xref: /openbmc/linux/fs/dcache.c (revision 8fa5723aa7e053d498336b48448b292fc2e0458b)
1 /*
2  * fs/dcache.c
3  *
4  * Complete reimplementation
5  * (C) 1997 Thomas Schoebel-Theuer,
6  * with heavy changes by Linus Torvalds
7  */
8 
9 /*
10  * Notes on the allocation strategy:
11  *
12  * The dcache is a master of the icache - whenever a dcache entry
13  * exists, the inode will always exist. "iput()" is done either when
14  * the dcache entry is deleted or garbage collected.
15  */
16 
17 #include <linux/syscalls.h>
18 #include <linux/string.h>
19 #include <linux/mm.h>
20 #include <linux/fdtable.h>
21 #include <linux/fs.h>
22 #include <linux/fsnotify.h>
23 #include <linux/slab.h>
24 #include <linux/init.h>
25 #include <linux/hash.h>
26 #include <linux/cache.h>
27 #include <linux/module.h>
28 #include <linux/mount.h>
29 #include <linux/file.h>
30 #include <asm/uaccess.h>
31 #include <linux/security.h>
32 #include <linux/seqlock.h>
33 #include <linux/swap.h>
34 #include <linux/bootmem.h>
35 #include "internal.h"
36 
37 
38 int sysctl_vfs_cache_pressure __read_mostly = 100;
39 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
40 
41  __cacheline_aligned_in_smp DEFINE_SPINLOCK(dcache_lock);
42 __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
43 
44 EXPORT_SYMBOL(dcache_lock);
45 
46 static struct kmem_cache *dentry_cache __read_mostly;
47 
48 #define DNAME_INLINE_LEN (sizeof(struct dentry)-offsetof(struct dentry,d_iname))
49 
50 /*
51  * This is the single most critical data structure when it comes
52  * to the dcache: the hashtable for lookups. Somebody should try
53  * to make this good - I've just made it work.
54  *
55  * This hash-function tries to avoid losing too many bits of hash
56  * information, yet avoid using a prime hash-size or similar.
57  */
58 #define D_HASHBITS     d_hash_shift
59 #define D_HASHMASK     d_hash_mask
60 
61 static unsigned int d_hash_mask __read_mostly;
62 static unsigned int d_hash_shift __read_mostly;
63 static struct hlist_head *dentry_hashtable __read_mostly;
64 
65 /* Statistics gathering. */
66 struct dentry_stat_t dentry_stat = {
67 	.age_limit = 45,
68 };
69 
70 static void __d_free(struct dentry *dentry)
71 {
72 	WARN_ON(!list_empty(&dentry->d_alias));
73 	if (dname_external(dentry))
74 		kfree(dentry->d_name.name);
75 	kmem_cache_free(dentry_cache, dentry);
76 }
77 
78 static void d_callback(struct rcu_head *head)
79 {
80 	struct dentry * dentry = container_of(head, struct dentry, d_u.d_rcu);
81 	__d_free(dentry);
82 }
83 
84 /*
85  * no dcache_lock, please.  The caller must decrement dentry_stat.nr_dentry
86  * inside dcache_lock.
87  */
88 static void d_free(struct dentry *dentry)
89 {
90 	if (dentry->d_op && dentry->d_op->d_release)
91 		dentry->d_op->d_release(dentry);
92 	/* if dentry was never inserted into hash, immediate free is OK */
93 	if (hlist_unhashed(&dentry->d_hash))
94 		__d_free(dentry);
95 	else
96 		call_rcu(&dentry->d_u.d_rcu, d_callback);
97 }
98 
99 /*
100  * Release the dentry's inode, using the filesystem
101  * d_iput() operation if defined.
102  */
103 static void dentry_iput(struct dentry * dentry)
104 	__releases(dentry->d_lock)
105 	__releases(dcache_lock)
106 {
107 	struct inode *inode = dentry->d_inode;
108 	if (inode) {
109 		dentry->d_inode = NULL;
110 		list_del_init(&dentry->d_alias);
111 		spin_unlock(&dentry->d_lock);
112 		spin_unlock(&dcache_lock);
113 		if (!inode->i_nlink)
114 			fsnotify_inoderemove(inode);
115 		if (dentry->d_op && dentry->d_op->d_iput)
116 			dentry->d_op->d_iput(dentry, inode);
117 		else
118 			iput(inode);
119 	} else {
120 		spin_unlock(&dentry->d_lock);
121 		spin_unlock(&dcache_lock);
122 	}
123 }
124 
125 /*
126  * dentry_lru_(add|add_tail|del|del_init) must be called with dcache_lock held.
127  */
128 static void dentry_lru_add(struct dentry *dentry)
129 {
130 	list_add(&dentry->d_lru, &dentry->d_sb->s_dentry_lru);
131 	dentry->d_sb->s_nr_dentry_unused++;
132 	dentry_stat.nr_unused++;
133 }
134 
135 static void dentry_lru_add_tail(struct dentry *dentry)
136 {
137 	list_add_tail(&dentry->d_lru, &dentry->d_sb->s_dentry_lru);
138 	dentry->d_sb->s_nr_dentry_unused++;
139 	dentry_stat.nr_unused++;
140 }
141 
142 static void dentry_lru_del(struct dentry *dentry)
143 {
144 	if (!list_empty(&dentry->d_lru)) {
145 		list_del(&dentry->d_lru);
146 		dentry->d_sb->s_nr_dentry_unused--;
147 		dentry_stat.nr_unused--;
148 	}
149 }
150 
151 static void dentry_lru_del_init(struct dentry *dentry)
152 {
153 	if (likely(!list_empty(&dentry->d_lru))) {
154 		list_del_init(&dentry->d_lru);
155 		dentry->d_sb->s_nr_dentry_unused--;
156 		dentry_stat.nr_unused--;
157 	}
158 }
159 
160 /**
161  * d_kill - kill dentry and return parent
162  * @dentry: dentry to kill
163  *
164  * The dentry must already be unhashed and removed from the LRU.
165  *
166  * If this is the root of the dentry tree, return NULL.
167  */
168 static struct dentry *d_kill(struct dentry *dentry)
169 	__releases(dentry->d_lock)
170 	__releases(dcache_lock)
171 {
172 	struct dentry *parent;
173 
174 	list_del(&dentry->d_u.d_child);
175 	dentry_stat.nr_dentry--;	/* For d_free, below */
176 	/*drops the locks, at that point nobody can reach this dentry */
177 	dentry_iput(dentry);
178 	if (IS_ROOT(dentry))
179 		parent = NULL;
180 	else
181 		parent = dentry->d_parent;
182 	d_free(dentry);
183 	return parent;
184 }
185 
186 /*
187  * This is dput
188  *
189  * This is complicated by the fact that we do not want to put
190  * dentries that are no longer on any hash chain on the unused
191  * list: we'd much rather just get rid of them immediately.
192  *
193  * However, that implies that we have to traverse the dentry
194  * tree upwards to the parents which might _also_ now be
195  * scheduled for deletion (it may have been only waiting for
196  * its last child to go away).
197  *
198  * This tail recursion is done by hand as we don't want to depend
199  * on the compiler to always get this right (gcc generally doesn't).
200  * Real recursion would eat up our stack space.
201  */
202 
203 /*
204  * dput - release a dentry
205  * @dentry: dentry to release
206  *
207  * Release a dentry. This will drop the usage count and if appropriate
208  * call the dentry unlink method as well as removing it from the queues and
209  * releasing its resources. If the parent dentries were scheduled for release
210  * they too may now get deleted.
211  *
212  * no dcache lock, please.
213  */
214 
215 void dput(struct dentry *dentry)
216 {
217 	if (!dentry)
218 		return;
219 
220 repeat:
221 	if (atomic_read(&dentry->d_count) == 1)
222 		might_sleep();
223 	if (!atomic_dec_and_lock(&dentry->d_count, &dcache_lock))
224 		return;
225 
226 	spin_lock(&dentry->d_lock);
227 	if (atomic_read(&dentry->d_count)) {
228 		spin_unlock(&dentry->d_lock);
229 		spin_unlock(&dcache_lock);
230 		return;
231 	}
232 
233 	/*
234 	 * AV: ->d_delete() is _NOT_ allowed to block now.
235 	 */
236 	if (dentry->d_op && dentry->d_op->d_delete) {
237 		if (dentry->d_op->d_delete(dentry))
238 			goto unhash_it;
239 	}
240 	/* Unreachable? Get rid of it */
241  	if (d_unhashed(dentry))
242 		goto kill_it;
243   	if (list_empty(&dentry->d_lru)) {
244   		dentry->d_flags |= DCACHE_REFERENCED;
245 		dentry_lru_add(dentry);
246   	}
247  	spin_unlock(&dentry->d_lock);
248 	spin_unlock(&dcache_lock);
249 	return;
250 
251 unhash_it:
252 	__d_drop(dentry);
253 kill_it:
254 	/* if dentry was on the d_lru list delete it from there */
255 	dentry_lru_del(dentry);
256 	dentry = d_kill(dentry);
257 	if (dentry)
258 		goto repeat;
259 }
260 
261 /**
262  * d_invalidate - invalidate a dentry
263  * @dentry: dentry to invalidate
264  *
265  * Try to invalidate the dentry if it turns out to be
266  * possible. If there are other dentries that can be
267  * reached through this one we can't delete it and we
268  * return -EBUSY. On success we return 0.
269  *
270  * no dcache lock.
271  */
272 
273 int d_invalidate(struct dentry * dentry)
274 {
275 	/*
276 	 * If it's already been dropped, return OK.
277 	 */
278 	spin_lock(&dcache_lock);
279 	if (d_unhashed(dentry)) {
280 		spin_unlock(&dcache_lock);
281 		return 0;
282 	}
283 	/*
284 	 * Check whether to do a partial shrink_dcache
285 	 * to get rid of unused child entries.
286 	 */
287 	if (!list_empty(&dentry->d_subdirs)) {
288 		spin_unlock(&dcache_lock);
289 		shrink_dcache_parent(dentry);
290 		spin_lock(&dcache_lock);
291 	}
292 
293 	/*
294 	 * Somebody else still using it?
295 	 *
296 	 * If it's a directory, we can't drop it
297 	 * for fear of somebody re-populating it
298 	 * with children (even though dropping it
299 	 * would make it unreachable from the root,
300 	 * we might still populate it if it was a
301 	 * working directory or similar).
