1 /* 2 * fs/dcache.c 3 * 4 * Complete reimplementation 5 * (C) 1997 Thomas Schoebel-Theuer, 6 * with heavy changes by Linus Torvalds 7 */ 8 9 /* 10 * Notes on the allocation strategy: 11 * 12 * The dcache is a master of the icache - whenever a dcache entry 13 * exists, the inode will always exist. "iput()" is done either when 14 * the dcache entry is deleted or garbage collected. 15 */ 16 17 #include <linux/ratelimit.h> 18 #include <linux/string.h> 19 #include <linux/mm.h> 20 #include <linux/fs.h> 21 #include <linux/fsnotify.h> 22 #include <linux/slab.h> 23 #include <linux/init.h> 24 #include <linux/hash.h> 25 #include <linux/cache.h> 26 #include <linux/export.h> 27 #include <linux/security.h> 28 #include <linux/seqlock.h> 29 #include <linux/bootmem.h> 30 #include <linux/bit_spinlock.h> 31 #include <linux/rculist_bl.h> 32 #include <linux/list_lru.h> 33 #include "internal.h" 34 #include "mount.h" 35 36 /* 37 * Usage: 38 * dcache->d_inode->i_lock protects: 39 * - i_dentry, d_u.d_alias, d_inode of aliases 40 * dcache_hash_bucket lock protects: 41 * - the dcache hash table 42 * s_roots bl list spinlock protects: 43 * - the s_roots list (see __d_drop) 44 * dentry->d_sb->s_dentry_lru_lock protects: 45 * - the dcache lru lists and counters 46 * d_lock protects: 47 * - d_flags 48 * - d_name 49 * - d_lru 50 * - d_count 51 * - d_unhashed() 52 * - d_parent and d_subdirs 53 * - childrens' d_child and d_parent 54 * - d_u.d_alias, d_inode 55 * 56 * Ordering: 57 * dentry->d_inode->i_lock 58 * dentry->d_lock 59 * dentry->d_sb->s_dentry_lru_lock 60 * dcache_hash_bucket lock 61 * s_roots lock 62 * 63 * If there is an ancestor relationship: 64 * dentry->d_parent->...->d_parent->d_lock 65 * ... 66 * dentry->d_parent->d_lock 67 * dentry->d_lock 68 * 69 * If no ancestor relationship: 70 * arbitrary, since it's serialized on rename_lock 71 */ 72 int sysctl_vfs_cache_pressure __read_mostly = 100; 73 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure); 74 75 __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock); 76 77 EXPORT_SYMBOL(rename_lock); 78 79 static struct kmem_cache *dentry_cache __read_mostly; 80 81 const struct qstr empty_name = QSTR_INIT("", 0); 82 EXPORT_SYMBOL(empty_name); 83 const struct qstr slash_name = QSTR_INIT("/", 1); 84 EXPORT_SYMBOL(slash_name); 85 86 /* 87 * This is the single most critical data structure when it comes 88 * to the dcache: the hashtable for lookups. Somebody should try 89 * to make this good - I've just made it work. 90 * 91 * This hash-function tries to avoid losing too many bits of hash 92 * information, yet avoid using a prime hash-size or similar. 93 */ 94 95 static unsigned int d_hash_shift __read_mostly; 96 97 static struct hlist_bl_head *dentry_hashtable __read_mostly; 98 99 static inline struct hlist_bl_head *d_hash(unsigned int hash) 100 { 101 return dentry_hashtable + (hash >> d_hash_shift); 102 } 103 104 #define IN_LOOKUP_SHIFT 10 105 static struct hlist_bl_head in_lookup_hashtable[1 << IN_LOOKUP_SHIFT]; 106 107 static inline struct hlist_bl_head *in_lookup_hash(const struct dentry *parent, 108 unsigned int hash) 109 { 110 hash += (unsigned long) parent / L1_CACHE_BYTES; 111 return in_lookup_hashtable + hash_32(hash, IN_LOOKUP_SHIFT); 112 } 113 114 115 /* Statistics gathering. */ 116 struct dentry_stat_t dentry_stat = { 117 .age_limit = 45, 118 }; 119 120 static DEFINE_PER_CPU(long, nr_dentry); 121 static DEFINE_PER_CPU(long, nr_dentry_unused); 122 123 #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS) 124 125 /* 126 * Here we resort to our own counters instead of using generic per-cpu counters 127 * for consistency with what the vfs inode code does. We are expected to harvest 128 * better code and performance by having our own specialized counters. 129 * 130 * Please note that the loop is done over all possible CPUs, not over all online 131 * CPUs. The reason for this is that we don't want to play games with CPUs going 132 * on and off. If one of them goes off, we will just keep their counters. 133 * 134 * glommer: See cffbc8a for details, and if you ever intend to change this, 135 * please update all vfs counters to match. 136 */ 137 static long get_nr_dentry(void) 138 { 139 int i; 140 long sum = 0; 141 for_each_possible_cpu(i) 142 sum += per_cpu(nr_dentry, i); 143 return sum < 0 ? 0 : sum; 144 } 145 146 static long get_nr_dentry_unused(void) 147 { 148 int i; 149 long sum = 0; 150 for_each_possible_cpu(i) 151 sum += per_cpu(nr_dentry_unused, i); 152 return sum < 0 ? 0 : sum; 153 } 154 155 int proc_nr_dentry(struct ctl_table *table, int write, void __user *buffer, 156 size_t *lenp, loff_t *ppos) 157 { 158 dentry_stat.nr_dentry = get_nr_dentry(); 159 dentry_stat.nr_unused = get_nr_dentry_unused(); 160 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos); 161 } 162 #endif 163 164 /* 165 * Compare 2 name strings, return 0 if they match, otherwise non-zero. 166 * The strings are both count bytes long, and count is non-zero. 167 */ 168 #ifdef CONFIG_DCACHE_WORD_ACCESS 169 170 #include <asm/word-at-a-time.h> 171 /* 172 * NOTE! 'cs' and 'scount' come from a dentry, so it has a 173 * aligned allocation for this particular component. We don't 174 * strictly need the load_unaligned_zeropad() safety, but it 175 * doesn't hurt either. 176 * 177 * In contrast, 'ct' and 'tcount' can be from a pathname, and do 178 * need the careful unaligned handling. 179 */ 180 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount) 181 { 182 unsigned long a,b,mask; 183 184 for (;;) { 185 a = read_word_at_a_time(cs); 186 b = load_unaligned_zeropad(ct); 187 if (tcount < sizeof(unsigned long)) 188 break; 189 if (unlikely(a != b)) 190 return 1; 191 cs += sizeof(unsigned long); 192 ct += sizeof(unsigned long); 193 tcount -= sizeof(unsigned long); 194 if (!tcount) 195 return 0; 196 } 197 mask = bytemask_from_count(tcount); 198 return unlikely(!!((a ^ b) & mask)); 199 } 200 201 #else 202 203 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount) 204 { 205 do { 206 if (*cs != *ct) 207 return 1; 208 cs++; 209 ct++; 210 tcount--; 211 } while (tcount); 212 return 0; 213 } 214 215 #endif 216 217 static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount) 218 { 219 /* 220 * Be careful about RCU walk racing with rename: 221 * use 'READ_ONCE' to fetch the name pointer. 222 * 223 * NOTE! Even if a rename will mean that the length 224 * was not loaded atomically, we don't care. The 225 * RCU walk will check the sequence count eventually, 226 * and catch it. And we won't overrun the buffer, 227 * because we're reading the name pointer atomically, 228 * and a dentry name is guaranteed to be properly 229 * terminated with a NUL byte. 230 * 231 * End result: even if 'len' is wrong, we'll exit 232 * early because the data cannot match (there can 233 * be no NUL in the ct/tcount data) 234 */ 235 const unsigned char *cs = READ_ONCE(dentry->d_name.name); 236 237 return dentry_string_cmp(cs, ct, tcount); 238 } 239 240 struct external_name { 241 union { 242 atomic_t count; 243 struct rcu_head head; 244 } u; 245 unsigned char name[]; 246 }; 247 248 static inline struct external_name *external_name(struct dentry *dentry) 249 { 250 return container_of(dentry->d_name.name, struct external_name, name[0]); 251 } 252 253 static void __d_free(struct rcu_head *head) 254 { 255 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu); 256 257 kmem_cache_free(dentry_cache, dentry); 258 } 259 260 static void __d_free_external_name(struct rcu_head *head) 261 { 262 struct external_name *name = container_of(head, struct external_name, 263 u.head); 264 265 mod_node_page_state(page_pgdat(virt_to_page(name)), 266 NR_INDIRECTLY_RECLAIMABLE_BYTES, 267 -ksize(name)); 268 269 kfree(name); 270 } 271 272 static void __d_free_external(struct rcu_head *head) 273 { 274 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu); 275 276 __d_free_external_name(&external_name(dentry)->u.head); 277 278 kmem_cache_free(dentry_cache, dentry); 279 } 280 281 static inline int dname_external(const struct dentry *dentry) 282 { 283 return dentry->d_name.name != dentry->d_iname; 284 } 285 286 void take_dentry_name_snapshot(struct name_snapshot *name, struct dentry *dentry) 287 { 288 spin_lock(&dentry->d_lock); 289 if (unlikely(dname_external(dentry))) { 290 struct external_name *p = external_name(dentry); 291 atomic_inc(&p->u.count); 292 spin_unlock(&dentry->d_lock); 293 name->name = p->name; 294 } else { 295 memcpy(name->inline_name, dentry->d_iname, DNAME_INLINE_LEN); 296 spin_unlock(&dentry->d_lock); 297 name->name = name->inline_name; 298 } 299 } 300 EXPORT_SYMBOL(take_dentry_name_snapshot); 301 302 void release_dentry_name_snapshot(struct name_snapshot *name) 303 { 304 if (unlikely(name->name != name->inline_name)) { 305 struct external_name *p; 306 p = container_of(name->name, struct external_name, name[0]); 307 if (unlikely(atomic_dec_and_test(&p->u.count))) 308 call_rcu(&p->u.head, __d_free_external_name); 309 } 310 } 311 EXPORT_SYMBOL(release_dentry_name_snapshot); 312 313 static inline void __d_set_inode_and_type(struct dentry *dentry, 314 struct inode *inode, 315 unsigned type_flags) 316 { 317 unsigned flags; 318 319 dentry->d_inode = inode; 320 flags = READ_ONCE(dentry->d_flags); 321 flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU); 322 flags |= type_flags; 323 WRITE_ONCE(dentry->d_flags, flags); 324 } 325 326 static inline void __d_clear_type_and_inode(struct dentry *dentry) 327 { 328 unsigned flags = READ_ONCE(dentry->d_flags); 329 330 flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU); 331 WRITE_ONCE(dentry->d_flags, flags); 332 dentry->d_inode = NULL; 333 } 334 335 static void dentry_free(struct dentry *dentry) 336 { 337 WARN_ON(!hlist_unhashed(&dentry->d_u.d_alias)); 338 if (unlikely(dname_external(dentry))) { 339 struct external_name *p = external_name(dentry); 340 if (likely(atomic_dec_and_test(&p->u.count))) { 341 call_rcu(&dentry->d_u.d_rcu, __d_free_external); 342 return; 343 } 344 } 345 /* if dentry was never visible to RCU, immediate free is OK */ 346 if (!(dentry->d_flags & DCACHE_RCUACCESS)) 347 __d_free(&dentry->d_u.d_rcu); 348 else 349 call_rcu(&dentry->d_u.d_rcu, __d_free); 350 } 351 352 /* 353 * Release the dentry's inode, using the filesystem 354 * d_iput() operation if defined. 355 */ 356 static void dentry_unlink_inode(struct dentry * dentry) 357 __releases(dentry->d_lock) 358 __releases(dentry->d_inode->i_lock) 359 { 360 struct inode *inode = dentry->d_inode; 361 bool hashed = !d_unhashed(dentry); 362 363 if (hashed) 364 raw_write_seqcount_begin(&dentry->d_seq); 365 __d_clear_type_and_inode(dentry); 366 hlist_del_init(&dentry->d_u.d_alias); 367 if (hashed) 368 raw_write_seqcount_end(&dentry->d_seq); 369 spin_unlock(&dentry->d_lock); 370 spin_unlock(&inode->i_lock); 371 if (!inode->i_nlink) 372 fsnotify_inoderemove(inode); 373 if (dentry->d_op && dentry->d_op->d_iput) 374 dentry->d_op->d_iput(dentry, inode); 375 else 376 iput(inode); 377 } 378 379 /* 380 * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry 381 * is in use - which includes both the "real" per-superblock 382 * LRU list _and_ the DCACHE_SHRINK_LIST use. 383 * 384 * The DCACHE_SHRINK_LIST bit is set whenever the dentry is 385 * on the shrink list (ie not on the superblock LRU list). 386 * 387 * The per-cpu "nr_dentry_unused" counters are updated with 388 * the DCACHE_LRU_LIST bit. 389 * 390 * These helper functions make sure we always follow the 391 * rules. d_lock must be held by the caller. 