xref: /openbmc/linux/fs/dcache.c (revision 8931ddd8)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * fs/dcache.c
4  *
5  * Complete reimplementation
6  * (C) 1997 Thomas Schoebel-Theuer,
7  * with heavy changes by Linus Torvalds
8  */
9 
10 /*
11  * Notes on the allocation strategy:
12  *
13  * The dcache is a master of the icache - whenever a dcache entry
14  * exists, the inode will always exist. "iput()" is done either when
15  * the dcache entry is deleted or garbage collected.
16  */
17 
18 #include <linux/ratelimit.h>
19 #include <linux/string.h>
20 #include <linux/mm.h>
21 #include <linux/fs.h>
22 #include <linux/fscrypt.h>
23 #include <linux/fsnotify.h>
24 #include <linux/slab.h>
25 #include <linux/init.h>
26 #include <linux/hash.h>
27 #include <linux/cache.h>
28 #include <linux/export.h>
29 #include <linux/security.h>
30 #include <linux/seqlock.h>
31 #include <linux/memblock.h>
32 #include <linux/bit_spinlock.h>
33 #include <linux/rculist_bl.h>
34 #include <linux/list_lru.h>
35 #include "internal.h"
36 #include "mount.h"
37 
38 /*
39  * Usage:
40  * dcache->d_inode->i_lock protects:
41  *   - i_dentry, d_u.d_alias, d_inode of aliases
42  * dcache_hash_bucket lock protects:
43  *   - the dcache hash table
44  * s_roots bl list spinlock protects:
45  *   - the s_roots list (see __d_drop)
46  * dentry->d_sb->s_dentry_lru_lock protects:
47  *   - the dcache lru lists and counters
48  * d_lock protects:
49  *   - d_flags
50  *   - d_name
51  *   - d_lru
52  *   - d_count
53  *   - d_unhashed()
54  *   - d_parent and d_subdirs
55  *   - childrens' d_child and d_parent
56  *   - d_u.d_alias, d_inode
57  *
58  * Ordering:
59  * dentry->d_inode->i_lock
60  *   dentry->d_lock
61  *     dentry->d_sb->s_dentry_lru_lock
62  *     dcache_hash_bucket lock
63  *     s_roots lock
64  *
65  * If there is an ancestor relationship:
66  * dentry->d_parent->...->d_parent->d_lock
67  *   ...
68  *     dentry->d_parent->d_lock
69  *       dentry->d_lock
70  *
71  * If no ancestor relationship:
72  * arbitrary, since it's serialized on rename_lock
73  */
74 int sysctl_vfs_cache_pressure __read_mostly = 100;
75 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
76 
77 __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
78 
79 EXPORT_SYMBOL(rename_lock);
80 
81 static struct kmem_cache *dentry_cache __read_mostly;
82 
83 const struct qstr empty_name = QSTR_INIT("", 0);
84 EXPORT_SYMBOL(empty_name);
85 const struct qstr slash_name = QSTR_INIT("/", 1);
86 EXPORT_SYMBOL(slash_name);
87 const struct qstr dotdot_name = QSTR_INIT("..", 2);
88 EXPORT_SYMBOL(dotdot_name);
89 
90 /*
91  * This is the single most critical data structure when it comes
92  * to the dcache: the hashtable for lookups. Somebody should try
93  * to make this good - I've just made it work.
94  *
95  * This hash-function tries to avoid losing too many bits of hash
96  * information, yet avoid using a prime hash-size or similar.
97  */
98 
99 static unsigned int d_hash_shift __read_mostly;
100 
101 static struct hlist_bl_head *dentry_hashtable __read_mostly;
102 
103 static inline struct hlist_bl_head *d_hash(unsigned int hash)
104 {
105 	return dentry_hashtable + (hash >> d_hash_shift);
106 }
107 
108 #define IN_LOOKUP_SHIFT 10
109 static struct hlist_bl_head in_lookup_hashtable[1 << IN_LOOKUP_SHIFT];
110 
111 static inline struct hlist_bl_head *in_lookup_hash(const struct dentry *parent,
112 					unsigned int hash)
113 {
114 	hash += (unsigned long) parent / L1_CACHE_BYTES;
115 	return in_lookup_hashtable + hash_32(hash, IN_LOOKUP_SHIFT);
116 }
117 
118 struct dentry_stat_t {
119 	long nr_dentry;
120 	long nr_unused;
121 	long age_limit;		/* age in seconds */
122 	long want_pages;	/* pages requested by system */
123 	long nr_negative;	/* # of unused negative dentries */
124 	long dummy;		/* Reserved for future use */
125 };
126 
127 static DEFINE_PER_CPU(long, nr_dentry);
128 static DEFINE_PER_CPU(long, nr_dentry_unused);
129 static DEFINE_PER_CPU(long, nr_dentry_negative);
130 
131 #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
132 /* Statistics gathering. */
133 static struct dentry_stat_t dentry_stat = {
134 	.age_limit = 45,
135 };
136 
137 /*
138  * Here we resort to our own counters instead of using generic per-cpu counters
139  * for consistency with what the vfs inode code does. We are expected to harvest
140  * better code and performance by having our own specialized counters.
141  *
142  * Please note that the loop is done over all possible CPUs, not over all online
143  * CPUs. The reason for this is that we don't want to play games with CPUs going
144  * on and off. If one of them goes off, we will just keep their counters.
145  *
146  * glommer: See cffbc8a for details, and if you ever intend to change this,
147  * please update all vfs counters to match.
148  */
149 static long get_nr_dentry(void)
150 {
151 	int i;
152 	long sum = 0;
153 	for_each_possible_cpu(i)
154 		sum += per_cpu(nr_dentry, i);
155 	return sum < 0 ? 0 : sum;
156 }
157 
158 static long get_nr_dentry_unused(void)
159 {
160 	int i;
161 	long sum = 0;
162 	for_each_possible_cpu(i)
163 		sum += per_cpu(nr_dentry_unused, i);
164 	return sum < 0 ? 0 : sum;
165 }
166 
167 static long get_nr_dentry_negative(void)
168 {
169 	int i;
170 	long sum = 0;
171 
172 	for_each_possible_cpu(i)
173 		sum += per_cpu(nr_dentry_negative, i);
174 	return sum < 0 ? 0 : sum;
175 }
176 
177 static int proc_nr_dentry(struct ctl_table *table, int write, void *buffer,
178 			  size_t *lenp, loff_t *ppos)
179 {
180 	dentry_stat.nr_dentry = get_nr_dentry();
181 	dentry_stat.nr_unused = get_nr_dentry_unused();
182 	dentry_stat.nr_negative = get_nr_dentry_negative();
183 	return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
184 }
185 
186 static struct ctl_table fs_dcache_sysctls[] = {
187 	{
188 		.procname	= "dentry-state",
189 		.data		= &dentry_stat,
190 		.maxlen		= 6*sizeof(long),
191 		.mode		= 0444,
192 		.proc_handler	= proc_nr_dentry,
193 	},
194 	{ }
195 };
196 
197 static int __init init_fs_dcache_sysctls(void)
198 {
199 	register_sysctl_init("fs", fs_dcache_sysctls);
200 	return 0;
201 }
202 fs_initcall(init_fs_dcache_sysctls);
203 #endif
204 
205 /*
206  * Compare 2 name strings, return 0 if they match, otherwise non-zero.
207  * The strings are both count bytes long, and count is non-zero.
208  */
209 #ifdef CONFIG_DCACHE_WORD_ACCESS
210 
211 #include <asm/word-at-a-time.h>
212 /*
213  * NOTE! 'cs' and 'scount' come from a dentry, so it has a
214  * aligned allocation for this particular component. We don't
215  * strictly need the load_unaligned_zeropad() safety, but it
216  * doesn't hurt either.
217  *
218  * In contrast, 'ct' and 'tcount' can be from a pathname, and do
219  * need the careful unaligned handling.
220  */
221 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
222 {
223 	unsigned long a,b,mask;
224 
225 	for (;;) {
226 		a = read_word_at_a_time(cs);
227 		b = load_unaligned_zeropad(ct);
228 		if (tcount < sizeof(unsigned long))
229 			break;
230 		if (unlikely(a != b))
231 			return 1;
232 		cs += sizeof(unsigned long);
233 		ct += sizeof(unsigned long);
234 		tcount -= sizeof(unsigned long);
235 		if (!tcount)
236 			return 0;
237 	}
238 	mask = bytemask_from_count(tcount);
239 	return unlikely(!!((a ^ b) & mask));
240 }
241 
242 #else
243 
244 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
245 {
246 	do {
247 		if (*cs != *ct)
248 			return 1;
249 		cs++;
250 		ct++;
251 		tcount--;
252 	} while (tcount);
253 	return 0;
254 }
255 
256 #endif
257 
258 static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount)
259 {
260 	/*
261 	 * Be careful about RCU walk racing with rename:
262 	 * use 'READ_ONCE' to fetch the name pointer.
263 	 *
264 	 * NOTE! Even if a rename will mean that the length
265 	 * was not loaded atomically, we don't care. The
266 	 * RCU walk will check the sequence count eventually,
267 	 * and catch it. And we won't overrun the buffer,
268 	 * because we're reading the name pointer atomically,
269 	 * and a dentry name is guaranteed to be properly
270 	 * terminated with a NUL byte.
271 	 *
272 	 * End result: even if 'len' is wrong, we'll exit
273 	 * early because the data cannot match (there can
274 	 * be no NUL in the ct/tcount data)
275 	 */
276 	const unsigned char *cs = READ_ONCE(dentry->d_name.name);
277 
278 	return dentry_string_cmp(cs, ct, tcount);
279 }
280 
281 struct external_name {
282 	union {
283 		atomic_t count;
284 		struct rcu_head head;
285 	} u;
286 	unsigned char name[];
287 };
288 
289 static inline struct external_name *external_name(struct dentry *dentry)
290 {
291 	return container_of(dentry->d_name.name, struct external_name, name[0]);
292 }
293 
294 static void __d_free(struct rcu_head *head)
295 {
296 	struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
297 
298 	kmem_cache_free(dentry_cache, dentry);
299 }
300 
301 static void __d_free_external(struct rcu_head *head)
302 {
303 	struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
304 	kfree(external_name(dentry));
305 	kmem_cache_free(dentry_cache, dentry);
306 }
307 
308 static inline int dname_external(const struct dentry *dentry)
309 {
310 	return dentry->d_name.name != dentry->d_iname;
311 }
312 
313 void take_dentry_name_snapshot(struct name_snapshot *name, struct dentry *dentry)
314 {
315 	spin_lock(&dentry->d_lock);
316 	name->name = dentry->d_name;
317 	if (unlikely(dname_external(dentry))) {
318 		atomic_inc(&external_name(dentry)->u.count);
319 	} else {
320 		memcpy(name->inline_name, dentry->d_iname,
321 		       dentry->d_name.len + 1);
322 		name->name.name = name->inline_name;
323 	}
324 	spin_unlock(&dentry->d_lock);
325 }
326 EXPORT_SYMBOL(take_dentry_name_snapshot);
327 
328 void release_dentry_name_snapshot(struct name_snapshot *name)
329 {
330 	if (unlikely(name->name.name != name->inline_name)) {
331 		struct external_name *p;
332 		p = container_of(name->name.name, struct external_name, name[0]);
333 		if (unlikely(atomic_dec_and_test(&p->u.count)))
334 			kfree_rcu(p, u.head);
335 	}
336 }
337 EXPORT_SYMBOL(release_dentry_name_snapshot);
338 
339 static inline void __d_set_inode_and_type(struct dentry *dentry,
340 					  struct inode *inode,
341 					  unsigned type_flags)
342 {
343 	unsigned flags;
344 
345 	dentry->d_inode = inode;
346 	flags = READ_ONCE(dentry->d_flags);
347 	flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU);
348 	flags |= type_flags;
349 	smp_store_release(&dentry->d_flags, flags);
350 }
351 
352 static inline void __d_clear_type_and_inode(struct dentry *dentry)
353 {
354 	unsigned flags = READ_ONCE(dentry->d_flags);
355 
356 	flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU);
357 	WRITE_ONCE(dentry->d_flags, flags);
358 	dentry->d_inode = NULL;
359 	if (dentry->d_flags & DCACHE_LRU_LIST)
360 		this_cpu_inc(nr_dentry_negative);
361 }
362 
363 static void dentry_free(struct dentry *dentry)
364 {
365 	WARN_ON(!hlist_unhashed(&dentry->d_u.d_alias));
366 	if (unlikely(dname_external(dentry))) {
367 		struct external_name *p = external_name(dentry);
368 		if (likely(atomic_dec_and_test(&p->u.count))) {
369 			call_rcu(&dentry->d_u.d_rcu, __d_free_external);
370 			return;
371 		}
372 	}
373 	/* if dentry was never visible to RCU, immediate free is OK */
374 	if (dentry->d_flags & DCACHE_NORCU)
375 		__d_free(&dentry->d_u.d_rcu);
376 	else
377 		call_rcu(&dentry->d_u.d_rcu, __d_free);
378 }
379 
380 /*
381  * Release the dentry's inode, using the filesystem
382  * d_iput() operation if defined.
383  */
384 static void dentry_unlink_inode(struct dentry * dentry)
385 	__releases(dentry->d_lock)
386 	__releases(dentry->d_inode->i_lock)
387 {
388 	struct inode *inode = dentry->d_inode;
389 
390 	raw_write_seqcount_begin(&dentry->d_seq);
391 	__d_clear_type_and_inode(dentry);
392 	hlist_del_init(&dentry->d_u.d_alias);
393 	raw_write_seqcount_end(&dentry->d_seq);
394 	spin_unlock(&dentry->d_lock);
395 	spin_unlock(&inode->i_lock);
396 	if (!inode->i_nlink)
397 		fsnotify_inoderemove(inode);
398 	if (dentry->d_op && dentry->d_op->d_iput)
399 		dentry->d_op->d_iput(dentry, inode);
400 	else
401 		iput(inode);
402 }
403 
404 /*
405  * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry
406  * is in use - which includes both the "real" per-superblock
407  * LRU list _and_ the DCACHE_SHRINK_LIST use.
408  *
409  * The DCACHE_SHRINK_LIST bit is set whenever the dentry is
410  * on the shrink list (ie not on the superblock LRU list).
411  *
412  * The per-cpu "nr_dentry_unused" counters are updated with
413  * the DCACHE_LRU_LIST bit.
414  *
415  * The per-cpu "nr_dentry_negative" counters are only updated
416  * when deleted from or added to the per-superblock LRU list, not
417  * from/to the shrink list. That is to avoid an unneeded dec/inc
418  * pair when moving from LRU to shrink list in select_collect().
419  *
420  * These helper functions make sure we always follow the
421  * rules. d_lock must be held by the caller.
