1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * fs/dcache.c 4 * 5 * Complete reimplementation 6 * (C) 1997 Thomas Schoebel-Theuer, 7 * with heavy changes by Linus Torvalds 8 */ 9 10 /* 11 * Notes on the allocation strategy: 12 * 13 * The dcache is a master of the icache - whenever a dcache entry 14 * exists, the inode will always exist. "iput()" is done either when 15 * the dcache entry is deleted or garbage collected. 16 */ 17 18 #include <linux/ratelimit.h> 19 #include <linux/string.h> 20 #include <linux/mm.h> 21 #include <linux/fs.h> 22 #include <linux/fscrypt.h> 23 #include <linux/fsnotify.h> 24 #include <linux/slab.h> 25 #include <linux/init.h> 26 #include <linux/hash.h> 27 #include <linux/cache.h> 28 #include <linux/export.h> 29 #include <linux/security.h> 30 #include <linux/seqlock.h> 31 #include <linux/memblock.h> 32 #include <linux/bit_spinlock.h> 33 #include <linux/rculist_bl.h> 34 #include <linux/list_lru.h> 35 #include "internal.h" 36 #include "mount.h" 37 38 /* 39 * Usage: 40 * dcache->d_inode->i_lock protects: 41 * - i_dentry, d_u.d_alias, d_inode of aliases 42 * dcache_hash_bucket lock protects: 43 * - the dcache hash table 44 * s_roots bl list spinlock protects: 45 * - the s_roots list (see __d_drop) 46 * dentry->d_sb->s_dentry_lru_lock protects: 47 * - the dcache lru lists and counters 48 * d_lock protects: 49 * - d_flags 50 * - d_name 51 * - d_lru 52 * - d_count 53 * - d_unhashed() 54 * - d_parent and d_subdirs 55 * - childrens' d_child and d_parent 56 * - d_u.d_alias, d_inode 57 * 58 * Ordering: 59 * dentry->d_inode->i_lock 60 * dentry->d_lock 61 * dentry->d_sb->s_dentry_lru_lock 62 * dcache_hash_bucket lock 63 * s_roots lock 64 * 65 * If there is an ancestor relationship: 66 * dentry->d_parent->...->d_parent->d_lock 67 * ... 68 * dentry->d_parent->d_lock 69 * dentry->d_lock 70 * 71 * If no ancestor relationship: 72 * arbitrary, since it's serialized on rename_lock 73 */ 74 int sysctl_vfs_cache_pressure __read_mostly = 100; 75 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure); 76 77 __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock); 78 79 EXPORT_SYMBOL(rename_lock); 80 81 static struct kmem_cache *dentry_cache __read_mostly; 82 83 const struct qstr empty_name = QSTR_INIT("", 0); 84 EXPORT_SYMBOL(empty_name); 85 const struct qstr slash_name = QSTR_INIT("/", 1); 86 EXPORT_SYMBOL(slash_name); 87 88 /* 89 * This is the single most critical data structure when it comes 90 * to the dcache: the hashtable for lookups. Somebody should try 91 * to make this good - I've just made it work. 92 * 93 * This hash-function tries to avoid losing too many bits of hash 94 * information, yet avoid using a prime hash-size or similar. 95 */ 96 97 static unsigned int d_hash_shift __read_mostly; 98 99 static struct hlist_bl_head *dentry_hashtable __read_mostly; 100 101 static inline struct hlist_bl_head *d_hash(unsigned int hash) 102 { 103 return dentry_hashtable + (hash >> d_hash_shift); 104 } 105 106 #define IN_LOOKUP_SHIFT 10 107 static struct hlist_bl_head in_lookup_hashtable[1 << IN_LOOKUP_SHIFT]; 108 109 static inline struct hlist_bl_head *in_lookup_hash(const struct dentry *parent, 110 unsigned int hash) 111 { 112 hash += (unsigned long) parent / L1_CACHE_BYTES; 113 return in_lookup_hashtable + hash_32(hash, IN_LOOKUP_SHIFT); 114 } 115 116 117 /* Statistics gathering. */ 118 struct dentry_stat_t dentry_stat = { 119 .age_limit = 45, 120 }; 121 122 static DEFINE_PER_CPU(long, nr_dentry); 123 static DEFINE_PER_CPU(long, nr_dentry_unused); 124 static DEFINE_PER_CPU(long, nr_dentry_negative); 125 126 #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS) 127 128 /* 129 * Here we resort to our own counters instead of using generic per-cpu counters 130 * for consistency with what the vfs inode code does. We are expected to harvest 131 * better code and performance by having our own specialized counters. 132 * 133 * Please note that the loop is done over all possible CPUs, not over all online 134 * CPUs. The reason for this is that we don't want to play games with CPUs going 135 * on and off. If one of them goes off, we will just keep their counters. 136 * 137 * glommer: See cffbc8a for details, and if you ever intend to change this, 138 * please update all vfs counters to match. 139 */ 140 static long get_nr_dentry(void) 141 { 142 int i; 143 long sum = 0; 144 for_each_possible_cpu(i) 145 sum += per_cpu(nr_dentry, i); 146 return sum < 0 ? 0 : sum; 147 } 148 149 static long get_nr_dentry_unused(void) 150 { 151 int i; 152 long sum = 0; 153 for_each_possible_cpu(i) 154 sum += per_cpu(nr_dentry_unused, i); 155 return sum < 0 ? 0 : sum; 156 } 157 158 static long get_nr_dentry_negative(void) 159 { 160 int i; 161 long sum = 0; 162 163 for_each_possible_cpu(i) 164 sum += per_cpu(nr_dentry_negative, i); 165 return sum < 0 ? 0 : sum; 166 } 167 168 int proc_nr_dentry(struct ctl_table *table, int write, void *buffer, 169 size_t *lenp, loff_t *ppos) 170 { 171 dentry_stat.nr_dentry = get_nr_dentry(); 172 dentry_stat.nr_unused = get_nr_dentry_unused(); 173 dentry_stat.nr_negative = get_nr_dentry_negative(); 174 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos); 175 } 176 #endif 177 178 /* 179 * Compare 2 name strings, return 0 if they match, otherwise non-zero. 180 * The strings are both count bytes long, and count is non-zero. 181 */ 182 #ifdef CONFIG_DCACHE_WORD_ACCESS 183 184 #include <asm/word-at-a-time.h> 185 /* 186 * NOTE! 'cs' and 'scount' come from a dentry, so it has a 187 * aligned allocation for this particular component. We don't 188 * strictly need the load_unaligned_zeropad() safety, but it 189 * doesn't hurt either. 190 * 191 * In contrast, 'ct' and 'tcount' can be from a pathname, and do 192 * need the careful unaligned handling. 193 */ 194 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount) 195 { 196 unsigned long a,b,mask; 197 198 for (;;) { 199 a = read_word_at_a_time(cs); 200 b = load_unaligned_zeropad(ct); 201 if (tcount < sizeof(unsigned long)) 202 break; 203 if (unlikely(a != b)) 204 return 1; 205 cs += sizeof(unsigned long); 206 ct += sizeof(unsigned long); 207 tcount -= sizeof(unsigned long); 208 if (!tcount) 209 return 0; 210 } 211 mask = bytemask_from_count(tcount); 212 return unlikely(!!((a ^ b) & mask)); 213 } 214 215 #else 216 217 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount) 218 { 219 do { 220 if (*cs != *ct) 221 return 1; 222 cs++; 223 ct++; 224 tcount--; 225 } while (tcount); 226 return 0; 227 } 228 229 #endif 230 231 static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount) 232 { 233 /* 234 * Be careful about RCU walk racing with rename: 235 * use 'READ_ONCE' to fetch the name pointer. 236 * 237 * NOTE! Even if a rename will mean that the length 238 * was not loaded atomically, we don't care. The 239 * RCU walk will check the sequence count eventually, 240 * and catch it. And we won't overrun the buffer, 241 * because we're reading the name pointer atomically, 242 * and a dentry name is guaranteed to be properly 243 * terminated with a NUL byte. 244 * 245 * End result: even if 'len' is wrong, we'll exit 246 * early because the data cannot match (there can 247 * be no NUL in the ct/tcount data) 248 */ 249 const unsigned char *cs = READ_ONCE(dentry->d_name.name); 250 251 return dentry_string_cmp(cs, ct, tcount); 252 } 253 254 struct external_name { 255 union { 256 atomic_t count; 257 struct rcu_head head; 258 } u; 259 unsigned char name[]; 260 }; 261 262 static inline struct external_name *external_name(struct dentry *dentry) 263 { 264 return container_of(dentry->d_name.name, struct external_name, name[0]); 265 } 266 267 static void __d_free(struct rcu_head *head) 268 { 269 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu); 270 271 kmem_cache_free(dentry_cache, dentry); 272 } 273 274 static void __d_free_external(struct rcu_head *head) 275 { 276 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu); 277 kfree(external_name(dentry)); 278 kmem_cache_free(dentry_cache, dentry); 279 } 280 281 static inline int dname_external(const struct dentry *dentry) 282 { 283 return dentry->d_name.name != dentry->d_iname; 284 } 285 286 void take_dentry_name_snapshot(struct name_snapshot *name, struct dentry *dentry) 287 { 288 spin_lock(&dentry->d_lock); 289 name->name = dentry->d_name; 290 if (unlikely(dname_external(dentry))) { 291 atomic_inc(&external_name(dentry)->u.count); 292 } else { 293 memcpy(name->inline_name, dentry->d_iname, 294 dentry->d_name.len + 1); 295 name->name.name = name->inline_name; 296 } 297 spin_unlock(&dentry->d_lock); 298 } 299 EXPORT_SYMBOL(take_dentry_name_snapshot); 300 301 void release_dentry_name_snapshot(struct name_snapshot *name) 302 { 303 if (unlikely(name->name.name != name->inline_name)) { 304 struct external_name *p; 305 p = container_of(name->name.name, struct external_name, name[0]); 306 if (unlikely(atomic_dec_and_test(&p->u.count))) 307 kfree_rcu(p, u.head); 308 } 309 } 310 EXPORT_SYMBOL(release_dentry_name_snapshot); 311 312 static inline void __d_set_inode_and_type(struct dentry *dentry, 313 struct inode *inode, 314 unsigned type_flags) 315 { 316 unsigned flags; 317 318 dentry->d_inode = inode; 319 flags = READ_ONCE(dentry->d_flags); 320 flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU); 321 flags |= type_flags; 322 smp_store_release(&dentry->d_flags, flags); 323 } 324 325 static inline void __d_clear_type_and_inode(struct dentry *dentry) 326 { 327 unsigned flags = READ_ONCE(dentry->d_flags); 328 329 flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU); 330 WRITE_ONCE(dentry->d_flags, flags); 331 dentry->d_inode = NULL; 332 if (dentry->d_flags & DCACHE_LRU_LIST) 333 this_cpu_inc(nr_dentry_negative); 334 } 335 336 static void dentry_free(struct dentry *dentry) 337 { 338 WARN_ON(!hlist_unhashed(&dentry->d_u.d_alias)); 339 if (unlikely(dname_external(dentry))) { 340 struct external_name *p = external_name(dentry); 341 if (likely(atomic_dec_and_test(&p->u.count))) { 342 call_rcu(&dentry->d_u.d_rcu, __d_free_external); 343 return; 344 } 345 } 346 /* if dentry was never visible to RCU, immediate free is OK */ 347 if (dentry->d_flags & DCACHE_NORCU) 348 __d_free(&dentry->d_u.d_rcu); 349 else 350 call_rcu(&dentry->d_u.d_rcu, __d_free); 351 } 352 353 /* 354 * Release the dentry's inode, using the filesystem 355 * d_iput() operation if defined. 356 */ 357 static void dentry_unlink_inode(struct dentry * dentry) 358 __releases(dentry->d_lock) 359 __releases(dentry->d_inode->i_lock) 360 { 361 struct inode *inode = dentry->d_inode; 362 363 raw_write_seqcount_begin(&dentry->d_seq); 364 __d_clear_type_and_inode(dentry); 365 hlist_del_init(&dentry->d_u.d_alias); 366 raw_write_seqcount_end(&dentry->d_seq); 367 spin_unlock(&dentry->d_lock); 368 spin_unlock(&inode->i_lock); 369 if (!inode->i_nlink) 370 fsnotify_inoderemove(inode); 371 if (dentry->d_op && dentry->d_op->d_iput) 372 dentry->d_op->d_iput(dentry, inode); 373 else 374 iput(inode); 375 } 376 377 /* 378 * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry 379 * is in use - which includes both the "real" per-superblock 380 * LRU list _and_ the DCACHE_SHRINK_LIST use. 381 * 382 * The DCACHE_SHRINK_LIST bit is set whenever the dentry is 383 * on the shrink list (ie not on the superblock LRU list). 384 * 385 * The per-cpu "nr_dentry_unused" counters are updated with 386 * the DCACHE_LRU_LIST bit. 387 * 388 * The per-cpu "nr_dentry_negative" counters are only updated 389 * when deleted from or added to the per-superblock LRU list, not 390 * from/to the shrink list. That is to avoid an unneeded dec/inc 391 * pair when moving from LRU to shrink list in select_collect(). 392 * 393 * These helper functions make sure we always follow the 394 * rules. d_lock must be held by the caller. 