392 */ 393 #define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x)) 394 static void d_lru_add(struct dentry *dentry) 395 { 396 D_FLAG_VERIFY(dentry, 0); 397 dentry->d_flags |= DCACHE_LRU_LIST; 398 this_cpu_inc(nr_dentry_unused); 399 WARN_ON_ONCE(!list_lru_add(&dentry->d_sb->s_dentry_lru, &dentry->d_lru)); 400 } 401 402 static void d_lru_del(struct dentry *dentry) 403 { 404 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST); 405 dentry->d_flags &= ~DCACHE_LRU_LIST; 406 this_cpu_dec(nr_dentry_unused); 407 WARN_ON_ONCE(!list_lru_del(&dentry->d_sb->s_dentry_lru, &dentry->d_lru)); 408 } 409 410 static void d_shrink_del(struct dentry *dentry) 411 { 412 D_FLAG_VERIFY(dentry, DCACHE_SHRINK_LIST | DCACHE_LRU_LIST); 413 list_del_init(&dentry->d_lru); 414 dentry->d_flags &= ~(DCACHE_SHRINK_LIST | DCACHE_LRU_LIST); 415 this_cpu_dec(nr_dentry_unused); 416 } 417 418 static void d_shrink_add(struct dentry *dentry, struct list_head *list) 419 { 420 D_FLAG_VERIFY(dentry, 0); 421 list_add(&dentry->d_lru, list); 422 dentry->d_flags |= DCACHE_SHRINK_LIST | DCACHE_LRU_LIST; 423 this_cpu_inc(nr_dentry_unused); 424 } 425 426 /* 427 * These can only be called under the global LRU lock, ie during the 428 * callback for freeing the LRU list. "isolate" removes it from the 429 * LRU lists entirely, while shrink_move moves it to the indicated 430 * private list. 431 */ 432 static void d_lru_isolate(struct list_lru_one *lru, struct dentry *dentry) 433 { 434 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST); 435 dentry->d_flags &= ~DCACHE_LRU_LIST; 436 this_cpu_dec(nr_dentry_unused); 437 list_lru_isolate(lru, &dentry->d_lru); 438 } 439 440 static void d_lru_shrink_move(struct list_lru_one *lru, struct dentry *dentry, 441 struct list_head *list) 442 { 443 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST); 444 dentry->d_flags |= DCACHE_SHRINK_LIST; 445 list_lru_isolate_move(lru, &dentry->d_lru, list); 446 } 447 448 /** 449 * d_drop - drop a dentry 450 * @dentry: dentry to drop 451 * 452 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't 453 * be found through a VFS lookup any more. Note that this is different from 454 * deleting the dentry - d_delete will try to mark the dentry negative if 455 * possible, giving a successful _negative_ lookup, while d_drop will 456 * just make the cache lookup fail. 457 * 458 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some 459 * reason (NFS timeouts or autofs deletes). 460 * 461 * __d_drop requires dentry->d_lock 462 * ___d_drop doesn't mark dentry as "unhashed" 463 * (dentry->d_hash.pprev will be LIST_POISON2, not NULL). 464 */ 465 static void ___d_drop(struct dentry *dentry) 466 { 467 struct hlist_bl_head *b; 468 /* 469 * Hashed dentries are normally on the dentry hashtable, 470 * with the exception of those newly allocated by 471 * d_obtain_root, which are always IS_ROOT: 472 */ 473 if (unlikely(IS_ROOT(dentry))) 474 b = &dentry->d_sb->s_roots; 475 else 476 b = d_hash(dentry->d_name.hash); 477 478 hlist_bl_lock(b); 479 __hlist_bl_del(&dentry->d_hash); 480 hlist_bl_unlock(b); 481 } 482 483 void __d_drop(struct dentry *dentry) 484 { 485 if (!d_unhashed(dentry)) { 486 ___d_drop(dentry); 487 dentry->d_hash.pprev = NULL; 488 write_seqcount_invalidate(&dentry->d_seq); 489 } 490 } 491 EXPORT_SYMBOL(__d_drop); 492 493 void d_drop(struct dentry *dentry) 494 { 495 spin_lock(&dentry->d_lock); 496 __d_drop(dentry); 497 spin_unlock(&dentry->d_lock); 498 } 499 EXPORT_SYMBOL(d_drop); 500 501 static inline void dentry_unlist(struct dentry *dentry, struct dentry *parent) 502 { 503 struct dentry *next; 504 /* 505 * Inform d_walk() and shrink_dentry_list() that we are no longer 506 * attached to the dentry tree 507 */ 508 dentry->d_flags |= DCACHE_DENTRY_KILLED; 509 if (unlikely(list_empty(&dentry->d_child))) 510 return; 511 __list_del_entry(&dentry->d_child); 512 /* 513 * Cursors can move around the list of children. While we'd been 514 * a normal list member, it didn't matter - ->d_child.next would've 515 * been updated. However, from now on it won't be and for the 516 * things like d_walk() it might end up with a nasty surprise. 517 * Normally d_walk() doesn't care about cursors moving around - 518 * ->d_lock on parent prevents that and since a cursor has no children 519 * of its own, we get through it without ever unlocking the parent. 520 * There is one exception, though - if we ascend from a child that 521 * gets killed as soon as we unlock it, the next sibling is found 522 * using the value left in its ->d_child.next. And if _that_ 523 * pointed to a cursor, and cursor got moved (e.g. by lseek()) 524 * before d_walk() regains parent->d_lock, we'll end up skipping 525 * everything the cursor had been moved past. 526 * 527 * Solution: make sure that the pointer left behind in ->d_child.next 528 * points to something that won't be moving around. I.e. skip the 529 * cursors. 530 */ 531 while (dentry->d_child.next != &parent->d_subdirs) { 532 next = list_entry(dentry->d_child.next, struct dentry, d_child); 533 if (likely(!(next->d_flags & DCACHE_DENTRY_CURSOR))) 534 break; 535 dentry->d_child.next = next->d_child.next; 536 } 537 } 538 539 static void __dentry_kill(struct dentry *dentry) 540 { 541 struct dentry *parent = NULL; 542 bool can_free = true; 543 if (!IS_ROOT(dentry)) 544 parent = dentry->d_parent; 545 546 /* 547 * The dentry is now unrecoverably dead to the world. 548 */ 549 lockref_mark_dead(&dentry->d_lockref); 550 551 /* 552 * inform the fs via d_prune that this dentry is about to be 553 * unhashed and destroyed. 554 */ 555 if (dentry->d_flags & DCACHE_OP_PRUNE) 556 dentry->d_op->d_prune(dentry); 557 558 if (dentry->d_flags & DCACHE_LRU_LIST) { 559 if (!(dentry->d_flags & DCACHE_SHRINK_LIST)) 560 d_lru_del(dentry); 561 } 562 /* if it was on the hash then remove it */ 563 __d_drop(dentry); 564 dentry_unlist(dentry, parent); 565 if (parent) 566 spin_unlock(&parent->d_lock); 567 if (dentry->d_inode) 568 dentry_unlink_inode(dentry); 569 else 570 spin_unlock(&dentry->d_lock); 571 this_cpu_dec(nr_dentry); 572 if (dentry->d_op && dentry->d_op->d_release) 573 dentry->d_op->d_release(dentry); 574 575 spin_lock(&dentry->d_lock); 576 if (dentry->d_flags & DCACHE_SHRINK_LIST) { 577 dentry->d_flags |= DCACHE_MAY_FREE; 578 can_free = false; 579 } 580 spin_unlock(&dentry->d_lock); 581 if (likely(can_free)) 582 dentry_free(dentry); 583 cond_resched(); 584 } 585 586 static struct dentry *__lock_parent(struct dentry *dentry) 587 { 588 struct dentry *parent; 589 rcu_read_lock(); 590 spin_unlock(&dentry->d_lock); 591 again: 592 parent = READ_ONCE(dentry->d_parent); 593 spin_lock(&parent->d_lock); 594 /* 595 * We can't blindly lock dentry until we are sure 596 * that we won't violate the locking order. 597 * Any changes of dentry->d_parent must have 598 * been done with parent->d_lock held, so 599 * spin_lock() above is enough of a barrier 600 * for checking if it's still our child. 601 */ 602 if (unlikely(parent != dentry->d_parent)) { 603 spin_unlock(&parent->d_lock); 604 goto again; 605 } 606 rcu_read_unlock(); 607 if (parent != dentry) 608 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED); 609 else 610 parent = NULL; 611 return parent; 612 } 613 614 static inline struct dentry *lock_parent(struct dentry *dentry) 615 { 616 struct dentry *parent = dentry->d_parent; 617 if (IS_ROOT(dentry)) 618 return NULL; 619 if (likely(spin_trylock(&parent->d_lock))) 620 return parent; 621 return __lock_parent(dentry); 622 } 623 624 static inline bool retain_dentry(struct dentry *dentry) 625 { 626 WARN_ON(d_in_lookup(dentry)); 627 628 /* Unreachable? Get rid of it */ 629 if (unlikely(d_unhashed(dentry))) 630 return false; 631 632 if (unlikely(dentry->d_flags & DCACHE_DISCONNECTED)) 633 return false; 634 635 if (unlikely(dentry->d_flags & DCACHE_OP_DELETE)) { 636 if (dentry->d_op->d_delete(dentry)) 637 return false; 638 } 639 /* retain; LRU fodder */ 640 dentry->d_lockref.count--; 641 if (unlikely(!(dentry->d_flags & DCACHE_LRU_LIST))) 642 d_lru_add(dentry); 643 else if (unlikely(!(dentry->d_flags & DCACHE_REFERENCED))) 644 dentry->d_flags |= DCACHE_REFERENCED; 645 return true; 646 } 647 648 /* 649 * Finish off a dentry we've decided to kill. 650 * dentry->d_lock must be held, returns with it unlocked. 651 * Returns dentry requiring refcount drop, or NULL if we're done. 652 */ 653 static struct dentry *dentry_kill(struct dentry *dentry) 654 __releases(dentry->d_lock) 655 { 656 struct inode *inode = dentry->d_inode; 657 struct dentry *parent = NULL; 658 659 if (inode && unlikely(!spin_trylock(&inode->i_lock))) 660 goto slow_positive; 661 662 if (!IS_ROOT(dentry)) { 663 parent = dentry->d_parent; 664 if (unlikely(!spin_trylock(&parent->d_lock))) { 665 parent = __lock_parent(dentry); 666 if (likely(inode || !dentry->d_inode)) 667 goto got_locks; 668 /* negative that became positive */ 669 if (parent) 670 spin_unlock(&parent->d_lock); 671 inode = dentry->d_inode; 672 goto slow_positive; 673 } 674 } 675 __dentry_kill(dentry); 676 return parent; 677 678 slow_positive: 679 spin_unlock(&dentry->d_lock); 680 spin_lock(&inode->i_lock); 681 spin_lock(&dentry->d_lock); 682 parent = lock_parent(dentry); 683 got_locks: 684 if (unlikely(dentry->d_lockref.count != 1)) { 685 dentry->d_lockref.count--; 686 } else if (likely(!retain_dentry(dentry))) { 687 __dentry_kill(dentry); 688 return parent; 689 } 690 /* we are keeping it, after all */ 691 if (inode) 692 spin_unlock(&inode->i_lock); 693 if (parent) 694 spin_unlock(&parent->d_lock); 695 spin_unlock(&dentry->d_lock); 696 return NULL; 697 } 698 699 /* 700 * Try to do a lockless dput(), and return whether that was successful. 701 * 702 * If unsuccessful, we return false, having already taken the dentry lock. 703 * 704 * The caller needs to hold the RCU read lock, so that the dentry is 705 * guaranteed to stay around even if the refcount goes down to zero! 706 */ 707 static inline bool fast_dput(struct dentry *dentry) 708 { 709 int ret; 710 unsigned int d_flags; 711 712 /* 713 * If we have a d_op->d_delete() operation, we sould not 714 * let the dentry count go to zero, so use "put_or_lock". 715 */ 716 if (unlikely(dentry->d_flags & DCACHE_OP_DELETE)) 717 return lockref_put_or_lock(&dentry->d_lockref); 718 719 /* 720 * .. otherwise, we can try to just decrement the 721 * lockref optimistically. 722 */ 723 ret = lockref_put_return(&dentry->d_lockref); 724 725 /* 726 * If the lockref_put_return() failed due to the lock being held 727 * by somebody else, the fast path has failed. We will need to 728 * get the lock, and then check the count again. 729 */ 730 if (unlikely(ret < 0)) { 731 spin_lock(&dentry->d_lock); 732 if (dentry->d_lockref.count > 1) { 733 dentry->d_lockref.count--; 734 spin_unlock(&dentry->d_lock); 735 return 1; 736 } 737 return 0; 738 } 739 740 /* 741 * If we weren't the last ref, we're done. 742 */ 743 if (ret) 744 return 1; 745 746 /* 747 * Careful, careful. The reference count went down 748 * to zero, but we don't hold the dentry lock, so 749 * somebody else could get it again, and do another 750 * dput(), and we need to not race with that. 751 * 752 * However, there is a very special and common case 753 * where we don't care, because there is nothing to 754 * do: the dentry is still hashed, it does not have 755 * a 'delete' op, and it's referenced and already on 756 * the LRU list. 757 * 758 * NOTE! Since we aren't locked, these values are 759 * not "stable". However, it is sufficient that at 760 * some point after we dropped the reference the 761 * dentry was hashed and the flags had the proper 762 * value. Other dentry users may have re-gotten 763 * a reference to the dentry and change that, but 764 * our work is done - we can leave the dentry 765 * around with a zero refcount. 766 */ 767 smp_rmb(); 768 d_flags = READ_ONCE(dentry->d_flags); 769 d_flags &= DCACHE_REFERENCED | DCACHE_LRU_LIST | DCACHE_DISCONNECTED; 770 771 /* Nothing to do? Dropping the reference was all we needed? */ 772 if (d_flags == (DCACHE_REFERENCED | DCACHE_LRU_LIST) && !d_unhashed(dentry)) 773 return 1; 774 775 /* 776 * Not the fast normal case? Get the lock. We've already decremented 777 * the refcount, but we'll need to re-check the situation after 778 * getting the lock. 779 */ 780 spin_lock(&dentry->d_lock); 781 782 /* 783 * Did somebody else grab a reference to it in the meantime, and 784 * we're no longer the last user after all? Alternatively, somebody 785 * else could have killed it and marked it dead. Either way, we 786 * don't need to do anything else. 787 */ 788 if (dentry->d_lockref.count) { 789 spin_unlock(&dentry->d_lock); 790 return 1; 791 } 792 793 /* 794 * Re-get the reference we optimistically dropped. We hold the 795 * lock, and we just tested that it was zero, so we can just 796 * set it to 1. 