302 	 */
303 	spin_lock(&dentry->d_lock);
304 	if (atomic_read(&dentry->d_count) > 1) {
305 		if (dentry->d_inode && S_ISDIR(dentry->d_inode->i_mode)) {
306 			spin_unlock(&dentry->d_lock);
307 			spin_unlock(&dcache_lock);
308 			return -EBUSY;
309 		}
310 	}
311 
312 	__d_drop(dentry);
313 	spin_unlock(&dentry->d_lock);
314 	spin_unlock(&dcache_lock);
315 	return 0;
316 }
317 
318 /* This should be called _only_ with dcache_lock held */
319 
320 static inline struct dentry * __dget_locked(struct dentry *dentry)
321 {
322 	atomic_inc(&dentry->d_count);
323 	dentry_lru_del_init(dentry);
324 	return dentry;
325 }
326 
327 struct dentry * dget_locked(struct dentry *dentry)
328 {
329 	return __dget_locked(dentry);
330 }
331 
332 /**
333  * d_find_alias - grab a hashed alias of inode
334  * @inode: inode in question
335  * @want_discon:  flag, used by d_splice_alias, to request
336  *          that only a DISCONNECTED alias be returned.
337  *
338  * If inode has a hashed alias, or is a directory and has any alias,
339  * acquire the reference to alias and return it. Otherwise return NULL.
340  * Notice that if inode is a directory there can be only one alias and
341  * it can be unhashed only if it has no children, or if it is the root
342  * of a filesystem.
343  *
344  * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
345  * any other hashed alias over that one unless @want_discon is set,
346  * in which case only return an IS_ROOT, DCACHE_DISCONNECTED alias.
347  */
348 
349 static struct dentry * __d_find_alias(struct inode *inode, int want_discon)
350 {
351 	struct list_head *head, *next, *tmp;
352 	struct dentry *alias, *discon_alias=NULL;
353 
354 	head = &inode->i_dentry;
355 	next = inode->i_dentry.next;
356 	while (next != head) {
357 		tmp = next;
358 		next = tmp->next;
359 		prefetch(next);
360 		alias = list_entry(tmp, struct dentry, d_alias);
361  		if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
362 			if (IS_ROOT(alias) &&
363 			    (alias->d_flags & DCACHE_DISCONNECTED))
364 				discon_alias = alias;
365 			else if (!want_discon) {
366 				__dget_locked(alias);
367 				return alias;
368 			}
369 		}
370 	}
371 	if (discon_alias)
372 		__dget_locked(discon_alias);
373 	return discon_alias;
374 }
375 
376 struct dentry * d_find_alias(struct inode *inode)
377 {
378 	struct dentry *de = NULL;
379 
380 	if (!list_empty(&inode->i_dentry)) {
381 		spin_lock(&dcache_lock);
382 		de = __d_find_alias(inode, 0);
383 		spin_unlock(&dcache_lock);
384 	}
385 	return de;
386 }
387 
388 /*
389  *	Try to kill dentries associated with this inode.
390  * WARNING: you must own a reference to inode.
391  */
392 void d_prune_aliases(struct inode *inode)
393 {
394 	struct dentry *dentry;
395 restart:
396 	spin_lock(&dcache_lock);
397 	list_for_each_entry(dentry, &inode->i_dentry, d_alias) {
398 		spin_lock(&dentry->d_lock);
399 		if (!atomic_read(&dentry->d_count)) {
400 			__dget_locked(dentry);
401 			__d_drop(dentry);
402 			spin_unlock(&dentry->d_lock);
403 			spin_unlock(&dcache_lock);
404 			dput(dentry);
405 			goto restart;
406 		}
407 		spin_unlock(&dentry->d_lock);
408 	}
409 	spin_unlock(&dcache_lock);
410 }
411 
412 /*
413  * Throw away a dentry - free the inode, dput the parent.  This requires that
414  * the LRU list has already been removed.
415  *
416  * Try to prune ancestors as well.  This is necessary to prevent
417  * quadratic behavior of shrink_dcache_parent(), but is also expected
418  * to be beneficial in reducing dentry cache fragmentation.
419  */
420 static void prune_one_dentry(struct dentry * dentry)
421 	__releases(dentry->d_lock)
422 	__releases(dcache_lock)
423 	__acquires(dcache_lock)
424 {
425 	__d_drop(dentry);
426 	dentry = d_kill(dentry);
427 
428 	/*
429 	 * Prune ancestors.  Locking is simpler than in dput(),
430 	 * because dcache_lock needs to be taken anyway.
431 	 */
432 	spin_lock(&dcache_lock);
433 	while (dentry) {
434 		if (!atomic_dec_and_lock(&dentry->d_count, &dentry->d_lock))
435 			return;
436 
437 		if (dentry->d_op && dentry->d_op->d_delete)
438 			dentry->d_op->d_delete(dentry);
439 		dentry_lru_del_init(dentry);
440 		__d_drop(dentry);
441 		dentry = d_kill(dentry);
442 		spin_lock(&dcache_lock);
443 	}
444 }
445 
446 /*
447  * Shrink the dentry LRU on a given superblock.
448  * @sb   : superblock to shrink dentry LRU.
449  * @count: If count is NULL, we prune all dentries on superblock.
450  * @flags: If flags is non-zero, we need to do special processing based on
451  * which flags are set. This means we don't need to maintain multiple
452  * similar copies of this loop.
453  */
454 static void __shrink_dcache_sb(struct super_block *sb, int *count, int flags)
455 {
456 	LIST_HEAD(referenced);
457 	LIST_HEAD(tmp);
458 	struct dentry *dentry;
459 	int cnt = 0;
460 
461 	BUG_ON(!sb);
462 	BUG_ON((flags & DCACHE_REFERENCED) && count == NULL);
463 	spin_lock(&dcache_lock);
464 	if (count != NULL)
465 		/* called from prune_dcache() and shrink_dcache_parent() */
466 		cnt = *count;
467 restart:
468 	if (count == NULL)
469 		list_splice_init(&sb->s_dentry_lru, &tmp);
470 	else {
471 		while (!list_empty(&sb->s_dentry_lru)) {
472 			dentry = list_entry(sb->s_dentry_lru.prev,
473 					struct dentry, d_lru);
474 			BUG_ON(dentry->d_sb != sb);
475 
476 			spin_lock(&dentry->d_lock);
477 			/*
478 			 * If we are honouring the DCACHE_REFERENCED flag and
479 			 * the dentry has this flag set, don't free it. Clear
480 			 * the flag and put it back on the LRU.
481 			 */
482 			if ((flags & DCACHE_REFERENCED)
483 				&& (dentry->d_flags & DCACHE_REFERENCED)) {
484 				dentry->d_flags &= ~DCACHE_REFERENCED;
485 				list_move_tail(&dentry->d_lru, &referenced);
486 				spin_unlock(&dentry->d_lock);
487 			} else {
488 				list_move_tail(&dentry->d_lru, &tmp);
489 				spin_unlock(&dentry->d_lock);
490 				cnt--;
491 				if (!cnt)
492 					break;
493 			}
494 			cond_resched_lock(&dcache_lock);
495 		}
496 	}
497 	while (!list_empty(&tmp)) {
498 		dentry = list_entry(tmp.prev, struct dentry, d_lru);
499 		dentry_lru_del_init(dentry);
500 		spin_lock(&dentry->d_lock);
501 		/*
502 		 * We found an inuse dentry which was not removed from
503 		 * the LRU because of laziness during lookup.  Do not free
504 		 * it - just keep it off the LRU list.
505 		 */
506 		if (atomic_read(&dentry->d_count)) {
507 			spin_unlock(&dentry->d_lock);
508 			continue;
509 		}
510 		prune_one_dentry(dentry);
511 		/* dentry->d_lock was dropped in prune_one_dentry() */
512 		cond_resched_lock(&dcache_lock);
513 	}
514 	if (count == NULL && !list_empty(&sb->s_dentry_lru))
515 		goto restart;
516 	if (count != NULL)
517 		*count = cnt;
518 	if (!list_empty(&referenced))
519 		list_splice(&referenced, &sb->s_dentry_lru);
520 	spin_unlock(&dcache_lock);
521 }
522 
523 /**
524  * prune_dcache - shrink the dcache
525  * @count: number of entries to try to free
526  *
527  * Shrink the dcache. This is done when we need more memory, or simply when we
528  * need to unmount something (at which point we need to unuse all dentries).
529  *
530  * This function may fail to free any resources if all the dentries are in use.
531  */
532 static void prune_dcache(int count)
533 {
534 	struct super_block *sb;
535 	int w_count;
536 	int unused = dentry_stat.nr_unused;
537 	int prune_ratio;
538 	int pruned;
539 
540 	if (unused == 0 || count == 0)
541 		return;
542 	spin_lock(&dcache_lock);
543 restart:
544 	if (count >= unused)
545 		prune_ratio = 1;
546 	else
547 		prune_ratio = unused / count;
548 	spin_lock(&sb_lock);
549 	list_for_each_entry(sb, &super_blocks, s_list) {
550 		if (sb->s_nr_dentry_unused == 0)
551 			continue;
552 		sb->s_count++;
553 		/* Now, we reclaim unused dentrins with fairness.
554 		 * We reclaim them same percentage from each superblock.
555 		 * We calculate number of dentries to scan on this sb
556 		 * as follows, but the implementation is arranged to avoid
557 		 * overflows:
558 		 * number of dentries to scan on this sb =
559 		 * count * (number of dentries on this sb /
560 		 * number of dentries in the machine)
561 		 */
562 		spin_unlock(&sb_lock);
563 		if (prune_ratio != 1)
564 			w_count = (sb->s_nr_dentry_unused / prune_ratio) + 1;
565 		else
566 			w_count = sb->s_nr_dentry_unused;
567 		pruned = w_count;
568 		/*
569 		 * We need to be sure this filesystem isn't being unmounted,
570 		 * otherwise we could race with generic_shutdown_super(), and
571 		 * end up holding a reference to an inode while the filesystem
572 		 * is unmounted.  So we try to get s_umount, and make sure
573 		 * s_root isn't NULL.
574 		 */
575 		if (down_read_trylock(&sb->s_umount)) {
576 			if ((sb->s_root != NULL) &&
577 			    (!list_empty(&sb->s_dentry_lru))) {
578 				spin_unlock(&dcache_lock);
579 				__shrink_dcache_sb(sb, &w_count,
580 						DCACHE_REFERENCED);
581 				pruned -= w_count;
582 				spin_lock(&dcache_lock);
583 			}
584 			up_read(&sb->s_umount);
585 		}
586 		spin_lock(&sb_lock);
587 		count -= pruned;
588 		/*
589 		 * restart only when sb is no longer on the list and
590 		 * we have more work to do.
