xref: /openbmc/linux/fs/dcache.c (revision 86bee12f)
1 /*
2  * fs/dcache.c
3  *
4  * Complete reimplementation
5  * (C) 1997 Thomas Schoebel-Theuer,
6  * with heavy changes by Linus Torvalds
7  */
8 
9 /*
10  * Notes on the allocation strategy:
11  *
12  * The dcache is a master of the icache - whenever a dcache entry
13  * exists, the inode will always exist. "iput()" is done either when
14  * the dcache entry is deleted or garbage collected.
15  */
16 
17 #include <linux/syscalls.h>
18 #include <linux/string.h>
19 #include <linux/mm.h>
20 #include <linux/fs.h>
21 #include <linux/fsnotify.h>
22 #include <linux/slab.h>
23 #include <linux/init.h>
24 #include <linux/hash.h>
25 #include <linux/cache.h>
26 #include <linux/export.h>
27 #include <linux/mount.h>
28 #include <linux/file.h>
29 #include <asm/uaccess.h>
30 #include <linux/security.h>
31 #include <linux/seqlock.h>
32 #include <linux/swap.h>
33 #include <linux/bootmem.h>
34 #include <linux/fs_struct.h>
35 #include <linux/hardirq.h>
36 #include <linux/bit_spinlock.h>
37 #include <linux/rculist_bl.h>
38 #include <linux/prefetch.h>
39 #include <linux/ratelimit.h>
40 #include <linux/list_lru.h>
41 #include <linux/kasan.h>
42 
43 #include "internal.h"
44 #include "mount.h"
45 
46 /*
47  * Usage:
48  * dcache->d_inode->i_lock protects:
49  *   - i_dentry, d_u.d_alias, d_inode of aliases
50  * dcache_hash_bucket lock protects:
51  *   - the dcache hash table
52  * s_anon bl list spinlock protects:
53  *   - the s_anon list (see __d_drop)
54  * dentry->d_sb->s_dentry_lru_lock protects:
55  *   - the dcache lru lists and counters
56  * d_lock protects:
57  *   - d_flags
58  *   - d_name
59  *   - d_lru
60  *   - d_count
61  *   - d_unhashed()
62  *   - d_parent and d_subdirs
63  *   - childrens' d_child and d_parent
64  *   - d_u.d_alias, d_inode
65  *
66  * Ordering:
67  * dentry->d_inode->i_lock
68  *   dentry->d_lock
69  *     dentry->d_sb->s_dentry_lru_lock
70  *     dcache_hash_bucket lock
71  *     s_anon lock
72  *
73  * If there is an ancestor relationship:
74  * dentry->d_parent->...->d_parent->d_lock
75  *   ...
76  *     dentry->d_parent->d_lock
77  *       dentry->d_lock
78  *
79  * If no ancestor relationship:
80  * if (dentry1 < dentry2)
81  *   dentry1->d_lock
82  *     dentry2->d_lock
83  */
84 int sysctl_vfs_cache_pressure __read_mostly = 100;
85 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
86 
87 __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
88 
89 EXPORT_SYMBOL(rename_lock);
90 
91 static struct kmem_cache *dentry_cache __read_mostly;
92 
93 /*
94  * This is the single most critical data structure when it comes
95  * to the dcache: the hashtable for lookups. Somebody should try
96  * to make this good - I've just made it work.
97  *
98  * This hash-function tries to avoid losing too many bits of hash
99  * information, yet avoid using a prime hash-size or similar.
100  */
101 
102 static unsigned int d_hash_mask __read_mostly;
103 static unsigned int d_hash_shift __read_mostly;
104 
105 static struct hlist_bl_head *dentry_hashtable __read_mostly;
106 
107 static inline struct hlist_bl_head *d_hash(const struct dentry *parent,
108 					unsigned int hash)
109 {
110 	hash += (unsigned long) parent / L1_CACHE_BYTES;
111 	return dentry_hashtable + hash_32(hash, d_hash_shift);
112 }
113 
114 #define IN_LOOKUP_SHIFT 10
115 static struct hlist_bl_head in_lookup_hashtable[1 << IN_LOOKUP_SHIFT];
116 
117 static inline struct hlist_bl_head *in_lookup_hash(const struct dentry *parent,
118 					unsigned int hash)
119 {
120 	hash += (unsigned long) parent / L1_CACHE_BYTES;
121 	return in_lookup_hashtable + hash_32(hash, IN_LOOKUP_SHIFT);
122 }
123 
124 
125 /* Statistics gathering. */
126 struct dentry_stat_t dentry_stat = {
127 	.age_limit = 45,
128 };
129 
130 static DEFINE_PER_CPU(long, nr_dentry);
131 static DEFINE_PER_CPU(long, nr_dentry_unused);
132 
133 #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
134 
135 /*
136  * Here we resort to our own counters instead of using generic per-cpu counters
137  * for consistency with what the vfs inode code does. We are expected to harvest
138  * better code and performance by having our own specialized counters.
139  *
140  * Please note that the loop is done over all possible CPUs, not over all online
141  * CPUs. The reason for this is that we don't want to play games with CPUs going
142  * on and off. If one of them goes off, we will just keep their counters.
143  *
144  * glommer: See cffbc8a for details, and if you ever intend to change this,
145  * please update all vfs counters to match.
146  */
147 static long get_nr_dentry(void)
148 {
149 	int i;
150 	long sum = 0;
151 	for_each_possible_cpu(i)
152 		sum += per_cpu(nr_dentry, i);
153 	return sum < 0 ? 0 : sum;
154 }
155 
156 static long get_nr_dentry_unused(void)
157 {
158 	int i;
159 	long sum = 0;
160 	for_each_possible_cpu(i)
161 		sum += per_cpu(nr_dentry_unused, i);
162 	return sum < 0 ? 0 : sum;
163 }
164 
165 int proc_nr_dentry(struct ctl_table *table, int write, void __user *buffer,
166 		   size_t *lenp, loff_t *ppos)
167 {
168 	dentry_stat.nr_dentry = get_nr_dentry();
169 	dentry_stat.nr_unused = get_nr_dentry_unused();
170 	return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
171 }
172 #endif
173 
174 /*
175  * Compare 2 name strings, return 0 if they match, otherwise non-zero.
176  * The strings are both count bytes long, and count is non-zero.
177  */
178 #ifdef CONFIG_DCACHE_WORD_ACCESS
179 
180 #include <asm/word-at-a-time.h>
181 /*
182  * NOTE! 'cs' and 'scount' come from a dentry, so it has a
183  * aligned allocation for this particular component. We don't
184  * strictly need the load_unaligned_zeropad() safety, but it
185  * doesn't hurt either.
186  *
187  * In contrast, 'ct' and 'tcount' can be from a pathname, and do
188  * need the careful unaligned handling.
189  */
190 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
191 {
192 	unsigned long a,b,mask;
193 
194 	for (;;) {
195 		a = *(unsigned long *)cs;
196 		b = load_unaligned_zeropad(ct);
197 		if (tcount < sizeof(unsigned long))
198 			break;
199 		if (unlikely(a != b))
200 			return 1;
201 		cs += sizeof(unsigned long);
202 		ct += sizeof(unsigned long);
203 		tcount -= sizeof(unsigned long);
204 		if (!tcount)
205 			return 0;
206 	}
207 	mask = bytemask_from_count(tcount);
208 	return unlikely(!!((a ^ b) & mask));
209 }
210 
211 #else
212 
213 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
214 {
215 	do {
216 		if (*cs != *ct)
217 			return 1;
218 		cs++;
219 		ct++;
220 		tcount--;
221 	} while (tcount);
222 	return 0;
223 }
224 
225 #endif
226 
227 static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount)
228 {
229 	const unsigned char *cs;
230 	/*
231 	 * Be careful about RCU walk racing with rename:
232 	 * use ACCESS_ONCE to fetch the name pointer.
233 	 *
234 	 * NOTE! Even if a rename will mean that the length
235 	 * was not loaded atomically, we don't care. The
236 	 * RCU walk will check the sequence count eventually,
237 	 * and catch it. And we won't overrun the buffer,
238 	 * because we're reading the name pointer atomically,
239 	 * and a dentry name is guaranteed to be properly
240 	 * terminated with a NUL byte.
241 	 *
242 	 * End result: even if 'len' is wrong, we'll exit
243 	 * early because the data cannot match (there can
244 	 * be no NUL in the ct/tcount data)
245 	 */
246 	cs = ACCESS_ONCE(dentry->d_name.name);
247 	smp_read_barrier_depends();
248 	return dentry_string_cmp(cs, ct, tcount);
249 }
250 
251 struct external_name {
252 	union {
253 		atomic_t count;
254 		struct rcu_head head;
255 	} u;
256 	unsigned char name[];
257 };
258 
259 static inline struct external_name *external_name(struct dentry *dentry)
260 {
261 	return container_of(dentry->d_name.name, struct external_name, name[0]);
262 }
263 
264 static void __d_free(struct rcu_head *head)
265 {
266 	struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
267 
268 	kmem_cache_free(dentry_cache, dentry);
269 }
270 
271 static void __d_free_external(struct rcu_head *head)
272 {
273 	struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
274 	kfree(external_name(dentry));
275 	kmem_cache_free(dentry_cache, dentry);
276 }
277 
278 static inline int dname_external(const struct dentry *dentry)
279 {
280 	return dentry->d_name.name != dentry->d_iname;
281 }
282 
283 static inline void __d_set_inode_and_type(struct dentry *dentry,
284 					  struct inode *inode,
285 					  unsigned type_flags)
286 {
287 	unsigned flags;
288 
289 	dentry->d_inode = inode;
290 	flags = READ_ONCE(dentry->d_flags);
291 	flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU);
292 	flags |= type_flags;
293 	WRITE_ONCE(dentry->d_flags, flags);
294 }
295 
296 static inline void __d_clear_type_and_inode(struct dentry *dentry)
297 {
298 	unsigned flags = READ_ONCE(dentry->d_flags);
299 
300 	flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU);
301 	WRITE_ONCE(dentry->d_flags, flags);
302 	dentry->d_inode = NULL;
303 }
304 
305 static void dentry_free(struct dentry *dentry)
306 {
307 	WARN_ON(!hlist_unhashed(&dentry->d_u.d_alias));
308 	if (unlikely(dname_external(dentry))) {
309 		struct external_name *p = external_name(dentry);
310 		if (likely(atomic_dec_and_test(&p->u.count))) {
311 			call_rcu(&dentry->d_u.d_rcu, __d_free_external);
312 			return;
313 		}
314 	}
315 	/* if dentry was never visible to RCU, immediate free is OK */
316 	if (!(dentry->d_flags & DCACHE_RCUACCESS))
317 		__d_free(&dentry->d_u.d_rcu);
318 	else
319 		call_rcu(&dentry->d_u.d_rcu, __d_free);
320 }
321 
322 /**
323  * dentry_rcuwalk_invalidate - invalidate in-progress rcu-walk lookups
324  * @dentry: the target dentry
325  * After this call, in-progress rcu-walk path lookup will fail. This
326  * should be called after unhashing, and after changing d_inode (if
327  * the dentry has not already been unhashed).
328  */
329 static inline void dentry_rcuwalk_invalidate(struct dentry *dentry)
330 {
331 	lockdep_assert_held(&dentry->d_lock);
332 	/* Go through am invalidation barrier */
333 	write_seqcount_invalidate(&dentry->d_seq);
334 }
335 
336 /*
337  * Release the dentry's inode, using the filesystem
338  * d_iput() operation if defined. Dentry has no refcount
339  * and is unhashed.
340  */
341 static void dentry_iput(struct dentry * dentry)
342 	__releases(dentry->d_lock)
343 	__releases(dentry->d_inode->i_lock)
344 {
345 	struct inode *inode = dentry->d_inode;
346 	if (inode) {
347 		__d_clear_type_and_inode(dentry);
348 		hlist_del_init(&dentry->d_u.d_alias);
349 		spin_unlock(&dentry->d_lock);
350 		spin_unlock(&inode->i_lock);
351 		if (!inode->i_nlink)
352 			fsnotify_inoderemove(inode);
353 		if (dentry->d_op && dentry->d_op->d_iput)
354 			dentry->d_op->d_iput(dentry, inode);
355 		else
356 			iput(inode);
357 	} else {
358 		spin_unlock(&dentry->d_lock);
359 	}
360 }
361 
362 /*
363  * Release the dentry's inode, using the filesystem
364  * d_iput() operation if defined. dentry remains in-use.
365  */
366 static void dentry_unlink_inode(struct dentry * dentry)
367 	__releases(dentry->d_lock)
368 	__releases(dentry->d_inode->i_lock)
369 {
370 	struct inode *inode = dentry->d_inode;
371 
372 	raw_write_seqcount_begin(&dentry->d_seq);
373 	__d_clear_type_and_inode(dentry);
374 	hlist_del_init(&dentry->d_u.d_alias);
375 	raw_write_seqcount_end(&dentry->d_seq);
376 	spin_unlock(&dentry->d_lock);
377 	spin_unlock(&inode->i_lock);
378 	if (!inode->i_nlink)
379 		fsnotify_inoderemove(inode);
380 	if (dentry->d_op && dentry->d_op->d_iput)
381 		dentry->d_op->d_iput(dentry, inode);
382 	else
383 		iput(inode);
384 }
385 
386 /*
387  * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry
388  * is in use - which includes both the "real" per-superblock
389  * LRU list _and_ the DCACHE_SHRINK_LIST use.
390  *
391  * The DCACHE_SHRINK_LIST bit is set whenever the dentry is
392  * on the shrink list (ie not on the superblock LRU list).
393  *
394  * The per-cpu "nr_dentry_unused" counters are updated with
395  * the DCACHE_LRU_LIST bit.
396  *
397  * These helper functions make sure we always follow the
398  * rules. d_lock must be held by the caller.