797 */ 798 dentry->d_lockref.count = 1; 799 return 0; 800 } 801 802 803 /* 804 * This is dput 805 * 806 * This is complicated by the fact that we do not want to put 807 * dentries that are no longer on any hash chain on the unused 808 * list: we'd much rather just get rid of them immediately. 809 * 810 * However, that implies that we have to traverse the dentry 811 * tree upwards to the parents which might _also_ now be 812 * scheduled for deletion (it may have been only waiting for 813 * its last child to go away). 814 * 815 * This tail recursion is done by hand as we don't want to depend 816 * on the compiler to always get this right (gcc generally doesn't). 817 * Real recursion would eat up our stack space. 818 */ 819 820 /* 821 * dput - release a dentry 822 * @dentry: dentry to release 823 * 824 * Release a dentry. This will drop the usage count and if appropriate 825 * call the dentry unlink method as well as removing it from the queues and 826 * releasing its resources. If the parent dentries were scheduled for release 827 * they too may now get deleted. 828 */ 829 void dput(struct dentry *dentry) 830 { 831 while (dentry) { 832 might_sleep(); 833 834 rcu_read_lock(); 835 if (likely(fast_dput(dentry))) { 836 rcu_read_unlock(); 837 return; 838 } 839 840 /* Slow case: now with the dentry lock held */ 841 rcu_read_unlock(); 842 843 if (likely(retain_dentry(dentry))) { 844 spin_unlock(&dentry->d_lock); 845 return; 846 } 847 848 dentry = dentry_kill(dentry); 849 } 850 } 851 EXPORT_SYMBOL(dput); 852 853 854 /* This must be called with d_lock held */ 855 static inline void __dget_dlock(struct dentry *dentry) 856 { 857 dentry->d_lockref.count++; 858 } 859 860 static inline void __dget(struct dentry *dentry) 861 { 862 lockref_get(&dentry->d_lockref); 863 } 864 865 struct dentry *dget_parent(struct dentry *dentry) 866 { 867 int gotref; 868 struct dentry *ret; 869 870 /* 871 * Do optimistic parent lookup without any 872 * locking. 873 */ 874 rcu_read_lock(); 875 ret = READ_ONCE(dentry->d_parent); 876 gotref = lockref_get_not_zero(&ret->d_lockref); 877 rcu_read_unlock(); 878 if (likely(gotref)) { 879 if (likely(ret == READ_ONCE(dentry->d_parent))) 880 return ret; 881 dput(ret); 882 } 883 884 repeat: 885 /* 886 * Don't need rcu_dereference because we re-check it was correct under 887 * the lock. 888 */ 889 rcu_read_lock(); 890 ret = dentry->d_parent; 891 spin_lock(&ret->d_lock); 892 if (unlikely(ret != dentry->d_parent)) { 893 spin_unlock(&ret->d_lock); 894 rcu_read_unlock(); 895 goto repeat; 896 } 897 rcu_read_unlock(); 898 BUG_ON(!ret->d_lockref.count); 899 ret->d_lockref.count++; 900 spin_unlock(&ret->d_lock); 901 return ret; 902 } 903 EXPORT_SYMBOL(dget_parent); 904 905 static struct dentry * __d_find_any_alias(struct inode *inode) 906 { 907 struct dentry *alias; 908 909 if (hlist_empty(&inode->i_dentry)) 910 return NULL; 911 alias = hlist_entry(inode->i_dentry.first, struct dentry, d_u.d_alias); 912 __dget(alias); 913 return alias; 914 } 915 916 /** 917 * d_find_any_alias - find any alias for a given inode 918 * @inode: inode to find an alias for 919 * 920 * If any aliases exist for the given inode, take and return a 921 * reference for one of them. If no aliases exist, return %NULL. 922 */ 923 struct dentry *d_find_any_alias(struct inode *inode) 924 { 925 struct dentry *de; 926 927 spin_lock(&inode->i_lock); 928 de = __d_find_any_alias(inode); 929 spin_unlock(&inode->i_lock); 930 return de; 931 } 932 EXPORT_SYMBOL(d_find_any_alias); 933 934 /** 935 * d_find_alias - grab a hashed alias of inode 936 * @inode: inode in question 937 * 938 * If inode has a hashed alias, or is a directory and has any alias, 939 * acquire the reference to alias and return it. Otherwise return NULL. 940 * Notice that if inode is a directory there can be only one alias and 941 * it can be unhashed only if it has no children, or if it is the root 942 * of a filesystem, or if the directory was renamed and d_revalidate 943 * was the first vfs operation to notice. 944 * 945 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer 946 * any other hashed alias over that one. 947 */ 948 static struct dentry *__d_find_alias(struct inode *inode) 949 { 950 struct dentry *alias; 951 952 if (S_ISDIR(inode->i_mode)) 953 return __d_find_any_alias(inode); 954 955 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) { 956 spin_lock(&alias->d_lock); 957 if (!d_unhashed(alias)) { 958 __dget_dlock(alias); 959 spin_unlock(&alias->d_lock); 960 return alias; 961 } 962 spin_unlock(&alias->d_lock); 963 } 964 return NULL; 965 } 966 967 struct dentry *d_find_alias(struct inode *inode) 968 { 969 struct dentry *de = NULL; 970 971 if (!hlist_empty(&inode->i_dentry)) { 972 spin_lock(&inode->i_lock); 973 de = __d_find_alias(inode); 974 spin_unlock(&inode->i_lock); 975 } 976 return de; 977 } 978 EXPORT_SYMBOL(d_find_alias); 979 980 /* 981 * Try to kill dentries associated with this inode. 982 * WARNING: you must own a reference to inode. 983 */ 984 void d_prune_aliases(struct inode *inode) 985 { 986 struct dentry *dentry; 987 restart: 988 spin_lock(&inode->i_lock); 989 hlist_for_each_entry(dentry, &inode->i_dentry, d_u.d_alias) { 990 spin_lock(&dentry->d_lock); 991 if (!dentry->d_lockref.count) { 992 struct dentry *parent = lock_parent(dentry); 993 if (likely(!dentry->d_lockref.count)) { 994 __dentry_kill(dentry); 995 dput(parent); 996 goto restart; 997 } 998 if (parent) 999 spin_unlock(&parent->d_lock); 1000 } 1001 spin_unlock(&dentry->d_lock); 1002 } 1003 spin_unlock(&inode->i_lock); 1004 } 1005 EXPORT_SYMBOL(d_prune_aliases); 1006 1007 /* 1008 * Lock a dentry from shrink list. 1009 * Called under rcu_read_lock() and dentry->d_lock; the former 1010 * guarantees that nothing we access will be freed under us. 1011 * Note that dentry is *not* protected from concurrent dentry_kill(), 1012 * d_delete(), etc. 1013 * 1014 * Return false if dentry has been disrupted or grabbed, leaving 1015 * the caller to kick it off-list. Otherwise, return true and have 1016 * that dentry's inode and parent both locked. 1017 */ 1018 static bool shrink_lock_dentry(struct dentry *dentry) 1019 { 1020 struct inode *inode; 1021 struct dentry *parent; 1022 1023 if (dentry->d_lockref.count) 1024 return false; 1025 1026 inode = dentry->d_inode; 1027 if (inode && unlikely(!spin_trylock(&inode->i_lock))) { 1028 spin_unlock(&dentry->d_lock); 1029 spin_lock(&inode->i_lock); 1030 spin_lock(&dentry->d_lock); 1031 if (unlikely(dentry->d_lockref.count)) 1032 goto out; 1033 /* changed inode means that somebody had grabbed it */ 1034 if (unlikely(inode != dentry->d_inode)) 1035 goto out; 1036 } 1037 1038 parent = dentry->d_parent; 1039 if (IS_ROOT(dentry) || likely(spin_trylock(&parent->d_lock))) 1040 return true; 1041 1042 spin_unlock(&dentry->d_lock); 1043 spin_lock(&parent->d_lock); 1044 if (unlikely(parent != dentry->d_parent)) { 1045 spin_unlock(&parent->d_lock); 1046 spin_lock(&dentry->d_lock); 1047 goto out; 1048 } 1049 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED); 1050 if (likely(!dentry->d_lockref.count)) 1051 return true; 1052 spin_unlock(&parent->d_lock); 1053 out: 1054 if (inode) 1055 spin_unlock(&inode->i_lock); 1056 return false; 1057 } 1058 1059 static void shrink_dentry_list(struct list_head *list) 1060 { 1061 while (!list_empty(list)) { 1062 struct dentry *dentry, *parent; 1063 1064 dentry = list_entry(list->prev, struct dentry, d_lru); 1065 spin_lock(&dentry->d_lock); 1066 rcu_read_lock(); 1067 if (!shrink_lock_dentry(dentry)) { 1068 bool can_free = false; 1069 rcu_read_unlock(); 1070 d_shrink_del(dentry); 1071 if (dentry->d_lockref.count < 0) 1072 can_free = dentry->d_flags & DCACHE_MAY_FREE; 1073 spin_unlock(&dentry->d_lock); 1074 if (can_free) 1075 dentry_free(dentry); 1076 continue; 1077 } 1078 rcu_read_unlock(); 1079 d_shrink_del(dentry); 1080 parent = dentry->d_parent; 1081 __dentry_kill(dentry); 1082 if (parent == dentry) 1083 continue; 1084 /* 1085 * We need to prune ancestors too. This is necessary to prevent 1086 * quadratic behavior of shrink_dcache_parent(), but is also 1087 * expected to be beneficial in reducing dentry cache 1088 * fragmentation. 1089 */ 1090 dentry = parent; 1091 while (dentry && !lockref_put_or_lock(&dentry->d_lockref)) 1092 dentry = dentry_kill(dentry); 1093 } 1094 } 1095 1096 static enum lru_status dentry_lru_isolate(struct list_head *item, 1097 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg) 1098 { 1099 struct list_head *freeable = arg; 1100 struct dentry *dentry = container_of(item, struct dentry, d_lru); 1101 1102 1103 /* 1104 * we are inverting the lru lock/dentry->d_lock here, 1105 * so use a trylock. If we fail to get the lock, just skip 1106 * it 1107 */ 1108 if (!spin_trylock(&dentry->d_lock)) 1109 return LRU_SKIP; 1110 1111 /* 1112 * Referenced dentries are still in use. If they have active 1113 * counts, just remove them from the LRU. Otherwise give them 1114 * another pass through the LRU. 1115 */ 1116 if (dentry->d_lockref.count) { 1117 d_lru_isolate(lru, dentry); 1118 spin_unlock(&dentry->d_lock); 1119 return LRU_REMOVED; 1120 } 1121 1122 if (dentry->d_flags & DCACHE_REFERENCED) { 1123 dentry->d_flags &= ~DCACHE_REFERENCED; 1124 spin_unlock(&dentry->d_lock); 1125 1126 /* 1127 * The list move itself will be made by the common LRU code. At 1128 * this point, we've dropped the dentry->d_lock but keep the 1129 * lru lock. This is safe to do, since every list movement is 1130 * protected by the lru lock even if both locks are held. 1131 * 1132 * This is guaranteed by the fact that all LRU management 1133 * functions are intermediated by the LRU API calls like 1134 * list_lru_add and list_lru_del. List movement in this file 1135 * only ever occur through this functions or through callbacks 1136 * like this one, that are called from the LRU API. 1137 * 1138 * The only exceptions to this are functions like 1139 * shrink_dentry_list, and code that first checks for the 1140 * DCACHE_SHRINK_LIST flag. Those are guaranteed to be 1141 * operating only with stack provided lists after they are 1142 * properly isolated from the main list. It is thus, always a 1143 * local access. 1144 */ 1145 return LRU_ROTATE; 1146 } 1147 1148 d_lru_shrink_move(lru, dentry, freeable); 1149 spin_unlock(&dentry->d_lock); 1150 1151 return LRU_REMOVED; 1152 } 1153 1154 /** 1155 * prune_dcache_sb - shrink the dcache 1156 * @sb: superblock 1157 * @sc: shrink control, passed to list_lru_shrink_walk() 1158 * 1159 * Attempt to shrink the superblock dcache LRU by @sc->nr_to_scan entries. This 1160 * is done when we need more memory and called from the superblock shrinker 1161 * function. 1162 * 1163 * This function may fail to free any resources if all the dentries are in 1164 * use. 1165 */ 1166 long prune_dcache_sb(struct super_block *sb, struct shrink_control *sc) 1167 { 1168 LIST_HEAD(dispose); 1169 long freed; 1170 1171 freed = list_lru_shrink_walk(&sb->s_dentry_lru, sc, 1172 dentry_lru_isolate, &dispose); 1173 shrink_dentry_list(&dispose); 1174 return freed; 1175 } 1176 1177 static enum lru_status dentry_lru_isolate_shrink(struct list_head *item, 1178 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg) 1179 { 1180 struct list_head *freeable = arg; 1181 struct dentry *dentry = container_of(item, struct dentry, d_lru); 1182 1183 /* 1184 * we are inverting the lru lock/dentry->d_lock here, 1185 * so use a trylock. If we fail to get the lock, just skip 1186 * it 1187 */ 1188 if (!spin_trylock(&dentry->d_lock)) 1189 return LRU_SKIP; 1190 1191 d_lru_shrink_move(lru, dentry, freeable); 1192 spin_unlock(&dentry->d_lock); 1193 1194 return LRU_REMOVED; 1195 } 1196 1197 1198 /** 1199 * shrink_dcache_sb - shrink dcache for a superblock 1200 * @sb: superblock 1201 * 1202 * Shrink the dcache for the specified super block. This is used to free 1203 * the dcache before unmounting a file system. 