591 		 */
592 		if (__put_super_and_need_restart(sb) && count > 0) {
593 			spin_unlock(&sb_lock);
594 			goto restart;
595 		}
596 	}
597 	spin_unlock(&sb_lock);
598 	spin_unlock(&dcache_lock);
599 }
600 
601 /**
602  * shrink_dcache_sb - shrink dcache for a superblock
603  * @sb: superblock
604  *
605  * Shrink the dcache for the specified super block. This
606  * is used to free the dcache before unmounting a file
607  * system
608  */
609 void shrink_dcache_sb(struct super_block * sb)
610 {
611 	__shrink_dcache_sb(sb, NULL, 0);
612 }
613 
614 /*
615  * destroy a single subtree of dentries for unmount
616  * - see the comments on shrink_dcache_for_umount() for a description of the
617  *   locking
618  */
619 static void shrink_dcache_for_umount_subtree(struct dentry *dentry)
620 {
621 	struct dentry *parent;
622 	unsigned detached = 0;
623 
624 	BUG_ON(!IS_ROOT(dentry));
625 
626 	/* detach this root from the system */
627 	spin_lock(&dcache_lock);
628 	dentry_lru_del_init(dentry);
629 	__d_drop(dentry);
630 	spin_unlock(&dcache_lock);
631 
632 	for (;;) {
633 		/* descend to the first leaf in the current subtree */
634 		while (!list_empty(&dentry->d_subdirs)) {
635 			struct dentry *loop;
636 
637 			/* this is a branch with children - detach all of them
638 			 * from the system in one go */
639 			spin_lock(&dcache_lock);
640 			list_for_each_entry(loop, &dentry->d_subdirs,
641 					    d_u.d_child) {
642 				dentry_lru_del_init(loop);
643 				__d_drop(loop);
644 				cond_resched_lock(&dcache_lock);
645 			}
646 			spin_unlock(&dcache_lock);
647 
648 			/* move to the first child */
649 			dentry = list_entry(dentry->d_subdirs.next,
650 					    struct dentry, d_u.d_child);
651 		}
652 
653 		/* consume the dentries from this leaf up through its parents
654 		 * until we find one with children or run out altogether */
655 		do {
656 			struct inode *inode;
657 
658 			if (atomic_read(&dentry->d_count) != 0) {
659 				printk(KERN_ERR
660 				       "BUG: Dentry %p{i=%lx,n=%s}"
661 				       " still in use (%d)"
662 				       " [unmount of %s %s]\n",
663 				       dentry,
664 				       dentry->d_inode ?
665 				       dentry->d_inode->i_ino : 0UL,
666 				       dentry->d_name.name,
667 				       atomic_read(&dentry->d_count),
668 				       dentry->d_sb->s_type->name,
669 				       dentry->d_sb->s_id);
670 				BUG();
671 			}
672 
673 			if (IS_ROOT(dentry))
674 				parent = NULL;
675 			else {
676 				parent = dentry->d_parent;
677 				atomic_dec(&parent->d_count);
678 			}
679 
680 			list_del(&dentry->d_u.d_child);
681 			detached++;
682 
683 			inode = dentry->d_inode;
684 			if (inode) {
685 				dentry->d_inode = NULL;
686 				list_del_init(&dentry->d_alias);
687 				if (dentry->d_op && dentry->d_op->d_iput)
688 					dentry->d_op->d_iput(dentry, inode);
689 				else
690 					iput(inode);
691 			}
692 
693 			d_free(dentry);
694 
695 			/* finished when we fall off the top of the tree,
696 			 * otherwise we ascend to the parent and move to the
697 			 * next sibling if there is one */
698 			if (!parent)
699 				goto out;
700 
701 			dentry = parent;
702 
703 		} while (list_empty(&dentry->d_subdirs));
704 
705 		dentry = list_entry(dentry->d_subdirs.next,
706 				    struct dentry, d_u.d_child);
707 	}
708 out:
709 	/* several dentries were freed, need to correct nr_dentry */
710 	spin_lock(&dcache_lock);
711 	dentry_stat.nr_dentry -= detached;
712 	spin_unlock(&dcache_lock);
713 }
714 
715 /*
716  * destroy the dentries attached to a superblock on unmounting
717  * - we don't need to use dentry->d_lock, and only need dcache_lock when
718  *   removing the dentry from the system lists and hashes because:
719  *   - the superblock is detached from all mountings and open files, so the
720  *     dentry trees will not be rearranged by the VFS
721  *   - s_umount is write-locked, so the memory pressure shrinker will ignore
722  *     any dentries belonging to this superblock that it comes across
723  *   - the filesystem itself is no longer permitted to rearrange the dentries
724  *     in this superblock
725  */
726 void shrink_dcache_for_umount(struct super_block *sb)
727 {
728 	struct dentry *dentry;
729 
730 	if (down_read_trylock(&sb->s_umount))
731 		BUG();
732 
733 	dentry = sb->s_root;
734 	sb->s_root = NULL;
735 	atomic_dec(&dentry->d_count);
736 	shrink_dcache_for_umount_subtree(dentry);
737 
738 	while (!hlist_empty(&sb->s_anon)) {
739 		dentry = hlist_entry(sb->s_anon.first, struct dentry, d_hash);
740 		shrink_dcache_for_umount_subtree(dentry);
741 	}
742 }
743 
744 /*
745  * Search for at least 1 mount point in the dentry's subdirs.
746  * We descend to the next level whenever the d_subdirs
747  * list is non-empty and continue searching.
748  */
749 
750 /**
751  * have_submounts - check for mounts over a dentry
752  * @parent: dentry to check.
753  *
754  * Return true if the parent or its subdirectories contain
755  * a mount point
756  */
757 
758 int have_submounts(struct dentry *parent)
759 {
760 	struct dentry *this_parent = parent;
761 	struct list_head *next;
762 
763 	spin_lock(&dcache_lock);
764 	if (d_mountpoint(parent))
765 		goto positive;
766 repeat:
767 	next = this_parent->d_subdirs.next;
768 resume:
769 	while (next != &this_parent->d_subdirs) {
770 		struct list_head *tmp = next;
771 		struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
772 		next = tmp->next;
773 		/* Have we found a mount point ? */
774 		if (d_mountpoint(dentry))
775 			goto positive;
776 		if (!list_empty(&dentry->d_subdirs)) {
777 			this_parent = dentry;
778 			goto repeat;
779 		}
780 	}
781 	/*
782 	 * All done at this level ... ascend and resume the search.
783 	 */
784 	if (this_parent != parent) {
785 		next = this_parent->d_u.d_child.next;
786 		this_parent = this_parent->d_parent;
787 		goto resume;
788 	}
789 	spin_unlock(&dcache_lock);
790 	return 0; /* No mount points found in tree */
791 positive:
792 	spin_unlock(&dcache_lock);
793 	return 1;
794 }
795 
796 /*
797  * Search the dentry child list for the specified parent,
798  * and move any unused dentries to the end of the unused
799  * list for prune_dcache(). We descend to the next level
800  * whenever the d_subdirs list is non-empty and continue
801  * searching.
802  *
803  * It returns zero iff there are no unused children,
804  * otherwise  it returns the number of children moved to
805  * the end of the unused list. This may not be the total
806  * number of unused children, because select_parent can
807  * drop the lock and return early due to latency
808  * constraints.
809  */
810 static int select_parent(struct dentry * parent)
811 {
812 	struct dentry *this_parent = parent;
813 	struct list_head *next;
814 	int found = 0;
815 
816 	spin_lock(&dcache_lock);
817 repeat:
818 	next = this_parent->d_subdirs.next;
819 resume:
820 	while (next != &this_parent->d_subdirs) {
821 		struct list_head *tmp = next;
822 		struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
823 		next = tmp->next;
824 
825 		dentry_lru_del_init(dentry);
826 		/*
827 		 * move only zero ref count dentries to the end
828 		 * of the unused list for prune_dcache
829 		 */
830 		if (!atomic_read(&dentry->d_count)) {
831 			dentry_lru_add_tail(dentry);
832 			found++;
833 		}
834 
835 		/*
836 		 * We can return to the caller if we have found some (this
837 		 * ensures forward progress). We'll be coming back to find
838 		 * the rest.
839 		 */
840 		if (found && need_resched())
841 			goto out;
842 
843 		/*
844 		 * Descend a level if the d_subdirs list is non-empty.
845 		 */
846 		if (!list_empty(&dentry->d_subdirs)) {
847 			this_parent = dentry;
848 			goto repeat;
849 		}
850 	}
851 	/*
852 	 * All done at this level ... ascend and resume the search.
853 	 */
854 	if (this_parent != parent) {
855 		next = this_parent->d_u.d_child.next;
856 		this_parent = this_parent->d_parent;
857 		goto resume;
858 	}
859 out:
860 	spin_unlock(&dcache_lock);
861 	return found;
862 }
863 
864 /**
865  * shrink_dcache_parent - prune dcache
866  * @parent: parent of entries to prune
867  *
868  * Prune the dcache to remove unused children of the parent dentry.
869  */
870 
871 void shrink_dcache_parent(struct dentry * parent)
872 {
873 	struct super_block *sb = parent->d_sb;
874 	int found;
875 
876 	while ((found = select_parent(parent)) != 0)
877 		__shrink_dcache_sb(sb, &found, 0);
878 }
879 
880 /*
881  * Scan `nr' dentries and return the number which remain.
882  *
883  * We need to avoid reentering the filesystem if the caller is performing a
884  * GFP_NOFS allocation attempt.  One example deadlock is:
885  *
886  * ext2_new_block->getblk->GFP->shrink_dcache_memory->prune_dcache->
887  * prune_one_dentry->dput->dentry_iput->iput->inode->i_sb->s_op->put_inode->
888  * ext2_discard_prealloc->ext2_free_blocks->lock_super->DEADLOCK.
889  *
890  * In this case we return -1 to tell the caller that we baled.
891  */
892 static int shrink_dcache_memory(int nr, gfp_t gfp_mask)
893 {
894 	if (nr) {
895 		if (!(gfp_mask & __GFP_FS))
896 			return -1;
897 		prune_dcache(nr);
898 	}
899 	return (dentry_stat.nr_unused / 100) * sysctl_vfs_cache_pressure;
900 }
901 
902 static struct shrinker dcache_shrinker = {
903 	.shrink = shrink_dcache_memory,
904 	.seeks = DEFAULT_SEEKS,
905 };
906 
907 /**
908  * d_alloc	-	allocate a dcache entry
909  * @parent: parent of entry to allocate
910  * @name: qstr of the name
911  *
912  * Allocates a dentry. It returns %NULL if there is insufficient memory
913  * available. On a success the dentry is returned. The name passed in is
914  * copied and the copy passed in may be reused after this call.