395 */ 396 #define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x)) 397 static void d_lru_add(struct dentry *dentry) 398 { 399 D_FLAG_VERIFY(dentry, 0); 400 dentry->d_flags |= DCACHE_LRU_LIST; 401 this_cpu_inc(nr_dentry_unused); 402 if (d_is_negative(dentry)) 403 this_cpu_inc(nr_dentry_negative); 404 WARN_ON_ONCE(!list_lru_add(&dentry->d_sb->s_dentry_lru, &dentry->d_lru)); 405 } 406 407 static void d_lru_del(struct dentry *dentry) 408 { 409 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST); 410 dentry->d_flags &= ~DCACHE_LRU_LIST; 411 this_cpu_dec(nr_dentry_unused); 412 if (d_is_negative(dentry)) 413 this_cpu_dec(nr_dentry_negative); 414 WARN_ON_ONCE(!list_lru_del(&dentry->d_sb->s_dentry_lru, &dentry->d_lru)); 415 } 416 417 static void d_shrink_del(struct dentry *dentry) 418 { 419 D_FLAG_VERIFY(dentry, DCACHE_SHRINK_LIST | DCACHE_LRU_LIST); 420 list_del_init(&dentry->d_lru); 421 dentry->d_flags &= ~(DCACHE_SHRINK_LIST | DCACHE_LRU_LIST); 422 this_cpu_dec(nr_dentry_unused); 423 } 424 425 static void d_shrink_add(struct dentry *dentry, struct list_head *list) 426 { 427 D_FLAG_VERIFY(dentry, 0); 428 list_add(&dentry->d_lru, list); 429 dentry->d_flags |= DCACHE_SHRINK_LIST | DCACHE_LRU_LIST; 430 this_cpu_inc(nr_dentry_unused); 431 } 432 433 /* 434 * These can only be called under the global LRU lock, ie during the 435 * callback for freeing the LRU list. "isolate" removes it from the 436 * LRU lists entirely, while shrink_move moves it to the indicated 437 * private list. 438 */ 439 static void d_lru_isolate(struct list_lru_one *lru, struct dentry *dentry) 440 { 441 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST); 442 dentry->d_flags &= ~DCACHE_LRU_LIST; 443 this_cpu_dec(nr_dentry_unused); 444 if (d_is_negative(dentry)) 445 this_cpu_dec(nr_dentry_negative); 446 list_lru_isolate(lru, &dentry->d_lru); 447 } 448 449 static void d_lru_shrink_move(struct list_lru_one *lru, struct dentry *dentry, 450 struct list_head *list) 451 { 452 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST); 453 dentry->d_flags |= DCACHE_SHRINK_LIST; 454 if (d_is_negative(dentry)) 455 this_cpu_dec(nr_dentry_negative); 456 list_lru_isolate_move(lru, &dentry->d_lru, list); 457 } 458 459 /** 460 * d_drop - drop a dentry 461 * @dentry: dentry to drop 462 * 463 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't 464 * be found through a VFS lookup any more. Note that this is different from 465 * deleting the dentry - d_delete will try to mark the dentry negative if 466 * possible, giving a successful _negative_ lookup, while d_drop will 467 * just make the cache lookup fail. 468 * 469 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some 470 * reason (NFS timeouts or autofs deletes). 471 * 472 * __d_drop requires dentry->d_lock 473 * ___d_drop doesn't mark dentry as "unhashed" 474 * (dentry->d_hash.pprev will be LIST_POISON2, not NULL). 475 */ 476 static void ___d_drop(struct dentry *dentry) 477 { 478 struct hlist_bl_head *b; 479 /* 480 * Hashed dentries are normally on the dentry hashtable, 481 * with the exception of those newly allocated by 482 * d_obtain_root, which are always IS_ROOT: 483 */ 484 if (unlikely(IS_ROOT(dentry))) 485 b = &dentry->d_sb->s_roots; 486 else 487 b = d_hash(dentry->d_name.hash); 488 489 hlist_bl_lock(b); 490 __hlist_bl_del(&dentry->d_hash); 491 hlist_bl_unlock(b); 492 } 493 494 void __d_drop(struct dentry *dentry) 495 { 496 if (!d_unhashed(dentry)) { 497 ___d_drop(dentry); 498 dentry->d_hash.pprev = NULL; 499 write_seqcount_invalidate(&dentry->d_seq); 500 } 501 } 502 EXPORT_SYMBOL(__d_drop); 503 504 void d_drop(struct dentry *dentry) 505 { 506 spin_lock(&dentry->d_lock); 507 __d_drop(dentry); 508 spin_unlock(&dentry->d_lock); 509 } 510 EXPORT_SYMBOL(d_drop); 511 512 static inline void dentry_unlist(struct dentry *dentry, struct dentry *parent) 513 { 514 struct dentry *next; 515 /* 516 * Inform d_walk() and shrink_dentry_list() that we are no longer 517 * attached to the dentry tree 518 */ 519 dentry->d_flags |= DCACHE_DENTRY_KILLED; 520 if (unlikely(list_empty(&dentry->d_child))) 521 return; 522 __list_del_entry(&dentry->d_child); 523 /* 524 * Cursors can move around the list of children. While we'd been 525 * a normal list member, it didn't matter - ->d_child.next would've 526 * been updated. However, from now on it won't be and for the 527 * things like d_walk() it might end up with a nasty surprise. 528 * Normally d_walk() doesn't care about cursors moving around - 529 * ->d_lock on parent prevents that and since a cursor has no children 530 * of its own, we get through it without ever unlocking the parent. 531 * There is one exception, though - if we ascend from a child that 532 * gets killed as soon as we unlock it, the next sibling is found 533 * using the value left in its ->d_child.next. And if _that_ 534 * pointed to a cursor, and cursor got moved (e.g. by lseek()) 535 * before d_walk() regains parent->d_lock, we'll end up skipping 536 * everything the cursor had been moved past. 537 * 538 * Solution: make sure that the pointer left behind in ->d_child.next 539 * points to something that won't be moving around. I.e. skip the 540 * cursors. 541 */ 542 while (dentry->d_child.next != &parent->d_subdirs) { 543 next = list_entry(dentry->d_child.next, struct dentry, d_child); 544 if (likely(!(next->d_flags & DCACHE_DENTRY_CURSOR))) 545 break; 546 dentry->d_child.next = next->d_child.next; 547 } 548 } 549 550 static void __dentry_kill(struct dentry *dentry) 551 { 552 struct dentry *parent = NULL; 553 bool can_free = true; 554 if (!IS_ROOT(dentry)) 555 parent = dentry->d_parent; 556 557 /* 558 * The dentry is now unrecoverably dead to the world. 559 */ 560 lockref_mark_dead(&dentry->d_lockref); 561 562 /* 563 * inform the fs via d_prune that this dentry is about to be 564 * unhashed and destroyed. 565 */ 566 if (dentry->d_flags & DCACHE_OP_PRUNE) 567 dentry->d_op->d_prune(dentry); 568 569 if (dentry->d_flags & DCACHE_LRU_LIST) { 570 if (!(dentry->d_flags & DCACHE_SHRINK_LIST)) 571 d_lru_del(dentry); 572 } 573 /* if it was on the hash then remove it */ 574 __d_drop(dentry); 575 dentry_unlist(dentry, parent); 576 if (parent) 577 spin_unlock(&parent->d_lock); 578 if (dentry->d_inode) 579 dentry_unlink_inode(dentry); 580 else 581 spin_unlock(&dentry->d_lock); 582 this_cpu_dec(nr_dentry); 583 if (dentry->d_op && dentry->d_op->d_release) 584 dentry->d_op->d_release(dentry); 585 586 spin_lock(&dentry->d_lock); 587 if (dentry->d_flags & DCACHE_SHRINK_LIST) { 588 dentry->d_flags |= DCACHE_MAY_FREE; 589 can_free = false; 590 } 591 spin_unlock(&dentry->d_lock); 592 if (likely(can_free)) 593 dentry_free(dentry); 594 cond_resched(); 595 } 596 597 static struct dentry *__lock_parent(struct dentry *dentry) 598 { 599 struct dentry *parent; 600 rcu_read_lock(); 601 spin_unlock(&dentry->d_lock); 602 again: 603 parent = READ_ONCE(dentry->d_parent); 604 spin_lock(&parent->d_lock); 605 /* 606 * We can't blindly lock dentry until we are sure 607 * that we won't violate the locking order. 608 * Any changes of dentry->d_parent must have 609 * been done with parent->d_lock held, so 610 * spin_lock() above is enough of a barrier 611 * for checking if it's still our child. 612 */ 613 if (unlikely(parent != dentry->d_parent)) { 614 spin_unlock(&parent->d_lock); 615 goto again; 616 } 617 rcu_read_unlock(); 618 if (parent != dentry) 619 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED); 620 else 621 parent = NULL; 622 return parent; 623 } 624 625 static inline struct dentry *lock_parent(struct dentry *dentry) 626 { 627 struct dentry *parent = dentry->d_parent; 628 if (IS_ROOT(dentry)) 629 return NULL; 630 if (likely(spin_trylock(&parent->d_lock))) 631 return parent; 632 return __lock_parent(dentry); 633 } 634 635 static inline bool retain_dentry(struct dentry *dentry) 636 { 637 WARN_ON(d_in_lookup(dentry)); 638 639 /* Unreachable? Get rid of it */ 640 if (unlikely(d_unhashed(dentry))) 641 return false; 642 643 if (unlikely(dentry->d_flags & DCACHE_DISCONNECTED)) 644 return false; 645 646 if (unlikely(dentry->d_flags & DCACHE_OP_DELETE)) { 647 if (dentry->d_op->d_delete(dentry)) 648 return false; 649 } 650 651 if (unlikely(dentry->d_flags & DCACHE_DONTCACHE)) 652 return false; 653 654 /* retain; LRU fodder */ 655 dentry->d_lockref.count--; 656 if (unlikely(!(dentry->d_flags & DCACHE_LRU_LIST))) 657 d_lru_add(dentry); 658 else if (unlikely(!(dentry->d_flags & DCACHE_REFERENCED))) 659 dentry->d_flags |= DCACHE_REFERENCED; 660 return true; 661 } 662 663 void d_mark_dontcache(struct inode *inode) 664 { 665 struct dentry *de; 666 667 spin_lock(&inode->i_lock); 668 hlist_for_each_entry(de, &inode->i_dentry, d_u.d_alias) { 669 spin_lock(&de->d_lock); 670 de->d_flags |= DCACHE_DONTCACHE; 671 spin_unlock(&de->d_lock); 672 } 673 inode->i_state |= I_DONTCACHE; 674 spin_unlock(&inode->i_lock); 675 } 676 EXPORT_SYMBOL(d_mark_dontcache); 677 678 /* 679 * Finish off a dentry we've decided to kill. 680 * dentry->d_lock must be held, returns with it unlocked. 681 * Returns dentry requiring refcount drop, or NULL if we're done. 682 */ 683 static struct dentry *dentry_kill(struct dentry *dentry) 684 __releases(dentry->d_lock) 685 { 686 struct inode *inode = dentry->d_inode; 687 struct dentry *parent = NULL; 688 689 if (inode && unlikely(!spin_trylock(&inode->i_lock))) 690 goto slow_positive; 691 692 if (!IS_ROOT(dentry)) { 693 parent = dentry->d_parent; 694 if (unlikely(!spin_trylock(&parent->d_lock))) { 695 parent = __lock_parent(dentry); 696 if (likely(inode || !dentry->d_inode)) 697 goto got_locks; 698 /* negative that became positive */ 699 if (parent) 700 spin_unlock(&parent->d_lock); 701 inode = dentry->d_inode; 702 goto slow_positive; 703 } 704 } 705 __dentry_kill(dentry); 706 return parent; 707 708 slow_positive: 709 spin_unlock(&dentry->d_lock); 710 spin_lock(&inode->i_lock); 711 spin_lock(&dentry->d_lock); 712 parent = lock_parent(dentry); 713 got_locks: 714 if (unlikely(dentry->d_lockref.count != 1)) { 715 dentry->d_lockref.count--; 716 } else if (likely(!retain_dentry(dentry))) { 717 __dentry_kill(dentry); 718 return parent; 719 } 720 /* we are keeping it, after all */ 721 if (inode) 722 spin_unlock(&inode->i_lock); 723 if (parent) 724 spin_unlock(&parent->d_lock); 725 spin_unlock(&dentry->d_lock); 726 return NULL; 727 } 728 729 /* 730 * Try to do a lockless dput(), and return whether that was successful. 731 * 732 * If unsuccessful, we return false, having already taken the dentry lock. 733 * 734 * The caller needs to hold the RCU read lock, so that the dentry is 735 * guaranteed to stay around even if the refcount goes down to zero! 736 */ 737 static inline bool fast_dput(struct dentry *dentry) 738 { 739 int ret; 740 unsigned int d_flags; 741 742 /* 743 * If we have a d_op->d_delete() operation, we sould not 744 * let the dentry count go to zero, so use "put_or_lock". 745 */ 746 if (unlikely(dentry->d_flags & DCACHE_OP_DELETE)) 747 return lockref_put_or_lock(&dentry->d_lockref); 748 749 /* 750 * .. otherwise, we can try to just decrement the 751 * lockref optimistically. 752 */ 753 ret = lockref_put_return(&dentry->d_lockref); 754 755 /* 756 * If the lockref_put_return() failed due to the lock being held 757 * by somebody else, the fast path has failed. We will need to 758 * get the lock, and then check the count again. 759 */ 760 if (unlikely(ret < 0)) { 761 spin_lock(&dentry->d_lock); 762 if (dentry->d_lockref.count > 1) { 763 dentry->d_lockref.count--; 764 spin_unlock(&dentry->d_lock); 765 return true; 766 } 767 return false; 768 } 769 770 /* 771 * If we weren't the last ref, we're done. 772 */ 773 if (ret) 774 return true; 775 776 /* 777 * Careful, careful. The reference count went down 778 * to zero, but we don't hold the dentry lock, so 779 * somebody else could get it again, and do another 780 * dput(), and we need to not race with that. 781 * 782 * However, there is a very special and common case 783 * where we don't care, because there is nothing to 784 * do: the dentry is still hashed, it does not have 785 * a 'delete' op, and it's referenced and already on 786 * the LRU list. 787 * 788 * NOTE! Since we aren't locked, these values are 789 * not "stable". However, it is sufficient that at 790 * some point after we dropped the reference the 791 * dentry was hashed and the flags had the proper 792 * value. Other dentry users may have re-gotten 793 * a reference to the dentry and change that, but 794 * our work is done - we can leave the dentry 795 * around with a zero refcount. 