422  */
423 #define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x))
424 static void d_lru_add(struct dentry *dentry)
425 {
426 	D_FLAG_VERIFY(dentry, 0);
427 	dentry->d_flags |= DCACHE_LRU_LIST;
428 	this_cpu_inc(nr_dentry_unused);
429 	if (d_is_negative(dentry))
430 		this_cpu_inc(nr_dentry_negative);
431 	WARN_ON_ONCE(!list_lru_add(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
432 }
433 
434 static void d_lru_del(struct dentry *dentry)
435 {
436 	D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
437 	dentry->d_flags &= ~DCACHE_LRU_LIST;
438 	this_cpu_dec(nr_dentry_unused);
439 	if (d_is_negative(dentry))
440 		this_cpu_dec(nr_dentry_negative);
441 	WARN_ON_ONCE(!list_lru_del(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
442 }
443 
444 static void d_shrink_del(struct dentry *dentry)
445 {
446 	D_FLAG_VERIFY(dentry, DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
447 	list_del_init(&dentry->d_lru);
448 	dentry->d_flags &= ~(DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
449 	this_cpu_dec(nr_dentry_unused);
450 }
451 
452 static void d_shrink_add(struct dentry *dentry, struct list_head *list)
453 {
454 	D_FLAG_VERIFY(dentry, 0);
455 	list_add(&dentry->d_lru, list);
456 	dentry->d_flags |= DCACHE_SHRINK_LIST | DCACHE_LRU_LIST;
457 	this_cpu_inc(nr_dentry_unused);
458 }
459 
460 /*
461  * These can only be called under the global LRU lock, ie during the
462  * callback for freeing the LRU list. "isolate" removes it from the
463  * LRU lists entirely, while shrink_move moves it to the indicated
464  * private list.
465  */
466 static void d_lru_isolate(struct list_lru_one *lru, struct dentry *dentry)
467 {
468 	D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
469 	dentry->d_flags &= ~DCACHE_LRU_LIST;
470 	this_cpu_dec(nr_dentry_unused);
471 	if (d_is_negative(dentry))
472 		this_cpu_dec(nr_dentry_negative);
473 	list_lru_isolate(lru, &dentry->d_lru);
474 }
475 
476 static void d_lru_shrink_move(struct list_lru_one *lru, struct dentry *dentry,
477 			      struct list_head *list)
478 {
479 	D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
480 	dentry->d_flags |= DCACHE_SHRINK_LIST;
481 	if (d_is_negative(dentry))
482 		this_cpu_dec(nr_dentry_negative);
483 	list_lru_isolate_move(lru, &dentry->d_lru, list);
484 }
485 
486 static void ___d_drop(struct dentry *dentry)
487 {
488 	struct hlist_bl_head *b;
489 	/*
490 	 * Hashed dentries are normally on the dentry hashtable,
491 	 * with the exception of those newly allocated by
492 	 * d_obtain_root, which are always IS_ROOT:
493 	 */
494 	if (unlikely(IS_ROOT(dentry)))
495 		b = &dentry->d_sb->s_roots;
496 	else
497 		b = d_hash(dentry->d_name.hash);
498 
499 	hlist_bl_lock(b);
500 	__hlist_bl_del(&dentry->d_hash);
501 	hlist_bl_unlock(b);
502 }
503 
504 void __d_drop(struct dentry *dentry)
505 {
506 	if (!d_unhashed(dentry)) {
507 		___d_drop(dentry);
508 		dentry->d_hash.pprev = NULL;
509 		write_seqcount_invalidate(&dentry->d_seq);
510 	}
511 }
512 EXPORT_SYMBOL(__d_drop);
513 
514 /**
515  * d_drop - drop a dentry
516  * @dentry: dentry to drop
517  *
518  * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
519  * be found through a VFS lookup any more. Note that this is different from
520  * deleting the dentry - d_delete will try to mark the dentry negative if
521  * possible, giving a successful _negative_ lookup, while d_drop will
522  * just make the cache lookup fail.
523  *
524  * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
525  * reason (NFS timeouts or autofs deletes).
526  *
527  * __d_drop requires dentry->d_lock
528  *
529  * ___d_drop doesn't mark dentry as "unhashed"
530  * (dentry->d_hash.pprev will be LIST_POISON2, not NULL).
531  */
532 void d_drop(struct dentry *dentry)
533 {
534 	spin_lock(&dentry->d_lock);
535 	__d_drop(dentry);
536 	spin_unlock(&dentry->d_lock);
537 }
538 EXPORT_SYMBOL(d_drop);
539 
540 static inline void dentry_unlist(struct dentry *dentry, struct dentry *parent)
541 {
542 	struct dentry *next;
543 	/*
544 	 * Inform d_walk() and shrink_dentry_list() that we are no longer
545 	 * attached to the dentry tree
546 	 */
547 	dentry->d_flags |= DCACHE_DENTRY_KILLED;
548 	if (unlikely(list_empty(&dentry->d_child)))
549 		return;
550 	__list_del_entry(&dentry->d_child);
551 	/*
552 	 * Cursors can move around the list of children.  While we'd been
553 	 * a normal list member, it didn't matter - ->d_child.next would've
554 	 * been updated.  However, from now on it won't be and for the
555 	 * things like d_walk() it might end up with a nasty surprise.
556 	 * Normally d_walk() doesn't care about cursors moving around -
557 	 * ->d_lock on parent prevents that and since a cursor has no children
558 	 * of its own, we get through it without ever unlocking the parent.
559 	 * There is one exception, though - if we ascend from a child that
560 	 * gets killed as soon as we unlock it, the next sibling is found
561 	 * using the value left in its ->d_child.next.  And if _that_
562 	 * pointed to a cursor, and cursor got moved (e.g. by lseek())
563 	 * before d_walk() regains parent->d_lock, we'll end up skipping
564 	 * everything the cursor had been moved past.
565 	 *
566 	 * Solution: make sure that the pointer left behind in ->d_child.next
567 	 * points to something that won't be moving around.  I.e. skip the
568 	 * cursors.
569 	 */
570 	while (dentry->d_child.next != &parent->d_subdirs) {
571 		next = list_entry(dentry->d_child.next, struct dentry, d_child);
572 		if (likely(!(next->d_flags & DCACHE_DENTRY_CURSOR)))
573 			break;
574 		dentry->d_child.next = next->d_child.next;
575 	}
576 }
577 
578 static void __dentry_kill(struct dentry *dentry)
579 {
580 	struct dentry *parent = NULL;
581 	bool can_free = true;
582 	if (!IS_ROOT(dentry))
583 		parent = dentry->d_parent;
584 
585 	/*
586 	 * The dentry is now unrecoverably dead to the world.
587 	 */
588 	lockref_mark_dead(&dentry->d_lockref);
589 
590 	/*
591 	 * inform the fs via d_prune that this dentry is about to be
592 	 * unhashed and destroyed.
593 	 */
594 	if (dentry->d_flags & DCACHE_OP_PRUNE)
595 		dentry->d_op->d_prune(dentry);
596 
597 	if (dentry->d_flags & DCACHE_LRU_LIST) {
598 		if (!(dentry->d_flags & DCACHE_SHRINK_LIST))
599 			d_lru_del(dentry);
600 	}
601 	/* if it was on the hash then remove it */
602 	__d_drop(dentry);
603 	dentry_unlist(dentry, parent);
604 	if (parent)
605 		spin_unlock(&parent->d_lock);
606 	if (dentry->d_inode)
607 		dentry_unlink_inode(dentry);
608 	else
609 		spin_unlock(&dentry->d_lock);
610 	this_cpu_dec(nr_dentry);
611 	if (dentry->d_op && dentry->d_op->d_release)
612 		dentry->d_op->d_release(dentry);
613 
614 	spin_lock(&dentry->d_lock);
615 	if (dentry->d_flags & DCACHE_SHRINK_LIST) {
616 		dentry->d_flags |= DCACHE_MAY_FREE;
617 		can_free = false;
618 	}
619 	spin_unlock(&dentry->d_lock);
620 	if (likely(can_free))
621 		dentry_free(dentry);
622 	cond_resched();
623 }
624 
625 static struct dentry *__lock_parent(struct dentry *dentry)
626 {
627 	struct dentry *parent;
628 	rcu_read_lock();
629 	spin_unlock(&dentry->d_lock);
630 again:
631 	parent = READ_ONCE(dentry->d_parent);
632 	spin_lock(&parent->d_lock);
633 	/*
634 	 * We can't blindly lock dentry until we are sure
635 	 * that we won't violate the locking order.
636 	 * Any changes of dentry->d_parent must have
637 	 * been done with parent->d_lock held, so
638 	 * spin_lock() above is enough of a barrier
639 	 * for checking if it's still our child.
640 	 */
641 	if (unlikely(parent != dentry->d_parent)) {
642 		spin_unlock(&parent->d_lock);
643 		goto again;
644 	}
645 	rcu_read_unlock();
646 	if (parent != dentry)
647 		spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
648 	else
649 		parent = NULL;
650 	return parent;
651 }
652 
653 static inline struct dentry *lock_parent(struct dentry *dentry)
654 {
655 	struct dentry *parent = dentry->d_parent;
656 	if (IS_ROOT(dentry))
657 		return NULL;
658 	if (likely(spin_trylock(&parent->d_lock)))
659 		return parent;
660 	return __lock_parent(dentry);
661 }
662 
663 static inline bool retain_dentry(struct dentry *dentry)
664 {
665 	WARN_ON(d_in_lookup(dentry));
666 
667 	/* Unreachable? Get rid of it */
668 	if (unlikely(d_unhashed(dentry)))
669 		return false;
670 
671 	if (unlikely(dentry->d_flags & DCACHE_DISCONNECTED))
672 		return false;
673 
674 	if (unlikely(dentry->d_flags & DCACHE_OP_DELETE)) {
675 		if (dentry->d_op->d_delete(dentry))
676 			return false;
677 	}
678 
679 	if (unlikely(dentry->d_flags & DCACHE_DONTCACHE))
680 		return false;
681 
682 	/* retain; LRU fodder */
683 	dentry->d_lockref.count--;
684 	if (unlikely(!(dentry->d_flags & DCACHE_LRU_LIST)))
685 		d_lru_add(dentry);
686 	else if (unlikely(!(dentry->d_flags & DCACHE_REFERENCED)))
687 		dentry->d_flags |= DCACHE_REFERENCED;
688 	return true;
689 }
690 
691 void d_mark_dontcache(struct inode *inode)
692 {
693 	struct dentry *de;
694 
695 	spin_lock(&inode->i_lock);
696 	hlist_for_each_entry(de, &inode->i_dentry, d_u.d_alias) {
697 		spin_lock(&de->d_lock);
698 		de->d_flags |= DCACHE_DONTCACHE;
699 		spin_unlock(&de->d_lock);
700 	}
701 	inode->i_state |= I_DONTCACHE;
702 	spin_unlock(&inode->i_lock);
703 }
704 EXPORT_SYMBOL(d_mark_dontcache);
705 
706 /*
707  * Finish off a dentry we've decided to kill.
708  * dentry->d_lock must be held, returns with it unlocked.
709  * Returns dentry requiring refcount drop, or NULL if we're done.
710  */
711 static struct dentry *dentry_kill(struct dentry *dentry)
712 	__releases(dentry->d_lock)
713 {
714 	struct inode *inode = dentry->d_inode;
715 	struct dentry *parent = NULL;
716 
717 	if (inode && unlikely(!spin_trylock(&inode->i_lock)))
718 		goto slow_positive;
719 
720 	if (!IS_ROOT(dentry)) {
721 		parent = dentry->d_parent;
722 		if (unlikely(!spin_trylock(&parent->d_lock))) {
723 			parent = __lock_parent(dentry);
724 			if (likely(inode || !dentry->d_inode))
725 				goto got_locks;
726 			/* negative that became positive */
727 			if (parent)
728 				spin_unlock(&parent->d_lock);
729 			inode = dentry->d_inode;
730 			goto slow_positive;
731 		}
732 	}
733 	__dentry_kill(dentry);
734 	return parent;
735 
736 slow_positive:
737 	spin_unlock(&dentry->d_lock);
738 	spin_lock(&inode->i_lock);
739 	spin_lock(&dentry->d_lock);
740 	parent = lock_parent(dentry);
741 got_locks:
742 	if (unlikely(dentry->d_lockref.count != 1)) {
743 		dentry->d_lockref.count--;
744 	} else if (likely(!retain_dentry(dentry))) {
745 		__dentry_kill(dentry);
746 		return parent;
747 	}
748 	/* we are keeping it, after all */
749 	if (inode)
750 		spin_unlock(&inode->i_lock);
751 	if (parent)
752 		spin_unlock(&parent->d_lock);
753 	spin_unlock(&dentry->d_lock);
754 	return NULL;
755 }
756 
757 /*
758  * Try to do a lockless dput(), and return whether that was successful.
759  *
760  * If unsuccessful, we return false, having already taken the dentry lock.
761  *
762  * The caller needs to hold the RCU read lock, so that the dentry is
763  * guaranteed to stay around even if the refcount goes down to zero!
764  */
765 static inline bool fast_dput(struct dentry *dentry)
766 {
767 	int ret;
768 	unsigned int d_flags;
769 
770 	/*
771 	 * If we have a d_op->d_delete() operation, we sould not
772 	 * let the dentry count go to zero, so use "put_or_lock".
773 	 */
774 	if (unlikely(dentry->d_flags & DCACHE_OP_DELETE))
775 		return lockref_put_or_lock(&dentry->d_lockref);
776 
777 	/*
778 	 * .. otherwise, we can try to just decrement the
779 	 * lockref optimistically.
780 	 */
781 	ret = lockref_put_return(&dentry->d_lockref);
782 
783 	/*
784 	 * If the lockref_put_return() failed due to the lock being held
785 	 * by somebody else, the fast path has failed. We will need to
786 	 * get the lock, and then check the count again.
787 	 */
788 	if (unlikely(ret < 0)) {
789 		spin_lock(&dentry->d_lock);
790 		if (dentry->d_lockref.count > 1) {
791 			dentry->d_lockref.count--;
792 			spin_unlock(&dentry->d_lock);
793 			return true;
794 		}
795 		return false;
796 	}
797 
798 	/*
799 	 * If we weren't the last ref, we're done.
800 	 */
801 	if (ret)
802 		return true;
803 
804 	/*
805 	 * Careful, careful. The reference count went down
806 	 * to zero, but we don't hold the dentry lock, so
807 	 * somebody else could get it again, and do another
808 	 * dput(), and we need to not race with that.
809 	 *
810 	 * However, there is a very special and common case
811 	 * where we don't care, because there is nothing to
812 	 * do: the dentry is still hashed, it does not have
813 	 * a 'delete' op, and it's referenced and already on
814 	 * the LRU list.
815 	 *
816 	 * NOTE! Since we aren't locked, these values are
817 	 * not "stable". However, it is sufficient that at
818 	 * some point after we dropped the reference the
819 	 * dentry was hashed and the flags had the proper
820 	 * value. Other dentry users may have re-gotten
821 	 * a reference to the dentry and change that, but
822 	 * our work is done - we can leave the dentry
823 	 * around with a zero refcount.
824 	 *
825 	 * Nevertheless, there are two cases that we should kill
826 	 * the dentry anyway.
827 	 * 1. free disconnected dentries as soon as their refcount
828 	 *    reached zero.
829 	 * 2. free dentries if they should not be cached.