399  */
400 #define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x))
401 static void d_lru_add(struct dentry *dentry)
402 {
403 	D_FLAG_VERIFY(dentry, 0);
404 	dentry->d_flags |= DCACHE_LRU_LIST;
405 	this_cpu_inc(nr_dentry_unused);
406 	WARN_ON_ONCE(!list_lru_add(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
407 }
408 
409 static void d_lru_del(struct dentry *dentry)
410 {
411 	D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
412 	dentry->d_flags &= ~DCACHE_LRU_LIST;
413 	this_cpu_dec(nr_dentry_unused);
414 	WARN_ON_ONCE(!list_lru_del(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
415 }
416 
417 static void d_shrink_del(struct dentry *dentry)
418 {
419 	D_FLAG_VERIFY(dentry, DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
420 	list_del_init(&dentry->d_lru);
421 	dentry->d_flags &= ~(DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
422 	this_cpu_dec(nr_dentry_unused);
423 }
424 
425 static void d_shrink_add(struct dentry *dentry, struct list_head *list)
426 {
427 	D_FLAG_VERIFY(dentry, 0);
428 	list_add(&dentry->d_lru, list);
429 	dentry->d_flags |= DCACHE_SHRINK_LIST | DCACHE_LRU_LIST;
430 	this_cpu_inc(nr_dentry_unused);
431 }
432 
433 /*
434  * These can only be called under the global LRU lock, ie during the
435  * callback for freeing the LRU list. "isolate" removes it from the
436  * LRU lists entirely, while shrink_move moves it to the indicated
437  * private list.
438  */
439 static void d_lru_isolate(struct list_lru_one *lru, struct dentry *dentry)
440 {
441 	D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
442 	dentry->d_flags &= ~DCACHE_LRU_LIST;
443 	this_cpu_dec(nr_dentry_unused);
444 	list_lru_isolate(lru, &dentry->d_lru);
445 }
446 
447 static void d_lru_shrink_move(struct list_lru_one *lru, struct dentry *dentry,
448 			      struct list_head *list)
449 {
450 	D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
451 	dentry->d_flags |= DCACHE_SHRINK_LIST;
452 	list_lru_isolate_move(lru, &dentry->d_lru, list);
453 }
454 
455 /*
456  * dentry_lru_(add|del)_list) must be called with d_lock held.
457  */
458 static void dentry_lru_add(struct dentry *dentry)
459 {
460 	if (unlikely(!(dentry->d_flags & DCACHE_LRU_LIST)))
461 		d_lru_add(dentry);
462 }
463 
464 /**
465  * d_drop - drop a dentry
466  * @dentry: dentry to drop
467  *
468  * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
469  * be found through a VFS lookup any more. Note that this is different from
470  * deleting the dentry - d_delete will try to mark the dentry negative if
471  * possible, giving a successful _negative_ lookup, while d_drop will
472  * just make the cache lookup fail.
473  *
474  * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
475  * reason (NFS timeouts or autofs deletes).
476  *
477  * __d_drop requires dentry->d_lock.
478  */
479 void __d_drop(struct dentry *dentry)
480 {
481 	if (!d_unhashed(dentry)) {
482 		struct hlist_bl_head *b;
483 		/*
484 		 * Hashed dentries are normally on the dentry hashtable,
485 		 * with the exception of those newly allocated by
486 		 * d_obtain_alias, which are always IS_ROOT:
487 		 */
488 		if (unlikely(IS_ROOT(dentry)))
489 			b = &dentry->d_sb->s_anon;
490 		else
491 			b = d_hash(dentry->d_parent, dentry->d_name.hash);
492 
493 		hlist_bl_lock(b);
494 		__hlist_bl_del(&dentry->d_hash);
495 		dentry->d_hash.pprev = NULL;
496 		hlist_bl_unlock(b);
497 		dentry_rcuwalk_invalidate(dentry);
498 	}
499 }
500 EXPORT_SYMBOL(__d_drop);
501 
502 void d_drop(struct dentry *dentry)
503 {
504 	spin_lock(&dentry->d_lock);
505 	__d_drop(dentry);
506 	spin_unlock(&dentry->d_lock);
507 }
508 EXPORT_SYMBOL(d_drop);
509 
510 static inline void dentry_unlist(struct dentry *dentry, struct dentry *parent)
511 {
512 	struct dentry *next;
513 	/*
514 	 * Inform d_walk() and shrink_dentry_list() that we are no longer
515 	 * attached to the dentry tree
516 	 */
517 	dentry->d_flags |= DCACHE_DENTRY_KILLED;
518 	if (unlikely(list_empty(&dentry->d_child)))
519 		return;
520 	__list_del_entry(&dentry->d_child);
521 	/*
522 	 * Cursors can move around the list of children.  While we'd been
523 	 * a normal list member, it didn't matter - ->d_child.next would've
524 	 * been updated.  However, from now on it won't be and for the
525 	 * things like d_walk() it might end up with a nasty surprise.
526 	 * Normally d_walk() doesn't care about cursors moving around -
527 	 * ->d_lock on parent prevents that and since a cursor has no children
528 	 * of its own, we get through it without ever unlocking the parent.
529 	 * There is one exception, though - if we ascend from a child that
530 	 * gets killed as soon as we unlock it, the next sibling is found
531 	 * using the value left in its ->d_child.next.  And if _that_
532 	 * pointed to a cursor, and cursor got moved (e.g. by lseek())
533 	 * before d_walk() regains parent->d_lock, we'll end up skipping
534 	 * everything the cursor had been moved past.
535 	 *
536 	 * Solution: make sure that the pointer left behind in ->d_child.next
537 	 * points to something that won't be moving around.  I.e. skip the
538 	 * cursors.
539 	 */
540 	while (dentry->d_child.next != &parent->d_subdirs) {
541 		next = list_entry(dentry->d_child.next, struct dentry, d_child);
542 		if (likely(!(next->d_flags & DCACHE_DENTRY_CURSOR)))
543 			break;
544 		dentry->d_child.next = next->d_child.next;
545 	}
546 }
547 
548 static void __dentry_kill(struct dentry *dentry)
549 {
550 	struct dentry *parent = NULL;
551 	bool can_free = true;
552 	if (!IS_ROOT(dentry))
553 		parent = dentry->d_parent;
554 
555 	/*
556 	 * The dentry is now unrecoverably dead to the world.
557 	 */
558 	lockref_mark_dead(&dentry->d_lockref);
559 
560 	/*
561 	 * inform the fs via d_prune that this dentry is about to be
562 	 * unhashed and destroyed.
563 	 */
564 	if (dentry->d_flags & DCACHE_OP_PRUNE)
565 		dentry->d_op->d_prune(dentry);
566 
567 	if (dentry->d_flags & DCACHE_LRU_LIST) {
568 		if (!(dentry->d_flags & DCACHE_SHRINK_LIST))
569 			d_lru_del(dentry);
570 	}
571 	/* if it was on the hash then remove it */
572 	__d_drop(dentry);
573 	dentry_unlist(dentry, parent);
574 	if (parent)
575 		spin_unlock(&parent->d_lock);
576 	dentry_iput(dentry);
577 	/*
578 	 * dentry_iput drops the locks, at which point nobody (except
579 	 * transient RCU lookups) can reach this dentry.
580 	 */
581 	BUG_ON(dentry->d_lockref.count > 0);
582 	this_cpu_dec(nr_dentry);
583 	if (dentry->d_op && dentry->d_op->d_release)
584 		dentry->d_op->d_release(dentry);
585 
586 	spin_lock(&dentry->d_lock);
587 	if (dentry->d_flags & DCACHE_SHRINK_LIST) {
588 		dentry->d_flags |= DCACHE_MAY_FREE;
589 		can_free = false;
590 	}
591 	spin_unlock(&dentry->d_lock);
592 	if (likely(can_free))
593 		dentry_free(dentry);
594 }
595 
596 /*
597  * Finish off a dentry we've decided to kill.
598  * dentry->d_lock must be held, returns with it unlocked.
599  * If ref is non-zero, then decrement the refcount too.
600  * Returns dentry requiring refcount drop, or NULL if we're done.
601  */
602 static struct dentry *dentry_kill(struct dentry *dentry)
603 	__releases(dentry->d_lock)
604 {
605 	struct inode *inode = dentry->d_inode;
606 	struct dentry *parent = NULL;
607 
608 	if (inode && unlikely(!spin_trylock(&inode->i_lock)))
609 		goto failed;
610 
611 	if (!IS_ROOT(dentry)) {
612 		parent = dentry->d_parent;
613 		if (unlikely(!spin_trylock(&parent->d_lock))) {
614 			if (inode)
615 				spin_unlock(&inode->i_lock);
616 			goto failed;
617 		}
618 	}
619 
620 	__dentry_kill(dentry);
621 	return parent;
622 
623 failed:
624 	spin_unlock(&dentry->d_lock);
625 	cpu_relax();
626 	return dentry; /* try again with same dentry */
627 }
628 
629 static inline struct dentry *lock_parent(struct dentry *dentry)
630 {
631 	struct dentry *parent = dentry->d_parent;
632 	if (IS_ROOT(dentry))
633 		return NULL;
634 	if (unlikely(dentry->d_lockref.count < 0))
635 		return NULL;
636 	if (likely(spin_trylock(&parent->d_lock)))
637 		return parent;
638 	rcu_read_lock();
639 	spin_unlock(&dentry->d_lock);
640 again:
641 	parent = ACCESS_ONCE(dentry->d_parent);
642 	spin_lock(&parent->d_lock);
643 	/*
644 	 * We can't blindly lock dentry until we are sure
645 	 * that we won't violate the locking order.
646 	 * Any changes of dentry->d_parent must have
647 	 * been done with parent->d_lock held, so
648 	 * spin_lock() above is enough of a barrier
649 	 * for checking if it's still our child.
650 	 */
651 	if (unlikely(parent != dentry->d_parent)) {
652 		spin_unlock(&parent->d_lock);
653 		goto again;
654 	}
655 	rcu_read_unlock();
656 	if (parent != dentry)
657 		spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
658 	else
659 		parent = NULL;
660 	return parent;
661 }
662 
663 /*
664  * Try to do a lockless dput(), and return whether that was successful.
665  *
666  * If unsuccessful, we return false, having already taken the dentry lock.
667  *
668  * The caller needs to hold the RCU read lock, so that the dentry is
669  * guaranteed to stay around even if the refcount goes down to zero!
670  */
671 static inline bool fast_dput(struct dentry *dentry)
672 {
673 	int ret;
674 	unsigned int d_flags;
675 
676 	/*
677 	 * If we have a d_op->d_delete() operation, we sould not
678 	 * let the dentry count go to zero, so use "put_or_lock".
679 	 */
680 	if (unlikely(dentry->d_flags & DCACHE_OP_DELETE))
681 		return lockref_put_or_lock(&dentry->d_lockref);
682 
683 	/*
684 	 * .. otherwise, we can try to just decrement the
685 	 * lockref optimistically.
686 	 */
687 	ret = lockref_put_return(&dentry->d_lockref);
688 
689 	/*
690 	 * If the lockref_put_return() failed due to the lock being held
691 	 * by somebody else, the fast path has failed. We will need to
692 	 * get the lock, and then check the count again.
693 	 */
694 	if (unlikely(ret < 0)) {
695 		spin_lock(&dentry->d_lock);
696 		if (dentry->d_lockref.count > 1) {
697 			dentry->d_lockref.count--;
698 			spin_unlock(&dentry->d_lock);
699 			return 1;
700 		}
701 		return 0;
702 	}
703 
704 	/*
705 	 * If we weren't the last ref, we're done.
706 	 */
707 	if (ret)
708 		return 1;
709 
710 	/*
711 	 * Careful, careful. The reference count went down
712 	 * to zero, but we don't hold the dentry lock, so
713 	 * somebody else could get it again, and do another
714 	 * dput(), and we need to not race with that.
715 	 *
716 	 * However, there is a very special and common case
717 	 * where we don't care, because there is nothing to
718 	 * do: the dentry is still hashed, it does not have
719 	 * a 'delete' op, and it's referenced and already on
720 	 * the LRU list.
721 	 *
722 	 * NOTE! Since we aren't locked, these values are
723 	 * not "stable". However, it is sufficient that at
724 	 * some point after we dropped the reference the
725 	 * dentry was hashed and the flags had the proper
726 	 * value. Other dentry users may have re-gotten
727 	 * a reference to the dentry and change that, but
728 	 * our work is done - we can leave the dentry
729 	 * around with a zero refcount.
730 	 */
731 	smp_rmb();
732 	d_flags = ACCESS_ONCE(dentry->d_flags);
733 	d_flags &= DCACHE_REFERENCED | DCACHE_LRU_LIST | DCACHE_DISCONNECTED;
734 
735 	/* Nothing to do? Dropping the reference was all we needed? */
736 	if (d_flags == (DCACHE_REFERENCED | DCACHE_LRU_LIST) && !d_unhashed(dentry))
737 		return 1;
738 
739 	/*
740 	 * Not the fast normal case? Get the lock. We've already decremented
741 	 * the refcount, but we'll need to re-check the situation after
742 	 * getting the lock.
743 	 */
744 	spin_lock(&dentry->d_lock);
745 
746 	/*
747 	 * Did somebody else grab a reference to it in the meantime, and
748 	 * we're no longer the last user after all? Alternatively, somebody
749 	 * else could have killed it and marked it dead. Either way, we
750 	 * don't need to do anything else.
751 	 */
752 	if (dentry->d_lockref.count) {
753 		spin_unlock(&dentry->d_lock);
754 		return 1;
755 	}
756 
757 	/*
758 	 * Re-get the reference we optimistically dropped. We hold the
759 	 * lock, and we just tested that it was zero, so we can just
760 	 * set it to 1.
761 	 */
762 	dentry->d_lockref.count = 1;
763 	return 0;
764 }
765 
766 
767 /*
768  * This is dput
769  *
770  * This is complicated by the fact that we do not want to put
771  * dentries that are no longer on any hash chain on the unused
772  * list: we'd much rather just get rid of them immediately.
773  *
774  * However, that implies that we have to traverse the dentry
775  * tree upwards to the parents which might _also_ now be
776  * scheduled for deletion (it may have been only waiting for
777  * its last child to go away).
778  *
779  * This tail recursion is done by hand as we don't want to depend
780  * on the compiler to always get this right (gcc generally doesn't).
781  * Real recursion would eat up our stack space.
782  */
783 
784 /*
785  * dput - release a dentry
786  * @dentry: dentry to release
787  *
788  * Release a dentry. This will drop the usage count and if appropriate
789  * call the dentry unlink method as well as removing it from the queues and
790  * releasing its resources. If the parent dentries were scheduled for release
791  * they too may now get deleted.