1204 */ 1205 void shrink_dcache_sb(struct super_block *sb) 1206 { 1207 long freed; 1208 1209 do { 1210 LIST_HEAD(dispose); 1211 1212 freed = list_lru_walk(&sb->s_dentry_lru, 1213 dentry_lru_isolate_shrink, &dispose, 1024); 1214 1215 this_cpu_sub(nr_dentry_unused, freed); 1216 shrink_dentry_list(&dispose); 1217 } while (list_lru_count(&sb->s_dentry_lru) > 0); 1218 } 1219 EXPORT_SYMBOL(shrink_dcache_sb); 1220 1221 /** 1222 * enum d_walk_ret - action to talke during tree walk 1223 * @D_WALK_CONTINUE: contrinue walk 1224 * @D_WALK_QUIT: quit walk 1225 * @D_WALK_NORETRY: quit when retry is needed 1226 * @D_WALK_SKIP: skip this dentry and its children 1227 */ 1228 enum d_walk_ret { 1229 D_WALK_CONTINUE, 1230 D_WALK_QUIT, 1231 D_WALK_NORETRY, 1232 D_WALK_SKIP, 1233 }; 1234 1235 /** 1236 * d_walk - walk the dentry tree 1237 * @parent: start of walk 1238 * @data: data passed to @enter() and @finish() 1239 * @enter: callback when first entering the dentry 1240 * 1241 * The @enter() callbacks are called with d_lock held. 1242 */ 1243 static void d_walk(struct dentry *parent, void *data, 1244 enum d_walk_ret (*enter)(void *, struct dentry *)) 1245 { 1246 struct dentry *this_parent; 1247 struct list_head *next; 1248 unsigned seq = 0; 1249 enum d_walk_ret ret; 1250 bool retry = true; 1251 1252 again: 1253 read_seqbegin_or_lock(&rename_lock, &seq); 1254 this_parent = parent; 1255 spin_lock(&this_parent->d_lock); 1256 1257 ret = enter(data, this_parent); 1258 switch (ret) { 1259 case D_WALK_CONTINUE: 1260 break; 1261 case D_WALK_QUIT: 1262 case D_WALK_SKIP: 1263 goto out_unlock; 1264 case D_WALK_NORETRY: 1265 retry = false; 1266 break; 1267 } 1268 repeat: 1269 next = this_parent->d_subdirs.next; 1270 resume: 1271 while (next != &this_parent->d_subdirs) { 1272 struct list_head *tmp = next; 1273 struct dentry *dentry = list_entry(tmp, struct dentry, d_child); 1274 next = tmp->next; 1275 1276 if (unlikely(dentry->d_flags & DCACHE_DENTRY_CURSOR)) 1277 continue; 1278 1279 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED); 1280 1281 ret = enter(data, dentry); 1282 switch (ret) { 1283 case D_WALK_CONTINUE: 1284 break; 1285 case D_WALK_QUIT: 1286 spin_unlock(&dentry->d_lock); 1287 goto out_unlock; 1288 case D_WALK_NORETRY: 1289 retry = false; 1290 break; 1291 case D_WALK_SKIP: 1292 spin_unlock(&dentry->d_lock); 1293 continue; 1294 } 1295 1296 if (!list_empty(&dentry->d_subdirs)) { 1297 spin_unlock(&this_parent->d_lock); 1298 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_); 1299 this_parent = dentry; 1300 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_); 1301 goto repeat; 1302 } 1303 spin_unlock(&dentry->d_lock); 1304 } 1305 /* 1306 * All done at this level ... ascend and resume the search. 1307 */ 1308 rcu_read_lock(); 1309 ascend: 1310 if (this_parent != parent) { 1311 struct dentry *child = this_parent; 1312 this_parent = child->d_parent; 1313 1314 spin_unlock(&child->d_lock); 1315 spin_lock(&this_parent->d_lock); 1316 1317 /* might go back up the wrong parent if we have had a rename. */ 1318 if (need_seqretry(&rename_lock, seq)) 1319 goto rename_retry; 1320 /* go into the first sibling still alive */ 1321 do { 1322 next = child->d_child.next; 1323 if (next == &this_parent->d_subdirs) 1324 goto ascend; 1325 child = list_entry(next, struct dentry, d_child); 1326 } while (unlikely(child->d_flags & DCACHE_DENTRY_KILLED)); 1327 rcu_read_unlock(); 1328 goto resume; 1329 } 1330 if (need_seqretry(&rename_lock, seq)) 1331 goto rename_retry; 1332 rcu_read_unlock(); 1333 1334 out_unlock: 1335 spin_unlock(&this_parent->d_lock); 1336 done_seqretry(&rename_lock, seq); 1337 return; 1338 1339 rename_retry: 1340 spin_unlock(&this_parent->d_lock); 1341 rcu_read_unlock(); 1342 BUG_ON(seq & 1); 1343 if (!retry) 1344 return; 1345 seq = 1; 1346 goto again; 1347 } 1348 1349 struct check_mount { 1350 struct vfsmount *mnt; 1351 unsigned int mounted; 1352 }; 1353 1354 static enum d_walk_ret path_check_mount(void *data, struct dentry *dentry) 1355 { 1356 struct check_mount *info = data; 1357 struct path path = { .mnt = info->mnt, .dentry = dentry }; 1358 1359 if (likely(!d_mountpoint(dentry))) 1360 return D_WALK_CONTINUE; 1361 if (__path_is_mountpoint(&path)) { 1362 info->mounted = 1; 1363 return D_WALK_QUIT; 1364 } 1365 return D_WALK_CONTINUE; 1366 } 1367 1368 /** 1369 * path_has_submounts - check for mounts over a dentry in the 1370 * current namespace. 1371 * @parent: path to check. 1372 * 1373 * Return true if the parent or its subdirectories contain 1374 * a mount point in the current namespace. 1375 */ 1376 int path_has_submounts(const struct path *parent) 1377 { 1378 struct check_mount data = { .mnt = parent->mnt, .mounted = 0 }; 1379 1380 read_seqlock_excl(&mount_lock); 1381 d_walk(parent->dentry, &data, path_check_mount); 1382 read_sequnlock_excl(&mount_lock); 1383 1384 return data.mounted; 1385 } 1386 EXPORT_SYMBOL(path_has_submounts); 1387 1388 /* 1389 * Called by mount code to set a mountpoint and check if the mountpoint is 1390 * reachable (e.g. NFS can unhash a directory dentry and then the complete 1391 * subtree can become unreachable). 1392 * 1393 * Only one of d_invalidate() and d_set_mounted() must succeed. For 1394 * this reason take rename_lock and d_lock on dentry and ancestors. 1395 */ 1396 int d_set_mounted(struct dentry *dentry) 1397 { 1398 struct dentry *p; 1399 int ret = -ENOENT; 1400 write_seqlock(&rename_lock); 1401 for (p = dentry->d_parent; !IS_ROOT(p); p = p->d_parent) { 1402 /* Need exclusion wrt. d_invalidate() */ 1403 spin_lock(&p->d_lock); 1404 if (unlikely(d_unhashed(p))) { 1405 spin_unlock(&p->d_lock); 1406 goto out; 1407 } 1408 spin_unlock(&p->d_lock); 1409 } 1410 spin_lock(&dentry->d_lock); 1411 if (!d_unlinked(dentry)) { 1412 ret = -EBUSY; 1413 if (!d_mountpoint(dentry)) { 1414 dentry->d_flags |= DCACHE_MOUNTED; 1415 ret = 0; 1416 } 1417 } 1418 spin_unlock(&dentry->d_lock); 1419 out: 1420 write_sequnlock(&rename_lock); 1421 return ret; 1422 } 1423 1424 /* 1425 * Search the dentry child list of the specified parent, 1426 * and move any unused dentries to the end of the unused 1427 * list for prune_dcache(). We descend to the next level 1428 * whenever the d_subdirs list is non-empty and continue 1429 * searching. 1430 * 1431 * It returns zero iff there are no unused children, 1432 * otherwise it returns the number of children moved to 1433 * the end of the unused list. This may not be the total 1434 * number of unused children, because select_parent can 1435 * drop the lock and return early due to latency 1436 * constraints. 1437 */ 1438 1439 struct select_data { 1440 struct dentry *start; 1441 struct list_head dispose; 1442 int found; 1443 }; 1444 1445 static enum d_walk_ret select_collect(void *_data, struct dentry *dentry) 1446 { 1447 struct select_data *data = _data; 1448 enum d_walk_ret ret = D_WALK_CONTINUE; 1449 1450 if (data->start == dentry) 1451 goto out; 1452 1453 if (dentry->d_flags & DCACHE_SHRINK_LIST) { 1454 data->found++; 1455 } else { 1456 if (dentry->d_flags & DCACHE_LRU_LIST) 1457 d_lru_del(dentry); 1458 if (!dentry->d_lockref.count) { 1459 d_shrink_add(dentry, &data->dispose); 1460 data->found++; 1461 } 1462 } 1463 /* 1464 * We can return to the caller if we have found some (this 1465 * ensures forward progress). We'll be coming back to find 1466 * the rest. 1467 */ 1468 if (!list_empty(&data->dispose)) 1469 ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY; 1470 out: 1471 return ret; 1472 } 1473 1474 /** 1475 * shrink_dcache_parent - prune dcache 1476 * @parent: parent of entries to prune 1477 * 1478 * Prune the dcache to remove unused children of the parent dentry. 1479 */ 1480 void shrink_dcache_parent(struct dentry *parent) 1481 { 1482 for (;;) { 1483 struct select_data data; 1484 1485 INIT_LIST_HEAD(&data.dispose); 1486 data.start = parent; 1487 data.found = 0; 1488 1489 d_walk(parent, &data, select_collect); 1490 1491 if (!list_empty(&data.dispose)) { 1492 shrink_dentry_list(&data.dispose); 1493 continue; 1494 } 1495 1496 cond_resched(); 1497 if (!data.found) 1498 break; 1499 } 1500 } 1501 EXPORT_SYMBOL(shrink_dcache_parent); 1502 1503 static enum d_walk_ret umount_check(void *_data, struct dentry *dentry) 1504 { 1505 /* it has busy descendents; complain about those instead */ 1506 if (!list_empty(&dentry->d_subdirs)) 1507 return D_WALK_CONTINUE; 1508 1509 /* root with refcount 1 is fine */ 1510 if (dentry == _data && dentry->d_lockref.count == 1) 1511 return D_WALK_CONTINUE; 1512 1513 printk(KERN_ERR "BUG: Dentry %p{i=%lx,n=%pd} " 1514 " still in use (%d) [unmount of %s %s]\n", 1515 dentry, 1516 dentry->d_inode ? 1517 dentry->d_inode->i_ino : 0UL, 1518 dentry, 1519 dentry->d_lockref.count, 1520 dentry->d_sb->s_type->name, 1521 dentry->d_sb->s_id); 1522 WARN_ON(1); 1523 return D_WALK_CONTINUE; 1524 } 1525 1526 static void do_one_tree(struct dentry *dentry) 1527 { 1528 shrink_dcache_parent(dentry); 1529 d_walk(dentry, dentry, umount_check); 1530 d_drop(dentry); 1531 dput(dentry); 1532 } 1533 1534 /* 1535 * destroy the dentries attached to a superblock on unmounting 1536 */ 1537 void shrink_dcache_for_umount(struct super_block *sb) 1538 { 1539 struct dentry *dentry; 1540 1541 WARN(down_read_trylock(&sb->s_umount), "s_umount should've been locked"); 1542 1543 dentry = sb->s_root; 1544 sb->s_root = NULL; 1545 do_one_tree(dentry); 1546 1547 while (!hlist_bl_empty(&sb->s_roots)) { 1548 dentry = dget(hlist_bl_entry(hlist_bl_first(&sb->s_roots), struct dentry, d_hash)); 1549 do_one_tree(dentry); 1550 } 1551 } 1552 1553 static enum d_walk_ret find_submount(void *_data, struct dentry *dentry) 1554 { 1555 struct dentry **victim = _data; 1556 if (d_mountpoint(dentry)) { 1557 __dget_dlock(dentry); 1558 *victim = dentry; 1559 return D_WALK_QUIT; 1560 } 1561 return D_WALK_CONTINUE; 1562 } 1563 1564 /** 1565 * d_invalidate - detach submounts, prune dcache, and drop 1566 * @dentry: dentry to invalidate (aka detach, prune and drop) 1567 */ 1568 void d_invalidate(struct dentry *dentry) 1569 { 1570 bool had_submounts = false; 1571 spin_lock(&dentry->d_lock); 1572 if (d_unhashed(dentry)) { 1573 spin_unlock(&dentry->d_lock); 1574 return; 1575 } 1576 __d_drop(dentry); 1577 spin_unlock(&dentry->d_lock); 1578 1579 /* Negative dentries can be dropped without further checks */ 1580 if (!dentry->d_inode) 1581 return; 1582 1583 shrink_dcache_parent(dentry); 1584 for (;;) { 1585 struct dentry *victim = NULL; 1586 d_walk(dentry, &victim, find_submount); 1587 if (!victim) { 1588 if (had_submounts) 1589 shrink_dcache_parent(dentry); 1590 return; 1591 } 1592 had_submounts = true; 1593 detach_mounts(victim); 1594 dput(victim); 1595 } 1596 } 1597 EXPORT_SYMBOL(d_invalidate); 1598 1599 /** 1600 * __d_alloc - allocate a dcache entry 1601 * @sb: filesystem it will belong to 1602 * @name: qstr of the name 1603 * 1604 * Allocates a dentry. It returns %NULL if there is insufficient memory 1605 * available. On a success the dentry is returned. The name passed in is 1606 * copied and the copy passed in may be reused after this call. 1607 */ 1608 1609 struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name) 1610 { 1611 struct external_name *ext = NULL; 1612 struct dentry *dentry; 1613 char *dname; 1614 int err; 1615 1616 dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL); 1617 if (!dentry) 1618 return NULL; 1619 1620 /* 1621 * We guarantee that the inline name is always NUL-terminated. 