830 	 */
831 	smp_rmb();
832 	d_flags = READ_ONCE(dentry->d_flags);
833 	d_flags &= DCACHE_REFERENCED | DCACHE_LRU_LIST |
834 			DCACHE_DISCONNECTED | DCACHE_DONTCACHE;
835 
836 	/* Nothing to do? Dropping the reference was all we needed? */
837 	if (d_flags == (DCACHE_REFERENCED | DCACHE_LRU_LIST) && !d_unhashed(dentry))
838 		return true;
839 
840 	/*
841 	 * Not the fast normal case? Get the lock. We've already decremented
842 	 * the refcount, but we'll need to re-check the situation after
843 	 * getting the lock.
844 	 */
845 	spin_lock(&dentry->d_lock);
846 
847 	/*
848 	 * Did somebody else grab a reference to it in the meantime, and
849 	 * we're no longer the last user after all? Alternatively, somebody
850 	 * else could have killed it and marked it dead. Either way, we
851 	 * don't need to do anything else.
852 	 */
853 	if (dentry->d_lockref.count) {
854 		spin_unlock(&dentry->d_lock);
855 		return true;
856 	}
857 
858 	/*
859 	 * Re-get the reference we optimistically dropped. We hold the
860 	 * lock, and we just tested that it was zero, so we can just
861 	 * set it to 1.
862 	 */
863 	dentry->d_lockref.count = 1;
864 	return false;
865 }
866 
867 
868 /*
869  * This is dput
870  *
871  * This is complicated by the fact that we do not want to put
872  * dentries that are no longer on any hash chain on the unused
873  * list: we'd much rather just get rid of them immediately.
874  *
875  * However, that implies that we have to traverse the dentry
876  * tree upwards to the parents which might _also_ now be
877  * scheduled for deletion (it may have been only waiting for
878  * its last child to go away).
879  *
880  * This tail recursion is done by hand as we don't want to depend
881  * on the compiler to always get this right (gcc generally doesn't).
882  * Real recursion would eat up our stack space.
883  */
884 
885 /*
886  * dput - release a dentry
887  * @dentry: dentry to release
888  *
889  * Release a dentry. This will drop the usage count and if appropriate
890  * call the dentry unlink method as well as removing it from the queues and
891  * releasing its resources. If the parent dentries were scheduled for release
892  * they too may now get deleted.
893  */
894 void dput(struct dentry *dentry)
895 {
896 	while (dentry) {
897 		might_sleep();
898 
899 		rcu_read_lock();
900 		if (likely(fast_dput(dentry))) {
901 			rcu_read_unlock();
902 			return;
903 		}
904 
905 		/* Slow case: now with the dentry lock held */
906 		rcu_read_unlock();
907 
908 		if (likely(retain_dentry(dentry))) {
909 			spin_unlock(&dentry->d_lock);
910 			return;
911 		}
912 
913 		dentry = dentry_kill(dentry);
914 	}
915 }
916 EXPORT_SYMBOL(dput);
917 
918 static void __dput_to_list(struct dentry *dentry, struct list_head *list)
919 __must_hold(&dentry->d_lock)
920 {
921 	if (dentry->d_flags & DCACHE_SHRINK_LIST) {
922 		/* let the owner of the list it's on deal with it */
923 		--dentry->d_lockref.count;
924 	} else {
925 		if (dentry->d_flags & DCACHE_LRU_LIST)
926 			d_lru_del(dentry);
927 		if (!--dentry->d_lockref.count)
928 			d_shrink_add(dentry, list);
929 	}
930 }
931 
932 void dput_to_list(struct dentry *dentry, struct list_head *list)
933 {
934 	rcu_read_lock();
935 	if (likely(fast_dput(dentry))) {
936 		rcu_read_unlock();
937 		return;
938 	}
939 	rcu_read_unlock();
940 	if (!retain_dentry(dentry))
941 		__dput_to_list(dentry, list);
942 	spin_unlock(&dentry->d_lock);
943 }
944 
945 /* This must be called with d_lock held */
946 static inline void __dget_dlock(struct dentry *dentry)
947 {
948 	dentry->d_lockref.count++;
949 }
950 
951 static inline void __dget(struct dentry *dentry)
952 {
953 	lockref_get(&dentry->d_lockref);
954 }
955 
956 struct dentry *dget_parent(struct dentry *dentry)
957 {
958 	int gotref;
959 	struct dentry *ret;
960 	unsigned seq;
961 
962 	/*
963 	 * Do optimistic parent lookup without any
964 	 * locking.
965 	 */
966 	rcu_read_lock();
967 	seq = raw_seqcount_begin(&dentry->d_seq);
968 	ret = READ_ONCE(dentry->d_parent);
969 	gotref = lockref_get_not_zero(&ret->d_lockref);
970 	rcu_read_unlock();
971 	if (likely(gotref)) {
972 		if (!read_seqcount_retry(&dentry->d_seq, seq))
973 			return ret;
974 		dput(ret);
975 	}
976 
977 repeat:
978 	/*
979 	 * Don't need rcu_dereference because we re-check it was correct under
980 	 * the lock.
981 	 */
982 	rcu_read_lock();
983 	ret = dentry->d_parent;
984 	spin_lock(&ret->d_lock);
985 	if (unlikely(ret != dentry->d_parent)) {
986 		spin_unlock(&ret->d_lock);
987 		rcu_read_unlock();
988 		goto repeat;
989 	}
990 	rcu_read_unlock();
991 	BUG_ON(!ret->d_lockref.count);
992 	ret->d_lockref.count++;
993 	spin_unlock(&ret->d_lock);
994 	return ret;
995 }
996 EXPORT_SYMBOL(dget_parent);
997 
998 static struct dentry * __d_find_any_alias(struct inode *inode)
999 {
1000 	struct dentry *alias;
1001 
1002 	if (hlist_empty(&inode->i_dentry))
1003 		return NULL;
1004 	alias = hlist_entry(inode->i_dentry.first, struct dentry, d_u.d_alias);
1005 	__dget(alias);
1006 	return alias;
1007 }
1008 
1009 /**
1010  * d_find_any_alias - find any alias for a given inode
1011  * @inode: inode to find an alias for
1012  *
1013  * If any aliases exist for the given inode, take and return a
1014  * reference for one of them.  If no aliases exist, return %NULL.
1015  */
1016 struct dentry *d_find_any_alias(struct inode *inode)
1017 {
1018 	struct dentry *de;
1019 
1020 	spin_lock(&inode->i_lock);
1021 	de = __d_find_any_alias(inode);
1022 	spin_unlock(&inode->i_lock);
1023 	return de;
1024 }
1025 EXPORT_SYMBOL(d_find_any_alias);
1026 
1027 static struct dentry *__d_find_alias(struct inode *inode)
1028 {
1029 	struct dentry *alias;
1030 
1031 	if (S_ISDIR(inode->i_mode))
1032 		return __d_find_any_alias(inode);
1033 
1034 	hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
1035 		spin_lock(&alias->d_lock);
1036  		if (!d_unhashed(alias)) {
1037 			__dget_dlock(alias);
1038 			spin_unlock(&alias->d_lock);
1039 			return alias;
1040 		}
1041 		spin_unlock(&alias->d_lock);
1042 	}
1043 	return NULL;
1044 }
1045 
1046 /**
1047  * d_find_alias - grab a hashed alias of inode
1048  * @inode: inode in question
1049  *
1050  * If inode has a hashed alias, or is a directory and has any alias,
1051  * acquire the reference to alias and return it. Otherwise return NULL.
1052  * Notice that if inode is a directory there can be only one alias and
1053  * it can be unhashed only if it has no children, or if it is the root
1054  * of a filesystem, or if the directory was renamed and d_revalidate
1055  * was the first vfs operation to notice.
1056  *
1057  * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
1058  * any other hashed alias over that one.
1059  */
1060 struct dentry *d_find_alias(struct inode *inode)
1061 {
1062 	struct dentry *de = NULL;
1063 
1064 	if (!hlist_empty(&inode->i_dentry)) {
1065 		spin_lock(&inode->i_lock);
1066 		de = __d_find_alias(inode);
1067 		spin_unlock(&inode->i_lock);
1068 	}
1069 	return de;
1070 }
1071 EXPORT_SYMBOL(d_find_alias);
1072 
1073 /*
1074  *  Caller MUST be holding rcu_read_lock() and be guaranteed
1075  *  that inode won't get freed until rcu_read_unlock().
1076  */
1077 struct dentry *d_find_alias_rcu(struct inode *inode)
1078 {
1079 	struct hlist_head *l = &inode->i_dentry;
1080 	struct dentry *de = NULL;
1081 
1082 	spin_lock(&inode->i_lock);
1083 	// ->i_dentry and ->i_rcu are colocated, but the latter won't be
1084 	// used without having I_FREEING set, which means no aliases left
1085 	if (likely(!(inode->i_state & I_FREEING) && !hlist_empty(l))) {
1086 		if (S_ISDIR(inode->i_mode)) {
1087 			de = hlist_entry(l->first, struct dentry, d_u.d_alias);
1088 		} else {
1089 			hlist_for_each_entry(de, l, d_u.d_alias)
1090 				if (!d_unhashed(de))
1091 					break;
1092 		}
1093 	}
1094 	spin_unlock(&inode->i_lock);
1095 	return de;
1096 }
1097 
1098 /*
1099  *	Try to kill dentries associated with this inode.
1100  * WARNING: you must own a reference to inode.
1101  */
1102 void d_prune_aliases(struct inode *inode)
1103 {
1104 	struct dentry *dentry;
1105 restart:
1106 	spin_lock(&inode->i_lock);
1107 	hlist_for_each_entry(dentry, &inode->i_dentry, d_u.d_alias) {
1108 		spin_lock(&dentry->d_lock);
1109 		if (!dentry->d_lockref.count) {
1110 			struct dentry *parent = lock_parent(dentry);
1111 			if (likely(!dentry->d_lockref.count)) {
1112 				__dentry_kill(dentry);
1113 				dput(parent);
1114 				goto restart;
1115 			}
1116 			if (parent)
1117 				spin_unlock(&parent->d_lock);
1118 		}
1119 		spin_unlock(&dentry->d_lock);
1120 	}
1121 	spin_unlock(&inode->i_lock);
1122 }
1123 EXPORT_SYMBOL(d_prune_aliases);
1124 
1125 /*
1126  * Lock a dentry from shrink list.
1127  * Called under rcu_read_lock() and dentry->d_lock; the former
1128  * guarantees that nothing we access will be freed under us.
1129  * Note that dentry is *not* protected from concurrent dentry_kill(),
1130  * d_delete(), etc.
1131  *
1132  * Return false if dentry has been disrupted or grabbed, leaving
1133  * the caller to kick it off-list.  Otherwise, return true and have
1134  * that dentry's inode and parent both locked.
1135  */
1136 static bool shrink_lock_dentry(struct dentry *dentry)
1137 {
1138 	struct inode *inode;
1139 	struct dentry *parent;
1140 
1141 	if (dentry->d_lockref.count)
1142 		return false;
1143 
1144 	inode = dentry->d_inode;
1145 	if (inode && unlikely(!spin_trylock(&inode->i_lock))) {
1146 		spin_unlock(&dentry->d_lock);
1147 		spin_lock(&inode->i_lock);
1148 		spin_lock(&dentry->d_lock);
1149 		if (unlikely(dentry->d_lockref.count))
1150 			goto out;
1151 		/* changed inode means that somebody had grabbed it */
1152 		if (unlikely(inode != dentry->d_inode))
1153 			goto out;
1154 	}
1155 
1156 	parent = dentry->d_parent;
1157 	if (IS_ROOT(dentry) || likely(spin_trylock(&parent->d_lock)))
1158 		return true;
1159 
1160 	spin_unlock(&dentry->d_lock);
1161 	spin_lock(&parent->d_lock);
1162 	if (unlikely(parent != dentry->d_parent)) {
1163 		spin_unlock(&parent->d_lock);
1164 		spin_lock(&dentry->d_lock);
1165 		goto out;
1166 	}
1167 	spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1168 	if (likely(!dentry->d_lockref.count))
1169 		return true;
1170 	spin_unlock(&parent->d_lock);
1171 out:
1172 	if (inode)
1173 		spin_unlock(&inode->i_lock);
1174 	return false;
1175 }
1176 
1177 void shrink_dentry_list(struct list_head *list)
1178 {
1179 	while (!list_empty(list)) {
1180 		struct dentry *dentry, *parent;
1181 
1182 		dentry = list_entry(list->prev, struct dentry, d_lru);
1183 		spin_lock(&dentry->d_lock);
1184 		rcu_read_lock();
1185 		if (!shrink_lock_dentry(dentry)) {
1186 			bool can_free = false;
1187 			rcu_read_unlock();
1188 			d_shrink_del(dentry);
1189 			if (dentry->d_lockref.count < 0)
1190 				can_free = dentry->d_flags & DCACHE_MAY_FREE;
1191 			spin_unlock(&dentry->d_lock);
1192 			if (can_free)
1193 				dentry_free(dentry);
1194 			continue;
1195 		}
1196 		rcu_read_unlock();
1197 		d_shrink_del(dentry);
1198 		parent = dentry->d_parent;
1199 		if (parent != dentry)
1200 			__dput_to_list(parent, list);
1201 		__dentry_kill(dentry);
1202 	}
1203 }
1204 
1205 static enum lru_status dentry_lru_isolate(struct list_head *item,
1206 		struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
1207 {
1208 	struct list_head *freeable = arg;
1209 	struct dentry	*dentry = container_of(item, struct dentry, d_lru);
1210 
1211 
1212 	/*
1213 	 * we are inverting the lru lock/dentry->d_lock here,
1214 	 * so use a trylock. If we fail to get the lock, just skip
1215 	 * it
1216 	 */
1217 	if (!spin_trylock(&dentry->d_lock))
1218 		return LRU_SKIP;
1219 
1220 	/*
1221 	 * Referenced dentries are still in use. If they have active
1222 	 * counts, just remove them from the LRU. Otherwise give them
1223 	 * another pass through the LRU.
1224 	 */
1225 	if (dentry->d_lockref.count) {
1226 		d_lru_isolate(lru, dentry);
1227 		spin_unlock(&dentry->d_lock);
1228 		return LRU_REMOVED;
1229 	}
1230 
1231 	if (dentry->d_flags & DCACHE_REFERENCED) {
1232 		dentry->d_flags &= ~DCACHE_REFERENCED;
1233 		spin_unlock(&dentry->d_lock);
1234 
1235 		/*
1236 		 * The list move itself will be made by the common LRU code. At
1237 		 * this point, we've dropped the dentry->d_lock but keep the
1238 		 * lru lock. This is safe to do, since every list movement is
1239 		 * protected by the lru lock even if both locks are held.
1240 		 *
1241 		 * This is guaranteed by the fact that all LRU management
1242 		 * functions are intermediated by the LRU API calls like
1243 		 * list_lru_add and list_lru_del. List movement in this file
1244 		 * only ever occur through this functions or through callbacks
1245 		 * like this one, that are called from the LRU API.
1246 		 *
1247 		 * The only exceptions to this are functions like
1248 		 * shrink_dentry_list, and code that first checks for the
1249 		 * DCACHE_SHRINK_LIST flag.  Those are guaranteed to be
1250 		 * operating only with stack provided lists after they are
1251 		 * properly isolated from the main list.  It is thus, always a
1252 		 * local access.