915  */
916 
917 struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
918 {
919 	struct dentry *dentry;
920 	char *dname;
921 
922 	dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
923 	if (!dentry)
924 		return NULL;
925 
926 	if (name->len > DNAME_INLINE_LEN-1) {
927 		dname = kmalloc(name->len + 1, GFP_KERNEL);
928 		if (!dname) {
929 			kmem_cache_free(dentry_cache, dentry);
930 			return NULL;
931 		}
932 	} else  {
933 		dname = dentry->d_iname;
934 	}
935 	dentry->d_name.name = dname;
936 
937 	dentry->d_name.len = name->len;
938 	dentry->d_name.hash = name->hash;
939 	memcpy(dname, name->name, name->len);
940 	dname[name->len] = 0;
941 
942 	atomic_set(&dentry->d_count, 1);
943 	dentry->d_flags = DCACHE_UNHASHED;
944 	spin_lock_init(&dentry->d_lock);
945 	dentry->d_inode = NULL;
946 	dentry->d_parent = NULL;
947 	dentry->d_sb = NULL;
948 	dentry->d_op = NULL;
949 	dentry->d_fsdata = NULL;
950 	dentry->d_mounted = 0;
951 #ifdef CONFIG_PROFILING
952 	dentry->d_cookie = NULL;
953 #endif
954 	INIT_HLIST_NODE(&dentry->d_hash);
955 	INIT_LIST_HEAD(&dentry->d_lru);
956 	INIT_LIST_HEAD(&dentry->d_subdirs);
957 	INIT_LIST_HEAD(&dentry->d_alias);
958 
959 	if (parent) {
960 		dentry->d_parent = dget(parent);
961 		dentry->d_sb = parent->d_sb;
962 	} else {
963 		INIT_LIST_HEAD(&dentry->d_u.d_child);
964 	}
965 
966 	spin_lock(&dcache_lock);
967 	if (parent)
968 		list_add(&dentry->d_u.d_child, &parent->d_subdirs);
969 	dentry_stat.nr_dentry++;
970 	spin_unlock(&dcache_lock);
971 
972 	return dentry;
973 }
974 
975 struct dentry *d_alloc_name(struct dentry *parent, const char *name)
976 {
977 	struct qstr q;
978 
979 	q.name = name;
980 	q.len = strlen(name);
981 	q.hash = full_name_hash(q.name, q.len);
982 	return d_alloc(parent, &q);
983 }
984 
985 /* the caller must hold dcache_lock */
986 static void __d_instantiate(struct dentry *dentry, struct inode *inode)
987 {
988 	if (inode)
989 		list_add(&dentry->d_alias, &inode->i_dentry);
990 	dentry->d_inode = inode;
991 	fsnotify_d_instantiate(dentry, inode);
992 }
993 
994 /**
995  * d_instantiate - fill in inode information for a dentry
996  * @entry: dentry to complete
997  * @inode: inode to attach to this dentry
998  *
999  * Fill in inode information in the entry.
1000  *
1001  * This turns negative dentries into productive full members
1002  * of society.
1003  *
1004  * NOTE! This assumes that the inode count has been incremented
1005  * (or otherwise set) by the caller to indicate that it is now
1006  * in use by the dcache.
1007  */
1008 
1009 void d_instantiate(struct dentry *entry, struct inode * inode)
1010 {
1011 	BUG_ON(!list_empty(&entry->d_alias));
1012 	spin_lock(&dcache_lock);
1013 	__d_instantiate(entry, inode);
1014 	spin_unlock(&dcache_lock);
1015 	security_d_instantiate(entry, inode);
1016 }
1017 
1018 /**
1019  * d_instantiate_unique - instantiate a non-aliased dentry
1020  * @entry: dentry to instantiate
1021  * @inode: inode to attach to this dentry
1022  *
1023  * Fill in inode information in the entry. On success, it returns NULL.
1024  * If an unhashed alias of "entry" already exists, then we return the
1025  * aliased dentry instead and drop one reference to inode.
1026  *
1027  * Note that in order to avoid conflicts with rename() etc, the caller
1028  * had better be holding the parent directory semaphore.
1029  *
1030  * This also assumes that the inode count has been incremented
1031  * (or otherwise set) by the caller to indicate that it is now
1032  * in use by the dcache.
1033  */
1034 static struct dentry *__d_instantiate_unique(struct dentry *entry,
1035 					     struct inode *inode)
1036 {
1037 	struct dentry *alias;
1038 	int len = entry->d_name.len;
1039 	const char *name = entry->d_name.name;
1040 	unsigned int hash = entry->d_name.hash;
1041 
1042 	if (!inode) {
1043 		__d_instantiate(entry, NULL);
1044 		return NULL;
1045 	}
1046 
1047 	list_for_each_entry(alias, &inode->i_dentry, d_alias) {
1048 		struct qstr *qstr = &alias->d_name;
1049 
1050 		if (qstr->hash != hash)
1051 			continue;
1052 		if (alias->d_parent != entry->d_parent)
1053 			continue;
1054 		if (qstr->len != len)
1055 			continue;
1056 		if (memcmp(qstr->name, name, len))
1057 			continue;
1058 		dget_locked(alias);
1059 		return alias;
1060 	}
1061 
1062 	__d_instantiate(entry, inode);
1063 	return NULL;
1064 }
1065 
1066 struct dentry *d_instantiate_unique(struct dentry *entry, struct inode *inode)
1067 {
1068 	struct dentry *result;
1069 
1070 	BUG_ON(!list_empty(&entry->d_alias));
1071 
1072 	spin_lock(&dcache_lock);
1073 	result = __d_instantiate_unique(entry, inode);
1074 	spin_unlock(&dcache_lock);
1075 
1076 	if (!result) {
1077 		security_d_instantiate(entry, inode);
1078 		return NULL;
1079 	}
1080 
1081 	BUG_ON(!d_unhashed(result));
1082 	iput(inode);
1083 	return result;
1084 }
1085 
1086 EXPORT_SYMBOL(d_instantiate_unique);
1087 
1088 /**
1089  * d_alloc_root - allocate root dentry
1090  * @root_inode: inode to allocate the root for
1091  *
1092  * Allocate a root ("/") dentry for the inode given. The inode is
1093  * instantiated and returned. %NULL is returned if there is insufficient
1094  * memory or the inode passed is %NULL.
1095  */
1096 
1097 struct dentry * d_alloc_root(struct inode * root_inode)
1098 {
1099 	struct dentry *res = NULL;
1100 
1101 	if (root_inode) {
1102 		static const struct qstr name = { .name = "/", .len = 1 };
1103 
1104 		res = d_alloc(NULL, &name);
1105 		if (res) {
1106 			res->d_sb = root_inode->i_sb;
1107 			res->d_parent = res;
1108 			d_instantiate(res, root_inode);
1109 		}
1110 	}
1111 	return res;
1112 }
1113 
1114 static inline struct hlist_head *d_hash(struct dentry *parent,
1115 					unsigned long hash)
1116 {
1117 	hash += ((unsigned long) parent ^ GOLDEN_RATIO_PRIME) / L1_CACHE_BYTES;
1118 	hash = hash ^ ((hash ^ GOLDEN_RATIO_PRIME) >> D_HASHBITS);
1119 	return dentry_hashtable + (hash & D_HASHMASK);
1120 }
1121 
1122 /**
1123  * d_obtain_alias - find or allocate a dentry for a given inode
1124  * @inode: inode to allocate the dentry for
1125  *
1126  * Obtain a dentry for an inode resulting from NFS filehandle conversion or
1127  * similar open by handle operations.  The returned dentry may be anonymous,
1128  * or may have a full name (if the inode was already in the cache).
1129  *
1130  * When called on a directory inode, we must ensure that the inode only ever
1131  * has one dentry.  If a dentry is found, that is returned instead of
1132  * allocating a new one.
1133  *
1134  * On successful return, the reference to the inode has been transferred
1135  * to the dentry.  In case of an error the reference on the inode is released.
1136  * To make it easier to use in export operations a %NULL or IS_ERR inode may
1137  * be passed in and will be the error will be propagate to the return value,
1138  * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
1139  */
1140 struct dentry *d_obtain_alias(struct inode *inode)
1141 {
1142 	static const struct qstr anonstring = { .name = "" };
1143 	struct dentry *tmp;
1144 	struct dentry *res;
1145 
1146 	if (!inode)
1147 		return ERR_PTR(-ESTALE);
1148 	if (IS_ERR(inode))
1149 		return ERR_CAST(inode);
1150 
1151 	res = d_find_alias(inode);
1152 	if (res)
1153 		goto out_iput;
1154 
1155 	tmp = d_alloc(NULL, &anonstring);
1156 	if (!tmp) {
1157 		res = ERR_PTR(-ENOMEM);
1158 		goto out_iput;
1159 	}
1160 	tmp->d_parent = tmp; /* make sure dput doesn't croak */
1161 
1162 	spin_lock(&dcache_lock);
1163 	res = __d_find_alias(inode, 0);
1164 	if (res) {
1165 		spin_unlock(&dcache_lock);
1166 		dput(tmp);
1167 		goto out_iput;
1168 	}
1169 
1170 	/* attach a disconnected dentry */
1171 	spin_lock(&tmp->d_lock);
1172 	tmp->d_sb = inode->i_sb;
1173 	tmp->d_inode = inode;
1174 	tmp->d_flags |= DCACHE_DISCONNECTED;
1175 	tmp->d_flags &= ~DCACHE_UNHASHED;
1176 	list_add(&tmp->d_alias, &inode->i_dentry);
1177 	hlist_add_head(&tmp->d_hash, &inode->i_sb->s_anon);
1178 	spin_unlock(&tmp->d_lock);
1179 
1180 	spin_unlock(&dcache_lock);
1181 	return tmp;
1182 
1183  out_iput:
1184 	iput(inode);
1185 	return res;
1186 }
1187 EXPORT_SYMBOL_GPL(d_obtain_alias);
1188 
1189 /**
1190  * d_splice_alias - splice a disconnected dentry into the tree if one exists
1191  * @inode:  the inode which may have a disconnected dentry
1192  * @dentry: a negative dentry which we want to point to the inode.
1193  *
1194  * If inode is a directory and has a 'disconnected' dentry (i.e. IS_ROOT and
1195  * DCACHE_DISCONNECTED), then d_move that in place of the given dentry
1196  * and return it, else simply d_add the inode to the dentry and return NULL.
1197  *
1198  * This is needed in the lookup routine of any filesystem that is exportable
1199  * (via knfsd) so that we can build dcache paths to directories effectively.
