xref: /openbmc/linux/fs/dcache.c (revision 8e9356c6)
1 /*
2  * fs/dcache.c
3  *
4  * Complete reimplementation
5  * (C) 1997 Thomas Schoebel-Theuer,
6  * with heavy changes by Linus Torvalds
7  */
8 
9 /*
10  * Notes on the allocation strategy:
11  *
12  * The dcache is a master of the icache - whenever a dcache entry
13  * exists, the inode will always exist. "iput()" is done either when
14  * the dcache entry is deleted or garbage collected.
15  */
16 
17 #include <linux/syscalls.h>
18 #include <linux/string.h>
19 #include <linux/mm.h>
20 #include <linux/fs.h>
21 #include <linux/fsnotify.h>
22 #include <linux/slab.h>
23 #include <linux/init.h>
24 #include <linux/hash.h>
25 #include <linux/cache.h>
26 #include <linux/export.h>
27 #include <linux/mount.h>
28 #include <linux/file.h>
29 #include <asm/uaccess.h>
30 #include <linux/security.h>
31 #include <linux/seqlock.h>
32 #include <linux/swap.h>
33 #include <linux/bootmem.h>
34 #include <linux/fs_struct.h>
35 #include <linux/hardirq.h>
36 #include <linux/bit_spinlock.h>
37 #include <linux/rculist_bl.h>
38 #include <linux/prefetch.h>
39 #include <linux/ratelimit.h>
40 #include <linux/list_lru.h>
41 #include "internal.h"
42 #include "mount.h"
43 
44 /*
45  * Usage:
46  * dcache->d_inode->i_lock protects:
47  *   - i_dentry, d_alias, d_inode of aliases
48  * dcache_hash_bucket lock protects:
49  *   - the dcache hash table
50  * s_anon bl list spinlock protects:
51  *   - the s_anon list (see __d_drop)
52  * dentry->d_sb->s_dentry_lru_lock protects:
53  *   - the dcache lru lists and counters
54  * d_lock protects:
55  *   - d_flags
56  *   - d_name
57  *   - d_lru
58  *   - d_count
59  *   - d_unhashed()
60  *   - d_parent and d_subdirs
61  *   - childrens' d_child and d_parent
62  *   - d_alias, d_inode
63  *
64  * Ordering:
65  * dentry->d_inode->i_lock
66  *   dentry->d_lock
67  *     dentry->d_sb->s_dentry_lru_lock
68  *     dcache_hash_bucket lock
69  *     s_anon lock
70  *
71  * If there is an ancestor relationship:
72  * dentry->d_parent->...->d_parent->d_lock
73  *   ...
74  *     dentry->d_parent->d_lock
75  *       dentry->d_lock
76  *
77  * If no ancestor relationship:
78  * if (dentry1 < dentry2)
79  *   dentry1->d_lock
80  *     dentry2->d_lock
81  */
82 int sysctl_vfs_cache_pressure __read_mostly = 100;
83 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
84 
85 __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
86 
87 EXPORT_SYMBOL(rename_lock);
88 
89 static struct kmem_cache *dentry_cache __read_mostly;
90 
91 /*
92  * This is the single most critical data structure when it comes
93  * to the dcache: the hashtable for lookups. Somebody should try
94  * to make this good - I've just made it work.
95  *
96  * This hash-function tries to avoid losing too many bits of hash
97  * information, yet avoid using a prime hash-size or similar.
98  */
99 
100 static unsigned int d_hash_mask __read_mostly;
101 static unsigned int d_hash_shift __read_mostly;
102 
103 static struct hlist_bl_head *dentry_hashtable __read_mostly;
104 
105 static inline struct hlist_bl_head *d_hash(const struct dentry *parent,
106 					unsigned int hash)
107 {
108 	hash += (unsigned long) parent / L1_CACHE_BYTES;
109 	hash = hash + (hash >> d_hash_shift);
110 	return dentry_hashtable + (hash & d_hash_mask);
111 }
112 
113 /* Statistics gathering. */
114 struct dentry_stat_t dentry_stat = {
115 	.age_limit = 45,
116 };
117 
118 static DEFINE_PER_CPU(long, nr_dentry);
119 static DEFINE_PER_CPU(long, nr_dentry_unused);
120 
121 #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
122 
123 /*
124  * Here we resort to our own counters instead of using generic per-cpu counters
125  * for consistency with what the vfs inode code does. We are expected to harvest
126  * better code and performance by having our own specialized counters.
127  *
128  * Please note that the loop is done over all possible CPUs, not over all online
129  * CPUs. The reason for this is that we don't want to play games with CPUs going
130  * on and off. If one of them goes off, we will just keep their counters.
131  *
132  * glommer: See cffbc8a for details, and if you ever intend to change this,
133  * please update all vfs counters to match.
134  */
135 static long get_nr_dentry(void)
136 {
137 	int i;
138 	long sum = 0;
139 	for_each_possible_cpu(i)
140 		sum += per_cpu(nr_dentry, i);
141 	return sum < 0 ? 0 : sum;
142 }
143 
144 static long get_nr_dentry_unused(void)
145 {
146 	int i;
147 	long sum = 0;
148 	for_each_possible_cpu(i)
149 		sum += per_cpu(nr_dentry_unused, i);
150 	return sum < 0 ? 0 : sum;
151 }
152 
153 int proc_nr_dentry(ctl_table *table, int write, void __user *buffer,
154 		   size_t *lenp, loff_t *ppos)
155 {
156 	dentry_stat.nr_dentry = get_nr_dentry();
157 	dentry_stat.nr_unused = get_nr_dentry_unused();
158 	return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
159 }
160 #endif
161 
162 /*
163  * Compare 2 name strings, return 0 if they match, otherwise non-zero.
164  * The strings are both count bytes long, and count is non-zero.
165  */
166 #ifdef CONFIG_DCACHE_WORD_ACCESS
167 
168 #include <asm/word-at-a-time.h>
169 /*
170  * NOTE! 'cs' and 'scount' come from a dentry, so it has a
171  * aligned allocation for this particular component. We don't
172  * strictly need the load_unaligned_zeropad() safety, but it
173  * doesn't hurt either.
174  *
175  * In contrast, 'ct' and 'tcount' can be from a pathname, and do
176  * need the careful unaligned handling.
177  */
178 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
179 {
180 	unsigned long a,b,mask;
181 
182 	for (;;) {
183 		a = *(unsigned long *)cs;
184 		b = load_unaligned_zeropad(ct);
185 		if (tcount < sizeof(unsigned long))
186 			break;
187 		if (unlikely(a != b))
188 			return 1;
189 		cs += sizeof(unsigned long);
190 		ct += sizeof(unsigned long);
191 		tcount -= sizeof(unsigned long);
192 		if (!tcount)
193 			return 0;
194 	}
195 	mask = bytemask_from_count(tcount);
196 	return unlikely(!!((a ^ b) & mask));
197 }
198 
199 #else
200 
201 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
202 {
203 	do {
204 		if (*cs != *ct)
205 			return 1;
206 		cs++;
207 		ct++;
208 		tcount--;
209 	} while (tcount);
210 	return 0;
211 }
212 
213 #endif
214 
215 static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount)
216 {
217 	const unsigned char *cs;
218 	/*
219 	 * Be careful about RCU walk racing with rename:
220 	 * use ACCESS_ONCE to fetch the name pointer.
221 	 *
222 	 * NOTE! Even if a rename will mean that the length
223 	 * was not loaded atomically, we don't care. The
224 	 * RCU walk will check the sequence count eventually,
225 	 * and catch it. And we won't overrun the buffer,
226 	 * because we're reading the name pointer atomically,
227 	 * and a dentry name is guaranteed to be properly
228 	 * terminated with a NUL byte.
229 	 *
230 	 * End result: even if 'len' is wrong, we'll exit
231 	 * early because the data cannot match (there can
232 	 * be no NUL in the ct/tcount data)
233 	 */
234 	cs = ACCESS_ONCE(dentry->d_name.name);
235 	smp_read_barrier_depends();
236 	return dentry_string_cmp(cs, ct, tcount);
237 }
238 
239 static void __d_free(struct rcu_head *head)
240 {
241 	struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
242 
243 	WARN_ON(!hlist_unhashed(&dentry->d_alias));
244 	if (dname_external(dentry))
245 		kfree(dentry->d_name.name);
246 	kmem_cache_free(dentry_cache, dentry);
247 }
248 
249 /*
250  * no locks, please.
251  */
252 static void d_free(struct dentry *dentry)
253 {
254 	BUG_ON((int)dentry->d_lockref.count > 0);
255 	this_cpu_dec(nr_dentry);
256 	if (dentry->d_op && dentry->d_op->d_release)
257 		dentry->d_op->d_release(dentry);
258 
259 	/* if dentry was never visible to RCU, immediate free is OK */
260 	if (!(dentry->d_flags & DCACHE_RCUACCESS))
261 		__d_free(&dentry->d_u.d_rcu);
262 	else
263 		call_rcu(&dentry->d_u.d_rcu, __d_free);
264 }
265 
266 /**
267  * dentry_rcuwalk_barrier - invalidate in-progress rcu-walk lookups
268  * @dentry: the target dentry
269  * After this call, in-progress rcu-walk path lookup will fail. This
270  * should be called after unhashing, and after changing d_inode (if
271  * the dentry has not already been unhashed).
272  */
273 static inline void dentry_rcuwalk_barrier(struct dentry *dentry)
274 {
275 	assert_spin_locked(&dentry->d_lock);
276 	/* Go through a barrier */
277 	write_seqcount_barrier(&dentry->d_seq);
278 }
279 
280 /*
281  * Release the dentry's inode, using the filesystem
282  * d_iput() operation if defined. Dentry has no refcount
283  * and is unhashed.
284  */
285 static void dentry_iput(struct dentry * dentry)
286 	__releases(dentry->d_lock)
287 	__releases(dentry->d_inode->i_lock)
288 {
289 	struct inode *inode = dentry->d_inode;
290 	if (inode) {
291 		dentry->d_inode = NULL;
292 		hlist_del_init(&dentry->d_alias);
293 		spin_unlock(&dentry->d_lock);
294 		spin_unlock(&inode->i_lock);
295 		if (!inode->i_nlink)
296 			fsnotify_inoderemove(inode);
297 		if (dentry->d_op && dentry->d_op->d_iput)
298 			dentry->d_op->d_iput(dentry, inode);
299 		else
300 			iput(inode);
301 	} else {
302 		spin_unlock(&dentry->d_lock);
303 	}
304 }
305 
306 /*
307  * Release the dentry's inode, using the filesystem
308  * d_iput() operation if defined. dentry remains in-use.
309  */
310 static void dentry_unlink_inode(struct dentry * dentry)
311 	__releases(dentry->d_lock)
312 	__releases(dentry->d_inode->i_lock)
313 {
314 	struct inode *inode = dentry->d_inode;
315 	__d_clear_type(dentry);
316 	dentry->d_inode = NULL;
317 	hlist_del_init(&dentry->d_alias);
318 	dentry_rcuwalk_barrier(dentry);
319 	spin_unlock(&dentry->d_lock);
320 	spin_unlock(&inode->i_lock);
321 	if (!inode->i_nlink)
322 		fsnotify_inoderemove(inode);
323 	if (dentry->d_op && dentry->d_op->d_iput)
324 		dentry->d_op->d_iput(dentry, inode);
325 	else
326 		iput(inode);
327 }
328 
329 /*
330  * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry
331  * is in use - which includes both the "real" per-superblock
332  * LRU list _and_ the DCACHE_SHRINK_LIST use.
333  *
334  * The DCACHE_SHRINK_LIST bit is set whenever the dentry is
335  * on the shrink list (ie not on the superblock LRU list).
336  *
337  * The per-cpu "nr_dentry_unused" counters are updated with
338  * the DCACHE_LRU_LIST bit.
339  *
340  * These helper functions make sure we always follow the
341  * rules. d_lock must be held by the caller.
342  */
343 #define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x))
344 static void d_lru_add(struct dentry *dentry)
345 {
346 	D_FLAG_VERIFY(dentry, 0);
347 	dentry->d_flags |= DCACHE_LRU_LIST;
348 	this_cpu_inc(nr_dentry_unused);
349 	WARN_ON_ONCE(!list_lru_add(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
350 }
351 
352 static void d_lru_del(struct dentry *dentry)
353 {
354 	D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
355 	dentry->d_flags &= ~DCACHE_LRU_LIST;
356 	this_cpu_dec(nr_dentry_unused);
357 	WARN_ON_ONCE(!list_lru_del(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
358 }
359 
360 static void d_shrink_del(struct dentry *dentry)
361 {
362 	D_FLAG_VERIFY(dentry, DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
363 	list_del_init(&dentry->d_lru);
364 	dentry->d_flags &= ~(DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
365 	this_cpu_dec(nr_dentry_unused);
366 }
367 
368 static void d_shrink_add(struct dentry *dentry, struct list_head *list)
369 {
370 	D_FLAG_VERIFY(dentry, 0);
371 	list_add(&dentry->d_lru, list);
372 	dentry->d_flags |= DCACHE_SHRINK_LIST | DCACHE_LRU_LIST;
373 	this_cpu_inc(nr_dentry_unused);
374 }
375 
376 /*
377  * These can only be called under the global LRU lock, ie during the
378  * callback for freeing the LRU list. "isolate" removes it from the
379  * LRU lists entirely, while shrink_move moves it to the indicated
380  * private list.
381  */
382 static void d_lru_isolate(struct dentry *dentry)
383 {
384 	D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
385 	dentry->d_flags &= ~DCACHE_LRU_LIST;
386 	this_cpu_dec(nr_dentry_unused);
387 	list_del_init(&dentry->d_lru);
388 }
389 
390 static void d_lru_shrink_move(struct dentry *dentry, struct list_head *list)
391 {
392 	D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
393 	dentry->d_flags |= DCACHE_SHRINK_LIST;
394 	list_move_tail(&dentry->d_lru, list);
395 }
396 
397 /*
398  * dentry_lru_(add|del)_list) must be called with d_lock held.
399  */
400 static void dentry_lru_add(struct dentry *dentry)
401 {
402 	if (unlikely(!(dentry->d_flags & DCACHE_LRU_LIST)))
403 		d_lru_add(dentry);
404 }
405 
406 /*
407  * Remove a dentry with references from the LRU.
408  *
409  * If we are on the shrink list, then we can get to try_prune_one_dentry() and
410  * lose our last reference through the parent walk. In this case, we need to
411  * remove ourselves from the shrink list, not the LRU.
412  */
413 static void dentry_lru_del(struct dentry *dentry)
414 {
415 	if (dentry->d_flags & DCACHE_LRU_LIST) {
416 		if (dentry->d_flags & DCACHE_SHRINK_LIST)
417 			return d_shrink_del(dentry);
418 		d_lru_del(dentry);
419 	}
420 }
421 
422 /**
423  * d_kill - kill dentry and return parent
424  * @dentry: dentry to kill
425  * @parent: parent dentry
426  *
427  * The dentry must already be unhashed and removed from the LRU.
428  *
429  * If this is the root of the dentry tree, return NULL.
430  *
431  * dentry->d_lock and parent->d_lock must be held by caller, and are dropped by
432  * d_kill.