792  */
793 void dput(struct dentry *dentry)
794 {
795 	if (unlikely(!dentry))
796 		return;
797 
798 repeat:
799 	rcu_read_lock();
800 	if (likely(fast_dput(dentry))) {
801 		rcu_read_unlock();
802 		return;
803 	}
804 
805 	/* Slow case: now with the dentry lock held */
806 	rcu_read_unlock();
807 
808 	WARN_ON(d_in_lookup(dentry));
809 
810 	/* Unreachable? Get rid of it */
811 	if (unlikely(d_unhashed(dentry)))
812 		goto kill_it;
813 
814 	if (unlikely(dentry->d_flags & DCACHE_DISCONNECTED))
815 		goto kill_it;
816 
817 	if (unlikely(dentry->d_flags & DCACHE_OP_DELETE)) {
818 		if (dentry->d_op->d_delete(dentry))
819 			goto kill_it;
820 	}
821 
822 	if (!(dentry->d_flags & DCACHE_REFERENCED))
823 		dentry->d_flags |= DCACHE_REFERENCED;
824 	dentry_lru_add(dentry);
825 
826 	dentry->d_lockref.count--;
827 	spin_unlock(&dentry->d_lock);
828 	return;
829 
830 kill_it:
831 	dentry = dentry_kill(dentry);
832 	if (dentry)
833 		goto repeat;
834 }
835 EXPORT_SYMBOL(dput);
836 
837 
838 /* This must be called with d_lock held */
839 static inline void __dget_dlock(struct dentry *dentry)
840 {
841 	dentry->d_lockref.count++;
842 }
843 
844 static inline void __dget(struct dentry *dentry)
845 {
846 	lockref_get(&dentry->d_lockref);
847 }
848 
849 struct dentry *dget_parent(struct dentry *dentry)
850 {
851 	int gotref;
852 	struct dentry *ret;
853 
854 	/*
855 	 * Do optimistic parent lookup without any
856 	 * locking.
857 	 */
858 	rcu_read_lock();
859 	ret = ACCESS_ONCE(dentry->d_parent);
860 	gotref = lockref_get_not_zero(&ret->d_lockref);
861 	rcu_read_unlock();
862 	if (likely(gotref)) {
863 		if (likely(ret == ACCESS_ONCE(dentry->d_parent)))
864 			return ret;
865 		dput(ret);
866 	}
867 
868 repeat:
869 	/*
870 	 * Don't need rcu_dereference because we re-check it was correct under
871 	 * the lock.
872 	 */
873 	rcu_read_lock();
874 	ret = dentry->d_parent;
875 	spin_lock(&ret->d_lock);
876 	if (unlikely(ret != dentry->d_parent)) {
877 		spin_unlock(&ret->d_lock);
878 		rcu_read_unlock();
879 		goto repeat;
880 	}
881 	rcu_read_unlock();
882 	BUG_ON(!ret->d_lockref.count);
883 	ret->d_lockref.count++;
884 	spin_unlock(&ret->d_lock);
885 	return ret;
886 }
887 EXPORT_SYMBOL(dget_parent);
888 
889 /**
890  * d_find_alias - grab a hashed alias of inode
891  * @inode: inode in question
892  *
893  * If inode has a hashed alias, or is a directory and has any alias,
894  * acquire the reference to alias and return it. Otherwise return NULL.
895  * Notice that if inode is a directory there can be only one alias and
896  * it can be unhashed only if it has no children, or if it is the root
897  * of a filesystem, or if the directory was renamed and d_revalidate
898  * was the first vfs operation to notice.
899  *
900  * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
901  * any other hashed alias over that one.
902  */
903 static struct dentry *__d_find_alias(struct inode *inode)
904 {
905 	struct dentry *alias, *discon_alias;
906 
907 again:
908 	discon_alias = NULL;
909 	hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
910 		spin_lock(&alias->d_lock);
911  		if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
912 			if (IS_ROOT(alias) &&
913 			    (alias->d_flags & DCACHE_DISCONNECTED)) {
914 				discon_alias = alias;
915 			} else {
916 				__dget_dlock(alias);
917 				spin_unlock(&alias->d_lock);
918 				return alias;
919 			}
920 		}
921 		spin_unlock(&alias->d_lock);
922 	}
923 	if (discon_alias) {
924 		alias = discon_alias;
925 		spin_lock(&alias->d_lock);
926 		if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
927 			__dget_dlock(alias);
928 			spin_unlock(&alias->d_lock);
929 			return alias;
930 		}
931 		spin_unlock(&alias->d_lock);
932 		goto again;
933 	}
934 	return NULL;
935 }
936 
937 struct dentry *d_find_alias(struct inode *inode)
938 {
939 	struct dentry *de = NULL;
940 
941 	if (!hlist_empty(&inode->i_dentry)) {
942 		spin_lock(&inode->i_lock);
943 		de = __d_find_alias(inode);
944 		spin_unlock(&inode->i_lock);
945 	}
946 	return de;
947 }
948 EXPORT_SYMBOL(d_find_alias);
949 
950 /*
951  *	Try to kill dentries associated with this inode.
952  * WARNING: you must own a reference to inode.
953  */
954 void d_prune_aliases(struct inode *inode)
955 {
956 	struct dentry *dentry;
957 restart:
958 	spin_lock(&inode->i_lock);
959 	hlist_for_each_entry(dentry, &inode->i_dentry, d_u.d_alias) {
960 		spin_lock(&dentry->d_lock);
961 		if (!dentry->d_lockref.count) {
962 			struct dentry *parent = lock_parent(dentry);
963 			if (likely(!dentry->d_lockref.count)) {
964 				__dentry_kill(dentry);
965 				dput(parent);
966 				goto restart;
967 			}
968 			if (parent)
969 				spin_unlock(&parent->d_lock);
970 		}
971 		spin_unlock(&dentry->d_lock);
972 	}
973 	spin_unlock(&inode->i_lock);
974 }
975 EXPORT_SYMBOL(d_prune_aliases);
976 
977 static void shrink_dentry_list(struct list_head *list)
978 {
979 	struct dentry *dentry, *parent;
980 
981 	while (!list_empty(list)) {
982 		struct inode *inode;
983 		dentry = list_entry(list->prev, struct dentry, d_lru);
984 		spin_lock(&dentry->d_lock);
985 		parent = lock_parent(dentry);
986 
987 		/*
988 		 * The dispose list is isolated and dentries are not accounted
989 		 * to the LRU here, so we can simply remove it from the list
990 		 * here regardless of whether it is referenced or not.
991 		 */
992 		d_shrink_del(dentry);
993 
994 		/*
995 		 * We found an inuse dentry which was not removed from
996 		 * the LRU because of laziness during lookup. Do not free it.
997 		 */
998 		if (dentry->d_lockref.count > 0) {
999 			spin_unlock(&dentry->d_lock);
1000 			if (parent)
1001 				spin_unlock(&parent->d_lock);
1002 			continue;
1003 		}
1004 
1005 
1006 		if (unlikely(dentry->d_flags & DCACHE_DENTRY_KILLED)) {
1007 			bool can_free = dentry->d_flags & DCACHE_MAY_FREE;
1008 			spin_unlock(&dentry->d_lock);
1009 			if (parent)
1010 				spin_unlock(&parent->d_lock);
1011 			if (can_free)
1012 				dentry_free(dentry);
1013 			continue;
1014 		}
1015 
1016 		inode = dentry->d_inode;
1017 		if (inode && unlikely(!spin_trylock(&inode->i_lock))) {
1018 			d_shrink_add(dentry, list);
1019 			spin_unlock(&dentry->d_lock);
1020 			if (parent)
1021 				spin_unlock(&parent->d_lock);
1022 			continue;
1023 		}
1024 
1025 		__dentry_kill(dentry);
1026 
1027 		/*
1028 		 * We need to prune ancestors too. This is necessary to prevent
1029 		 * quadratic behavior of shrink_dcache_parent(), but is also
1030 		 * expected to be beneficial in reducing dentry cache
1031 		 * fragmentation.
1032 		 */
1033 		dentry = parent;
1034 		while (dentry && !lockref_put_or_lock(&dentry->d_lockref)) {
1035 			parent = lock_parent(dentry);
1036 			if (dentry->d_lockref.count != 1) {
1037 				dentry->d_lockref.count--;
1038 				spin_unlock(&dentry->d_lock);
1039 				if (parent)
1040 					spin_unlock(&parent->d_lock);
1041 				break;
1042 			}
1043 			inode = dentry->d_inode;	/* can't be NULL */
1044 			if (unlikely(!spin_trylock(&inode->i_lock))) {
1045 				spin_unlock(&dentry->d_lock);
1046 				if (parent)
1047 					spin_unlock(&parent->d_lock);
1048 				cpu_relax();
1049 				continue;
1050 			}
1051 			__dentry_kill(dentry);
1052 			dentry = parent;
1053 		}
1054 	}
1055 }
1056 
1057 static enum lru_status dentry_lru_isolate(struct list_head *item,
1058 		struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
1059 {
1060 	struct list_head *freeable = arg;
1061 	struct dentry	*dentry = container_of(item, struct dentry, d_lru);
1062 
1063 
1064 	/*
1065 	 * we are inverting the lru lock/dentry->d_lock here,
1066 	 * so use a trylock. If we fail to get the lock, just skip
1067 	 * it
1068 	 */
1069 	if (!spin_trylock(&dentry->d_lock))
1070 		return LRU_SKIP;
1071 
1072 	/*
1073 	 * Referenced dentries are still in use. If they have active
1074 	 * counts, just remove them from the LRU. Otherwise give them
1075 	 * another pass through the LRU.
1076 	 */
1077 	if (dentry->d_lockref.count) {
1078 		d_lru_isolate(lru, dentry);
1079 		spin_unlock(&dentry->d_lock);
1080 		return LRU_REMOVED;
1081 	}
1082 
1083 	if (dentry->d_flags & DCACHE_REFERENCED) {
1084 		dentry->d_flags &= ~DCACHE_REFERENCED;
1085 		spin_unlock(&dentry->d_lock);
1086 
1087 		/*
1088 		 * The list move itself will be made by the common LRU code. At
1089 		 * this point, we've dropped the dentry->d_lock but keep the
1090 		 * lru lock. This is safe to do, since every list movement is
1091 		 * protected by the lru lock even if both locks are held.
1092 		 *
1093 		 * This is guaranteed by the fact that all LRU management
1094 		 * functions are intermediated by the LRU API calls like
1095 		 * list_lru_add and list_lru_del. List movement in this file
1096 		 * only ever occur through this functions or through callbacks
1097 		 * like this one, that are called from the LRU API.
1098 		 *
1099 		 * The only exceptions to this are functions like
1100 		 * shrink_dentry_list, and code that first checks for the
1101 		 * DCACHE_SHRINK_LIST flag.  Those are guaranteed to be
1102 		 * operating only with stack provided lists after they are
1103 		 * properly isolated from the main list.  It is thus, always a
1104 		 * local access.
1105 		 */
1106 		return LRU_ROTATE;
1107 	}
1108 
1109 	d_lru_shrink_move(lru, dentry, freeable);
1110 	spin_unlock(&dentry->d_lock);
1111 
1112 	return LRU_REMOVED;
1113 }
1114 
1115 /**
1116  * prune_dcache_sb - shrink the dcache
1117  * @sb: superblock
1118  * @sc: shrink control, passed to list_lru_shrink_walk()
1119  *
1120  * Attempt to shrink the superblock dcache LRU by @sc->nr_to_scan entries. This
1121  * is done when we need more memory and called from the superblock shrinker
1122  * function.
1123  *
1124  * This function may fail to free any resources if all the dentries are in
1125  * use.
1126  */
1127 long prune_dcache_sb(struct super_block *sb, struct shrink_control *sc)
1128 {
1129 	LIST_HEAD(dispose);
1130 	long freed;
1131 
1132 	freed = list_lru_shrink_walk(&sb->s_dentry_lru, sc,
1133 				     dentry_lru_isolate, &dispose);
1134 	shrink_dentry_list(&dispose);
1135 	return freed;
1136 }
1137 
1138 static enum lru_status dentry_lru_isolate_shrink(struct list_head *item,
1139 		struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
1140 {
1141 	struct list_head *freeable = arg;
1142 	struct dentry	*dentry = container_of(item, struct dentry, d_lru);
1143 
1144 	/*
1145 	 * we are inverting the lru lock/dentry->d_lock here,
1146 	 * so use a trylock. If we fail to get the lock, just skip
1147 	 * it
1148 	 */
1149 	if (!spin_trylock(&dentry->d_lock))
1150 		return LRU_SKIP;
1151 
1152 	d_lru_shrink_move(lru, dentry, freeable);
1153 	spin_unlock(&dentry->d_lock);
1154 
1155 	return LRU_REMOVED;
1156 }
1157 
1158 
1159 /**
1160  * shrink_dcache_sb - shrink dcache for a superblock
1161  * @sb: superblock
1162  *
1163  * Shrink the dcache for the specified super block. This is used to free
1164  * the dcache before unmounting a file system.
1165  */
1166 void shrink_dcache_sb(struct super_block *sb)
1167 {
1168 	long freed;
1169 
1170 	do {
1171 		LIST_HEAD(dispose);
1172 
1173 		freed = list_lru_walk(&sb->s_dentry_lru,
1174 			dentry_lru_isolate_shrink, &dispose, UINT_MAX);
1175 
1176 		this_cpu_sub(nr_dentry_unused, freed);
1177 		shrink_dentry_list(&dispose);
1178 	} while (freed > 0);
1179 }
1180 EXPORT_SYMBOL(shrink_dcache_sb);
1181 
1182 /**
1183  * enum d_walk_ret - action to talke during tree walk
1184  * @D_WALK_CONTINUE:	contrinue walk
1185  * @D_WALK_QUIT:	quit walk
1186  * @D_WALK_NORETRY:	quit when retry is needed
1187  * @D_WALK_SKIP:	skip this dentry and its children
1188  */
1189 enum d_walk_ret {
1190 	D_WALK_CONTINUE,
1191 	D_WALK_QUIT,
1192 	D_WALK_NORETRY,
1193 	D_WALK_SKIP,
1194 };
1195 
1196 /**
1197  * d_walk - walk the dentry tree
1198  * @parent:	start of walk
1199  * @data:	data passed to @enter() and @finish()
1200  * @enter:	callback when first entering the dentry
1201  * @finish:	callback when successfully finished the walk
1202  *
1203  * The @enter() and @finish() callbacks are called with d_lock held.