796 */ 797 smp_rmb(); 798 d_flags = READ_ONCE(dentry->d_flags); 799 d_flags &= DCACHE_REFERENCED | DCACHE_LRU_LIST | DCACHE_DISCONNECTED; 800 801 /* Nothing to do? Dropping the reference was all we needed? */ 802 if (d_flags == (DCACHE_REFERENCED | DCACHE_LRU_LIST) && !d_unhashed(dentry)) 803 return true; 804 805 /* 806 * Not the fast normal case? Get the lock. We've already decremented 807 * the refcount, but we'll need to re-check the situation after 808 * getting the lock. 809 */ 810 spin_lock(&dentry->d_lock); 811 812 /* 813 * Did somebody else grab a reference to it in the meantime, and 814 * we're no longer the last user after all? Alternatively, somebody 815 * else could have killed it and marked it dead. Either way, we 816 * don't need to do anything else. 817 */ 818 if (dentry->d_lockref.count) { 819 spin_unlock(&dentry->d_lock); 820 return true; 821 } 822 823 /* 824 * Re-get the reference we optimistically dropped. We hold the 825 * lock, and we just tested that it was zero, so we can just 826 * set it to 1. 827 */ 828 dentry->d_lockref.count = 1; 829 return false; 830 } 831 832 833 /* 834 * This is dput 835 * 836 * This is complicated by the fact that we do not want to put 837 * dentries that are no longer on any hash chain on the unused 838 * list: we'd much rather just get rid of them immediately. 839 * 840 * However, that implies that we have to traverse the dentry 841 * tree upwards to the parents which might _also_ now be 842 * scheduled for deletion (it may have been only waiting for 843 * its last child to go away). 844 * 845 * This tail recursion is done by hand as we don't want to depend 846 * on the compiler to always get this right (gcc generally doesn't). 847 * Real recursion would eat up our stack space. 848 */ 849 850 /* 851 * dput - release a dentry 852 * @dentry: dentry to release 853 * 854 * Release a dentry. This will drop the usage count and if appropriate 855 * call the dentry unlink method as well as removing it from the queues and 856 * releasing its resources. If the parent dentries were scheduled for release 857 * they too may now get deleted. 858 */ 859 void dput(struct dentry *dentry) 860 { 861 while (dentry) { 862 might_sleep(); 863 864 rcu_read_lock(); 865 if (likely(fast_dput(dentry))) { 866 rcu_read_unlock(); 867 return; 868 } 869 870 /* Slow case: now with the dentry lock held */ 871 rcu_read_unlock(); 872 873 if (likely(retain_dentry(dentry))) { 874 spin_unlock(&dentry->d_lock); 875 return; 876 } 877 878 dentry = dentry_kill(dentry); 879 } 880 } 881 EXPORT_SYMBOL(dput); 882 883 static void __dput_to_list(struct dentry *dentry, struct list_head *list) 884 __must_hold(&dentry->d_lock) 885 { 886 if (dentry->d_flags & DCACHE_SHRINK_LIST) { 887 /* let the owner of the list it's on deal with it */ 888 --dentry->d_lockref.count; 889 } else { 890 if (dentry->d_flags & DCACHE_LRU_LIST) 891 d_lru_del(dentry); 892 if (!--dentry->d_lockref.count) 893 d_shrink_add(dentry, list); 894 } 895 } 896 897 void dput_to_list(struct dentry *dentry, struct list_head *list) 898 { 899 rcu_read_lock(); 900 if (likely(fast_dput(dentry))) { 901 rcu_read_unlock(); 902 return; 903 } 904 rcu_read_unlock(); 905 if (!retain_dentry(dentry)) 906 __dput_to_list(dentry, list); 907 spin_unlock(&dentry->d_lock); 908 } 909 910 /* This must be called with d_lock held */ 911 static inline void __dget_dlock(struct dentry *dentry) 912 { 913 dentry->d_lockref.count++; 914 } 915 916 static inline void __dget(struct dentry *dentry) 917 { 918 lockref_get(&dentry->d_lockref); 919 } 920 921 struct dentry *dget_parent(struct dentry *dentry) 922 { 923 int gotref; 924 struct dentry *ret; 925 unsigned seq; 926 927 /* 928 * Do optimistic parent lookup without any 929 * locking. 930 */ 931 rcu_read_lock(); 932 seq = raw_seqcount_begin(&dentry->d_seq); 933 ret = READ_ONCE(dentry->d_parent); 934 gotref = lockref_get_not_zero(&ret->d_lockref); 935 rcu_read_unlock(); 936 if (likely(gotref)) { 937 if (!read_seqcount_retry(&dentry->d_seq, seq)) 938 return ret; 939 dput(ret); 940 } 941 942 repeat: 943 /* 944 * Don't need rcu_dereference because we re-check it was correct under 945 * the lock. 946 */ 947 rcu_read_lock(); 948 ret = dentry->d_parent; 949 spin_lock(&ret->d_lock); 950 if (unlikely(ret != dentry->d_parent)) { 951 spin_unlock(&ret->d_lock); 952 rcu_read_unlock(); 953 goto repeat; 954 } 955 rcu_read_unlock(); 956 BUG_ON(!ret->d_lockref.count); 957 ret->d_lockref.count++; 958 spin_unlock(&ret->d_lock); 959 return ret; 960 } 961 EXPORT_SYMBOL(dget_parent); 962 963 static struct dentry * __d_find_any_alias(struct inode *inode) 964 { 965 struct dentry *alias; 966 967 if (hlist_empty(&inode->i_dentry)) 968 return NULL; 969 alias = hlist_entry(inode->i_dentry.first, struct dentry, d_u.d_alias); 970 __dget(alias); 971 return alias; 972 } 973 974 /** 975 * d_find_any_alias - find any alias for a given inode 976 * @inode: inode to find an alias for 977 * 978 * If any aliases exist for the given inode, take and return a 979 * reference for one of them. If no aliases exist, return %NULL. 980 */ 981 struct dentry *d_find_any_alias(struct inode *inode) 982 { 983 struct dentry *de; 984 985 spin_lock(&inode->i_lock); 986 de = __d_find_any_alias(inode); 987 spin_unlock(&inode->i_lock); 988 return de; 989 } 990 EXPORT_SYMBOL(d_find_any_alias); 991 992 /** 993 * d_find_alias - grab a hashed alias of inode 994 * @inode: inode in question 995 * 996 * If inode has a hashed alias, or is a directory and has any alias, 997 * acquire the reference to alias and return it. Otherwise return NULL. 998 * Notice that if inode is a directory there can be only one alias and 999 * it can be unhashed only if it has no children, or if it is the root 1000 * of a filesystem, or if the directory was renamed and d_revalidate 1001 * was the first vfs operation to notice. 1002 * 1003 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer 1004 * any other hashed alias over that one. 1005 */ 1006 static struct dentry *__d_find_alias(struct inode *inode) 1007 { 1008 struct dentry *alias; 1009 1010 if (S_ISDIR(inode->i_mode)) 1011 return __d_find_any_alias(inode); 1012 1013 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) { 1014 spin_lock(&alias->d_lock); 1015 if (!d_unhashed(alias)) { 1016 __dget_dlock(alias); 1017 spin_unlock(&alias->d_lock); 1018 return alias; 1019 } 1020 spin_unlock(&alias->d_lock); 1021 } 1022 return NULL; 1023 } 1024 1025 struct dentry *d_find_alias(struct inode *inode) 1026 { 1027 struct dentry *de = NULL; 1028 1029 if (!hlist_empty(&inode->i_dentry)) { 1030 spin_lock(&inode->i_lock); 1031 de = __d_find_alias(inode); 1032 spin_unlock(&inode->i_lock); 1033 } 1034 return de; 1035 } 1036 EXPORT_SYMBOL(d_find_alias); 1037 1038 /* 1039 * Try to kill dentries associated with this inode. 1040 * WARNING: you must own a reference to inode. 1041 */ 1042 void d_prune_aliases(struct inode *inode) 1043 { 1044 struct dentry *dentry; 1045 restart: 1046 spin_lock(&inode->i_lock); 1047 hlist_for_each_entry(dentry, &inode->i_dentry, d_u.d_alias) { 1048 spin_lock(&dentry->d_lock); 1049 if (!dentry->d_lockref.count) { 1050 struct dentry *parent = lock_parent(dentry); 1051 if (likely(!dentry->d_lockref.count)) { 1052 __dentry_kill(dentry); 1053 dput(parent); 1054 goto restart; 1055 } 1056 if (parent) 1057 spin_unlock(&parent->d_lock); 1058 } 1059 spin_unlock(&dentry->d_lock); 1060 } 1061 spin_unlock(&inode->i_lock); 1062 } 1063 EXPORT_SYMBOL(d_prune_aliases); 1064 1065 /* 1066 * Lock a dentry from shrink list. 1067 * Called under rcu_read_lock() and dentry->d_lock; the former 1068 * guarantees that nothing we access will be freed under us. 1069 * Note that dentry is *not* protected from concurrent dentry_kill(), 1070 * d_delete(), etc. 1071 * 1072 * Return false if dentry has been disrupted or grabbed, leaving 1073 * the caller to kick it off-list. Otherwise, return true and have 1074 * that dentry's inode and parent both locked. 1075 */ 1076 static bool shrink_lock_dentry(struct dentry *dentry) 1077 { 1078 struct inode *inode; 1079 struct dentry *parent; 1080 1081 if (dentry->d_lockref.count) 1082 return false; 1083 1084 inode = dentry->d_inode; 1085 if (inode && unlikely(!spin_trylock(&inode->i_lock))) { 1086 spin_unlock(&dentry->d_lock); 1087 spin_lock(&inode->i_lock); 1088 spin_lock(&dentry->d_lock); 1089 if (unlikely(dentry->d_lockref.count)) 1090 goto out; 1091 /* changed inode means that somebody had grabbed it */ 1092 if (unlikely(inode != dentry->d_inode)) 1093 goto out; 1094 } 1095 1096 parent = dentry->d_parent; 1097 if (IS_ROOT(dentry) || likely(spin_trylock(&parent->d_lock))) 1098 return true; 1099 1100 spin_unlock(&dentry->d_lock); 1101 spin_lock(&parent->d_lock); 1102 if (unlikely(parent != dentry->d_parent)) { 1103 spin_unlock(&parent->d_lock); 1104 spin_lock(&dentry->d_lock); 1105 goto out; 1106 } 1107 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED); 1108 if (likely(!dentry->d_lockref.count)) 1109 return true; 1110 spin_unlock(&parent->d_lock); 1111 out: 1112 if (inode) 1113 spin_unlock(&inode->i_lock); 1114 return false; 1115 } 1116 1117 void shrink_dentry_list(struct list_head *list) 1118 { 1119 while (!list_empty(list)) { 1120 struct dentry *dentry, *parent; 1121 1122 dentry = list_entry(list->prev, struct dentry, d_lru); 1123 spin_lock(&dentry->d_lock); 1124 rcu_read_lock(); 1125 if (!shrink_lock_dentry(dentry)) { 1126 bool can_free = false; 1127 rcu_read_unlock(); 1128 d_shrink_del(dentry); 1129 if (dentry->d_lockref.count < 0) 1130 can_free = dentry->d_flags & DCACHE_MAY_FREE; 1131 spin_unlock(&dentry->d_lock); 1132 if (can_free) 1133 dentry_free(dentry); 1134 continue; 1135 } 1136 rcu_read_unlock(); 1137 d_shrink_del(dentry); 1138 parent = dentry->d_parent; 1139 if (parent != dentry) 1140 __dput_to_list(parent, list); 1141 __dentry_kill(dentry); 1142 } 1143 } 1144 1145 static enum lru_status dentry_lru_isolate(struct list_head *item, 1146 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg) 1147 { 1148 struct list_head *freeable = arg; 1149 struct dentry *dentry = container_of(item, struct dentry, d_lru); 1150 1151 1152 /* 1153 * we are inverting the lru lock/dentry->d_lock here, 1154 * so use a trylock. If we fail to get the lock, just skip 1155 * it 1156 */ 1157 if (!spin_trylock(&dentry->d_lock)) 1158 return LRU_SKIP; 1159 1160 /* 1161 * Referenced dentries are still in use. If they have active 1162 * counts, just remove them from the LRU. Otherwise give them 1163 * another pass through the LRU. 1164 */ 1165 if (dentry->d_lockref.count) { 1166 d_lru_isolate(lru, dentry); 1167 spin_unlock(&dentry->d_lock); 1168 return LRU_REMOVED; 1169 } 1170 1171 if (dentry->d_flags & DCACHE_REFERENCED) { 1172 dentry->d_flags &= ~DCACHE_REFERENCED; 1173 spin_unlock(&dentry->d_lock); 1174 1175 /* 1176 * The list move itself will be made by the common LRU code. At 1177 * this point, we've dropped the dentry->d_lock but keep the 1178 * lru lock. This is safe to do, since every list movement is 1179 * protected by the lru lock even if both locks are held. 1180 * 1181 * This is guaranteed by the fact that all LRU management 1182 * functions are intermediated by the LRU API calls like 1183 * list_lru_add and list_lru_del. List movement in this file 1184 * only ever occur through this functions or through callbacks 1185 * like this one, that are called from the LRU API. 1186 * 1187 * The only exceptions to this are functions like 1188 * shrink_dentry_list, and code that first checks for the 1189 * DCACHE_SHRINK_LIST flag. Those are guaranteed to be 1190 * operating only with stack provided lists after they are 1191 * properly isolated from the main list. It is thus, always a 1192 * local access. 1193 */ 1194 return LRU_ROTATE; 1195 } 1196 1197 d_lru_shrink_move(lru, dentry, freeable); 1198 spin_unlock(&dentry->d_lock); 1199 1200 return LRU_REMOVED; 1201 } 1202 1203 /** 1204 * prune_dcache_sb - shrink the dcache 1205 * @sb: superblock 1206 * @sc: shrink control, passed to list_lru_shrink_walk() 1207 * 1208 * Attempt to shrink the superblock dcache LRU by @sc->nr_to_scan entries. This 1209 * is done when we need more memory and called from the superblock shrinker 1210 * function. 