1253 		 */
1254 		return LRU_ROTATE;
1255 	}
1256 
1257 	d_lru_shrink_move(lru, dentry, freeable);
1258 	spin_unlock(&dentry->d_lock);
1259 
1260 	return LRU_REMOVED;
1261 }
1262 
1263 /**
1264  * prune_dcache_sb - shrink the dcache
1265  * @sb: superblock
1266  * @sc: shrink control, passed to list_lru_shrink_walk()
1267  *
1268  * Attempt to shrink the superblock dcache LRU by @sc->nr_to_scan entries. This
1269  * is done when we need more memory and called from the superblock shrinker
1270  * function.
1271  *
1272  * This function may fail to free any resources if all the dentries are in
1273  * use.
1274  */
1275 long prune_dcache_sb(struct super_block *sb, struct shrink_control *sc)
1276 {
1277 	LIST_HEAD(dispose);
1278 	long freed;
1279 
1280 	freed = list_lru_shrink_walk(&sb->s_dentry_lru, sc,
1281 				     dentry_lru_isolate, &dispose);
1282 	shrink_dentry_list(&dispose);
1283 	return freed;
1284 }
1285 
1286 static enum lru_status dentry_lru_isolate_shrink(struct list_head *item,
1287 		struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
1288 {
1289 	struct list_head *freeable = arg;
1290 	struct dentry	*dentry = container_of(item, struct dentry, d_lru);
1291 
1292 	/*
1293 	 * we are inverting the lru lock/dentry->d_lock here,
1294 	 * so use a trylock. If we fail to get the lock, just skip
1295 	 * it
1296 	 */
1297 	if (!spin_trylock(&dentry->d_lock))
1298 		return LRU_SKIP;
1299 
1300 	d_lru_shrink_move(lru, dentry, freeable);
1301 	spin_unlock(&dentry->d_lock);
1302 
1303 	return LRU_REMOVED;
1304 }
1305 
1306 
1307 /**
1308  * shrink_dcache_sb - shrink dcache for a superblock
1309  * @sb: superblock
1310  *
1311  * Shrink the dcache for the specified super block. This is used to free
1312  * the dcache before unmounting a file system.
1313  */
1314 void shrink_dcache_sb(struct super_block *sb)
1315 {
1316 	do {
1317 		LIST_HEAD(dispose);
1318 
1319 		list_lru_walk(&sb->s_dentry_lru,
1320 			dentry_lru_isolate_shrink, &dispose, 1024);
1321 		shrink_dentry_list(&dispose);
1322 	} while (list_lru_count(&sb->s_dentry_lru) > 0);
1323 }
1324 EXPORT_SYMBOL(shrink_dcache_sb);
1325 
1326 /**
1327  * enum d_walk_ret - action to talke during tree walk
1328  * @D_WALK_CONTINUE:	contrinue walk
1329  * @D_WALK_QUIT:	quit walk
1330  * @D_WALK_NORETRY:	quit when retry is needed
1331  * @D_WALK_SKIP:	skip this dentry and its children
1332  */
1333 enum d_walk_ret {
1334 	D_WALK_CONTINUE,
1335 	D_WALK_QUIT,
1336 	D_WALK_NORETRY,
1337 	D_WALK_SKIP,
1338 };
1339 
1340 /**
1341  * d_walk - walk the dentry tree
1342  * @parent:	start of walk
1343  * @data:	data passed to @enter() and @finish()
1344  * @enter:	callback when first entering the dentry
1345  *
1346  * The @enter() callbacks are called with d_lock held.
1347  */
1348 static void d_walk(struct dentry *parent, void *data,
1349 		   enum d_walk_ret (*enter)(void *, struct dentry *))
1350 {
1351 	struct dentry *this_parent;
1352 	struct list_head *next;
1353 	unsigned seq = 0;
1354 	enum d_walk_ret ret;
1355 	bool retry = true;
1356 
1357 again:
1358 	read_seqbegin_or_lock(&rename_lock, &seq);
1359 	this_parent = parent;
1360 	spin_lock(&this_parent->d_lock);
1361 
1362 	ret = enter(data, this_parent);
1363 	switch (ret) {
1364 	case D_WALK_CONTINUE:
1365 		break;
1366 	case D_WALK_QUIT:
1367 	case D_WALK_SKIP:
1368 		goto out_unlock;
1369 	case D_WALK_NORETRY:
1370 		retry = false;
1371 		break;
1372 	}
1373 repeat:
1374 	next = this_parent->d_subdirs.next;
1375 resume:
1376 	while (next != &this_parent->d_subdirs) {
1377 		struct list_head *tmp = next;
1378 		struct dentry *dentry = list_entry(tmp, struct dentry, d_child);
1379 		next = tmp->next;
1380 
1381 		if (unlikely(dentry->d_flags & DCACHE_DENTRY_CURSOR))
1382 			continue;
1383 
1384 		spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1385 
1386 		ret = enter(data, dentry);
1387 		switch (ret) {
1388 		case D_WALK_CONTINUE:
1389 			break;
1390 		case D_WALK_QUIT:
1391 			spin_unlock(&dentry->d_lock);
1392 			goto out_unlock;
1393 		case D_WALK_NORETRY:
1394 			retry = false;
1395 			break;
1396 		case D_WALK_SKIP:
1397 			spin_unlock(&dentry->d_lock);
1398 			continue;
1399 		}
1400 
1401 		if (!list_empty(&dentry->d_subdirs)) {
1402 			spin_unlock(&this_parent->d_lock);
1403 			spin_release(&dentry->d_lock.dep_map, _RET_IP_);
1404 			this_parent = dentry;
1405 			spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1406 			goto repeat;
1407 		}
1408 		spin_unlock(&dentry->d_lock);
1409 	}
1410 	/*
1411 	 * All done at this level ... ascend and resume the search.
1412 	 */
1413 	rcu_read_lock();
1414 ascend:
1415 	if (this_parent != parent) {
1416 		struct dentry *child = this_parent;
1417 		this_parent = child->d_parent;
1418 
1419 		spin_unlock(&child->d_lock);
1420 		spin_lock(&this_parent->d_lock);
1421 
1422 		/* might go back up the wrong parent if we have had a rename. */
1423 		if (need_seqretry(&rename_lock, seq))
1424 			goto rename_retry;
1425 		/* go into the first sibling still alive */
1426 		do {
1427 			next = child->d_child.next;
1428 			if (next == &this_parent->d_subdirs)
1429 				goto ascend;
1430 			child = list_entry(next, struct dentry, d_child);
1431 		} while (unlikely(child->d_flags & DCACHE_DENTRY_KILLED));
1432 		rcu_read_unlock();
1433 		goto resume;
1434 	}
1435 	if (need_seqretry(&rename_lock, seq))
1436 		goto rename_retry;
1437 	rcu_read_unlock();
1438 
1439 out_unlock:
1440 	spin_unlock(&this_parent->d_lock);
1441 	done_seqretry(&rename_lock, seq);
1442 	return;
1443 
1444 rename_retry:
1445 	spin_unlock(&this_parent->d_lock);
1446 	rcu_read_unlock();
1447 	BUG_ON(seq & 1);
1448 	if (!retry)
1449 		return;
1450 	seq = 1;
1451 	goto again;
1452 }
1453 
1454 struct check_mount {
1455 	struct vfsmount *mnt;
1456 	unsigned int mounted;
1457 };
1458 
1459 static enum d_walk_ret path_check_mount(void *data, struct dentry *dentry)
1460 {
1461 	struct check_mount *info = data;
1462 	struct path path = { .mnt = info->mnt, .dentry = dentry };
1463 
1464 	if (likely(!d_mountpoint(dentry)))
1465 		return D_WALK_CONTINUE;
1466 	if (__path_is_mountpoint(&path)) {
1467 		info->mounted = 1;
1468 		return D_WALK_QUIT;
1469 	}
1470 	return D_WALK_CONTINUE;
1471 }
1472 
1473 /**
1474  * path_has_submounts - check for mounts over a dentry in the
1475  *                      current namespace.
1476  * @parent: path to check.
1477  *
1478  * Return true if the parent or its subdirectories contain
1479  * a mount point in the current namespace.
1480  */
1481 int path_has_submounts(const struct path *parent)
1482 {
1483 	struct check_mount data = { .mnt = parent->mnt, .mounted = 0 };
1484 
1485 	read_seqlock_excl(&mount_lock);
1486 	d_walk(parent->dentry, &data, path_check_mount);
1487 	read_sequnlock_excl(&mount_lock);
1488 
1489 	return data.mounted;
1490 }
1491 EXPORT_SYMBOL(path_has_submounts);
1492 
1493 /*
1494  * Called by mount code to set a mountpoint and check if the mountpoint is
1495  * reachable (e.g. NFS can unhash a directory dentry and then the complete
1496  * subtree can become unreachable).
1497  *
1498  * Only one of d_invalidate() and d_set_mounted() must succeed.  For
1499  * this reason take rename_lock and d_lock on dentry and ancestors.
1500  */
1501 int d_set_mounted(struct dentry *dentry)
1502 {
1503 	struct dentry *p;
1504 	int ret = -ENOENT;
1505 	write_seqlock(&rename_lock);
1506 	for (p = dentry->d_parent; !IS_ROOT(p); p = p->d_parent) {
1507 		/* Need exclusion wrt. d_invalidate() */
1508 		spin_lock(&p->d_lock);
1509 		if (unlikely(d_unhashed(p))) {
1510 			spin_unlock(&p->d_lock);
1511 			goto out;
1512 		}
1513 		spin_unlock(&p->d_lock);
1514 	}
1515 	spin_lock(&dentry->d_lock);
1516 	if (!d_unlinked(dentry)) {
1517 		ret = -EBUSY;
1518 		if (!d_mountpoint(dentry)) {
1519 			dentry->d_flags |= DCACHE_MOUNTED;
1520 			ret = 0;
1521 		}
1522 	}
1523  	spin_unlock(&dentry->d_lock);
1524 out:
1525 	write_sequnlock(&rename_lock);
1526 	return ret;
1527 }
1528 
1529 /*
1530  * Search the dentry child list of the specified parent,
1531  * and move any unused dentries to the end of the unused
1532  * list for prune_dcache(). We descend to the next level
1533  * whenever the d_subdirs list is non-empty and continue
1534  * searching.
1535  *
1536  * It returns zero iff there are no unused children,
1537  * otherwise  it returns the number of children moved to
1538  * the end of the unused list. This may not be the total
1539  * number of unused children, because select_parent can
1540  * drop the lock and return early due to latency
1541  * constraints.
1542  */
1543 
1544 struct select_data {
1545 	struct dentry *start;
1546 	union {
1547 		long found;
1548 		struct dentry *victim;
1549 	};
1550 	struct list_head dispose;
1551 };
1552 
1553 static enum d_walk_ret select_collect(void *_data, struct dentry *dentry)
1554 {
1555 	struct select_data *data = _data;
1556 	enum d_walk_ret ret = D_WALK_CONTINUE;
1557 
1558 	if (data->start == dentry)
1559 		goto out;
1560 
1561 	if (dentry->d_flags & DCACHE_SHRINK_LIST) {
1562 		data->found++;
1563 	} else {
1564 		if (dentry->d_flags & DCACHE_LRU_LIST)
1565 			d_lru_del(dentry);
1566 		if (!dentry->d_lockref.count) {
1567 			d_shrink_add(dentry, &data->dispose);
1568 			data->found++;
1569 		}
1570 	}
1571 	/*
1572 	 * We can return to the caller if we have found some (this
1573 	 * ensures forward progress). We'll be coming back to find
1574 	 * the rest.
1575 	 */
1576 	if (!list_empty(&data->dispose))
1577 		ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY;
1578 out:
1579 	return ret;
1580 }
1581 
1582 static enum d_walk_ret select_collect2(void *_data, struct dentry *dentry)
1583 {
1584 	struct select_data *data = _data;
1585 	enum d_walk_ret ret = D_WALK_CONTINUE;
1586 
1587 	if (data->start == dentry)
1588 		goto out;
1589 
1590 	if (dentry->d_flags & DCACHE_SHRINK_LIST) {
1591 		if (!dentry->d_lockref.count) {
1592 			rcu_read_lock();
1593 			data->victim = dentry;
1594 			return D_WALK_QUIT;
1595 		}
1596 	} else {
1597 		if (dentry->d_flags & DCACHE_LRU_LIST)
1598 			d_lru_del(dentry);
1599 		if (!dentry->d_lockref.count)
1600 			d_shrink_add(dentry, &data->dispose);
1601 	}
1602 	/*
1603 	 * We can return to the caller if we have found some (this
1604 	 * ensures forward progress). We'll be coming back to find
1605 	 * the rest.
1606 	 */
1607 	if (!list_empty(&data->dispose))
1608 		ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY;
1609 out:
1610 	return ret;
1611 }
1612 
1613 /**
1614  * shrink_dcache_parent - prune dcache
1615  * @parent: parent of entries to prune
1616  *
1617  * Prune the dcache to remove unused children of the parent dentry.
1618  */
1619 void shrink_dcache_parent(struct dentry *parent)
1620 {
1621 	for (;;) {
1622 		struct select_data data = {.start = parent};
1623 
1624 		INIT_LIST_HEAD(&data.dispose);
1625 		d_walk(parent, &data, select_collect);
1626 
1627 		if (!list_empty(&data.dispose)) {
1628 			shrink_dentry_list(&data.dispose);
1629 			continue;
1630 		}
1631 
1632 		cond_resched();
1633 		if (!data.found)
1634 			break;
1635 		data.victim = NULL;
1636 		d_walk(parent, &data, select_collect2);
1637 		if (data.victim) {
1638 			struct dentry *parent;
1639 			spin_lock(&data.victim->d_lock);
1640 			if (!shrink_lock_dentry(data.victim)) {
1641 				spin_unlock(&data.victim->d_lock);
1642 				rcu_read_unlock();
1643 			} else {
1644 				rcu_read_unlock();
1645 				parent = data.victim->d_parent;
1646 				if (parent != data.victim)
1647 					__dput_to_list(parent, &data.dispose);
1648 				__dentry_kill(data.victim);
1649 			}
1650 		}
1651 		if (!list_empty(&data.dispose))
1652 			shrink_dentry_list(&data.dispose);
1653 	}
1654 }
1655 EXPORT_SYMBOL(shrink_dcache_parent);
1656 
1657 static enum d_walk_ret umount_check(void *_data, struct dentry *dentry)
1658 {
1659 	/* it has busy descendents; complain about those instead */
1660 	if (!list_empty(&dentry->d_subdirs))
1661 		return D_WALK_CONTINUE;
1662 
1663 	/* root with refcount 1 is fine */
1664 	if (dentry == _data && dentry->d_lockref.count == 1)
1665 		return D_WALK_CONTINUE;
1666 
1667 	printk(KERN_ERR "BUG: Dentry %p{i=%lx,n=%pd} "
1668 			" still in use (%d) [unmount of %s %s]\n",
1669 		       dentry,
1670 		       dentry->d_inode ?