433  */
434 static struct dentry *d_kill(struct dentry *dentry, struct dentry *parent)
435 	__releases(dentry->d_lock)
436 	__releases(parent->d_lock)
437 	__releases(dentry->d_inode->i_lock)
438 {
439 	list_del(&dentry->d_u.d_child);
440 	/*
441 	 * Inform d_walk() that we are no longer attached to the
442 	 * dentry tree
443 	 */
444 	dentry->d_flags |= DCACHE_DENTRY_KILLED;
445 	if (parent)
446 		spin_unlock(&parent->d_lock);
447 	dentry_iput(dentry);
448 	/*
449 	 * dentry_iput drops the locks, at which point nobody (except
450 	 * transient RCU lookups) can reach this dentry.
451 	 */
452 	d_free(dentry);
453 	return parent;
454 }
455 
456 /**
457  * d_drop - drop a dentry
458  * @dentry: dentry to drop
459  *
460  * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
461  * be found through a VFS lookup any more. Note that this is different from
462  * deleting the dentry - d_delete will try to mark the dentry negative if
463  * possible, giving a successful _negative_ lookup, while d_drop will
464  * just make the cache lookup fail.
465  *
466  * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
467  * reason (NFS timeouts or autofs deletes).
468  *
469  * __d_drop requires dentry->d_lock.
470  */
471 void __d_drop(struct dentry *dentry)
472 {
473 	if (!d_unhashed(dentry)) {
474 		struct hlist_bl_head *b;
475 		/*
476 		 * Hashed dentries are normally on the dentry hashtable,
477 		 * with the exception of those newly allocated by
478 		 * d_obtain_alias, which are always IS_ROOT:
479 		 */
480 		if (unlikely(IS_ROOT(dentry)))
481 			b = &dentry->d_sb->s_anon;
482 		else
483 			b = d_hash(dentry->d_parent, dentry->d_name.hash);
484 
485 		hlist_bl_lock(b);
486 		__hlist_bl_del(&dentry->d_hash);
487 		dentry->d_hash.pprev = NULL;
488 		hlist_bl_unlock(b);
489 		dentry_rcuwalk_barrier(dentry);
490 	}
491 }
492 EXPORT_SYMBOL(__d_drop);
493 
494 void d_drop(struct dentry *dentry)
495 {
496 	spin_lock(&dentry->d_lock);
497 	__d_drop(dentry);
498 	spin_unlock(&dentry->d_lock);
499 }
500 EXPORT_SYMBOL(d_drop);
501 
502 /*
503  * Finish off a dentry we've decided to kill.
504  * dentry->d_lock must be held, returns with it unlocked.
505  * If ref is non-zero, then decrement the refcount too.
506  * Returns dentry requiring refcount drop, or NULL if we're done.
507  */
508 static struct dentry *
509 dentry_kill(struct dentry *dentry, int unlock_on_failure)
510 	__releases(dentry->d_lock)
511 {
512 	struct inode *inode;
513 	struct dentry *parent;
514 
515 	inode = dentry->d_inode;
516 	if (inode && !spin_trylock(&inode->i_lock)) {
517 relock:
518 		if (unlock_on_failure) {
519 			spin_unlock(&dentry->d_lock);
520 			cpu_relax();
521 		}
522 		return dentry; /* try again with same dentry */
523 	}
524 	if (IS_ROOT(dentry))
525 		parent = NULL;
526 	else
527 		parent = dentry->d_parent;
528 	if (parent && !spin_trylock(&parent->d_lock)) {
529 		if (inode)
530 			spin_unlock(&inode->i_lock);
531 		goto relock;
532 	}
533 
534 	/*
535 	 * The dentry is now unrecoverably dead to the world.
536 	 */
537 	lockref_mark_dead(&dentry->d_lockref);
538 
539 	/*
540 	 * inform the fs via d_prune that this dentry is about to be
541 	 * unhashed and destroyed.
542 	 */
543 	if ((dentry->d_flags & DCACHE_OP_PRUNE) && !d_unhashed(dentry))
544 		dentry->d_op->d_prune(dentry);
545 
546 	dentry_lru_del(dentry);
547 	/* if it was on the hash then remove it */
548 	__d_drop(dentry);
549 	return d_kill(dentry, parent);
550 }
551 
552 /*
553  * This is dput
554  *
555  * This is complicated by the fact that we do not want to put
556  * dentries that are no longer on any hash chain on the unused
557  * list: we'd much rather just get rid of them immediately.
558  *
559  * However, that implies that we have to traverse the dentry
560  * tree upwards to the parents which might _also_ now be
561  * scheduled for deletion (it may have been only waiting for
562  * its last child to go away).
563  *
564  * This tail recursion is done by hand as we don't want to depend
565  * on the compiler to always get this right (gcc generally doesn't).
566  * Real recursion would eat up our stack space.
567  */
568 
569 /*
570  * dput - release a dentry
571  * @dentry: dentry to release
572  *
573  * Release a dentry. This will drop the usage count and if appropriate
574  * call the dentry unlink method as well as removing it from the queues and
575  * releasing its resources. If the parent dentries were scheduled for release
576  * they too may now get deleted.
577  */
578 void dput(struct dentry *dentry)
579 {
580 	if (unlikely(!dentry))
581 		return;
582 
583 repeat:
584 	if (lockref_put_or_lock(&dentry->d_lockref))
585 		return;
586 
587 	/* Unreachable? Get rid of it */
588 	if (unlikely(d_unhashed(dentry)))
589 		goto kill_it;
590 
591 	if (unlikely(dentry->d_flags & DCACHE_OP_DELETE)) {
592 		if (dentry->d_op->d_delete(dentry))
593 			goto kill_it;
594 	}
595 
596 	if (!(dentry->d_flags & DCACHE_REFERENCED))
597 		dentry->d_flags |= DCACHE_REFERENCED;
598 	dentry_lru_add(dentry);
599 
600 	dentry->d_lockref.count--;
601 	spin_unlock(&dentry->d_lock);
602 	return;
603 
604 kill_it:
605 	dentry = dentry_kill(dentry, 1);
606 	if (dentry)
607 		goto repeat;
608 }
609 EXPORT_SYMBOL(dput);
610 
611 /**
612  * d_invalidate - invalidate a dentry
613  * @dentry: dentry to invalidate
614  *
615  * Try to invalidate the dentry if it turns out to be
616  * possible. If there are other dentries that can be
617  * reached through this one we can't delete it and we
618  * return -EBUSY. On success we return 0.
619  *
620  * no dcache lock.
621  */
622 
623 int d_invalidate(struct dentry * dentry)
624 {
625 	/*
626 	 * If it's already been dropped, return OK.
627 	 */
628 	spin_lock(&dentry->d_lock);
629 	if (d_unhashed(dentry)) {
630 		spin_unlock(&dentry->d_lock);
631 		return 0;
632 	}
633 	/*
634 	 * Check whether to do a partial shrink_dcache
635 	 * to get rid of unused child entries.
636 	 */
637 	if (!list_empty(&dentry->d_subdirs)) {
638 		spin_unlock(&dentry->d_lock);
639 		shrink_dcache_parent(dentry);
640 		spin_lock(&dentry->d_lock);
641 	}
642 
643 	/*
644 	 * Somebody else still using it?
645 	 *
646 	 * If it's a directory, we can't drop it
647 	 * for fear of somebody re-populating it
648 	 * with children (even though dropping it
649 	 * would make it unreachable from the root,
650 	 * we might still populate it if it was a
651 	 * working directory or similar).
652 	 * We also need to leave mountpoints alone,
653 	 * directory or not.
654 	 */
655 	if (dentry->d_lockref.count > 1 && dentry->d_inode) {
656 		if (S_ISDIR(dentry->d_inode->i_mode) || d_mountpoint(dentry)) {
657 			spin_unlock(&dentry->d_lock);
658 			return -EBUSY;
659 		}
660 	}
661 
662 	__d_drop(dentry);
663 	spin_unlock(&dentry->d_lock);
664 	return 0;
665 }
666 EXPORT_SYMBOL(d_invalidate);
667 
668 /* This must be called with d_lock held */
669 static inline void __dget_dlock(struct dentry *dentry)
670 {
671 	dentry->d_lockref.count++;
672 }
673 
674 static inline void __dget(struct dentry *dentry)
675 {
676 	lockref_get(&dentry->d_lockref);
677 }
678 
679 struct dentry *dget_parent(struct dentry *dentry)
680 {
681 	int gotref;
682 	struct dentry *ret;
683 
684 	/*
685 	 * Do optimistic parent lookup without any
686 	 * locking.
687 	 */
688 	rcu_read_lock();
689 	ret = ACCESS_ONCE(dentry->d_parent);
690 	gotref = lockref_get_not_zero(&ret->d_lockref);
691 	rcu_read_unlock();
692 	if (likely(gotref)) {
693 		if (likely(ret == ACCESS_ONCE(dentry->d_parent)))
694 			return ret;
695 		dput(ret);
696 	}
697 
698 repeat:
699 	/*
700 	 * Don't need rcu_dereference because we re-check it was correct under
701 	 * the lock.
702 	 */
703 	rcu_read_lock();
704 	ret = dentry->d_parent;
705 	spin_lock(&ret->d_lock);
706 	if (unlikely(ret != dentry->d_parent)) {
707 		spin_unlock(&ret->d_lock);
708 		rcu_read_unlock();
709 		goto repeat;
710 	}
711 	rcu_read_unlock();
712 	BUG_ON(!ret->d_lockref.count);
713 	ret->d_lockref.count++;
714 	spin_unlock(&ret->d_lock);
715 	return ret;
716 }
717 EXPORT_SYMBOL(dget_parent);
718 
719 /**
720  * d_find_alias - grab a hashed alias of inode
721  * @inode: inode in question
722  * @want_discon:  flag, used by d_splice_alias, to request
723  *          that only a DISCONNECTED alias be returned.
724  *
725  * If inode has a hashed alias, or is a directory and has any alias,
726  * acquire the reference to alias and return it. Otherwise return NULL.
727  * Notice that if inode is a directory there can be only one alias and
728  * it can be unhashed only if it has no children, or if it is the root
729  * of a filesystem.
730  *
731  * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
732  * any other hashed alias over that one unless @want_discon is set,
733  * in which case only return an IS_ROOT, DCACHE_DISCONNECTED alias.
734  */
735 static struct dentry *__d_find_alias(struct inode *inode, int want_discon)
736 {
737 	struct dentry *alias, *discon_alias;
738 
739 again:
740 	discon_alias = NULL;
741 	hlist_for_each_entry(alias, &inode->i_dentry, d_alias) {
742 		spin_lock(&alias->d_lock);
743  		if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
744 			if (IS_ROOT(alias) &&
745 			    (alias->d_flags & DCACHE_DISCONNECTED)) {
746 				discon_alias = alias;
747 			} else if (!want_discon) {
748 				__dget_dlock(alias);
749 				spin_unlock(&alias->d_lock);
750 				return alias;
751 			}
752 		}
753 		spin_unlock(&alias->d_lock);
754 	}
755 	if (discon_alias) {
756 		alias = discon_alias;
757 		spin_lock(&alias->d_lock);
758 		if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
759 			if (IS_ROOT(alias) &&
760 			    (alias->d_flags & DCACHE_DISCONNECTED)) {
761 				__dget_dlock(alias);
762 				spin_unlock(&alias->d_lock);
763 				return alias;
764 			}
765 		}
766 		spin_unlock(&alias->d_lock);
767 		goto again;
768 	}
769 	return NULL;
770 }
771 
772 struct dentry *d_find_alias(struct inode *inode)
773 {
774 	struct dentry *de = NULL;
775 
776 	if (!hlist_empty(&inode->i_dentry)) {
777 		spin_lock(&inode->i_lock);
778 		de = __d_find_alias(inode, 0);
779 		spin_unlock(&inode->i_lock);
780 	}
781 	return de;
782 }
783 EXPORT_SYMBOL(d_find_alias);
784 
785 /*
786  *	Try to kill dentries associated with this inode.
787  * WARNING: you must own a reference to inode.
788  */
789 void d_prune_aliases(struct inode *inode)
790 {
791 	struct dentry *dentry;
792 restart:
793 	spin_lock(&inode->i_lock);
794 	hlist_for_each_entry(dentry, &inode->i_dentry, d_alias) {
795 		spin_lock(&dentry->d_lock);
796 		if (!dentry->d_lockref.count) {
797 			/*
798 			 * inform the fs via d_prune that this dentry
799 			 * is about to be unhashed and destroyed.
800 			 */
801 			if ((dentry->d_flags & DCACHE_OP_PRUNE) &&
802 			    !d_unhashed(dentry))
803 				dentry->d_op->d_prune(dentry);
804 
805 			__dget_dlock(dentry);
806 			__d_drop(dentry);
807 			spin_unlock(&dentry->d_lock);
808 			spin_unlock(&inode->i_lock);
809 			dput(dentry);
810 			goto restart;
811 		}
812 		spin_unlock(&dentry->d_lock);
813 	}
814 	spin_unlock(&inode->i_lock);
815 }
816 EXPORT_SYMBOL(d_prune_aliases);
817 
818 /*
819  * Try to throw away a dentry - free the inode, dput the parent.
820  * Requires dentry->d_lock is held, and dentry->d_count == 0.
821  * Releases dentry->d_lock.
822  *
823  * This may fail if locks cannot be acquired no problem, just try again.
824  */
825 static struct dentry * try_prune_one_dentry(struct dentry *dentry)
826 	__releases(dentry->d_lock)
827 {
828 	struct dentry *parent;
829 
830 	parent = dentry_kill(dentry, 0);
831 	/*
832 	 * If dentry_kill returns NULL, we have nothing more to do.
833 	 * if it returns the same dentry, trylocks failed. In either
834 	 * case, just loop again.
835 	 *
836 	 * Otherwise, we need to prune ancestors too. This is necessary
837 	 * to prevent quadratic behavior of shrink_dcache_parent(), but
838 	 * is also expected to be beneficial in reducing dentry cache
839 	 * fragmentation.
840 	 */
841 	if (!parent)
842 		return NULL;
843 	if (parent == dentry)
844 		return dentry;
845 
846 	/* Prune ancestors. */
847 	dentry = parent;
848 	while (dentry) {
849 		if (lockref_put_or_lock(&dentry->d_lockref))
850 			return NULL;
851 		dentry = dentry_kill(dentry, 1);
852 	}
853 	return NULL;
854 }
855 
856 static void shrink_dentry_list(struct list_head *list)
857 {
858 	struct dentry *dentry;
859 
860 	rcu_read_lock();
861 	for (;;) {
862 		dentry = list_entry_rcu(list->prev, struct dentry, d_lru);
863 		if (&dentry->d_lru == list)
864 			break; /* empty */
865 
866 		/*
867 		 * Get the dentry lock, and re-verify that the dentry is
868 		 * this on the shrinking list. If it is, we know that
869 		 * DCACHE_SHRINK_LIST and DCACHE_LRU_LIST are set.
870 		 */
871 		spin_lock(&dentry->d_lock);
872 		if (dentry != list_entry(list->prev, struct dentry, d_lru)) {
873 			spin_unlock(&dentry->d_lock);
874 			continue;
875 		}
876 
877 		/*
878 		 * The dispose list is isolated and dentries are not accounted
879 		 * to the LRU here, so we can simply remove it from the list
880 		 * here regardless of whether it is referenced or not.
881 		 */
882 		d_shrink_del(dentry);
883 
884 		/*
885 		 * We found an inuse dentry which was not removed from
886 		 * the LRU because of laziness during lookup. Do not free it.
