry)) {
971 				parent = NULL;
972 				list_del(&dentry->d_u.d_child);
973 			} else {
974 				parent = dentry->d_parent;
975 				parent->d_count--;
976 				list_del(&dentry->d_u.d_child);
977 			}
978 
979 			inode = dentry->d_inode;
980 			if (inode) {
981 				dentry->d_inode = NULL;
982 				hlist_del_init(&dentry->d_alias);
983 				if (dentry->d_op && dentry->d_op->d_iput)
984 					dentry->d_op->d_iput(dentry, inode);
985 				else
986 					iput(inode);
987 			}
988 
989 			d_free(dentry);
990 
991 			/* finished when we fall off the top of the tree,
992 			 * otherwise we ascend to the parent and move to the
993 			 * next sibling if there is one */
994 			if (!parent)
995 				return;
996 			dentry = parent;
997 		} while (list_empty(&dentry->d_subdirs));
998 
999 		dentry = list_entry(dentry->d_subdirs.next,
1000 				    struct dentry, d_u.d_child);
1001 	}
1002 }
1003 
1004 /*
1005  * destroy the dentries attached to a superblock on unmounting
1006  * - we don't need to use dentry->d_lock because:
1007  *   - the superblock is detached from all mountings and open files, so the
1008  *     dentry trees will not be rearranged by the VFS
1009  *   - s_umount is write-locked, so the memory pressure shrinker will ignore
1010  *     any dentries belonging to this superblock that it comes across
1011  *   - the filesystem itself is no longer permitted to rearrange the dentries
1012  *     in this superblock
1013  */
1014 void shrink_dcache_for_umount(struct super_block *sb)
1015 {
1016 	struct dentry *dentry;
1017 
1018 	if (down_read_trylock(&sb->s_umount))
1019 		BUG();
1020 
1021 	dentry = sb->s_root;
1022 	sb->s_root = NULL;
1023 	dentry->d_count--;
1024 	shrink_dcache_for_umount_subtree(dentry);
1025 
1026 	while (!hlist_bl_empty(&sb->s_anon)) {
1027 		dentry = hlist_bl_entry(hlist_bl_first(&sb->s_anon), struct dentry, d_hash);
1028 		shrink_dcache_for_umount_subtree(dentry);
1029 	}
1030 }
1031 
1032 /*
1033  * This tries to ascend one level of parenthood, but
1034  * we can race with renaming, so we need to re-check
1035  * the parenthood after dropping the lock and check
1036  * that the sequence number still matches.
1037  */
1038 static struct dentry *try_to_ascend(struct dentry *old, int locked, unsigned seq)
1039 {
1040 	struct dentry *new = old->d_parent;
1041 
1042 	rcu_read_lock();
1043 	spin_unlock(&old->d_lock);
1044 	spin_lock(&new->d_lock);
1045 
1046 	/*
1047 	 * might go back up the wrong parent if we have had a rename
1048 	 * or deletion
1049 	 */
1050 	if (new != old->d_parent ||
1051 		 (old->d_flags & DCACHE_DISCONNECTED) ||
1052 		 (!locked && read_seqretry(&rename_lock, seq))) {
1053 		spin_unlock(&new->d_lock);
1054 		new = NULL;
1055 	}
1056 	rcu_read_unlock();
1057 	return new;
1058 }
1059 
1060 
1061 /*
1062  * Search for at least 1 mount point in the dentry's subdirs.
1063  * We descend to the next level whenever the d_subdirs
1064  * list is non-empty and continue searching.
1065  */
1066 
1067 /**
1068  * have_submounts - check for mounts over a dentry
1069  * @parent: dentry to check.
1070  *
1071  * Return true if the parent or its subdirectories contain
1072  * a mount point
1073  */
1074 int have_submounts(struct dentry *parent)
1075 {
1076 	struct dentry *this_parent;
1077 	struct list_head *next;
1078 	unsigned seq;
1079 	int locked = 0;
1080 
1081 	seq = read_seqbegin(&rename_lock);
1082 again:
1083 	this_parent = parent;
1084 
1085 	if (d_mountpoint(parent))
1086 		goto positive;
1087 	spin_lock(&this_parent->d_lock);
1088 repeat:
1089 	next = this_parent->d_subdirs.next;
1090 resume:
1091 	while (next != &this_parent->d_subdirs) {
1092 		struct list_head *tmp = next;
1093 		struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
1094 		next = tmp->next;
1095 
1096 		spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1097 		/* Have we found a mount point ? */
1098 		if (d_mountpoint(dentry)) {
1099 			spin_unlock(&dentry->d_lock);
1100 			spin_unlock(&this_parent->d_lock);
1101 			goto positive;
1102 		}
1103 		if (!list_empty(&dentry->d_subdirs)) {
1104 			spin_unlock(&this_parent->d_lock);
1105 			spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1106 			this_parent = dentry;
1107 			spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1108 			goto repeat;
1109 		}
1110 		spin_unlock(&dentry->d_lock);
1111 	}
1112 	/*
1113 	 * All done at this level ... ascend and resume the search.
1114 	 */
1115 	if (this_parent != parent) {
1116 		struct dentry *child = this_parent;
1117 		this_parent = try_to_ascend(this_parent, locked, seq);
1118 		if (!this_parent)
1119 			goto rename_retry;
1120 		next = child->d_u.d_child.next;
1121 		goto resume;
1122 	}
1123 	spin_unlock(&this_parent->d_lock);
1124 	if (!locked && read_seqretry(&rename_lock, seq))
1125 		goto rename_retry;
1126 	if (locked)
1127 		write_sequnlock(&rename_lock);
1128 	return 0; /* No mount points found in tree */
1129 positive:
1130 	if (!locked && read_seqretry(&rename_lock, seq))
1131 		goto rename_retry;
1132 	if (locked)
1133 		write_sequnlock(&rename_lock);
1134 	return 1;
1135 
1136 rename_retry:
1137 	locked = 1;
1138 	write_seqlock(&rename_lock);
1139 	goto again;
1140 }
1141 EXPORT_SYMBOL(have_submounts);
1142 
1143 /*
1144  * Search the dentry child list for the specified parent,
1145  * and move any unused dentries to the end of the unused
1146  * list for prune_dcache(). We descend to the next level
1147  * whenever the d_subdirs list is non-empty and continue
1148  * searching.
1149  *
1150  * It returns zero iff there are no unused children,
1151  * otherwise  it returns the number of children moved to
1152  * the end of the unused list. This may not be the total
1153  * number of unused children, because select_parent can
1154  * drop the lock and return early due to latency
1155  * constraints.
1156  */
1157 static int select_parent(struct dentry *parent, struct list_head *dispose)
1158 {
1159 	struct dentry *this_parent;
1160 	struct list_head *next;
1161 	unsigned seq;
1162 	int found = 0;
1163 	int locked = 0;
1164 
1165 	seq = read_seqbegin(&rename_lock);
1166 again:
1167 	this_parent = parent;
1168 	spin_lock(&this_parent->d_lock);
1169 repeat:
1170 	next = this_parent->d_subdirs.next;
1171 resume:
1172 	while (next != &this_parent->d_subdirs) {
1173 		struct list_head *tmp = next;
1174 		struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
1175 		next = tmp->next;
1176 
1177 		spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1178 
1179 		/*
1180 		 * move only zero ref count dentries to the dispose list.
1181 		 *
1182 		 * Those which are presently on the shrink list, being processed
1183 		 * by shrink_dentry_list(), shouldn't be moved.  Otherwise the
1184 		 * loop in shrink_dcache_parent() might not make any progress
1185 		 * and loop forever.
1186 		 */
1187 		if (dentry->d_count) {
1188 			dentry_lru_del(dentry);
1189 		} else if (!(dentry->d_flags & DCACHE_SHRINK_LIST)) {
1190 			dentry_lru_move_list(dentry, dispose);
1191 			dentry->d_flags |= DCACHE_SHRINK_LIST;
1192 			found++;
1193 		}
1194 		/*
1195 		 * We can return to the caller if we have found some (this
1196 		 * ensures forward progress). We'll be coming back to find
1197 		 * the rest.
1198 		 */
1199 		if (found && need_resched()) {
1200 			spin_unlock(&dentry->d_lock);
1201 			goto out;
1202 		}
1203 
1204 		/*
1205 		 * Descend a level if the d_subdirs list is non-empty.
1206 		 */
1207 		if (!list_empty(&dentry->d_subdirs)) {
1208 			spin_unlock(&this_parent->d_lock);
1209 			spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1210 			this_parent = dentry;
1211 			spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1212 			goto repeat;
1213 		}
1214 
1215 		spin_unlock(&dentry->d_lock);
1216 	}
1217 	/*
1218 	 * All done at this level ... ascend and resume the search.
1219 	 */
1220 	if (this_parent != parent) {
1221 		struct dentry *child = this_parent;
1222 		this_parent = try_to_ascend(this_parent, locked, seq);
1223 		if (!this_parent)
1224 			goto rename_retry;
1225 		next = child->d_u.d_child.next;
1226 		goto resume;
1227 	}
1228 out:
1229 	spin_unlock(&this_parent->d_lock);
1230 	if (!locked && read_seqretry(&rename_lock, seq))
1231 		goto rename_retry;
1232 	if (locked)
1233 		write_sequnlock(&rename_lock);
1234 	return found;
1235 
1236 rename_retry:
1237 	if (found)
1238 		return found;
1239 	locked = 1;
1240 	write_seqlock(&rename_lock);
1241 	goto again;
1242 }
1243 
1244 /**
1245  * shrink_dcache_parent - prune dcache
1246  * @parent: parent of entries to prune
1247  *
1248  * Prune the dcache to remove unused children of the parent dentry.