1671 		       dentry->d_inode->i_ino : 0UL,
1672 		       dentry,
1673 		       dentry->d_lockref.count,
1674 		       dentry->d_sb->s_type->name,
1675 		       dentry->d_sb->s_id);
1676 	WARN_ON(1);
1677 	return D_WALK_CONTINUE;
1678 }
1679 
1680 static void do_one_tree(struct dentry *dentry)
1681 {
1682 	shrink_dcache_parent(dentry);
1683 	d_walk(dentry, dentry, umount_check);
1684 	d_drop(dentry);
1685 	dput(dentry);
1686 }
1687 
1688 /*
1689  * destroy the dentries attached to a superblock on unmounting
1690  */
1691 void shrink_dcache_for_umount(struct super_block *sb)
1692 {
1693 	struct dentry *dentry;
1694 
1695 	WARN(down_read_trylock(&sb->s_umount), "s_umount should've been locked");
1696 
1697 	dentry = sb->s_root;
1698 	sb->s_root = NULL;
1699 	do_one_tree(dentry);
1700 
1701 	while (!hlist_bl_empty(&sb->s_roots)) {
1702 		dentry = dget(hlist_bl_entry(hlist_bl_first(&sb->s_roots), struct dentry, d_hash));
1703 		do_one_tree(dentry);
1704 	}
1705 }
1706 
1707 static enum d_walk_ret find_submount(void *_data, struct dentry *dentry)
1708 {
1709 	struct dentry **victim = _data;
1710 	if (d_mountpoint(dentry)) {
1711 		__dget_dlock(dentry);
1712 		*victim = dentry;
1713 		return D_WALK_QUIT;
1714 	}
1715 	return D_WALK_CONTINUE;
1716 }
1717 
1718 /**
1719  * d_invalidate - detach submounts, prune dcache, and drop
1720  * @dentry: dentry to invalidate (aka detach, prune and drop)
1721  */
1722 void d_invalidate(struct dentry *dentry)
1723 {
1724 	bool had_submounts = false;
1725 	spin_lock(&dentry->d_lock);
1726 	if (d_unhashed(dentry)) {
1727 		spin_unlock(&dentry->d_lock);
1728 		return;
1729 	}
1730 	__d_drop(dentry);
1731 	spin_unlock(&dentry->d_lock);
1732 
1733 	/* Negative dentries can be dropped without further checks */
1734 	if (!dentry->d_inode)
1735 		return;
1736 
1737 	shrink_dcache_parent(dentry);
1738 	for (;;) {
1739 		struct dentry *victim = NULL;
1740 		d_walk(dentry, &victim, find_submount);
1741 		if (!victim) {
1742 			if (had_submounts)
1743 				shrink_dcache_parent(dentry);
1744 			return;
1745 		}
1746 		had_submounts = true;
1747 		detach_mounts(victim);
1748 		dput(victim);
1749 	}
1750 }
1751 EXPORT_SYMBOL(d_invalidate);
1752 
1753 /**
1754  * __d_alloc	-	allocate a dcache entry
1755  * @sb: filesystem it will belong to
1756  * @name: qstr of the name
1757  *
1758  * Allocates a dentry. It returns %NULL if there is insufficient memory
1759  * available. On a success the dentry is returned. The name passed in is
1760  * copied and the copy passed in may be reused after this call.
1761  */
1762 
1763 static struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name)
1764 {
1765 	struct dentry *dentry;
1766 	char *dname;
1767 	int err;
1768 
1769 	dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
1770 	if (!dentry)
1771 		return NULL;
1772 
1773 	/*
1774 	 * We guarantee that the inline name is always NUL-terminated.
1775 	 * This way the memcpy() done by the name switching in rename
1776 	 * will still always have a NUL at the end, even if we might
1777 	 * be overwriting an internal NUL character
1778 	 */
1779 	dentry->d_iname[DNAME_INLINE_LEN-1] = 0;
1780 	if (unlikely(!name)) {
1781 		name = &slash_name;
1782 		dname = dentry->d_iname;
1783 	} else if (name->len > DNAME_INLINE_LEN-1) {
1784 		size_t size = offsetof(struct external_name, name[1]);
1785 		struct external_name *p = kmalloc(size + name->len,
1786 						  GFP_KERNEL_ACCOUNT |
1787 						  __GFP_RECLAIMABLE);
1788 		if (!p) {
1789 			kmem_cache_free(dentry_cache, dentry);
1790 			return NULL;
1791 		}
1792 		atomic_set(&p->u.count, 1);
1793 		dname = p->name;
1794 	} else  {
1795 		dname = dentry->d_iname;
1796 	}
1797 
1798 	dentry->d_name.len = name->len;
1799 	dentry->d_name.hash = name->hash;
1800 	memcpy(dname, name->name, name->len);
1801 	dname[name->len] = 0;
1802 
1803 	/* Make sure we always see the terminating NUL character */
1804 	smp_store_release(&dentry->d_name.name, dname); /* ^^^ */
1805 
1806 	dentry->d_lockref.count = 1;
1807 	dentry->d_flags = 0;
1808 	spin_lock_init(&dentry->d_lock);
1809 	seqcount_spinlock_init(&dentry->d_seq, &dentry->d_lock);
1810 	dentry->d_inode = NULL;
1811 	dentry->d_parent = dentry;
1812 	dentry->d_sb = sb;
1813 	dentry->d_op = NULL;
1814 	dentry->d_fsdata = NULL;
1815 	INIT_HLIST_BL_NODE(&dentry->d_hash);
1816 	INIT_LIST_HEAD(&dentry->d_lru);
1817 	INIT_LIST_HEAD(&dentry->d_subdirs);
1818 	INIT_HLIST_NODE(&dentry->d_u.d_alias);
1819 	INIT_LIST_HEAD(&dentry->d_child);
1820 	d_set_d_op(dentry, dentry->d_sb->s_d_op);
1821 
1822 	if (dentry->d_op && dentry->d_op->d_init) {
1823 		err = dentry->d_op->d_init(dentry);
1824 		if (err) {
1825 			if (dname_external(dentry))
1826 				kfree(external_name(dentry));
1827 			kmem_cache_free(dentry_cache, dentry);
1828 			return NULL;
1829 		}
1830 	}
1831 
1832 	this_cpu_inc(nr_dentry);
1833 
1834 	return dentry;
1835 }
1836 
1837 /**
1838  * d_alloc	-	allocate a dcache entry
1839  * @parent: parent of entry to allocate
1840  * @name: qstr of the name
1841  *
1842  * Allocates a dentry. It returns %NULL if there is insufficient memory
1843  * available. On a success the dentry is returned. The name passed in is
1844  * copied and the copy passed in may be reused after this call.
1845  */
1846 struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1847 {
1848 	struct dentry *dentry = __d_alloc(parent->d_sb, name);
1849 	if (!dentry)
1850 		return NULL;
1851 	spin_lock(&parent->d_lock);
1852 	/*
1853 	 * don't need child lock because it is not subject
1854 	 * to concurrency here
1855 	 */
1856 	__dget_dlock(parent);
1857 	dentry->d_parent = parent;
1858 	list_add(&dentry->d_child, &parent->d_subdirs);
1859 	spin_unlock(&parent->d_lock);
1860 
1861 	return dentry;
1862 }
1863 EXPORT_SYMBOL(d_alloc);
1864 
1865 struct dentry *d_alloc_anon(struct super_block *sb)
1866 {
1867 	return __d_alloc(sb, NULL);
1868 }
1869 EXPORT_SYMBOL(d_alloc_anon);
1870 
1871 struct dentry *d_alloc_cursor(struct dentry * parent)
1872 {
1873 	struct dentry *dentry = d_alloc_anon(parent->d_sb);
1874 	if (dentry) {
1875 		dentry->d_flags |= DCACHE_DENTRY_CURSOR;
1876 		dentry->d_parent = dget(parent);
1877 	}
1878 	return dentry;
1879 }
1880 
1881 /**
1882  * d_alloc_pseudo - allocate a dentry (for lookup-less filesystems)
1883  * @sb: the superblock
1884  * @name: qstr of the name
1885  *
1886  * For a filesystem that just pins its dentries in memory and never
1887  * performs lookups at all, return an unhashed IS_ROOT dentry.
1888  * This is used for pipes, sockets et.al. - the stuff that should
1889  * never be anyone's children or parents.  Unlike all other
1890  * dentries, these will not have RCU delay between dropping the
1891  * last reference and freeing them.
1892  *
1893  * The only user is alloc_file_pseudo() and that's what should
1894  * be considered a public interface.  Don't use directly.
1895  */
1896 struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
1897 {
1898 	struct dentry *dentry = __d_alloc(sb, name);
1899 	if (likely(dentry))
1900 		dentry->d_flags |= DCACHE_NORCU;
1901 	return dentry;
1902 }
1903 
1904 struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1905 {
1906 	struct qstr q;
1907 
1908 	q.name = name;
1909 	q.hash_len = hashlen_string(parent, name);
1910 	return d_alloc(parent, &q);
1911 }
1912 EXPORT_SYMBOL(d_alloc_name);
1913 
1914 void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1915 {
1916 	WARN_ON_ONCE(dentry->d_op);
1917 	WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH	|
1918 				DCACHE_OP_COMPARE	|
1919 				DCACHE_OP_REVALIDATE	|
1920 				DCACHE_OP_WEAK_REVALIDATE	|
1921 				DCACHE_OP_DELETE	|
1922 				DCACHE_OP_REAL));
1923 	dentry->d_op = op;
1924 	if (!op)
1925 		return;
1926 	if (op->d_hash)
1927 		dentry->d_flags |= DCACHE_OP_HASH;
1928 	if (op->d_compare)
1929 		dentry->d_flags |= DCACHE_OP_COMPARE;
1930 	if (op->d_revalidate)
1931 		dentry->d_flags |= DCACHE_OP_REVALIDATE;
1932 	if (op->d_weak_revalidate)
1933 		dentry->d_flags |= DCACHE_OP_WEAK_REVALIDATE;
1934 	if (op->d_delete)
1935 		dentry->d_flags |= DCACHE_OP_DELETE;
1936 	if (op->d_prune)
1937 		dentry->d_flags |= DCACHE_OP_PRUNE;
1938 	if (op->d_real)
1939 		dentry->d_flags |= DCACHE_OP_REAL;
1940 
1941 }
1942 EXPORT_SYMBOL(d_set_d_op);
1943 
1944 
1945 /*
1946  * d_set_fallthru - Mark a dentry as falling through to a lower layer
1947  * @dentry - The dentry to mark
1948  *
1949  * Mark a dentry as falling through to the lower layer (as set with
1950  * d_pin_lower()).  This flag may be recorded on the medium.
1951  */
1952 void d_set_fallthru(struct dentry *dentry)
1953 {
1954 	spin_lock(&dentry->d_lock);
1955 	dentry->d_flags |= DCACHE_FALLTHRU;
1956 	spin_unlock(&dentry->d_lock);
1957 }
1958 EXPORT_SYMBOL(d_set_fallthru);
1959 
1960 static unsigned d_flags_for_inode(struct inode *inode)
1961 {
1962 	unsigned add_flags = DCACHE_REGULAR_TYPE;
1963 
1964 	if (!inode)
1965 		return DCACHE_MISS_TYPE;
1966 
1967 	if (S_ISDIR(inode->i_mode)) {
1968 		add_flags = DCACHE_DIRECTORY_TYPE;
1969 		if (unlikely(!(inode->i_opflags & IOP_LOOKUP))) {
1970 			if (unlikely(!inode->i_op->lookup))
1971 				add_flags = DCACHE_AUTODIR_TYPE;
1972 			else
1973 				inode->i_opflags |= IOP_LOOKUP;
1974 		}
1975 		goto type_determined;
1976 	}
1977 
1978 	if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) {
1979 		if (unlikely(inode->i_op->get_link)) {
1980 			add_flags = DCACHE_SYMLINK_TYPE;
1981 			goto type_determined;
1982 		}
1983 		inode->i_opflags |= IOP_NOFOLLOW;
1984 	}
1985 
1986 	if (unlikely(!S_ISREG(inode->i_mode)))
1987 		add_flags = DCACHE_SPECIAL_TYPE;
1988 
1989 type_determined:
1990 	if (unlikely(IS_AUTOMOUNT(inode)))
1991 		add_flags |= DCACHE_NEED_AUTOMOUNT;
1992 	return add_flags;
1993 }
1994 
1995 static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1996 {
1997 	unsigned add_flags = d_flags_for_inode(inode);
1998 	WARN_ON(d_in_lookup(dentry));
1999 
2000 	spin_lock(&dentry->d_lock);
2001 	/*
2002 	 * Decrement negative dentry count if it was in the LRU list.
2003 	 */
2004 	if (dentry->d_flags & DCACHE_LRU_LIST)
2005 		this_cpu_dec(nr_dentry_negative);
2006 	hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
2007 	raw_write_seqcount_begin(&dentry->d_seq);
2008 	__d_set_inode_and_type(dentry, inode, add_flags);
2009 	raw_write_seqcount_end(&dentry->d_seq);
2010 	fsnotify_update_flags(dentry);
2011 	spin_unlock(&dentry->d_lock);
2012 }
2013 
2014 /**
2015  * d_instantiate - fill in inode information for a dentry
2016  * @entry: dentry to complete
2017  * @inode: inode to attach to this dentry
2018  *
2019  * Fill in inode information in the entry.
2020  *
2021  * This turns negative dentries into productive full members
2022  * of society.
2023  *
2024  * NOTE! This assumes that the inode count has been incremented
2025  * (or otherwise set) by the caller to indicate that it is now
2026  * in use by the dcache.
2027  */
2028 
2029 void d_instantiate(struct dentry *entry, struct inode * inode)
2030 {
2031 	BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
2032 	if (inode) {
2033 		security_d_instantiate(entry, inode);
2034 		spin_lock(&inode->i_lock);
2035 		__d_instantiate(entry, inode);
2036 		spin_unlock(&inode->i_lock);
2037 	}
2038 }
2039 EXPORT_SYMBOL(d_instantiate);
2040 
2041 /*
2042  * This should be equivalent to d_instantiate() + unlock_new_inode(),
2043  * with lockdep-related part of unlock_new_inode() done before
2044  * anything else.  Use that instead of open-coding d_instantiate()/
2045  * unlock_new_inode() combinations.