887 		 */
888 		if (dentry->d_lockref.count) {
889 			spin_unlock(&dentry->d_lock);
890 			continue;
891 		}
892 		rcu_read_unlock();
893 
894 		/*
895 		 * If 'try_to_prune()' returns a dentry, it will
896 		 * be the same one we passed in, and d_lock will
897 		 * have been held the whole time, so it will not
898 		 * have been added to any other lists. We failed
899 		 * to get the inode lock.
900 		 *
901 		 * We just add it back to the shrink list.
902 		 */
903 		dentry = try_prune_one_dentry(dentry);
904 
905 		rcu_read_lock();
906 		if (dentry) {
907 			d_shrink_add(dentry, list);
908 			spin_unlock(&dentry->d_lock);
909 		}
910 	}
911 	rcu_read_unlock();
912 }
913 
914 static enum lru_status
915 dentry_lru_isolate(struct list_head *item, spinlock_t *lru_lock, void *arg)
916 {
917 	struct list_head *freeable = arg;
918 	struct dentry	*dentry = container_of(item, struct dentry, d_lru);
919 
920 
921 	/*
922 	 * we are inverting the lru lock/dentry->d_lock here,
923 	 * so use a trylock. If we fail to get the lock, just skip
924 	 * it
925 	 */
926 	if (!spin_trylock(&dentry->d_lock))
927 		return LRU_SKIP;
928 
929 	/*
930 	 * Referenced dentries are still in use. If they have active
931 	 * counts, just remove them from the LRU. Otherwise give them
932 	 * another pass through the LRU.
933 	 */
934 	if (dentry->d_lockref.count) {
935 		d_lru_isolate(dentry);
936 		spin_unlock(&dentry->d_lock);
937 		return LRU_REMOVED;
938 	}
939 
940 	if (dentry->d_flags & DCACHE_REFERENCED) {
941 		dentry->d_flags &= ~DCACHE_REFERENCED;
942 		spin_unlock(&dentry->d_lock);
943 
944 		/*
945 		 * The list move itself will be made by the common LRU code. At
946 		 * this point, we've dropped the dentry->d_lock but keep the
947 		 * lru lock. This is safe to do, since every list movement is
948 		 * protected by the lru lock even if both locks are held.
949 		 *
950 		 * This is guaranteed by the fact that all LRU management
951 		 * functions are intermediated by the LRU API calls like
952 		 * list_lru_add and list_lru_del. List movement in this file
953 		 * only ever occur through this functions or through callbacks
954 		 * like this one, that are called from the LRU API.
955 		 *
956 		 * The only exceptions to this are functions like
957 		 * shrink_dentry_list, and code that first checks for the
958 		 * DCACHE_SHRINK_LIST flag.  Those are guaranteed to be
959 		 * operating only with stack provided lists after they are
960 		 * properly isolated from the main list.  It is thus, always a
961 		 * local access.
962 		 */
963 		return LRU_ROTATE;
964 	}
965 
966 	d_lru_shrink_move(dentry, freeable);
967 	spin_unlock(&dentry->d_lock);
968 
969 	return LRU_REMOVED;
970 }
971 
972 /**
973  * prune_dcache_sb - shrink the dcache
974  * @sb: superblock
975  * @nr_to_scan : number of entries to try to free
976  * @nid: which node to scan for freeable entities
977  *
978  * Attempt to shrink the superblock dcache LRU by @nr_to_scan entries. This is
979  * done when we need more memory an called from the superblock shrinker
980  * function.
981  *
982  * This function may fail to free any resources if all the dentries are in
983  * use.
984  */
985 long prune_dcache_sb(struct super_block *sb, unsigned long nr_to_scan,
986 		     int nid)
987 {
988 	LIST_HEAD(dispose);
989 	long freed;
990 
991 	freed = list_lru_walk_node(&sb->s_dentry_lru, nid, dentry_lru_isolate,
992 				       &dispose, &nr_to_scan);
993 	shrink_dentry_list(&dispose);
994 	return freed;
995 }
996 
997 static enum lru_status dentry_lru_isolate_shrink(struct list_head *item,
998 						spinlock_t *lru_lock, void *arg)
999 {
1000 	struct list_head *freeable = arg;
1001 	struct dentry	*dentry = container_of(item, struct dentry, d_lru);
1002 
1003 	/*
1004 	 * we are inverting the lru lock/dentry->d_lock here,
1005 	 * so use a trylock. If we fail to get the lock, just skip
1006 	 * it
1007 	 */
1008 	if (!spin_trylock(&dentry->d_lock))
1009 		return LRU_SKIP;
1010 
1011 	d_lru_shrink_move(dentry, freeable);
1012 	spin_unlock(&dentry->d_lock);
1013 
1014 	return LRU_REMOVED;
1015 }
1016 
1017 
1018 /**
1019  * shrink_dcache_sb - shrink dcache for a superblock
1020  * @sb: superblock
1021  *
1022  * Shrink the dcache for the specified super block. This is used to free
1023  * the dcache before unmounting a file system.
1024  */
1025 void shrink_dcache_sb(struct super_block *sb)
1026 {
1027 	long freed;
1028 
1029 	do {
1030 		LIST_HEAD(dispose);
1031 
1032 		freed = list_lru_walk(&sb->s_dentry_lru,
1033 			dentry_lru_isolate_shrink, &dispose, UINT_MAX);
1034 
1035 		this_cpu_sub(nr_dentry_unused, freed);
1036 		shrink_dentry_list(&dispose);
1037 	} while (freed > 0);
1038 }
1039 EXPORT_SYMBOL(shrink_dcache_sb);
1040 
1041 /**
1042  * enum d_walk_ret - action to talke during tree walk
1043  * @D_WALK_CONTINUE:	contrinue walk
1044  * @D_WALK_QUIT:	quit walk
1045  * @D_WALK_NORETRY:	quit when retry is needed
1046  * @D_WALK_SKIP:	skip this dentry and its children
1047  */
1048 enum d_walk_ret {
1049 	D_WALK_CONTINUE,
1050 	D_WALK_QUIT,
1051 	D_WALK_NORETRY,
1052 	D_WALK_SKIP,
1053 };
1054 
1055 /**
1056  * d_walk - walk the dentry tree
1057  * @parent:	start of walk
1058  * @data:	data passed to @enter() and @finish()
1059  * @enter:	callback when first entering the dentry
1060  * @finish:	callback when successfully finished the walk
1061  *
1062  * The @enter() and @finish() callbacks are called with d_lock held.
1063  */
1064 static void d_walk(struct dentry *parent, void *data,
1065 		   enum d_walk_ret (*enter)(void *, struct dentry *),
1066 		   void (*finish)(void *))
1067 {
1068 	struct dentry *this_parent;
1069 	struct list_head *next;
1070 	unsigned seq = 0;
1071 	enum d_walk_ret ret;
1072 	bool retry = true;
1073 
1074 again:
1075 	read_seqbegin_or_lock(&rename_lock, &seq);
1076 	this_parent = parent;
1077 	spin_lock(&this_parent->d_lock);
1078 
1079 	ret = enter(data, this_parent);
1080 	switch (ret) {
1081 	case D_WALK_CONTINUE:
1082 		break;
1083 	case D_WALK_QUIT:
1084 	case D_WALK_SKIP:
1085 		goto out_unlock;
1086 	case D_WALK_NORETRY:
1087 		retry = false;
1088 		break;
1089 	}
1090 repeat:
1091 	next = this_parent->d_subdirs.next;
1092 resume:
1093 	while (next != &this_parent->d_subdirs) {
1094 		struct list_head *tmp = next;
1095 		struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
1096 		next = tmp->next;
1097 
1098 		spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1099 
1100 		ret = enter(data, dentry);
1101 		switch (ret) {
1102 		case D_WALK_CONTINUE:
1103 			break;
1104 		case D_WALK_QUIT:
1105 			spin_unlock(&dentry->d_lock);
1106 			goto out_unlock;
1107 		case D_WALK_NORETRY:
1108 			retry = false;
1109 			break;
1110 		case D_WALK_SKIP:
1111 			spin_unlock(&dentry->d_lock);
1112 			continue;
1113 		}
1114 
1115 		if (!list_empty(&dentry->d_subdirs)) {
1116 			spin_unlock(&this_parent->d_lock);
1117 			spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1118 			this_parent = dentry;
1119 			spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1120 			goto repeat;
1121 		}
1122 		spin_unlock(&dentry->d_lock);
1123 	}
1124 	/*
1125 	 * All done at this level ... ascend and resume the search.
1126 	 */
1127 	if (this_parent != parent) {
1128 		struct dentry *child = this_parent;
1129 		this_parent = child->d_parent;
1130 
1131 		rcu_read_lock();
1132 		spin_unlock(&child->d_lock);
1133 		spin_lock(&this_parent->d_lock);
1134 
1135 		/*
1136 		 * might go back up the wrong parent if we have had a rename
1137 		 * or deletion
1138 		 */
1139 		if (this_parent != child->d_parent ||
1140 			 (child->d_flags & DCACHE_DENTRY_KILLED) ||
1141 			 need_seqretry(&rename_lock, seq)) {
1142 			spin_unlock(&this_parent->d_lock);
1143 			rcu_read_unlock();
1144 			goto rename_retry;
1145 		}
1146 		rcu_read_unlock();
1147 		next = child->d_u.d_child.next;
1148 		goto resume;
1149 	}
1150 	if (need_seqretry(&rename_lock, seq)) {
1151 		spin_unlock(&this_parent->d_lock);
1152 		goto rename_retry;
1153 	}
1154 	if (finish)
1155 		finish(data);
1156 
1157 out_unlock:
1158 	spin_unlock(&this_parent->d_lock);
1159 	done_seqretry(&rename_lock, seq);
1160 	return;
1161 
1162 rename_retry:
1163 	if (!retry)
1164 		return;
1165 	seq = 1;
1166 	goto again;
1167 }
1168 
1169 /*
1170  * Search for at least 1 mount point in the dentry's subdirs.
1171  * We descend to the next level whenever the d_subdirs
1172  * list is non-empty and continue searching.
1173  */
1174 
1175 static enum d_walk_ret check_mount(void *data, struct dentry *dentry)
1176 {
1177 	int *ret = data;
1178 	if (d_mountpoint(dentry)) {
1179 		*ret = 1;
1180 		return D_WALK_QUIT;
1181 	}
1182 	return D_WALK_CONTINUE;
1183 }
1184 
1185 /**
1186  * have_submounts - check for mounts over a dentry
1187  * @parent: dentry to check.
1188  *
1189  * Return true if the parent or its subdirectories contain
1190  * a mount point
1191  */
1192 int have_submounts(struct dentry *parent)
1193 {
1194 	int ret = 0;
1195 
1196 	d_walk(parent, &ret, check_mount, NULL);
1197 
1198 	return ret;
1199 }
1200 EXPORT_SYMBOL(have_submounts);
1201 
1202 /*
1203  * Called by mount code to set a mountpoint and check if the mountpoint is
1204  * reachable (e.g. NFS can unhash a directory dentry and then the complete
1205  * subtree can become unreachable).
1206  *
1207  * Only one of check_submounts_and_drop() and d_set_mounted() must succeed.  For
1208  * this reason take rename_lock and d_lock on dentry and ancestors.
1209  */
1210 int d_set_mounted(struct dentry *dentry)
1211 {
1212 	struct dentry *p;
1213 	int ret = -ENOENT;
1214 	write_seqlock(&rename_lock);
1215 	for (p = dentry->d_parent; !IS_ROOT(p); p = p->d_parent) {
1216 		/* Need exclusion wrt. check_submounts_and_drop() */
1217 		spin_lock(&p->d_lock);
1218 		if (unlikely(d_unhashed(p))) {
1219 			spin_unlock(&p->d_lock);
1220 			goto out;
1221 		}
1222 		spin_unlock(&p->d_lock);
1223 	}
1224 	spin_lock(&dentry->d_lock);
1225 	if (!d_unlinked(dentry)) {
1226 		dentry->d_flags |= DCACHE_MOUNTED;
1227 		ret = 0;
1228 	}
1229  	spin_unlock(&dentry->d_lock);
1230 out:
1231 	write_sequnlock(&rename_lock);
1232 	return ret;
1233 }
1234 
1235 /*
1236  * Search the dentry child list of the specified parent,
1237  * and move any unused dentries to the end of the unused
1238  * list for prune_dcache(). We descend to the next level
1239  * whenever the d_subdirs list is non-empty and continue
1240  * searching.
1241  *
1242  * It returns zero iff there are no unused children,
1243  * otherwise  it returns the number of children moved to
1244  * the end of the unused list. This may not be the total
1245  * number of unused children, because select_parent can
1246  * drop the lock and return early due to latency
1247  * constraints.
1248  */
1249 
1250 struct select_data {
1251 	struct dentry *start;
1252 	struct list_head dispose;
1253 	int found;
1254 };
1255 
1256 static enum d_walk_ret select_collect(void *_data, struct dentry *dentry)
1257 {
1258 	struct select_data *data = _data;
1259 	enum d_walk_ret ret = D_WALK_CONTINUE;
1260 
1261 	if (data->start == dentry)
1262 		goto out;
1263 
1264 	/*
1265 	 * move only zero ref count dentries to the dispose list.
1266 	 *
1267 	 * Those which are presently on the shrink list, being processed
1268 	 * by shrink_dentry_list(), shouldn't be moved.  Otherwise the
1269 	 * loop in shrink_dcache_parent() might not make any progress
1270 	 * and loop forever.
1271 	 */
1272 	if (dentry->d_lockref.count) {
1273 		dentry_lru_del(dentry);
1274 	} else if (!(dentry->d_flags & DCACHE_SHRINK_LIST)) {
1275 		/*
1276 		 * We can't use d_lru_shrink_move() because we
1277 		 * need to get the global LRU lock and do the
1278 		 * LRU accounting.
1279 		 */
1280 		d_lru_del(dentry);
1281 		d_shrink_add(dentry, &data->dispose);
1282 		data->found++;
1283 		ret = D_WALK_NORETRY;
1284 	}
1285 	/*
1286 	 * We can return to the caller if we have found some (this
1287 	 * ensures forward progress). We'll be coming back to find
1288 	 * the rest.
1289 	 */
1290 	if (data->found && need_resched())
1291 		ret = D_WALK_QUIT;
1292 out:
1293 	return ret;
1294 }
1295 
1296 /**
1297  * shrink_dcache_parent - prune dcache
1298  * @parent: parent of entries to prune
1299  *
1300  * Prune the dcache to remove unused children of the parent dentry.
1301  */
1302 void shrink_dcache_parent(struct dentry *parent)
1303 {
1304 	for (;;) {
1305 		struct select_data data;
1306 
1307 		INIT_LIST_HEAD(&data.dispose);
1308 		data.start = parent;
1309 		data.found = 0;
1310 
1311 		d_walk(parent, &data, select_collect, NULL);
1312 		if (!data.found)
1313 			break;
1314 
1315 		shrink_dentry_list(&data.dispose);
1316 		cond_resched();
1317 	}
1318 }
1319 EXPORT_SYMBOL(shrink_dcache_parent);
1320 
1321 static enum d_walk_ret umount_collect(void *_data, struct dentry *dentry)
1322 {
1323 	struct select_data *data = _data;
1324 	enum d_walk_ret ret = D_WALK_CONTINUE;
1325 
1326 	if (dentry->d_lockref.count) {
1327 		dentry_lru_del(dentry);
1328 		if (likely(!list_empty(&dentry->d_subdirs)))
1329 			goto out;
1330 		if (dentry == data->start && dentry->d_lockref.count == 1)
1331 			goto out;
1332 		printk(KERN_ERR
1333 		       "BUG: Dentry %p{i=%lx,n=%s}"
1334 		       " still in use (%d)"
1335 		       " [unmount of %s %s]\n",
1336 		       dentry,
1337 		       dentry->d_inode ?