1200  *
1201  * If a dentry was found and moved, then it is returned.  Otherwise NULL
1202  * is returned.  This matches the expected return value of ->lookup.
1203  *
1204  */
1205 struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
1206 {
1207 	struct dentry *new = NULL;
1208 
1209 	if (inode && S_ISDIR(inode->i_mode)) {
1210 		spin_lock(&dcache_lock);
1211 		new = __d_find_alias(inode, 1);
1212 		if (new) {
1213 			BUG_ON(!(new->d_flags & DCACHE_DISCONNECTED));
1214 			spin_unlock(&dcache_lock);
1215 			security_d_instantiate(new, inode);
1216 			d_rehash(dentry);
1217 			d_move(new, dentry);
1218 			iput(inode);
1219 		} else {
1220 			/* already taking dcache_lock, so d_add() by hand */
1221 			__d_instantiate(dentry, inode);
1222 			spin_unlock(&dcache_lock);
1223 			security_d_instantiate(dentry, inode);
1224 			d_rehash(dentry);
1225 		}
1226 	} else
1227 		d_add(dentry, inode);
1228 	return new;
1229 }
1230 
1231 /**
1232  * d_add_ci - lookup or allocate new dentry with case-exact name
1233  * @inode:  the inode case-insensitive lookup has found
1234  * @dentry: the negative dentry that was passed to the parent's lookup func
1235  * @name:   the case-exact name to be associated with the returned dentry
1236  *
1237  * This is to avoid filling the dcache with case-insensitive names to the
1238  * same inode, only the actual correct case is stored in the dcache for
1239  * case-insensitive filesystems.
1240  *
1241  * For a case-insensitive lookup match and if the the case-exact dentry
1242  * already exists in in the dcache, use it and return it.
1243  *
1244  * If no entry exists with the exact case name, allocate new dentry with
1245  * the exact case, and return the spliced entry.
1246  */
1247 struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
1248 			struct qstr *name)
1249 {
1250 	int error;
1251 	struct dentry *found;
1252 	struct dentry *new;
1253 
1254 	/* Does a dentry matching the name exist already? */
1255 	found = d_hash_and_lookup(dentry->d_parent, name);
1256 	/* If not, create it now and return */
1257 	if (!found) {
1258 		new = d_alloc(dentry->d_parent, name);
1259 		if (!new) {
1260 			error = -ENOMEM;
1261 			goto err_out;
1262 		}
1263 		found = d_splice_alias(inode, new);
1264 		if (found) {
1265 			dput(new);
1266 			return found;
1267 		}
1268 		return new;
1269 	}
1270 	/* Matching dentry exists, check if it is negative. */
1271 	if (found->d_inode) {
1272 		if (unlikely(found->d_inode != inode)) {
1273 			/* This can't happen because bad inodes are unhashed. */
1274 			BUG_ON(!is_bad_inode(inode));
1275 			BUG_ON(!is_bad_inode(found->d_inode));
1276 		}
1277 		/*
1278 		 * Already have the inode and the dentry attached, decrement
1279 		 * the reference count to balance the iget() done
1280 		 * earlier on.  We found the dentry using d_lookup() so it
1281 		 * cannot be disconnected and thus we do not need to worry
1282 		 * about any NFS/disconnectedness issues here.
1283 		 */
1284 		iput(inode);
1285 		return found;
1286 	}
1287 	/*
1288 	 * Negative dentry: instantiate it unless the inode is a directory and
1289 	 * has a 'disconnected' dentry (i.e. IS_ROOT and DCACHE_DISCONNECTED),
1290 	 * in which case d_move() that in place of the found dentry.
1291 	 */
1292 	if (!S_ISDIR(inode->i_mode)) {
1293 		/* Not a directory; everything is easy. */
1294 		d_instantiate(found, inode);
1295 		return found;
1296 	}
1297 	spin_lock(&dcache_lock);
1298 	if (list_empty(&inode->i_dentry)) {
1299 		/*
1300 		 * Directory without a 'disconnected' dentry; we need to do
1301 		 * d_instantiate() by hand because it takes dcache_lock which
1302 		 * we already hold.
1303 		 */
1304 		__d_instantiate(found, inode);
1305 		spin_unlock(&dcache_lock);
1306 		security_d_instantiate(found, inode);
1307 		return found;
1308 	}
1309 	/*
1310 	 * Directory with a 'disconnected' dentry; get a reference to the
1311 	 * 'disconnected' dentry.
1312 	 */
1313 	new = list_entry(inode->i_dentry.next, struct dentry, d_alias);
1314 	dget_locked(new);
1315 	spin_unlock(&dcache_lock);
1316 	/* Do security vodoo. */
1317 	security_d_instantiate(found, inode);
1318 	/* Move new in place of found. */
1319 	d_move(new, found);
1320 	/* Balance the iget() we did above. */
1321 	iput(inode);
1322 	/* Throw away found. */
1323 	dput(found);
1324 	/* Use new as the actual dentry. */
1325 	return new;
1326 
1327 err_out:
1328 	iput(inode);
1329 	return ERR_PTR(error);
1330 }
1331 
1332 /**
1333  * d_lookup - search for a dentry
1334  * @parent: parent dentry
1335  * @name: qstr of name we wish to find
1336  *
1337  * Searches the children of the parent dentry for the name in question. If
1338  * the dentry is found its reference count is incremented and the dentry
1339  * is returned. The caller must use d_put to free the entry when it has
1340  * finished using it. %NULL is returned on failure.
1341  *
1342  * __d_lookup is dcache_lock free. The hash list is protected using RCU.
1343  * Memory barriers are used while updating and doing lockless traversal.
1344  * To avoid races with d_move while rename is happening, d_lock is used.
1345  *
1346  * Overflows in memcmp(), while d_move, are avoided by keeping the length
1347  * and name pointer in one structure pointed by d_qstr.
1348  *
1349  * rcu_read_lock() and rcu_read_unlock() are used to disable preemption while
1350  * lookup is going on.
1351  *
1352  * The dentry unused LRU is not updated even if lookup finds the required dentry
1353  * in there. It is updated in places such as prune_dcache, shrink_dcache_sb,
1354  * select_parent and __dget_locked. This laziness saves lookup from dcache_lock
1355  * acquisition.
1356  *
1357  * d_lookup() is protected against the concurrent renames in some unrelated
1358  * directory using the seqlockt_t rename_lock.
1359  */
1360 
1361 struct dentry * d_lookup(struct dentry * parent, struct qstr * name)
1362 {
1363 	struct dentry * dentry = NULL;
1364 	unsigned long seq;
1365 
1366         do {
1367                 seq = read_seqbegin(&rename_lock);
1368                 dentry = __d_lookup(parent, name);
1369                 if (dentry)
1370 			break;
1371 	} while (read_seqretry(&rename_lock, seq));
1372 	return dentry;
1373 }
1374 
1375 struct dentry * __d_lookup(struct dentry * parent, struct qstr * name)
1376 {
1377 	unsigned int len = name->len;
1378 	unsigned int hash = name->hash;
1379 	const unsigned char *str = name->name;
1380 	struct hlist_head *head = d_hash(parent,hash);
1381 	struct dentry *found = NULL;
1382 	struct hlist_node *node;
1383 	struct dentry *dentry;
1384 
1385 	rcu_read_lock();
1386 
1387 	hlist_for_each_entry_rcu(dentry, node, head, d_hash) {
1388 		struct qstr *qstr;
1389 
1390 		if (dentry->d_name.hash != hash)
1391 			continue;
1392 		if (dentry->d_parent != parent)
1393 			continue;
1394 
1395 		spin_lock(&dentry->d_lock);
1396 
1397 		/*
1398 		 * Recheck the dentry after taking the lock - d_move may have
1399 		 * changed things.  Don't bother checking the hash because we're
1400 		 * about to compare the whole name anyway.
1401 		 */
1402 		if (dentry->d_parent != parent)
1403 			goto next;
1404 
1405 		/* non-existing due to RCU? */
1406 		if (d_unhashed(dentry))
1407 			goto next;
1408 
1409 		/*
1410 		 * It is safe to compare names since d_move() cannot
1411 		 * change the qstr (protected by d_lock).
1412 		 */
1413 		qstr = &dentry->d_name;
1414 		if (parent->d_op && parent->d_op->d_compare) {
1415 			if (parent->d_op->d_compare(parent, qstr, name))
1416 				goto next;
1417 		} else {
1418 			if (qstr->len != len)
1419 				goto next;
1420 			if (memcmp(qstr->name, str, len))
1421 				goto next;
1422 		}
1423 
1424 		atomic_inc(&dentry->d_count);
1425 		found = dentry;
1426 		spin_unlock(&dentry->d_lock);
1427 		break;
1428 next:
1429 		spin_unlock(&dentry->d_lock);
1430  	}
1431  	rcu_read_unlock();
1432 
1433  	return found;
1434 }
1435 
1436 /**
1437  * d_hash_and_lookup - hash the qstr then search for a dentry
1438  * @dir: Directory to search in
1439  * @name: qstr of name we wish to find
1440  *
1441  * On hash failure or on lookup failure NULL is returned.
1442  */
1443 struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
1444 {
1445 	struct dentry *dentry = NULL;
1446 
1447 	/*
1448 	 * Check for a fs-specific hash function. Note that we must
1449 	 * calculate the standard hash first, as the d_op->d_hash()
1450 	 * routine may choose to leave the hash value unchanged.
1451 	 */
1452 	name->hash = full_name_hash(name->name, name->len);
1453 	if (dir->d_op && dir->d_op->d_hash) {
1454 		if (dir->d_op->d_hash(dir, name) < 0)
1455 			goto out;
1456 	}
1457 	dentry = d_lookup(dir, name);
1458 out:
1459 	return dentry;
1460 }
1461 
1462 /**
1463  * d_validate - verify dentry provided from insecure source
1464  * @dentry: The dentry alleged to be valid child of @dparent
1465  * @dparent: The parent dentry (known to be valid)
1466  *
1467  * An insecure source has sent us a dentry, here we verify it and dget() it.
1468  * This is used by ncpfs in its readdir implementation.
1469  * Zero is returned in the dentry is invalid.