2046  */
2047 void d_instantiate_new(struct dentry *entry, struct inode *inode)
2048 {
2049 	BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
2050 	BUG_ON(!inode);
2051 	lockdep_annotate_inode_mutex_key(inode);
2052 	security_d_instantiate(entry, inode);
2053 	spin_lock(&inode->i_lock);
2054 	__d_instantiate(entry, inode);
2055 	WARN_ON(!(inode->i_state & I_NEW));
2056 	inode->i_state &= ~I_NEW & ~I_CREATING;
2057 	smp_mb();
2058 	wake_up_bit(&inode->i_state, __I_NEW);
2059 	spin_unlock(&inode->i_lock);
2060 }
2061 EXPORT_SYMBOL(d_instantiate_new);
2062 
2063 struct dentry *d_make_root(struct inode *root_inode)
2064 {
2065 	struct dentry *res = NULL;
2066 
2067 	if (root_inode) {
2068 		res = d_alloc_anon(root_inode->i_sb);
2069 		if (res)
2070 			d_instantiate(res, root_inode);
2071 		else
2072 			iput(root_inode);
2073 	}
2074 	return res;
2075 }
2076 EXPORT_SYMBOL(d_make_root);
2077 
2078 static struct dentry *__d_instantiate_anon(struct dentry *dentry,
2079 					   struct inode *inode,
2080 					   bool disconnected)
2081 {
2082 	struct dentry *res;
2083 	unsigned add_flags;
2084 
2085 	security_d_instantiate(dentry, inode);
2086 	spin_lock(&inode->i_lock);
2087 	res = __d_find_any_alias(inode);
2088 	if (res) {
2089 		spin_unlock(&inode->i_lock);
2090 		dput(dentry);
2091 		goto out_iput;
2092 	}
2093 
2094 	/* attach a disconnected dentry */
2095 	add_flags = d_flags_for_inode(inode);
2096 
2097 	if (disconnected)
2098 		add_flags |= DCACHE_DISCONNECTED;
2099 
2100 	spin_lock(&dentry->d_lock);
2101 	__d_set_inode_and_type(dentry, inode, add_flags);
2102 	hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
2103 	if (!disconnected) {
2104 		hlist_bl_lock(&dentry->d_sb->s_roots);
2105 		hlist_bl_add_head(&dentry->d_hash, &dentry->d_sb->s_roots);
2106 		hlist_bl_unlock(&dentry->d_sb->s_roots);
2107 	}
2108 	spin_unlock(&dentry->d_lock);
2109 	spin_unlock(&inode->i_lock);
2110 
2111 	return dentry;
2112 
2113  out_iput:
2114 	iput(inode);
2115 	return res;
2116 }
2117 
2118 struct dentry *d_instantiate_anon(struct dentry *dentry, struct inode *inode)
2119 {
2120 	return __d_instantiate_anon(dentry, inode, true);
2121 }
2122 EXPORT_SYMBOL(d_instantiate_anon);
2123 
2124 static struct dentry *__d_obtain_alias(struct inode *inode, bool disconnected)
2125 {
2126 	struct dentry *tmp;
2127 	struct dentry *res;
2128 
2129 	if (!inode)
2130 		return ERR_PTR(-ESTALE);
2131 	if (IS_ERR(inode))
2132 		return ERR_CAST(inode);
2133 
2134 	res = d_find_any_alias(inode);
2135 	if (res)
2136 		goto out_iput;
2137 
2138 	tmp = d_alloc_anon(inode->i_sb);
2139 	if (!tmp) {
2140 		res = ERR_PTR(-ENOMEM);
2141 		goto out_iput;
2142 	}
2143 
2144 	return __d_instantiate_anon(tmp, inode, disconnected);
2145 
2146 out_iput:
2147 	iput(inode);
2148 	return res;
2149 }
2150 
2151 /**
2152  * d_obtain_alias - find or allocate a DISCONNECTED dentry for a given inode
2153  * @inode: inode to allocate the dentry for
2154  *
2155  * Obtain a dentry for an inode resulting from NFS filehandle conversion or
2156  * similar open by handle operations.  The returned dentry may be anonymous,
2157  * or may have a full name (if the inode was already in the cache).
2158  *
2159  * When called on a directory inode, we must ensure that the inode only ever
2160  * has one dentry.  If a dentry is found, that is returned instead of
2161  * allocating a new one.
2162  *
2163  * On successful return, the reference to the inode has been transferred
2164  * to the dentry.  In case of an error the reference on the inode is released.
2165  * To make it easier to use in export operations a %NULL or IS_ERR inode may
2166  * be passed in and the error will be propagated to the return value,
2167  * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
2168  */
2169 struct dentry *d_obtain_alias(struct inode *inode)
2170 {
2171 	return __d_obtain_alias(inode, true);
2172 }
2173 EXPORT_SYMBOL(d_obtain_alias);
2174 
2175 /**
2176  * d_obtain_root - find or allocate a dentry for a given inode
2177  * @inode: inode to allocate the dentry for
2178  *
2179  * Obtain an IS_ROOT dentry for the root of a filesystem.
2180  *
2181  * We must ensure that directory inodes only ever have one dentry.  If a
2182  * dentry is found, that is returned instead of allocating a new one.
2183  *
2184  * On successful return, the reference to the inode has been transferred
2185  * to the dentry.  In case of an error the reference on the inode is
2186  * released.  A %NULL or IS_ERR inode may be passed in and will be the
2187  * error will be propagate to the return value, with a %NULL @inode
2188  * replaced by ERR_PTR(-ESTALE).
2189  */
2190 struct dentry *d_obtain_root(struct inode *inode)
2191 {
2192 	return __d_obtain_alias(inode, false);
2193 }
2194 EXPORT_SYMBOL(d_obtain_root);
2195 
2196 /**
2197  * d_add_ci - lookup or allocate new dentry with case-exact name
2198  * @inode:  the inode case-insensitive lookup has found
2199  * @dentry: the negative dentry that was passed to the parent's lookup func
2200  * @name:   the case-exact name to be associated with the returned dentry
2201  *
2202  * This is to avoid filling the dcache with case-insensitive names to the
2203  * same inode, only the actual correct case is stored in the dcache for
2204  * case-insensitive filesystems.
2205  *
2206  * For a case-insensitive lookup match and if the case-exact dentry
2207  * already exists in the dcache, use it and return it.
2208  *
2209  * If no entry exists with the exact case name, allocate new dentry with
2210  * the exact case, and return the spliced entry.
2211  */
2212 struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
2213 			struct qstr *name)
2214 {
2215 	struct dentry *found, *res;
2216 
2217 	/*
2218 	 * First check if a dentry matching the name already exists,
2219 	 * if not go ahead and create it now.
2220 	 */
2221 	found = d_hash_and_lookup(dentry->d_parent, name);
2222 	if (found) {
2223 		iput(inode);
2224 		return found;
2225 	}
2226 	if (d_in_lookup(dentry)) {
2227 		found = d_alloc_parallel(dentry->d_parent, name,
2228 					dentry->d_wait);
2229 		if (IS_ERR(found) || !d_in_lookup(found)) {
2230 			iput(inode);
2231 			return found;
2232 		}
2233 	} else {
2234 		found = d_alloc(dentry->d_parent, name);
2235 		if (!found) {
2236 			iput(inode);
2237 			return ERR_PTR(-ENOMEM);
2238 		}
2239 	}
2240 	res = d_splice_alias(inode, found);
2241 	if (res) {
2242 		dput(found);
2243 		return res;
2244 	}
2245 	return found;
2246 }
2247 EXPORT_SYMBOL(d_add_ci);
2248 
2249 
2250 static inline bool d_same_name(const struct dentry *dentry,
2251 				const struct dentry *parent,
2252 				const struct qstr *name)
2253 {
2254 	if (likely(!(parent->d_flags & DCACHE_OP_COMPARE))) {
2255 		if (dentry->d_name.len != name->len)
2256 			return false;
2257 		return dentry_cmp(dentry, name->name, name->len) == 0;
2258 	}
2259 	return parent->d_op->d_compare(dentry,
2260 				       dentry->d_name.len, dentry->d_name.name,
2261 				       name) == 0;
2262 }
2263 
2264 /**
2265  * __d_lookup_rcu - search for a dentry (racy, store-free)
2266  * @parent: parent dentry
2267  * @name: qstr of name we wish to find
2268  * @seqp: returns d_seq value at the point where the dentry was found
2269  * Returns: dentry, or NULL
2270  *
2271  * __d_lookup_rcu is the dcache lookup function for rcu-walk name
2272  * resolution (store-free path walking) design described in
2273  * Documentation/filesystems/path-lookup.txt.
2274  *
2275  * This is not to be used outside core vfs.
2276  *
2277  * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
2278  * held, and rcu_read_lock held. The returned dentry must not be stored into
2279  * without taking d_lock and checking d_seq sequence count against @seq
2280  * returned here.
2281  *
2282  * A refcount may be taken on the found dentry with the d_rcu_to_refcount
2283  * function.
2284  *
2285  * Alternatively, __d_lookup_rcu may be called again to look up the child of
2286  * the returned dentry, so long as its parent's seqlock is checked after the
2287  * child is looked up. Thus, an interlocking stepping of sequence lock checks
2288  * is formed, giving integrity down the path walk.
2289  *
2290  * NOTE! The caller *has* to check the resulting dentry against the sequence
2291  * number we've returned before using any of the resulting dentry state!
2292  */
2293 struct dentry *__d_lookup_rcu(const struct dentry *parent,
2294 				const struct qstr *name,
2295 				unsigned *seqp)
2296 {
2297 	u64 hashlen = name->hash_len;
2298 	const unsigned char *str = name->name;
2299 	struct hlist_bl_head *b = d_hash(hashlen_hash(hashlen));
2300 	struct hlist_bl_node *node;
2301 	struct dentry *dentry;
2302 
2303 	/*
2304 	 * Note: There is significant duplication with __d_lookup_rcu which is
2305 	 * required to prevent single threaded performance regressions
2306 	 * especially on architectures where smp_rmb (in seqcounts) are costly.
2307 	 * Keep the two functions in sync.
2308 	 */
2309 
2310 	/*
2311 	 * The hash list is protected using RCU.
2312 	 *
2313 	 * Carefully use d_seq when comparing a candidate dentry, to avoid
2314 	 * races with d_move().
2315 	 *
2316 	 * It is possible that concurrent renames can mess up our list
2317 	 * walk here and result in missing our dentry, resulting in the
2318 	 * false-negative result. d_lookup() protects against concurrent
2319 	 * renames using rename_lock seqlock.
2320 	 *
2321 	 * See Documentation/filesystems/path-lookup.txt for more details.
2322 	 */
2323 	hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2324 		unsigned seq;
2325 
2326 seqretry:
2327 		/*
2328 		 * The dentry sequence count protects us from concurrent
2329 		 * renames, and thus protects parent and name fields.
2330 		 *
2331 		 * The caller must perform a seqcount check in order
2332 		 * to do anything useful with the returned dentry.
2333 		 *
2334 		 * NOTE! We do a "raw" seqcount_begin here. That means that
2335 		 * we don't wait for the sequence count to stabilize if it
2336 		 * is in the middle of a sequence change. If we do the slow
2337 		 * dentry compare, we will do seqretries until it is stable,
2338 		 * and if we end up with a successful lookup, we actually
2339 		 * want to exit RCU lookup anyway.
2340 		 *
2341 		 * Note that raw_seqcount_begin still *does* smp_rmb(), so
2342 		 * we are still guaranteed NUL-termination of ->d_name.name.
2343 		 */
2344 		seq = raw_seqcount_begin(&dentry->d_seq);
2345 		if (dentry->d_parent != parent)
2346 			continue;
2347 		if (d_unhashed(dentry))
2348 			continue;
2349 
2350 		if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) {
2351 			int tlen;
2352 			const char *tname;
2353 			if (dentry->d_name.hash != hashlen_hash(hashlen))
2354 				continue;
2355 			tlen = dentry->d_name.len;
2356 			tname = dentry->d_name.name;
2357 			/* we want a consistent (name,len) pair */
2358 			if (read_seqcount_retry(&dentry->d_seq, seq)) {
2359 				cpu_relax();
2360 				goto seqretry;
2361 			}
2362 			if (parent->d_op->d_compare(dentry,
2363 						    tlen, tname, name) != 0)
2364 				continue;
2365 		} else {
2366 			if (dentry->d_name.hash_len != hashlen)
2367 				continue;
2368 			if (dentry_cmp(dentry, str, hashlen_len(hashlen)) != 0)
2369 				continue;
2370 		}
2371 		*seqp = seq;
2372 		return dentry;
2373 	}
2374 	return NULL;
2375 }
2376 
2377 /**
2378  * d_lookup - search for a dentry
2379  * @parent: parent dentry
2380  * @name: qstr of name we wish to find
2381  * Returns: dentry, or NULL
2382  *
2383  * d_lookup searches the children of the parent dentry for the name in
2384  * question. If the dentry is found its reference count is incremented and the
2385  * dentry is returned. The caller must use dput to free the entry when it has
2386  * finished using it. %NULL is returned if the dentry does not exist.
2387  */
2388 struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name)
2389 {
2390 	struct dentry *dentry;
2391 	unsigned seq;
2392 
2393 	do {
2394 		seq = read_seqbegin(&rename_lock);
2395 		dentry = __d_lookup(parent, name);
2396 		if (dentry)
2397 			break;
2398 	} while (read_seqretry(&rename_lock, seq));
2399 	return dentry;
2400 }
2401 EXPORT_SYMBOL(d_lookup);
2402 
2403 /**
2404  * __d_lookup - search for a dentry (racy)
2405  * @parent: parent dentry
2406  * @name: qstr of name we wish to find
2407  * Returns: dentry, or NULL
2408  *
2409  * __d_lookup is like d_lookup, however it may (rarely) return a
2410  * false-negative result due to unrelated rename activity.
2411  *
2412  * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
2413  * however it must be used carefully, eg. with a following d_lookup in
2414  * the case of failure.
2415  *
2416  * __d_lookup callers must be commented.
2417  */
2418 struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name)
2419 {
2420 	unsigned int hash = name->hash;
2421 	struct hlist_bl_head *b = d_hash(hash);
2422 	struct hlist_bl_node *node;
2423 	struct dentry *found = NULL;
2424 	struct dentry *dentry;
2425 
2426 	/*
2427 	 * Note: There is significant duplication with __d_lookup_rcu which is
2428 	 * required to prevent single threaded performance regressions
2429 	 * especially on architectures where smp_rmb (in seqcounts) are costly.
2430 	 * Keep the two functions in sync.
2431 	 */
2432 
2433 	/*
2434 	 * The hash list is protected using RCU.
2435 	 *
2436 	 * Take d_lock when comparing a candidate dentry, to avoid races
2437 	 * with d_move().
2438 	 *
2439 	 * It is possible that concurrent renames can mess up our list
2440 	 * walk here and result in missing our dentry, resulting in the
2441 	 * false-negative result. d_lookup() protects against concurrent
2442 	 * renames using rename_lock seqlock.
2443 	 *
2444 	 * See Documentation/filesystems/path-lookup.txt for more details.
2445 	 */
2446 	rcu_read_lock();
2447 
2448 	hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2449 
2450 		if (dentry->d_name.hash != hash)
2451 			continue;
2452 
2453 		spin_lock(&dentry->d_lock);
2454 		if (dentry->d_parent != parent)
2455 			goto next;
2456 		if (d_unhashed(dentry))
2457 			goto next;
2458 
2459 		if (!d_same_name(dentry, parent, name))
2460 			goto next;
2461 
2462 		dentry->d_lockref.count++;
2463 		found = dentry;
2464 		spin_unlock(&dentry->d_lock);
2465 		break;
2466 next:
2467 		spin_unlock(&dentry->d_lock);
2468  	}
2469  	rcu_read_unlock();
2470 
2471  	return found;
2472 }
2473 
2474 /**
2475  * d_hash_and_lookup - hash the qstr then search for a dentry
2476  * @dir: Directory to search in
2477  * @name: qstr of name we wish to find
2478  *
2479  * On lookup failure NULL is returned; on bad name - ERR_PTR(-error)
2480  */
2481 struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
2482 {
2483 	/*
2484 	 * Check for a fs-specific hash function. Note that we must
2485 	 * calculate the standard hash first, as the d_op->d_hash()
2486 	 * routine may choose to leave the hash value unchanged.