1249  */
1250 void shrink_dcache_parent(struct dentry * parent)
1251 {
1252 	LIST_HEAD(dispose);
1253 	int found;
1254 
1255 	while ((found = select_parent(parent, &dispose)) != 0)
1256 		shrink_dentry_list(&dispose);
1257 }
1258 EXPORT_SYMBOL(shrink_dcache_parent);
1259 
1260 /**
1261  * __d_alloc	-	allocate a dcache entry
1262  * @sb: filesystem it will belong to
1263  * @name: qstr of the name
1264  *
1265  * Allocates a dentry. It returns %NULL if there is insufficient memory
1266  * available. On a success the dentry is returned. The name passed in is
1267  * copied and the copy passed in may be reused after this call.
1268  */
1269 
1270 struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name)
1271 {
1272 	struct dentry *dentry;
1273 	char *dname;
1274 
1275 	dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
1276 	if (!dentry)
1277 		return NULL;
1278 
1279 	/*
1280 	 * We guarantee that the inline name is always NUL-terminated.
1281 	 * This way the memcpy() done by the name switching in rename
1282 	 * will still always have a NUL at the end, even if we might
1283 	 * be overwriting an internal NUL character
1284 	 */
1285 	dentry->d_iname[DNAME_INLINE_LEN-1] = 0;
1286 	if (name->len > DNAME_INLINE_LEN-1) {
1287 		dname = kmalloc(name->len + 1, GFP_KERNEL);
1288 		if (!dname) {
1289 			kmem_cache_free(dentry_cache, dentry);
1290 			return NULL;
1291 		}
1292 	} else  {
1293 		dname = dentry->d_iname;
1294 	}
1295 
1296 	dentry->d_name.len = name->len;
1297 	dentry->d_name.hash = name->hash;
1298 	memcpy(dname, name->name, name->len);
1299 	dname[name->len] = 0;
1300 
1301 	/* Make sure we always see the terminating NUL character */
1302 	smp_wmb();
1303 	dentry->d_name.name = dname;
1304 
1305 	dentry->d_count = 1;
1306 	dentry->d_flags = 0;
1307 	spin_lock_init(&dentry->d_lock);
1308 	seqcount_init(&dentry->d_seq);
1309 	dentry->d_inode = NULL;
1310 	dentry->d_parent = dentry;
1311 	dentry->d_sb = sb;
1312 	dentry->d_op = NULL;
1313 	dentry->d_fsdata = NULL;
1314 	INIT_HLIST_BL_NODE(&dentry->d_hash);
1315 	INIT_LIST_HEAD(&dentry->d_lru);
1316 	INIT_LIST_HEAD(&dentry->d_subdirs);
1317 	INIT_HLIST_NODE(&dentry->d_alias);
1318 	INIT_LIST_HEAD(&dentry->d_u.d_child);
1319 	d_set_d_op(dentry, dentry->d_sb->s_d_op);
1320 
1321 	this_cpu_inc(nr_dentry);
1322 
1323 	return dentry;
1324 }
1325 
1326 /**
1327  * d_alloc	-	allocate a dcache entry
1328  * @parent: parent of entry to allocate
1329  * @name: qstr of the name
1330  *
1331  * Allocates a dentry. It returns %NULL if there is insufficient memory
1332  * available. On a success the dentry is returned. The name passed in is
1333  * copied and the copy passed in may be reused after this call.
1334  */
1335 struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1336 {
1337 	struct dentry *dentry = __d_alloc(parent->d_sb, name);
1338 	if (!dentry)
1339 		return NULL;
1340 
1341 	spin_lock(&parent->d_lock);
1342 	/*
1343 	 * don't need child lock because it is not subject
1344 	 * to concurrency here
1345 	 */
1346 	__dget_dlock(parent);
1347 	dentry->d_parent = parent;
1348 	list_add(&dentry->d_u.d_child, &parent->d_subdirs);
1349 	spin_unlock(&parent->d_lock);
1350 
1351 	return dentry;
1352 }
1353 EXPORT_SYMBOL(d_alloc);
1354 
1355 struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
1356 {
1357 	struct dentry *dentry = __d_alloc(sb, name);
1358 	if (dentry)
1359 		dentry->d_flags |= DCACHE_DISCONNECTED;
1360 	return dentry;
1361 }
1362 EXPORT_SYMBOL(d_alloc_pseudo);
1363 
1364 struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1365 {
1366 	struct qstr q;
1367 
1368 	q.name = name;
1369 	q.len = strlen(name);
1370 	q.hash = full_name_hash(q.name, q.len);
1371 	return d_alloc(parent, &q);
1372 }
1373 EXPORT_SYMBOL(d_alloc_name);
1374 
1375 void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1376 {
1377 	WARN_ON_ONCE(dentry->d_op);
1378 	WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH	|
1379 				DCACHE_OP_COMPARE	|
1380 				DCACHE_OP_REVALIDATE	|
1381 				DCACHE_OP_DELETE ));
1382 	dentry->d_op = op;
1383 	if (!op)
1384 		return;
1385 	if (op->d_hash)
1386 		dentry->d_flags |= DCACHE_OP_HASH;
1387 	if (op->d_compare)
1388 		dentry->d_flags |= DCACHE_OP_COMPARE;
1389 	if (op->d_revalidate)
1390 		dentry->d_flags |= DCACHE_OP_REVALIDATE;
1391 	if (op->d_delete)
1392 		dentry->d_flags |= DCACHE_OP_DELETE;
1393 	if (op->d_prune)
1394 		dentry->d_flags |= DCACHE_OP_PRUNE;
1395 
1396 }
1397 EXPORT_SYMBOL(d_set_d_op);
1398 
1399 static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1400 {
1401 	spin_lock(&dentry->d_lock);
1402 	if (inode) {
1403 		if (unlikely(IS_AUTOMOUNT(inode)))
1404 			dentry->d_flags |= DCACHE_NEED_AUTOMOUNT;
1405 		hlist_add_head(&dentry->d_alias, &inode->i_dentry);
1406 	}
1407 	dentry->d_inode = inode;
1408 	dentry_rcuwalk_barrier(dentry);
1409 	spin_unlock(&dentry->d_lock);
1410 	fsnotify_d_instantiate(dentry, inode);
1411 }
1412 
1413 /**
1414  * d_instantiate - fill in inode information for a dentry
1415  * @entry: dentry to complete
1416  * @inode: inode to attach to this dentry
1417  *
1418  * Fill in inode information in the entry.
1419  *
1420  * This turns negative dentries into productive full members
1421  * of society.
1422  *
1423  * NOTE! This assumes that the inode count has been incremented
1424  * (or otherwise set) by the caller to indicate that it is now
1425  * in use by the dcache.
1426  */
1427 
1428 void d_instantiate(struct dentry *entry, struct inode * inode)
1429 {
1430 	BUG_ON(!hlist_unhashed(&entry->d_alias));
1431 	if (inode)
1432 		spin_lock(&inode->i_lock);
1433 	__d_instantiate(entry, inode);
1434 	if (inode)
1435 		spin_unlock(&inode->i_lock);
1436 	security_d_instantiate(entry, inode);
1437 }
1438 EXPORT_SYMBOL(d_instantiate);
1439 
1440 /**
1441  * d_instantiate_unique - instantiate a non-aliased dentry
1442  * @entry: dentry to instantiate
1443  * @inode: inode to attach to this dentry
1444  *
1445  * Fill in inode information in the entry. On success, it returns NULL.
1446  * If an unhashed alias of "entry" already exists, then we return the
1447  * aliased dentry instead and drop one reference to inode.
1448  *
1449  * Note that in order to avoid conflicts with rename() etc, the caller
1450  * had better be holding the parent directory semaphore.
1451  *
1452  * This also assumes that the inode count has been incremented
1453  * (or otherwise set) by the caller to indicate that it is now
1454  * in use by the dcache.
1455  */
1456 static struct dentry *__d_instantiate_unique(struct dentry *entry,
1457 					     struct inode *inode)
1458 {
1459 	struct dentry *alias;
1460 	int len = entry->d_name.len;
1461 	const char *name = entry->d_name.name;
1462 	unsigned int hash = entry->d_name.hash;
1463 	struct hlist_node *p;
1464 
1465 	if (!inode) {
1466 		__d_instantiate(entry, NULL);
1467 		return NULL;
1468 	}
1469 
1470 	hlist_for_each_entry(alias, p, &inode->i_dentry, d_alias) {
1471 		/*
1472 		 * Don't need alias->d_lock here, because aliases with
1473 		 * d_parent == entry->d_parent are not subject to name or
1474 		 * parent changes, because the parent inode i_mutex is held.
1475 		 */
1476 		if (alias->d_name.hash != hash)
1477 			continue;
1478 		if (alias->d_parent != entry->d_parent)
1479 			continue;
1480 		if (alias->d_name.len != len)
1481 			continue;
1482 		if (dentry_cmp(alias, name, len))
1483 			continue;
1484 		__dget(alias);
1485 		return alias;
1486 	}
1487 
1488 	__d_instantiate(entry, inode);
1489 	return NULL;
1490 }
1491 
1492 struct dentry *d_instantiate_unique(struct dentry *entry, struct inode *inode)
1493 {
1494 	struct dentry *result;
1495 
1496 	BUG_ON(!hlist_unhashed(&entry->d_alias));
1497 
1498 	if (inode)
1499 		spin_lock(&inode->i_lock);
1500 	result = __d_instantiate_unique(entry, inode);
1501 	if (inode)
1502 		spin_unlock(&inode->i_lock);
1503 
1504 	if (!result) {
1505 		security_d_instantiate(entry, inode);
1506 		return NULL;
1507 	}
1508 
1509 	BUG_ON(!d_unhashed(result));
1510 	iput(inode);
1511 	return result;
1512 }
1513 
1514 EXPORT_SYMBOL(d_instantiate_unique);
1515 
1516 struct dentry *d_make_root(struct inode *root_inode)
1517 {
1518 	struct dentry *res = NULL;
1519 
1520 	if (root_inode) {
1521 		static const struct qstr name = QSTR_INIT("/", 1);
1522 
1523 		res = __d_alloc(root_inode->i_sb, &name);
1524 		if (res)
1525 			d_instantiate(res, root_inode);
1526 		else
1527 			iput(root_inode);
1528 	}
1529 	return res;
1530 }
1531 EXPORT_SYMBOL(d_make_root);
1532 
1533 static struct dentry * __d_find_any_alias(struct inode *inode)
1534 {
1535 	struct dentry *alias;
1536 
1537 	if (hlist_empty(&inode->i_dentry))
1538 		return NULL;
1539 	alias = hlist_entry(inode->i_dentry.first, struct dentry, d_alias);
1540 	__dget(alias);
1541 	return alias;
1542 }
1543 
1544 /**
1545  * d_find_any_alias - find any alias for a given inode
1546  * @inode: inode to find an alias for
1547  *
1548  * If any aliases exist for the given inode, take and return a
1549  * reference for one of them.  If no aliases exist, return %NULL.