1622 * This way the memcpy() done by the name switching in rename 1623 * will still always have a NUL at the end, even if we might 1624 * be overwriting an internal NUL character 1625 */ 1626 dentry->d_iname[DNAME_INLINE_LEN-1] = 0; 1627 if (unlikely(!name)) { 1628 name = &slash_name; 1629 dname = dentry->d_iname; 1630 } else if (name->len > DNAME_INLINE_LEN-1) { 1631 size_t size = offsetof(struct external_name, name[1]); 1632 1633 ext = kmalloc(size + name->len, GFP_KERNEL_ACCOUNT); 1634 if (!ext) { 1635 kmem_cache_free(dentry_cache, dentry); 1636 return NULL; 1637 } 1638 atomic_set(&ext->u.count, 1); 1639 dname = ext->name; 1640 } else { 1641 dname = dentry->d_iname; 1642 } 1643 1644 dentry->d_name.len = name->len; 1645 dentry->d_name.hash = name->hash; 1646 memcpy(dname, name->name, name->len); 1647 dname[name->len] = 0; 1648 1649 /* Make sure we always see the terminating NUL character */ 1650 smp_store_release(&dentry->d_name.name, dname); /* ^^^ */ 1651 1652 dentry->d_lockref.count = 1; 1653 dentry->d_flags = 0; 1654 spin_lock_init(&dentry->d_lock); 1655 seqcount_init(&dentry->d_seq); 1656 dentry->d_inode = NULL; 1657 dentry->d_parent = dentry; 1658 dentry->d_sb = sb; 1659 dentry->d_op = NULL; 1660 dentry->d_fsdata = NULL; 1661 INIT_HLIST_BL_NODE(&dentry->d_hash); 1662 INIT_LIST_HEAD(&dentry->d_lru); 1663 INIT_LIST_HEAD(&dentry->d_subdirs); 1664 INIT_HLIST_NODE(&dentry->d_u.d_alias); 1665 INIT_LIST_HEAD(&dentry->d_child); 1666 d_set_d_op(dentry, dentry->d_sb->s_d_op); 1667 1668 if (dentry->d_op && dentry->d_op->d_init) { 1669 err = dentry->d_op->d_init(dentry); 1670 if (err) { 1671 if (dname_external(dentry)) 1672 kfree(external_name(dentry)); 1673 kmem_cache_free(dentry_cache, dentry); 1674 return NULL; 1675 } 1676 } 1677 1678 if (unlikely(ext)) { 1679 pg_data_t *pgdat = page_pgdat(virt_to_page(ext)); 1680 mod_node_page_state(pgdat, NR_INDIRECTLY_RECLAIMABLE_BYTES, 1681 ksize(ext)); 1682 } 1683 1684 this_cpu_inc(nr_dentry); 1685 1686 return dentry; 1687 } 1688 1689 /** 1690 * d_alloc - allocate a dcache entry 1691 * @parent: parent of entry to allocate 1692 * @name: qstr of the name 1693 * 1694 * Allocates a dentry. It returns %NULL if there is insufficient memory 1695 * available. On a success the dentry is returned. The name passed in is 1696 * copied and the copy passed in may be reused after this call. 1697 */ 1698 struct dentry *d_alloc(struct dentry * parent, const struct qstr *name) 1699 { 1700 struct dentry *dentry = __d_alloc(parent->d_sb, name); 1701 if (!dentry) 1702 return NULL; 1703 dentry->d_flags |= DCACHE_RCUACCESS; 1704 spin_lock(&parent->d_lock); 1705 /* 1706 * don't need child lock because it is not subject 1707 * to concurrency here 1708 */ 1709 __dget_dlock(parent); 1710 dentry->d_parent = parent; 1711 list_add(&dentry->d_child, &parent->d_subdirs); 1712 spin_unlock(&parent->d_lock); 1713 1714 return dentry; 1715 } 1716 EXPORT_SYMBOL(d_alloc); 1717 1718 struct dentry *d_alloc_anon(struct super_block *sb) 1719 { 1720 return __d_alloc(sb, NULL); 1721 } 1722 EXPORT_SYMBOL(d_alloc_anon); 1723 1724 struct dentry *d_alloc_cursor(struct dentry * parent) 1725 { 1726 struct dentry *dentry = d_alloc_anon(parent->d_sb); 1727 if (dentry) { 1728 dentry->d_flags |= DCACHE_RCUACCESS | DCACHE_DENTRY_CURSOR; 1729 dentry->d_parent = dget(parent); 1730 } 1731 return dentry; 1732 } 1733 1734 /** 1735 * d_alloc_pseudo - allocate a dentry (for lookup-less filesystems) 1736 * @sb: the superblock 1737 * @name: qstr of the name 1738 * 1739 * For a filesystem that just pins its dentries in memory and never 1740 * performs lookups at all, return an unhashed IS_ROOT dentry. 1741 */ 1742 struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name) 1743 { 1744 return __d_alloc(sb, name); 1745 } 1746 EXPORT_SYMBOL(d_alloc_pseudo); 1747 1748 struct dentry *d_alloc_name(struct dentry *parent, const char *name) 1749 { 1750 struct qstr q; 1751 1752 q.name = name; 1753 q.hash_len = hashlen_string(parent, name); 1754 return d_alloc(parent, &q); 1755 } 1756 EXPORT_SYMBOL(d_alloc_name); 1757 1758 void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op) 1759 { 1760 WARN_ON_ONCE(dentry->d_op); 1761 WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH | 1762 DCACHE_OP_COMPARE | 1763 DCACHE_OP_REVALIDATE | 1764 DCACHE_OP_WEAK_REVALIDATE | 1765 DCACHE_OP_DELETE | 1766 DCACHE_OP_REAL)); 1767 dentry->d_op = op; 1768 if (!op) 1769 return; 1770 if (op->d_hash) 1771 dentry->d_flags |= DCACHE_OP_HASH; 1772 if (op->d_compare) 1773 dentry->d_flags |= DCACHE_OP_COMPARE; 1774 if (op->d_revalidate) 1775 dentry->d_flags |= DCACHE_OP_REVALIDATE; 1776 if (op->d_weak_revalidate) 1777 dentry->d_flags |= DCACHE_OP_WEAK_REVALIDATE; 1778 if (op->d_delete) 1779 dentry->d_flags |= DCACHE_OP_DELETE; 1780 if (op->d_prune) 1781 dentry->d_flags |= DCACHE_OP_PRUNE; 1782 if (op->d_real) 1783 dentry->d_flags |= DCACHE_OP_REAL; 1784 1785 } 1786 EXPORT_SYMBOL(d_set_d_op); 1787 1788 1789 /* 1790 * d_set_fallthru - Mark a dentry as falling through to a lower layer 1791 * @dentry - The dentry to mark 1792 * 1793 * Mark a dentry as falling through to the lower layer (as set with 1794 * d_pin_lower()). This flag may be recorded on the medium. 1795 */ 1796 void d_set_fallthru(struct dentry *dentry) 1797 { 1798 spin_lock(&dentry->d_lock); 1799 dentry->d_flags |= DCACHE_FALLTHRU; 1800 spin_unlock(&dentry->d_lock); 1801 } 1802 EXPORT_SYMBOL(d_set_fallthru); 1803 1804 static unsigned d_flags_for_inode(struct inode *inode) 1805 { 1806 unsigned add_flags = DCACHE_REGULAR_TYPE; 1807 1808 if (!inode) 1809 return DCACHE_MISS_TYPE; 1810 1811 if (S_ISDIR(inode->i_mode)) { 1812 add_flags = DCACHE_DIRECTORY_TYPE; 1813 if (unlikely(!(inode->i_opflags & IOP_LOOKUP))) { 1814 if (unlikely(!inode->i_op->lookup)) 1815 add_flags = DCACHE_AUTODIR_TYPE; 1816 else 1817 inode->i_opflags |= IOP_LOOKUP; 1818 } 1819 goto type_determined; 1820 } 1821 1822 if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) { 1823 if (unlikely(inode->i_op->get_link)) { 1824 add_flags = DCACHE_SYMLINK_TYPE; 1825 goto type_determined; 1826 } 1827 inode->i_opflags |= IOP_NOFOLLOW; 1828 } 1829 1830 if (unlikely(!S_ISREG(inode->i_mode))) 1831 add_flags = DCACHE_SPECIAL_TYPE; 1832 1833 type_determined: 1834 if (unlikely(IS_AUTOMOUNT(inode))) 1835 add_flags |= DCACHE_NEED_AUTOMOUNT; 1836 return add_flags; 1837 } 1838 1839 static void __d_instantiate(struct dentry *dentry, struct inode *inode) 1840 { 1841 unsigned add_flags = d_flags_for_inode(inode); 1842 WARN_ON(d_in_lookup(dentry)); 1843 1844 spin_lock(&dentry->d_lock); 1845 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry); 1846 raw_write_seqcount_begin(&dentry->d_seq); 1847 __d_set_inode_and_type(dentry, inode, add_flags); 1848 raw_write_seqcount_end(&dentry->d_seq); 1849 fsnotify_update_flags(dentry); 1850 spin_unlock(&dentry->d_lock); 1851 } 1852 1853 /** 1854 * d_instantiate - fill in inode information for a dentry 1855 * @entry: dentry to complete 1856 * @inode: inode to attach to this dentry 1857 * 1858 * Fill in inode information in the entry. 1859 * 1860 * This turns negative dentries into productive full members 1861 * of society. 1862 * 1863 * NOTE! This assumes that the inode count has been incremented 1864 * (or otherwise set) by the caller to indicate that it is now 1865 * in use by the dcache. 1866 */ 1867 1868 void d_instantiate(struct dentry *entry, struct inode * inode) 1869 { 1870 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias)); 1871 if (inode) { 1872 security_d_instantiate(entry, inode); 1873 spin_lock(&inode->i_lock); 1874 __d_instantiate(entry, inode); 1875 spin_unlock(&inode->i_lock); 1876 } 1877 } 1878 EXPORT_SYMBOL(d_instantiate); 1879 1880 /* 1881 * This should be equivalent to d_instantiate() + unlock_new_inode(), 1882 * with lockdep-related part of unlock_new_inode() done before 1883 * anything else. Use that instead of open-coding d_instantiate()/ 1884 * unlock_new_inode() combinations. 1885 */ 1886 void d_instantiate_new(struct dentry *entry, struct inode *inode) 1887 { 1888 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias)); 1889 BUG_ON(!inode); 1890 lockdep_annotate_inode_mutex_key(inode); 1891 security_d_instantiate(entry, inode); 1892 spin_lock(&inode->i_lock); 1893 __d_instantiate(entry, inode); 1894 WARN_ON(!(inode->i_state & I_NEW)); 1895 inode->i_state &= ~I_NEW; 1896 smp_mb(); 1897 wake_up_bit(&inode->i_state, __I_NEW); 1898 spin_unlock(&inode->i_lock); 1899 } 1900 EXPORT_SYMBOL(d_instantiate_new); 1901 1902 /** 1903 * d_instantiate_no_diralias - instantiate a non-aliased dentry 1904 * @entry: dentry to complete 1905 * @inode: inode to attach to this dentry 1906 * 1907 * Fill in inode information in the entry. If a directory alias is found, then 1908 * return an error (and drop inode). Together with d_materialise_unique() this 1909 * guarantees that a directory inode may never have more than one alias. 1910 */ 1911 int d_instantiate_no_diralias(struct dentry *entry, struct inode *inode) 1912 { 1913 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias)); 1914 1915 security_d_instantiate(entry, inode); 1916 spin_lock(&inode->i_lock); 1917 if (S_ISDIR(inode->i_mode) && !hlist_empty(&inode->i_dentry)) { 1918 spin_unlock(&inode->i_lock); 1919 iput(inode); 1920 return -EBUSY; 1921 } 1922 __d_instantiate(entry, inode); 1923 spin_unlock(&inode->i_lock); 1924 1925 return 0; 1926 } 1927 EXPORT_SYMBOL(d_instantiate_no_diralias); 1928 1929 struct dentry *d_make_root(struct inode *root_inode) 1930 { 1931 struct dentry *res = NULL; 1932 1933 if (root_inode) { 1934 res = d_alloc_anon(root_inode->i_sb); 1935 if (res) 1936 d_instantiate(res, root_inode); 1937 else 1938 iput(root_inode); 1939 } 1940 return res; 1941 } 1942 EXPORT_SYMBOL(d_make_root); 1943 1944 static struct dentry *__d_instantiate_anon(struct dentry *dentry, 1945 struct inode *inode, 1946 bool disconnected) 1947 { 1948 struct dentry *res; 1949 unsigned add_flags; 1950 1951 security_d_instantiate(dentry, inode); 1952 spin_lock(&inode->i_lock); 1953 res = __d_find_any_alias(inode); 1954 if (res) { 1955 spin_unlock(&inode->i_lock); 1956 dput(dentry); 1957 goto out_iput; 1958 } 1959 1960 /* attach a disconnected dentry */ 1961 add_flags = d_flags_for_inode(inode); 1962 1963 if (disconnected) 1964 add_flags |= DCACHE_DISCONNECTED; 1965 1966 spin_lock(&dentry->d_lock); 1967 __d_set_inode_and_type(dentry, inode, add_flags); 1968 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry); 1969 if (!disconnected) { 1970 hlist_bl_lock(&dentry->d_sb->s_roots); 1971 hlist_bl_add_head(&dentry->d_hash, &dentry->d_sb->s_roots); 1972 hlist_bl_unlock(&dentry->d_sb->s_roots); 1973 } 1974 spin_unlock(&dentry->d_lock); 1975 spin_unlock(&inode->i_lock); 1976 1977 return dentry; 1978 1979 out_iput: 1980 iput(inode); 1981 return res; 1982 } 1983 1984 struct dentry *d_instantiate_anon(struct dentry *dentry, struct inode *inode) 1985 { 1986 return __d_instantiate_anon(dentry, inode, true); 1987 } 1988 EXPORT_SYMBOL(d_instantiate_anon); 1989 1990 static struct dentry *__d_obtain_alias(struct inode *inode, bool disconnected) 1991 { 1992 struct dentry *tmp; 1993 struct dentry *res; 1994 1995 if (!inode) 1996 return ERR_PTR(-ESTALE); 1997 if (IS_ERR(inode)) 1998 return ERR_CAST(inode); 1999 2000 res = d_find_any_alias(inode); 2001 if (res) 2002 goto out_iput; 2003 2004 tmp = d_alloc_anon(inode->i_sb); 2005 if (!tmp) { 2006 res = ERR_PTR(-ENOMEM); 2007 goto out_iput; 2008 } 2009 2010 return __d_instantiate_anon(tmp, inode, disconnected); 2011 2012 out_iput: 2013 iput(inode); 2014 return res; 2015 } 2016 2017 /** 2018 * d_obtain_alias - find or allocate a DISCONNECTED dentry for a given inode 2019 * @inode: inode to allocate the dentry for 2020 * 2021 * Obtain a dentry for an inode resulting from NFS filehandle conversion or 2022 * similar open by handle operations. The returned dentry may be anonymous, 2023 * or may have a full name (if the inode was already in the cache). 2024 * 2025 * When called on a directory inode, we must ensure that the inode only ever 2026 * has one dentry. If a dentry is found, that is returned instead of 2027 * allocating a new one. 2028 * 2029 * On successful return, the reference to the inode has been transferred 2030 * to the dentry. In case of an error the reference on the inode is released. 