2487 	 */
2488 	name->hash = full_name_hash(dir, name->name, name->len);
2489 	if (dir->d_flags & DCACHE_OP_HASH) {
2490 		int err = dir->d_op->d_hash(dir, name);
2491 		if (unlikely(err < 0))
2492 			return ERR_PTR(err);
2493 	}
2494 	return d_lookup(dir, name);
2495 }
2496 EXPORT_SYMBOL(d_hash_and_lookup);
2497 
2498 /*
2499  * When a file is deleted, we have two options:
2500  * - turn this dentry into a negative dentry
2501  * - unhash this dentry and free it.
2502  *
2503  * Usually, we want to just turn this into
2504  * a negative dentry, but if anybody else is
2505  * currently using the dentry or the inode
2506  * we can't do that and we fall back on removing
2507  * it from the hash queues and waiting for
2508  * it to be deleted later when it has no users
2509  */
2510 
2511 /**
2512  * d_delete - delete a dentry
2513  * @dentry: The dentry to delete
2514  *
2515  * Turn the dentry into a negative dentry if possible, otherwise
2516  * remove it from the hash queues so it can be deleted later
2517  */
2518 
2519 void d_delete(struct dentry * dentry)
2520 {
2521 	struct inode *inode = dentry->d_inode;
2522 
2523 	spin_lock(&inode->i_lock);
2524 	spin_lock(&dentry->d_lock);
2525 	/*
2526 	 * Are we the only user?
2527 	 */
2528 	if (dentry->d_lockref.count == 1) {
2529 		dentry->d_flags &= ~DCACHE_CANT_MOUNT;
2530 		dentry_unlink_inode(dentry);
2531 	} else {
2532 		__d_drop(dentry);
2533 		spin_unlock(&dentry->d_lock);
2534 		spin_unlock(&inode->i_lock);
2535 	}
2536 }
2537 EXPORT_SYMBOL(d_delete);
2538 
2539 static void __d_rehash(struct dentry *entry)
2540 {
2541 	struct hlist_bl_head *b = d_hash(entry->d_name.hash);
2542 
2543 	hlist_bl_lock(b);
2544 	hlist_bl_add_head_rcu(&entry->d_hash, b);
2545 	hlist_bl_unlock(b);
2546 }
2547 
2548 /**
2549  * d_rehash	- add an entry back to the hash
2550  * @entry: dentry to add to the hash
2551  *
2552  * Adds a dentry to the hash according to its name.
2553  */
2554 
2555 void d_rehash(struct dentry * entry)
2556 {
2557 	spin_lock(&entry->d_lock);
2558 	__d_rehash(entry);
2559 	spin_unlock(&entry->d_lock);
2560 }
2561 EXPORT_SYMBOL(d_rehash);
2562 
2563 static inline unsigned start_dir_add(struct inode *dir)
2564 {
2565 
2566 	for (;;) {
2567 		unsigned n = dir->i_dir_seq;
2568 		if (!(n & 1) && cmpxchg(&dir->i_dir_seq, n, n + 1) == n)
2569 			return n;
2570 		cpu_relax();
2571 	}
2572 }
2573 
2574 static inline void end_dir_add(struct inode *dir, unsigned n)
2575 {
2576 	smp_store_release(&dir->i_dir_seq, n + 2);
2577 }
2578 
2579 static void d_wait_lookup(struct dentry *dentry)
2580 {
2581 	if (d_in_lookup(dentry)) {
2582 		DECLARE_WAITQUEUE(wait, current);
2583 		add_wait_queue(dentry->d_wait, &wait);
2584 		do {
2585 			set_current_state(TASK_UNINTERRUPTIBLE);
2586 			spin_unlock(&dentry->d_lock);
2587 			schedule();
2588 			spin_lock(&dentry->d_lock);
2589 		} while (d_in_lookup(dentry));
2590 	}
2591 }
2592 
2593 struct dentry *d_alloc_parallel(struct dentry *parent,
2594 				const struct qstr *name,
2595 				wait_queue_head_t *wq)
2596 {
2597 	unsigned int hash = name->hash;
2598 	struct hlist_bl_head *b = in_lookup_hash(parent, hash);
2599 	struct hlist_bl_node *node;
2600 	struct dentry *new = d_alloc(parent, name);
2601 	struct dentry *dentry;
2602 	unsigned seq, r_seq, d_seq;
2603 
2604 	if (unlikely(!new))
2605 		return ERR_PTR(-ENOMEM);
2606 
2607 retry:
2608 	rcu_read_lock();
2609 	seq = smp_load_acquire(&parent->d_inode->i_dir_seq);
2610 	r_seq = read_seqbegin(&rename_lock);
2611 	dentry = __d_lookup_rcu(parent, name, &d_seq);
2612 	if (unlikely(dentry)) {
2613 		if (!lockref_get_not_dead(&dentry->d_lockref)) {
2614 			rcu_read_unlock();
2615 			goto retry;
2616 		}
2617 		if (read_seqcount_retry(&dentry->d_seq, d_seq)) {
2618 			rcu_read_unlock();
2619 			dput(dentry);
2620 			goto retry;
2621 		}
2622 		rcu_read_unlock();
2623 		dput(new);
2624 		return dentry;
2625 	}
2626 	if (unlikely(read_seqretry(&rename_lock, r_seq))) {
2627 		rcu_read_unlock();
2628 		goto retry;
2629 	}
2630 
2631 	if (unlikely(seq & 1)) {
2632 		rcu_read_unlock();
2633 		goto retry;
2634 	}
2635 
2636 	hlist_bl_lock(b);
2637 	if (unlikely(READ_ONCE(parent->d_inode->i_dir_seq) != seq)) {
2638 		hlist_bl_unlock(b);
2639 		rcu_read_unlock();
2640 		goto retry;
2641 	}
2642 	/*
2643 	 * No changes for the parent since the beginning of d_lookup().
2644 	 * Since all removals from the chain happen with hlist_bl_lock(),
2645 	 * any potential in-lookup matches are going to stay here until
2646 	 * we unlock the chain.  All fields are stable in everything
2647 	 * we encounter.
2648 	 */
2649 	hlist_bl_for_each_entry(dentry, node, b, d_u.d_in_lookup_hash) {
2650 		if (dentry->d_name.hash != hash)
2651 			continue;
2652 		if (dentry->d_parent != parent)
2653 			continue;
2654 		if (!d_same_name(dentry, parent, name))
2655 			continue;
2656 		hlist_bl_unlock(b);
2657 		/* now we can try to grab a reference */
2658 		if (!lockref_get_not_dead(&dentry->d_lockref)) {
2659 			rcu_read_unlock();
2660 			goto retry;
2661 		}
2662 
2663 		rcu_read_unlock();
2664 		/*
2665 		 * somebody is likely to be still doing lookup for it;
2666 		 * wait for them to finish
2667 		 */
2668 		spin_lock(&dentry->d_lock);
2669 		d_wait_lookup(dentry);
2670 		/*
2671 		 * it's not in-lookup anymore; in principle we should repeat
2672 		 * everything from dcache lookup, but it's likely to be what
2673 		 * d_lookup() would've found anyway.  If it is, just return it;
2674 		 * otherwise we really have to repeat the whole thing.
2675 		 */
2676 		if (unlikely(dentry->d_name.hash != hash))
2677 			goto mismatch;
2678 		if (unlikely(dentry->d_parent != parent))
2679 			goto mismatch;
2680 		if (unlikely(d_unhashed(dentry)))
2681 			goto mismatch;
2682 		if (unlikely(!d_same_name(dentry, parent, name)))
2683 			goto mismatch;
2684 		/* OK, it *is* a hashed match; return it */
2685 		spin_unlock(&dentry->d_lock);
2686 		dput(new);
2687 		return dentry;
2688 	}
2689 	rcu_read_unlock();
2690 	/* we can't take ->d_lock here; it's OK, though. */
2691 	new->d_flags |= DCACHE_PAR_LOOKUP;
2692 	new->d_wait = wq;
2693 	hlist_bl_add_head_rcu(&new->d_u.d_in_lookup_hash, b);
2694 	hlist_bl_unlock(b);
2695 	return new;
2696 mismatch:
2697 	spin_unlock(&dentry->d_lock);
2698 	dput(dentry);
2699 	goto retry;
2700 }
2701 EXPORT_SYMBOL(d_alloc_parallel);
2702 
2703 void __d_lookup_done(struct dentry *dentry)
2704 {
2705 	struct hlist_bl_head *b = in_lookup_hash(dentry->d_parent,
2706 						 dentry->d_name.hash);
2707 	hlist_bl_lock(b);
2708 	dentry->d_flags &= ~DCACHE_PAR_LOOKUP;
2709 	__hlist_bl_del(&dentry->d_u.d_in_lookup_hash);
2710 	wake_up_all(dentry->d_wait);
2711 	dentry->d_wait = NULL;
2712 	hlist_bl_unlock(b);
2713 	INIT_HLIST_NODE(&dentry->d_u.d_alias);
2714 	INIT_LIST_HEAD(&dentry->d_lru);
2715 }
2716 EXPORT_SYMBOL(__d_lookup_done);
2717 
2718 /* inode->i_lock held if inode is non-NULL */
2719 
2720 static inline void __d_add(struct dentry *dentry, struct inode *inode)
2721 {
2722 	struct inode *dir = NULL;
2723 	unsigned n;
2724 	spin_lock(&dentry->d_lock);
2725 	if (unlikely(d_in_lookup(dentry))) {
2726 		dir = dentry->d_parent->d_inode;
2727 		n = start_dir_add(dir);
2728 		__d_lookup_done(dentry);
2729 	}
2730 	if (inode) {
2731 		unsigned add_flags = d_flags_for_inode(inode);
2732 		hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
2733 		raw_write_seqcount_begin(&dentry->d_seq);
2734 		__d_set_inode_and_type(dentry, inode, add_flags);
2735 		raw_write_seqcount_end(&dentry->d_seq);
2736 		fsnotify_update_flags(dentry);
2737 	}
2738 	__d_rehash(dentry);
2739 	if (dir)
2740 		end_dir_add(dir, n);
2741 	spin_unlock(&dentry->d_lock);
2742 	if (inode)
2743 		spin_unlock(&inode->i_lock);
2744 }
2745 
2746 /**
2747  * d_add - add dentry to hash queues
2748  * @entry: dentry to add
2749  * @inode: The inode to attach to this dentry
2750  *
2751  * This adds the entry to the hash queues and initializes @inode.
2752  * The entry was actually filled in earlier during d_alloc().
2753  */
2754 
2755 void d_add(struct dentry *entry, struct inode *inode)
2756 {
2757 	if (inode) {
2758 		security_d_instantiate(entry, inode);
2759 		spin_lock(&inode->i_lock);
2760 	}
2761 	__d_add(entry, inode);
2762 }
2763 EXPORT_SYMBOL(d_add);
2764 
2765 /**
2766  * d_exact_alias - find and hash an exact unhashed alias
2767  * @entry: dentry to add
2768  * @inode: The inode to go with this dentry
2769  *
2770  * If an unhashed dentry with the same name/parent and desired
2771  * inode already exists, hash and return it.  Otherwise, return
2772  * NULL.
2773  *
2774  * Parent directory should be locked.
2775  */
2776 struct dentry *d_exact_alias(struct dentry *entry, struct inode *inode)
2777 {
2778 	struct dentry *alias;
2779 	unsigned int hash = entry->d_name.hash;
2780 
2781 	spin_lock(&inode->i_lock);
2782 	hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
2783 		/*
2784 		 * Don't need alias->d_lock here, because aliases with
2785 		 * d_parent == entry->d_parent are not subject to name or
2786 		 * parent changes, because the parent inode i_mutex is held.
2787 		 */
2788 		if (alias->d_name.hash != hash)
2789 			continue;
2790 		if (alias->d_parent != entry->d_parent)
2791 			continue;
2792 		if (!d_same_name(alias, entry->d_parent, &entry->d_name))
2793 			continue;
2794 		spin_lock(&alias->d_lock);
2795 		if (!d_unhashed(alias)) {
2796 			spin_unlock(&alias->d_lock);
2797 			alias = NULL;
2798 		} else {
2799 			__dget_dlock(alias);
2800 			__d_rehash(alias);
2801 			spin_unlock(&alias->d_lock);
2802 		}
2803 		spin_unlock(&inode->i_lock);
2804 		return alias;
2805 	}
2806 	spin_unlock(&inode->i_lock);
2807 	return NULL;
2808 }
2809 EXPORT_SYMBOL(d_exact_alias);
2810 
2811 static void swap_names(struct dentry *dentry, struct dentry *target)
2812 {
2813 	if (unlikely(dname_external(target))) {
2814 		if (unlikely(dname_external(dentry))) {
2815 			/*
2816 			 * Both external: swap the pointers
2817 			 */
2818 			swap(target->d_name.name, dentry->d_name.name);
2819 		} else {
2820 			/*
2821 			 * dentry:internal, target:external.  Steal target's
2822 			 * storage and make target internal.
2823 			 */
2824 			memcpy(target->d_iname, dentry->d_name.name,
2825 					dentry->d_name.len + 1);
2826 			dentry->d_name.name = target->d_name.name;
2827 			target->d_name.name = target->d_iname;
2828 		}
2829 	} else {
2830 		if (unlikely(dname_external(dentry))) {
2831 			/*
2832 			 * dentry:external, target:internal.  Give dentry's
2833 			 * storage to target and make dentry internal
2834 			 */
2835 			memcpy(dentry->d_iname, target->d_name.name,
2836 					target->d_name.len + 1);
2837 			target->d_name.name = dentry->d_name.name;
2838 			dentry->d_name.name = dentry->d_iname;
2839 		} else {
2840 			/*
2841 			 * Both are internal.