1550  */
1551 struct dentry *d_find_any_alias(struct inode *inode)
1552 {
1553 	struct dentry *de;
1554 
1555 	spin_lock(&inode->i_lock);
1556 	de = __d_find_any_alias(inode);
1557 	spin_unlock(&inode->i_lock);
1558 	return de;
1559 }
1560 EXPORT_SYMBOL(d_find_any_alias);
1561 
1562 /**
1563  * d_obtain_alias - find or allocate a dentry for a given inode
1564  * @inode: inode to allocate the dentry for
1565  *
1566  * Obtain a dentry for an inode resulting from NFS filehandle conversion or
1567  * similar open by handle operations.  The returned dentry may be anonymous,
1568  * or may have a full name (if the inode was already in the cache).
1569  *
1570  * When called on a directory inode, we must ensure that the inode only ever
1571  * has one dentry.  If a dentry is found, that is returned instead of
1572  * allocating a new one.
1573  *
1574  * On successful return, the reference to the inode has been transferred
1575  * to the dentry.  In case of an error the reference on the inode is released.
1576  * To make it easier to use in export operations a %NULL or IS_ERR inode may
1577  * be passed in and will be the error will be propagate to the return value,
1578  * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
1579  */
1580 struct dentry *d_obtain_alias(struct inode *inode)
1581 {
1582 	static const struct qstr anonstring = { .name = "" };
1583 	struct dentry *tmp;
1584 	struct dentry *res;
1585 
1586 	if (!inode)
1587 		return ERR_PTR(-ESTALE);
1588 	if (IS_ERR(inode))
1589 		return ERR_CAST(inode);
1590 
1591 	res = d_find_any_alias(inode);
1592 	if (res)
1593 		goto out_iput;
1594 
1595 	tmp = __d_alloc(inode->i_sb, &anonstring);
1596 	if (!tmp) {
1597 		res = ERR_PTR(-ENOMEM);
1598 		goto out_iput;
1599 	}
1600 
1601 	spin_lock(&inode->i_lock);
1602 	res = __d_find_any_alias(inode);
1603 	if (res) {
1604 		spin_unlock(&inode->i_lock);
1605 		dput(tmp);
1606 		goto out_iput;
1607 	}
1608 
1609 	/* attach a disconnected dentry */
1610 	spin_lock(&tmp->d_lock);
1611 	tmp->d_inode = inode;
1612 	tmp->d_flags |= DCACHE_DISCONNECTED;
1613 	hlist_add_head(&tmp->d_alias, &inode->i_dentry);
1614 	hlist_bl_lock(&tmp->d_sb->s_anon);
1615 	hlist_bl_add_head(&tmp->d_hash, &tmp->d_sb->s_anon);
1616 	hlist_bl_unlock(&tmp->d_sb->s_anon);
1617 	spin_unlock(&tmp->d_lock);
1618 	spin_unlock(&inode->i_lock);
1619 	security_d_instantiate(tmp, inode);
1620 
1621 	return tmp;
1622 
1623  out_iput:
1624 	if (res && !IS_ERR(res))
1625 		security_d_instantiate(res, inode);
1626 	iput(inode);
1627 	return res;
1628 }
1629 EXPORT_SYMBOL(d_obtain_alias);
1630 
1631 /**
1632  * d_splice_alias - splice a disconnected dentry into the tree if one exists
1633  * @inode:  the inode which may have a disconnected dentry
1634  * @dentry: a negative dentry which we want to point to the inode.
1635  *
1636  * If inode is a directory and has a 'disconnected' dentry (i.e. IS_ROOT and
1637  * DCACHE_DISCONNECTED), then d_move that in place of the given dentry
1638  * and return it, else simply d_add the inode to the dentry and return NULL.
1639  *
1640  * This is needed in the lookup routine of any filesystem that is exportable
1641  * (via knfsd) so that we can build dcache paths to directories effectively.
1642  *
1643  * If a dentry was found and moved, then it is returned.  Otherwise NULL
1644  * is returned.  This matches the expected return value of ->lookup.
1645  *
1646  */
1647 struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
1648 {
1649 	struct dentry *new = NULL;
1650 
1651 	if (IS_ERR(inode))
1652 		return ERR_CAST(inode);
1653 
1654 	if (inode && S_ISDIR(inode->i_mode)) {
1655 		spin_lock(&inode->i_lock);
1656 		new = __d_find_alias(inode, 1);
1657 		if (new) {
1658 			BUG_ON(!(new->d_flags & DCACHE_DISCONNECTED));
1659 			spin_unlock(&inode->i_lock);
1660 			security_d_instantiate(new, inode);
1661 			d_move(new, dentry);
1662 			iput(inode);
1663 		} else {
1664 			/* already taking inode->i_lock, so d_add() by hand */
1665 			__d_instantiate(dentry, inode);
1666 			spin_unlock(&inode->i_lock);
1667 			security_d_instantiate(dentry, inode);
1668 			d_rehash(dentry);
1669 		}
1670 	} else
1671 		d_add(dentry, inode);
1672 	return new;
1673 }
1674 EXPORT_SYMBOL(d_splice_alias);
1675 
1676 /**
1677  * d_add_ci - lookup or allocate new dentry with case-exact name
1678  * @inode:  the inode case-insensitive lookup has found
1679  * @dentry: the negative dentry that was passed to the parent's lookup func
1680  * @name:   the case-exact name to be associated with the returned dentry
1681  *
1682  * This is to avoid filling the dcache with case-insensitive names to the
1683  * same inode, only the actual correct case is stored in the dcache for
1684  * case-insensitive filesystems.
1685  *
1686  * For a case-insensitive lookup match and if the the case-exact dentry
1687  * already exists in in the dcache, use it and return it.
1688  *
1689  * If no entry exists with the exact case name, allocate new dentry with
1690  * the exact case, and return the spliced entry.
1691  */
1692 struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
1693 			struct qstr *name)
1694 {
1695 	int error;
1696 	struct dentry *found;
1697 	struct dentry *new;
1698 
1699 	/*
1700 	 * First check if a dentry matching the name already exists,
1701 	 * if not go ahead and create it now.
1702 	 */
1703 	found = d_hash_and_lookup(dentry->d_parent, name);
1704 	if (!found) {
1705 		new = d_alloc(dentry->d_parent, name);
1706 		if (!new) {
1707 			error = -ENOMEM;
1708 			goto err_out;
1709 		}
1710 
1711 		found = d_splice_alias(inode, new);
1712 		if (found) {
1713 			dput(new);
1714 			return found;
1715 		}
1716 		return new;
1717 	}
1718 
1719 	/*
1720 	 * If a matching dentry exists, and it's not negative use it.
1721 	 *
1722 	 * Decrement the reference count to balance the iget() done
1723 	 * earlier on.
1724 	 */
1725 	if (found->d_inode) {
1726 		if (unlikely(found->d_inode != inode)) {
1727 			/* This can't happen because bad inodes are unhashed. */
1728 			BUG_ON(!is_bad_inode(inode));
1729 			BUG_ON(!is_bad_inode(found->d_inode));
1730 		}
1731 		iput(inode);
1732 		return found;
1733 	}
1734 
1735 	/*
1736 	 * We are going to instantiate this dentry, unhash it and clear the
1737 	 * lookup flag so we can do that.
1738 	 */
1739 	if (unlikely(d_need_lookup(found)))
1740 		d_clear_need_lookup(found);
1741 
1742 	/*
1743 	 * Negative dentry: instantiate it unless the inode is a directory and
1744 	 * already has a dentry.
1745 	 */
1746 	new = d_splice_alias(inode, found);
1747 	if (new) {
1748 		dput(found);
1749 		found = new;
1750 	}
1751 	return found;
1752 
1753 err_out:
1754 	iput(inode);
1755 	return ERR_PTR(error);
1756 }
1757 EXPORT_SYMBOL(d_add_ci);
1758 
1759 /*
1760  * Do the slow-case of the dentry name compare.
1761  *
1762  * Unlike the dentry_cmp() function, we need to atomically
1763  * load the name, length and inode information, so that the
1764  * filesystem can rely on them, and can use the 'name' and
1765  * 'len' information without worrying about walking off the
1766  * end of memory etc.
1767  *
1768  * Thus the read_seqcount_retry() and the "duplicate" info
1769  * in arguments (the low-level filesystem should not look
1770  * at the dentry inode or name contents directly, since
1771  * rename can change them while we're in RCU mode).
1772  */
1773 enum slow_d_compare {
1774 	D_COMP_OK,
1775 	D_COMP_NOMATCH,
1776 	D_COMP_SEQRETRY,
1777 };
1778 
1779 static noinline enum slow_d_compare slow_dentry_cmp(
1780 		const struct dentry *parent,
1781 		struct inode *inode,
1782 		struct dentry *dentry,
1783 		unsigned int seq,
1784 		const struct qstr *name)
1785 {
1786 	int tlen = dentry->d_name.len;
1787 	const char *tname = dentry->d_name.name;
1788 	struct inode *i = dentry->d_inode;
1789 
1790 	if (read_seqcount_retry(&dentry->d_seq, seq)) {
1791 		cpu_relax();
1792 		return D_COMP_SEQRETRY;
1793 	}
1794 	if (parent->d_op->d_compare(parent, inode,
1795 				dentry, i,
1796 				tlen, tname, name))
1797 		return D_COMP_NOMATCH;
1798 	return D_COMP_OK;
1799 }
1800 
1801 /**
1802  * __d_lookup_rcu - search for a dentry (racy, store-free)
1803  * @parent: parent dentry
1804  * @name: qstr of name we wish to find
1805  * @seqp: returns d_seq value at the point where the dentry was found
1806  * @inode: returns dentry->d_inode when the inode was found valid.