1211 * 1212 * This function may fail to free any resources if all the dentries are in 1213 * use. 1214 */ 1215 long prune_dcache_sb(struct super_block *sb, struct shrink_control *sc) 1216 { 1217 LIST_HEAD(dispose); 1218 long freed; 1219 1220 freed = list_lru_shrink_walk(&sb->s_dentry_lru, sc, 1221 dentry_lru_isolate, &dispose); 1222 shrink_dentry_list(&dispose); 1223 return freed; 1224 } 1225 1226 static enum lru_status dentry_lru_isolate_shrink(struct list_head *item, 1227 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg) 1228 { 1229 struct list_head *freeable = arg; 1230 struct dentry *dentry = container_of(item, struct dentry, d_lru); 1231 1232 /* 1233 * we are inverting the lru lock/dentry->d_lock here, 1234 * so use a trylock. If we fail to get the lock, just skip 1235 * it 1236 */ 1237 if (!spin_trylock(&dentry->d_lock)) 1238 return LRU_SKIP; 1239 1240 d_lru_shrink_move(lru, dentry, freeable); 1241 spin_unlock(&dentry->d_lock); 1242 1243 return LRU_REMOVED; 1244 } 1245 1246 1247 /** 1248 * shrink_dcache_sb - shrink dcache for a superblock 1249 * @sb: superblock 1250 * 1251 * Shrink the dcache for the specified super block. This is used to free 1252 * the dcache before unmounting a file system. 1253 */ 1254 void shrink_dcache_sb(struct super_block *sb) 1255 { 1256 do { 1257 LIST_HEAD(dispose); 1258 1259 list_lru_walk(&sb->s_dentry_lru, 1260 dentry_lru_isolate_shrink, &dispose, 1024); 1261 shrink_dentry_list(&dispose); 1262 } while (list_lru_count(&sb->s_dentry_lru) > 0); 1263 } 1264 EXPORT_SYMBOL(shrink_dcache_sb); 1265 1266 /** 1267 * enum d_walk_ret - action to talke during tree walk 1268 * @D_WALK_CONTINUE: contrinue walk 1269 * @D_WALK_QUIT: quit walk 1270 * @D_WALK_NORETRY: quit when retry is needed 1271 * @D_WALK_SKIP: skip this dentry and its children 1272 */ 1273 enum d_walk_ret { 1274 D_WALK_CONTINUE, 1275 D_WALK_QUIT, 1276 D_WALK_NORETRY, 1277 D_WALK_SKIP, 1278 }; 1279 1280 /** 1281 * d_walk - walk the dentry tree 1282 * @parent: start of walk 1283 * @data: data passed to @enter() and @finish() 1284 * @enter: callback when first entering the dentry 1285 * 1286 * The @enter() callbacks are called with d_lock held. 1287 */ 1288 static void d_walk(struct dentry *parent, void *data, 1289 enum d_walk_ret (*enter)(void *, struct dentry *)) 1290 { 1291 struct dentry *this_parent; 1292 struct list_head *next; 1293 unsigned seq = 0; 1294 enum d_walk_ret ret; 1295 bool retry = true; 1296 1297 again: 1298 read_seqbegin_or_lock(&rename_lock, &seq); 1299 this_parent = parent; 1300 spin_lock(&this_parent->d_lock); 1301 1302 ret = enter(data, this_parent); 1303 switch (ret) { 1304 case D_WALK_CONTINUE: 1305 break; 1306 case D_WALK_QUIT: 1307 case D_WALK_SKIP: 1308 goto out_unlock; 1309 case D_WALK_NORETRY: 1310 retry = false; 1311 break; 1312 } 1313 repeat: 1314 next = this_parent->d_subdirs.next; 1315 resume: 1316 while (next != &this_parent->d_subdirs) { 1317 struct list_head *tmp = next; 1318 struct dentry *dentry = list_entry(tmp, struct dentry, d_child); 1319 next = tmp->next; 1320 1321 if (unlikely(dentry->d_flags & DCACHE_DENTRY_CURSOR)) 1322 continue; 1323 1324 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED); 1325 1326 ret = enter(data, dentry); 1327 switch (ret) { 1328 case D_WALK_CONTINUE: 1329 break; 1330 case D_WALK_QUIT: 1331 spin_unlock(&dentry->d_lock); 1332 goto out_unlock; 1333 case D_WALK_NORETRY: 1334 retry = false; 1335 break; 1336 case D_WALK_SKIP: 1337 spin_unlock(&dentry->d_lock); 1338 continue; 1339 } 1340 1341 if (!list_empty(&dentry->d_subdirs)) { 1342 spin_unlock(&this_parent->d_lock); 1343 spin_release(&dentry->d_lock.dep_map, _RET_IP_); 1344 this_parent = dentry; 1345 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_); 1346 goto repeat; 1347 } 1348 spin_unlock(&dentry->d_lock); 1349 } 1350 /* 1351 * All done at this level ... ascend and resume the search. 1352 */ 1353 rcu_read_lock(); 1354 ascend: 1355 if (this_parent != parent) { 1356 struct dentry *child = this_parent; 1357 this_parent = child->d_parent; 1358 1359 spin_unlock(&child->d_lock); 1360 spin_lock(&this_parent->d_lock); 1361 1362 /* might go back up the wrong parent if we have had a rename. */ 1363 if (need_seqretry(&rename_lock, seq)) 1364 goto rename_retry; 1365 /* go into the first sibling still alive */ 1366 do { 1367 next = child->d_child.next; 1368 if (next == &this_parent->d_subdirs) 1369 goto ascend; 1370 child = list_entry(next, struct dentry, d_child); 1371 } while (unlikely(child->d_flags & DCACHE_DENTRY_KILLED)); 1372 rcu_read_unlock(); 1373 goto resume; 1374 } 1375 if (need_seqretry(&rename_lock, seq)) 1376 goto rename_retry; 1377 rcu_read_unlock(); 1378 1379 out_unlock: 1380 spin_unlock(&this_parent->d_lock); 1381 done_seqretry(&rename_lock, seq); 1382 return; 1383 1384 rename_retry: 1385 spin_unlock(&this_parent->d_lock); 1386 rcu_read_unlock(); 1387 BUG_ON(seq & 1); 1388 if (!retry) 1389 return; 1390 seq = 1; 1391 goto again; 1392 } 1393 1394 struct check_mount { 1395 struct vfsmount *mnt; 1396 unsigned int mounted; 1397 }; 1398 1399 static enum d_walk_ret path_check_mount(void *data, struct dentry *dentry) 1400 { 1401 struct check_mount *info = data; 1402 struct path path = { .mnt = info->mnt, .dentry = dentry }; 1403 1404 if (likely(!d_mountpoint(dentry))) 1405 return D_WALK_CONTINUE; 1406 if (__path_is_mountpoint(&path)) { 1407 info->mounted = 1; 1408 return D_WALK_QUIT; 1409 } 1410 return D_WALK_CONTINUE; 1411 } 1412 1413 /** 1414 * path_has_submounts - check for mounts over a dentry in the 1415 * current namespace. 1416 * @parent: path to check. 1417 * 1418 * Return true if the parent or its subdirectories contain 1419 * a mount point in the current namespace. 1420 */ 1421 int path_has_submounts(const struct path *parent) 1422 { 1423 struct check_mount data = { .mnt = parent->mnt, .mounted = 0 }; 1424 1425 read_seqlock_excl(&mount_lock); 1426 d_walk(parent->dentry, &data, path_check_mount); 1427 read_sequnlock_excl(&mount_lock); 1428 1429 return data.mounted; 1430 } 1431 EXPORT_SYMBOL(path_has_submounts); 1432 1433 /* 1434 * Called by mount code to set a mountpoint and check if the mountpoint is 1435 * reachable (e.g. NFS can unhash a directory dentry and then the complete 1436 * subtree can become unreachable). 1437 * 1438 * Only one of d_invalidate() and d_set_mounted() must succeed. For 1439 * this reason take rename_lock and d_lock on dentry and ancestors. 1440 */ 1441 int d_set_mounted(struct dentry *dentry) 1442 { 1443 struct dentry *p; 1444 int ret = -ENOENT; 1445 write_seqlock(&rename_lock); 1446 for (p = dentry->d_parent; !IS_ROOT(p); p = p->d_parent) { 1447 /* Need exclusion wrt. d_invalidate() */ 1448 spin_lock(&p->d_lock); 1449 if (unlikely(d_unhashed(p))) { 1450 spin_unlock(&p->d_lock); 1451 goto out; 1452 } 1453 spin_unlock(&p->d_lock); 1454 } 1455 spin_lock(&dentry->d_lock); 1456 if (!d_unlinked(dentry)) { 1457 ret = -EBUSY; 1458 if (!d_mountpoint(dentry)) { 1459 dentry->d_flags |= DCACHE_MOUNTED; 1460 ret = 0; 1461 } 1462 } 1463 spin_unlock(&dentry->d_lock); 1464 out: 1465 write_sequnlock(&rename_lock); 1466 return ret; 1467 } 1468 1469 /* 1470 * Search the dentry child list of the specified parent, 1471 * and move any unused dentries to the end of the unused 1472 * list for prune_dcache(). We descend to the next level 1473 * whenever the d_subdirs list is non-empty and continue 1474 * searching. 1475 * 1476 * It returns zero iff there are no unused children, 1477 * otherwise it returns the number of children moved to 1478 * the end of the unused list. This may not be the total 1479 * number of unused children, because select_parent can 1480 * drop the lock and return early due to latency 1481 * constraints. 1482 */ 1483 1484 struct select_data { 1485 struct dentry *start; 1486 union { 1487 long found; 1488 struct dentry *victim; 1489 }; 1490 struct list_head dispose; 1491 }; 1492 1493 static enum d_walk_ret select_collect(void *_data, struct dentry *dentry) 1494 { 1495 struct select_data *data = _data; 1496 enum d_walk_ret ret = D_WALK_CONTINUE; 1497 1498 if (data->start == dentry) 1499 goto out; 1500 1501 if (dentry->d_flags & DCACHE_SHRINK_LIST) { 1502 data->found++; 1503 } else { 1504 if (dentry->d_flags & DCACHE_LRU_LIST) 1505 d_lru_del(dentry); 1506 if (!dentry->d_lockref.count) { 1507 d_shrink_add(dentry, &data->dispose); 1508 data->found++; 1509 } 1510 } 1511 /* 1512 * We can return to the caller if we have found some (this 1513 * ensures forward progress). We'll be coming back to find 1514 * the rest. 1515 */ 1516 if (!list_empty(&data->dispose)) 1517 ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY; 1518 out: 1519 return ret; 1520 } 1521 1522 static enum d_walk_ret select_collect2(void *_data, struct dentry *dentry) 1523 { 1524 struct select_data *data = _data; 1525 enum d_walk_ret ret = D_WALK_CONTINUE; 1526 1527 if (data->start == dentry) 1528 goto out; 1529 1530 if (dentry->d_flags & DCACHE_SHRINK_LIST) { 1531 if (!dentry->d_lockref.count) { 1532 rcu_read_lock(); 1533 data->victim = dentry; 1534 return D_WALK_QUIT; 1535 } 1536 } else { 1537 if (dentry->d_flags & DCACHE_LRU_LIST) 1538 d_lru_del(dentry); 1539 if (!dentry->d_lockref.count) 1540 d_shrink_add(dentry, &data->dispose); 1541 } 1542 /* 1543 * We can return to the caller if we have found some (this 1544 * ensures forward progress). We'll be coming back to find 1545 * the rest. 1546 */ 1547 if (!list_empty(&data->dispose)) 1548 ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY; 1549 out: 1550 return ret; 1551 } 1552 1553 /** 1554 * shrink_dcache_parent - prune dcache 1555 * @parent: parent of entries to prune 1556 * 1557 * Prune the dcache to remove unused children of the parent dentry. 1558 */ 1559 void shrink_dcache_parent(struct dentry *parent) 1560 { 1561 for (;;) { 1562 struct select_data data = {.start = parent}; 1563 1564 INIT_LIST_HEAD(&data.dispose); 1565 d_walk(parent, &data, select_collect); 1566 1567 if (!list_empty(&data.dispose)) { 1568 shrink_dentry_list(&data.dispose); 1569 continue; 1570 } 1571 1572 cond_resched(); 1573 if (!data.found) 1574 break; 1575 data.victim = NULL; 1576 d_walk(parent, &data, select_collect2); 1577 if (data.victim) { 1578 struct dentry *parent; 1579 spin_lock(&data.victim->d_lock); 1580 if (!shrink_lock_dentry(data.victim)) { 1581 spin_unlock(&data.victim->d_lock); 1582 rcu_read_unlock(); 1583 } else { 1584 rcu_read_unlock(); 1585 parent = data.victim->d_parent; 1586 if (parent != data.victim) 1587 __dput_to_list(parent, &data.dispose); 1588 __dentry_kill(data.victim); 1589 } 1590 } 1591 if (!list_empty(&data.dispose)) 1592 shrink_dentry_list(&data.dispose); 1593 } 1594 } 1595 EXPORT_SYMBOL(shrink_dcache_parent); 1596 1597 static enum d_walk_ret umount_check(void *_data, struct dentry *dentry) 1598 { 1599 /* it has busy descendents; complain about those instead */ 1600 if (!list_empty(&dentry->d_subdirs)) 1601 return D_WALK_CONTINUE; 1602 1603 /* root with refcount 1 is fine */ 1604 if (dentry == _data && dentry->d_lockref.count == 1) 1605 return D_WALK_CONTINUE; 1606 1607 printk(KERN_ERR "BUG: Dentry %p{i=%lx,n=%pd} " 1608 " still in use (%d) [unmount of %s %s]\n", 1609 dentry, 1610 dentry->d_inode ? 