1338 		       dentry->d_inode->i_ino : 0UL,
1339 		       dentry->d_name.name,
1340 		       dentry->d_lockref.count,
1341 		       dentry->d_sb->s_type->name,
1342 		       dentry->d_sb->s_id);
1343 		BUG();
1344 	} else if (!(dentry->d_flags & DCACHE_SHRINK_LIST)) {
1345 		/*
1346 		 * We can't use d_lru_shrink_move() because we
1347 		 * need to get the global LRU lock and do the
1348 		 * LRU accounting.
1349 		 */
1350 		if (dentry->d_flags & DCACHE_LRU_LIST)
1351 			d_lru_del(dentry);
1352 		d_shrink_add(dentry, &data->dispose);
1353 		data->found++;
1354 		ret = D_WALK_NORETRY;
1355 	}
1356 out:
1357 	if (data->found && need_resched())
1358 		ret = D_WALK_QUIT;
1359 	return ret;
1360 }
1361 
1362 /*
1363  * destroy the dentries attached to a superblock on unmounting
1364  */
1365 void shrink_dcache_for_umount(struct super_block *sb)
1366 {
1367 	struct dentry *dentry;
1368 
1369 	if (down_read_trylock(&sb->s_umount))
1370 		BUG();
1371 
1372 	dentry = sb->s_root;
1373 	sb->s_root = NULL;
1374 	for (;;) {
1375 		struct select_data data;
1376 
1377 		INIT_LIST_HEAD(&data.dispose);
1378 		data.start = dentry;
1379 		data.found = 0;
1380 
1381 		d_walk(dentry, &data, umount_collect, NULL);
1382 		if (!data.found)
1383 			break;
1384 
1385 		shrink_dentry_list(&data.dispose);
1386 		cond_resched();
1387 	}
1388 	d_drop(dentry);
1389 	dput(dentry);
1390 
1391 	while (!hlist_bl_empty(&sb->s_anon)) {
1392 		struct select_data data;
1393 		dentry = hlist_bl_entry(hlist_bl_first(&sb->s_anon), struct dentry, d_hash);
1394 
1395 		INIT_LIST_HEAD(&data.dispose);
1396 		data.start = NULL;
1397 		data.found = 0;
1398 
1399 		d_walk(dentry, &data, umount_collect, NULL);
1400 		if (data.found)
1401 			shrink_dentry_list(&data.dispose);
1402 		cond_resched();
1403 	}
1404 }
1405 
1406 static enum d_walk_ret check_and_collect(void *_data, struct dentry *dentry)
1407 {
1408 	struct select_data *data = _data;
1409 
1410 	if (d_mountpoint(dentry)) {
1411 		data->found = -EBUSY;
1412 		return D_WALK_QUIT;
1413 	}
1414 
1415 	return select_collect(_data, dentry);
1416 }
1417 
1418 static void check_and_drop(void *_data)
1419 {
1420 	struct select_data *data = _data;
1421 
1422 	if (d_mountpoint(data->start))
1423 		data->found = -EBUSY;
1424 	if (!data->found)
1425 		__d_drop(data->start);
1426 }
1427 
1428 /**
1429  * check_submounts_and_drop - prune dcache, check for submounts and drop
1430  *
1431  * All done as a single atomic operation relative to has_unlinked_ancestor().
1432  * Returns 0 if successfully unhashed @parent.  If there were submounts then
1433  * return -EBUSY.
1434  *
1435  * @dentry: dentry to prune and drop
1436  */
1437 int check_submounts_and_drop(struct dentry *dentry)
1438 {
1439 	int ret = 0;
1440 
1441 	/* Negative dentries can be dropped without further checks */
1442 	if (!dentry->d_inode) {
1443 		d_drop(dentry);
1444 		goto out;
1445 	}
1446 
1447 	for (;;) {
1448 		struct select_data data;
1449 
1450 		INIT_LIST_HEAD(&data.dispose);
1451 		data.start = dentry;
1452 		data.found = 0;
1453 
1454 		d_walk(dentry, &data, check_and_collect, check_and_drop);
1455 		ret = data.found;
1456 
1457 		if (!list_empty(&data.dispose))
1458 			shrink_dentry_list(&data.dispose);
1459 
1460 		if (ret <= 0)
1461 			break;
1462 
1463 		cond_resched();
1464 	}
1465 
1466 out:
1467 	return ret;
1468 }
1469 EXPORT_SYMBOL(check_submounts_and_drop);
1470 
1471 /**
1472  * __d_alloc	-	allocate a dcache entry
1473  * @sb: filesystem it will belong to
1474  * @name: qstr of the name
1475  *
1476  * Allocates a dentry. It returns %NULL if there is insufficient memory
1477  * available. On a success the dentry is returned. The name passed in is
1478  * copied and the copy passed in may be reused after this call.
1479  */
1480 
1481 struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name)
1482 {
1483 	struct dentry *dentry;
1484 	char *dname;
1485 
1486 	dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
1487 	if (!dentry)
1488 		return NULL;
1489 
1490 	/*
1491 	 * We guarantee that the inline name is always NUL-terminated.
1492 	 * This way the memcpy() done by the name switching in rename
1493 	 * will still always have a NUL at the end, even if we might
1494 	 * be overwriting an internal NUL character
1495 	 */
1496 	dentry->d_iname[DNAME_INLINE_LEN-1] = 0;
1497 	if (name->len > DNAME_INLINE_LEN-1) {
1498 		dname = kmalloc(name->len + 1, GFP_KERNEL);
1499 		if (!dname) {
1500 			kmem_cache_free(dentry_cache, dentry);
1501 			return NULL;
1502 		}
1503 	} else  {
1504 		dname = dentry->d_iname;
1505 	}
1506 
1507 	dentry->d_name.len = name->len;
1508 	dentry->d_name.hash = name->hash;
1509 	memcpy(dname, name->name, name->len);
1510 	dname[name->len] = 0;
1511 
1512 	/* Make sure we always see the terminating NUL character */
1513 	smp_wmb();
1514 	dentry->d_name.name = dname;
1515 
1516 	dentry->d_lockref.count = 1;
1517 	dentry->d_flags = 0;
1518 	spin_lock_init(&dentry->d_lock);
1519 	seqcount_init(&dentry->d_seq);
1520 	dentry->d_inode = NULL;
1521 	dentry->d_parent = dentry;
1522 	dentry->d_sb = sb;
1523 	dentry->d_op = NULL;
1524 	dentry->d_fsdata = NULL;
1525 	INIT_HLIST_BL_NODE(&dentry->d_hash);
1526 	INIT_LIST_HEAD(&dentry->d_lru);
1527 	INIT_LIST_HEAD(&dentry->d_subdirs);
1528 	INIT_HLIST_NODE(&dentry->d_alias);
1529 	INIT_LIST_HEAD(&dentry->d_u.d_child);
1530 	d_set_d_op(dentry, dentry->d_sb->s_d_op);
1531 
1532 	this_cpu_inc(nr_dentry);
1533 
1534 	return dentry;
1535 }
1536 
1537 /**
1538  * d_alloc	-	allocate a dcache entry
1539  * @parent: parent of entry to allocate
1540  * @name: qstr of the name
1541  *
1542  * Allocates a dentry. It returns %NULL if there is insufficient memory
1543  * available. On a success the dentry is returned. The name passed in is
1544  * copied and the copy passed in may be reused after this call.
1545  */
1546 struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1547 {
1548 	struct dentry *dentry = __d_alloc(parent->d_sb, name);
1549 	if (!dentry)
1550 		return NULL;
1551 
1552 	spin_lock(&parent->d_lock);
1553 	/*
1554 	 * don't need child lock because it is not subject
1555 	 * to concurrency here
1556 	 */
1557 	__dget_dlock(parent);
1558 	dentry->d_parent = parent;
1559 	list_add(&dentry->d_u.d_child, &parent->d_subdirs);
1560 	spin_unlock(&parent->d_lock);
1561 
1562 	return dentry;
1563 }
1564 EXPORT_SYMBOL(d_alloc);
1565 
1566 /**
1567  * d_alloc_pseudo - allocate a dentry (for lookup-less filesystems)
1568  * @sb: the superblock
1569  * @name: qstr of the name
1570  *
1571  * For a filesystem that just pins its dentries in memory and never
1572  * performs lookups at all, return an unhashed IS_ROOT dentry.
1573  */
1574 struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
1575 {
1576 	return __d_alloc(sb, name);
1577 }
1578 EXPORT_SYMBOL(d_alloc_pseudo);
1579 
1580 struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1581 {
1582 	struct qstr q;
1583 
1584 	q.name = name;
1585 	q.len = strlen(name);
1586 	q.hash = full_name_hash(q.name, q.len);
1587 	return d_alloc(parent, &q);
1588 }
1589 EXPORT_SYMBOL(d_alloc_name);
1590 
1591 void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1592 {
1593 	WARN_ON_ONCE(dentry->d_op);
1594 	WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH	|
1595 				DCACHE_OP_COMPARE	|
1596 				DCACHE_OP_REVALIDATE	|
1597 				DCACHE_OP_WEAK_REVALIDATE	|
1598 				DCACHE_OP_DELETE ));
1599 	dentry->d_op = op;
1600 	if (!op)
1601 		return;
1602 	if (op->d_hash)
1603 		dentry->d_flags |= DCACHE_OP_HASH;
1604 	if (op->d_compare)
1605 		dentry->d_flags |= DCACHE_OP_COMPARE;
1606 	if (op->d_revalidate)
1607 		dentry->d_flags |= DCACHE_OP_REVALIDATE;
1608 	if (op->d_weak_revalidate)
1609 		dentry->d_flags |= DCACHE_OP_WEAK_REVALIDATE;
1610 	if (op->d_delete)
1611 		dentry->d_flags |= DCACHE_OP_DELETE;
1612 	if (op->d_prune)
1613 		dentry->d_flags |= DCACHE_OP_PRUNE;
1614 
1615 }
1616 EXPORT_SYMBOL(d_set_d_op);
1617 
1618 static unsigned d_flags_for_inode(struct inode *inode)
1619 {
1620 	unsigned add_flags = DCACHE_FILE_TYPE;
1621 
1622 	if (!inode)
1623 		return DCACHE_MISS_TYPE;
1624 
1625 	if (S_ISDIR(inode->i_mode)) {
1626 		add_flags = DCACHE_DIRECTORY_TYPE;
1627 		if (unlikely(!(inode->i_opflags & IOP_LOOKUP))) {
1628 			if (unlikely(!inode->i_op->lookup))
1629 				add_flags = DCACHE_AUTODIR_TYPE;
1630 			else
1631 				inode->i_opflags |= IOP_LOOKUP;
1632 		}
1633 	} else if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) {
1634 		if (unlikely(inode->i_op->follow_link))
1635 			add_flags = DCACHE_SYMLINK_TYPE;
1636 		else
1637 			inode->i_opflags |= IOP_NOFOLLOW;
1638 	}
1639 
1640 	if (unlikely(IS_AUTOMOUNT(inode)))
1641 		add_flags |= DCACHE_NEED_AUTOMOUNT;
1642 	return add_flags;
1643 }
1644 
1645 static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1646 {
1647 	unsigned add_flags = d_flags_for_inode(inode);
1648 
1649 	spin_lock(&dentry->d_lock);
1650 	dentry->d_flags &= ~DCACHE_ENTRY_TYPE;
1651 	dentry->d_flags |= add_flags;
1652 	if (inode)
1653 		hlist_add_head(&dentry->d_alias, &inode->i_dentry);
1654 	dentry->d_inode = inode;
1655 	dentry_rcuwalk_barrier(dentry);
1656 	spin_unlock(&dentry->d_lock);
1657 	fsnotify_d_instantiate(dentry, inode);
1658 }
1659 
1660 /**
1661  * d_instantiate - fill in inode information for a dentry
1662  * @entry: dentry to complete
1663  * @inode: inode to attach to this dentry
1664  *
1665  * Fill in inode information in the entry.
1666  *
1667  * This turns negative dentries into productive full members
1668  * of society.
1669  *
1670  * NOTE! This assumes that the inode count has been incremented
1671  * (or otherwise set) by the caller to indicate that it is now
1672  * in use by the dcache.
1673  */
1674 
1675 void d_instantiate(struct dentry *entry, struct inode * inode)
1676 {
1677 	BUG_ON(!hlist_unhashed(&entry->d_alias));
1678 	if (inode)
1679 		spin_lock(&inode->i_lock);
1680 	__d_instantiate(entry, inode);
1681 	if (inode)
1682 		spin_unlock(&inode->i_lock);
1683 	security_d_instantiate(entry, inode);
1684 }
1685 EXPORT_SYMBOL(d_instantiate);
1686 
1687 /**
1688  * d_instantiate_unique - instantiate a non-aliased dentry
1689  * @entry: dentry to instantiate
1690  * @inode: inode to attach to this dentry
1691  *
1692  * Fill in inode information in the entry. On success, it returns NULL.
1693  * If an unhashed alias of "entry" already exists, then we return the
1694  * aliased dentry instead and drop one reference to inode.
1695  *
1696  * Note that in order to avoid conflicts with rename() etc, the caller
1697  * had better be holding the parent directory semaphore.
1698  *
1699  * This also assumes that the inode count has been incremented
1700  * (or otherwise set) by the caller to indicate that it is now
1701  * in use by the dcache.
1702  */
1703 static struct dentry *__d_instantiate_unique(struct dentry *entry,
1704 					     struct inode *inode)
1705 {
1706 	struct dentry *alias;
1707 	int len = entry->d_name.len;
1708 	const char *name = entry->d_name.name;
1709 	unsigned int hash = entry->d_name.hash;
1710 
1711 	if (!inode) {
1712 		__d_instantiate(entry, NULL);
1713 		return NULL;
1714 	}
1715 
1716 	hlist_for_each_entry(alias, &inode->i_dentry, d_alias) {
1717 		/*
1718 		 * Don't need alias->d_lock here, because aliases with
1719 		 * d_parent == entry->d_parent are not subject to name or
1720 		 * parent changes, because the parent inode i_mutex is held.
1721 		 */
1722 		if (alias->d_name.hash != hash)
1723 			continue;
1724 		if (alias->d_parent != entry->d_parent)
1725 			continue;
1726 		if (alias->d_name.len != len)
1727 			continue;
1728 		if (dentry_cmp(alias, name, len))
1729 			continue;
1730 		__dget(alias);
1731 		return alias;
1732 	}
1733 
1734 	__d_instantiate(entry, inode);
1735 	return NULL;
1736 }
1737 
1738 struct dentry *d_instantiate_unique(struct dentry *entry, struct inode *inode)
1739 {
1740 	struct dentry *result;
1741 
1742 	BUG_ON(!hlist_unhashed(&entry->d_alias));
1743 
1744 	if (inode)
1745 		spin_lock(&inode->i_lock);
1746 	result = __d_instantiate_unique(entry, inode);
1747 	if (inode)
1748 		spin_unlock(&inode->i_lock);
1749 
1750 	if (!result) {
1751 		security_d_instantiate(entry, inode);
1752 		return NULL;
1753 	}
1754 
1755 	BUG_ON(!d_unhashed(result));
1756 	iput(inode);
1757 	return result;
1758 }
1759 
1760 EXPORT_SYMBOL(d_instantiate_unique);
1761 
1762 /**
1763  * d_instantiate_no_diralias - instantiate a non-aliased dentry
1764  * @entry: dentry to complete
1765  * @inode: inode to attach to this dentry
1766  *
1767  * Fill in inode information in the entry.  If a directory alias is found, then
1768  * return an error (and drop inode).  Together with d_materialise_unique() this
1769  * guarantees that a directory inode may never have more than one alias.