1204  */
1205 static void d_walk(struct dentry *parent, void *data,
1206 		   enum d_walk_ret (*enter)(void *, struct dentry *),
1207 		   void (*finish)(void *))
1208 {
1209 	struct dentry *this_parent;
1210 	struct list_head *next;
1211 	unsigned seq = 0;
1212 	enum d_walk_ret ret;
1213 	bool retry = true;
1214 
1215 again:
1216 	read_seqbegin_or_lock(&rename_lock, &seq);
1217 	this_parent = parent;
1218 	spin_lock(&this_parent->d_lock);
1219 
1220 	ret = enter(data, this_parent);
1221 	switch (ret) {
1222 	case D_WALK_CONTINUE:
1223 		break;
1224 	case D_WALK_QUIT:
1225 	case D_WALK_SKIP:
1226 		goto out_unlock;
1227 	case D_WALK_NORETRY:
1228 		retry = false;
1229 		break;
1230 	}
1231 repeat:
1232 	next = this_parent->d_subdirs.next;
1233 resume:
1234 	while (next != &this_parent->d_subdirs) {
1235 		struct list_head *tmp = next;
1236 		struct dentry *dentry = list_entry(tmp, struct dentry, d_child);
1237 		next = tmp->next;
1238 
1239 		if (unlikely(dentry->d_flags & DCACHE_DENTRY_CURSOR))
1240 			continue;
1241 
1242 		spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1243 
1244 		ret = enter(data, dentry);
1245 		switch (ret) {
1246 		case D_WALK_CONTINUE:
1247 			break;
1248 		case D_WALK_QUIT:
1249 			spin_unlock(&dentry->d_lock);
1250 			goto out_unlock;
1251 		case D_WALK_NORETRY:
1252 			retry = false;
1253 			break;
1254 		case D_WALK_SKIP:
1255 			spin_unlock(&dentry->d_lock);
1256 			continue;
1257 		}
1258 
1259 		if (!list_empty(&dentry->d_subdirs)) {
1260 			spin_unlock(&this_parent->d_lock);
1261 			spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1262 			this_parent = dentry;
1263 			spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1264 			goto repeat;
1265 		}
1266 		spin_unlock(&dentry->d_lock);
1267 	}
1268 	/*
1269 	 * All done at this level ... ascend and resume the search.
1270 	 */
1271 	rcu_read_lock();
1272 ascend:
1273 	if (this_parent != parent) {
1274 		struct dentry *child = this_parent;
1275 		this_parent = child->d_parent;
1276 
1277 		spin_unlock(&child->d_lock);
1278 		spin_lock(&this_parent->d_lock);
1279 
1280 		/* might go back up the wrong parent if we have had a rename. */
1281 		if (need_seqretry(&rename_lock, seq))
1282 			goto rename_retry;
1283 		/* go into the first sibling still alive */
1284 		do {
1285 			next = child->d_child.next;
1286 			if (next == &this_parent->d_subdirs)
1287 				goto ascend;
1288 			child = list_entry(next, struct dentry, d_child);
1289 		} while (unlikely(child->d_flags & DCACHE_DENTRY_KILLED));
1290 		rcu_read_unlock();
1291 		goto resume;
1292 	}
1293 	if (need_seqretry(&rename_lock, seq))
1294 		goto rename_retry;
1295 	rcu_read_unlock();
1296 	if (finish)
1297 		finish(data);
1298 
1299 out_unlock:
1300 	spin_unlock(&this_parent->d_lock);
1301 	done_seqretry(&rename_lock, seq);
1302 	return;
1303 
1304 rename_retry:
1305 	spin_unlock(&this_parent->d_lock);
1306 	rcu_read_unlock();
1307 	BUG_ON(seq & 1);
1308 	if (!retry)
1309 		return;
1310 	seq = 1;
1311 	goto again;
1312 }
1313 
1314 /*
1315  * Search for at least 1 mount point in the dentry's subdirs.
1316  * We descend to the next level whenever the d_subdirs
1317  * list is non-empty and continue searching.
1318  */
1319 
1320 static enum d_walk_ret check_mount(void *data, struct dentry *dentry)
1321 {
1322 	int *ret = data;
1323 	if (d_mountpoint(dentry)) {
1324 		*ret = 1;
1325 		return D_WALK_QUIT;
1326 	}
1327 	return D_WALK_CONTINUE;
1328 }
1329 
1330 /**
1331  * have_submounts - check for mounts over a dentry
1332  * @parent: dentry to check.
1333  *
1334  * Return true if the parent or its subdirectories contain
1335  * a mount point
1336  */
1337 int have_submounts(struct dentry *parent)
1338 {
1339 	int ret = 0;
1340 
1341 	d_walk(parent, &ret, check_mount, NULL);
1342 
1343 	return ret;
1344 }
1345 EXPORT_SYMBOL(have_submounts);
1346 
1347 /*
1348  * Called by mount code to set a mountpoint and check if the mountpoint is
1349  * reachable (e.g. NFS can unhash a directory dentry and then the complete
1350  * subtree can become unreachable).
1351  *
1352  * Only one of d_invalidate() and d_set_mounted() must succeed.  For
1353  * this reason take rename_lock and d_lock on dentry and ancestors.
1354  */
1355 int d_set_mounted(struct dentry *dentry)
1356 {
1357 	struct dentry *p;
1358 	int ret = -ENOENT;
1359 	write_seqlock(&rename_lock);
1360 	for (p = dentry->d_parent; !IS_ROOT(p); p = p->d_parent) {
1361 		/* Need exclusion wrt. d_invalidate() */
1362 		spin_lock(&p->d_lock);
1363 		if (unlikely(d_unhashed(p))) {
1364 			spin_unlock(&p->d_lock);
1365 			goto out;
1366 		}
1367 		spin_unlock(&p->d_lock);
1368 	}
1369 	spin_lock(&dentry->d_lock);
1370 	if (!d_unlinked(dentry)) {
1371 		dentry->d_flags |= DCACHE_MOUNTED;
1372 		ret = 0;
1373 	}
1374  	spin_unlock(&dentry->d_lock);
1375 out:
1376 	write_sequnlock(&rename_lock);
1377 	return ret;
1378 }
1379 
1380 /*
1381  * Search the dentry child list of the specified parent,
1382  * and move any unused dentries to the end of the unused
1383  * list for prune_dcache(). We descend to the next level
1384  * whenever the d_subdirs list is non-empty and continue
1385  * searching.
1386  *
1387  * It returns zero iff there are no unused children,
1388  * otherwise  it returns the number of children moved to
1389  * the end of the unused list. This may not be the total
1390  * number of unused children, because select_parent can
1391  * drop the lock and return early due to latency
1392  * constraints.
1393  */
1394 
1395 struct select_data {
1396 	struct dentry *start;
1397 	struct list_head dispose;
1398 	int found;
1399 };
1400 
1401 static enum d_walk_ret select_collect(void *_data, struct dentry *dentry)
1402 {
1403 	struct select_data *data = _data;
1404 	enum d_walk_ret ret = D_WALK_CONTINUE;
1405 
1406 	if (data->start == dentry)
1407 		goto out;
1408 
1409 	if (dentry->d_flags & DCACHE_SHRINK_LIST) {
1410 		data->found++;
1411 	} else {
1412 		if (dentry->d_flags & DCACHE_LRU_LIST)
1413 			d_lru_del(dentry);
1414 		if (!dentry->d_lockref.count) {
1415 			d_shrink_add(dentry, &data->dispose);
1416 			data->found++;
1417 		}
1418 	}
1419 	/*
1420 	 * We can return to the caller if we have found some (this
1421 	 * ensures forward progress). We'll be coming back to find
1422 	 * the rest.
1423 	 */
1424 	if (!list_empty(&data->dispose))
1425 		ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY;
1426 out:
1427 	return ret;
1428 }
1429 
1430 /**
1431  * shrink_dcache_parent - prune dcache
1432  * @parent: parent of entries to prune
1433  *
1434  * Prune the dcache to remove unused children of the parent dentry.
1435  */
1436 void shrink_dcache_parent(struct dentry *parent)
1437 {
1438 	for (;;) {
1439 		struct select_data data;
1440 
1441 		INIT_LIST_HEAD(&data.dispose);
1442 		data.start = parent;
1443 		data.found = 0;
1444 
1445 		d_walk(parent, &data, select_collect, NULL);
1446 		if (!data.found)
1447 			break;
1448 
1449 		shrink_dentry_list(&data.dispose);
1450 		cond_resched();
1451 	}
1452 }
1453 EXPORT_SYMBOL(shrink_dcache_parent);
1454 
1455 static enum d_walk_ret umount_check(void *_data, struct dentry *dentry)
1456 {
1457 	/* it has busy descendents; complain about those instead */
1458 	if (!list_empty(&dentry->d_subdirs))
1459 		return D_WALK_CONTINUE;
1460 
1461 	/* root with refcount 1 is fine */
1462 	if (dentry == _data && dentry->d_lockref.count == 1)
1463 		return D_WALK_CONTINUE;
1464 
1465 	printk(KERN_ERR "BUG: Dentry %p{i=%lx,n=%pd} "
1466 			" still in use (%d) [unmount of %s %s]\n",
1467 		       dentry,
1468 		       dentry->d_inode ?
1469 		       dentry->d_inode->i_ino : 0UL,
1470 		       dentry,
1471 		       dentry->d_lockref.count,
1472 		       dentry->d_sb->s_type->name,
1473 		       dentry->d_sb->s_id);
1474 	WARN_ON(1);
1475 	return D_WALK_CONTINUE;
1476 }
1477 
1478 static void do_one_tree(struct dentry *dentry)
1479 {
1480 	shrink_dcache_parent(dentry);
1481 	d_walk(dentry, dentry, umount_check, NULL);
1482 	d_drop(dentry);
1483 	dput(dentry);
1484 }
1485 
1486 /*
1487  * destroy the dentries attached to a superblock on unmounting
1488  */
1489 void shrink_dcache_for_umount(struct super_block *sb)
1490 {
1491 	struct dentry *dentry;
1492 
1493 	WARN(down_read_trylock(&sb->s_umount), "s_umount should've been locked");
1494 
1495 	dentry = sb->s_root;
1496 	sb->s_root = NULL;
1497 	do_one_tree(dentry);
1498 
1499 	while (!hlist_bl_empty(&sb->s_anon)) {
1500 		dentry = dget(hlist_bl_entry(hlist_bl_first(&sb->s_anon), struct dentry, d_hash));
1501 		do_one_tree(dentry);
1502 	}
1503 }
1504 
1505 struct detach_data {
1506 	struct select_data select;
1507 	struct dentry *mountpoint;
1508 };
1509 static enum d_walk_ret detach_and_collect(void *_data, struct dentry *dentry)
1510 {
1511 	struct detach_data *data = _data;
1512 
1513 	if (d_mountpoint(dentry)) {
1514 		__dget_dlock(dentry);
1515 		data->mountpoint = dentry;
1516 		return D_WALK_QUIT;
1517 	}
1518 
1519 	return select_collect(&data->select, dentry);
1520 }
1521 
1522 static void check_and_drop(void *_data)
1523 {
1524 	struct detach_data *data = _data;
1525 
1526 	if (!data->mountpoint && !data->select.found)
1527 		__d_drop(data->select.start);
1528 }
1529 
1530 /**
1531  * d_invalidate - detach submounts, prune dcache, and drop
1532  * @dentry: dentry to invalidate (aka detach, prune and drop)
1533  *
1534  * no dcache lock.
1535  *
1536  * The final d_drop is done as an atomic operation relative to
1537  * rename_lock ensuring there are no races with d_set_mounted.  This
1538  * ensures there are no unhashed dentries on the path to a mountpoint.
1539  */
1540 void d_invalidate(struct dentry *dentry)
1541 {
1542 	/*
1543 	 * If it's already been dropped, return OK.
1544 	 */
1545 	spin_lock(&dentry->d_lock);
1546 	if (d_unhashed(dentry)) {
1547 		spin_unlock(&dentry->d_lock);
1548 		return;
1549 	}
1550 	spin_unlock(&dentry->d_lock);
1551 
1552 	/* Negative dentries can be dropped without further checks */
1553 	if (!dentry->d_inode) {
1554 		d_drop(dentry);
1555 		return;
1556 	}
1557 
1558 	for (;;) {
1559 		struct detach_data data;
1560 
1561 		data.mountpoint = NULL;
1562 		INIT_LIST_HEAD(&data.select.dispose);
1563 		data.select.start = dentry;
1564 		data.select.found = 0;
1565 
1566 		d_walk(dentry, &data, detach_and_collect, check_and_drop);
1567 
1568 		if (data.select.found)
1569 			shrink_dentry_list(&data.select.dispose);
1570 
1571 		if (data.mountpoint) {
1572 			detach_mounts(data.mountpoint);
1573 			dput(data.mountpoint);
1574 		}
1575 
1576 		if (!data.mountpoint && !data.select.found)
1577 			break;
1578 
1579 		cond_resched();
1580 	}
1581 }
1582 EXPORT_SYMBOL(d_invalidate);
1583 
1584 /**
1585  * __d_alloc	-	allocate a dcache entry
1586  * @sb: filesystem it will belong to
1587  * @name: qstr of the name
1588  *
1589  * Allocates a dentry. It returns %NULL if there is insufficient memory
1590  * available. On a success the dentry is returned. The name passed in is
1591  * copied and the copy passed in may be reused after this call.
1592  */
1593 
1594 struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name)
1595 {
1596 	struct dentry *dentry;
1597 	char *dname;
1598 
1599 	dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
1600 	if (!dentry)
1601 		return NULL;
1602 
1603 	/*
1604 	 * We guarantee that the inline name is always NUL-terminated.