1807  * Returns: dentry, or NULL
1808  *
1809  * __d_lookup_rcu is the dcache lookup function for rcu-walk name
1810  * resolution (store-free path walking) design described in
1811  * Documentation/filesystems/path-lookup.txt.
1812  *
1813  * This is not to be used outside core vfs.
1814  *
1815  * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
1816  * held, and rcu_read_lock held. The returned dentry must not be stored into
1817  * without taking d_lock and checking d_seq sequence count against @seq
1818  * returned here.
1819  *
1820  * A refcount may be taken on the found dentry with the __d_rcu_to_refcount
1821  * function.
1822  *
1823  * Alternatively, __d_lookup_rcu may be called again to look up the child of
1824  * the returned dentry, so long as its parent's seqlock is checked after the
1825  * child is looked up. Thus, an interlocking stepping of sequence lock checks
1826  * is formed, giving integrity down the path walk.
1827  *
1828  * NOTE! The caller *has* to check the resulting dentry against the sequence
1829  * number we've returned before using any of the resulting dentry state!
1830  */
1831 struct dentry *__d_lookup_rcu(const struct dentry *parent,
1832 				const struct qstr *name,
1833 				unsigned *seqp, struct inode *inode)
1834 {
1835 	u64 hashlen = name->hash_len;
1836 	const unsigned char *str = name->name;
1837 	struct hlist_bl_head *b = d_hash(parent, hashlen_hash(hashlen));
1838 	struct hlist_bl_node *node;
1839 	struct dentry *dentry;
1840 
1841 	/*
1842 	 * Note: There is significant duplication with __d_lookup_rcu which is
1843 	 * required to prevent single threaded performance regressions
1844 	 * especially on architectures where smp_rmb (in seqcounts) are costly.
1845 	 * Keep the two functions in sync.
1846 	 */
1847 
1848 	/*
1849 	 * The hash list is protected using RCU.
1850 	 *
1851 	 * Carefully use d_seq when comparing a candidate dentry, to avoid
1852 	 * races with d_move().
1853 	 *
1854 	 * It is possible that concurrent renames can mess up our list
1855 	 * walk here and result in missing our dentry, resulting in the
1856 	 * false-negative result. d_lookup() protects against concurrent
1857 	 * renames using rename_lock seqlock.
1858 	 *
1859 	 * See Documentation/filesystems/path-lookup.txt for more details.
1860 	 */
1861 	hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
1862 		unsigned seq;
1863 
1864 seqretry:
1865 		/*
1866 		 * The dentry sequence count protects us from concurrent
1867 		 * renames, and thus protects inode, parent and name fields.
1868 		 *
1869 		 * The caller must perform a seqcount check in order
1870 		 * to do anything useful with the returned dentry,
1871 		 * including using the 'd_inode' pointer.
1872 		 *
1873 		 * NOTE! We do a "raw" seqcount_begin here. That means that
1874 		 * we don't wait for the sequence count to stabilize if it
1875 		 * is in the middle of a sequence change. If we do the slow
1876 		 * dentry compare, we will do seqretries until it is stable,
1877 		 * and if we end up with a successful lookup, we actually
1878 		 * want to exit RCU lookup anyway.
1879 		 */
1880 		seq = raw_seqcount_begin(&dentry->d_seq);
1881 		if (dentry->d_parent != parent)
1882 			continue;
1883 		if (d_unhashed(dentry))
1884 			continue;
1885 		*seqp = seq;
1886 
1887 		if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) {
1888 			if (dentry->d_name.hash != hashlen_hash(hashlen))
1889 				continue;
1890 			switch (slow_dentry_cmp(parent, inode, dentry, seq, name)) {
1891 			case D_COMP_OK:
1892 				return dentry;
1893 			case D_COMP_NOMATCH:
1894 				continue;
1895 			default:
1896 				goto seqretry;
1897 			}
1898 		}
1899 
1900 		if (dentry->d_name.hash_len != hashlen)
1901 			continue;
1902 		if (!dentry_cmp(dentry, str, hashlen_len(hashlen)))
1903 			return dentry;
1904 	}
1905 	return NULL;
1906 }
1907 
1908 /**
1909  * d_lookup - search for a dentry
1910  * @parent: parent dentry
1911  * @name: qstr of name we wish to find
1912  * Returns: dentry, or NULL
1913  *
1914  * d_lookup searches the children of the parent dentry for the name in
1915  * question. If the dentry is found its reference count is incremented and the
1916  * dentry is returned. The caller must use dput to free the entry when it has
1917  * finished using it. %NULL is returned if the dentry does not exist.
1918  */
1919 struct dentry *d_lookup(struct dentry *parent, struct qstr *name)
1920 {
1921 	struct dentry *dentry;
1922 	unsigned seq;
1923 
1924         do {
1925                 seq = read_seqbegin(&rename_lock);
1926                 dentry = __d_lookup(parent, name);
1927                 if (dentry)
1928 			break;
1929 	} while (read_seqretry(&rename_lock, seq));
1930 	return dentry;
1931 }
1932 EXPORT_SYMBOL(d_lookup);
1933 
1934 /**
1935  * __d_lookup - search for a dentry (racy)
1936  * @parent: parent dentry
1937  * @name: qstr of name we wish to find
1938  * Returns: dentry, or NULL
1939  *
1940  * __d_lookup is like d_lookup, however it may (rarely) return a
1941  * false-negative result due to unrelated rename activity.
1942  *
1943  * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
1944  * however it must be used carefully, eg. with a following d_lookup in
1945  * the case of failure.
1946  *
1947  * __d_lookup callers must be commented.
1948  */
1949 struct dentry *__d_lookup(struct dentry *parent, struct qstr *name)
1950 {
1951 	unsigned int len = name->len;
1952 	unsigned int hash = name->hash;
1953 	const unsigned char *str = name->name;
1954 	struct hlist_bl_head *b = d_hash(parent, hash);
1955 	struct hlist_bl_node *node;
1956 	struct dentry *found = NULL;
1957 	struct dentry *dentry;
1958 
1959 	/*
1960 	 * Note: There is significant duplication with __d_lookup_rcu which is
1961 	 * required to prevent single threaded performance regressions
1962 	 * especially on architectures where smp_rmb (in seqcounts) are costly.
1963 	 * Keep the two functions in sync.
1964 	 */
1965 
1966 	/*
1967 	 * The hash list is protected using RCU.
1968 	 *
1969 	 * Take d_lock when comparing a candidate dentry, to avoid races
1970 	 * with d_move().
1971 	 *
1972 	 * It is possible that concurrent renames can mess up our list
1973 	 * walk here and result in missing our dentry, resulting in the
1974 	 * false-negative result. d_lookup() protects against concurrent
1975 	 * renames using rename_lock seqlock.
1976 	 *
1977 	 * See Documentation/filesystems/path-lookup.txt for more details.
1978 	 */
1979 	rcu_read_lock();
1980 
1981 	hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
1982 
1983 		if (dentry->d_name.hash != hash)
1984 			continue;
1985 
1986 		spin_lock(&dentry->d_lock);
1987 		if (dentry->d_parent != parent)
1988 			goto next;
1989 		if (d_unhashed(dentry))
1990 			goto next;
1991 
1992 		/*
1993 		 * It is safe to compare names since d_move() cannot
1994 		 * change the qstr (protected by d_lock).
1995 		 */
1996 		if (parent->d_flags & DCACHE_OP_COMPARE) {
1997 			int tlen = dentry->d_name.len;
1998 			const char *tname = dentry->d_name.name;
1999 			if (parent->d_op->d_compare(parent, parent->d_inode,
2000 						dentry, dentry->d_inode,
2001 						tlen, tname, name))
2002 				goto next;
2003 		} else {
2004 			if (dentry->d_name.len != len)
2005 				goto next;
2006 			if (dentry_cmp(dentry, str, len))
2007 				goto next;
2008 		}
2009 
2010 		dentry->d_count++;
2011 		found = dentry;
2012 		spin_unlock(&dentry->d_lock);
2013 		break;
2014 next:
2015 		spin_unlock(&dentry->d_lock);
2016  	}
2017  	rcu_read_unlock();
2018 
2019  	return found;
2020 }
2021 
2022 /**
2023  * d_hash_and_lookup - hash the qstr then search for a dentry
2024  * @dir: Directory to search in
2025  * @name: qstr of name we wish to find
2026  *
2027  * On hash failure or on lookup failure NULL is returned.
2028  */
2029 struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
2030 {
2031 	struct dentry *dentry = NULL;
2032 
2033 	/*
2034 	 * Check for a fs-specific hash function. Note that we must
2035 	 * calculate the standard hash first, as the d_op->d_hash()
2036 	 * routine may choose to leave the hash value unchanged.
2037 	 */
2038 	name->hash = full_name_hash(name->name, name->len);
2039 	if (dir->d_flags & DCACHE_OP_HASH) {
2040 		if (dir->d_op->d_hash(dir, dir->d_inode, name) < 0)
2041 			goto out;
2042 	}
2043 	dentry = d_lookup(dir, name);
2044 out:
2045 	return dentry;
2046 }
2047 
2048 /**
2049  * d_validate - verify dentry provided from insecure source (deprecated)
2050  * @dentry: The dentry alleged to be valid child of @dparent
2051  * @dparent: The parent dentry (known to be valid)
2052  *
2053  * An insecure source has sent us a dentry, here we verify it and dget() it.
2054  * This is used by ncpfs in its readdir implementation.
2055  * Zero is returned in the dentry is invalid.