1770  */
1771 int d_instantiate_no_diralias(struct dentry *entry, struct inode *inode)
1772 {
1773 	BUG_ON(!hlist_unhashed(&entry->d_alias));
1774 
1775 	spin_lock(&inode->i_lock);
1776 	if (S_ISDIR(inode->i_mode) && !hlist_empty(&inode->i_dentry)) {
1777 		spin_unlock(&inode->i_lock);
1778 		iput(inode);
1779 		return -EBUSY;
1780 	}
1781 	__d_instantiate(entry, inode);
1782 	spin_unlock(&inode->i_lock);
1783 	security_d_instantiate(entry, inode);
1784 
1785 	return 0;
1786 }
1787 EXPORT_SYMBOL(d_instantiate_no_diralias);
1788 
1789 struct dentry *d_make_root(struct inode *root_inode)
1790 {
1791 	struct dentry *res = NULL;
1792 
1793 	if (root_inode) {
1794 		static const struct qstr name = QSTR_INIT("/", 1);
1795 
1796 		res = __d_alloc(root_inode->i_sb, &name);
1797 		if (res)
1798 			d_instantiate(res, root_inode);
1799 		else
1800 			iput(root_inode);
1801 	}
1802 	return res;
1803 }
1804 EXPORT_SYMBOL(d_make_root);
1805 
1806 static struct dentry * __d_find_any_alias(struct inode *inode)
1807 {
1808 	struct dentry *alias;
1809 
1810 	if (hlist_empty(&inode->i_dentry))
1811 		return NULL;
1812 	alias = hlist_entry(inode->i_dentry.first, struct dentry, d_alias);
1813 	__dget(alias);
1814 	return alias;
1815 }
1816 
1817 /**
1818  * d_find_any_alias - find any alias for a given inode
1819  * @inode: inode to find an alias for
1820  *
1821  * If any aliases exist for the given inode, take and return a
1822  * reference for one of them.  If no aliases exist, return %NULL.
1823  */
1824 struct dentry *d_find_any_alias(struct inode *inode)
1825 {
1826 	struct dentry *de;
1827 
1828 	spin_lock(&inode->i_lock);
1829 	de = __d_find_any_alias(inode);
1830 	spin_unlock(&inode->i_lock);
1831 	return de;
1832 }
1833 EXPORT_SYMBOL(d_find_any_alias);
1834 
1835 /**
1836  * d_obtain_alias - find or allocate a dentry for a given inode
1837  * @inode: inode to allocate the dentry for
1838  *
1839  * Obtain a dentry for an inode resulting from NFS filehandle conversion or
1840  * similar open by handle operations.  The returned dentry may be anonymous,
1841  * or may have a full name (if the inode was already in the cache).
1842  *
1843  * When called on a directory inode, we must ensure that the inode only ever
1844  * has one dentry.  If a dentry is found, that is returned instead of
1845  * allocating a new one.
1846  *
1847  * On successful return, the reference to the inode has been transferred
1848  * to the dentry.  In case of an error the reference on the inode is released.
1849  * To make it easier to use in export operations a %NULL or IS_ERR inode may
1850  * be passed in and will be the error will be propagate to the return value,
1851  * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
1852  */
1853 struct dentry *d_obtain_alias(struct inode *inode)
1854 {
1855 	static const struct qstr anonstring = QSTR_INIT("/", 1);
1856 	struct dentry *tmp;
1857 	struct dentry *res;
1858 	unsigned add_flags;
1859 
1860 	if (!inode)
1861 		return ERR_PTR(-ESTALE);
1862 	if (IS_ERR(inode))
1863 		return ERR_CAST(inode);
1864 
1865 	res = d_find_any_alias(inode);
1866 	if (res)
1867 		goto out_iput;
1868 
1869 	tmp = __d_alloc(inode->i_sb, &anonstring);
1870 	if (!tmp) {
1871 		res = ERR_PTR(-ENOMEM);
1872 		goto out_iput;
1873 	}
1874 
1875 	spin_lock(&inode->i_lock);
1876 	res = __d_find_any_alias(inode);
1877 	if (res) {
1878 		spin_unlock(&inode->i_lock);
1879 		dput(tmp);
1880 		goto out_iput;
1881 	}
1882 
1883 	/* attach a disconnected dentry */
1884 	add_flags = d_flags_for_inode(inode) | DCACHE_DISCONNECTED;
1885 
1886 	spin_lock(&tmp->d_lock);
1887 	tmp->d_inode = inode;
1888 	tmp->d_flags |= add_flags;
1889 	hlist_add_head(&tmp->d_alias, &inode->i_dentry);
1890 	hlist_bl_lock(&tmp->d_sb->s_anon);
1891 	hlist_bl_add_head(&tmp->d_hash, &tmp->d_sb->s_anon);
1892 	hlist_bl_unlock(&tmp->d_sb->s_anon);
1893 	spin_unlock(&tmp->d_lock);
1894 	spin_unlock(&inode->i_lock);
1895 	security_d_instantiate(tmp, inode);
1896 
1897 	return tmp;
1898 
1899  out_iput:
1900 	if (res && !IS_ERR(res))
1901 		security_d_instantiate(res, inode);
1902 	iput(inode);
1903 	return res;
1904 }
1905 EXPORT_SYMBOL(d_obtain_alias);
1906 
1907 /**
1908  * d_splice_alias - splice a disconnected dentry into the tree if one exists
1909  * @inode:  the inode which may have a disconnected dentry
1910  * @dentry: a negative dentry which we want to point to the inode.
1911  *
1912  * If inode is a directory and has a 'disconnected' dentry (i.e. IS_ROOT and
1913  * DCACHE_DISCONNECTED), then d_move that in place of the given dentry
1914  * and return it, else simply d_add the inode to the dentry and return NULL.
1915  *
1916  * This is needed in the lookup routine of any filesystem that is exportable
1917  * (via knfsd) so that we can build dcache paths to directories effectively.
1918  *
1919  * If a dentry was found and moved, then it is returned.  Otherwise NULL
1920  * is returned.  This matches the expected return value of ->lookup.
1921  *
1922  * Cluster filesystems may call this function with a negative, hashed dentry.
1923  * In that case, we know that the inode will be a regular file, and also this
1924  * will only occur during atomic_open. So we need to check for the dentry
1925  * being already hashed only in the final case.
1926  */
1927 struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
1928 {
1929 	struct dentry *new = NULL;
1930 
1931 	if (IS_ERR(inode))
1932 		return ERR_CAST(inode);
1933 
1934 	if (inode && S_ISDIR(inode->i_mode)) {
1935 		spin_lock(&inode->i_lock);
1936 		new = __d_find_alias(inode, 1);
1937 		if (new) {
1938 			BUG_ON(!(new->d_flags & DCACHE_DISCONNECTED));
1939 			spin_unlock(&inode->i_lock);
1940 			security_d_instantiate(new, inode);
1941 			d_move(new, dentry);
1942 			iput(inode);
1943 		} else {
1944 			/* already taking inode->i_lock, so d_add() by hand */
1945 			__d_instantiate(dentry, inode);
1946 			spin_unlock(&inode->i_lock);
1947 			security_d_instantiate(dentry, inode);
1948 			d_rehash(dentry);
1949 		}
1950 	} else {
1951 		d_instantiate(dentry, inode);
1952 		if (d_unhashed(dentry))
1953 			d_rehash(dentry);
1954 	}
1955 	return new;
1956 }
1957 EXPORT_SYMBOL(d_splice_alias);
1958 
1959 /**
1960  * d_add_ci - lookup or allocate new dentry with case-exact name
1961  * @inode:  the inode case-insensitive lookup has found
1962  * @dentry: the negative dentry that was passed to the parent's lookup func
1963  * @name:   the case-exact name to be associated with the returned dentry
1964  *
1965  * This is to avoid filling the dcache with case-insensitive names to the
1966  * same inode, only the actual correct case is stored in the dcache for
1967  * case-insensitive filesystems.
1968  *
1969  * For a case-insensitive lookup match and if the the case-exact dentry
1970  * already exists in in the dcache, use it and return it.
1971  *
1972  * If no entry exists with the exact case name, allocate new dentry with
1973  * the exact case, and return the spliced entry.
1974  */
1975 struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
1976 			struct qstr *name)
1977 {
1978 	struct dentry *found;
1979 	struct dentry *new;
1980 
1981 	/*
1982 	 * First check if a dentry matching the name already exists,
1983 	 * if not go ahead and create it now.
1984 	 */
1985 	found = d_hash_and_lookup(dentry->d_parent, name);
1986 	if (unlikely(IS_ERR(found)))
1987 		goto err_out;
1988 	if (!found) {
1989 		new = d_alloc(dentry->d_parent, name);
1990 		if (!new) {
1991 			found = ERR_PTR(-ENOMEM);
1992 			goto err_out;
1993 		}
1994 
1995 		found = d_splice_alias(inode, new);
1996 		if (found) {
1997 			dput(new);
1998 			return found;
1999 		}
2000 		return new;
2001 	}
2002 
2003 	/*
2004 	 * If a matching dentry exists, and it's not negative use it.
2005 	 *
2006 	 * Decrement the reference count to balance the iget() done
2007 	 * earlier on.
2008 	 */
2009 	if (found->d_inode) {
2010 		if (unlikely(found->d_inode != inode)) {
2011 			/* This can't happen because bad inodes are unhashed. */
2012 			BUG_ON(!is_bad_inode(inode));
2013 			BUG_ON(!is_bad_inode(found->d_inode));
2014 		}
2015 		iput(inode);
2016 		return found;
2017 	}
2018 
2019 	/*
2020 	 * Negative dentry: instantiate it unless the inode is a directory and
2021 	 * already has a dentry.
2022 	 */
2023 	new = d_splice_alias(inode, found);
2024 	if (new) {
2025 		dput(found);
2026 		found = new;
2027 	}
2028 	return found;
2029 
2030 err_out:
2031 	iput(inode);
2032 	return found;
2033 }
2034 EXPORT_SYMBOL(d_add_ci);
2035 
2036 /*
2037  * Do the slow-case of the dentry name compare.
2038  *
2039  * Unlike the dentry_cmp() function, we need to atomically
2040  * load the name and length information, so that the
2041  * filesystem can rely on them, and can use the 'name' and
2042  * 'len' information without worrying about walking off the
2043  * end of memory etc.
2044  *
2045  * Thus the read_seqcount_retry() and the "duplicate" info
2046  * in arguments (the low-level filesystem should not look
2047  * at the dentry inode or name contents directly, since
2048  * rename can change them while we're in RCU mode).
2049  */
2050 enum slow_d_compare {
2051 	D_COMP_OK,
2052 	D_COMP_NOMATCH,
2053 	D_COMP_SEQRETRY,
2054 };
2055 
2056 static noinline enum slow_d_compare slow_dentry_cmp(
2057 		const struct dentry *parent,
2058 		struct dentry *dentry,
2059 		unsigned int seq,
2060 		const struct qstr *name)
2061 {
2062 	int tlen = dentry->d_name.len;
2063 	const char *tname = dentry->d_name.name;
2064 
2065 	if (read_seqcount_retry(&dentry->d_seq, seq)) {
2066 		cpu_relax();
2067 		return D_COMP_SEQRETRY;
2068 	}
2069 	if (parent->d_op->d_compare(parent, dentry, tlen, tname, name))
2070 		return D_COMP_NOMATCH;
2071 	return D_COMP_OK;
2072 }
2073 
2074 /**
2075  * __d_lookup_rcu - search for a dentry (racy, store-free)
2076  * @parent: parent dentry
2077  * @name: qstr of name we wish to find
2078  * @seqp: returns d_seq value at the point where the dentry was found
2079  * Returns: dentry, or NULL
2080  *
2081  * __d_lookup_rcu is the dcache lookup function for rcu-walk name
2082  * resolution (store-free path walking) design described in
2083  * Documentation/filesystems/path-lookup.txt.
2084  *
2085  * This is not to be used outside core vfs.
2086  *
2087  * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
2088  * held, and rcu_read_lock held. The returned dentry must not be stored into
2089  * without taking d_lock and checking d_seq sequence count against @seq
2090  * returned here.
2091  *
2092  * A refcount may be taken on the found dentry with the d_rcu_to_refcount
2093  * function.
2094  *
2095  * Alternatively, __d_lookup_rcu may be called again to look up the child of
2096  * the returned dentry, so long as its parent's seqlock is checked after the
2097  * child is looked up. Thus, an interlocking stepping of sequence lock checks
2098  * is formed, giving integrity down the path walk.
2099  *
2100  * NOTE! The caller *has* to check the resulting dentry against the sequence
2101  * number we've returned before using any of the resulting dentry state!
2102  */
2103 struct dentry *__d_lookup_rcu(const struct dentry *parent,
2104 				const struct qstr *name,
2105 				unsigned *seqp)
2106 {
2107 	u64 hashlen = name->hash_len;
2108 	const unsigned char *str = name->name;
2109 	struct hlist_bl_head *b = d_hash(parent, hashlen_hash(hashlen));
2110 	struct hlist_bl_node *node;
2111 	struct dentry *dentry;
2112 
2113 	/*
2114 	 * Note: There is significant duplication with __d_lookup_rcu which is
2115 	 * required to prevent single threaded performance regressions
2116 	 * especially on architectures where smp_rmb (in seqcounts) are costly.
2117 	 * Keep the two functions in sync.
2118 	 */
2119 
2120 	/*
2121 	 * The hash list is protected using RCU.
2122 	 *
2123 	 * Carefully use d_seq when comparing a candidate dentry, to avoid
2124 	 * races with d_move().
2125 	 *
2126 	 * It is possible that concurrent renames can mess up our list
2127 	 * walk here and result in missing our dentry, resulting in the
2128 	 * false-negative result. d_lookup() protects against concurrent
2129 	 * renames using rename_lock seqlock.
2130 	 *
2131 	 * See Documentation/filesystems/path-lookup.txt for more details.
2132 	 */
2133 	hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2134 		unsigned seq;
2135 
2136 seqretry:
2137 		/*
2138 		 * The dentry sequence count protects us from concurrent
2139 		 * renames, and thus protects parent and name fields.
2140 		 *
2141 		 * The caller must perform a seqcount check in order
2142 		 * to do anything useful with the returned dentry.
2143 		 *
2144 		 * NOTE! We do a "raw" seqcount_begin here. That means that
2145 		 * we don't wait for the sequence count to stabilize if it
2146 		 * is in the middle of a sequence change. If we do the slow
2147 		 * dentry compare, we will do seqretries until it is stable,
2148 		 * and if we end up with a successful lookup, we actually
2149 		 * want to exit RCU lookup anyway.