1605 	 * This way the memcpy() done by the name switching in rename
1606 	 * will still always have a NUL at the end, even if we might
1607 	 * be overwriting an internal NUL character
1608 	 */
1609 	dentry->d_iname[DNAME_INLINE_LEN-1] = 0;
1610 	if (unlikely(!name)) {
1611 		static const struct qstr anon = QSTR_INIT("/", 1);
1612 		name = &anon;
1613 		dname = dentry->d_iname;
1614 	} else if (name->len > DNAME_INLINE_LEN-1) {
1615 		size_t size = offsetof(struct external_name, name[1]);
1616 		struct external_name *p = kmalloc(size + name->len,
1617 						  GFP_KERNEL_ACCOUNT);
1618 		if (!p) {
1619 			kmem_cache_free(dentry_cache, dentry);
1620 			return NULL;
1621 		}
1622 		atomic_set(&p->u.count, 1);
1623 		dname = p->name;
1624 		if (IS_ENABLED(CONFIG_DCACHE_WORD_ACCESS))
1625 			kasan_unpoison_shadow(dname,
1626 				round_up(name->len + 1,	sizeof(unsigned long)));
1627 	} else  {
1628 		dname = dentry->d_iname;
1629 	}
1630 
1631 	dentry->d_name.len = name->len;
1632 	dentry->d_name.hash = name->hash;
1633 	memcpy(dname, name->name, name->len);
1634 	dname[name->len] = 0;
1635 
1636 	/* Make sure we always see the terminating NUL character */
1637 	smp_wmb();
1638 	dentry->d_name.name = dname;
1639 
1640 	dentry->d_lockref.count = 1;
1641 	dentry->d_flags = 0;
1642 	spin_lock_init(&dentry->d_lock);
1643 	seqcount_init(&dentry->d_seq);
1644 	dentry->d_inode = NULL;
1645 	dentry->d_parent = dentry;
1646 	dentry->d_sb = sb;
1647 	dentry->d_op = NULL;
1648 	dentry->d_fsdata = NULL;
1649 	INIT_HLIST_BL_NODE(&dentry->d_hash);
1650 	INIT_LIST_HEAD(&dentry->d_lru);
1651 	INIT_LIST_HEAD(&dentry->d_subdirs);
1652 	INIT_HLIST_NODE(&dentry->d_u.d_alias);
1653 	INIT_LIST_HEAD(&dentry->d_child);
1654 	d_set_d_op(dentry, dentry->d_sb->s_d_op);
1655 
1656 	this_cpu_inc(nr_dentry);
1657 
1658 	return dentry;
1659 }
1660 
1661 /**
1662  * d_alloc	-	allocate a dcache entry
1663  * @parent: parent of entry to allocate
1664  * @name: qstr of the name
1665  *
1666  * Allocates a dentry. It returns %NULL if there is insufficient memory
1667  * available. On a success the dentry is returned. The name passed in is
1668  * copied and the copy passed in may be reused after this call.
1669  */
1670 struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1671 {
1672 	struct dentry *dentry = __d_alloc(parent->d_sb, name);
1673 	if (!dentry)
1674 		return NULL;
1675 	dentry->d_flags |= DCACHE_RCUACCESS;
1676 	spin_lock(&parent->d_lock);
1677 	/*
1678 	 * don't need child lock because it is not subject
1679 	 * to concurrency here
1680 	 */
1681 	__dget_dlock(parent);
1682 	dentry->d_parent = parent;
1683 	list_add(&dentry->d_child, &parent->d_subdirs);
1684 	spin_unlock(&parent->d_lock);
1685 
1686 	return dentry;
1687 }
1688 EXPORT_SYMBOL(d_alloc);
1689 
1690 struct dentry *d_alloc_cursor(struct dentry * parent)
1691 {
1692 	struct dentry *dentry = __d_alloc(parent->d_sb, NULL);
1693 	if (dentry) {
1694 		dentry->d_flags |= DCACHE_RCUACCESS | DCACHE_DENTRY_CURSOR;
1695 		dentry->d_parent = dget(parent);
1696 	}
1697 	return dentry;
1698 }
1699 
1700 /**
1701  * d_alloc_pseudo - allocate a dentry (for lookup-less filesystems)
1702  * @sb: the superblock
1703  * @name: qstr of the name
1704  *
1705  * For a filesystem that just pins its dentries in memory and never
1706  * performs lookups at all, return an unhashed IS_ROOT dentry.
1707  */
1708 struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
1709 {
1710 	return __d_alloc(sb, name);
1711 }
1712 EXPORT_SYMBOL(d_alloc_pseudo);
1713 
1714 struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1715 {
1716 	struct qstr q;
1717 
1718 	q.name = name;
1719 	q.hash_len = hashlen_string(name);
1720 	return d_alloc(parent, &q);
1721 }
1722 EXPORT_SYMBOL(d_alloc_name);
1723 
1724 void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1725 {
1726 	WARN_ON_ONCE(dentry->d_op);
1727 	WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH	|
1728 				DCACHE_OP_COMPARE	|
1729 				DCACHE_OP_REVALIDATE	|
1730 				DCACHE_OP_WEAK_REVALIDATE	|
1731 				DCACHE_OP_DELETE	|
1732 				DCACHE_OP_SELECT_INODE	|
1733 				DCACHE_OP_REAL));
1734 	dentry->d_op = op;
1735 	if (!op)
1736 		return;
1737 	if (op->d_hash)
1738 		dentry->d_flags |= DCACHE_OP_HASH;
1739 	if (op->d_compare)
1740 		dentry->d_flags |= DCACHE_OP_COMPARE;
1741 	if (op->d_revalidate)
1742 		dentry->d_flags |= DCACHE_OP_REVALIDATE;
1743 	if (op->d_weak_revalidate)
1744 		dentry->d_flags |= DCACHE_OP_WEAK_REVALIDATE;
1745 	if (op->d_delete)
1746 		dentry->d_flags |= DCACHE_OP_DELETE;
1747 	if (op->d_prune)
1748 		dentry->d_flags |= DCACHE_OP_PRUNE;
1749 	if (op->d_select_inode)
1750 		dentry->d_flags |= DCACHE_OP_SELECT_INODE;
1751 	if (op->d_real)
1752 		dentry->d_flags |= DCACHE_OP_REAL;
1753 
1754 }
1755 EXPORT_SYMBOL(d_set_d_op);
1756 
1757 
1758 /*
1759  * d_set_fallthru - Mark a dentry as falling through to a lower layer
1760  * @dentry - The dentry to mark
1761  *
1762  * Mark a dentry as falling through to the lower layer (as set with
1763  * d_pin_lower()).  This flag may be recorded on the medium.
1764  */
1765 void d_set_fallthru(struct dentry *dentry)
1766 {
1767 	spin_lock(&dentry->d_lock);
1768 	dentry->d_flags |= DCACHE_FALLTHRU;
1769 	spin_unlock(&dentry->d_lock);
1770 }
1771 EXPORT_SYMBOL(d_set_fallthru);
1772 
1773 static unsigned d_flags_for_inode(struct inode *inode)
1774 {
1775 	unsigned add_flags = DCACHE_REGULAR_TYPE;
1776 
1777 	if (!inode)
1778 		return DCACHE_MISS_TYPE;
1779 
1780 	if (S_ISDIR(inode->i_mode)) {
1781 		add_flags = DCACHE_DIRECTORY_TYPE;
1782 		if (unlikely(!(inode->i_opflags & IOP_LOOKUP))) {
1783 			if (unlikely(!inode->i_op->lookup))
1784 				add_flags = DCACHE_AUTODIR_TYPE;
1785 			else
1786 				inode->i_opflags |= IOP_LOOKUP;
1787 		}
1788 		goto type_determined;
1789 	}
1790 
1791 	if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) {
1792 		if (unlikely(inode->i_op->get_link)) {
1793 			add_flags = DCACHE_SYMLINK_TYPE;
1794 			goto type_determined;
1795 		}
1796 		inode->i_opflags |= IOP_NOFOLLOW;
1797 	}
1798 
1799 	if (unlikely(!S_ISREG(inode->i_mode)))
1800 		add_flags = DCACHE_SPECIAL_TYPE;
1801 
1802 type_determined:
1803 	if (unlikely(IS_AUTOMOUNT(inode)))
1804 		add_flags |= DCACHE_NEED_AUTOMOUNT;
1805 	return add_flags;
1806 }
1807 
1808 static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1809 {
1810 	unsigned add_flags = d_flags_for_inode(inode);
1811 	WARN_ON(d_in_lookup(dentry));
1812 
1813 	spin_lock(&dentry->d_lock);
1814 	hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
1815 	raw_write_seqcount_begin(&dentry->d_seq);
1816 	__d_set_inode_and_type(dentry, inode, add_flags);
1817 	raw_write_seqcount_end(&dentry->d_seq);
1818 	__fsnotify_d_instantiate(dentry);
1819 	spin_unlock(&dentry->d_lock);
1820 }
1821 
1822 /**
1823  * d_instantiate - fill in inode information for a dentry
1824  * @entry: dentry to complete
1825  * @inode: inode to attach to this dentry
1826  *
1827  * Fill in inode information in the entry.
1828  *
1829  * This turns negative dentries into productive full members
1830  * of society.
1831  *
1832  * NOTE! This assumes that the inode count has been incremented
1833  * (or otherwise set) by the caller to indicate that it is now
1834  * in use by the dcache.
1835  */
1836 
1837 void d_instantiate(struct dentry *entry, struct inode * inode)
1838 {
1839 	BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
1840 	if (inode) {
1841 		security_d_instantiate(entry, inode);
1842 		spin_lock(&inode->i_lock);
1843 		__d_instantiate(entry, inode);
1844 		spin_unlock(&inode->i_lock);
1845 	}
1846 }
1847 EXPORT_SYMBOL(d_instantiate);
1848 
1849 /**
1850  * d_instantiate_no_diralias - instantiate a non-aliased dentry
1851  * @entry: dentry to complete
1852  * @inode: inode to attach to this dentry
1853  *
1854  * Fill in inode information in the entry.  If a directory alias is found, then
1855  * return an error (and drop inode).  Together with d_materialise_unique() this
1856  * guarantees that a directory inode may never have more than one alias.
1857  */
1858 int d_instantiate_no_diralias(struct dentry *entry, struct inode *inode)
1859 {
1860 	BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
1861 
1862 	security_d_instantiate(entry, inode);
1863 	spin_lock(&inode->i_lock);
1864 	if (S_ISDIR(inode->i_mode) && !hlist_empty(&inode->i_dentry)) {
1865 		spin_unlock(&inode->i_lock);
1866 		iput(inode);
1867 		return -EBUSY;
1868 	}
1869 	__d_instantiate(entry, inode);
1870 	spin_unlock(&inode->i_lock);
1871 
1872 	return 0;
1873 }
1874 EXPORT_SYMBOL(d_instantiate_no_diralias);
1875 
1876 struct dentry *d_make_root(struct inode *root_inode)
1877 {
1878 	struct dentry *res = NULL;
1879 
1880 	if (root_inode) {
1881 		res = __d_alloc(root_inode->i_sb, NULL);
1882 		if (res)
1883 			d_instantiate(res, root_inode);
1884 		else
1885 			iput(root_inode);
1886 	}
1887 	return res;
1888 }
1889 EXPORT_SYMBOL(d_make_root);
1890 
1891 static struct dentry * __d_find_any_alias(struct inode *inode)
1892 {
1893 	struct dentry *alias;
1894 
1895 	if (hlist_empty(&inode->i_dentry))
1896 		return NULL;
1897 	alias = hlist_entry(inode->i_dentry.first, struct dentry, d_u.d_alias);
1898 	__dget(alias);
1899 	return alias;
1900 }
1901 
1902 /**
1903  * d_find_any_alias - find any alias for a given inode
1904  * @inode: inode to find an alias for
1905  *
1906  * If any aliases exist for the given inode, take and return a
1907  * reference for one of them.  If no aliases exist, return %NULL.
1908  */
1909 struct dentry *d_find_any_alias(struct inode *inode)
1910 {
1911 	struct dentry *de;
1912 
1913 	spin_lock(&inode->i_lock);
1914 	de = __d_find_any_alias(inode);
1915 	spin_unlock(&inode->i_lock);
1916 	return de;
1917 }
1918 EXPORT_SYMBOL(d_find_any_alias);
1919 
1920 static struct dentry *__d_obtain_alias(struct inode *inode, int disconnected)
1921 {
1922 	struct dentry *tmp;
1923 	struct dentry *res;
1924 	unsigned add_flags;
1925 
1926 	if (!inode)
1927 		return ERR_PTR(-ESTALE);
1928 	if (IS_ERR(inode))
1929 		return ERR_CAST(inode);
1930 
1931 	res = d_find_any_alias(inode);
1932 	if (res)
1933 		goto out_iput;
1934 
1935 	tmp = __d_alloc(inode->i_sb, NULL);
1936 	if (!tmp) {
1937 		res = ERR_PTR(-ENOMEM);
1938 		goto out_iput;
1939 	}
1940 
1941 	security_d_instantiate(tmp, inode);
1942 	spin_lock(&inode->i_lock);
1943 	res = __d_find_any_alias(inode);
1944 	if (res) {
1945 		spin_unlock(&inode->i_lock);
1946 		dput(tmp);
1947 		goto out_iput;
1948 	}
1949 
1950 	/* attach a disconnected dentry */
1951 	add_flags = d_flags_for_inode(inode);
1952 
1953 	if (disconnected)
1954 		add_flags |= DCACHE_DISCONNECTED;
1955 
1956 	spin_lock(&tmp->d_lock);
1957 	__d_set_inode_and_type(tmp, inode, add_flags);
1958 	hlist_add_head(&tmp->d_u.d_alias, &inode->i_dentry);
1959 	hlist_bl_lock(&tmp->d_sb->s_anon);
1960 	hlist_bl_add_head(&tmp->d_hash, &tmp->d_sb->s_anon);
1961 	hlist_bl_unlock(&tmp->d_sb->s_anon);
1962 	spin_unlock(&tmp->d_lock);
1963 	spin_unlock(&inode->i_lock);
1964 
1965 	return tmp;
1966 
1967  out_iput:
1968 	iput(inode);
1969 	return res;
1970 }
1971 
1972 /**
1973  * d_obtain_alias - find or allocate a DISCONNECTED dentry for a given inode
1974  * @inode: inode to allocate the dentry for
1975  *
1976  * Obtain a dentry for an inode resulting from NFS filehandle conversion or
1977  * similar open by handle operations.  The returned dentry may be anonymous,
1978  * or may have a full name (if the inode was already in the cache).
1979  *
1980  * When called on a directory inode, we must ensure that the inode only ever
1981  * has one dentry.  If a dentry is found, that is returned instead of
1982  * allocating a new one.
1983  *
1984  * On successful return, the reference to the inode has been transferred
1985  * to the dentry.  In case of an error the reference on the inode is released.
1986  * To make it easier to use in export operations a %NULL or IS_ERR inode may
1987  * be passed in and the error will be propagated to the return value,
1988  * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
1989  */
1990 struct dentry *d_obtain_alias(struct inode *inode)
1991 {
1992 	return __d_obtain_alias(inode, 1);
1993 }
1994 EXPORT_SYMBOL(d_obtain_alias);
1995 
1996 /**
1997  * d_obtain_root - find or allocate a dentry for a given inode
1998  * @inode: inode to allocate the dentry for
1999  *
2000  * Obtain an IS_ROOT dentry for the root of a filesystem.
2001  *
2002  * We must ensure that directory inodes only ever have one dentry.  If a
2003  * dentry is found, that is returned instead of allocating a new one.
2004  *
2005  * On successful return, the reference to the inode has been transferred
2006  * to the dentry.  In case of an error the reference on the inode is
2007  * released.  A %NULL or IS_ERR inode may be passed in and will be the
2008  * error will be propagate to the return value, with a %NULL @inode
2009  * replaced by ERR_PTR(-ESTALE).