2031 * To make it easier to use in export operations a %NULL or IS_ERR inode may 2032 * be passed in and the error will be propagated to the return value, 2033 * with a %NULL @inode replaced by ERR_PTR(-ESTALE). 2034 */ 2035 struct dentry *d_obtain_alias(struct inode *inode) 2036 { 2037 return __d_obtain_alias(inode, true); 2038 } 2039 EXPORT_SYMBOL(d_obtain_alias); 2040 2041 /** 2042 * d_obtain_root - find or allocate a dentry for a given inode 2043 * @inode: inode to allocate the dentry for 2044 * 2045 * Obtain an IS_ROOT dentry for the root of a filesystem. 2046 * 2047 * We must ensure that directory inodes only ever have one dentry. If a 2048 * dentry is found, that is returned instead of allocating a new one. 2049 * 2050 * On successful return, the reference to the inode has been transferred 2051 * to the dentry. In case of an error the reference on the inode is 2052 * released. A %NULL or IS_ERR inode may be passed in and will be the 2053 * error will be propagate to the return value, with a %NULL @inode 2054 * replaced by ERR_PTR(-ESTALE). 2055 */ 2056 struct dentry *d_obtain_root(struct inode *inode) 2057 { 2058 return __d_obtain_alias(inode, false); 2059 } 2060 EXPORT_SYMBOL(d_obtain_root); 2061 2062 /** 2063 * d_add_ci - lookup or allocate new dentry with case-exact name 2064 * @inode: the inode case-insensitive lookup has found 2065 * @dentry: the negative dentry that was passed to the parent's lookup func 2066 * @name: the case-exact name to be associated with the returned dentry 2067 * 2068 * This is to avoid filling the dcache with case-insensitive names to the 2069 * same inode, only the actual correct case is stored in the dcache for 2070 * case-insensitive filesystems. 2071 * 2072 * For a case-insensitive lookup match and if the the case-exact dentry 2073 * already exists in in the dcache, use it and return it. 2074 * 2075 * If no entry exists with the exact case name, allocate new dentry with 2076 * the exact case, and return the spliced entry. 2077 */ 2078 struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode, 2079 struct qstr *name) 2080 { 2081 struct dentry *found, *res; 2082 2083 /* 2084 * First check if a dentry matching the name already exists, 2085 * if not go ahead and create it now. 2086 */ 2087 found = d_hash_and_lookup(dentry->d_parent, name); 2088 if (found) { 2089 iput(inode); 2090 return found; 2091 } 2092 if (d_in_lookup(dentry)) { 2093 found = d_alloc_parallel(dentry->d_parent, name, 2094 dentry->d_wait); 2095 if (IS_ERR(found) || !d_in_lookup(found)) { 2096 iput(inode); 2097 return found; 2098 } 2099 } else { 2100 found = d_alloc(dentry->d_parent, name); 2101 if (!found) { 2102 iput(inode); 2103 return ERR_PTR(-ENOMEM); 2104 } 2105 } 2106 res = d_splice_alias(inode, found); 2107 if (res) { 2108 dput(found); 2109 return res; 2110 } 2111 return found; 2112 } 2113 EXPORT_SYMBOL(d_add_ci); 2114 2115 2116 static inline bool d_same_name(const struct dentry *dentry, 2117 const struct dentry *parent, 2118 const struct qstr *name) 2119 { 2120 if (likely(!(parent->d_flags & DCACHE_OP_COMPARE))) { 2121 if (dentry->d_name.len != name->len) 2122 return false; 2123 return dentry_cmp(dentry, name->name, name->len) == 0; 2124 } 2125 return parent->d_op->d_compare(dentry, 2126 dentry->d_name.len, dentry->d_name.name, 2127 name) == 0; 2128 } 2129 2130 /** 2131 * __d_lookup_rcu - search for a dentry (racy, store-free) 2132 * @parent: parent dentry 2133 * @name: qstr of name we wish to find 2134 * @seqp: returns d_seq value at the point where the dentry was found 2135 * Returns: dentry, or NULL 2136 * 2137 * __d_lookup_rcu is the dcache lookup function for rcu-walk name 2138 * resolution (store-free path walking) design described in 2139 * Documentation/filesystems/path-lookup.txt. 2140 * 2141 * This is not to be used outside core vfs. 2142 * 2143 * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock 2144 * held, and rcu_read_lock held. The returned dentry must not be stored into 2145 * without taking d_lock and checking d_seq sequence count against @seq 2146 * returned here. 2147 * 2148 * A refcount may be taken on the found dentry with the d_rcu_to_refcount 2149 * function. 2150 * 2151 * Alternatively, __d_lookup_rcu may be called again to look up the child of 2152 * the returned dentry, so long as its parent's seqlock is checked after the 2153 * child is looked up. Thus, an interlocking stepping of sequence lock checks 2154 * is formed, giving integrity down the path walk. 2155 * 2156 * NOTE! The caller *has* to check the resulting dentry against the sequence 2157 * number we've returned before using any of the resulting dentry state! 2158 */ 2159 struct dentry *__d_lookup_rcu(const struct dentry *parent, 2160 const struct qstr *name, 2161 unsigned *seqp) 2162 { 2163 u64 hashlen = name->hash_len; 2164 const unsigned char *str = name->name; 2165 struct hlist_bl_head *b = d_hash(hashlen_hash(hashlen)); 2166 struct hlist_bl_node *node; 2167 struct dentry *dentry; 2168 2169 /* 2170 * Note: There is significant duplication with __d_lookup_rcu which is 2171 * required to prevent single threaded performance regressions 2172 * especially on architectures where smp_rmb (in seqcounts) are costly. 2173 * Keep the two functions in sync. 2174 */ 2175 2176 /* 2177 * The hash list is protected using RCU. 2178 * 2179 * Carefully use d_seq when comparing a candidate dentry, to avoid 2180 * races with d_move(). 2181 * 2182 * It is possible that concurrent renames can mess up our list 2183 * walk here and result in missing our dentry, resulting in the 2184 * false-negative result. d_lookup() protects against concurrent 2185 * renames using rename_lock seqlock. 2186 * 2187 * See Documentation/filesystems/path-lookup.txt for more details. 2188 */ 2189 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) { 2190 unsigned seq; 2191 2192 seqretry: 2193 /* 2194 * The dentry sequence count protects us from concurrent 2195 * renames, and thus protects parent and name fields. 2196 * 2197 * The caller must perform a seqcount check in order 2198 * to do anything useful with the returned dentry. 2199 * 2200 * NOTE! We do a "raw" seqcount_begin here. That means that 2201 * we don't wait for the sequence count to stabilize if it 2202 * is in the middle of a sequence change. If we do the slow 2203 * dentry compare, we will do seqretries until it is stable, 2204 * and if we end up with a successful lookup, we actually 2205 * want to exit RCU lookup anyway. 2206 * 2207 * Note that raw_seqcount_begin still *does* smp_rmb(), so 2208 * we are still guaranteed NUL-termination of ->d_name.name. 2209 */ 2210 seq = raw_seqcount_begin(&dentry->d_seq); 2211 if (dentry->d_parent != parent) 2212 continue; 2213 if (d_unhashed(dentry)) 2214 continue; 2215 2216 if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) { 2217 int tlen; 2218 const char *tname; 2219 if (dentry->d_name.hash != hashlen_hash(hashlen)) 2220 continue; 2221 tlen = dentry->d_name.len; 2222 tname = dentry->d_name.name; 2223 /* we want a consistent (name,len) pair */ 2224 if (read_seqcount_retry(&dentry->d_seq, seq)) { 2225 cpu_relax(); 2226 goto seqretry; 2227 } 2228 if (parent->d_op->d_compare(dentry, 2229 tlen, tname, name) != 0) 2230 continue; 2231 } else { 2232 if (dentry->d_name.hash_len != hashlen) 2233 continue; 2234 if (dentry_cmp(dentry, str, hashlen_len(hashlen)) != 0) 2235 continue; 2236 } 2237 *seqp = seq; 2238 return dentry; 2239 } 2240 return NULL; 2241 } 2242 2243 /** 2244 * d_lookup - search for a dentry 2245 * @parent: parent dentry 2246 * @name: qstr of name we wish to find 2247 * Returns: dentry, or NULL 2248 * 2249 * d_lookup searches the children of the parent dentry for the name in 2250 * question. If the dentry is found its reference count is incremented and the 2251 * dentry is returned. The caller must use dput to free the entry when it has 2252 * finished using it. %NULL is returned if the dentry does not exist. 2253 */ 2254 struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name) 2255 { 2256 struct dentry *dentry; 2257 unsigned seq; 2258 2259 do { 2260 seq = read_seqbegin(&rename_lock); 2261 dentry = __d_lookup(parent, name); 2262 if (dentry) 2263 break; 2264 } while (read_seqretry(&rename_lock, seq)); 2265 return dentry; 2266 } 2267 EXPORT_SYMBOL(d_lookup); 2268 2269 /** 2270 * __d_lookup - search for a dentry (racy) 2271 * @parent: parent dentry 2272 * @name: qstr of name we wish to find 2273 * Returns: dentry, or NULL 2274 * 2275 * __d_lookup is like d_lookup, however it may (rarely) return a 2276 * false-negative result due to unrelated rename activity. 2277 * 2278 * __d_lookup is slightly faster by avoiding rename_lock read seqlock, 2279 * however it must be used carefully, eg. with a following d_lookup in 2280 * the case of failure. 2281 * 2282 * __d_lookup callers must be commented. 2283 */ 2284 struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name) 2285 { 2286 unsigned int hash = name->hash; 2287 struct hlist_bl_head *b = d_hash(hash); 2288 struct hlist_bl_node *node; 2289 struct dentry *found = NULL; 2290 struct dentry *dentry; 2291 2292 /* 2293 * Note: There is significant duplication with __d_lookup_rcu which is 2294 * required to prevent single threaded performance regressions 2295 * especially on architectures where smp_rmb (in seqcounts) are costly. 2296 * Keep the two functions in sync. 2297 */ 2298 2299 /* 2300 * The hash list is protected using RCU. 2301 * 2302 * Take d_lock when comparing a candidate dentry, to avoid races 2303 * with d_move(). 2304 * 2305 * It is possible that concurrent renames can mess up our list 2306 * walk here and result in missing our dentry, resulting in the 2307 * false-negative result. d_lookup() protects against concurrent 2308 * renames using rename_lock seqlock. 2309 * 2310 * See Documentation/filesystems/path-lookup.txt for more details. 2311 */ 2312 rcu_read_lock(); 2313 2314 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) { 2315 2316 if (dentry->d_name.hash != hash) 2317 continue; 2318 2319 spin_lock(&dentry->d_lock); 2320 if (dentry->d_parent != parent) 2321 goto next; 2322 if (d_unhashed(dentry)) 2323 goto next; 2324 2325 if (!d_same_name(dentry, parent, name)) 2326 goto next; 2327 2328 dentry->d_lockref.count++; 2329 found = dentry; 2330 spin_unlock(&dentry->d_lock); 2331 break; 2332 next: 2333 spin_unlock(&dentry->d_lock); 2334 } 2335 rcu_read_unlock(); 2336 2337 return found; 2338 } 2339 2340 /** 2341 * d_hash_and_lookup - hash the qstr then search for a dentry 2342 * @dir: Directory to search in 2343 * @name: qstr of name we wish to find 2344 * 2345 * On lookup failure NULL is returned; on bad name - ERR_PTR(-error) 2346 */ 2347 struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name) 2348 { 2349 /* 2350 * Check for a fs-specific hash function. Note that we must 2351 * calculate the standard hash first, as the d_op->d_hash() 2352 * routine may choose to leave the hash value unchanged. 