1611 dentry->d_inode->i_ino : 0UL, 1612 dentry, 1613 dentry->d_lockref.count, 1614 dentry->d_sb->s_type->name, 1615 dentry->d_sb->s_id); 1616 WARN_ON(1); 1617 return D_WALK_CONTINUE; 1618 } 1619 1620 static void do_one_tree(struct dentry *dentry) 1621 { 1622 shrink_dcache_parent(dentry); 1623 d_walk(dentry, dentry, umount_check); 1624 d_drop(dentry); 1625 dput(dentry); 1626 } 1627 1628 /* 1629 * destroy the dentries attached to a superblock on unmounting 1630 */ 1631 void shrink_dcache_for_umount(struct super_block *sb) 1632 { 1633 struct dentry *dentry; 1634 1635 WARN(down_read_trylock(&sb->s_umount), "s_umount should've been locked"); 1636 1637 dentry = sb->s_root; 1638 sb->s_root = NULL; 1639 do_one_tree(dentry); 1640 1641 while (!hlist_bl_empty(&sb->s_roots)) { 1642 dentry = dget(hlist_bl_entry(hlist_bl_first(&sb->s_roots), struct dentry, d_hash)); 1643 do_one_tree(dentry); 1644 } 1645 } 1646 1647 static enum d_walk_ret find_submount(void *_data, struct dentry *dentry) 1648 { 1649 struct dentry **victim = _data; 1650 if (d_mountpoint(dentry)) { 1651 __dget_dlock(dentry); 1652 *victim = dentry; 1653 return D_WALK_QUIT; 1654 } 1655 return D_WALK_CONTINUE; 1656 } 1657 1658 /** 1659 * d_invalidate - detach submounts, prune dcache, and drop 1660 * @dentry: dentry to invalidate (aka detach, prune and drop) 1661 */ 1662 void d_invalidate(struct dentry *dentry) 1663 { 1664 bool had_submounts = false; 1665 spin_lock(&dentry->d_lock); 1666 if (d_unhashed(dentry)) { 1667 spin_unlock(&dentry->d_lock); 1668 return; 1669 } 1670 __d_drop(dentry); 1671 spin_unlock(&dentry->d_lock); 1672 1673 /* Negative dentries can be dropped without further checks */ 1674 if (!dentry->d_inode) 1675 return; 1676 1677 shrink_dcache_parent(dentry); 1678 for (;;) { 1679 struct dentry *victim = NULL; 1680 d_walk(dentry, &victim, find_submount); 1681 if (!victim) { 1682 if (had_submounts) 1683 shrink_dcache_parent(dentry); 1684 return; 1685 } 1686 had_submounts = true; 1687 detach_mounts(victim); 1688 dput(victim); 1689 } 1690 } 1691 EXPORT_SYMBOL(d_invalidate); 1692 1693 /** 1694 * __d_alloc - allocate a dcache entry 1695 * @sb: filesystem it will belong to 1696 * @name: qstr of the name 1697 * 1698 * Allocates a dentry. It returns %NULL if there is insufficient memory 1699 * available. On a success the dentry is returned. The name passed in is 1700 * copied and the copy passed in may be reused after this call. 1701 */ 1702 1703 static struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name) 1704 { 1705 struct dentry *dentry; 1706 char *dname; 1707 int err; 1708 1709 dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL); 1710 if (!dentry) 1711 return NULL; 1712 1713 /* 1714 * We guarantee that the inline name is always NUL-terminated. 1715 * This way the memcpy() done by the name switching in rename 1716 * will still always have a NUL at the end, even if we might 1717 * be overwriting an internal NUL character 1718 */ 1719 dentry->d_iname[DNAME_INLINE_LEN-1] = 0; 1720 if (unlikely(!name)) { 1721 name = &slash_name; 1722 dname = dentry->d_iname; 1723 } else if (name->len > DNAME_INLINE_LEN-1) { 1724 size_t size = offsetof(struct external_name, name[1]); 1725 struct external_name *p = kmalloc(size + name->len, 1726 GFP_KERNEL_ACCOUNT | 1727 __GFP_RECLAIMABLE); 1728 if (!p) { 1729 kmem_cache_free(dentry_cache, dentry); 1730 return NULL; 1731 } 1732 atomic_set(&p->u.count, 1); 1733 dname = p->name; 1734 } else { 1735 dname = dentry->d_iname; 1736 } 1737 1738 dentry->d_name.len = name->len; 1739 dentry->d_name.hash = name->hash; 1740 memcpy(dname, name->name, name->len); 1741 dname[name->len] = 0; 1742 1743 /* Make sure we always see the terminating NUL character */ 1744 smp_store_release(&dentry->d_name.name, dname); /* ^^^ */ 1745 1746 dentry->d_lockref.count = 1; 1747 dentry->d_flags = 0; 1748 spin_lock_init(&dentry->d_lock); 1749 seqcount_init(&dentry->d_seq); 1750 dentry->d_inode = NULL; 1751 dentry->d_parent = dentry; 1752 dentry->d_sb = sb; 1753 dentry->d_op = NULL; 1754 dentry->d_fsdata = NULL; 1755 INIT_HLIST_BL_NODE(&dentry->d_hash); 1756 INIT_LIST_HEAD(&dentry->d_lru); 1757 INIT_LIST_HEAD(&dentry->d_subdirs); 1758 INIT_HLIST_NODE(&dentry->d_u.d_alias); 1759 INIT_LIST_HEAD(&dentry->d_child); 1760 d_set_d_op(dentry, dentry->d_sb->s_d_op); 1761 1762 if (dentry->d_op && dentry->d_op->d_init) { 1763 err = dentry->d_op->d_init(dentry); 1764 if (err) { 1765 if (dname_external(dentry)) 1766 kfree(external_name(dentry)); 1767 kmem_cache_free(dentry_cache, dentry); 1768 return NULL; 1769 } 1770 } 1771 1772 this_cpu_inc(nr_dentry); 1773 1774 return dentry; 1775 } 1776 1777 /** 1778 * d_alloc - allocate a dcache entry 1779 * @parent: parent of entry to allocate 1780 * @name: qstr of the name 1781 * 1782 * Allocates a dentry. It returns %NULL if there is insufficient memory 1783 * available. On a success the dentry is returned. The name passed in is 1784 * copied and the copy passed in may be reused after this call. 1785 */ 1786 struct dentry *d_alloc(struct dentry * parent, const struct qstr *name) 1787 { 1788 struct dentry *dentry = __d_alloc(parent->d_sb, name); 1789 if (!dentry) 1790 return NULL; 1791 spin_lock(&parent->d_lock); 1792 /* 1793 * don't need child lock because it is not subject 1794 * to concurrency here 1795 */ 1796 __dget_dlock(parent); 1797 dentry->d_parent = parent; 1798 list_add(&dentry->d_child, &parent->d_subdirs); 1799 spin_unlock(&parent->d_lock); 1800 1801 return dentry; 1802 } 1803 EXPORT_SYMBOL(d_alloc); 1804 1805 struct dentry *d_alloc_anon(struct super_block *sb) 1806 { 1807 return __d_alloc(sb, NULL); 1808 } 1809 EXPORT_SYMBOL(d_alloc_anon); 1810 1811 struct dentry *d_alloc_cursor(struct dentry * parent) 1812 { 1813 struct dentry *dentry = d_alloc_anon(parent->d_sb); 1814 if (dentry) { 1815 dentry->d_flags |= DCACHE_DENTRY_CURSOR; 1816 dentry->d_parent = dget(parent); 1817 } 1818 return dentry; 1819 } 1820 1821 /** 1822 * d_alloc_pseudo - allocate a dentry (for lookup-less filesystems) 1823 * @sb: the superblock 1824 * @name: qstr of the name 1825 * 1826 * For a filesystem that just pins its dentries in memory and never 1827 * performs lookups at all, return an unhashed IS_ROOT dentry. 1828 * This is used for pipes, sockets et.al. - the stuff that should 1829 * never be anyone's children or parents. Unlike all other 1830 * dentries, these will not have RCU delay between dropping the 1831 * last reference and freeing them. 1832 * 1833 * The only user is alloc_file_pseudo() and that's what should 1834 * be considered a public interface. Don't use directly. 1835 */ 1836 struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name) 1837 { 1838 struct dentry *dentry = __d_alloc(sb, name); 1839 if (likely(dentry)) 1840 dentry->d_flags |= DCACHE_NORCU; 1841 return dentry; 1842 } 1843 1844 struct dentry *d_alloc_name(struct dentry *parent, const char *name) 1845 { 1846 struct qstr q; 1847 1848 q.name = name; 1849 q.hash_len = hashlen_string(parent, name); 1850 return d_alloc(parent, &q); 1851 } 1852 EXPORT_SYMBOL(d_alloc_name); 1853 1854 void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op) 1855 { 1856 WARN_ON_ONCE(dentry->d_op); 1857 WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH | 1858 DCACHE_OP_COMPARE | 1859 DCACHE_OP_REVALIDATE | 1860 DCACHE_OP_WEAK_REVALIDATE | 1861 DCACHE_OP_DELETE | 1862 DCACHE_OP_REAL)); 1863 dentry->d_op = op; 1864 if (!op) 1865 return; 1866 if (op->d_hash) 1867 dentry->d_flags |= DCACHE_OP_HASH; 1868 if (op->d_compare) 1869 dentry->d_flags |= DCACHE_OP_COMPARE; 1870 if (op->d_revalidate) 1871 dentry->d_flags |= DCACHE_OP_REVALIDATE; 1872 if (op->d_weak_revalidate) 1873 dentry->d_flags |= DCACHE_OP_WEAK_REVALIDATE; 1874 if (op->d_delete) 1875 dentry->d_flags |= DCACHE_OP_DELETE; 1876 if (op->d_prune) 1877 dentry->d_flags |= DCACHE_OP_PRUNE; 1878 if (op->d_real) 1879 dentry->d_flags |= DCACHE_OP_REAL; 1880 1881 } 1882 EXPORT_SYMBOL(d_set_d_op); 1883 1884 1885 /* 1886 * d_set_fallthru - Mark a dentry as falling through to a lower layer 1887 * @dentry - The dentry to mark 1888 * 1889 * Mark a dentry as falling through to the lower layer (as set with 1890 * d_pin_lower()). This flag may be recorded on the medium. 1891 */ 1892 void d_set_fallthru(struct dentry *dentry) 1893 { 1894 spin_lock(&dentry->d_lock); 1895 dentry->d_flags |= DCACHE_FALLTHRU; 1896 spin_unlock(&dentry->d_lock); 1897 } 1898 EXPORT_SYMBOL(d_set_fallthru); 1899 1900 static unsigned d_flags_for_inode(struct inode *inode) 1901 { 1902 unsigned add_flags = DCACHE_REGULAR_TYPE; 1903 1904 if (!inode) 1905 return DCACHE_MISS_TYPE; 1906 1907 if (S_ISDIR(inode->i_mode)) { 1908 add_flags = DCACHE_DIRECTORY_TYPE; 1909 if (unlikely(!(inode->i_opflags & IOP_LOOKUP))) { 1910 if (unlikely(!inode->i_op->lookup)) 1911 add_flags = DCACHE_AUTODIR_TYPE; 1912 else 1913 inode->i_opflags |= IOP_LOOKUP; 1914 } 1915 goto type_determined; 1916 } 1917 1918 if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) { 1919 if (unlikely(inode->i_op->get_link)) { 1920 add_flags = DCACHE_SYMLINK_TYPE; 1921 goto type_determined; 1922 } 1923 inode->i_opflags |= IOP_NOFOLLOW; 1924 } 1925 1926 if (unlikely(!S_ISREG(inode->i_mode))) 1927 add_flags = DCACHE_SPECIAL_TYPE; 1928 1929 type_determined: 1930 if (unlikely(IS_AUTOMOUNT(inode))) 1931 add_flags |= DCACHE_NEED_AUTOMOUNT; 1932 return add_flags; 1933 } 1934 1935 static void __d_instantiate(struct dentry *dentry, struct inode *inode) 1936 { 1937 unsigned add_flags = d_flags_for_inode(inode); 1938 WARN_ON(d_in_lookup(dentry)); 1939 1940 spin_lock(&dentry->d_lock); 1941 /* 1942 * Decrement negative dentry count if it was in the LRU list. 1943 */ 1944 if (dentry->d_flags & DCACHE_LRU_LIST) 1945 this_cpu_dec(nr_dentry_negative); 1946 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry); 1947 raw_write_seqcount_begin(&dentry->d_seq); 1948 __d_set_inode_and_type(dentry, inode, add_flags); 1949 raw_write_seqcount_end(&dentry->d_seq); 1950 fsnotify_update_flags(dentry); 1951 spin_unlock(&dentry->d_lock); 1952 } 1953 1954 /** 1955 * d_instantiate - fill in inode information for a dentry 1956 * @entry: dentry to complete 1957 * @inode: inode to attach to this dentry 1958 * 1959 * Fill in inode information in the entry. 1960 * 1961 * This turns negative dentries into productive full members 1962 * of society. 1963 * 1964 * NOTE! This assumes that the inode count has been incremented 1965 * (or otherwise set) by the caller to indicate that it is now 1966 * in use by the dcache. 1967 */ 1968 1969 void d_instantiate(struct dentry *entry, struct inode * inode) 1970 { 1971 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias)); 1972 if (inode) { 1973 security_d_instantiate(entry, inode); 1974 spin_lock(&inode->i_lock); 1975 __d_instantiate(entry, inode); 1976 spin_unlock(&inode->i_lock); 1977 } 1978 } 1979 EXPORT_SYMBOL(d_instantiate); 1980 1981 /* 1982 * This should be equivalent to d_instantiate() + unlock_new_inode(), 1983 * with lockdep-related part of unlock_new_inode() done before 1984 * anything else. Use that instead of open-coding d_instantiate()/ 1985 * unlock_new_inode() combinations. 1986 */ 1987 void d_instantiate_new(struct dentry *entry, struct inode *inode) 1988 { 1989 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias)); 1990 BUG_ON(!inode); 1991 lockdep_annotate_inode_mutex_key(inode); 1992 security_d_instantiate(entry, inode); 1993 spin_lock(&inode->i_lock); 1994 __d_instantiate(entry, inode); 1995 WARN_ON(!(inode->i_state & I_NEW)); 1996 inode->i_state &= ~I_NEW & ~I_CREATING; 1997 smp_mb(); 1998 wake_up_bit(&inode->i_state, __I_NEW); 1999 spin_unlock(&inode->i_lock); 2000 } 2001 EXPORT_SYMBOL(d_instantiate_new); 2002 2003 struct dentry *d_make_root(struct inode *root_inode) 2004 { 2005 struct dentry *res = NULL; 2006 2007 if (root_inode) { 2008 res = d_alloc_anon(root_inode->i_sb); 2009 if (res) 2010 d_instantiate(res, root_inode); 2011 else 2012 iput(root_inode); 2013 } 2014 return res; 2015 } 2016 EXPORT_SYMBOL(d_make_root); 2017 2018 static struct dentry *__d_instantiate_anon(struct dentry *dentry, 2019 struct inode *inode, 2020 bool disconnected) 2021 { 2022 struct dentry *res; 2023 unsigned add_flags; 2024 2025 security_d_instantiate(dentry, inode); 2026 spin_lock(&inode->i_lock); 2027 res = __d_find_any_alias(inode); 2028 if (res) { 2029 spin_unlock(&inode->i_lock); 2030 dput(dentry); 2031 goto out_iput; 2032 } 2033 2034 /* attach a disconnected dentry */ 2035 add_flags = d_flags_for_inode(inode); 2036 2037 if (disconnected) 2038 add_flags |= DCACHE_DISCONNECTED; 2039 2040 spin_lock(&dentry->d_lock); 2041 __d_set_inode_and_type(dentry, inode, add_flags); 2042 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry); 2043 if (!disconnected) { 2044 hlist_bl_lock(&dentry->d_sb->s_roots); 2045 hlist_bl_add_head(&dentry->d_hash, &dentry->d_sb->s_roots); 2046 hlist_bl_unlock(&dentry->d_sb->s_roots); 2047 } 2048 spin_unlock(&dentry->d_lock); 2049 spin_unlock(&inode->i_lock); 2050 2051 return dentry; 2052 2053 out_iput: 2054 iput(inode); 2055 return res; 2056 } 2057 2058 struct dentry *d_instantiate_anon(struct dentry *dentry, struct inode *inode) 2059 { 2060 return __d_instantiate_anon(dentry, inode, true); 2061 } 2062 EXPORT_SYMBOL(d_instantiate_anon); 2063 2064 static struct dentry *__d_obtain_alias(struct inode *inode, bool disconnected) 2065 { 2066 struct dentry *tmp; 2067 struct dentry *res; 2068 2069 if (!inode) 2070 return ERR_PTR(-ESTALE); 2071 if (IS_ERR(inode)) 2072 return ERR_CAST(inode); 2073 2074 res = d_find_any_alias(inode); 2075 if (res) 2076 goto out_iput; 2077 2078 tmp = d_alloc_anon(inode->i_sb); 2079 if (!tmp) { 2080 res = ERR_PTR(-ENOMEM); 2081 goto out_iput; 2082 } 2083 2084 return __d_instantiate_anon(tmp, inode, disconnected); 2085 2086 out_iput: 2087 iput(inode); 2088 return res; 2089 } 2090 2091 /** 2092 * d_obtain_alias - find or allocate a DISCONNECTED dentry for a given inode 2093 * @inode: inode to allocate the dentry for 2094 * 2095 * Obtain a dentry for an inode resulting from NFS filehandle conversion or 2096 * similar open by handle operations. The returned dentry may be anonymous, 2097 * or may have a full name (if the inode was already in the cache). 