2010  */
2011 struct dentry *d_obtain_root(struct inode *inode)
2012 {
2013 	return __d_obtain_alias(inode, 0);
2014 }
2015 EXPORT_SYMBOL(d_obtain_root);
2016 
2017 /**
2018  * d_add_ci - lookup or allocate new dentry with case-exact name
2019  * @inode:  the inode case-insensitive lookup has found
2020  * @dentry: the negative dentry that was passed to the parent's lookup func
2021  * @name:   the case-exact name to be associated with the returned dentry
2022  *
2023  * This is to avoid filling the dcache with case-insensitive names to the
2024  * same inode, only the actual correct case is stored in the dcache for
2025  * case-insensitive filesystems.
2026  *
2027  * For a case-insensitive lookup match and if the the case-exact dentry
2028  * already exists in in the dcache, use it and return it.
2029  *
2030  * If no entry exists with the exact case name, allocate new dentry with
2031  * the exact case, and return the spliced entry.
2032  */
2033 struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
2034 			struct qstr *name)
2035 {
2036 	struct dentry *found, *res;
2037 
2038 	/*
2039 	 * First check if a dentry matching the name already exists,
2040 	 * if not go ahead and create it now.
2041 	 */
2042 	found = d_hash_and_lookup(dentry->d_parent, name);
2043 	if (found) {
2044 		iput(inode);
2045 		return found;
2046 	}
2047 	if (d_in_lookup(dentry)) {
2048 		found = d_alloc_parallel(dentry->d_parent, name,
2049 					dentry->d_wait);
2050 		if (IS_ERR(found) || !d_in_lookup(found)) {
2051 			iput(inode);
2052 			return found;
2053 		}
2054 	} else {
2055 		found = d_alloc(dentry->d_parent, name);
2056 		if (!found) {
2057 			iput(inode);
2058 			return ERR_PTR(-ENOMEM);
2059 		}
2060 	}
2061 	res = d_splice_alias(inode, found);
2062 	if (res) {
2063 		dput(found);
2064 		return res;
2065 	}
2066 	return found;
2067 }
2068 EXPORT_SYMBOL(d_add_ci);
2069 
2070 /*
2071  * Do the slow-case of the dentry name compare.
2072  *
2073  * Unlike the dentry_cmp() function, we need to atomically
2074  * load the name and length information, so that the
2075  * filesystem can rely on them, and can use the 'name' and
2076  * 'len' information without worrying about walking off the
2077  * end of memory etc.
2078  *
2079  * Thus the read_seqcount_retry() and the "duplicate" info
2080  * in arguments (the low-level filesystem should not look
2081  * at the dentry inode or name contents directly, since
2082  * rename can change them while we're in RCU mode).
2083  */
2084 enum slow_d_compare {
2085 	D_COMP_OK,
2086 	D_COMP_NOMATCH,
2087 	D_COMP_SEQRETRY,
2088 };
2089 
2090 static noinline enum slow_d_compare slow_dentry_cmp(
2091 		const struct dentry *parent,
2092 		struct dentry *dentry,
2093 		unsigned int seq,
2094 		const struct qstr *name)
2095 {
2096 	int tlen = dentry->d_name.len;
2097 	const char *tname = dentry->d_name.name;
2098 
2099 	if (read_seqcount_retry(&dentry->d_seq, seq)) {
2100 		cpu_relax();
2101 		return D_COMP_SEQRETRY;
2102 	}
2103 	if (parent->d_op->d_compare(parent, dentry, tlen, tname, name))
2104 		return D_COMP_NOMATCH;
2105 	return D_COMP_OK;
2106 }
2107 
2108 /**
2109  * __d_lookup_rcu - search for a dentry (racy, store-free)
2110  * @parent: parent dentry
2111  * @name: qstr of name we wish to find
2112  * @seqp: returns d_seq value at the point where the dentry was found
2113  * Returns: dentry, or NULL
2114  *
2115  * __d_lookup_rcu is the dcache lookup function for rcu-walk name
2116  * resolution (store-free path walking) design described in
2117  * Documentation/filesystems/path-lookup.txt.
2118  *
2119  * This is not to be used outside core vfs.
2120  *
2121  * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
2122  * held, and rcu_read_lock held. The returned dentry must not be stored into
2123  * without taking d_lock and checking d_seq sequence count against @seq
2124  * returned here.
2125  *
2126  * A refcount may be taken on the found dentry with the d_rcu_to_refcount
2127  * function.
2128  *
2129  * Alternatively, __d_lookup_rcu may be called again to look up the child of
2130  * the returned dentry, so long as its parent's seqlock is checked after the
2131  * child is looked up. Thus, an interlocking stepping of sequence lock checks
2132  * is formed, giving integrity down the path walk.
2133  *
2134  * NOTE! The caller *has* to check the resulting dentry against the sequence
2135  * number we've returned before using any of the resulting dentry state!
2136  */
2137 struct dentry *__d_lookup_rcu(const struct dentry *parent,
2138 				const struct qstr *name,
2139 				unsigned *seqp)
2140 {
2141 	u64 hashlen = name->hash_len;
2142 	const unsigned char *str = name->name;
2143 	struct hlist_bl_head *b = d_hash(parent, hashlen_hash(hashlen));
2144 	struct hlist_bl_node *node;
2145 	struct dentry *dentry;
2146 
2147 	/*
2148 	 * Note: There is significant duplication with __d_lookup_rcu which is
2149 	 * required to prevent single threaded performance regressions
2150 	 * especially on architectures where smp_rmb (in seqcounts) are costly.
2151 	 * Keep the two functions in sync.
2152 	 */
2153 
2154 	/*
2155 	 * The hash list is protected using RCU.
2156 	 *
2157 	 * Carefully use d_seq when comparing a candidate dentry, to avoid
2158 	 * races with d_move().
2159 	 *
2160 	 * It is possible that concurrent renames can mess up our list
2161 	 * walk here and result in missing our dentry, resulting in the
2162 	 * false-negative result. d_lookup() protects against concurrent
2163 	 * renames using rename_lock seqlock.
2164 	 *
2165 	 * See Documentation/filesystems/path-lookup.txt for more details.
2166 	 */
2167 	hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2168 		unsigned seq;
2169 
2170 seqretry:
2171 		/*
2172 		 * The dentry sequence count protects us from concurrent
2173 		 * renames, and thus protects parent and name fields.
2174 		 *
2175 		 * The caller must perform a seqcount check in order
2176 		 * to do anything useful with the returned dentry.
2177 		 *
2178 		 * NOTE! We do a "raw" seqcount_begin here. That means that
2179 		 * we don't wait for the sequence count to stabilize if it
2180 		 * is in the middle of a sequence change. If we do the slow
2181 		 * dentry compare, we will do seqretries until it is stable,
2182 		 * and if we end up with a successful lookup, we actually
2183 		 * want to exit RCU lookup anyway.
2184 		 */
2185 		seq = raw_seqcount_begin(&dentry->d_seq);
2186 		if (dentry->d_parent != parent)
2187 			continue;
2188 		if (d_unhashed(dentry))
2189 			continue;
2190 
2191 		if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) {
2192 			if (dentry->d_name.hash != hashlen_hash(hashlen))
2193 				continue;
2194 			*seqp = seq;
2195 			switch (slow_dentry_cmp(parent, dentry, seq, name)) {
2196 			case D_COMP_OK:
2197 				return dentry;
2198 			case D_COMP_NOMATCH:
2199 				continue;
2200 			default:
2201 				goto seqretry;
2202 			}
2203 		}
2204 
2205 		if (dentry->d_name.hash_len != hashlen)
2206 			continue;
2207 		*seqp = seq;
2208 		if (!dentry_cmp(dentry, str, hashlen_len(hashlen)))
2209 			return dentry;
2210 	}
2211 	return NULL;
2212 }
2213 
2214 /**
2215  * d_lookup - search for a dentry
2216  * @parent: parent dentry
2217  * @name: qstr of name we wish to find
2218  * Returns: dentry, or NULL
2219  *
2220  * d_lookup searches the children of the parent dentry for the name in
2221  * question. If the dentry is found its reference count is incremented and the
2222  * dentry is returned. The caller must use dput to free the entry when it has
2223  * finished using it. %NULL is returned if the dentry does not exist.
2224  */
2225 struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name)
2226 {
2227 	struct dentry *dentry;
2228 	unsigned seq;
2229 
2230 	do {
2231 		seq = read_seqbegin(&rename_lock);
2232 		dentry = __d_lookup(parent, name);
2233 		if (dentry)
2234 			break;
2235 	} while (read_seqretry(&rename_lock, seq));
2236 	return dentry;
2237 }
2238 EXPORT_SYMBOL(d_lookup);
2239 
2240 /**
2241  * __d_lookup - search for a dentry (racy)
2242  * @parent: parent dentry
2243  * @name: qstr of name we wish to find
2244  * Returns: dentry, or NULL
2245  *
2246  * __d_lookup is like d_lookup, however it may (rarely) return a
2247  * false-negative result due to unrelated rename activity.
2248  *
2249  * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
2250  * however it must be used carefully, eg. with a following d_lookup in
2251  * the case of failure.
2252  *
2253  * __d_lookup callers must be commented.
2254  */
2255 struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name)
2256 {
2257 	unsigned int len = name->len;
2258 	unsigned int hash = name->hash;
2259 	const unsigned char *str = name->name;
2260 	struct hlist_bl_head *b = d_hash(parent, hash);
2261 	struct hlist_bl_node *node;
2262 	struct dentry *found = NULL;
2263 	struct dentry *dentry;
2264 
2265 	/*
2266 	 * Note: There is significant duplication with __d_lookup_rcu which is
2267 	 * required to prevent single threaded performance regressions
2268 	 * especially on architectures where smp_rmb (in seqcounts) are costly.
2269 	 * Keep the two functions in sync.
2270 	 */
2271 
2272 	/*
2273 	 * The hash list is protected using RCU.
2274 	 *
2275 	 * Take d_lock when comparing a candidate dentry, to avoid races
2276 	 * with d_move().
2277 	 *
2278 	 * It is possible that concurrent renames can mess up our list
2279 	 * walk here and result in missing our dentry, resulting in the
2280 	 * false-negative result. d_lookup() protects against concurrent
2281 	 * renames using rename_lock seqlock.
2282 	 *
2283 	 * See Documentation/filesystems/path-lookup.txt for more details.
2284 	 */
2285 	rcu_read_lock();
2286 
2287 	hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2288 
2289 		if (dentry->d_name.hash != hash)
2290 			continue;
2291 
2292 		spin_lock(&dentry->d_lock);
2293 		if (dentry->d_parent != parent)
2294 			goto next;
2295 		if (d_unhashed(dentry))
2296 			goto next;
2297 
2298 		/*
2299 		 * It is safe to compare names since d_move() cannot
2300 		 * change the qstr (protected by d_lock).
2301 		 */
2302 		if (parent->d_flags & DCACHE_OP_COMPARE) {
2303 			int tlen = dentry->d_name.len;
2304 			const char *tname = dentry->d_name.name;
2305 			if (parent->d_op->d_compare(parent, dentry, tlen, tname, name))
2306 				goto next;
2307 		} else {
2308 			if (dentry->d_name.len != len)
2309 				goto next;
2310 			if (dentry_cmp(dentry, str, len))
2311 				goto next;
2312 		}
2313 
2314 		dentry->d_lockref.count++;
2315 		found = dentry;
2316 		spin_unlock(&dentry->d_lock);
2317 		break;
2318 next:
2319 		spin_unlock(&dentry->d_lock);
2320  	}
2321  	rcu_read_unlock();
2322 
2323  	return found;
2324 }
2325 
2326 /**
2327  * d_hash_and_lookup - hash the qstr then search for a dentry
2328  * @dir: Directory to search in
2329  * @name: qstr of name we wish to find
2330  *
2331  * On lookup failure NULL is returned; on bad name - ERR_PTR(-error)
2332  */
2333 struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
2334 {
2335 	/*
2336 	 * Check for a fs-specific hash function. Note that we must
2337 	 * calculate the standard hash first, as the d_op->d_hash()
2338 	 * routine may choose to leave the hash value unchanged.
2339 	 */
2340 	name->hash = full_name_hash(name->name, name->len);
2341 	if (dir->d_flags & DCACHE_OP_HASH) {
2342 		int err = dir->d_op->d_hash(dir, name);
2343 		if (unlikely(err < 0))
2344 			return ERR_PTR(err);
2345 	}
2346 	return d_lookup(dir, name);
2347 }
2348 EXPORT_SYMBOL(d_hash_and_lookup);
2349 
2350 /*
2351  * When a file is deleted, we have two options:
2352  * - turn this dentry into a negative dentry
2353  * - unhash this dentry and free it.
2354  *
2355  * Usually, we want to just turn this into
2356  * a negative dentry, but if anybody else is
2357  * currently using the dentry or the inode
2358  * we can't do that and we fall back on removing
2359  * it from the hash queues and waiting for
2360  * it to be deleted later when it has no users
2361  */
2362 
2363 /**
2364  * d_delete - delete a dentry
2365  * @dentry: The dentry to delete
2366  *
2367  * Turn the dentry into a negative dentry if possible, otherwise
2368  * remove it from the hash queues so it can be deleted later
2369  */
2370 
2371 void d_delete(struct dentry * dentry)
2372 {
2373 	struct inode *inode;
2374 	int isdir = 0;
2375 	/*
2376 	 * Are we the only user?
2377 	 */
2378 again:
2379 	spin_lock(&dentry->d_lock);
2380 	inode = dentry->d_inode;
2381 	isdir = S_ISDIR(inode->i_mode);
2382 	if (dentry->d_lockref.count == 1) {
2383 		if (!spin_trylock(&inode->i_lock)) {
2384 			spin_unlock(&dentry->d_lock);
2385 			cpu_relax();
2386 			goto again;
2387 		}
2388 		dentry->d_flags &= ~DCACHE_CANT_MOUNT;
2389 		dentry_unlink_inode(dentry);
2390 		fsnotify_nameremove(dentry, isdir);
2391 		return;
2392 	}
2393 
2394 	if (!d_unhashed(dentry))
2395 		__d_drop(dentry);
2396 
2397 	spin_unlock(&dentry->d_lock);
2398 
2399 	fsnotify_nameremove(dentry, isdir);
2400 }
2401 EXPORT_SYMBOL(d_delete);
2402 
2403 static void __d_rehash(struct dentry * entry, struct hlist_bl_head *b)
2404 {
2405 	BUG_ON(!d_unhashed(entry));
2406 	hlist_bl_lock(b);
2407 	hlist_bl_add_head_rcu(&entry->d_hash, b);
2408 	hlist_bl_unlock(b);
2409 }
2410 
2411 static void _d_rehash(struct dentry * entry)
2412 {
2413 	__d_rehash(entry, d_hash(entry->d_parent, entry->d_name.hash));
2414 }
2415 
2416 /**
2417  * d_rehash	- add an entry back to the hash
2418  * @entry: dentry to add to the hash
2419  *
2420  * Adds a dentry to the hash according to its name.