2353 */ 2354 name->hash = full_name_hash(dir, name->name, name->len); 2355 if (dir->d_flags & DCACHE_OP_HASH) { 2356 int err = dir->d_op->d_hash(dir, name); 2357 if (unlikely(err < 0)) 2358 return ERR_PTR(err); 2359 } 2360 return d_lookup(dir, name); 2361 } 2362 EXPORT_SYMBOL(d_hash_and_lookup); 2363 2364 /* 2365 * When a file is deleted, we have two options: 2366 * - turn this dentry into a negative dentry 2367 * - unhash this dentry and free it. 2368 * 2369 * Usually, we want to just turn this into 2370 * a negative dentry, but if anybody else is 2371 * currently using the dentry or the inode 2372 * we can't do that and we fall back on removing 2373 * it from the hash queues and waiting for 2374 * it to be deleted later when it has no users 2375 */ 2376 2377 /** 2378 * d_delete - delete a dentry 2379 * @dentry: The dentry to delete 2380 * 2381 * Turn the dentry into a negative dentry if possible, otherwise 2382 * remove it from the hash queues so it can be deleted later 2383 */ 2384 2385 void d_delete(struct dentry * dentry) 2386 { 2387 struct inode *inode = dentry->d_inode; 2388 int isdir = d_is_dir(dentry); 2389 2390 spin_lock(&inode->i_lock); 2391 spin_lock(&dentry->d_lock); 2392 /* 2393 * Are we the only user? 2394 */ 2395 if (dentry->d_lockref.count == 1) { 2396 dentry->d_flags &= ~DCACHE_CANT_MOUNT; 2397 dentry_unlink_inode(dentry); 2398 } else { 2399 __d_drop(dentry); 2400 spin_unlock(&dentry->d_lock); 2401 spin_unlock(&inode->i_lock); 2402 } 2403 fsnotify_nameremove(dentry, isdir); 2404 } 2405 EXPORT_SYMBOL(d_delete); 2406 2407 static void __d_rehash(struct dentry *entry) 2408 { 2409 struct hlist_bl_head *b = d_hash(entry->d_name.hash); 2410 2411 hlist_bl_lock(b); 2412 hlist_bl_add_head_rcu(&entry->d_hash, b); 2413 hlist_bl_unlock(b); 2414 } 2415 2416 /** 2417 * d_rehash - add an entry back to the hash 2418 * @entry: dentry to add to the hash 2419 * 2420 * Adds a dentry to the hash according to its name. 2421 */ 2422 2423 void d_rehash(struct dentry * entry) 2424 { 2425 spin_lock(&entry->d_lock); 2426 __d_rehash(entry); 2427 spin_unlock(&entry->d_lock); 2428 } 2429 EXPORT_SYMBOL(d_rehash); 2430 2431 static inline unsigned start_dir_add(struct inode *dir) 2432 { 2433 2434 for (;;) { 2435 unsigned n = dir->i_dir_seq; 2436 if (!(n & 1) && cmpxchg(&dir->i_dir_seq, n, n + 1) == n) 2437 return n; 2438 cpu_relax(); 2439 } 2440 } 2441 2442 static inline void end_dir_add(struct inode *dir, unsigned n) 2443 { 2444 smp_store_release(&dir->i_dir_seq, n + 2); 2445 } 2446 2447 static void d_wait_lookup(struct dentry *dentry) 2448 { 2449 if (d_in_lookup(dentry)) { 2450 DECLARE_WAITQUEUE(wait, current); 2451 add_wait_queue(dentry->d_wait, &wait); 2452 do { 2453 set_current_state(TASK_UNINTERRUPTIBLE); 2454 spin_unlock(&dentry->d_lock); 2455 schedule(); 2456 spin_lock(&dentry->d_lock); 2457 } while (d_in_lookup(dentry)); 2458 } 2459 } 2460 2461 struct dentry *d_alloc_parallel(struct dentry *parent, 2462 const struct qstr *name, 2463 wait_queue_head_t *wq) 2464 { 2465 unsigned int hash = name->hash; 2466 struct hlist_bl_head *b = in_lookup_hash(parent, hash); 2467 struct hlist_bl_node *node; 2468 struct dentry *new = d_alloc(parent, name); 2469 struct dentry *dentry; 2470 unsigned seq, r_seq, d_seq; 2471 2472 if (unlikely(!new)) 2473 return ERR_PTR(-ENOMEM); 2474 2475 retry: 2476 rcu_read_lock(); 2477 seq = smp_load_acquire(&parent->d_inode->i_dir_seq); 2478 r_seq = read_seqbegin(&rename_lock); 2479 dentry = __d_lookup_rcu(parent, name, &d_seq); 2480 if (unlikely(dentry)) { 2481 if (!lockref_get_not_dead(&dentry->d_lockref)) { 2482 rcu_read_unlock(); 2483 goto retry; 2484 } 2485 if (read_seqcount_retry(&dentry->d_seq, d_seq)) { 2486 rcu_read_unlock(); 2487 dput(dentry); 2488 goto retry; 2489 } 2490 rcu_read_unlock(); 2491 dput(new); 2492 return dentry; 2493 } 2494 if (unlikely(read_seqretry(&rename_lock, r_seq))) { 2495 rcu_read_unlock(); 2496 goto retry; 2497 } 2498 2499 if (unlikely(seq & 1)) { 2500 rcu_read_unlock(); 2501 goto retry; 2502 } 2503 2504 hlist_bl_lock(b); 2505 if (unlikely(READ_ONCE(parent->d_inode->i_dir_seq) != seq)) { 2506 hlist_bl_unlock(b); 2507 rcu_read_unlock(); 2508 goto retry; 2509 } 2510 /* 2511 * No changes for the parent since the beginning of d_lookup(). 2512 * Since all removals from the chain happen with hlist_bl_lock(), 2513 * any potential in-lookup matches are going to stay here until 2514 * we unlock the chain. All fields are stable in everything 2515 * we encounter. 2516 */ 2517 hlist_bl_for_each_entry(dentry, node, b, d_u.d_in_lookup_hash) { 2518 if (dentry->d_name.hash != hash) 2519 continue; 2520 if (dentry->d_parent != parent) 2521 continue; 2522 if (!d_same_name(dentry, parent, name)) 2523 continue; 2524 hlist_bl_unlock(b); 2525 /* now we can try to grab a reference */ 2526 if (!lockref_get_not_dead(&dentry->d_lockref)) { 2527 rcu_read_unlock(); 2528 goto retry; 2529 } 2530 2531 rcu_read_unlock(); 2532 /* 2533 * somebody is likely to be still doing lookup for it; 2534 * wait for them to finish 2535 */ 2536 spin_lock(&dentry->d_lock); 2537 d_wait_lookup(dentry); 2538 /* 2539 * it's not in-lookup anymore; in principle we should repeat 2540 * everything from dcache lookup, but it's likely to be what 2541 * d_lookup() would've found anyway. If it is, just return it; 2542 * otherwise we really have to repeat the whole thing. 2543 */ 2544 if (unlikely(dentry->d_name.hash != hash)) 2545 goto mismatch; 2546 if (unlikely(dentry->d_parent != parent)) 2547 goto mismatch; 2548 if (unlikely(d_unhashed(dentry))) 2549 goto mismatch; 2550 if (unlikely(!d_same_name(dentry, parent, name))) 2551 goto mismatch; 2552 /* OK, it *is* a hashed match; return it */ 2553 spin_unlock(&dentry->d_lock); 2554 dput(new); 2555 return dentry; 2556 } 2557 rcu_read_unlock(); 2558 /* we can't take ->d_lock here; it's OK, though. */ 2559 new->d_flags |= DCACHE_PAR_LOOKUP; 2560 new->d_wait = wq; 2561 hlist_bl_add_head_rcu(&new->d_u.d_in_lookup_hash, b); 2562 hlist_bl_unlock(b); 2563 return new; 2564 mismatch: 2565 spin_unlock(&dentry->d_lock); 2566 dput(dentry); 2567 goto retry; 2568 } 2569 EXPORT_SYMBOL(d_alloc_parallel); 2570 2571 void __d_lookup_done(struct dentry *dentry) 2572 { 2573 struct hlist_bl_head *b = in_lookup_hash(dentry->d_parent, 2574 dentry->d_name.hash); 2575 hlist_bl_lock(b); 2576 dentry->d_flags &= ~DCACHE_PAR_LOOKUP; 2577 __hlist_bl_del(&dentry->d_u.d_in_lookup_hash); 2578 wake_up_all(dentry->d_wait); 2579 dentry->d_wait = NULL; 2580 hlist_bl_unlock(b); 2581 INIT_HLIST_NODE(&dentry->d_u.d_alias); 2582 INIT_LIST_HEAD(&dentry->d_lru); 2583 } 2584 EXPORT_SYMBOL(__d_lookup_done); 2585 2586 /* inode->i_lock held if inode is non-NULL */ 2587 2588 static inline void __d_add(struct dentry *dentry, struct inode *inode) 2589 { 2590 struct inode *dir = NULL; 2591 unsigned n; 2592 spin_lock(&dentry->d_lock); 2593 if (unlikely(d_in_lookup(dentry))) { 2594 dir = dentry->d_parent->d_inode; 2595 n = start_dir_add(dir); 2596 __d_lookup_done(dentry); 2597 } 2598 if (inode) { 2599 unsigned add_flags = d_flags_for_inode(inode); 2600 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry); 2601 raw_write_seqcount_begin(&dentry->d_seq); 2602 __d_set_inode_and_type(dentry, inode, add_flags); 2603 raw_write_seqcount_end(&dentry->d_seq); 2604 fsnotify_update_flags(dentry); 2605 } 2606 __d_rehash(dentry); 2607 if (dir) 2608 end_dir_add(dir, n); 2609 spin_unlock(&dentry->d_lock); 2610 if (inode) 2611 spin_unlock(&inode->i_lock); 2612 } 2613 2614 /** 2615 * d_add - add dentry to hash queues 2616 * @entry: dentry to add 2617 * @inode: The inode to attach to this dentry 2618 * 2619 * This adds the entry to the hash queues and initializes @inode. 2620 * The entry was actually filled in earlier during d_alloc(). 2621 */ 2622 2623 void d_add(struct dentry *entry, struct inode *inode) 2624 { 2625 if (inode) { 2626 security_d_instantiate(entry, inode); 2627 spin_lock(&inode->i_lock); 2628 } 2629 __d_add(entry, inode); 2630 } 2631 EXPORT_SYMBOL(d_add); 2632 2633 /** 2634 * d_exact_alias - find and hash an exact unhashed alias 2635 * @entry: dentry to add 2636 * @inode: The inode to go with this dentry 2637 * 2638 * If an unhashed dentry with the same name/parent and desired 2639 * inode already exists, hash and return it. Otherwise, return 2640 * NULL. 2641 * 2642 * Parent directory should be locked. 2643 */ 2644 struct dentry *d_exact_alias(struct dentry *entry, struct inode *inode) 2645 { 2646 struct dentry *alias; 2647 unsigned int hash = entry->d_name.hash; 2648 2649 spin_lock(&inode->i_lock); 2650 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) { 2651 /* 2652 * Don't need alias->d_lock here, because aliases with 2653 * d_parent == entry->d_parent are not subject to name or 2654 * parent changes, because the parent inode i_mutex is held. 2655 */ 2656 if (alias->d_name.hash != hash) 2657 continue; 2658 if (alias->d_parent != entry->d_parent) 2659 continue; 2660 if (!d_same_name(alias, entry->d_parent, &entry->d_name)) 2661 continue; 2662 spin_lock(&alias->d_lock); 2663 if (!d_unhashed(alias)) { 2664 spin_unlock(&alias->d_lock); 2665 alias = NULL; 2666 } else { 2667 __dget_dlock(alias); 2668 __d_rehash(alias); 2669 spin_unlock(&alias->d_lock); 2670 } 2671 spin_unlock(&inode->i_lock); 2672 return alias; 2673 } 2674 spin_unlock(&inode->i_lock); 2675 return NULL; 2676 } 2677 EXPORT_SYMBOL(d_exact_alias); 2678 2679 /** 2680 * dentry_update_name_case - update case insensitive dentry with a new name 2681 * @dentry: dentry to be updated 2682 * @name: new name 2683 * 2684 * Update a case insensitive dentry with new case of name. 2685 * 2686 * dentry must have been returned by d_lookup with name @name. Old and new 2687 * name lengths must match (ie. no d_compare which allows mismatched name 2688 * lengths). 2689 * 2690 * Parent inode i_mutex must be held over d_lookup and into this call (to 2691 * keep renames and concurrent inserts, and readdir(2) away). 2692 */ 2693 void dentry_update_name_case(struct dentry *dentry, const struct qstr *name) 2694 { 2695 BUG_ON(!inode_is_locked(dentry->d_parent->d_inode)); 2696 BUG_ON(dentry->d_name.len != name->len); /* d_lookup gives this */ 2697 2698 spin_lock(&dentry->d_lock); 2699 write_seqcount_begin(&dentry->d_seq); 2700 memcpy((unsigned char *)dentry->d_name.name, name->name, name->len); 2701 write_seqcount_end(&dentry->d_seq); 2702 spin_unlock(&dentry->d_lock); 2703 } 2704 EXPORT_SYMBOL(dentry_update_name_case); 2705 2706 static void swap_names(struct dentry *dentry, struct dentry *target) 2707 { 2708 if (unlikely(dname_external(target))) { 2709 if (unlikely(dname_external(dentry))) { 2710 /* 2711 * Both external: swap the pointers 2712 */ 2713 swap(target->d_name.name, dentry->d_name.name); 2714 } else { 2715 /* 2716 * dentry:internal, target:external. Steal target's 2717 * storage and make target internal. 2718 */ 2719 memcpy(target->d_iname, dentry->d_name.name, 2720 dentry->d_name.len + 1); 2721 dentry->d_name.name = target->d_name.name; 2722 target->d_name.name = target->d_iname; 2723 } 2724 } else { 2725 if (unlikely(dname_external(dentry))) { 2726 /* 2727 * dentry:external, target:internal. Give dentry's 2728 * storage to target and make dentry internal 2729 */ 2730 memcpy(dentry->d_iname, target->d_name.name, 2731 target->d_name.len + 1); 2732 target->d_name.name = dentry->d_name.name; 2733 dentry->d_name.name = dentry->d_iname; 2734 } else { 2735 /* 2736 * Both are internal. 2737 */ 2738 unsigned int i; 2739 BUILD_BUG_ON(!IS_ALIGNED(DNAME_INLINE_LEN, sizeof(long))); 2740 for (i = 0; i < DNAME_INLINE_LEN / sizeof(long); i++) { 2741 swap(((long *) &dentry->d_iname)[i], 2742 ((long *) &target->d_iname)[i]); 2743 } 2744 } 2745 } 2746 swap(dentry->d_name.hash_len, target->d_name.hash_len); 2747 } 2748 2749 static void copy_name(struct dentry *dentry, struct dentry *target) 2750 { 2751 struct external_name *old_name = NULL; 2752 if (unlikely(dname_external(dentry))) 2753 old_name = external_name(dentry); 2754 if (unlikely(dname_external(target))) { 2755 atomic_inc(&external_name(target)->u.count); 2756 dentry->d_name = target->d_name; 2757 } else { 2758 memcpy(dentry->d_iname, target->d_name.name, 2759 target->d_name.len + 1); 2760 dentry->d_name.name = dentry->d_iname; 2761 dentry->d_name.hash_len = target->d_name.hash_len; 2762 } 2763 if (old_name && likely(atomic_dec_and_test(&old_name->u.count))) 2764 call_rcu(&old_name->u.head, __d_free_external_name); 2765 } 2766 2767 /* 2768 * __d_move - move a dentry 2769 * @dentry: entry to move 2770 * @target: new dentry 2771 * @exchange: exchange the two dentries 2772 * 2773 * Update the dcache to reflect the move of a file name. Negative 2774 * dcache entries should not be moved in this way. Caller must hold 2775 * rename_lock, the i_mutex of the source and target directories, 2776 * and the sb->s_vfs_rename_mutex if they differ. See lock_rename(). 