1470  */
1471 
1472 int d_validate(struct dentry *dentry, struct dentry *dparent)
1473 {
1474 	struct hlist_head *base;
1475 	struct hlist_node *lhp;
1476 
1477 	/* Check whether the ptr might be valid at all.. */
1478 	if (!kmem_ptr_validate(dentry_cache, dentry))
1479 		goto out;
1480 
1481 	if (dentry->d_parent != dparent)
1482 		goto out;
1483 
1484 	spin_lock(&dcache_lock);
1485 	base = d_hash(dparent, dentry->d_name.hash);
1486 	hlist_for_each(lhp,base) {
1487 		/* hlist_for_each_entry_rcu() not required for d_hash list
1488 		 * as it is parsed under dcache_lock
1489 		 */
1490 		if (dentry == hlist_entry(lhp, struct dentry, d_hash)) {
1491 			__dget_locked(dentry);
1492 			spin_unlock(&dcache_lock);
1493 			return 1;
1494 		}
1495 	}
1496 	spin_unlock(&dcache_lock);
1497 out:
1498 	return 0;
1499 }
1500 
1501 /*
1502  * When a file is deleted, we have two options:
1503  * - turn this dentry into a negative dentry
1504  * - unhash this dentry and free it.
1505  *
1506  * Usually, we want to just turn this into
1507  * a negative dentry, but if anybody else is
1508  * currently using the dentry or the inode
1509  * we can't do that and we fall back on removing
1510  * it from the hash queues and waiting for
1511  * it to be deleted later when it has no users
1512  */
1513 
1514 /**
1515  * d_delete - delete a dentry
1516  * @dentry: The dentry to delete
1517  *
1518  * Turn the dentry into a negative dentry if possible, otherwise
1519  * remove it from the hash queues so it can be deleted later
1520  */
1521 
1522 void d_delete(struct dentry * dentry)
1523 {
1524 	int isdir = 0;
1525 	/*
1526 	 * Are we the only user?
1527 	 */
1528 	spin_lock(&dcache_lock);
1529 	spin_lock(&dentry->d_lock);
1530 	isdir = S_ISDIR(dentry->d_inode->i_mode);
1531 	if (atomic_read(&dentry->d_count) == 1) {
1532 		dentry_iput(dentry);
1533 		fsnotify_nameremove(dentry, isdir);
1534 		return;
1535 	}
1536 
1537 	if (!d_unhashed(dentry))
1538 		__d_drop(dentry);
1539 
1540 	spin_unlock(&dentry->d_lock);
1541 	spin_unlock(&dcache_lock);
1542 
1543 	fsnotify_nameremove(dentry, isdir);
1544 }
1545 
1546 static void __d_rehash(struct dentry * entry, struct hlist_head *list)
1547 {
1548 
1549  	entry->d_flags &= ~DCACHE_UNHASHED;
1550  	hlist_add_head_rcu(&entry->d_hash, list);
1551 }
1552 
1553 static void _d_rehash(struct dentry * entry)
1554 {
1555 	__d_rehash(entry, d_hash(entry->d_parent, entry->d_name.hash));
1556 }
1557 
1558 /**
1559  * d_rehash	- add an entry back to the hash
1560  * @entry: dentry to add to the hash
1561  *
1562  * Adds a dentry to the hash according to its name.
1563  */
1564 
1565 void d_rehash(struct dentry * entry)
1566 {
1567 	spin_lock(&dcache_lock);
1568 	spin_lock(&entry->d_lock);
1569 	_d_rehash(entry);
1570 	spin_unlock(&entry->d_lock);
1571 	spin_unlock(&dcache_lock);
1572 }
1573 
1574 #define do_switch(x,y) do { \
1575 	__typeof__ (x) __tmp = x; \
1576 	x = y; y = __tmp; } while (0)
1577 
1578 /*
1579  * When switching names, the actual string doesn't strictly have to
1580  * be preserved in the target - because we're dropping the target
1581  * anyway. As such, we can just do a simple memcpy() to copy over
1582  * the new name before we switch.
1583  *
1584  * Note that we have to be a lot more careful about getting the hash
1585  * switched - we have to switch the hash value properly even if it
1586  * then no longer matches the actual (corrupted) string of the target.
1587  * The hash value has to match the hash queue that the dentry is on..
1588  */
1589 static void switch_names(struct dentry *dentry, struct dentry *target)
1590 {
1591 	if (dname_external(target)) {
1592 		if (dname_external(dentry)) {
1593 			/*
1594 			 * Both external: swap the pointers
1595 			 */
1596 			do_switch(target->d_name.name, dentry->d_name.name);
1597 		} else {
1598 			/*
1599 			 * dentry:internal, target:external.  Steal target's
1600 			 * storage and make target internal.
1601 			 */
1602 			memcpy(target->d_iname, dentry->d_name.name,
1603 					dentry->d_name.len + 1);
1604 			dentry->d_name.name = target->d_name.name;
1605 			target->d_name.name = target->d_iname;
1606 		}
1607 	} else {
1608 		if (dname_external(dentry)) {
1609 			/*
1610 			 * dentry:external, target:internal.  Give dentry's
1611 			 * storage to target and make dentry internal
1612 			 */
1613 			memcpy(dentry->d_iname, target->d_name.name,
1614 					target->d_name.len + 1);
1615 			target->d_name.name = dentry->d_name.name;
1616 			dentry->d_name.name = dentry->d_iname;
1617 		} else {
1618 			/*
1619 			 * Both are internal.  Just copy target to dentry
1620 			 */
1621 			memcpy(dentry->d_iname, target->d_name.name,
1622 					target->d_name.len + 1);
1623 		}
1624 	}
1625 }
1626 
1627 /*
1628  * We cannibalize "target" when moving dentry on top of it,
1629  * because it's going to be thrown away anyway. We could be more
1630  * polite about it, though.
1631  *
1632  * This forceful removal will result in ugly /proc output if
1633  * somebody holds a file open that got deleted due to a rename.
1634  * We could be nicer about the deleted file, and let it show
1635  * up under the name it had before it was deleted rather than
1636  * under the original name of the file that was moved on top of it.
1637  */
1638 
1639 /*
1640  * d_move_locked - move a dentry
1641  * @dentry: entry to move
1642  * @target: new dentry
1643  *
1644  * Update the dcache to reflect the move of a file name. Negative
1645  * dcache entries should not be moved in this way.
1646  */
1647 static void d_move_locked(struct dentry * dentry, struct dentry * target)
1648 {
1649 	struct hlist_head *list;
1650 
1651 	if (!dentry->d_inode)
1652 		printk(KERN_WARNING "VFS: moving negative dcache entry\n");
1653 
1654 	write_seqlock(&rename_lock);
1655 	/*
1656 	 * XXXX: do we really need to take target->d_lock?
1657 	 */
1658 	if (target < dentry) {
1659 		spin_lock(&target->d_lock);
1660 		spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1661 	} else {
1662 		spin_lock(&dentry->d_lock);
1663 		spin_lock_nested(&target->d_lock, DENTRY_D_LOCK_NESTED);
1664 	}
1665 
1666 	/* Move the dentry to the target hash queue, if on different bucket */
1667 	if (d_unhashed(dentry))
1668 		goto already_unhashed;
1669 
1670 	hlist_del_rcu(&dentry->d_hash);
1671 
1672 already_unhashed:
1673 	list = d_hash(target->d_parent, target->d_name.hash);
1674 	__d_rehash(dentry, list);
1675 
1676 	/* Unhash the target: dput() will then get rid of it */
1677 	__d_drop(target);
1678 
1679 	list_del(&dentry->d_u.d_child);
1680 	list_del(&target->d_u.d_child);
1681 
1682 	/* Switch the names.. */
1683 	switch_names(dentry, target);
1684 	do_switch(dentry->d_name.len, target->d_name.len);
1685 	do_switch(dentry->d_name.hash, target->d_name.hash);
1686 
1687 	/* ... and switch the parents */
1688 	if (IS_ROOT(dentry)) {
1689 		dentry->d_parent = target->d_parent;
1690 		target->d_parent = target;
1691 		INIT_LIST_HEAD(&target->d_u.d_child);
1692 	} else {
1693 		do_switch(dentry->d_parent, target->d_parent);
1694 
1695 		/* And add them back to the (new) parent lists */
1696 		list_add(&target->d_u.d_child, &target->d_parent->d_subdirs);
1697 	}
1698 
1699 	list_add(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs);
1700 	spin_unlock(&target->d_lock);
1701 	fsnotify_d_move(dentry);
1702 	spin_unlock(&dentry->d_lock);
1703 	write_sequnlock(&rename_lock);
1704 }
1705 
1706 /**
1707  * d_move - move a dentry
1708  * @dentry: entry to move
1709  * @target: new dentry
1710  *
1711  * Update the dcache to reflect the move of a file name. Negative
1712  * dcache entries should not be moved in this way.
1713  */
1714 
1715 void d_move(struct dentry * dentry, struct dentry * target)
1716 {
1717 	spin_lock(&dcache_lock);
1718 	d_move_locked(dentry, target);
1719 	spin_unlock(&dcache_lock);
1720 }
1721 
1722 /**
1723  * d_ancestor - search for an ancestor
1724  * @p1: ancestor dentry
1725  * @p2: child dentry
1726  *
1727  * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
1728  * an ancestor of p2, else NULL.
1729  */
1730 struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
1731 {
1732 	struct dentry *p;
1733 
1734 	for (p = p2; !IS_ROOT(p); p = p->d_parent) {
1735 		if (p->d_parent == p1)
1736 			return p;
1737 	}
1738 	return NULL;
1739 }
1740 
1741 /*
1742  * This helper attempts to cope with remotely renamed directories
1743  *
1744  * It assumes that the caller is already holding
1745  * dentry->d_parent->d_inode->i_mutex and the dcache_lock
1746  *
1747  * Note: If ever the locking in lock_rename() changes, then please
1748  * remember to update this too...
1749  */
1750 static struct dentry *__d_unalias(struct dentry *dentry, struct dentry *alias)
1751 	__releases(dcache_lock)
1752 {
1753 	struct mutex *m1 = NULL, *m2 = NULL;
1754 	struct dentry *ret;
1755 
1756 	/* If alias and dentry share a parent, then no extra locks required */
1757 	if (alias->d_parent == dentry->d_parent)
1758 		goto out_unalias;
1759 
1760 	/* Check for loops */
1761 	ret = ERR_PTR(-ELOOP);
1762 	if (d_ancestor(alias, dentry))
1763 		goto out_err;
1764 
1765 	/* See lock_rename() */
1766 	ret = ERR_PTR(-EBUSY);
1767 	if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
1768 		goto out_err;
1769 	m1 = &dentry->d_sb->s_vfs_rename_mutex;
1770 	if (!mutex_trylock(&alias->d_parent->d_inode->i_mutex))
1771 		goto out_err;
1772 	m2 = &alias->d_parent->d_inode->i_mutex;
1773 out_unalias:
1774 	d_move_locked(alias, dentry);
1775 	ret = alias;
1776 out_err:
1777 	spin_unlock(&dcache_lock);
1778 	if (m2)
1779 		mutex_unlock(m2);
1780 	if (m1)
1781 		mutex_unlock(m1);
1782 	return ret;
1783 }
1784 
1785 /*
1786  * Prepare an anonymous dentry for life in the superblock's dentry tree as a
1787  * named dentry in place of the dentry to be replaced.