2150 		 */
2151 		seq = raw_seqcount_begin(&dentry->d_seq);
2152 		if (dentry->d_parent != parent)
2153 			continue;
2154 		if (d_unhashed(dentry))
2155 			continue;
2156 
2157 		if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) {
2158 			if (dentry->d_name.hash != hashlen_hash(hashlen))
2159 				continue;
2160 			*seqp = seq;
2161 			switch (slow_dentry_cmp(parent, dentry, seq, name)) {
2162 			case D_COMP_OK:
2163 				return dentry;
2164 			case D_COMP_NOMATCH:
2165 				continue;
2166 			default:
2167 				goto seqretry;
2168 			}
2169 		}
2170 
2171 		if (dentry->d_name.hash_len != hashlen)
2172 			continue;
2173 		*seqp = seq;
2174 		if (!dentry_cmp(dentry, str, hashlen_len(hashlen)))
2175 			return dentry;
2176 	}
2177 	return NULL;
2178 }
2179 
2180 /**
2181  * d_lookup - search for a dentry
2182  * @parent: parent dentry
2183  * @name: qstr of name we wish to find
2184  * Returns: dentry, or NULL
2185  *
2186  * d_lookup searches the children of the parent dentry for the name in
2187  * question. If the dentry is found its reference count is incremented and the
2188  * dentry is returned. The caller must use dput to free the entry when it has
2189  * finished using it. %NULL is returned if the dentry does not exist.
2190  */
2191 struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name)
2192 {
2193 	struct dentry *dentry;
2194 	unsigned seq;
2195 
2196         do {
2197                 seq = read_seqbegin(&rename_lock);
2198                 dentry = __d_lookup(parent, name);
2199                 if (dentry)
2200 			break;
2201 	} while (read_seqretry(&rename_lock, seq));
2202 	return dentry;
2203 }
2204 EXPORT_SYMBOL(d_lookup);
2205 
2206 /**
2207  * __d_lookup - search for a dentry (racy)
2208  * @parent: parent dentry
2209  * @name: qstr of name we wish to find
2210  * Returns: dentry, or NULL
2211  *
2212  * __d_lookup is like d_lookup, however it may (rarely) return a
2213  * false-negative result due to unrelated rename activity.
2214  *
2215  * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
2216  * however it must be used carefully, eg. with a following d_lookup in
2217  * the case of failure.
2218  *
2219  * __d_lookup callers must be commented.
2220  */
2221 struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name)
2222 {
2223 	unsigned int len = name->len;
2224 	unsigned int hash = name->hash;
2225 	const unsigned char *str = name->name;
2226 	struct hlist_bl_head *b = d_hash(parent, hash);
2227 	struct hlist_bl_node *node;
2228 	struct dentry *found = NULL;
2229 	struct dentry *dentry;
2230 
2231 	/*
2232 	 * Note: There is significant duplication with __d_lookup_rcu which is
2233 	 * required to prevent single threaded performance regressions
2234 	 * especially on architectures where smp_rmb (in seqcounts) are costly.
2235 	 * Keep the two functions in sync.
2236 	 */
2237 
2238 	/*
2239 	 * The hash list is protected using RCU.
2240 	 *
2241 	 * Take d_lock when comparing a candidate dentry, to avoid races
2242 	 * with d_move().
2243 	 *
2244 	 * It is possible that concurrent renames can mess up our list
2245 	 * walk here and result in missing our dentry, resulting in the
2246 	 * false-negative result. d_lookup() protects against concurrent
2247 	 * renames using rename_lock seqlock.
2248 	 *
2249 	 * See Documentation/filesystems/path-lookup.txt for more details.
2250 	 */
2251 	rcu_read_lock();
2252 
2253 	hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2254 
2255 		if (dentry->d_name.hash != hash)
2256 			continue;
2257 
2258 		spin_lock(&dentry->d_lock);
2259 		if (dentry->d_parent != parent)
2260 			goto next;
2261 		if (d_unhashed(dentry))
2262 			goto next;
2263 
2264 		/*
2265 		 * It is safe to compare names since d_move() cannot
2266 		 * change the qstr (protected by d_lock).
2267 		 */
2268 		if (parent->d_flags & DCACHE_OP_COMPARE) {
2269 			int tlen = dentry->d_name.len;
2270 			const char *tname = dentry->d_name.name;
2271 			if (parent->d_op->d_compare(parent, dentry, tlen, tname, name))
2272 				goto next;
2273 		} else {
2274 			if (dentry->d_name.len != len)
2275 				goto next;
2276 			if (dentry_cmp(dentry, str, len))
2277 				goto next;
2278 		}
2279 
2280 		dentry->d_lockref.count++;
2281 		found = dentry;
2282 		spin_unlock(&dentry->d_lock);
2283 		break;
2284 next:
2285 		spin_unlock(&dentry->d_lock);
2286  	}
2287  	rcu_read_unlock();
2288 
2289  	return found;
2290 }
2291 
2292 /**
2293  * d_hash_and_lookup - hash the qstr then search for a dentry
2294  * @dir: Directory to search in
2295  * @name: qstr of name we wish to find
2296  *
2297  * On lookup failure NULL is returned; on bad name - ERR_PTR(-error)
2298  */
2299 struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
2300 {
2301 	/*
2302 	 * Check for a fs-specific hash function. Note that we must
2303 	 * calculate the standard hash first, as the d_op->d_hash()
2304 	 * routine may choose to leave the hash value unchanged.
2305 	 */
2306 	name->hash = full_name_hash(name->name, name->len);
2307 	if (dir->d_flags & DCACHE_OP_HASH) {
2308 		int err = dir->d_op->d_hash(dir, name);
2309 		if (unlikely(err < 0))
2310 			return ERR_PTR(err);
2311 	}
2312 	return d_lookup(dir, name);
2313 }
2314 EXPORT_SYMBOL(d_hash_and_lookup);
2315 
2316 /**
2317  * d_validate - verify dentry provided from insecure source (deprecated)
2318  * @dentry: The dentry alleged to be valid child of @dparent
2319  * @dparent: The parent dentry (known to be valid)
2320  *
2321  * An insecure source has sent us a dentry, here we verify it and dget() it.
2322  * This is used by ncpfs in its readdir implementation.
2323  * Zero is returned in the dentry is invalid.
2324  *
2325  * This function is slow for big directories, and deprecated, do not use it.
2326  */
2327 int d_validate(struct dentry *dentry, struct dentry *dparent)
2328 {
2329 	struct dentry *child;
2330 
2331 	spin_lock(&dparent->d_lock);
2332 	list_for_each_entry(child, &dparent->d_subdirs, d_u.d_child) {
2333 		if (dentry == child) {
2334 			spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
2335 			__dget_dlock(dentry);
2336 			spin_unlock(&dentry->d_lock);
2337 			spin_unlock(&dparent->d_lock);
2338 			return 1;
2339 		}
2340 	}
2341 	spin_unlock(&dparent->d_lock);
2342 
2343 	return 0;
2344 }
2345 EXPORT_SYMBOL(d_validate);
2346 
2347 /*
2348  * When a file is deleted, we have two options:
2349  * - turn this dentry into a negative dentry
2350  * - unhash this dentry and free it.
2351  *
2352  * Usually, we want to just turn this into
2353  * a negative dentry, but if anybody else is
2354  * currently using the dentry or the inode
2355  * we can't do that and we fall back on removing
2356  * it from the hash queues and waiting for
2357  * it to be deleted later when it has no users
2358  */
2359 
2360 /**
2361  * d_delete - delete a dentry
2362  * @dentry: The dentry to delete
2363  *
2364  * Turn the dentry into a negative dentry if possible, otherwise
2365  * remove it from the hash queues so it can be deleted later
2366  */
2367 
2368 void d_delete(struct dentry * dentry)
2369 {
2370 	struct inode *inode;
2371 	int isdir = 0;
2372 	/*
2373 	 * Are we the only user?
2374 	 */
2375 again:
2376 	spin_lock(&dentry->d_lock);
2377 	inode = dentry->d_inode;
2378 	isdir = S_ISDIR(inode->i_mode);
2379 	if (dentry->d_lockref.count == 1) {
2380 		if (!spin_trylock(&inode->i_lock)) {
2381 			spin_unlock(&dentry->d_lock);
2382 			cpu_relax();
2383 			goto again;
2384 		}
2385 		dentry->d_flags &= ~DCACHE_CANT_MOUNT;
2386 		dentry_unlink_inode(dentry);
2387 		fsnotify_nameremove(dentry, isdir);
2388 		return;
2389 	}
2390 
2391 	if (!d_unhashed(dentry))
2392 		__d_drop(dentry);
2393 
2394 	spin_unlock(&dentry->d_lock);
2395 
2396 	fsnotify_nameremove(dentry, isdir);
2397 }
2398 EXPORT_SYMBOL(d_delete);
2399 
2400 static void __d_rehash(struct dentry * entry, struct hlist_bl_head *b)
2401 {
2402 	BUG_ON(!d_unhashed(entry));
2403 	hlist_bl_lock(b);
2404 	entry->d_flags |= DCACHE_RCUACCESS;
2405 	hlist_bl_add_head_rcu(&entry->d_hash, b);
2406 	hlist_bl_unlock(b);
2407 }
2408 
2409 static void _d_rehash(struct dentry * entry)
2410 {
2411 	__d_rehash(entry, d_hash(entry->d_parent, entry->d_name.hash));
2412 }
2413 
2414 /**
2415  * d_rehash	- add an entry back to the hash
2416  * @entry: dentry to add to the hash
2417  *
2418  * Adds a dentry to the hash according to its name.
2419  */
2420 
2421 void d_rehash(struct dentry * entry)
2422 {
2423 	spin_lock(&entry->d_lock);
2424 	_d_rehash(entry);
2425 	spin_unlock(&entry->d_lock);
2426 }
2427 EXPORT_SYMBOL(d_rehash);
2428 
2429 /**
2430  * dentry_update_name_case - update case insensitive dentry with a new name
2431  * @dentry: dentry to be updated
2432  * @name: new name
2433  *
2434  * Update a case insensitive dentry with new case of name.
2435  *
2436  * dentry must have been returned by d_lookup with name @name. Old and new
2437  * name lengths must match (ie. no d_compare which allows mismatched name
2438  * lengths).
2439  *
2440  * Parent inode i_mutex must be held over d_lookup and into this call (to
2441  * keep renames and concurrent inserts, and readdir(2) away).
2442  */
2443 void dentry_update_name_case(struct dentry *dentry, struct qstr *name)
2444 {
2445 	BUG_ON(!mutex_is_locked(&dentry->d_parent->d_inode->i_mutex));
2446 	BUG_ON(dentry->d_name.len != name->len); /* d_lookup gives this */
2447 
2448 	spin_lock(&dentry->d_lock);
2449 	write_seqcount_begin(&dentry->d_seq);
2450 	memcpy((unsigned char *)dentry->d_name.name, name->name, name->len);
2451 	write_seqcount_end(&dentry->d_seq);
2452 	spin_unlock(&dentry->d_lock);
2453 }
2454 EXPORT_SYMBOL(dentry_update_name_case);
2455 
2456 static void switch_names(struct dentry *dentry, struct dentry *target)
2457 {
2458 	if (dname_external(target)) {
2459 		if (dname_external(dentry)) {
2460 			/*
2461 			 * Both external: swap the pointers
2462 			 */
2463 			swap(target->d_name.name, dentry->d_name.name);
2464 		} else {
2465 			/*
2466 			 * dentry:internal, target:external.  Steal target's
2467 			 * storage and make target internal.
2468 			 */
2469 			memcpy(target->d_iname, dentry->d_name.name,
2470 					dentry->d_name.len + 1);
2471 			dentry->d_name.name = target->d_name.name;
2472 			target->d_name.name = target->d_iname;
2473 		}
2474 	} else {
2475 		if (dname_external(dentry)) {
2476 			/*
2477 			 * dentry:external, target:internal.  Give dentry's
2478 			 * storage to target and make dentry internal
2479 			 */
2480 			memcpy(dentry->d_iname, target->d_name.name,
2481 					target->d_name.len + 1);
2482 			target->d_name.name = dentry->d_name.name;
2483 			dentry->d_name.name = dentry->d_iname;
2484 		} else {
2485 			/*
2486 			 * Both are internal.  Just copy target to dentry
2487 			 */
2488 			memcpy(dentry->d_iname, target->d_name.name,
2489 					target->d_name.len + 1);
2490 			dentry->d_name.len = target->d_name.len;
2491 			return;
2492 		}
2493 	}
2494 	swap(dentry->d_name.len, target->d_name.len);
2495 }
2496 
2497 static void dentry_lock_for_move(struct dentry *dentry, struct dentry *target)
2498 {
2499 	/*
2500 	 * XXXX: do we really need to take target->d_lock?
2501 	 */
2502 	if (IS_ROOT(dentry) || dentry->d_parent == target->d_parent)
2503 		spin_lock(&target->d_parent->d_lock);
2504 	else {
2505 		if (d_ancestor(dentry->d_parent, target->d_parent)) {
2506 			spin_lock(&dentry->d_parent->d_lock);
2507 			spin_lock_nested(&target->d_parent->d_lock,
2508 						DENTRY_D_LOCK_NESTED);
2509 		} else {
2510 			spin_lock(&target->d_parent->d_lock);
2511 			spin_lock_nested(&dentry->d_parent->d_lock,
2512 						DENTRY_D_LOCK_NESTED);
2513 		}
2514 	}
2515 	if (target < dentry) {
2516 		spin_lock_nested(&target->d_lock, 2);
2517 		spin_lock_nested(&dentry->d_lock, 3);
2518 	} else {
2519 		spin_lock_nested(&dentry->d_lock, 2);
2520 		spin_lock_nested(&target->d_lock, 3);
2521 	}
2522 }
2523 
2524 static void dentry_unlock_parents_for_move(struct dentry *dentry,
2525 					struct dentry *target)
2526 {
2527 	if (target->d_parent != dentry->d_parent)
2528 		spin_unlock(&dentry->d_parent->d_lock);
2529 	if (target->d_parent != target)
2530 		spin_unlock(&target->d_parent->d_lock);
2531 }
2532 
2533 /*
2534  * When switching names, the actual string doesn't strictly have to
2535  * be preserved in the target - because we're dropping the target
2536  * anyway. As such, we can just do a simple memcpy() to copy over
2537  * the new name before we switch.
2538  *
2539  * Note that we have to be a lot more careful about getting the hash
2540  * switched - we have to switch the hash value properly even if it
2541  * then no longer matches the actual (corrupted) string of the target.
2542  * The hash value has to match the hash queue that the dentry is on..
2543  */
2544 /*
2545  * __d_move - move a dentry
2546  * @dentry: entry to move
2547  * @target: new dentry
2548  *
2549  * Update the dcache to reflect the move of a file name. Negative
2550  * dcache entries should not be moved in this way. Caller must hold
2551  * rename_lock, the i_mutex of the source and target directories,
2552  * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
2553  */
2554 static void __d_move(struct dentry * dentry, struct dentry * target)
2555 {
2556 	if (!dentry->d_inode)
2557 		printk(KERN_WARNING "VFS: moving negative dcache entry\n");
2558 
2559 	BUG_ON(d_ancestor(dentry, target));
2560 	BUG_ON(d_ancestor(target, dentry));
2561 
2562 	dentry_lock_for_move(dentry, target);
2563 
2564 	write_seqcount_begin(&dentry->d_seq);
2565 	write_seqcount_begin_nested(&target->d_seq, DENTRY_D_LOCK_NESTED);
2566 
2567 	/* __d_drop does write_seqcount_barrier, but they're OK to nest. */
2568 
2569 	/*
2570 	 * Move the dentry to the target hash queue. Don't bother checking
2571 	 * for the same hash queue because of how unlikely it is.