2777 */ 2778 static void __d_move(struct dentry *dentry, struct dentry *target, 2779 bool exchange) 2780 { 2781 struct dentry *old_parent, *p; 2782 struct inode *dir = NULL; 2783 unsigned n; 2784 2785 WARN_ON(!dentry->d_inode); 2786 if (WARN_ON(dentry == target)) 2787 return; 2788 2789 BUG_ON(d_ancestor(target, dentry)); 2790 old_parent = dentry->d_parent; 2791 p = d_ancestor(old_parent, target); 2792 if (IS_ROOT(dentry)) { 2793 BUG_ON(p); 2794 spin_lock(&target->d_parent->d_lock); 2795 } else if (!p) { 2796 /* target is not a descendent of dentry->d_parent */ 2797 spin_lock(&target->d_parent->d_lock); 2798 spin_lock_nested(&old_parent->d_lock, DENTRY_D_LOCK_NESTED); 2799 } else { 2800 BUG_ON(p == dentry); 2801 spin_lock(&old_parent->d_lock); 2802 if (p != target) 2803 spin_lock_nested(&target->d_parent->d_lock, 2804 DENTRY_D_LOCK_NESTED); 2805 } 2806 spin_lock_nested(&dentry->d_lock, 2); 2807 spin_lock_nested(&target->d_lock, 3); 2808 2809 if (unlikely(d_in_lookup(target))) { 2810 dir = target->d_parent->d_inode; 2811 n = start_dir_add(dir); 2812 __d_lookup_done(target); 2813 } 2814 2815 write_seqcount_begin(&dentry->d_seq); 2816 write_seqcount_begin_nested(&target->d_seq, DENTRY_D_LOCK_NESTED); 2817 2818 /* unhash both */ 2819 if (!d_unhashed(dentry)) 2820 ___d_drop(dentry); 2821 if (!d_unhashed(target)) 2822 ___d_drop(target); 2823 2824 /* ... and switch them in the tree */ 2825 dentry->d_parent = target->d_parent; 2826 if (!exchange) { 2827 copy_name(dentry, target); 2828 target->d_hash.pprev = NULL; 2829 dentry->d_parent->d_lockref.count++; 2830 if (dentry == old_parent) 2831 dentry->d_flags |= DCACHE_RCUACCESS; 2832 else 2833 WARN_ON(!--old_parent->d_lockref.count); 2834 } else { 2835 target->d_parent = old_parent; 2836 swap_names(dentry, target); 2837 list_move(&target->d_child, &target->d_parent->d_subdirs); 2838 __d_rehash(target); 2839 fsnotify_update_flags(target); 2840 } 2841 list_move(&dentry->d_child, &dentry->d_parent->d_subdirs); 2842 __d_rehash(dentry); 2843 fsnotify_update_flags(dentry); 2844 2845 write_seqcount_end(&target->d_seq); 2846 write_seqcount_end(&dentry->d_seq); 2847 2848 if (dir) 2849 end_dir_add(dir, n); 2850 2851 if (dentry->d_parent != old_parent) 2852 spin_unlock(&dentry->d_parent->d_lock); 2853 if (dentry != old_parent) 2854 spin_unlock(&old_parent->d_lock); 2855 spin_unlock(&target->d_lock); 2856 spin_unlock(&dentry->d_lock); 2857 } 2858 2859 /* 2860 * d_move - move a dentry 2861 * @dentry: entry to move 2862 * @target: new dentry 2863 * 2864 * Update the dcache to reflect the move of a file name. Negative 2865 * dcache entries should not be moved in this way. See the locking 2866 * requirements for __d_move. 2867 */ 2868 void d_move(struct dentry *dentry, struct dentry *target) 2869 { 2870 write_seqlock(&rename_lock); 2871 __d_move(dentry, target, false); 2872 write_sequnlock(&rename_lock); 2873 } 2874 EXPORT_SYMBOL(d_move); 2875 2876 /* 2877 * d_exchange - exchange two dentries 2878 * @dentry1: first dentry 2879 * @dentry2: second dentry 2880 */ 2881 void d_exchange(struct dentry *dentry1, struct dentry *dentry2) 2882 { 2883 write_seqlock(&rename_lock); 2884 2885 WARN_ON(!dentry1->d_inode); 2886 WARN_ON(!dentry2->d_inode); 2887 WARN_ON(IS_ROOT(dentry1)); 2888 WARN_ON(IS_ROOT(dentry2)); 2889 2890 __d_move(dentry1, dentry2, true); 2891 2892 write_sequnlock(&rename_lock); 2893 } 2894 2895 /** 2896 * d_ancestor - search for an ancestor 2897 * @p1: ancestor dentry 2898 * @p2: child dentry 2899 * 2900 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is 2901 * an ancestor of p2, else NULL. 2902 */ 2903 struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2) 2904 { 2905 struct dentry *p; 2906 2907 for (p = p2; !IS_ROOT(p); p = p->d_parent) { 2908 if (p->d_parent == p1) 2909 return p; 2910 } 2911 return NULL; 2912 } 2913 2914 /* 2915 * This helper attempts to cope with remotely renamed directories 2916 * 2917 * It assumes that the caller is already holding 2918 * dentry->d_parent->d_inode->i_mutex, and rename_lock 2919 * 2920 * Note: If ever the locking in lock_rename() changes, then please 2921 * remember to update this too... 2922 */ 2923 static int __d_unalias(struct inode *inode, 2924 struct dentry *dentry, struct dentry *alias) 2925 { 2926 struct mutex *m1 = NULL; 2927 struct rw_semaphore *m2 = NULL; 2928 int ret = -ESTALE; 2929 2930 /* If alias and dentry share a parent, then no extra locks required */ 2931 if (alias->d_parent == dentry->d_parent) 2932 goto out_unalias; 2933 2934 /* See lock_rename() */ 2935 if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex)) 2936 goto out_err; 2937 m1 = &dentry->d_sb->s_vfs_rename_mutex; 2938 if (!inode_trylock_shared(alias->d_parent->d_inode)) 2939 goto out_err; 2940 m2 = &alias->d_parent->d_inode->i_rwsem; 2941 out_unalias: 2942 __d_move(alias, dentry, false); 2943 ret = 0; 2944 out_err: 2945 if (m2) 2946 up_read(m2); 2947 if (m1) 2948 mutex_unlock(m1); 2949 return ret; 2950 } 2951 2952 /** 2953 * d_splice_alias - splice a disconnected dentry into the tree if one exists 2954 * @inode: the inode which may have a disconnected dentry 2955 * @dentry: a negative dentry which we want to point to the inode. 2956 * 2957 * If inode is a directory and has an IS_ROOT alias, then d_move that in 2958 * place of the given dentry and return it, else simply d_add the inode 2959 * to the dentry and return NULL. 2960 * 2961 * If a non-IS_ROOT directory is found, the filesystem is corrupt, and 2962 * we should error out: directories can't have multiple aliases. 2963 * 2964 * This is needed in the lookup routine of any filesystem that is exportable 2965 * (via knfsd) so that we can build dcache paths to directories effectively. 2966 * 2967 * If a dentry was found and moved, then it is returned. Otherwise NULL 2968 * is returned. This matches the expected return value of ->lookup. 2969 * 2970 * Cluster filesystems may call this function with a negative, hashed dentry. 2971 * In that case, we know that the inode will be a regular file, and also this 2972 * will only occur during atomic_open. So we need to check for the dentry 2973 * being already hashed only in the final case. 2974 */ 2975 struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry) 2976 { 2977 if (IS_ERR(inode)) 2978 return ERR_CAST(inode); 2979 2980 BUG_ON(!d_unhashed(dentry)); 2981 2982 if (!inode) 2983 goto out; 2984 2985 security_d_instantiate(dentry, inode); 2986 spin_lock(&inode->i_lock); 2987 if (S_ISDIR(inode->i_mode)) { 2988 struct dentry *new = __d_find_any_alias(inode); 2989 if (unlikely(new)) { 2990 /* The reference to new ensures it remains an alias */ 2991 spin_unlock(&inode->i_lock); 2992 write_seqlock(&rename_lock); 2993 if (unlikely(d_ancestor(new, dentry))) { 2994 write_sequnlock(&rename_lock); 2995 dput(new); 2996 new = ERR_PTR(-ELOOP); 2997 pr_warn_ratelimited( 2998 "VFS: Lookup of '%s' in %s %s" 2999 " would have caused loop\n", 3000 dentry->d_name.name, 3001 inode->i_sb->s_type->name, 3002 inode->i_sb->s_id); 3003 } else if (!IS_ROOT(new)) { 3004 struct dentry *old_parent = dget(new->d_parent); 3005 int err = __d_unalias(inode, dentry, new); 3006 write_sequnlock(&rename_lock); 3007 if (err) { 3008 dput(new); 3009 new = ERR_PTR(err); 3010 } 3011 dput(old_parent); 3012 } else { 3013 __d_move(new, dentry, false); 3014 write_sequnlock(&rename_lock); 3015 } 3016 iput(inode); 3017 return new; 3018 } 3019 } 3020 out: 3021 __d_add(dentry, inode); 3022 return NULL; 3023 } 3024 EXPORT_SYMBOL(d_splice_alias); 3025 3026 /* 3027 * Test whether new_dentry is a subdirectory of old_dentry. 3028 * 3029 * Trivially implemented using the dcache structure 3030 */ 3031 3032 /** 3033 * is_subdir - is new dentry a subdirectory of old_dentry 3034 * @new_dentry: new dentry 3035 * @old_dentry: old dentry 3036 * 3037 * Returns true if new_dentry is a subdirectory of the parent (at any depth). 3038 * Returns false otherwise. 3039 * Caller must ensure that "new_dentry" is pinned before calling is_subdir() 3040 */ 3041 3042 bool is_subdir(struct dentry *new_dentry, struct dentry *old_dentry) 3043 { 3044 bool result; 3045 unsigned seq; 3046 3047 if (new_dentry == old_dentry) 3048 return true; 3049 3050 do { 3051 /* for restarting inner loop in case of seq retry */ 3052 seq = read_seqbegin(&rename_lock); 3053 /* 3054 * Need rcu_readlock to protect against the d_parent trashing 3055 * due to d_move 3056 */ 3057 rcu_read_lock(); 3058 if (d_ancestor(old_dentry, new_dentry)) 3059 result = true; 3060 else 3061 result = false; 3062 rcu_read_unlock(); 3063 } while (read_seqretry(&rename_lock, seq)); 3064 3065 return result; 3066 } 3067 EXPORT_SYMBOL(is_subdir); 3068 3069 static enum d_walk_ret d_genocide_kill(void *data, struct dentry *dentry) 3070 { 3071 struct dentry *root = data; 3072 if (dentry != root) { 3073 if (d_unhashed(dentry) || !dentry->d_inode) 3074 return D_WALK_SKIP; 3075 3076 if (!(dentry->d_flags & DCACHE_GENOCIDE)) { 3077 dentry->d_flags |= DCACHE_GENOCIDE; 3078 dentry->d_lockref.count--; 3079 } 3080 } 3081 return D_WALK_CONTINUE; 3082 } 3083 3084 void d_genocide(struct dentry *parent) 3085 { 3086 d_walk(parent, parent, d_genocide_kill); 3087 } 3088 3089 EXPORT_SYMBOL(d_genocide); 3090 3091 void d_tmpfile(struct dentry *dentry, struct inode *inode) 3092 { 3093 inode_dec_link_count(inode); 3094 BUG_ON(dentry->d_name.name != dentry->d_iname || 3095 !hlist_unhashed(&dentry->d_u.d_alias) || 3096 !d_unlinked(dentry)); 3097 spin_lock(&dentry->d_parent->d_lock); 3098 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED); 3099 dentry->d_name.len = sprintf(dentry->d_iname, "#%llu", 3100 (unsigned long long)inode->i_ino); 3101 spin_unlock(&dentry->d_lock); 3102 spin_unlock(&dentry->d_parent->d_lock); 3103 d_instantiate(dentry, inode); 3104 } 3105 EXPORT_SYMBOL(d_tmpfile); 3106 3107 static __initdata unsigned long dhash_entries; 3108 static int __init set_dhash_entries(char *str) 3109 { 3110 if (!str) 3111 return 0; 3112 dhash_entries = simple_strtoul(str, &str, 0); 3113 return 1; 3114 } 3115 __setup("dhash_entries=", set_dhash_entries); 3116 3117 static void __init dcache_init_early(void) 3118 { 3119 /* If hashes are distributed across NUMA nodes, defer 3120 * hash allocation until vmalloc space is available. 3121 */ 3122 if (hashdist) 3123 return; 3124 3125 dentry_hashtable = 3126 alloc_large_system_hash("Dentry cache", 3127 sizeof(struct hlist_bl_head), 3128 dhash_entries, 3129 13, 3130 HASH_EARLY | HASH_ZERO, 3131 &d_hash_shift, 3132 NULL, 3133 0, 3134 0); 3135 d_hash_shift = 32 - d_hash_shift; 3136 } 3137 3138 static void __init dcache_init(void) 3139 { 3140 /* 3141 * A constructor could be added for stable state like the lists, 3142 * but it is probably not worth it because of the cache nature 3143 * of the dcache. 3144 */ 3145 dentry_cache = KMEM_CACHE_USERCOPY(dentry, 3146 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD|SLAB_ACCOUNT, 3147 d_iname); 3148 3149 /* Hash may have been set up in dcache_init_early */ 3150 if (!hashdist) 3151 return; 3152 3153 dentry_hashtable = 3154 alloc_large_system_hash("Dentry cache", 3155 sizeof(struct hlist_bl_head), 3156 dhash_entries, 3157 13, 3158 HASH_ZERO, 3159 &d_hash_shift, 3160 NULL, 3161 0, 3162 0); 3163 d_hash_shift = 32 - d_hash_shift; 3164 } 3165 3166 /* SLAB cache for __getname() consumers */ 3167 struct kmem_cache *names_cachep __read_mostly; 3168 EXPORT_SYMBOL(names_cachep); 3169 3170 void __init vfs_caches_init_early(void) 3171 { 3172 int i; 3173 3174 for (i = 0; i < ARRAY_SIZE(in_lookup_hashtable); i++) 3175 INIT_HLIST_BL_HEAD(&in_lookup_hashtable[i]); 3176 3177 dcache_init_early(); 3178 inode_init_early(); 3179 } 3180 3181 void __init vfs_caches_init(void) 3182 { 3183 names_cachep = kmem_cache_create_usercopy("names_cache", PATH_MAX, 0, 3184 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 0, PATH_MAX, NULL); 3185 3186 dcache_init(); 3187 inode_init(); 3188 files_init(); 3189 files_maxfiles_init(); 3190 mnt_init(); 3191 bdev_cache_init(); 3192 chrdev_init(); 3193 } 3194