2421  */
2422 
2423 void d_rehash(struct dentry * entry)
2424 {
2425 	spin_lock(&entry->d_lock);
2426 	_d_rehash(entry);
2427 	spin_unlock(&entry->d_lock);
2428 }
2429 EXPORT_SYMBOL(d_rehash);
2430 
2431 static inline unsigned start_dir_add(struct inode *dir)
2432 {
2433 
2434 	for (;;) {
2435 		unsigned n = dir->i_dir_seq;
2436 		if (!(n & 1) && cmpxchg(&dir->i_dir_seq, n, n + 1) == n)
2437 			return n;
2438 		cpu_relax();
2439 	}
2440 }
2441 
2442 static inline void end_dir_add(struct inode *dir, unsigned n)
2443 {
2444 	smp_store_release(&dir->i_dir_seq, n + 2);
2445 }
2446 
2447 static void d_wait_lookup(struct dentry *dentry)
2448 {
2449 	if (d_in_lookup(dentry)) {
2450 		DECLARE_WAITQUEUE(wait, current);
2451 		add_wait_queue(dentry->d_wait, &wait);
2452 		do {
2453 			set_current_state(TASK_UNINTERRUPTIBLE);
2454 			spin_unlock(&dentry->d_lock);
2455 			schedule();
2456 			spin_lock(&dentry->d_lock);
2457 		} while (d_in_lookup(dentry));
2458 	}
2459 }
2460 
2461 struct dentry *d_alloc_parallel(struct dentry *parent,
2462 				const struct qstr *name,
2463 				wait_queue_head_t *wq)
2464 {
2465 	unsigned int len = name->len;
2466 	unsigned int hash = name->hash;
2467 	const unsigned char *str = name->name;
2468 	struct hlist_bl_head *b = in_lookup_hash(parent, hash);
2469 	struct hlist_bl_node *node;
2470 	struct dentry *new = d_alloc(parent, name);
2471 	struct dentry *dentry;
2472 	unsigned seq, r_seq, d_seq;
2473 
2474 	if (unlikely(!new))
2475 		return ERR_PTR(-ENOMEM);
2476 
2477 retry:
2478 	rcu_read_lock();
2479 	seq = smp_load_acquire(&parent->d_inode->i_dir_seq) & ~1;
2480 	r_seq = read_seqbegin(&rename_lock);
2481 	dentry = __d_lookup_rcu(parent, name, &d_seq);
2482 	if (unlikely(dentry)) {
2483 		if (!lockref_get_not_dead(&dentry->d_lockref)) {
2484 			rcu_read_unlock();
2485 			goto retry;
2486 		}
2487 		if (read_seqcount_retry(&dentry->d_seq, d_seq)) {
2488 			rcu_read_unlock();
2489 			dput(dentry);
2490 			goto retry;
2491 		}
2492 		rcu_read_unlock();
2493 		dput(new);
2494 		return dentry;
2495 	}
2496 	if (unlikely(read_seqretry(&rename_lock, r_seq))) {
2497 		rcu_read_unlock();
2498 		goto retry;
2499 	}
2500 	hlist_bl_lock(b);
2501 	if (unlikely(parent->d_inode->i_dir_seq != seq)) {
2502 		hlist_bl_unlock(b);
2503 		rcu_read_unlock();
2504 		goto retry;
2505 	}
2506 	/*
2507 	 * No changes for the parent since the beginning of d_lookup().
2508 	 * Since all removals from the chain happen with hlist_bl_lock(),
2509 	 * any potential in-lookup matches are going to stay here until
2510 	 * we unlock the chain.  All fields are stable in everything
2511 	 * we encounter.
2512 	 */
2513 	hlist_bl_for_each_entry(dentry, node, b, d_u.d_in_lookup_hash) {
2514 		if (dentry->d_name.hash != hash)
2515 			continue;
2516 		if (dentry->d_parent != parent)
2517 			continue;
2518 		if (parent->d_flags & DCACHE_OP_COMPARE) {
2519 			int tlen = dentry->d_name.len;
2520 			const char *tname = dentry->d_name.name;
2521 			if (parent->d_op->d_compare(parent, dentry, tlen, tname, name))
2522 				continue;
2523 		} else {
2524 			if (dentry->d_name.len != len)
2525 				continue;
2526 			if (dentry_cmp(dentry, str, len))
2527 				continue;
2528 		}
2529 		hlist_bl_unlock(b);
2530 		/* now we can try to grab a reference */
2531 		if (!lockref_get_not_dead(&dentry->d_lockref)) {
2532 			rcu_read_unlock();
2533 			goto retry;
2534 		}
2535 
2536 		rcu_read_unlock();
2537 		/*
2538 		 * somebody is likely to be still doing lookup for it;
2539 		 * wait for them to finish
2540 		 */
2541 		spin_lock(&dentry->d_lock);
2542 		d_wait_lookup(dentry);
2543 		/*
2544 		 * it's not in-lookup anymore; in principle we should repeat
2545 		 * everything from dcache lookup, but it's likely to be what
2546 		 * d_lookup() would've found anyway.  If it is, just return it;
2547 		 * otherwise we really have to repeat the whole thing.
2548 		 */
2549 		if (unlikely(dentry->d_name.hash != hash))
2550 			goto mismatch;
2551 		if (unlikely(dentry->d_parent != parent))
2552 			goto mismatch;
2553 		if (unlikely(d_unhashed(dentry)))
2554 			goto mismatch;
2555 		if (parent->d_flags & DCACHE_OP_COMPARE) {
2556 			int tlen = dentry->d_name.len;
2557 			const char *tname = dentry->d_name.name;
2558 			if (parent->d_op->d_compare(parent, dentry, tlen, tname, name))
2559 				goto mismatch;
2560 		} else {
2561 			if (unlikely(dentry->d_name.len != len))
2562 				goto mismatch;
2563 			if (unlikely(dentry_cmp(dentry, str, len)))
2564 				goto mismatch;
2565 		}
2566 		/* OK, it *is* a hashed match; return it */
2567 		spin_unlock(&dentry->d_lock);
2568 		dput(new);
2569 		return dentry;
2570 	}
2571 	rcu_read_unlock();
2572 	/* we can't take ->d_lock here; it's OK, though. */
2573 	new->d_flags |= DCACHE_PAR_LOOKUP;
2574 	new->d_wait = wq;
2575 	hlist_bl_add_head_rcu(&new->d_u.d_in_lookup_hash, b);
2576 	hlist_bl_unlock(b);
2577 	return new;
2578 mismatch:
2579 	spin_unlock(&dentry->d_lock);
2580 	dput(dentry);
2581 	goto retry;
2582 }
2583 EXPORT_SYMBOL(d_alloc_parallel);
2584 
2585 void __d_lookup_done(struct dentry *dentry)
2586 {
2587 	struct hlist_bl_head *b = in_lookup_hash(dentry->d_parent,
2588 						 dentry->d_name.hash);
2589 	hlist_bl_lock(b);
2590 	dentry->d_flags &= ~DCACHE_PAR_LOOKUP;
2591 	__hlist_bl_del(&dentry->d_u.d_in_lookup_hash);
2592 	wake_up_all(dentry->d_wait);
2593 	dentry->d_wait = NULL;
2594 	hlist_bl_unlock(b);
2595 	INIT_HLIST_NODE(&dentry->d_u.d_alias);
2596 	INIT_LIST_HEAD(&dentry->d_lru);
2597 }
2598 EXPORT_SYMBOL(__d_lookup_done);
2599 
2600 /* inode->i_lock held if inode is non-NULL */
2601 
2602 static inline void __d_add(struct dentry *dentry, struct inode *inode)
2603 {
2604 	struct inode *dir = NULL;
2605 	unsigned n;
2606 	spin_lock(&dentry->d_lock);
2607 	if (unlikely(d_in_lookup(dentry))) {
2608 		dir = dentry->d_parent->d_inode;
2609 		n = start_dir_add(dir);
2610 		__d_lookup_done(dentry);
2611 	}
2612 	if (inode) {
2613 		unsigned add_flags = d_flags_for_inode(inode);
2614 		hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
2615 		raw_write_seqcount_begin(&dentry->d_seq);
2616 		__d_set_inode_and_type(dentry, inode, add_flags);
2617 		raw_write_seqcount_end(&dentry->d_seq);
2618 		__fsnotify_d_instantiate(dentry);
2619 	}
2620 	_d_rehash(dentry);
2621 	if (dir)
2622 		end_dir_add(dir, n);
2623 	spin_unlock(&dentry->d_lock);
2624 	if (inode)
2625 		spin_unlock(&inode->i_lock);
2626 }
2627 
2628 /**
2629  * d_add - add dentry to hash queues
2630  * @entry: dentry to add
2631  * @inode: The inode to attach to this dentry
2632  *
2633  * This adds the entry to the hash queues and initializes @inode.
2634  * The entry was actually filled in earlier during d_alloc().
2635  */
2636 
2637 void d_add(struct dentry *entry, struct inode *inode)
2638 {
2639 	if (inode) {
2640 		security_d_instantiate(entry, inode);
2641 		spin_lock(&inode->i_lock);
2642 	}
2643 	__d_add(entry, inode);
2644 }
2645 EXPORT_SYMBOL(d_add);
2646 
2647 /**
2648  * d_exact_alias - find and hash an exact unhashed alias
2649  * @entry: dentry to add
2650  * @inode: The inode to go with this dentry
2651  *
2652  * If an unhashed dentry with the same name/parent and desired
2653  * inode already exists, hash and return it.  Otherwise, return
2654  * NULL.
2655  *
2656  * Parent directory should be locked.
2657  */
2658 struct dentry *d_exact_alias(struct dentry *entry, struct inode *inode)
2659 {
2660 	struct dentry *alias;
2661 	int len = entry->d_name.len;
2662 	const char *name = entry->d_name.name;
2663 	unsigned int hash = entry->d_name.hash;
2664 
2665 	spin_lock(&inode->i_lock);
2666 	hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
2667 		/*
2668 		 * Don't need alias->d_lock here, because aliases with
2669 		 * d_parent == entry->d_parent are not subject to name or
2670 		 * parent changes, because the parent inode i_mutex is held.
2671 		 */
2672 		if (alias->d_name.hash != hash)
2673 			continue;
2674 		if (alias->d_parent != entry->d_parent)
2675 			continue;
2676 		if (alias->d_name.len != len)
2677 			continue;
2678 		if (dentry_cmp(alias, name, len))
2679 			continue;
2680 		spin_lock(&alias->d_lock);
2681 		if (!d_unhashed(alias)) {
2682 			spin_unlock(&alias->d_lock);
2683 			alias = NULL;
2684 		} else {
2685 			__dget_dlock(alias);
2686 			_d_rehash(alias);
2687 			spin_unlock(&alias->d_lock);
2688 		}
2689 		spin_unlock(&inode->i_lock);
2690 		return alias;
2691 	}
2692 	spin_unlock(&inode->i_lock);
2693 	return NULL;
2694 }
2695 EXPORT_SYMBOL(d_exact_alias);
2696 
2697 /**
2698  * dentry_update_name_case - update case insensitive dentry with a new name
2699  * @dentry: dentry to be updated
2700  * @name: new name
2701  *
2702  * Update a case insensitive dentry with new case of name.
2703  *
2704  * dentry must have been returned by d_lookup with name @name. Old and new
2705  * name lengths must match (ie. no d_compare which allows mismatched name
2706  * lengths).
2707  *
2708  * Parent inode i_mutex must be held over d_lookup and into this call (to
2709  * keep renames and concurrent inserts, and readdir(2) away).
2710  */
2711 void dentry_update_name_case(struct dentry *dentry, struct qstr *name)
2712 {
2713 	BUG_ON(!inode_is_locked(dentry->d_parent->d_inode));
2714 	BUG_ON(dentry->d_name.len != name->len); /* d_lookup gives this */
2715 
2716 	spin_lock(&dentry->d_lock);
2717 	write_seqcount_begin(&dentry->d_seq);
2718 	memcpy((unsigned char *)dentry->d_name.name, name->name, name->len);
2719 	write_seqcount_end(&dentry->d_seq);
2720 	spin_unlock(&dentry->d_lock);
2721 }
2722 EXPORT_SYMBOL(dentry_update_name_case);
2723 
2724 static void swap_names(struct dentry *dentry, struct dentry *target)
2725 {
2726 	if (unlikely(dname_external(target))) {
2727 		if (unlikely(dname_external(dentry))) {
2728 			/*
2729 			 * Both external: swap the pointers
2730 			 */
2731 			swap(target->d_name.name, dentry->d_name.name);
2732 		} else {
2733 			/*
2734 			 * dentry:internal, target:external.  Steal target's
2735 			 * storage and make target internal.
2736 			 */
2737 			memcpy(target->d_iname, dentry->d_name.name,
2738 					dentry->d_name.len + 1);
2739 			dentry->d_name.name = target->d_name.name;
2740 			target->d_name.name = target->d_iname;
2741 		}
2742 	} else {
2743 		if (unlikely(dname_external(dentry))) {
2744 			/*
2745 			 * dentry:external, target:internal.  Give dentry's
2746 			 * storage to target and make dentry internal
2747 			 */
2748 			memcpy(dentry->d_iname, target->d_name.name,
2749 					target->d_name.len + 1);
2750 			target->d_name.name = dentry->d_name.name;
2751 			dentry->d_name.name = dentry->d_iname;
2752 		} else {
2753 			/*
2754 			 * Both are internal.