1788  */
1789 static void __d_materialise_dentry(struct dentry *dentry, struct dentry *anon)
1790 {
1791 	struct dentry *dparent, *aparent;
1792 
1793 	switch_names(dentry, anon);
1794 	do_switch(dentry->d_name.len, anon->d_name.len);
1795 	do_switch(dentry->d_name.hash, anon->d_name.hash);
1796 
1797 	dparent = dentry->d_parent;
1798 	aparent = anon->d_parent;
1799 
1800 	dentry->d_parent = (aparent == anon) ? dentry : aparent;
1801 	list_del(&dentry->d_u.d_child);
1802 	if (!IS_ROOT(dentry))
1803 		list_add(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs);
1804 	else
1805 		INIT_LIST_HEAD(&dentry->d_u.d_child);
1806 
1807 	anon->d_parent = (dparent == dentry) ? anon : dparent;
1808 	list_del(&anon->d_u.d_child);
1809 	if (!IS_ROOT(anon))
1810 		list_add(&anon->d_u.d_child, &anon->d_parent->d_subdirs);
1811 	else
1812 		INIT_LIST_HEAD(&anon->d_u.d_child);
1813 
1814 	anon->d_flags &= ~DCACHE_DISCONNECTED;
1815 }
1816 
1817 /**
1818  * d_materialise_unique - introduce an inode into the tree
1819  * @dentry: candidate dentry
1820  * @inode: inode to bind to the dentry, to which aliases may be attached
1821  *
1822  * Introduces an dentry into the tree, substituting an extant disconnected
1823  * root directory alias in its place if there is one
1824  */
1825 struct dentry *d_materialise_unique(struct dentry *dentry, struct inode *inode)
1826 {
1827 	struct dentry *actual;
1828 
1829 	BUG_ON(!d_unhashed(dentry));
1830 
1831 	spin_lock(&dcache_lock);
1832 
1833 	if (!inode) {
1834 		actual = dentry;
1835 		__d_instantiate(dentry, NULL);
1836 		goto found_lock;
1837 	}
1838 
1839 	if (S_ISDIR(inode->i_mode)) {
1840 		struct dentry *alias;
1841 
1842 		/* Does an aliased dentry already exist? */
1843 		alias = __d_find_alias(inode, 0);
1844 		if (alias) {
1845 			actual = alias;
1846 			/* Is this an anonymous mountpoint that we could splice
1847 			 * into our tree? */
1848 			if (IS_ROOT(alias)) {
1849 				spin_lock(&alias->d_lock);
1850 				__d_materialise_dentry(dentry, alias);
1851 				__d_drop(alias);
1852 				goto found;
1853 			}
1854 			/* Nope, but we must(!) avoid directory aliasing */
1855 			actual = __d_unalias(dentry, alias);
1856 			if (IS_ERR(actual))
1857 				dput(alias);
1858 			goto out_nolock;
1859 		}
1860 	}
1861 
1862 	/* Add a unique reference */
1863 	actual = __d_instantiate_unique(dentry, inode);
1864 	if (!actual)
1865 		actual = dentry;
1866 	else if (unlikely(!d_unhashed(actual)))
1867 		goto shouldnt_be_hashed;
1868 
1869 found_lock:
1870 	spin_lock(&actual->d_lock);
1871 found:
1872 	_d_rehash(actual);
1873 	spin_unlock(&actual->d_lock);
1874 	spin_unlock(&dcache_lock);
1875 out_nolock:
1876 	if (actual == dentry) {
1877 		security_d_instantiate(dentry, inode);
1878 		return NULL;
1879 	}
1880 
1881 	iput(inode);
1882 	return actual;
1883 
1884 shouldnt_be_hashed:
1885 	spin_unlock(&dcache_lock);
1886 	BUG();
1887 }
1888 
1889 static int prepend(char **buffer, int *buflen, const char *str, int namelen)
1890 {
1891 	*buflen -= namelen;
1892 	if (*buflen < 0)
1893 		return -ENAMETOOLONG;
1894 	*buffer -= namelen;
1895 	memcpy(*buffer, str, namelen);
1896 	return 0;
1897 }
1898 
1899 static int prepend_name(char **buffer, int *buflen, struct qstr *name)
1900 {
1901 	return prepend(buffer, buflen, name->name, name->len);
1902 }
1903 
1904 /**
1905  * __d_path - return the path of a dentry
1906  * @path: the dentry/vfsmount to report
1907  * @root: root vfsmnt/dentry (may be modified by this function)
1908  * @buffer: buffer to return value in
1909  * @buflen: buffer length
1910  *
1911  * Convert a dentry into an ASCII path name. If the entry has been deleted
1912  * the string " (deleted)" is appended. Note that this is ambiguous.
1913  *
1914  * Returns the buffer or an error code if the path was too long.
1915  *
1916  * "buflen" should be positive. Caller holds the dcache_lock.
1917  *
1918  * If path is not reachable from the supplied root, then the value of
1919  * root is changed (without modifying refcounts).
1920  */
1921 char *__d_path(const struct path *path, struct path *root,
1922 	       char *buffer, int buflen)
1923 {
1924 	struct dentry *dentry = path->dentry;
1925 	struct vfsmount *vfsmnt = path->mnt;
1926 	char *end = buffer + buflen;
1927 	char *retval;
1928 
1929 	spin_lock(&vfsmount_lock);
1930 	prepend(&end, &buflen, "\0", 1);
1931 	if (!IS_ROOT(dentry) && d_unhashed(dentry) &&
1932 		(prepend(&end, &buflen, " (deleted)", 10) != 0))
1933 			goto Elong;
1934 
1935 	if (buflen < 1)
1936 		goto Elong;
1937 	/* Get '/' right */
1938 	retval = end-1;
1939 	*retval = '/';
1940 
1941 	for (;;) {
1942 		struct dentry * parent;
1943 
1944 		if (dentry == root->dentry && vfsmnt == root->mnt)
1945 			break;
1946 		if (dentry == vfsmnt->mnt_root || IS_ROOT(dentry)) {
1947 			/* Global root? */
1948 			if (vfsmnt->mnt_parent == vfsmnt) {
1949 				goto global_root;
1950 			}
1951 			dentry = vfsmnt->mnt_mountpoint;
1952 			vfsmnt = vfsmnt->mnt_parent;
1953 			continue;
1954 		}
1955 		parent = dentry->d_parent;
1956 		prefetch(parent);
1957 		if ((prepend_name(&end, &buflen, &dentry->d_name) != 0) ||
1958 		    (prepend(&end, &buflen, "/", 1) != 0))
1959 			goto Elong;
1960 		retval = end;
1961 		dentry = parent;
1962 	}
1963 
1964 out:
1965 	spin_unlock(&vfsmount_lock);
1966 	return retval;
1967 
1968 global_root:
1969 	retval += 1;	/* hit the slash */
1970 	if (prepend_name(&retval, &buflen, &dentry->d_name) != 0)
1971 		goto Elong;
1972 	root->mnt = vfsmnt;
1973 	root->dentry = dentry;
1974 	goto out;
1975 
1976 Elong:
1977 	retval = ERR_PTR(-ENAMETOOLONG);
1978 	goto out;
1979 }
1980 
1981 /**
1982  * d_path - return the path of a dentry
1983  * @path: path to report
1984  * @buf: buffer to return value in
1985  * @buflen: buffer length
1986  *
1987  * Convert a dentry into an ASCII path name. If the entry has been deleted
1988  * the string " (deleted)" is appended. Note that this is ambiguous.
1989  *
1990  * Returns the buffer or an error code if the path was too long.
1991  *
1992  * "buflen" should be positive.
1993  */
1994 char *d_path(const struct path *path, char *buf, int buflen)
1995 {
1996 	char *res;
1997 	struct path root;
1998 	struct path tmp;
1999 
2000 	/*
2001 	 * We have various synthetic filesystems that never get mounted.  On
2002 	 * these filesystems dentries are never used for lookup purposes, and
2003 	 * thus don't need to be hashed.  They also don't need a name until a
2004 	 * user wants to identify the object in /proc/pid/fd/.  The little hack
2005 	 * below allows us to generate a name for these objects on demand:
2006 	 */
2007 	if (path->dentry->d_op && path->dentry->d_op->d_dname)
2008 		return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
2009 
2010 	read_lock(&current->fs->lock);
2011 	root = current->fs->root;
2012 	path_get(&root);
2013 	read_unlock(&current->fs->lock);
2014 	spin_lock(&dcache_lock);
2015 	tmp = root;
2016 	res = __d_path(path, &tmp, buf, buflen);
2017 	spin_unlock(&dcache_lock);
2018 	path_put(&root);
2019 	return res;
2020 }
2021 
2022 /*
2023  * Helper function for dentry_operations.d_dname() members
2024  */
2025 char *dynamic_dname(struct dentry *dentry, char *buffer, int buflen,
2026 			const char *fmt, ...)
2027 {
2028 	va_list args;
2029 	char temp[64];
2030 	int sz;
2031 
2032 	va_start(args, fmt);
2033 	sz = vsnprintf(temp, sizeof(temp), fmt, args) + 1;
2034 	va_end(args);
2035 
2036 	if (sz > sizeof(temp) || sz > buflen)
2037 		return ERR_PTR(-ENAMETOOLONG);
2038 
2039 	buffer += buflen - sz;
2040 	return memcpy(buffer, temp, sz);
2041 }
2042 
2043 /*
2044  * Write full pathname from the root of the filesystem into the buffer.