2098 * 2099 * When called on a directory inode, we must ensure that the inode only ever 2100 * has one dentry. If a dentry is found, that is returned instead of 2101 * allocating a new one. 2102 * 2103 * On successful return, the reference to the inode has been transferred 2104 * to the dentry. In case of an error the reference on the inode is released. 2105 * To make it easier to use in export operations a %NULL or IS_ERR inode may 2106 * be passed in and the error will be propagated to the return value, 2107 * with a %NULL @inode replaced by ERR_PTR(-ESTALE). 2108 */ 2109 struct dentry *d_obtain_alias(struct inode *inode) 2110 { 2111 return __d_obtain_alias(inode, true); 2112 } 2113 EXPORT_SYMBOL(d_obtain_alias); 2114 2115 /** 2116 * d_obtain_root - find or allocate a dentry for a given inode 2117 * @inode: inode to allocate the dentry for 2118 * 2119 * Obtain an IS_ROOT dentry for the root of a filesystem. 2120 * 2121 * We must ensure that directory inodes only ever have one dentry. If a 2122 * dentry is found, that is returned instead of allocating a new one. 2123 * 2124 * On successful return, the reference to the inode has been transferred 2125 * to the dentry. In case of an error the reference on the inode is 2126 * released. A %NULL or IS_ERR inode may be passed in and will be the 2127 * error will be propagate to the return value, with a %NULL @inode 2128 * replaced by ERR_PTR(-ESTALE). 2129 */ 2130 struct dentry *d_obtain_root(struct inode *inode) 2131 { 2132 return __d_obtain_alias(inode, false); 2133 } 2134 EXPORT_SYMBOL(d_obtain_root); 2135 2136 /** 2137 * d_add_ci - lookup or allocate new dentry with case-exact name 2138 * @inode: the inode case-insensitive lookup has found 2139 * @dentry: the negative dentry that was passed to the parent's lookup func 2140 * @name: the case-exact name to be associated with the returned dentry 2141 * 2142 * This is to avoid filling the dcache with case-insensitive names to the 2143 * same inode, only the actual correct case is stored in the dcache for 2144 * case-insensitive filesystems. 2145 * 2146 * For a case-insensitive lookup match and if the the case-exact dentry 2147 * already exists in in the dcache, use it and return it. 2148 * 2149 * If no entry exists with the exact case name, allocate new dentry with 2150 * the exact case, and return the spliced entry. 2151 */ 2152 struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode, 2153 struct qstr *name) 2154 { 2155 struct dentry *found, *res; 2156 2157 /* 2158 * First check if a dentry matching the name already exists, 2159 * if not go ahead and create it now. 2160 */ 2161 found = d_hash_and_lookup(dentry->d_parent, name); 2162 if (found) { 2163 iput(inode); 2164 return found; 2165 } 2166 if (d_in_lookup(dentry)) { 2167 found = d_alloc_parallel(dentry->d_parent, name, 2168 dentry->d_wait); 2169 if (IS_ERR(found) || !d_in_lookup(found)) { 2170 iput(inode); 2171 return found; 2172 } 2173 } else { 2174 found = d_alloc(dentry->d_parent, name); 2175 if (!found) { 2176 iput(inode); 2177 return ERR_PTR(-ENOMEM); 2178 } 2179 } 2180 res = d_splice_alias(inode, found); 2181 if (res) { 2182 dput(found); 2183 return res; 2184 } 2185 return found; 2186 } 2187 EXPORT_SYMBOL(d_add_ci); 2188 2189 2190 static inline bool d_same_name(const struct dentry *dentry, 2191 const struct dentry *parent, 2192 const struct qstr *name) 2193 { 2194 if (likely(!(parent->d_flags & DCACHE_OP_COMPARE))) { 2195 if (dentry->d_name.len != name->len) 2196 return false; 2197 return dentry_cmp(dentry, name->name, name->len) == 0; 2198 } 2199 return parent->d_op->d_compare(dentry, 2200 dentry->d_name.len, dentry->d_name.name, 2201 name) == 0; 2202 } 2203 2204 /** 2205 * __d_lookup_rcu - search for a dentry (racy, store-free) 2206 * @parent: parent dentry 2207 * @name: qstr of name we wish to find 2208 * @seqp: returns d_seq value at the point where the dentry was found 2209 * Returns: dentry, or NULL 2210 * 2211 * __d_lookup_rcu is the dcache lookup function for rcu-walk name 2212 * resolution (store-free path walking) design described in 2213 * Documentation/filesystems/path-lookup.txt. 2214 * 2215 * This is not to be used outside core vfs. 2216 * 2217 * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock 2218 * held, and rcu_read_lock held. The returned dentry must not be stored into 2219 * without taking d_lock and checking d_seq sequence count against @seq 2220 * returned here. 2221 * 2222 * A refcount may be taken on the found dentry with the d_rcu_to_refcount 2223 * function. 2224 * 2225 * Alternatively, __d_lookup_rcu may be called again to look up the child of 2226 * the returned dentry, so long as its parent's seqlock is checked after the 2227 * child is looked up. Thus, an interlocking stepping of sequence lock checks 2228 * is formed, giving integrity down the path walk. 2229 * 2230 * NOTE! The caller *has* to check the resulting dentry against the sequence 2231 * number we've returned before using any of the resulting dentry state! 2232 */ 2233 struct dentry *__d_lookup_rcu(const struct dentry *parent, 2234 const struct qstr *name, 2235 unsigned *seqp) 2236 { 2237 u64 hashlen = name->hash_len; 2238 const unsigned char *str = name->name; 2239 struct hlist_bl_head *b = d_hash(hashlen_hash(hashlen)); 2240 struct hlist_bl_node *node; 2241 struct dentry *dentry; 2242 2243 /* 2244 * Note: There is significant duplication with __d_lookup_rcu which is 2245 * required to prevent single threaded performance regressions 2246 * especially on architectures where smp_rmb (in seqcounts) are costly. 2247 * Keep the two functions in sync. 2248 */ 2249 2250 /* 2251 * The hash list is protected using RCU. 2252 * 2253 * Carefully use d_seq when comparing a candidate dentry, to avoid 2254 * races with d_move(). 2255 * 2256 * It is possible that concurrent renames can mess up our list 2257 * walk here and result in missing our dentry, resulting in the 2258 * false-negative result. d_lookup() protects against concurrent 2259 * renames using rename_lock seqlock. 2260 * 2261 * See Documentation/filesystems/path-lookup.txt for more details. 2262 */ 2263 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) { 2264 unsigned seq; 2265 2266 seqretry: 2267 /* 2268 * The dentry sequence count protects us from concurrent 2269 * renames, and thus protects parent and name fields. 2270 * 2271 * The caller must perform a seqcount check in order 2272 * to do anything useful with the returned dentry. 2273 * 2274 * NOTE! We do a "raw" seqcount_begin here. That means that 2275 * we don't wait for the sequence count to stabilize if it 2276 * is in the middle of a sequence change. If we do the slow 2277 * dentry compare, we will do seqretries until it is stable, 2278 * and if we end up with a successful lookup, we actually 2279 * want to exit RCU lookup anyway. 2280 * 2281 * Note that raw_seqcount_begin still *does* smp_rmb(), so 2282 * we are still guaranteed NUL-termination of ->d_name.name. 2283 */ 2284 seq = raw_seqcount_begin(&dentry->d_seq); 2285 if (dentry->d_parent != parent) 2286 continue; 2287 if (d_unhashed(dentry)) 2288 continue; 2289 2290 if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) { 2291 int tlen; 2292 const char *tname; 2293 if (dentry->d_name.hash != hashlen_hash(hashlen)) 2294 continue; 2295 tlen = dentry->d_name.len; 2296 tname = dentry->d_name.name; 2297 /* we want a consistent (name,len) pair */ 2298 if (read_seqcount_retry(&dentry->d_seq, seq)) { 2299 cpu_relax(); 2300 goto seqretry; 2301 } 2302 if (parent->d_op->d_compare(dentry, 2303 tlen, tname, name) != 0) 2304 continue; 2305 } else { 2306 if (dentry->d_name.hash_len != hashlen) 2307 continue; 2308 if (dentry_cmp(dentry, str, hashlen_len(hashlen)) != 0) 2309 continue; 2310 } 2311 *seqp = seq; 2312 return dentry; 2313 } 2314 return NULL; 2315 } 2316 2317 /** 2318 * d_lookup - search for a dentry 2319 * @parent: parent dentry 2320 * @name: qstr of name we wish to find 2321 * Returns: dentry, or NULL 2322 * 2323 * d_lookup searches the children of the parent dentry for the name in 2324 * question. If the dentry is found its reference count is incremented and the 2325 * dentry is returned. The caller must use dput to free the entry when it has 2326 * finished using it. %NULL is returned if the dentry does not exist. 2327 */ 2328 struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name) 2329 { 2330 struct dentry *dentry; 2331 unsigned seq; 2332 2333 do { 2334 seq = read_seqbegin(&rename_lock); 2335 dentry = __d_lookup(parent, name); 2336 if (dentry) 2337 break; 2338 } while (read_seqretry(&rename_lock, seq)); 2339 return dentry; 2340 } 2341 EXPORT_SYMBOL(d_lookup); 2342 2343 /** 2344 * __d_lookup - search for a dentry (racy) 2345 * @parent: parent dentry 2346 * @name: qstr of name we wish to find 2347 * Returns: dentry, or NULL 2348 * 2349 * __d_lookup is like d_lookup, however it may (rarely) return a 2350 * false-negative result due to unrelated rename activity. 2351 * 2352 * __d_lookup is slightly faster by avoiding rename_lock read seqlock, 2353 * however it must be used carefully, eg. with a following d_lookup in 2354 * the case of failure. 2355 * 2356 * __d_lookup callers must be commented. 2357 */ 2358 struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name) 2359 { 2360 unsigned int hash = name->hash; 2361 struct hlist_bl_head *b = d_hash(hash); 2362 struct hlist_bl_node *node; 2363 struct dentry *found = NULL; 2364 struct dentry *dentry; 2365 2366 /* 2367 * Note: There is significant duplication with __d_lookup_rcu which is 2368 * required to prevent single threaded performance regressions 2369 * especially on architectures where smp_rmb (in seqcounts) are costly. 2370 * Keep the two functions in sync. 2371 */ 2372 2373 /* 2374 * The hash list is protected using RCU. 2375 * 2376 * Take d_lock when comparing a candidate dentry, to avoid races 2377 * with d_move(). 2378 * 2379 * It is possible that concurrent renames can mess up our list 2380 * walk here and result in missing our dentry, resulting in the 2381 * false-negative result. d_lookup() protects against concurrent 2382 * renames using rename_lock seqlock. 2383 * 2384 * See Documentation/filesystems/path-lookup.txt for more details. 2385 */ 2386 rcu_read_lock(); 2387 2388 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) { 2389 2390 if (dentry->d_name.hash != hash) 2391 continue; 2392 2393 spin_lock(&dentry->d_lock); 2394 if (dentry->d_parent != parent) 2395 goto next; 2396 if (d_unhashed(dentry)) 2397 goto next; 2398 2399 if (!d_same_name(dentry, parent, name)) 2400 goto next; 2401 2402 dentry->d_lockref.count++; 2403 found = dentry; 2404 spin_unlock(&dentry->d_lock); 2405 break; 2406 next: 2407 spin_unlock(&dentry->d_lock); 2408 } 2409 rcu_read_unlock(); 2410 2411 return found; 2412 } 2413 2414 /** 2415 * d_hash_and_lookup - hash the qstr then search for a dentry 2416 * @dir: Directory to search in 2417 * @name: qstr of name we wish to find 2418 * 2419 * On lookup failure NULL is returned; on bad name - ERR_PTR(-error) 2420 */ 2421 struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name) 2422 { 2423 /* 2424 * Check for a fs-specific hash function. Note that we must 2425 * calculate the standard hash first, as the d_op->d_hash() 2426 * routine may choose to leave the hash value unchanged. 