2056  *
2057  * This function is slow for big directories, and deprecated, do not use it.
2058  */
2059 int d_validate(struct dentry *dentry, struct dentry *dparent)
2060 {
2061 	struct dentry *child;
2062 
2063 	spin_lock(&dparent->d_lock);
2064 	list_for_each_entry(child, &dparent->d_subdirs, d_u.d_child) {
2065 		if (dentry == child) {
2066 			spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
2067 			__dget_dlock(dentry);
2068 			spin_unlock(&dentry->d_lock);
2069 			spin_unlock(&dparent->d_lock);
2070 			return 1;
2071 		}
2072 	}
2073 	spin_unlock(&dparent->d_lock);
2074 
2075 	return 0;
2076 }
2077 EXPORT_SYMBOL(d_validate);
2078 
2079 /*
2080  * When a file is deleted, we have two options:
2081  * - turn this dentry into a negative dentry
2082  * - unhash this dentry and free it.
2083  *
2084  * Usually, we want to just turn this into
2085  * a negative dentry, but if anybody else is
2086  * currently using the dentry or the inode
2087  * we can't do that and we fall back on removing
2088  * it from the hash queues and waiting for
2089  * it to be deleted later when it has no users
2090  */
2091 
2092 /**
2093  * d_delete - delete a dentry
2094  * @dentry: The dentry to delete
2095  *
2096  * Turn the dentry into a negative dentry if possible, otherwise
2097  * remove it from the hash queues so it can be deleted later
2098  */
2099 
2100 void d_delete(struct dentry * dentry)
2101 {
2102 	struct inode *inode;
2103 	int isdir = 0;
2104 	/*
2105 	 * Are we the only user?
2106 	 */
2107 again:
2108 	spin_lock(&dentry->d_lock);
2109 	inode = dentry->d_inode;
2110 	isdir = S_ISDIR(inode->i_mode);
2111 	if (dentry->d_count == 1) {
2112 		if (inode && !spin_trylock(&inode->i_lock)) {
2113 			spin_unlock(&dentry->d_lock);
2114 			cpu_relax();
2115 			goto again;
2116 		}
2117 		dentry->d_flags &= ~DCACHE_CANT_MOUNT;
2118 		dentry_unlink_inode(dentry);
2119 		fsnotify_nameremove(dentry, isdir);
2120 		return;
2121 	}
2122 
2123 	if (!d_unhashed(dentry))
2124 		__d_drop(dentry);
2125 
2126 	spin_unlock(&dentry->d_lock);
2127 
2128 	fsnotify_nameremove(dentry, isdir);
2129 }
2130 EXPORT_SYMBOL(d_delete);
2131 
2132 static void __d_rehash(struct dentry * entry, struct hlist_bl_head *b)
2133 {
2134 	BUG_ON(!d_unhashed(entry));
2135 	hlist_bl_lock(b);
2136 	entry->d_flags |= DCACHE_RCUACCESS;
2137 	hlist_bl_add_head_rcu(&entry->d_hash, b);
2138 	hlist_bl_unlock(b);
2139 }
2140 
2141 static void _d_rehash(struct dentry * entry)
2142 {
2143 	__d_rehash(entry, d_hash(entry->d_parent, entry->d_name.hash));
2144 }
2145 
2146 /**
2147  * d_rehash	- add an entry back to the hash
2148  * @entry: dentry to add to the hash
2149  *
2150  * Adds a dentry to the hash according to its name.
2151  */
2152 
2153 void d_rehash(struct dentry * entry)
2154 {
2155 	spin_lock(&entry->d_lock);
2156 	_d_rehash(entry);
2157 	spin_unlock(&entry->d_lock);
2158 }
2159 EXPORT_SYMBOL(d_rehash);
2160 
2161 /**
2162  * dentry_update_name_case - update case insensitive dentry with a new name
2163  * @dentry: dentry to be updated
2164  * @name: new name
2165  *
2166  * Update a case insensitive dentry with new case of name.
2167  *
2168  * dentry must have been returned by d_lookup with name @name. Old and new
2169  * name lengths must match (ie. no d_compare which allows mismatched name
2170  * lengths).
2171  *
2172  * Parent inode i_mutex must be held over d_lookup and into this call (to
2173  * keep renames and concurrent inserts, and readdir(2) away).
2174  */
2175 void dentry_update_name_case(struct dentry *dentry, struct qstr *name)
2176 {
2177 	BUG_ON(!mutex_is_locked(&dentry->d_parent->d_inode->i_mutex));
2178 	BUG_ON(dentry->d_name.len != name->len); /* d_lookup gives this */
2179 
2180 	spin_lock(&dentry->d_lock);
2181 	write_seqcount_begin(&dentry->d_seq);
2182 	memcpy((unsigned char *)dentry->d_name.name, name->name, name->len);
2183 	write_seqcount_end(&dentry->d_seq);
2184 	spin_unlock(&dentry->d_lock);
2185 }
2186 EXPORT_SYMBOL(dentry_update_name_case);
2187 
2188 static void switch_names(struct dentry *dentry, struct dentry *target)
2189 {
2190 	if (dname_external(target)) {
2191 		if (dname_external(dentry)) {
2192 			/*
2193 			 * Both external: swap the pointers
2194 			 */
2195 			swap(target->d_name.name, dentry->d_name.name);
2196 		} else {
2197 			/*
2198 			 * dentry:internal, target:external.  Steal target's
2199 			 * storage and make target internal.
2200 			 */
2201 			memcpy(target->d_iname, dentry->d_name.name,
2202 					dentry->d_name.len + 1);
2203 			dentry->d_name.name = target->d_name.name;
2204 			target->d_name.name = target->d_iname;
2205 		}
2206 	} else {
2207 		if (dname_external(dentry)) {
2208 			/*
2209 			 * dentry:external, target:internal.  Give dentry's
2210 			 * storage to target and make dentry internal
2211 			 */
2212 			memcpy(dentry->d_iname, target->d_name.name,
2213 					target->d_name.len + 1);
2214 			target->d_name.name = dentry->d_name.name;
2215 			dentry->d_name.name = dentry->d_iname;
2216 		} else {
2217 			/*
2218 			 * Both are internal.  Just copy target to dentry
2219 			 */
2220 			memcpy(dentry->d_iname, target->d_name.name,
2221 					target->d_name.len + 1);
2222 			dentry->d_name.len = target->d_name.len;
2223 			return;
2224 		}
2225 	}
2226 	swap(dentry->d_name.len, target->d_name.len);
2227 }
2228 
2229 static void dentry_lock_for_move(struct dentry *dentry, struct dentry *target)
2230 {
2231 	/*
2232 	 * XXXX: do we really need to take target->d_lock?
2233 	 */
2234 	if (IS_ROOT(dentry) || dentry->d_parent == target->d_parent)
2235 		spin_lock(&target->d_parent->d_lock);
2236 	else {
2237 		if (d_ancestor(dentry->d_parent, target->d_parent)) {
2238 			spin_lock(&dentry->d_parent->d_lock);
2239 			spin_lock_nested(&target->d_parent->d_lock,
2240 						DENTRY_D_LOCK_NESTED);
2241 		} else {
2242 			spin_lock(&target->d_parent->d_lock);
2243 			spin_lock_nested(&dentry->d_parent->d_lock,
2244 						DENTRY_D_LOCK_NESTED);
2245 		}
2246 	}
2247 	if (target < dentry) {
2248 		spin_lock_nested(&target->d_lock, 2);
2249 		spin_lock_nested(&dentry->d_lock, 3);
2250 	} else {
2251 		spin_lock_nested(&dentry->d_lock, 2);
2252 		spin_lock_nested(&target->d_lock, 3);
2253 	}
2254 }
2255 
2256 static void dentry_unlock_parents_for_move(struct dentry *dentry,
2257 					struct dentry *target)
2258 {
2259 	if (target->d_parent != dentry->d_parent)
2260 		spin_unlock(&dentry->d_parent->d_lock);
2261 	if (target->d_parent != target)
2262 		spin_unlock(&target->d_parent->d_lock);
2263 }
2264 
2265 /*
2266  * When switching names, the actual string doesn't strictly have to
2267  * be preserved in the target - because we're dropping the target
2268  * anyway. As such, we can just do a simple memcpy() to copy over
2269  * the new name before we switch.
2270  *
2271  * Note that we have to be a lot more careful about getting the hash
2272  * switched - we have to switch the hash value properly even if it
2273  * then no longer matches the actual (corrupted) string of the target.
2274  * The hash value has to match the hash queue that the dentry is on..
2275  */
2276 /*
2277  * __d_move - move a dentry
2278  * @dentry: entry to move
2279  * @target: new dentry
2280  *
2281  * Update the dcache to reflect the move of a file name. Negative
2282  * dcache entries should not be moved in this way. Caller must hold
2283  * rename_lock, the i_mutex of the source and target directories,
2284  * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
2285  */
2286 static void __d_move(struct dentry * dentry, struct dentry * target)
2287 {
2288 	if (!dentry->d_inode)
2289 		printk(KERN_WARNING "VFS: moving negative dcache entry\n");
2290 
2291 	BUG_ON(d_ancestor(dentry, target));
2292 	BUG_ON(d_ancestor(target, dentry));
2293 
2294 	dentry_lock_for_move(dentry, target);
2295 
2296 	write_seqcount_begin(&dentry->d_seq);
2297 	write_seqcount_begin(&target->d_seq);
2298 
2299 	/* __d_drop does write_seqcount_barrier, but they're OK to nest. */
2300 
2301 	/*
2302 	 * Move the dentry to the target hash queue. Don't bother checking
2303 	 * for the same hash queue because of how unlikely it is.