2572 	 */
2573 	__d_drop(dentry);
2574 	__d_rehash(dentry, d_hash(target->d_parent, target->d_name.hash));
2575 
2576 	/* Unhash the target: dput() will then get rid of it */
2577 	__d_drop(target);
2578 
2579 	list_del(&dentry->d_u.d_child);
2580 	list_del(&target->d_u.d_child);
2581 
2582 	/* Switch the names.. */
2583 	switch_names(dentry, target);
2584 	swap(dentry->d_name.hash, target->d_name.hash);
2585 
2586 	/* ... and switch the parents */
2587 	if (IS_ROOT(dentry)) {
2588 		dentry->d_parent = target->d_parent;
2589 		target->d_parent = target;
2590 		INIT_LIST_HEAD(&target->d_u.d_child);
2591 	} else {
2592 		swap(dentry->d_parent, target->d_parent);
2593 
2594 		/* And add them back to the (new) parent lists */
2595 		list_add(&target->d_u.d_child, &target->d_parent->d_subdirs);
2596 	}
2597 
2598 	list_add(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs);
2599 
2600 	write_seqcount_end(&target->d_seq);
2601 	write_seqcount_end(&dentry->d_seq);
2602 
2603 	dentry_unlock_parents_for_move(dentry, target);
2604 	spin_unlock(&target->d_lock);
2605 	fsnotify_d_move(dentry);
2606 	spin_unlock(&dentry->d_lock);
2607 }
2608 
2609 /*
2610  * d_move - move a dentry
2611  * @dentry: entry to move
2612  * @target: new dentry
2613  *
2614  * Update the dcache to reflect the move of a file name. Negative
2615  * dcache entries should not be moved in this way. See the locking
2616  * requirements for __d_move.
2617  */
2618 void d_move(struct dentry *dentry, struct dentry *target)
2619 {
2620 	write_seqlock(&rename_lock);
2621 	__d_move(dentry, target);
2622 	write_sequnlock(&rename_lock);
2623 }
2624 EXPORT_SYMBOL(d_move);
2625 
2626 /**
2627  * d_ancestor - search for an ancestor
2628  * @p1: ancestor dentry
2629  * @p2: child dentry
2630  *
2631  * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2632  * an ancestor of p2, else NULL.
2633  */
2634 struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
2635 {
2636 	struct dentry *p;
2637 
2638 	for (p = p2; !IS_ROOT(p); p = p->d_parent) {
2639 		if (p->d_parent == p1)
2640 			return p;
2641 	}
2642 	return NULL;
2643 }
2644 
2645 /*
2646  * This helper attempts to cope with remotely renamed directories
2647  *
2648  * It assumes that the caller is already holding
2649  * dentry->d_parent->d_inode->i_mutex, inode->i_lock and rename_lock
2650  *
2651  * Note: If ever the locking in lock_rename() changes, then please
2652  * remember to update this too...
2653  */
2654 static struct dentry *__d_unalias(struct inode *inode,
2655 		struct dentry *dentry, struct dentry *alias)
2656 {
2657 	struct mutex *m1 = NULL, *m2 = NULL;
2658 	struct dentry *ret = ERR_PTR(-EBUSY);
2659 
2660 	/* If alias and dentry share a parent, then no extra locks required */
2661 	if (alias->d_parent == dentry->d_parent)
2662 		goto out_unalias;
2663 
2664 	/* See lock_rename() */
2665 	if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
2666 		goto out_err;
2667 	m1 = &dentry->d_sb->s_vfs_rename_mutex;
2668 	if (!mutex_trylock(&alias->d_parent->d_inode->i_mutex))
2669 		goto out_err;
2670 	m2 = &alias->d_parent->d_inode->i_mutex;
2671 out_unalias:
2672 	if (likely(!d_mountpoint(alias))) {
2673 		__d_move(alias, dentry);
2674 		ret = alias;
2675 	}
2676 out_err:
2677 	spin_unlock(&inode->i_lock);
2678 	if (m2)
2679 		mutex_unlock(m2);
2680 	if (m1)
2681 		mutex_unlock(m1);
2682 	return ret;
2683 }
2684 
2685 /*
2686  * Prepare an anonymous dentry for life in the superblock's dentry tree as a
2687  * named dentry in place of the dentry to be replaced.
2688  * returns with anon->d_lock held!
2689  */
2690 static void __d_materialise_dentry(struct dentry *dentry, struct dentry *anon)
2691 {
2692 	struct dentry *dparent;
2693 
2694 	dentry_lock_for_move(anon, dentry);
2695 
2696 	write_seqcount_begin(&dentry->d_seq);
2697 	write_seqcount_begin_nested(&anon->d_seq, DENTRY_D_LOCK_NESTED);
2698 
2699 	dparent = dentry->d_parent;
2700 
2701 	switch_names(dentry, anon);
2702 	swap(dentry->d_name.hash, anon->d_name.hash);
2703 
2704 	dentry->d_parent = dentry;
2705 	list_del_init(&dentry->d_u.d_child);
2706 	anon->d_parent = dparent;
2707 	list_move(&anon->d_u.d_child, &dparent->d_subdirs);
2708 
2709 	write_seqcount_end(&dentry->d_seq);
2710 	write_seqcount_end(&anon->d_seq);
2711 
2712 	dentry_unlock_parents_for_move(anon, dentry);
2713 	spin_unlock(&dentry->d_lock);
2714 
2715 	/* anon->d_lock still locked, returns locked */
2716 }
2717 
2718 /**
2719  * d_materialise_unique - introduce an inode into the tree
2720  * @dentry: candidate dentry
2721  * @inode: inode to bind to the dentry, to which aliases may be attached
2722  *
2723  * Introduces an dentry into the tree, substituting an extant disconnected
2724  * root directory alias in its place if there is one. Caller must hold the
2725  * i_mutex of the parent directory.
2726  */
2727 struct dentry *d_materialise_unique(struct dentry *dentry, struct inode *inode)
2728 {
2729 	struct dentry *actual;
2730 
2731 	BUG_ON(!d_unhashed(dentry));
2732 
2733 	if (!inode) {
2734 		actual = dentry;
2735 		__d_instantiate(dentry, NULL);
2736 		d_rehash(actual);
2737 		goto out_nolock;
2738 	}
2739 
2740 	spin_lock(&inode->i_lock);
2741 
2742 	if (S_ISDIR(inode->i_mode)) {
2743 		struct dentry *alias;
2744 
2745 		/* Does an aliased dentry already exist? */
2746 		alias = __d_find_alias(inode, 0);
2747 		if (alias) {
2748 			actual = alias;
2749 			write_seqlock(&rename_lock);
2750 
2751 			if (d_ancestor(alias, dentry)) {
2752 				/* Check for loops */
2753 				actual = ERR_PTR(-ELOOP);
2754 				spin_unlock(&inode->i_lock);
2755 			} else if (IS_ROOT(alias)) {
2756 				/* Is this an anonymous mountpoint that we
2757 				 * could splice into our tree? */
2758 				__d_materialise_dentry(dentry, alias);
2759 				write_sequnlock(&rename_lock);
2760 				__d_drop(alias);
2761 				goto found;
2762 			} else {
2763 				/* Nope, but we must(!) avoid directory
2764 				 * aliasing. This drops inode->i_lock */
2765 				actual = __d_unalias(inode, dentry, alias);
2766 			}
2767 			write_sequnlock(&rename_lock);
2768 			if (IS_ERR(actual)) {
2769 				if (PTR_ERR(actual) == -ELOOP)
2770 					pr_warn_ratelimited(
2771 						"VFS: Lookup of '%s' in %s %s"
2772 						" would have caused loop\n",
2773 						dentry->d_name.name,
2774 						inode->i_sb->s_type->name,
2775 						inode->i_sb->s_id);
2776 				dput(alias);
2777 			}
2778 			goto out_nolock;
2779 		}
2780 	}
2781 
2782 	/* Add a unique reference */
2783 	actual = __d_instantiate_unique(dentry, inode);
2784 	if (!actual)
2785 		actual = dentry;
2786 	else
2787 		BUG_ON(!d_unhashed(actual));
2788 
2789 	spin_lock(&actual->d_lock);
2790 found:
2791 	_d_rehash(actual);
2792 	spin_unlock(&actual->d_lock);
2793 	spin_unlock(&inode->i_lock);
2794 out_nolock:
2795 	if (actual == dentry) {
2796 		security_d_instantiate(dentry, inode);
2797 		return NULL;
2798 	}
2799 
2800 	iput(inode);
2801 	return actual;
2802 }
2803 EXPORT_SYMBOL_GPL(d_materialise_unique);
2804 
2805 static int prepend(char **buffer, int *buflen, const char *str, int namelen)
2806 {
2807 	*buflen -= namelen;
2808 	if (*buflen < 0)
2809 		return -ENAMETOOLONG;
2810 	*buffer -= namelen;
2811 	memcpy(*buffer, str, namelen);
2812 	return 0;
2813 }
2814 
2815 /**
2816  * prepend_name - prepend a pathname in front of current buffer pointer
2817  * @buffer: buffer pointer
2818  * @buflen: allocated length of the buffer
2819  * @name:   name string and length qstr structure
2820  *
2821  * With RCU path tracing, it may race with d_move(). Use ACCESS_ONCE() to
2822  * make sure that either the old or the new name pointer and length are
2823  * fetched. However, there may be mismatch between length and pointer.
2824  * The length cannot be trusted, we need to copy it byte-by-byte until
2825  * the length is reached or a null byte is found. It also prepends "/" at
2826  * the beginning of the name. The sequence number check at the caller will
2827  * retry it again when a d_move() does happen. So any garbage in the buffer
2828  * due to mismatched pointer and length will be discarded.
2829  */
2830 static int prepend_name(char **buffer, int *buflen, struct qstr *name)
2831 {
2832 	const char *dname = ACCESS_ONCE(name->name);
2833 	u32 dlen = ACCESS_ONCE(name->len);
2834 	char *p;
2835 
2836 	if (*buflen < dlen + 1)
2837 		return -ENAMETOOLONG;
2838 	*buflen -= dlen + 1;
2839 	p = *buffer -= dlen + 1;
2840 	*p++ = '/';
2841 	while (dlen--) {
2842 		char c = *dname++;
2843 		if (!c)
2844 			break;
2845 		*p++ = c;
2846 	}
2847 	return 0;
2848 }
2849 
2850 /**
2851  * prepend_path - Prepend path string to a buffer
2852  * @path: the dentry/vfsmount to report
2853  * @root: root vfsmnt/dentry
2854  * @buffer: pointer to the end of the buffer
2855  * @buflen: pointer to buffer length
2856  *
2857  * The function will first try to write out the pathname without taking any
2858  * lock other than the RCU read lock to make sure that dentries won't go away.
2859  * It only checks the sequence number of the global rename_lock as any change
2860  * in the dentry's d_seq will be preceded by changes in the rename_lock
2861  * sequence number. If the sequence number had been changed, it will restart
2862  * the whole pathname back-tracing sequence again by taking the rename_lock.
2863  * In this case, there is no need to take the RCU read lock as the recursive
2864  * parent pointer references will keep the dentry chain alive as long as no
2865  * rename operation is performed.
2866  */
2867 static int prepend_path(const struct path *path,
2868 			const struct path *root,
2869 			char **buffer, int *buflen)
2870 {
2871 	struct dentry *dentry;
2872 	struct vfsmount *vfsmnt;
2873 	struct mount *mnt;
2874 	int error = 0;
2875 	unsigned seq, m_seq = 0;
2876 	char *bptr;
2877 	int blen;
2878 
2879 	rcu_read_lock();
2880 restart_mnt:
2881 	read_seqbegin_or_lock(&mount_lock, &m_seq);
2882 	seq = 0;
2883 	rcu_read_lock();
2884 restart:
2885 	bptr = *buffer;
2886 	blen = *buflen;
2887 	error = 0;
2888 	dentry = path->dentry;
2889 	vfsmnt = path->mnt;
2890 	mnt = real_mount(vfsmnt);
2891 	read_seqbegin_or_lock(&rename_lock, &seq);
2892 	while (dentry != root->dentry || vfsmnt != root->mnt) {
2893 		struct dentry * parent;
2894 
2895 		if (dentry == vfsmnt->mnt_root || IS_ROOT(dentry)) {
2896 			struct mount *parent = ACCESS_ONCE(mnt->mnt_parent);
2897 			/* Global root? */
2898 			if (mnt != parent) {
2899 				dentry = ACCESS_ONCE(mnt->mnt_mountpoint);
2900 				mnt = parent;
2901 				vfsmnt = &mnt->mnt;
2902 				continue;
2903 			}
2904 			/*
2905 			 * Filesystems needing to implement special "root names"
2906 			 * should do so with ->d_dname()
2907 			 */
2908 			if (IS_ROOT(dentry) &&
2909 			   (dentry->d_name.len != 1 ||
2910 			    dentry->d_name.name[0] != '/')) {
2911 				WARN(1, "Root dentry has weird name <%.*s>\n",
2912 				     (int) dentry->d_name.len,
2913 				     dentry->d_name.name);
2914 			}
2915 			if (!error)
2916 				error = is_mounted(vfsmnt) ? 1 : 2;
2917 			break;
2918 		}
2919 		parent = dentry->d_parent;
2920 		prefetch(parent);
2921 		error = prepend_name(&bptr, &blen, &dentry->d_name);
2922 		if (error)
2923 			break;
2924 
2925 		dentry = parent;
2926 	}
2927 	if (!(seq & 1))
2928 		rcu_read_unlock();
2929 	if (need_seqretry(&rename_lock, seq)) {
2930 		seq = 1;
2931 		goto restart;
2932 	}
2933 	done_seqretry(&rename_lock, seq);
2934 
2935 	if (!(m_seq & 1))
2936 		rcu_read_unlock();
2937 	if (need_seqretry(&mount_lock, m_seq)) {
2938 		m_seq = 1;
2939 		goto restart_mnt;
2940 	}
2941 	done_seqretry(&mount_lock, m_seq);
2942 
2943 	if (error >= 0 && bptr == *buffer) {
2944 		if (--blen < 0)
2945 			error = -ENAMETOOLONG;
2946 		else
2947 			*--bptr = '/';
2948 	}
2949 	*buffer = bptr;
2950 	*buflen = blen;
2951 	return error;
2952 }
2953 
2954 /**
2955  * __d_path - return the path of a dentry
2956  * @path: the dentry/vfsmount to report
2957  * @root: root vfsmnt/dentry
2958  * @buf: buffer to return value in
2959  * @buflen: buffer length
2960  *
2961  * Convert a dentry into an ASCII path name.
2962  *
2963  * Returns a pointer into the buffer or an error code if the
2964  * path was too long.
2965  *
2966  * "buflen" should be positive.
2967  *
2968  * If the path is not reachable from the supplied root, return %NULL.
2969  */
2970 char *__d_path(const struct path *path,
2971 	       const struct path *root,
2972 	       char *buf, int buflen)
2973 {
2974 	char *res = buf + buflen;
2975 	int error;
2976 
2977 	prepend(&res, &buflen, "\0", 1);
2978 	error = prepend_path(path, root, &res, &buflen);
2979 
2980 	if (error < 0)
2981 		return ERR_PTR(error);
2982 	if (error > 0)
2983 		return NULL;
2984 	return res;
2985 }
2986 
2987 char *d_absolute_path(const struct path *path,
2988 	       char *buf, int buflen)
2989 {
2990 	struct path root = {};
2991 	char *res = buf + buflen;
2992 	int error;
2993 
2994 	prepend(&res, &buflen, "\0", 1);
2995 	error = prepend_path(path, &root, &res, &buflen);
2996 
2997 	if (error > 1)
2998 		error = -EINVAL;
2999 	if (error < 0)
3000 		return ERR_PTR(error);
3001 	return res;
3002 }
3003 
3004 /*
3005  * same as __d_path but appends "(deleted)" for unlinked files.