2427 */ 2428 name->hash = full_name_hash(dir, name->name, name->len); 2429 if (dir->d_flags & DCACHE_OP_HASH) { 2430 int err = dir->d_op->d_hash(dir, name); 2431 if (unlikely(err < 0)) 2432 return ERR_PTR(err); 2433 } 2434 return d_lookup(dir, name); 2435 } 2436 EXPORT_SYMBOL(d_hash_and_lookup); 2437 2438 /* 2439 * When a file is deleted, we have two options: 2440 * - turn this dentry into a negative dentry 2441 * - unhash this dentry and free it. 2442 * 2443 * Usually, we want to just turn this into 2444 * a negative dentry, but if anybody else is 2445 * currently using the dentry or the inode 2446 * we can't do that and we fall back on removing 2447 * it from the hash queues and waiting for 2448 * it to be deleted later when it has no users 2449 */ 2450 2451 /** 2452 * d_delete - delete a dentry 2453 * @dentry: The dentry to delete 2454 * 2455 * Turn the dentry into a negative dentry if possible, otherwise 2456 * remove it from the hash queues so it can be deleted later 2457 */ 2458 2459 void d_delete(struct dentry * dentry) 2460 { 2461 struct inode *inode = dentry->d_inode; 2462 2463 spin_lock(&inode->i_lock); 2464 spin_lock(&dentry->d_lock); 2465 /* 2466 * Are we the only user? 2467 */ 2468 if (dentry->d_lockref.count == 1) { 2469 dentry->d_flags &= ~DCACHE_CANT_MOUNT; 2470 dentry_unlink_inode(dentry); 2471 } else { 2472 __d_drop(dentry); 2473 spin_unlock(&dentry->d_lock); 2474 spin_unlock(&inode->i_lock); 2475 } 2476 } 2477 EXPORT_SYMBOL(d_delete); 2478 2479 static void __d_rehash(struct dentry *entry) 2480 { 2481 struct hlist_bl_head *b = d_hash(entry->d_name.hash); 2482 2483 hlist_bl_lock(b); 2484 hlist_bl_add_head_rcu(&entry->d_hash, b); 2485 hlist_bl_unlock(b); 2486 } 2487 2488 /** 2489 * d_rehash - add an entry back to the hash 2490 * @entry: dentry to add to the hash 2491 * 2492 * Adds a dentry to the hash according to its name. 2493 */ 2494 2495 void d_rehash(struct dentry * entry) 2496 { 2497 spin_lock(&entry->d_lock); 2498 __d_rehash(entry); 2499 spin_unlock(&entry->d_lock); 2500 } 2501 EXPORT_SYMBOL(d_rehash); 2502 2503 static inline unsigned start_dir_add(struct inode *dir) 2504 { 2505 2506 for (;;) { 2507 unsigned n = dir->i_dir_seq; 2508 if (!(n & 1) && cmpxchg(&dir->i_dir_seq, n, n + 1) == n) 2509 return n; 2510 cpu_relax(); 2511 } 2512 } 2513 2514 static inline void end_dir_add(struct inode *dir, unsigned n) 2515 { 2516 smp_store_release(&dir->i_dir_seq, n + 2); 2517 } 2518 2519 static void d_wait_lookup(struct dentry *dentry) 2520 { 2521 if (d_in_lookup(dentry)) { 2522 DECLARE_WAITQUEUE(wait, current); 2523 add_wait_queue(dentry->d_wait, &wait); 2524 do { 2525 set_current_state(TASK_UNINTERRUPTIBLE); 2526 spin_unlock(&dentry->d_lock); 2527 schedule(); 2528 spin_lock(&dentry->d_lock); 2529 } while (d_in_lookup(dentry)); 2530 } 2531 } 2532 2533 struct dentry *d_alloc_parallel(struct dentry *parent, 2534 const struct qstr *name, 2535 wait_queue_head_t *wq) 2536 { 2537 unsigned int hash = name->hash; 2538 struct hlist_bl_head *b = in_lookup_hash(parent, hash); 2539 struct hlist_bl_node *node; 2540 struct dentry *new = d_alloc(parent, name); 2541 struct dentry *dentry; 2542 unsigned seq, r_seq, d_seq; 2543 2544 if (unlikely(!new)) 2545 return ERR_PTR(-ENOMEM); 2546 2547 retry: 2548 rcu_read_lock(); 2549 seq = smp_load_acquire(&parent->d_inode->i_dir_seq); 2550 r_seq = read_seqbegin(&rename_lock); 2551 dentry = __d_lookup_rcu(parent, name, &d_seq); 2552 if (unlikely(dentry)) { 2553 if (!lockref_get_not_dead(&dentry->d_lockref)) { 2554 rcu_read_unlock(); 2555 goto retry; 2556 } 2557 if (read_seqcount_retry(&dentry->d_seq, d_seq)) { 2558 rcu_read_unlock(); 2559 dput(dentry); 2560 goto retry; 2561 } 2562 rcu_read_unlock(); 2563 dput(new); 2564 return dentry; 2565 } 2566 if (unlikely(read_seqretry(&rename_lock, r_seq))) { 2567 rcu_read_unlock(); 2568 goto retry; 2569 } 2570 2571 if (unlikely(seq & 1)) { 2572 rcu_read_unlock(); 2573 goto retry; 2574 } 2575 2576 hlist_bl_lock(b); 2577 if (unlikely(READ_ONCE(parent->d_inode->i_dir_seq) != seq)) { 2578 hlist_bl_unlock(b); 2579 rcu_read_unlock(); 2580 goto retry; 2581 } 2582 /* 2583 * No changes for the parent since the beginning of d_lookup(). 2584 * Since all removals from the chain happen with hlist_bl_lock(), 2585 * any potential in-lookup matches are going to stay here until 2586 * we unlock the chain. All fields are stable in everything 2587 * we encounter. 2588 */ 2589 hlist_bl_for_each_entry(dentry, node, b, d_u.d_in_lookup_hash) { 2590 if (dentry->d_name.hash != hash) 2591 continue; 2592 if (dentry->d_parent != parent) 2593 continue; 2594 if (!d_same_name(dentry, parent, name)) 2595 continue; 2596 hlist_bl_unlock(b); 2597 /* now we can try to grab a reference */ 2598 if (!lockref_get_not_dead(&dentry->d_lockref)) { 2599 rcu_read_unlock(); 2600 goto retry; 2601 } 2602 2603 rcu_read_unlock(); 2604 /* 2605 * somebody is likely to be still doing lookup for it; 2606 * wait for them to finish 2607 */ 2608 spin_lock(&dentry->d_lock); 2609 d_wait_lookup(dentry); 2610 /* 2611 * it's not in-lookup anymore; in principle we should repeat 2612 * everything from dcache lookup, but it's likely to be what 2613 * d_lookup() would've found anyway. If it is, just return it; 2614 * otherwise we really have to repeat the whole thing. 2615 */ 2616 if (unlikely(dentry->d_name.hash != hash)) 2617 goto mismatch; 2618 if (unlikely(dentry->d_parent != parent)) 2619 goto mismatch; 2620 if (unlikely(d_unhashed(dentry))) 2621 goto mismatch; 2622 if (unlikely(!d_same_name(dentry, parent, name))) 2623 goto mismatch; 2624 /* OK, it *is* a hashed match; return it */ 2625 spin_unlock(&dentry->d_lock); 2626 dput(new); 2627 return dentry; 2628 } 2629 rcu_read_unlock(); 2630 /* we can't take ->d_lock here; it's OK, though. */ 2631 new->d_flags |= DCACHE_PAR_LOOKUP; 2632 new->d_wait = wq; 2633 hlist_bl_add_head_rcu(&new->d_u.d_in_lookup_hash, b); 2634 hlist_bl_unlock(b); 2635 return new; 2636 mismatch: 2637 spin_unlock(&dentry->d_lock); 2638 dput(dentry); 2639 goto retry; 2640 } 2641 EXPORT_SYMBOL(d_alloc_parallel); 2642 2643 void __d_lookup_done(struct dentry *dentry) 2644 { 2645 struct hlist_bl_head *b = in_lookup_hash(dentry->d_parent, 2646 dentry->d_name.hash); 2647 hlist_bl_lock(b); 2648 dentry->d_flags &= ~DCACHE_PAR_LOOKUP; 2649 __hlist_bl_del(&dentry->d_u.d_in_lookup_hash); 2650 wake_up_all(dentry->d_wait); 2651 dentry->d_wait = NULL; 2652 hlist_bl_unlock(b); 2653 INIT_HLIST_NODE(&dentry->d_u.d_alias); 2654 INIT_LIST_HEAD(&dentry->d_lru); 2655 } 2656 EXPORT_SYMBOL(__d_lookup_done); 2657 2658 /* inode->i_lock held if inode is non-NULL */ 2659 2660 static inline void __d_add(struct dentry *dentry, struct inode *inode) 2661 { 2662 struct inode *dir = NULL; 2663 unsigned n; 2664 spin_lock(&dentry->d_lock); 2665 if (unlikely(d_in_lookup(dentry))) { 2666 dir = dentry->d_parent->d_inode; 2667 n = start_dir_add(dir); 2668 __d_lookup_done(dentry); 2669 } 2670 if (inode) { 2671 unsigned add_flags = d_flags_for_inode(inode); 2672 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry); 2673 raw_write_seqcount_begin(&dentry->d_seq); 2674 __d_set_inode_and_type(dentry, inode, add_flags); 2675 raw_write_seqcount_end(&dentry->d_seq); 2676 fsnotify_update_flags(dentry); 2677 } 2678 __d_rehash(dentry); 2679 if (dir) 2680 end_dir_add(dir, n); 2681 spin_unlock(&dentry->d_lock); 2682 if (inode) 2683 spin_unlock(&inode->i_lock); 2684 } 2685 2686 /** 2687 * d_add - add dentry to hash queues 2688 * @entry: dentry to add 2689 * @inode: The inode to attach to this dentry 2690 * 2691 * This adds the entry to the hash queues and initializes @inode. 2692 * The entry was actually filled in earlier during d_alloc(). 2693 */ 2694 2695 void d_add(struct dentry *entry, struct inode *inode) 2696 { 2697 if (inode) { 2698 security_d_instantiate(entry, inode); 2699 spin_lock(&inode->i_lock); 2700 } 2701 __d_add(entry, inode); 2702 } 2703 EXPORT_SYMBOL(d_add); 2704 2705 /** 2706 * d_exact_alias - find and hash an exact unhashed alias 2707 * @entry: dentry to add 2708 * @inode: The inode to go with this dentry 2709 * 2710 * If an unhashed dentry with the same name/parent and desired 2711 * inode already exists, hash and return it. Otherwise, return 2712 * NULL. 2713 * 2714 * Parent directory should be locked. 2715 */ 2716 struct dentry *d_exact_alias(struct dentry *entry, struct inode *inode) 2717 { 2718 struct dentry *alias; 2719 unsigned int hash = entry->d_name.hash; 2720 2721 spin_lock(&inode->i_lock); 2722 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) { 2723 /* 2724 * Don't need alias->d_lock here, because aliases with 2725 * d_parent == entry->d_parent are not subject to name or 2726 * parent changes, because the parent inode i_mutex is held. 2727 */ 2728 if (alias->d_name.hash != hash) 2729 continue; 2730 if (alias->d_parent != entry->d_parent) 2731 continue; 2732 if (!d_same_name(alias, entry->d_parent, &entry->d_name)) 2733 continue; 2734 spin_lock(&alias->d_lock); 2735 if (!d_unhashed(alias)) { 2736 spin_unlock(&alias->d_lock); 2737 alias = NULL; 2738 } else { 2739 __dget_dlock(alias); 2740 __d_rehash(alias); 2741 spin_unlock(&alias->d_lock); 2742 } 2743 spin_unlock(&inode->i_lock); 2744 return alias; 2745 } 2746 spin_unlock(&inode->i_lock); 2747 return NULL; 2748 } 2749 EXPORT_SYMBOL(d_exact_alias); 2750 2751 static void swap_names(struct dentry *dentry, struct dentry *target) 2752 { 2753 if (unlikely(dname_external(target))) { 2754 if (unlikely(dname_external(dentry))) { 2755 /* 2756 * Both external: swap the pointers 2757 */ 2758 swap(target->d_name.name, dentry->d_name.name); 2759 } else { 2760 /* 2761 * dentry:internal, target:external. Steal target's 2762 * storage and make target internal. 2763 */ 2764 memcpy(target->d_iname, dentry->d_name.name, 2765 dentry->d_name.len + 1); 2766 dentry->d_name.name = target->d_name.name; 2767 target->d_name.name = target->d_iname; 2768 } 2769 } else { 2770 if (unlikely(dname_external(dentry))) { 2771 /* 2772 * dentry:external, target:internal. Give dentry's 2773 * storage to target and make dentry internal 2774 */ 2775 memcpy(dentry->d_iname, target->d_name.name, 2776 target->d_name.len + 1); 2777 target->d_name.name = dentry->d_name.name; 2778 dentry->d_name.name = dentry->d_iname; 2779 } else { 2780 /* 2781 * Both are internal. 2782 */ 2783 unsigned int i; 2784 BUILD_BUG_ON(!IS_ALIGNED(DNAME_INLINE_LEN, sizeof(long))); 2785 for (i = 0; i < DNAME_INLINE_LEN / sizeof(long); i++) { 2786 swap(((long *) &dentry->d_iname)[i], 2787 ((long *) &target->d_iname)[i]); 2788 } 2789 } 2790 } 2791 swap(dentry->d_name.hash_len, target->d_name.hash_len); 2792 } 2793 2794 static void copy_name(struct dentry *dentry, struct dentry *target) 2795 { 2796 struct external_name *old_name = NULL; 2797 if (unlikely(dname_external(dentry))) 2798 old_name = external_name(dentry); 2799 if (unlikely(dname_external(target))) { 2800 atomic_inc(&external_name(target)->u.count); 2801 dentry->d_name = target->d_name; 2802 } else { 2803 memcpy(dentry->d_iname, target->d_name.name, 2804 target->d_name.len + 1); 2805 dentry->d_name.name = dentry->d_iname; 2806 dentry->d_name.hash_len = target->d_name.hash_len; 2807 } 2808 if (old_name && likely(atomic_dec_and_test(&old_name->u.count))) 2809 kfree_rcu(old_name, u.head); 2810 } 2811 2812 /* 2813 * __d_move - move a dentry 2814 * @dentry: entry to move 2815 * @target: new dentry 2816 * @exchange: exchange the two dentries 2817 * 2818 * Update the dcache to reflect the move of a file name. Negative 2819 * dcache entries should not be moved in this way. Caller must hold 2820 * rename_lock, the i_mutex of the source and target directories, 2821 * and the sb->s_vfs_rename_mutex if they differ. See lock_rename(). 