2304 	 */
2305 	__d_drop(dentry);
2306 	__d_rehash(dentry, d_hash(target->d_parent, target->d_name.hash));
2307 
2308 	/* Unhash the target: dput() will then get rid of it */
2309 	__d_drop(target);
2310 
2311 	list_del(&dentry->d_u.d_child);
2312 	list_del(&target->d_u.d_child);
2313 
2314 	/* Switch the names.. */
2315 	switch_names(dentry, target);
2316 	swap(dentry->d_name.hash, target->d_name.hash);
2317 
2318 	/* ... and switch the parents */
2319 	if (IS_ROOT(dentry)) {
2320 		dentry->d_parent = target->d_parent;
2321 		target->d_parent = target;
2322 		INIT_LIST_HEAD(&target->d_u.d_child);
2323 	} else {
2324 		swap(dentry->d_parent, target->d_parent);
2325 
2326 		/* And add them back to the (new) parent lists */
2327 		list_add(&target->d_u.d_child, &target->d_parent->d_subdirs);
2328 	}
2329 
2330 	list_add(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs);
2331 
2332 	write_seqcount_end(&target->d_seq);
2333 	write_seqcount_end(&dentry->d_seq);
2334 
2335 	dentry_unlock_parents_for_move(dentry, target);
2336 	spin_unlock(&target->d_lock);
2337 	fsnotify_d_move(dentry);
2338 	spin_unlock(&dentry->d_lock);
2339 }
2340 
2341 /*
2342  * d_move - move a dentry
2343  * @dentry: entry to move
2344  * @target: new dentry
2345  *
2346  * Update the dcache to reflect the move of a file name. Negative
2347  * dcache entries should not be moved in this way. See the locking
2348  * requirements for __d_move.
2349  */
2350 void d_move(struct dentry *dentry, struct dentry *target)
2351 {
2352 	write_seqlock(&rename_lock);
2353 	__d_move(dentry, target);
2354 	write_sequnlock(&rename_lock);
2355 }
2356 EXPORT_SYMBOL(d_move);
2357 
2358 /**
2359  * d_ancestor - search for an ancestor
2360  * @p1: ancestor dentry
2361  * @p2: child dentry
2362  *
2363  * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2364  * an ancestor of p2, else NULL.
2365  */
2366 struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
2367 {
2368 	struct dentry *p;
2369 
2370 	for (p = p2; !IS_ROOT(p); p = p->d_parent) {
2371 		if (p->d_parent == p1)
2372 			return p;
2373 	}
2374 	return NULL;
2375 }
2376 
2377 /*
2378  * This helper attempts to cope with remotely renamed directories
2379  *
2380  * It assumes that the caller is already holding
2381  * dentry->d_parent->d_inode->i_mutex, inode->i_lock and rename_lock
2382  *
2383  * Note: If ever the locking in lock_rename() changes, then please
2384  * remember to update this too...
2385  */
2386 static struct dentry *__d_unalias(struct inode *inode,
2387 		struct dentry *dentry, struct dentry *alias)
2388 {
2389 	struct mutex *m1 = NULL, *m2 = NULL;
2390 	struct dentry *ret = ERR_PTR(-EBUSY);
2391 
2392 	/* If alias and dentry share a parent, then no extra locks required */
2393 	if (alias->d_parent == dentry->d_parent)
2394 		goto out_unalias;
2395 
2396 	/* See lock_rename() */
2397 	if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
2398 		goto out_err;
2399 	m1 = &dentry->d_sb->s_vfs_rename_mutex;
2400 	if (!mutex_trylock(&alias->d_parent->d_inode->i_mutex))
2401 		goto out_err;
2402 	m2 = &alias->d_parent->d_inode->i_mutex;
2403 out_unalias:
2404 	if (likely(!d_mountpoint(alias))) {
2405 		__d_move(alias, dentry);
2406 		ret = alias;
2407 	}
2408 out_err:
2409 	spin_unlock(&inode->i_lock);
2410 	if (m2)
2411 		mutex_unlock(m2);
2412 	if (m1)
2413 		mutex_unlock(m1);
2414 	return ret;
2415 }
2416 
2417 /*
2418  * Prepare an anonymous dentry for life in the superblock's dentry tree as a
2419  * named dentry in place of the dentry to be replaced.
2420  * returns with anon->d_lock held!
2421  */
2422 static void __d_materialise_dentry(struct dentry *dentry, struct dentry *anon)
2423 {
2424 	struct dentry *dparent, *aparent;
2425 
2426 	dentry_lock_for_move(anon, dentry);
2427 
2428 	write_seqcount_begin(&dentry->d_seq);
2429 	write_seqcount_begin(&anon->d_seq);
2430 
2431 	dparent = dentry->d_parent;
2432 	aparent = anon->d_parent;
2433 
2434 	switch_names(dentry, anon);
2435 	swap(dentry->d_name.hash, anon->d_name.hash);
2436 
2437 	dentry->d_parent = (aparent == anon) ? dentry : aparent;
2438 	list_del(&dentry->d_u.d_child);
2439 	if (!IS_ROOT(dentry))
2440 		list_add(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs);
2441 	else
2442 		INIT_LIST_HEAD(&dentry->d_u.d_child);
2443 
2444 	anon->d_parent = (dparent == dentry) ? anon : dparent;
2445 	list_del(&anon->d_u.d_child);
2446 	if (!IS_ROOT(anon))
2447 		list_add(&anon->d_u.d_child, &anon->d_parent->d_subdirs);
2448 	else
2449 		INIT_LIST_HEAD(&anon->d_u.d_child);
2450 
2451 	write_seqcount_end(&dentry->d_seq);
2452 	write_seqcount_end(&anon->d_seq);
2453 
2454 	dentry_unlock_parents_for_move(anon, dentry);
2455 	spin_unlock(&dentry->d_lock);
2456 
2457 	/* anon->d_lock still locked, returns locked */
2458 	anon->d_flags &= ~DCACHE_DISCONNECTED;
2459 }
2460 
2461 /**
2462  * d_materialise_unique - introduce an inode into the tree
2463  * @dentry: candidate dentry
2464  * @inode: inode to bind to the dentry, to which aliases may be attached
2465  *
2466  * Introduces an dentry into the tree, substituting an extant disconnected
2467  * root directory alias in its place if there is one. Caller must hold the
2468  * i_mutex of the parent directory.
2469  */
2470 struct dentry *d_materialise_unique(struct dentry *dentry, struct inode *inode)
2471 {
2472 	struct dentry *actual;
2473 
2474 	BUG_ON(!d_unhashed(dentry));
2475 
2476 	if (!inode) {
2477 		actual = dentry;
2478 		__d_instantiate(dentry, NULL);
2479 		d_rehash(actual);
2480 		goto out_nolock;
2481 	}
2482 
2483 	spin_lock(&inode->i_lock);
2484 
2485 	if (S_ISDIR(inode->i_mode)) {
2486 		struct dentry *alias;
2487 
2488 		/* Does an aliased dentry already exist? */
2489 		alias = __d_find_alias(inode, 0);
2490 		if (alias) {
2491 			actual = alias;
2492 			write_seqlock(&rename_lock);
2493 
2494 			if (d_ancestor(alias, dentry)) {
2495 				/* Check for loops */
2496 				actual = ERR_PTR(-ELOOP);
2497 				spin_unlock(&inode->i_lock);
2498 			} else if (IS_ROOT(alias)) {
2499 				/* Is this an anonymous mountpoint that we
2500 				 * could splice into our tree? */
2501 				__d_materialise_dentry(dentry, alias);
2502 				write_sequnlock(&rename_lock);
2503 				__d_drop(alias);
2504 				goto found;
2505 			} else {
2506 				/* Nope, but we must(!) avoid directory
2507 				 * aliasing. This drops inode->i_lock */
2508 				actual = __d_unalias(inode, dentry, alias);
2509 			}
2510 			write_sequnlock(&rename_lock);
2511 			if (IS_ERR(actual)) {
2512 				if (PTR_ERR(actual) == -ELOOP)
2513 					pr_warn_ratelimited(
2514 						"VFS: Lookup of '%s' in %s %s"
2515 						" would have caused loop\n",
2516 						dentry->d_name.name,
2517 						inode->i_sb->s_type->name,
2518 						inode->i_sb->s_id);
2519 				dput(alias);
2520 			}
2521 			goto out_nolock;
2522 		}
2523 	}
2524 
2525 	/* Add a unique reference */
2526 	actual = __d_instantiate_unique(dentry, inode);
2527 	if (!actual)
2528 		actual = dentry;
2529 	else
2530 		BUG_ON(!d_unhashed(actual));
2531 
2532 	spin_lock(&actual->d_lock);
2533 found:
2534 	_d_rehash(actual);
2535 	spin_unlock(&actual->d_lock);
2536 	spin_unlock(&inode->i_lock);
2537 out_nolock:
2538 	if (actual == dentry) {
2539 		security_d_instantiate(dentry, inode);
2540 		return NULL;
2541 	}
2542 
2543 	iput(inode);
2544 	return actual;
2545 }
2546 EXPORT_SYMBOL_GPL(d_materialise_unique);
2547 
2548 static int prepend(char **buffer, int *buflen, const char *str, int namelen)
2549 {
2550 	*buflen -= namelen;
2551 	if (*buflen < 0)
2552 		return -ENAMETOOLONG;
2553 	*buffer -= namelen;
2554 	memcpy(*buffer, str, namelen);
2555 	return 0;
2556 }
2557 
2558 static int prepend_name(char **buffer, int *buflen, struct qstr *name)
2559 {
2560 	return prepend(buffer, buflen, name->name, name->len);
2561 }
2562 
2563 /**
2564  * prepend_path - Prepend path string to a buffer
2565  * @path: the dentry/vfsmount to report
2566  * @root: root vfsmnt/dentry
2567  * @buffer: pointer to the end of the buffer
2568  * @buflen: pointer to buffer length
2569  *
2570  * Caller holds the rename_lock.