3006  */
3007 static int path_with_deleted(const struct path *path,
3008 			     const struct path *root,
3009 			     char **buf, int *buflen)
3010 {
3011 	prepend(buf, buflen, "\0", 1);
3012 	if (d_unlinked(path->dentry)) {
3013 		int error = prepend(buf, buflen, " (deleted)", 10);
3014 		if (error)
3015 			return error;
3016 	}
3017 
3018 	return prepend_path(path, root, buf, buflen);
3019 }
3020 
3021 static int prepend_unreachable(char **buffer, int *buflen)
3022 {
3023 	return prepend(buffer, buflen, "(unreachable)", 13);
3024 }
3025 
3026 static void get_fs_root_rcu(struct fs_struct *fs, struct path *root)
3027 {
3028 	unsigned seq;
3029 
3030 	do {
3031 		seq = read_seqcount_begin(&fs->seq);
3032 		*root = fs->root;
3033 	} while (read_seqcount_retry(&fs->seq, seq));
3034 }
3035 
3036 /**
3037  * d_path - return the path of a dentry
3038  * @path: path to report
3039  * @buf: buffer to return value in
3040  * @buflen: buffer length
3041  *
3042  * Convert a dentry into an ASCII path name. If the entry has been deleted
3043  * the string " (deleted)" is appended. Note that this is ambiguous.
3044  *
3045  * Returns a pointer into the buffer or an error code if the path was
3046  * too long. Note: Callers should use the returned pointer, not the passed
3047  * in buffer, to use the name! The implementation often starts at an offset
3048  * into the buffer, and may leave 0 bytes at the start.
3049  *
3050  * "buflen" should be positive.
3051  */
3052 char *d_path(const struct path *path, char *buf, int buflen)
3053 {
3054 	char *res = buf + buflen;
3055 	struct path root;
3056 	int error;
3057 
3058 	/*
3059 	 * We have various synthetic filesystems that never get mounted.  On
3060 	 * these filesystems dentries are never used for lookup purposes, and
3061 	 * thus don't need to be hashed.  They also don't need a name until a
3062 	 * user wants to identify the object in /proc/pid/fd/.  The little hack
3063 	 * below allows us to generate a name for these objects on demand:
3064 	 *
3065 	 * Some pseudo inodes are mountable.  When they are mounted
3066 	 * path->dentry == path->mnt->mnt_root.  In that case don't call d_dname
3067 	 * and instead have d_path return the mounted path.
3068 	 */
3069 	if (path->dentry->d_op && path->dentry->d_op->d_dname &&
3070 	    (!IS_ROOT(path->dentry) || path->dentry != path->mnt->mnt_root))
3071 		return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
3072 
3073 	rcu_read_lock();
3074 	get_fs_root_rcu(current->fs, &root);
3075 	error = path_with_deleted(path, &root, &res, &buflen);
3076 	rcu_read_unlock();
3077 
3078 	if (error < 0)
3079 		res = ERR_PTR(error);
3080 	return res;
3081 }
3082 EXPORT_SYMBOL(d_path);
3083 
3084 /*
3085  * Helper function for dentry_operations.d_dname() members
3086  */
3087 char *dynamic_dname(struct dentry *dentry, char *buffer, int buflen,
3088 			const char *fmt, ...)
3089 {
3090 	va_list args;
3091 	char temp[64];
3092 	int sz;
3093 
3094 	va_start(args, fmt);
3095 	sz = vsnprintf(temp, sizeof(temp), fmt, args) + 1;
3096 	va_end(args);
3097 
3098 	if (sz > sizeof(temp) || sz > buflen)
3099 		return ERR_PTR(-ENAMETOOLONG);
3100 
3101 	buffer += buflen - sz;
3102 	return memcpy(buffer, temp, sz);
3103 }
3104 
3105 char *simple_dname(struct dentry *dentry, char *buffer, int buflen)
3106 {
3107 	char *end = buffer + buflen;
3108 	/* these dentries are never renamed, so d_lock is not needed */
3109 	if (prepend(&end, &buflen, " (deleted)", 11) ||
3110 	    prepend(&end, &buflen, dentry->d_name.name, dentry->d_name.len) ||
3111 	    prepend(&end, &buflen, "/", 1))
3112 		end = ERR_PTR(-ENAMETOOLONG);
3113 	return end;
3114 }
3115 
3116 /*
3117  * Write full pathname from the root of the filesystem into the buffer.
3118  */
3119 static char *__dentry_path(struct dentry *d, char *buf, int buflen)
3120 {
3121 	struct dentry *dentry;
3122 	char *end, *retval;
3123 	int len, seq = 0;
3124 	int error = 0;
3125 
3126 	if (buflen < 2)
3127 		goto Elong;
3128 
3129 	rcu_read_lock();
3130 restart:
3131 	dentry = d;
3132 	end = buf + buflen;
3133 	len = buflen;
3134 	prepend(&end, &len, "\0", 1);
3135 	/* Get '/' right */
3136 	retval = end-1;
3137 	*retval = '/';
3138 	read_seqbegin_or_lock(&rename_lock, &seq);
3139 	while (!IS_ROOT(dentry)) {
3140 		struct dentry *parent = dentry->d_parent;
3141 
3142 		prefetch(parent);
3143 		error = prepend_name(&end, &len, &dentry->d_name);
3144 		if (error)
3145 			break;
3146 
3147 		retval = end;
3148 		dentry = parent;
3149 	}
3150 	if (!(seq & 1))
3151 		rcu_read_unlock();
3152 	if (need_seqretry(&rename_lock, seq)) {
3153 		seq = 1;
3154 		goto restart;
3155 	}
3156 	done_seqretry(&rename_lock, seq);
3157 	if (error)
3158 		goto Elong;
3159 	return retval;
3160 Elong:
3161 	return ERR_PTR(-ENAMETOOLONG);
3162 }
3163 
3164 char *dentry_path_raw(struct dentry *dentry, char *buf, int buflen)
3165 {
3166 	return __dentry_path(dentry, buf, buflen);
3167 }
3168 EXPORT_SYMBOL(dentry_path_raw);
3169 
3170 char *dentry_path(struct dentry *dentry, char *buf, int buflen)
3171 {
3172 	char *p = NULL;
3173 	char *retval;
3174 
3175 	if (d_unlinked(dentry)) {
3176 		p = buf + buflen;
3177 		if (prepend(&p, &buflen, "//deleted", 10) != 0)
3178 			goto Elong;
3179 		buflen++;
3180 	}
3181 	retval = __dentry_path(dentry, buf, buflen);
3182 	if (!IS_ERR(retval) && p)
3183 		*p = '/';	/* restore '/' overriden with '\0' */
3184 	return retval;
3185 Elong:
3186 	return ERR_PTR(-ENAMETOOLONG);
3187 }
3188 
3189 static void get_fs_root_and_pwd_rcu(struct fs_struct *fs, struct path *root,
3190 				    struct path *pwd)
3191 {
3192 	unsigned seq;
3193 
3194 	do {
3195 		seq = read_seqcount_begin(&fs->seq);
3196 		*root = fs->root;
3197 		*pwd = fs->pwd;
3198 	} while (read_seqcount_retry(&fs->seq, seq));
3199 }
3200 
3201 /*
3202  * NOTE! The user-level library version returns a
3203  * character pointer. The kernel system call just
3204  * returns the length of the buffer filled (which
3205  * includes the ending '\0' character), or a negative
3206  * error value. So libc would do something like
3207  *
3208  *	char *getcwd(char * buf, size_t size)
3209  *	{
3210  *		int retval;
3211  *
3212  *		retval = sys_getcwd(buf, size);
3213  *		if (retval >= 0)
3214  *			return buf;
3215  *		errno = -retval;
3216  *		return NULL;
3217  *	}
3218  */
3219 SYSCALL_DEFINE2(getcwd, char __user *, buf, unsigned long, size)
3220 {
3221 	int error;
3222 	struct path pwd, root;
3223 	char *page = __getname();
3224 
3225 	if (!page)
3226 		return -ENOMEM;
3227 
3228 	rcu_read_lock();
3229 	get_fs_root_and_pwd_rcu(current->fs, &root, &pwd);
3230 
3231 	error = -ENOENT;
3232 	if (!d_unlinked(pwd.dentry)) {
3233 		unsigned long len;
3234 		char *cwd = page + PATH_MAX;
3235 		int buflen = PATH_MAX;
3236 
3237 		prepend(&cwd, &buflen, "\0", 1);
3238 		error = prepend_path(&pwd, &root, &cwd, &buflen);
3239 		rcu_read_unlock();
3240 
3241 		if (error < 0)
3242 			goto out;
3243 
3244 		/* Unreachable from current root */
3245 		if (error > 0) {
3246 			error = prepend_unreachable(&cwd, &buflen);
3247 			if (error)
3248 				goto out;
3249 		}
3250 
3251 		error = -ERANGE;
3252 		len = PATH_MAX + page - cwd;
3253 		if (len <= size) {
3254 			error = len;
3255 			if (copy_to_user(buf, cwd, len))
3256 				error = -EFAULT;
3257 		}
3258 	} else {
3259 		rcu_read_unlock();
3260 	}
3261 
3262 out:
3263 	__putname(page);
3264 	return error;
3265 }
3266 
3267 /*
3268  * Test whether new_dentry is a subdirectory of old_dentry.
3269  *
3270  * Trivially implemented using the dcache structure
3271  */
3272 
3273 /**
3274  * is_subdir - is new dentry a subdirectory of old_dentry
3275  * @new_dentry: new dentry
3276  * @old_dentry: old dentry
3277  *
3278  * Returns 1 if new_dentry is a subdirectory of the parent (at any depth).
3279  * Returns 0 otherwise.
3280  * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
3281  */
3282 
3283 int is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
3284 {
3285 	int result;
3286 	unsigned seq;
3287 
3288 	if (new_dentry == old_dentry)
3289 		return 1;
3290 
3291 	do {
3292 		/* for restarting inner loop in case of seq retry */
3293 		seq = read_seqbegin(&rename_lock);
3294 		/*
3295 		 * Need rcu_readlock to protect against the d_parent trashing
3296 		 * due to d_move
3297 		 */
3298 		rcu_read_lock();
3299 		if (d_ancestor(old_dentry, new_dentry))
3300 			result = 1;
3301 		else
3302 			result = 0;
3303 		rcu_read_unlock();
3304 	} while (read_seqretry(&rename_lock, seq));
3305 
3306 	return result;
3307 }
3308 
3309 static enum d_walk_ret d_genocide_kill(void *data, struct dentry *dentry)
3310 {
3311 	struct dentry *root = data;
3312 	if (dentry != root) {
3313 		if (d_unhashed(dentry) || !dentry->d_inode)
3314 			return D_WALK_SKIP;
3315 
3316 		if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
3317 			dentry->d_flags |= DCACHE_GENOCIDE;
3318 			dentry->d_lockref.count--;
3319 		}
3320 	}
3321 	return D_WALK_CONTINUE;
3322 }
3323 
3324 void d_genocide(struct dentry *parent)
3325 {
3326 	d_walk(parent, parent, d_genocide_kill, NULL);
3327 }
3328 
3329 void d_tmpfile(struct dentry *dentry, struct inode *inode)
3330 {
3331 	inode_dec_link_count(inode);
3332 	BUG_ON(dentry->d_name.name != dentry->d_iname ||
3333 		!hlist_unhashed(&dentry->d_alias) ||
3334 		!d_unlinked(dentry));
3335 	spin_lock(&dentry->d_parent->d_lock);
3336 	spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
3337 	dentry->d_name.len = sprintf(dentry->d_iname, "#%llu",
3338 				(unsigned long long)inode->i_ino);
3339 	spin_unlock(&dentry->d_lock);
3340 	spin_unlock(&dentry->d_parent->d_lock);
3341 	d_instantiate(dentry, inode);
3342 }
3343 EXPORT_SYMBOL(d_tmpfile);
3344 
3345 static __initdata unsigned long dhash_entries;
3346 static int __init set_dhash_entries(char *str)
3347 {
3348 	if (!str)
3349 		return 0;
3350 	dhash_entries = simple_strtoul(str, &str, 0);
3351 	return 1;
3352 }
3353 __setup("dhash_entries=", set_dhash_entries);
3354 
3355 static void __init dcache_init_early(void)
3356 {
3357 	unsigned int loop;
3358 
3359 	/* If hashes are distributed across NUMA nodes, defer
3360 	 * hash allocation until vmalloc space is available.
3361 	 */
3362 	if (hashdist)
3363 		return;
3364 
3365 	dentry_hashtable =
3366 		alloc_large_system_hash("Dentry cache",
3367 					sizeof(struct hlist_bl_head),
3368 					dhash_entries,
3369 					13,
3370 					HASH_EARLY,
3371 					&d_hash_shift,
3372 					&d_hash_mask,
3373 					0,
3374 					0);
3375 
3376 	for (loop = 0; loop < (1U << d_hash_shift); loop++)
3377 		INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
3378 }
3379 
3380 static void __init dcache_init(void)
3381 {
3382 	unsigned int loop;
3383 
3384 	/*
3385 	 * A constructor could be added for stable state like the lists,
3386 	 * but it is probably not worth it because of the cache nature
3387 	 * of the dcache.
3388 	 */
3389 	dentry_cache = KMEM_CACHE(dentry,
3390 		SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD);
3391 
3392 	/* Hash may have been set up in dcache_init_early */
3393 	if (!hashdist)
3394 		return;
3395 
3396 	dentry_hashtable =
3397 		alloc_large_system_hash("Dentry cache",
3398 					sizeof(struct hlist_bl_head),
3399 					dhash_entries,
3400 					13,
3401 					0,
3402 					&d_hash_shift,
3403 					&d_hash_mask,
3404 					0,
3405 					0);
3406 
3407 	for (loop = 0; loop < (1U << d_hash_shift); loop++)
3408 		INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
3409 }
3410 
3411 /* SLAB cache for __getname() consumers */
3412 struct kmem_cache *names_cachep __read_mostly;
3413 EXPORT_SYMBOL(names_cachep);
3414 
3415 EXPORT_SYMBOL(d_genocide);
3416 
3417 void __init vfs_caches_init_early(void)
3418 {
3419 	dcache_init_early();
3420 	inode_init_early();
3421 }
3422 
3423 void __init vfs_caches_init(unsigned long mempages)
3424 {
3425 	unsigned long reserve;
3426 
3427 	/* Base hash sizes on available memory, with a reserve equal to
3428            150% of current kernel size */
3429 
3430 	reserve = min((mempages - nr_free_pages()) * 3/2, mempages - 1);
3431 	mempages -= reserve;
3432 
3433 	names_cachep = kmem_cache_create("names_cache", PATH_MAX, 0,
3434 			SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
3435 
3436 	dcache_init();
3437 	inode_init();
3438 	files_init(mempages);
3439 	mnt_init();
3440 	bdev_cache_init();
3441 	chrdev_init();
3442 }
3443