2822 */ 2823 static void __d_move(struct dentry *dentry, struct dentry *target, 2824 bool exchange) 2825 { 2826 struct dentry *old_parent, *p; 2827 struct inode *dir = NULL; 2828 unsigned n; 2829 2830 WARN_ON(!dentry->d_inode); 2831 if (WARN_ON(dentry == target)) 2832 return; 2833 2834 BUG_ON(d_ancestor(target, dentry)); 2835 old_parent = dentry->d_parent; 2836 p = d_ancestor(old_parent, target); 2837 if (IS_ROOT(dentry)) { 2838 BUG_ON(p); 2839 spin_lock(&target->d_parent->d_lock); 2840 } else if (!p) { 2841 /* target is not a descendent of dentry->d_parent */ 2842 spin_lock(&target->d_parent->d_lock); 2843 spin_lock_nested(&old_parent->d_lock, DENTRY_D_LOCK_NESTED); 2844 } else { 2845 BUG_ON(p == dentry); 2846 spin_lock(&old_parent->d_lock); 2847 if (p != target) 2848 spin_lock_nested(&target->d_parent->d_lock, 2849 DENTRY_D_LOCK_NESTED); 2850 } 2851 spin_lock_nested(&dentry->d_lock, 2); 2852 spin_lock_nested(&target->d_lock, 3); 2853 2854 if (unlikely(d_in_lookup(target))) { 2855 dir = target->d_parent->d_inode; 2856 n = start_dir_add(dir); 2857 __d_lookup_done(target); 2858 } 2859 2860 write_seqcount_begin(&dentry->d_seq); 2861 write_seqcount_begin_nested(&target->d_seq, DENTRY_D_LOCK_NESTED); 2862 2863 /* unhash both */ 2864 if (!d_unhashed(dentry)) 2865 ___d_drop(dentry); 2866 if (!d_unhashed(target)) 2867 ___d_drop(target); 2868 2869 /* ... and switch them in the tree */ 2870 dentry->d_parent = target->d_parent; 2871 if (!exchange) { 2872 copy_name(dentry, target); 2873 target->d_hash.pprev = NULL; 2874 dentry->d_parent->d_lockref.count++; 2875 if (dentry != old_parent) /* wasn't IS_ROOT */ 2876 WARN_ON(!--old_parent->d_lockref.count); 2877 } else { 2878 target->d_parent = old_parent; 2879 swap_names(dentry, target); 2880 list_move(&target->d_child, &target->d_parent->d_subdirs); 2881 __d_rehash(target); 2882 fsnotify_update_flags(target); 2883 } 2884 list_move(&dentry->d_child, &dentry->d_parent->d_subdirs); 2885 __d_rehash(dentry); 2886 fsnotify_update_flags(dentry); 2887 fscrypt_handle_d_move(dentry); 2888 2889 write_seqcount_end(&target->d_seq); 2890 write_seqcount_end(&dentry->d_seq); 2891 2892 if (dir) 2893 end_dir_add(dir, n); 2894 2895 if (dentry->d_parent != old_parent) 2896 spin_unlock(&dentry->d_parent->d_lock); 2897 if (dentry != old_parent) 2898 spin_unlock(&old_parent->d_lock); 2899 spin_unlock(&target->d_lock); 2900 spin_unlock(&dentry->d_lock); 2901 } 2902 2903 /* 2904 * d_move - move a dentry 2905 * @dentry: entry to move 2906 * @target: new dentry 2907 * 2908 * Update the dcache to reflect the move of a file name. Negative 2909 * dcache entries should not be moved in this way. See the locking 2910 * requirements for __d_move. 2911 */ 2912 void d_move(struct dentry *dentry, struct dentry *target) 2913 { 2914 write_seqlock(&rename_lock); 2915 __d_move(dentry, target, false); 2916 write_sequnlock(&rename_lock); 2917 } 2918 EXPORT_SYMBOL(d_move); 2919 2920 /* 2921 * d_exchange - exchange two dentries 2922 * @dentry1: first dentry 2923 * @dentry2: second dentry 2924 */ 2925 void d_exchange(struct dentry *dentry1, struct dentry *dentry2) 2926 { 2927 write_seqlock(&rename_lock); 2928 2929 WARN_ON(!dentry1->d_inode); 2930 WARN_ON(!dentry2->d_inode); 2931 WARN_ON(IS_ROOT(dentry1)); 2932 WARN_ON(IS_ROOT(dentry2)); 2933 2934 __d_move(dentry1, dentry2, true); 2935 2936 write_sequnlock(&rename_lock); 2937 } 2938 2939 /** 2940 * d_ancestor - search for an ancestor 2941 * @p1: ancestor dentry 2942 * @p2: child dentry 2943 * 2944 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is 2945 * an ancestor of p2, else NULL. 2946 */ 2947 struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2) 2948 { 2949 struct dentry *p; 2950 2951 for (p = p2; !IS_ROOT(p); p = p->d_parent) { 2952 if (p->d_parent == p1) 2953 return p; 2954 } 2955 return NULL; 2956 } 2957 2958 /* 2959 * This helper attempts to cope with remotely renamed directories 2960 * 2961 * It assumes that the caller is already holding 2962 * dentry->d_parent->d_inode->i_mutex, and rename_lock 2963 * 2964 * Note: If ever the locking in lock_rename() changes, then please 2965 * remember to update this too... 2966 */ 2967 static int __d_unalias(struct inode *inode, 2968 struct dentry *dentry, struct dentry *alias) 2969 { 2970 struct mutex *m1 = NULL; 2971 struct rw_semaphore *m2 = NULL; 2972 int ret = -ESTALE; 2973 2974 /* If alias and dentry share a parent, then no extra locks required */ 2975 if (alias->d_parent == dentry->d_parent) 2976 goto out_unalias; 2977 2978 /* See lock_rename() */ 2979 if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex)) 2980 goto out_err; 2981 m1 = &dentry->d_sb->s_vfs_rename_mutex; 2982 if (!inode_trylock_shared(alias->d_parent->d_inode)) 2983 goto out_err; 2984 m2 = &alias->d_parent->d_inode->i_rwsem; 2985 out_unalias: 2986 __d_move(alias, dentry, false); 2987 ret = 0; 2988 out_err: 2989 if (m2) 2990 up_read(m2); 2991 if (m1) 2992 mutex_unlock(m1); 2993 return ret; 2994 } 2995 2996 /** 2997 * d_splice_alias - splice a disconnected dentry into the tree if one exists 2998 * @inode: the inode which may have a disconnected dentry 2999 * @dentry: a negative dentry which we want to point to the inode. 3000 * 3001 * If inode is a directory and has an IS_ROOT alias, then d_move that in 3002 * place of the given dentry and return it, else simply d_add the inode 3003 * to the dentry and return NULL. 3004 * 3005 * If a non-IS_ROOT directory is found, the filesystem is corrupt, and 3006 * we should error out: directories can't have multiple aliases. 3007 * 3008 * This is needed in the lookup routine of any filesystem that is exportable 3009 * (via knfsd) so that we can build dcache paths to directories effectively. 3010 * 3011 * If a dentry was found and moved, then it is returned. Otherwise NULL 3012 * is returned. This matches the expected return value of ->lookup. 3013 * 3014 * Cluster filesystems may call this function with a negative, hashed dentry. 3015 * In that case, we know that the inode will be a regular file, and also this 3016 * will only occur during atomic_open. So we need to check for the dentry 3017 * being already hashed only in the final case. 3018 */ 3019 struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry) 3020 { 3021 if (IS_ERR(inode)) 3022 return ERR_CAST(inode); 3023 3024 BUG_ON(!d_unhashed(dentry)); 3025 3026 if (!inode) 3027 goto out; 3028 3029 security_d_instantiate(dentry, inode); 3030 spin_lock(&inode->i_lock); 3031 if (S_ISDIR(inode->i_mode)) { 3032 struct dentry *new = __d_find_any_alias(inode); 3033 if (unlikely(new)) { 3034 /* The reference to new ensures it remains an alias */ 3035 spin_unlock(&inode->i_lock); 3036 write_seqlock(&rename_lock); 3037 if (unlikely(d_ancestor(new, dentry))) { 3038 write_sequnlock(&rename_lock); 3039 dput(new); 3040 new = ERR_PTR(-ELOOP); 3041 pr_warn_ratelimited( 3042 "VFS: Lookup of '%s' in %s %s" 3043 " would have caused loop\n", 3044 dentry->d_name.name, 3045 inode->i_sb->s_type->name, 3046 inode->i_sb->s_id); 3047 } else if (!IS_ROOT(new)) { 3048 struct dentry *old_parent = dget(new->d_parent); 3049 int err = __d_unalias(inode, dentry, new); 3050 write_sequnlock(&rename_lock); 3051 if (err) { 3052 dput(new); 3053 new = ERR_PTR(err); 3054 } 3055 dput(old_parent); 3056 } else { 3057 __d_move(new, dentry, false); 3058 write_sequnlock(&rename_lock); 3059 } 3060 iput(inode); 3061 return new; 3062 } 3063 } 3064 out: 3065 __d_add(dentry, inode); 3066 return NULL; 3067 } 3068 EXPORT_SYMBOL(d_splice_alias); 3069 3070 /* 3071 * Test whether new_dentry is a subdirectory of old_dentry. 3072 * 3073 * Trivially implemented using the dcache structure 3074 */ 3075 3076 /** 3077 * is_subdir - is new dentry a subdirectory of old_dentry 3078 * @new_dentry: new dentry 3079 * @old_dentry: old dentry 3080 * 3081 * Returns true if new_dentry is a subdirectory of the parent (at any depth). 3082 * Returns false otherwise. 3083 * Caller must ensure that "new_dentry" is pinned before calling is_subdir() 3084 */ 3085 3086 bool is_subdir(struct dentry *new_dentry, struct dentry *old_dentry) 3087 { 3088 bool result; 3089 unsigned seq; 3090 3091 if (new_dentry == old_dentry) 3092 return true; 3093 3094 do { 3095 /* for restarting inner loop in case of seq retry */ 3096 seq = read_seqbegin(&rename_lock); 3097 /* 3098 * Need rcu_readlock to protect against the d_parent trashing 3099 * due to d_move 3100 */ 3101 rcu_read_lock(); 3102 if (d_ancestor(old_dentry, new_dentry)) 3103 result = true; 3104 else 3105 result = false; 3106 rcu_read_unlock(); 3107 } while (read_seqretry(&rename_lock, seq)); 3108 3109 return result; 3110 } 3111 EXPORT_SYMBOL(is_subdir); 3112 3113 static enum d_walk_ret d_genocide_kill(void *data, struct dentry *dentry) 3114 { 3115 struct dentry *root = data; 3116 if (dentry != root) { 3117 if (d_unhashed(dentry) || !dentry->d_inode) 3118 return D_WALK_SKIP; 3119 3120 if (!(dentry->d_flags & DCACHE_GENOCIDE)) { 3121 dentry->d_flags |= DCACHE_GENOCIDE; 3122 dentry->d_lockref.count--; 3123 } 3124 } 3125 return D_WALK_CONTINUE; 3126 } 3127 3128 void d_genocide(struct dentry *parent) 3129 { 3130 d_walk(parent, parent, d_genocide_kill); 3131 } 3132 3133 EXPORT_SYMBOL(d_genocide); 3134 3135 void d_tmpfile(struct dentry *dentry, struct inode *inode) 3136 { 3137 inode_dec_link_count(inode); 3138 BUG_ON(dentry->d_name.name != dentry->d_iname || 3139 !hlist_unhashed(&dentry->d_u.d_alias) || 3140 !d_unlinked(dentry)); 3141 spin_lock(&dentry->d_parent->d_lock); 3142 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED); 3143 dentry->d_name.len = sprintf(dentry->d_iname, "#%llu", 3144 (unsigned long long)inode->i_ino); 3145 spin_unlock(&dentry->d_lock); 3146 spin_unlock(&dentry->d_parent->d_lock); 3147 d_instantiate(dentry, inode); 3148 } 3149 EXPORT_SYMBOL(d_tmpfile); 3150 3151 static __initdata unsigned long dhash_entries; 3152 static int __init set_dhash_entries(char *str) 3153 { 3154 if (!str) 3155 return 0; 3156 dhash_entries = simple_strtoul(str, &str, 0); 3157 return 1; 3158 } 3159 __setup("dhash_entries=", set_dhash_entries); 3160 3161 static void __init dcache_init_early(void) 3162 { 3163 /* If hashes are distributed across NUMA nodes, defer 3164 * hash allocation until vmalloc space is available. 3165 */ 3166 if (hashdist) 3167 return; 3168 3169 dentry_hashtable = 3170 alloc_large_system_hash("Dentry cache", 3171 sizeof(struct hlist_bl_head), 3172 dhash_entries, 3173 13, 3174 HASH_EARLY | HASH_ZERO, 3175 &d_hash_shift, 3176 NULL, 3177 0, 3178 0); 3179 d_hash_shift = 32 - d_hash_shift; 3180 } 3181 3182 static void __init dcache_init(void) 3183 { 3184 /* 3185 * A constructor could be added for stable state like the lists, 3186 * but it is probably not worth it because of the cache nature 3187 * of the dcache. 3188 */ 3189 dentry_cache = KMEM_CACHE_USERCOPY(dentry, 3190 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD|SLAB_ACCOUNT, 3191 d_iname); 3192 3193 /* Hash may have been set up in dcache_init_early */ 3194 if (!hashdist) 3195 return; 3196 3197 dentry_hashtable = 3198 alloc_large_system_hash("Dentry cache", 3199 sizeof(struct hlist_bl_head), 3200 dhash_entries, 3201 13, 3202 HASH_ZERO, 3203 &d_hash_shift, 3204 NULL, 3205 0, 3206 0); 3207 d_hash_shift = 32 - d_hash_shift; 3208 } 3209 3210 /* SLAB cache for __getname() consumers */ 3211 struct kmem_cache *names_cachep __read_mostly; 3212 EXPORT_SYMBOL(names_cachep); 3213 3214 void __init vfs_caches_init_early(void) 3215 { 3216 int i; 3217 3218 for (i = 0; i < ARRAY_SIZE(in_lookup_hashtable); i++) 3219 INIT_HLIST_BL_HEAD(&in_lookup_hashtable[i]); 3220 3221 dcache_init_early(); 3222 inode_init_early(); 3223 } 3224 3225 void __init vfs_caches_init(void) 3226 { 3227 names_cachep = kmem_cache_create_usercopy("names_cache", PATH_MAX, 0, 3228 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 0, PATH_MAX, NULL); 3229 3230 dcache_init(); 3231 inode_init(); 3232 files_init(); 3233 files_maxfiles_init(); 3234 mnt_init(); 3235 bdev_cache_init(); 3236 chrdev_init(); 3237 } 3238