2571  */
2572 static int prepend_path(const struct path *path,
2573 			const struct path *root,
2574 			char **buffer, int *buflen)
2575 {
2576 	struct dentry *dentry = path->dentry;
2577 	struct vfsmount *vfsmnt = path->mnt;
2578 	struct mount *mnt = real_mount(vfsmnt);
2579 	bool slash = false;
2580 	int error = 0;
2581 
2582 	br_read_lock(&vfsmount_lock);
2583 	while (dentry != root->dentry || vfsmnt != root->mnt) {
2584 		struct dentry * parent;
2585 
2586 		if (dentry == vfsmnt->mnt_root || IS_ROOT(dentry)) {
2587 			/* Global root? */
2588 			if (!mnt_has_parent(mnt))
2589 				goto global_root;
2590 			dentry = mnt->mnt_mountpoint;
2591 			mnt = mnt->mnt_parent;
2592 			vfsmnt = &mnt->mnt;
2593 			continue;
2594 		}
2595 		parent = dentry->d_parent;
2596 		prefetch(parent);
2597 		spin_lock(&dentry->d_lock);
2598 		error = prepend_name(buffer, buflen, &dentry->d_name);
2599 		spin_unlock(&dentry->d_lock);
2600 		if (!error)
2601 			error = prepend(buffer, buflen, "/", 1);
2602 		if (error)
2603 			break;
2604 
2605 		slash = true;
2606 		dentry = parent;
2607 	}
2608 
2609 	if (!error && !slash)
2610 		error = prepend(buffer, buflen, "/", 1);
2611 
2612 out:
2613 	br_read_unlock(&vfsmount_lock);
2614 	return error;
2615 
2616 global_root:
2617 	/*
2618 	 * Filesystems needing to implement special "root names"
2619 	 * should do so with ->d_dname()
2620 	 */
2621 	if (IS_ROOT(dentry) &&
2622 	    (dentry->d_name.len != 1 || dentry->d_name.name[0] != '/')) {
2623 		WARN(1, "Root dentry has weird name <%.*s>\n",
2624 		     (int) dentry->d_name.len, dentry->d_name.name);
2625 	}
2626 	if (!slash)
2627 		error = prepend(buffer, buflen, "/", 1);
2628 	if (!error)
2629 		error = is_mounted(vfsmnt) ? 1 : 2;
2630 	goto out;
2631 }
2632 
2633 /**
2634  * __d_path - return the path of a dentry
2635  * @path: the dentry/vfsmount to report
2636  * @root: root vfsmnt/dentry
2637  * @buf: buffer to return value in
2638  * @buflen: buffer length
2639  *
2640  * Convert a dentry into an ASCII path name.
2641  *
2642  * Returns a pointer into the buffer or an error code if the
2643  * path was too long.
2644  *
2645  * "buflen" should be positive.
2646  *
2647  * If the path is not reachable from the supplied root, return %NULL.
2648  */
2649 char *__d_path(const struct path *path,
2650 	       const struct path *root,
2651 	       char *buf, int buflen)
2652 {
2653 	char *res = buf + buflen;
2654 	int error;
2655 
2656 	prepend(&res, &buflen, "\0", 1);
2657 	write_seqlock(&rename_lock);
2658 	error = prepend_path(path, root, &res, &buflen);
2659 	write_sequnlock(&rename_lock);
2660 
2661 	if (error < 0)
2662 		return ERR_PTR(error);
2663 	if (error > 0)
2664 		return NULL;
2665 	return res;
2666 }
2667 
2668 char *d_absolute_path(const struct path *path,
2669 	       char *buf, int buflen)
2670 {
2671 	struct path root = {};
2672 	char *res = buf + buflen;
2673 	int error;
2674 
2675 	prepend(&res, &buflen, "\0", 1);
2676 	write_seqlock(&rename_lock);
2677 	error = prepend_path(path, &root, &res, &buflen);
2678 	write_sequnlock(&rename_lock);
2679 
2680 	if (error > 1)
2681 		error = -EINVAL;
2682 	if (error < 0)
2683 		return ERR_PTR(error);
2684 	return res;
2685 }
2686 
2687 /*
2688  * same as __d_path but appends "(deleted)" for unlinked files.
2689  */
2690 static int path_with_deleted(const struct path *path,
2691 			     const struct path *root,
2692 			     char **buf, int *buflen)
2693 {
2694 	prepend(buf, buflen, "\0", 1);
2695 	if (d_unlinked(path->dentry)) {
2696 		int error = prepend(buf, buflen, " (deleted)", 10);
2697 		if (error)
2698 			return error;
2699 	}
2700 
2701 	return prepend_path(path, root, buf, buflen);
2702 }
2703 
2704 static int prepend_unreachable(char **buffer, int *buflen)
2705 {
2706 	return prepend(buffer, buflen, "(unreachable)", 13);
2707 }
2708 
2709 /**
2710  * d_path - return the path of a dentry
2711  * @path: path to report
2712  * @buf: buffer to return value in
2713  * @buflen: buffer length
2714  *
2715  * Convert a dentry into an ASCII path name. If the entry has been deleted
2716  * the string " (deleted)" is appended. Note that this is ambiguous.
2717  *
2718  * Returns a pointer into the buffer or an error code if the path was
2719  * too long. Note: Callers should use the returned pointer, not the passed
2720  * in buffer, to use the name! The implementation often starts at an offset
2721  * into the buffer, and may leave 0 bytes at the start.
2722  *
2723  * "buflen" should be positive.
2724  */
2725 char *d_path(const struct path *path, char *buf, int buflen)
2726 {
2727 	char *res = buf + buflen;
2728 	struct path root;
2729 	int error;
2730 
2731 	/*
2732 	 * We have various synthetic filesystems that never get mounted.  On
2733 	 * these filesystems dentries are never used for lookup purposes, and
2734 	 * thus don't need to be hashed.  They also don't need a name until a
2735 	 * user wants to identify the object in /proc/pid/fd/.  The little hack
2736 	 * below allows us to generate a name for these objects on demand:
2737 	 */
2738 	if (path->dentry->d_op && path->dentry->d_op->d_dname)
2739 		return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
2740 
2741 	get_fs_root(current->fs, &root);
2742 	write_seqlock(&rename_lock);
2743 	error = path_with_deleted(path, &root, &res, &buflen);
2744 	if (error < 0)
2745 		res = ERR_PTR(error);
2746 	write_sequnlock(&rename_lock);
2747 	path_put(&root);
2748 	return res;
2749 }
2750 EXPORT_SYMBOL(d_path);
2751 
2752 /**
2753  * d_path_with_unreachable - return the path of a dentry
2754  * @path: path to report
2755  * @buf: buffer to return value in
2756  * @buflen: buffer length
2757  *
2758  * The difference from d_path() is that this prepends "(unreachable)"
2759  * to paths which are unreachable from the current process' root.
2760  */
2761 char *d_path_with_unreachable(const struct path *path, char *buf, int buflen)
2762 {
2763 	char *res = buf + buflen;
2764 	struct path root;
2765 	int error;
2766 
2767 	if (path->dentry->d_op && path->dentry->d_op->d_dname)
2768 		return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
2769 
2770 	get_fs_root(current->fs, &root);
2771 	write_seqlock(&rename_lock);
2772 	error = path_with_deleted(path, &root, &res, &buflen);
2773 	if (error > 0)
2774 		error = prepend_unreachable(&res, &buflen);
2775 	write_sequnlock(&rename_lock);
2776 	path_put(&root);
2777 	if (error)
2778 		res =  ERR_PTR(error);
2779 
2780 	return res;
2781 }
2782 
2783 /*
2784  * Helper function for dentry_operations.d_dname() members
2785  */
2786 char *dynamic_dname(struct dentry *dentry, char *buffer, int buflen,
2787 			const char *fmt, ...)
2788 {
2789 	va_list args;
2790 	char temp[64];
2791 	int sz;
2792 
2793 	va_start(args, fmt);
2794 	sz = vsnprintf(temp, sizeof(temp), fmt, args) + 1;
2795 	va_end(args);
2796 
2797 	if (sz > sizeof(temp) || sz > buflen)
2798 		return ERR_PTR(-ENAMETOOLONG);
2799 
2800 	buffer += buflen - sz;
2801 	return memcpy(buffer, temp, sz);
2802 }
2803 
2804 /*
2805  * Write full pathname from the root of the filesystem into the buffer.