2045  */
2046 char *dentry_path(struct dentry *dentry, char *buf, int buflen)
2047 {
2048 	char *end = buf + buflen;
2049 	char *retval;
2050 
2051 	spin_lock(&dcache_lock);
2052 	prepend(&end, &buflen, "\0", 1);
2053 	if (!IS_ROOT(dentry) && d_unhashed(dentry) &&
2054 		(prepend(&end, &buflen, "//deleted", 9) != 0))
2055 			goto Elong;
2056 	if (buflen < 1)
2057 		goto Elong;
2058 	/* Get '/' right */
2059 	retval = end-1;
2060 	*retval = '/';
2061 
2062 	while (!IS_ROOT(dentry)) {
2063 		struct dentry *parent = dentry->d_parent;
2064 
2065 		prefetch(parent);
2066 		if ((prepend_name(&end, &buflen, &dentry->d_name) != 0) ||
2067 		    (prepend(&end, &buflen, "/", 1) != 0))
2068 			goto Elong;
2069 
2070 		retval = end;
2071 		dentry = parent;
2072 	}
2073 	spin_unlock(&dcache_lock);
2074 	return retval;
2075 Elong:
2076 	spin_unlock(&dcache_lock);
2077 	return ERR_PTR(-ENAMETOOLONG);
2078 }
2079 
2080 /*
2081  * NOTE! The user-level library version returns a
2082  * character pointer. The kernel system call just
2083  * returns the length of the buffer filled (which
2084  * includes the ending '\0' character), or a negative
2085  * error value. So libc would do something like
2086  *
2087  *	char *getcwd(char * buf, size_t size)
2088  *	{
2089  *		int retval;
2090  *
2091  *		retval = sys_getcwd(buf, size);
2092  *		if (retval >= 0)
2093  *			return buf;
2094  *		errno = -retval;
2095  *		return NULL;
2096  *	}
2097  */
2098 asmlinkage long sys_getcwd(char __user *buf, unsigned long size)
2099 {
2100 	int error;
2101 	struct path pwd, root;
2102 	char *page = (char *) __get_free_page(GFP_USER);
2103 
2104 	if (!page)
2105 		return -ENOMEM;
2106 
2107 	read_lock(&current->fs->lock);
2108 	pwd = current->fs->pwd;
2109 	path_get(&pwd);
2110 	root = current->fs->root;
2111 	path_get(&root);
2112 	read_unlock(&current->fs->lock);
2113 
2114 	error = -ENOENT;
2115 	/* Has the current directory has been unlinked? */
2116 	spin_lock(&dcache_lock);
2117 	if (IS_ROOT(pwd.dentry) || !d_unhashed(pwd.dentry)) {
2118 		unsigned long len;
2119 		struct path tmp = root;
2120 		char * cwd;
2121 
2122 		cwd = __d_path(&pwd, &tmp, page, PAGE_SIZE);
2123 		spin_unlock(&dcache_lock);
2124 
2125 		error = PTR_ERR(cwd);
2126 		if (IS_ERR(cwd))
2127 			goto out;
2128 
2129 		error = -ERANGE;
2130 		len = PAGE_SIZE + page - cwd;
2131 		if (len <= size) {
2132 			error = len;
2133 			if (copy_to_user(buf, cwd, len))
2134 				error = -EFAULT;
2135 		}
2136 	} else
2137 		spin_unlock(&dcache_lock);
2138 
2139 out:
2140 	path_put(&pwd);
2141 	path_put(&root);
2142 	free_page((unsigned long) page);
2143 	return error;
2144 }
2145 
2146 /*
2147  * Test whether new_dentry is a subdirectory of old_dentry.
2148  *
2149  * Trivially implemented using the dcache structure
2150  */
2151 
2152 /**
2153  * is_subdir - is new dentry a subdirectory of old_dentry
2154  * @new_dentry: new dentry
2155  * @old_dentry: old dentry
2156  *
2157  * Returns 1 if new_dentry is a subdirectory of the parent (at any depth).
2158  * Returns 0 otherwise.
2159  * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
2160  */
2161 
2162 int is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
2163 {
2164 	int result;
2165 	unsigned long seq;
2166 
2167 	/* FIXME: This is old behavior, needed? Please check callers. */
2168 	if (new_dentry == old_dentry)
2169 		return 1;
2170 
2171 	/*
2172 	 * Need rcu_readlock to protect against the d_parent trashing
2173 	 * due to d_move
2174 	 */
2175 	rcu_read_lock();
2176 	do {
2177 		/* for restarting inner loop in case of seq retry */
2178 		seq = read_seqbegin(&rename_lock);
2179 		if (d_ancestor(old_dentry, new_dentry))
2180 			result = 1;
2181 		else
2182 			result = 0;
2183 	} while (read_seqretry(&rename_lock, seq));
2184 	rcu_read_unlock();
2185 
2186 	return result;
2187 }
2188 
2189 void d_genocide(struct dentry *root)
2190 {
2191 	struct dentry *this_parent = root;
2192 	struct list_head *next;
2193 
2194 	spin_lock(&dcache_lock);
2195 repeat:
2196 	next = this_parent->d_subdirs.next;
2197 resume:
2198 	while (next != &this_parent->d_subdirs) {
2199 		struct list_head *tmp = next;
2200 		struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
2201 		next = tmp->next;
2202 		if (d_unhashed(dentry)||!dentry->d_inode)
2203 			continue;
2204 		if (!list_empty(&dentry->d_subdirs)) {
2205 			this_parent = dentry;
2206 			goto repeat;
2207 		}
2208 		atomic_dec(&dentry->d_count);
2209 	}
2210 	if (this_parent != root) {
2211 		next = this_parent->d_u.d_child.next;
2212 		atomic_dec(&this_parent->d_count);
2213 		this_parent = this_parent->d_parent;
2214 		goto resume;
2215 	}
2216 	spin_unlock(&dcache_lock);
2217 }
2218 
2219 /**
2220  * find_inode_number - check for dentry with name
2221  * @dir: directory to check
2222  * @name: Name to find.
2223  *
2224  * Check whether a dentry already exists for the given name,
2225  * and return the inode number if it has an inode. Otherwise
2226  * 0 is returned.
2227  *
2228  * This routine is used to post-process directory listings for
2229  * filesystems using synthetic inode numbers, and is necessary
2230  * to keep getcwd() working.
2231  */
2232 
2233 ino_t find_inode_number(struct dentry *dir, struct qstr *name)
2234 {
2235 	struct dentry * dentry;
2236 	ino_t ino = 0;
2237 
2238 	dentry = d_hash_and_lookup(dir, name);
2239 	if (dentry) {
2240 		if (dentry->d_inode)
2241 			ino = dentry->d_inode->i_ino;
2242 		dput(dentry);
2243 	}
2244 	return ino;
2245 }
2246 
2247 static __initdata unsigned long dhash_entries;
2248 static int __init set_dhash_entries(char *str)
2249 {
2250 	if (!str)
2251 		return 0;
2252 	dhash_entries = simple_strtoul(str, &str, 0);
2253 	return 1;
2254 }
2255 __setup("dhash_entries=", set_dhash_entries);
2256 
2257 static void __init dcache_init_early(void)
2258 {
2259 	int loop;
2260 
2261 	/* If hashes are distributed across NUMA nodes, defer
2262 	 * hash allocation until vmalloc space is available.
2263 	 */
2264 	if (hashdist)
2265 		return;
2266 
2267 	dentry_hashtable =
2268 		alloc_large_system_hash("Dentry cache",
2269 					sizeof(struct hlist_head),
2270 					dhash_entries,
2271 					13,
2272 					HASH_EARLY,
2273 					&d_hash_shift,
2274 					&d_hash_mask,
2275 					0);
2276 
2277 	for (loop = 0; loop < (1 << d_hash_shift); loop++)
2278 		INIT_HLIST_HEAD(&dentry_hashtable[loop]);
2279 }
2280 
2281 static void __init dcache_init(void)
2282 {
2283 	int loop;
2284 
2285 	/*
2286 	 * A constructor could be added for stable state like the lists,
2287 	 * but it is probably not worth it because of the cache nature
2288 	 * of the dcache.
2289 	 */
2290 	dentry_cache = KMEM_CACHE(dentry,
2291 		SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD);
2292 
2293 	register_shrinker(&dcache_shrinker);
2294 
2295 	/* Hash may have been set up in dcache_init_early */
2296 	if (!hashdist)
2297 		return;
2298 
2299 	dentry_hashtable =
2300 		alloc_large_system_hash("Dentry cache",
2301 					sizeof(struct hlist_head),
2302 					dhash_entries,
2303 					13,
2304 					0,
2305 					&d_hash_shift,
2306 					&d_hash_mask,
2307 					0);
2308 
2309 	for (loop = 0; loop < (1 << d_hash_shift); loop++)
2310 		INIT_HLIST_HEAD(&dentry_hashtable[loop]);
2311 }
2312 
2313 /* SLAB cache for __getname() consumers */
2314 struct kmem_cache *names_cachep __read_mostly;
2315 
2316 /* SLAB cache for file structures */
2317 struct kmem_cache *filp_cachep __read_mostly;
2318 
2319 EXPORT_SYMBOL(d_genocide);
2320 
2321 void __init vfs_caches_init_early(void)
2322 {
2323 	dcache_init_early();
2324 	inode_init_early();
2325 }
2326 
2327 void __init vfs_caches_init(unsigned long mempages)
2328 {
2329 	unsigned long reserve;
2330 
2331 	/* Base hash sizes on available memory, with a reserve equal to
2332            150% of current kernel size */
2333 
2334 	reserve = min((mempages - nr_free_pages()) * 3/2, mempages - 1);
2335 	mempages -= reserve;
2336 
2337 	names_cachep = kmem_cache_create("names_cache", PATH_MAX, 0,
2338 			SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
2339 
2340 	filp_cachep = kmem_cache_create("filp", sizeof(struct file), 0,
2341 			SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
2342 
2343 	dcache_init();
2344 	inode_init();
2345 	files_init(mempages);
2346 	mnt_init();
2347 	bdev_cache_init();
2348 	chrdev_init();
2349 }
2350 
2351 EXPORT_SYMBOL(d_alloc);
2352 EXPORT_SYMBOL(d_alloc_root);
2353 EXPORT_SYMBOL(d_delete);
2354 EXPORT_SYMBOL(d_find_alias);
2355 EXPORT_SYMBOL(d_instantiate);
2356 EXPORT_SYMBOL(d_invalidate);
2357 EXPORT_SYMBOL(d_lookup);
2358 EXPORT_SYMBOL(d_move);
2359 EXPORT_SYMBOL_GPL(d_materialise_unique);
2360 EXPORT_SYMBOL(d_path);
2361 EXPORT_SYMBOL(d_prune_aliases);
2362 EXPORT_SYMBOL(d_rehash);
2363 EXPORT_SYMBOL(d_splice_alias);
2364 EXPORT_SYMBOL(d_add_ci);
2365 EXPORT_SYMBOL(d_validate);
2366 EXPORT_SYMBOL(dget_locked);
2367 EXPORT_SYMBOL(dput);
2368 EXPORT_SYMBOL(find_inode_number);
2369 EXPORT_SYMBOL(have_submounts);
2370 EXPORT_SYMBOL(names_cachep);
2371 EXPORT_SYMBOL(shrink_dcache_parent);
2372 EXPORT_SYMBOL(shrink_dcache_sb);
2373