2842 			 */
2843 			unsigned int i;
2844 			BUILD_BUG_ON(!IS_ALIGNED(DNAME_INLINE_LEN, sizeof(long)));
2845 			for (i = 0; i < DNAME_INLINE_LEN / sizeof(long); i++) {
2846 				swap(((long *) &dentry->d_iname)[i],
2847 				     ((long *) &target->d_iname)[i]);
2848 			}
2849 		}
2850 	}
2851 	swap(dentry->d_name.hash_len, target->d_name.hash_len);
2852 }
2853 
2854 static void copy_name(struct dentry *dentry, struct dentry *target)
2855 {
2856 	struct external_name *old_name = NULL;
2857 	if (unlikely(dname_external(dentry)))
2858 		old_name = external_name(dentry);
2859 	if (unlikely(dname_external(target))) {
2860 		atomic_inc(&external_name(target)->u.count);
2861 		dentry->d_name = target->d_name;
2862 	} else {
2863 		memcpy(dentry->d_iname, target->d_name.name,
2864 				target->d_name.len + 1);
2865 		dentry->d_name.name = dentry->d_iname;
2866 		dentry->d_name.hash_len = target->d_name.hash_len;
2867 	}
2868 	if (old_name && likely(atomic_dec_and_test(&old_name->u.count)))
2869 		kfree_rcu(old_name, u.head);
2870 }
2871 
2872 /*
2873  * __d_move - move a dentry
2874  * @dentry: entry to move
2875  * @target: new dentry
2876  * @exchange: exchange the two dentries
2877  *
2878  * Update the dcache to reflect the move of a file name. Negative
2879  * dcache entries should not be moved in this way. Caller must hold
2880  * rename_lock, the i_mutex of the source and target directories,
2881  * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
2882  */
2883 static void __d_move(struct dentry *dentry, struct dentry *target,
2884 		     bool exchange)
2885 {
2886 	struct dentry *old_parent, *p;
2887 	struct inode *dir = NULL;
2888 	unsigned n;
2889 
2890 	WARN_ON(!dentry->d_inode);
2891 	if (WARN_ON(dentry == target))
2892 		return;
2893 
2894 	BUG_ON(d_ancestor(target, dentry));
2895 	old_parent = dentry->d_parent;
2896 	p = d_ancestor(old_parent, target);
2897 	if (IS_ROOT(dentry)) {
2898 		BUG_ON(p);
2899 		spin_lock(&target->d_parent->d_lock);
2900 	} else if (!p) {
2901 		/* target is not a descendent of dentry->d_parent */
2902 		spin_lock(&target->d_parent->d_lock);
2903 		spin_lock_nested(&old_parent->d_lock, DENTRY_D_LOCK_NESTED);
2904 	} else {
2905 		BUG_ON(p == dentry);
2906 		spin_lock(&old_parent->d_lock);
2907 		if (p != target)
2908 			spin_lock_nested(&target->d_parent->d_lock,
2909 					DENTRY_D_LOCK_NESTED);
2910 	}
2911 	spin_lock_nested(&dentry->d_lock, 2);
2912 	spin_lock_nested(&target->d_lock, 3);
2913 
2914 	if (unlikely(d_in_lookup(target))) {
2915 		dir = target->d_parent->d_inode;
2916 		n = start_dir_add(dir);
2917 		__d_lookup_done(target);
2918 	}
2919 
2920 	write_seqcount_begin(&dentry->d_seq);
2921 	write_seqcount_begin_nested(&target->d_seq, DENTRY_D_LOCK_NESTED);
2922 
2923 	/* unhash both */
2924 	if (!d_unhashed(dentry))
2925 		___d_drop(dentry);
2926 	if (!d_unhashed(target))
2927 		___d_drop(target);
2928 
2929 	/* ... and switch them in the tree */
2930 	dentry->d_parent = target->d_parent;
2931 	if (!exchange) {
2932 		copy_name(dentry, target);
2933 		target->d_hash.pprev = NULL;
2934 		dentry->d_parent->d_lockref.count++;
2935 		if (dentry != old_parent) /* wasn't IS_ROOT */
2936 			WARN_ON(!--old_parent->d_lockref.count);
2937 	} else {
2938 		target->d_parent = old_parent;
2939 		swap_names(dentry, target);
2940 		list_move(&target->d_child, &target->d_parent->d_subdirs);
2941 		__d_rehash(target);
2942 		fsnotify_update_flags(target);
2943 	}
2944 	list_move(&dentry->d_child, &dentry->d_parent->d_subdirs);
2945 	__d_rehash(dentry);
2946 	fsnotify_update_flags(dentry);
2947 	fscrypt_handle_d_move(dentry);
2948 
2949 	write_seqcount_end(&target->d_seq);
2950 	write_seqcount_end(&dentry->d_seq);
2951 
2952 	if (dir)
2953 		end_dir_add(dir, n);
2954 
2955 	if (dentry->d_parent != old_parent)
2956 		spin_unlock(&dentry->d_parent->d_lock);
2957 	if (dentry != old_parent)
2958 		spin_unlock(&old_parent->d_lock);
2959 	spin_unlock(&target->d_lock);
2960 	spin_unlock(&dentry->d_lock);
2961 }
2962 
2963 /*
2964  * d_move - move a dentry
2965  * @dentry: entry to move
2966  * @target: new dentry
2967  *
2968  * Update the dcache to reflect the move of a file name. Negative
2969  * dcache entries should not be moved in this way. See the locking
2970  * requirements for __d_move.
2971  */
2972 void d_move(struct dentry *dentry, struct dentry *target)
2973 {
2974 	write_seqlock(&rename_lock);
2975 	__d_move(dentry, target, false);
2976 	write_sequnlock(&rename_lock);
2977 }
2978 EXPORT_SYMBOL(d_move);
2979 
2980 /*
2981  * d_exchange - exchange two dentries
2982  * @dentry1: first dentry
2983  * @dentry2: second dentry
2984  */
2985 void d_exchange(struct dentry *dentry1, struct dentry *dentry2)
2986 {
2987 	write_seqlock(&rename_lock);
2988 
2989 	WARN_ON(!dentry1->d_inode);
2990 	WARN_ON(!dentry2->d_inode);
2991 	WARN_ON(IS_ROOT(dentry1));
2992 	WARN_ON(IS_ROOT(dentry2));
2993 
2994 	__d_move(dentry1, dentry2, true);
2995 
2996 	write_sequnlock(&rename_lock);
2997 }
2998 
2999 /**
3000  * d_ancestor - search for an ancestor
3001  * @p1: ancestor dentry
3002  * @p2: child dentry
3003  *
3004  * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
3005  * an ancestor of p2, else NULL.
3006  */
3007 struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
3008 {
3009 	struct dentry *p;
3010 
3011 	for (p = p2; !IS_ROOT(p); p = p->d_parent) {
3012 		if (p->d_parent == p1)
3013 			return p;
3014 	}
3015 	return NULL;
3016 }
3017 
3018 /*
3019  * This helper attempts to cope with remotely renamed directories
3020  *
3021  * It assumes that the caller is already holding
3022  * dentry->d_parent->d_inode->i_mutex, and rename_lock
3023  *
3024  * Note: If ever the locking in lock_rename() changes, then please
3025  * remember to update this too...
3026  */
3027 static int __d_unalias(struct inode *inode,
3028 		struct dentry *dentry, struct dentry *alias)
3029 {
3030 	struct mutex *m1 = NULL;
3031 	struct rw_semaphore *m2 = NULL;
3032 	int ret = -ESTALE;
3033 
3034 	/* If alias and dentry share a parent, then no extra locks required */
3035 	if (alias->d_parent == dentry->d_parent)
3036 		goto out_unalias;
3037 
3038 	/* See lock_rename() */
3039 	if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
3040 		goto out_err;
3041 	m1 = &dentry->d_sb->s_vfs_rename_mutex;
3042 	if (!inode_trylock_shared(alias->d_parent->d_inode))
3043 		goto out_err;
3044 	m2 = &alias->d_parent->d_inode->i_rwsem;
3045 out_unalias:
3046 	__d_move(alias, dentry, false);
3047 	ret = 0;
3048 out_err:
3049 	if (m2)
3050 		up_read(m2);
3051 	if (m1)
3052 		mutex_unlock(m1);
3053 	return ret;
3054 }
3055 
3056 /**
3057  * d_splice_alias - splice a disconnected dentry into the tree if one exists
3058  * @inode:  the inode which may have a disconnected dentry
3059  * @dentry: a negative dentry which we want to point to the inode.
3060  *
3061  * If inode is a directory and has an IS_ROOT alias, then d_move that in
3062  * place of the given dentry and return it, else simply d_add the inode
3063  * to the dentry and return NULL.
3064  *
3065  * If a non-IS_ROOT directory is found, the filesystem is corrupt, and
3066  * we should error out: directories can't have multiple aliases.
3067  *
3068  * This is needed in the lookup routine of any filesystem that is exportable
3069  * (via knfsd) so that we can build dcache paths to directories effectively.
3070  *
3071  * If a dentry was found and moved, then it is returned.  Otherwise NULL
3072  * is returned.  This matches the expected return value of ->lookup.
3073  *
3074  * Cluster filesystems may call this function with a negative, hashed dentry.
3075  * In that case, we know that the inode will be a regular file, and also this
3076  * will only occur during atomic_open. So we need to check for the dentry
3077  * being already hashed only in the final case.
3078  */
3079 struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
3080 {
3081 	if (IS_ERR(inode))
3082 		return ERR_CAST(inode);
3083 
3084 	BUG_ON(!d_unhashed(dentry));
3085 
3086 	if (!inode)
3087 		goto out;
3088 
3089 	security_d_instantiate(dentry, inode);
3090 	spin_lock(&inode->i_lock);
3091 	if (S_ISDIR(inode->i_mode)) {
3092 		struct dentry *new = __d_find_any_alias(inode);
3093 		if (unlikely(new)) {
3094 			/* The reference to new ensures it remains an alias */
3095 			spin_unlock(&inode->i_lock);
3096 			write_seqlock(&rename_lock);
3097 			if (unlikely(d_ancestor(new, dentry))) {
3098 				write_sequnlock(&rename_lock);
3099 				dput(new);
3100 				new = ERR_PTR(-ELOOP);
3101 				pr_warn_ratelimited(
3102 					"VFS: Lookup of '%s' in %s %s"
3103 					" would have caused loop\n",
3104 					dentry->d_name.name,
3105 					inode->i_sb->s_type->name,
3106 					inode->i_sb->s_id);
3107 			} else if (!IS_ROOT(new)) {
3108 				struct dentry *old_parent = dget(new->d_parent);
3109 				int err = __d_unalias(inode, dentry, new);
3110 				write_sequnlock(&rename_lock);
3111 				if (err) {
3112 					dput(new);
3113 					new = ERR_PTR(err);
3114 				}
3115 				dput(old_parent);
3116 			} else {
3117 				__d_move(new, dentry, false);
3118 				write_sequnlock(&rename_lock);
3119 			}
3120 			iput(inode);
3121 			return new;
3122 		}
3123 	}
3124 out:
3125 	__d_add(dentry, inode);
3126 	return NULL;
3127 }
3128 EXPORT_SYMBOL(d_splice_alias);
3129 
3130 /*
3131  * Test whether new_dentry is a subdirectory of old_dentry.
3132  *
3133  * Trivially implemented using the dcache structure
3134  */
3135 
3136 /**
3137  * is_subdir - is new dentry a subdirectory of old_dentry
3138  * @new_dentry: new dentry
3139  * @old_dentry: old dentry
3140  *
3141  * Returns true if new_dentry is a subdirectory of the parent (at any depth).
3142  * Returns false otherwise.
3143  * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
3144  */
3145 
3146 bool is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
3147 {
3148 	bool result;
3149 	unsigned seq;
3150 
3151 	if (new_dentry == old_dentry)
3152 		return true;
3153 
3154 	do {
3155 		/* for restarting inner loop in case of seq retry */
3156 		seq = read_seqbegin(&rename_lock);
3157 		/*
3158 		 * Need rcu_readlock to protect against the d_parent trashing
3159 		 * due to d_move
3160 		 */
3161 		rcu_read_lock();
3162 		if (d_ancestor(old_dentry, new_dentry))
3163 			result = true;
3164 		else
3165 			result = false;
3166 		rcu_read_unlock();
3167 	} while (read_seqretry(&rename_lock, seq));
3168 
3169 	return result;
3170 }
3171 EXPORT_SYMBOL(is_subdir);
3172 
3173 static enum d_walk_ret d_genocide_kill(void *data, struct dentry *dentry)
3174 {
3175 	struct dentry *root = data;
3176 	if (dentry != root) {
3177 		if (d_unhashed(dentry) || !dentry->d_inode)
3178 			return D_WALK_SKIP;
3179 
3180 		if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
3181 			dentry->d_flags |= DCACHE_GENOCIDE;
3182 			dentry->d_lockref.count--;
3183 		}
3184 	}
3185 	return D_WALK_CONTINUE;
3186 }
3187 
3188 void d_genocide(struct dentry *parent)
3189 {
3190 	d_walk(parent, parent, d_genocide_kill);
3191 }
3192 
3193 EXPORT_SYMBOL(d_genocide);
3194 
3195 void d_tmpfile(struct dentry *dentry, struct inode *inode)
3196 {
3197 	inode_dec_link_count(inode);
3198 	BUG_ON(dentry->d_name.name != dentry->d_iname ||
3199 		!hlist_unhashed(&dentry->d_u.d_alias) ||
3200 		!d_unlinked(dentry));
3201 	spin_lock(&dentry->d_parent->d_lock);
3202 	spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
3203 	dentry->d_name.len = sprintf(dentry->d_iname, "#%llu",
3204 				(unsigned long long)inode->i_ino);
3205 	spin_unlock(&dentry->d_lock);
3206 	spin_unlock(&dentry->d_parent->d_lock);
3207 	d_instantiate(dentry, inode);
3208 }
3209 EXPORT_SYMBOL(d_tmpfile);
3210 
3211 static __initdata unsigned long dhash_entries;
3212 static int __init set_dhash_entries(char *str)
3213 {
3214 	if (!str)
3215 		return 0;
3216 	dhash_entries = simple_strtoul(str, &str, 0);
3217 	return 1;
3218 }
3219 __setup("dhash_entries=", set_dhash_entries);
3220 
3221 static void __init dcache_init_early(void)
3222 {
3223 	/* If hashes are distributed across NUMA nodes, defer
3224 	 * hash allocation until vmalloc space is available.
3225 	 */
3226 	if (hashdist)
3227 		return;
3228 
3229 	dentry_hashtable =
3230 		alloc_large_system_hash("Dentry cache",
3231 					sizeof(struct hlist_bl_head),
3232 					dhash_entries,
3233 					13,
3234 					HASH_EARLY | HASH_ZERO,
3235 					&d_hash_shift,
3236 					NULL,
3237 					0,
3238 					0);
3239 	d_hash_shift = 32 - d_hash_shift;
3240 }
3241 
3242 static void __init dcache_init(void)
3243 {
3244 	/*
3245 	 * A constructor could be added for stable state like the lists,
3246 	 * but it is probably not worth it because of the cache nature
3247 	 * of the dcache.
3248 	 */
3249 	dentry_cache = KMEM_CACHE_USERCOPY(dentry,
3250 		SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD|SLAB_ACCOUNT,
3251 		d_iname);
3252 
3253 	/* Hash may have been set up in dcache_init_early */
3254 	if (!hashdist)
3255 		return;
3256 
3257 	dentry_hashtable =
3258 		alloc_large_system_hash("Dentry cache",
3259 					sizeof(struct hlist_bl_head),
3260 					dhash_entries,
3261 					13,
3262 					HASH_ZERO,
3263 					&d_hash_shift,
3264 					NULL,
3265 					0,
3266 					0);
3267 	d_hash_shift = 32 - d_hash_shift;
3268 }
3269 
3270 /* SLAB cache for __getname() consumers */
3271 struct kmem_cache *names_cachep __read_mostly;
3272 EXPORT_SYMBOL(names_cachep);
3273 
3274 void __init vfs_caches_init_early(void)
3275 {
3276 	int i;
3277 
3278 	for (i = 0; i < ARRAY_SIZE(in_lookup_hashtable); i++)
3279 		INIT_HLIST_BL_HEAD(&in_lookup_hashtable[i]);
3280 
3281 	dcache_init_early();
3282 	inode_init_early();
3283 }
3284 
3285 void __init vfs_caches_init(void)
3286 {
3287 	names_cachep = kmem_cache_create_usercopy("names_cache", PATH_MAX, 0,
3288 			SLAB_HWCACHE_ALIGN|SLAB_PANIC, 0, PATH_MAX, NULL);
3289 
3290 	dcache_init();
3291 	inode_init();
3292 	files_init();
3293 	files_maxfiles_init();
3294 	mnt_init();
3295 	bdev_cache_init();
3296 	chrdev_init();
3297 }
3298