2806  */
2807 static char *__dentry_path(struct dentry *dentry, char *buf, int buflen)
2808 {
2809 	char *end = buf + buflen;
2810 	char *retval;
2811 
2812 	prepend(&end, &buflen, "\0", 1);
2813 	if (buflen < 1)
2814 		goto Elong;
2815 	/* Get '/' right */
2816 	retval = end-1;
2817 	*retval = '/';
2818 
2819 	while (!IS_ROOT(dentry)) {
2820 		struct dentry *parent = dentry->d_parent;
2821 		int error;
2822 
2823 		prefetch(parent);
2824 		spin_lock(&dentry->d_lock);
2825 		error = prepend_name(&end, &buflen, &dentry->d_name);
2826 		spin_unlock(&dentry->d_lock);
2827 		if (error != 0 || prepend(&end, &buflen, "/", 1) != 0)
2828 			goto Elong;
2829 
2830 		retval = end;
2831 		dentry = parent;
2832 	}
2833 	return retval;
2834 Elong:
2835 	return ERR_PTR(-ENAMETOOLONG);
2836 }
2837 
2838 char *dentry_path_raw(struct dentry *dentry, char *buf, int buflen)
2839 {
2840 	char *retval;
2841 
2842 	write_seqlock(&rename_lock);
2843 	retval = __dentry_path(dentry, buf, buflen);
2844 	write_sequnlock(&rename_lock);
2845 
2846 	return retval;
2847 }
2848 EXPORT_SYMBOL(dentry_path_raw);
2849 
2850 char *dentry_path(struct dentry *dentry, char *buf, int buflen)
2851 {
2852 	char *p = NULL;
2853 	char *retval;
2854 
2855 	write_seqlock(&rename_lock);
2856 	if (d_unlinked(dentry)) {
2857 		p = buf + buflen;
2858 		if (prepend(&p, &buflen, "//deleted", 10) != 0)
2859 			goto Elong;
2860 		buflen++;
2861 	}
2862 	retval = __dentry_path(dentry, buf, buflen);
2863 	write_sequnlock(&rename_lock);
2864 	if (!IS_ERR(retval) && p)
2865 		*p = '/';	/* restore '/' overriden with '\0' */
2866 	return retval;
2867 Elong:
2868 	return ERR_PTR(-ENAMETOOLONG);
2869 }
2870 
2871 /*
2872  * NOTE! The user-level library version returns a
2873  * character pointer. The kernel system call just
2874  * returns the length of the buffer filled (which
2875  * includes the ending '\0' character), or a negative
2876  * error value. So libc would do something like
2877  *
2878  *	char *getcwd(char * buf, size_t size)
2879  *	{
2880  *		int retval;
2881  *
2882  *		retval = sys_getcwd(buf, size);
2883  *		if (retval >= 0)
2884  *			return buf;
2885  *		errno = -retval;
2886  *		return NULL;
2887  *	}
2888  */
2889 SYSCALL_DEFINE2(getcwd, char __user *, buf, unsigned long, size)
2890 {
2891 	int error;
2892 	struct path pwd, root;
2893 	char *page = (char *) __get_free_page(GFP_USER);
2894 
2895 	if (!page)
2896 		return -ENOMEM;
2897 
2898 	get_fs_root_and_pwd(current->fs, &root, &pwd);
2899 
2900 	error = -ENOENT;
2901 	write_seqlock(&rename_lock);
2902 	if (!d_unlinked(pwd.dentry)) {
2903 		unsigned long len;
2904 		char *cwd = page + PAGE_SIZE;
2905 		int buflen = PAGE_SIZE;
2906 
2907 		prepend(&cwd, &buflen, "\0", 1);
2908 		error = prepend_path(&pwd, &root, &cwd, &buflen);
2909 		write_sequnlock(&rename_lock);
2910 
2911 		if (error < 0)
2912 			goto out;
2913 
2914 		/* Unreachable from current root */
2915 		if (error > 0) {
2916 			error = prepend_unreachable(&cwd, &buflen);
2917 			if (error)
2918 				goto out;
2919 		}
2920 
2921 		error = -ERANGE;
2922 		len = PAGE_SIZE + page - cwd;
2923 		if (len <= size) {
2924 			error = len;
2925 			if (copy_to_user(buf, cwd, len))
2926 				error = -EFAULT;
2927 		}
2928 	} else {
2929 		write_sequnlock(&rename_lock);
2930 	}
2931 
2932 out:
2933 	path_put(&pwd);
2934 	path_put(&root);
2935 	free_page((unsigned long) page);
2936 	return error;
2937 }
2938 
2939 /*
2940  * Test whether new_dentry is a subdirectory of old_dentry.
2941  *
2942  * Trivially implemented using the dcache structure
2943  */
2944 
2945 /**
2946  * is_subdir - is new dentry a subdirectory of old_dentry
2947  * @new_dentry: new dentry
2948  * @old_dentry: old dentry
2949  *
2950  * Returns 1 if new_dentry is a subdirectory of the parent (at any depth).
2951  * Returns 0 otherwise.
2952  * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
2953  */
2954 
2955 int is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
2956 {
2957 	int result;
2958 	unsigned seq;
2959 
2960 	if (new_dentry == old_dentry)
2961 		return 1;
2962 
2963 	do {
2964 		/* for restarting inner loop in case of seq retry */
2965 		seq = read_seqbegin(&rename_lock);
2966 		/*
2967 		 * Need rcu_readlock to protect against the d_parent trashing
2968 		 * due to d_move
2969 		 */
2970 		rcu_read_lock();
2971 		if (d_ancestor(old_dentry, new_dentry))
2972 			result = 1;
2973 		else
2974 			result = 0;
2975 		rcu_read_unlock();
2976 	} while (read_seqretry(&rename_lock, seq));
2977 
2978 	return result;
2979 }
2980 
2981 void d_genocide(struct dentry *root)
2982 {
2983 	struct dentry *this_parent;
2984 	struct list_head *next;
2985 	unsigned seq;
2986 	int locked = 0;
2987 
2988 	seq = read_seqbegin(&rename_lock);
2989 again:
2990 	this_parent = root;
2991 	spin_lock(&this_parent->d_lock);
2992 repeat:
2993 	next = this_parent->d_subdirs.next;
2994 resume:
2995 	while (next != &this_parent->d_subdirs) {
2996 		struct list_head *tmp = next;
2997 		struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
2998 		next = tmp->next;
2999 
3000 		spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
3001 		if (d_unhashed(dentry) || !dentry->d_inode) {
3002 			spin_unlock(&dentry->d_lock);
3003 			continue;
3004 		}
3005 		if (!list_empty(&dentry->d_subdirs)) {
3006 			spin_unlock(&this_parent->d_lock);
3007 			spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
3008 			this_parent = dentry;
3009 			spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
3010 			goto repeat;
3011 		}
3012 		if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
3013 			dentry->d_flags |= DCACHE_GENOCIDE;
3014 			dentry->d_count--;
3015 		}
3016 		spin_unlock(&dentry->d_lock);
3017 	}
3018 	if (this_parent != root) {
3019 		struct dentry *child = this_parent;
3020 		if (!(this_parent->d_flags & DCACHE_GENOCIDE)) {
3021 			this_parent->d_flags |= DCACHE_GENOCIDE;
3022 			this_parent->d_count--;
3023 		}
3024 		this_parent = try_to_ascend(this_parent, locked, seq);
3025 		if (!this_parent)
3026 			goto rename_retry;
3027 		next = child->d_u.d_child.next;
3028 		goto resume;
3029 	}
3030 	spin_unlock(&this_parent->d_lock);
3031 	if (!locked && read_seqretry(&rename_lock, seq))
3032 		goto rename_retry;
3033 	if (locked)
3034 		write_sequnlock(&rename_lock);
3035 	return;
3036 
3037 rename_retry:
3038 	locked = 1;
3039 	write_seqlock(&rename_lock);
3040 	goto again;
3041 }
3042 
3043 /**
3044  * find_inode_number - check for dentry with name
3045  * @dir: directory to check
3046  * @name: Name to find.
3047  *
3048  * Check whether a dentry already exists for the given name,
3049  * and return the inode number if it has an inode. Otherwise
3050  * 0 is returned.
3051  *
3052  * This routine is used to post-process directory listings for
3053  * filesystems using synthetic inode numbers, and is necessary
3054  * to keep getcwd() working.
3055  */
3056 
3057 ino_t find_inode_number(struct dentry *dir, struct qstr *name)
3058 {
3059 	struct dentry * dentry;
3060 	ino_t ino = 0;
3061 
3062 	dentry = d_hash_and_lookup(dir, name);
3063 	if (dentry) {
3064 		if (dentry->d_inode)
3065 			ino = dentry->d_inode->i_ino;
3066 		dput(dentry);
3067 	}
3068 	return ino;
3069 }
3070 EXPORT_SYMBOL(find_inode_number);
3071 
3072 static __initdata unsigned long dhash_entries;
3073 static int __init set_dhash_entries(char *str)
3074 {
3075 	if (!str)
3076 		return 0;
3077 	dhash_entries = simple_strtoul(str, &str, 0);
3078 	return 1;
3079 }
3080 __setup("dhash_entries=", set_dhash_entries);
3081 
3082 static void __init dcache_init_early(void)
3083 {
3084 	unsigned int loop;
3085 
3086 	/* If hashes are distributed across NUMA nodes, defer
3087 	 * hash allocation until vmalloc space is available.
3088 	 */
3089 	if (hashdist)
3090 		return;
3091 
3092 	dentry_hashtable =
3093 		alloc_large_system_hash("Dentry cache",
3094 					sizeof(struct hlist_bl_head),
3095 					dhash_entries,
3096 					13,
3097 					HASH_EARLY,
3098 					&d_hash_shift,
3099 					&d_hash_mask,
3100 					0,
3101 					0);
3102 
3103 	for (loop = 0; loop < (1U << d_hash_shift); loop++)
3104 		INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
3105 }
3106 
3107 static void __init dcache_init(void)
3108 {
3109 	unsigned int loop;
3110 
3111 	/*
3112 	 * A constructor could be added for stable state like the lists,
3113 	 * but it is probably not worth it because of the cache nature
3114 	 * of the dcache.
3115 	 */
3116 	dentry_cache = KMEM_CACHE(dentry,
3117 		SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD);
3118 
3119 	/* Hash may have been set up in dcache_init_early */
3120 	if (!hashdist)
3121 		return;
3122 
3123 	dentry_hashtable =
3124 		alloc_large_system_hash("Dentry cache",
3125 					sizeof(struct hlist_bl_head),
3126 					dhash_entries,
3127 					13,
3128 					0,
3129 					&d_hash_shift,
3130 					&d_hash_mask,
3131 					0,
3132 					0);
3133 
3134 	for (loop = 0; loop < (1U << d_hash_shift); loop++)
3135 		INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
3136 }
3137 
3138 /* SLAB cache for __getname() consumers */
3139 struct kmem_cache *names_cachep __read_mostly;
3140 EXPORT_SYMBOL(names_cachep);
3141 
3142 EXPORT_SYMBOL(d_genocide);
3143 
3144 void __init vfs_caches_init_early(void)
3145 {
3146 	dcache_init_early();
3147 	inode_init_early();
3148 }
3149 
3150 void __init vfs_caches_init(unsigned long mempages)
3151 {
3152 	unsigned long reserve;
3153 
3154 	/* Base hash sizes on available memory, with a reserve equal to
3155            150% of current kernel size */
3156 
3157 	reserve = min((mempages - nr_free_pages()) * 3/2, mempages - 1);
3158 	mempages -= reserve;
3159 
3160 	names_cachep = kmem_cache_create("names_cache", PATH_MAX, 0,
3161 			SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
3162 
3163 	dcache_init();
3164 	inode_init();
3165 	files_init(mempages);
3166 	mnt_init();
3167 	bdev_cache_init();
3168 	chrdev_init();
3169 }
3170