2755 			 */
2756 			unsigned int i;
2757 			BUILD_BUG_ON(!IS_ALIGNED(DNAME_INLINE_LEN, sizeof(long)));
2758 			kmemcheck_mark_initialized(dentry->d_iname, DNAME_INLINE_LEN);
2759 			kmemcheck_mark_initialized(target->d_iname, DNAME_INLINE_LEN);
2760 			for (i = 0; i < DNAME_INLINE_LEN / sizeof(long); i++) {
2761 				swap(((long *) &dentry->d_iname)[i],
2762 				     ((long *) &target->d_iname)[i]);
2763 			}
2764 		}
2765 	}
2766 	swap(dentry->d_name.hash_len, target->d_name.hash_len);
2767 }
2768 
2769 static void copy_name(struct dentry *dentry, struct dentry *target)
2770 {
2771 	struct external_name *old_name = NULL;
2772 	if (unlikely(dname_external(dentry)))
2773 		old_name = external_name(dentry);
2774 	if (unlikely(dname_external(target))) {
2775 		atomic_inc(&external_name(target)->u.count);
2776 		dentry->d_name = target->d_name;
2777 	} else {
2778 		memcpy(dentry->d_iname, target->d_name.name,
2779 				target->d_name.len + 1);
2780 		dentry->d_name.name = dentry->d_iname;
2781 		dentry->d_name.hash_len = target->d_name.hash_len;
2782 	}
2783 	if (old_name && likely(atomic_dec_and_test(&old_name->u.count)))
2784 		kfree_rcu(old_name, u.head);
2785 }
2786 
2787 static void dentry_lock_for_move(struct dentry *dentry, struct dentry *target)
2788 {
2789 	/*
2790 	 * XXXX: do we really need to take target->d_lock?
2791 	 */
2792 	if (IS_ROOT(dentry) || dentry->d_parent == target->d_parent)
2793 		spin_lock(&target->d_parent->d_lock);
2794 	else {
2795 		if (d_ancestor(dentry->d_parent, target->d_parent)) {
2796 			spin_lock(&dentry->d_parent->d_lock);
2797 			spin_lock_nested(&target->d_parent->d_lock,
2798 						DENTRY_D_LOCK_NESTED);
2799 		} else {
2800 			spin_lock(&target->d_parent->d_lock);
2801 			spin_lock_nested(&dentry->d_parent->d_lock,
2802 						DENTRY_D_LOCK_NESTED);
2803 		}
2804 	}
2805 	if (target < dentry) {
2806 		spin_lock_nested(&target->d_lock, 2);
2807 		spin_lock_nested(&dentry->d_lock, 3);
2808 	} else {
2809 		spin_lock_nested(&dentry->d_lock, 2);
2810 		spin_lock_nested(&target->d_lock, 3);
2811 	}
2812 }
2813 
2814 static void dentry_unlock_for_move(struct dentry *dentry, struct dentry *target)
2815 {
2816 	if (target->d_parent != dentry->d_parent)
2817 		spin_unlock(&dentry->d_parent->d_lock);
2818 	if (target->d_parent != target)
2819 		spin_unlock(&target->d_parent->d_lock);
2820 	spin_unlock(&target->d_lock);
2821 	spin_unlock(&dentry->d_lock);
2822 }
2823 
2824 /*
2825  * When switching names, the actual string doesn't strictly have to
2826  * be preserved in the target - because we're dropping the target
2827  * anyway. As such, we can just do a simple memcpy() to copy over
2828  * the new name before we switch, unless we are going to rehash
2829  * it.  Note that if we *do* unhash the target, we are not allowed
2830  * to rehash it without giving it a new name/hash key - whether
2831  * we swap or overwrite the names here, resulting name won't match
2832  * the reality in filesystem; it's only there for d_path() purposes.
2833  * Note that all of this is happening under rename_lock, so the
2834  * any hash lookup seeing it in the middle of manipulations will
2835  * be discarded anyway.  So we do not care what happens to the hash
2836  * key in that case.
2837  */
2838 /*
2839  * __d_move - move a dentry
2840  * @dentry: entry to move
2841  * @target: new dentry
2842  * @exchange: exchange the two dentries
2843  *
2844  * Update the dcache to reflect the move of a file name. Negative
2845  * dcache entries should not be moved in this way. Caller must hold
2846  * rename_lock, the i_mutex of the source and target directories,
2847  * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
2848  */
2849 static void __d_move(struct dentry *dentry, struct dentry *target,
2850 		     bool exchange)
2851 {
2852 	struct inode *dir = NULL;
2853 	unsigned n;
2854 	if (!dentry->d_inode)
2855 		printk(KERN_WARNING "VFS: moving negative dcache entry\n");
2856 
2857 	BUG_ON(d_ancestor(dentry, target));
2858 	BUG_ON(d_ancestor(target, dentry));
2859 
2860 	dentry_lock_for_move(dentry, target);
2861 	if (unlikely(d_in_lookup(target))) {
2862 		dir = target->d_parent->d_inode;
2863 		n = start_dir_add(dir);
2864 		__d_lookup_done(target);
2865 	}
2866 
2867 	write_seqcount_begin(&dentry->d_seq);
2868 	write_seqcount_begin_nested(&target->d_seq, DENTRY_D_LOCK_NESTED);
2869 
2870 	/* __d_drop does write_seqcount_barrier, but they're OK to nest. */
2871 
2872 	/*
2873 	 * Move the dentry to the target hash queue. Don't bother checking
2874 	 * for the same hash queue because of how unlikely it is.
2875 	 */
2876 	__d_drop(dentry);
2877 	__d_rehash(dentry, d_hash(target->d_parent, target->d_name.hash));
2878 
2879 	/*
2880 	 * Unhash the target (d_delete() is not usable here).  If exchanging
2881 	 * the two dentries, then rehash onto the other's hash queue.
2882 	 */
2883 	__d_drop(target);
2884 	if (exchange) {
2885 		__d_rehash(target,
2886 			   d_hash(dentry->d_parent, dentry->d_name.hash));
2887 	}
2888 
2889 	/* Switch the names.. */
2890 	if (exchange)
2891 		swap_names(dentry, target);
2892 	else
2893 		copy_name(dentry, target);
2894 
2895 	/* ... and switch them in the tree */
2896 	if (IS_ROOT(dentry)) {
2897 		/* splicing a tree */
2898 		dentry->d_flags |= DCACHE_RCUACCESS;
2899 		dentry->d_parent = target->d_parent;
2900 		target->d_parent = target;
2901 		list_del_init(&target->d_child);
2902 		list_move(&dentry->d_child, &dentry->d_parent->d_subdirs);
2903 	} else {
2904 		/* swapping two dentries */
2905 		swap(dentry->d_parent, target->d_parent);
2906 		list_move(&target->d_child, &target->d_parent->d_subdirs);
2907 		list_move(&dentry->d_child, &dentry->d_parent->d_subdirs);
2908 		if (exchange)
2909 			fsnotify_d_move(target);
2910 		fsnotify_d_move(dentry);
2911 	}
2912 
2913 	write_seqcount_end(&target->d_seq);
2914 	write_seqcount_end(&dentry->d_seq);
2915 
2916 	if (dir)
2917 		end_dir_add(dir, n);
2918 	dentry_unlock_for_move(dentry, target);
2919 }
2920 
2921 /*
2922  * d_move - move a dentry
2923  * @dentry: entry to move
2924  * @target: new dentry
2925  *
2926  * Update the dcache to reflect the move of a file name. Negative
2927  * dcache entries should not be moved in this way. See the locking
2928  * requirements for __d_move.
2929  */
2930 void d_move(struct dentry *dentry, struct dentry *target)
2931 {
2932 	write_seqlock(&rename_lock);
2933 	__d_move(dentry, target, false);
2934 	write_sequnlock(&rename_lock);
2935 }
2936 EXPORT_SYMBOL(d_move);
2937 
2938 /*
2939  * d_exchange - exchange two dentries
2940  * @dentry1: first dentry
2941  * @dentry2: second dentry
2942  */
2943 void d_exchange(struct dentry *dentry1, struct dentry *dentry2)
2944 {
2945 	write_seqlock(&rename_lock);
2946 
2947 	WARN_ON(!dentry1->d_inode);
2948 	WARN_ON(!dentry2->d_inode);
2949 	WARN_ON(IS_ROOT(dentry1));
2950 	WARN_ON(IS_ROOT(dentry2));
2951 
2952 	__d_move(dentry1, dentry2, true);
2953 
2954 	write_sequnlock(&rename_lock);
2955 }
2956 
2957 /**
2958  * d_ancestor - search for an ancestor
2959  * @p1: ancestor dentry
2960  * @p2: child dentry
2961  *
2962  * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2963  * an ancestor of p2, else NULL.
2964  */
2965 struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
2966 {
2967 	struct dentry *p;
2968 
2969 	for (p = p2; !IS_ROOT(p); p = p->d_parent) {
2970 		if (p->d_parent == p1)
2971 			return p;
2972 	}
2973 	return NULL;
2974 }
2975 
2976 /*
2977  * This helper attempts to cope with remotely renamed directories
2978  *
2979  * It assumes that the caller is already holding
2980  * dentry->d_parent->d_inode->i_mutex, and rename_lock
2981  *
2982  * Note: If ever the locking in lock_rename() changes, then please
2983  * remember to update this too...
2984  */
2985 static int __d_unalias(struct inode *inode,
2986 		struct dentry *dentry, struct dentry *alias)
2987 {
2988 	struct mutex *m1 = NULL;
2989 	struct rw_semaphore *m2 = NULL;
2990 	int ret = -ESTALE;
2991 
2992 	/* If alias and dentry share a parent, then no extra locks required */
2993 	if (alias->d_parent == dentry->d_parent)
2994 		goto out_unalias;
2995 
2996 	/* See lock_rename() */
2997 	if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
2998 		goto out_err;
2999 	m1 = &dentry->d_sb->s_vfs_rename_mutex;
3000 	if (!inode_trylock_shared(alias->d_parent->d_inode))
3001 		goto out_err;
3002 	m2 = &alias->d_parent->d_inode->i_rwsem;
3003 out_unalias:
3004 	__d_move(alias, dentry, false);
3005 	ret = 0;
3006 out_err:
3007 	if (m2)
3008 		up_read(m2);
3009 	if (m1)
3010 		mutex_unlock(m1);
3011 	return ret;
3012 }
3013 
3014 /**
3015  * d_splice_alias - splice a disconnected dentry into the tree if one exists
3016  * @inode:  the inode which may have a disconnected dentry
3017  * @dentry: a negative dentry which we want to point to the inode.
3018  *
3019  * If inode is a directory and has an IS_ROOT alias, then d_move that in
3020  * place of the given dentry and return it, else simply d_add the inode
3021  * to the dentry and return NULL.
3022  *
3023  * If a non-IS_ROOT directory is found, the filesystem is corrupt, and
3024  * we should error out: directories can't have multiple aliases.
3025  *
3026  * This is needed in the lookup routine of any filesystem that is exportable
3027  * (via knfsd) so that we can build dcache paths to directories effectively.
3028  *
3029  * If a dentry was found and moved, then it is returned.  Otherwise NULL
3030  * is returned.  This matches the expected return value of ->lookup.
3031  *
3032  * Cluster filesystems may call this function with a negative, hashed dentry.
3033  * In that case, we know that the inode will be a regular file, and also this
3034  * will only occur during atomic_open. So we need to check for the dentry
3035  * being already hashed only in the final case.
3036  */
3037 struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
3038 {
3039 	if (IS_ERR(inode))
3040 		return ERR_CAST(inode);
3041 
3042 	BUG_ON(!d_unhashed(dentry));
3043 
3044 	if (!inode)
3045 		goto out;
3046 
3047 	security_d_instantiate(dentry, inode);
3048 	spin_lock(&inode->i_lock);
3049 	if (S_ISDIR(inode->i_mode)) {
3050 		struct dentry *new = __d_find_any_alias(inode);
3051 		if (unlikely(new)) {
3052 			/* The reference to new ensures it remains an alias */
3053 			spin_unlock(&inode->i_lock);
3054 			write_seqlock(&rename_lock);
3055 			if (unlikely(d_ancestor(new, dentry))) {
3056 				write_sequnlock(&rename_lock);
3057 				dput(new);
3058 				new = ERR_PTR(-ELOOP);
3059 				pr_warn_ratelimited(
3060 					"VFS: Lookup of '%s' in %s %s"
3061 					" would have caused loop\n",
3062 					dentry->d_name.name,
3063 					inode->i_sb->s_type->name,
3064 					inode->i_sb->s_id);
3065 			} else if (!IS_ROOT(new)) {
3066 				int err = __d_unalias(inode, dentry, new);
3067 				write_sequnlock(&rename_lock);
3068 				if (err) {
3069 					dput(new);
3070 					new = ERR_PTR(err);
3071 				}
3072 			} else {
3073 				__d_move(new, dentry, false);
3074 				write_sequnlock(&rename_lock);
3075 			}
3076 			iput(inode);
3077 			return new;
3078 		}
3079 	}
3080 out:
3081 	__d_add(dentry, inode);
3082 	return NULL;
3083 }
3084 EXPORT_SYMBOL(d_splice_alias);
3085 
3086 static int prepend(char **buffer, int *buflen, const char *str, int namelen)
3087 {
3088 	*buflen -= namelen;
3089 	if (*buflen < 0)
3090 		return -ENAMETOOLONG;
3091 	*buffer -= namelen;
3092 	memcpy(*buffer, str, namelen);
3093 	return 0;
3094 }
3095 
3096 /**
3097  * prepend_name - prepend a pathname in front of current buffer pointer
3098  * @buffer: buffer pointer
3099  * @buflen: allocated length of the buffer
3100  * @name:   name string and length qstr structure
3101  *
3102  * With RCU path tracing, it may race with d_move(). Use ACCESS_ONCE() to
3103  * make sure that either the old or the new name pointer and length are
3104  * fetched. However, there may be mismatch between length and pointer.
3105  * The length cannot be trusted, we need to copy it byte-by-byte until
3106  * the length is reached or a null byte is found. It also prepends "/" at
3107  * the beginning of the name. The sequence number check at the caller will
3108  * retry it again when a d_move() does happen. So any garbage in the buffer
3109  * due to mismatched pointer and length will be discarded.
3110  *
3111  * Data dependency barrier is needed to make sure that we see that terminating
3112  * NUL.  Alpha strikes again, film at 11...
3113  */
3114 static int prepend_name(char **buffer, int *buflen, struct qstr *name)
3115 {
3116 	const char *dname = ACCESS_ONCE(name->name);
3117 	u32 dlen = ACCESS_ONCE(name->len);
3118 	char *p;
3119 
3120 	smp_read_barrier_depends();
3121 
3122 	*buflen -= dlen + 1;
3123 	if (*buflen < 0)
3124 		return -ENAMETOOLONG;
3125 	p = *buffer -= dlen + 1;
3126 	*p++ = '/';
3127 	while (dlen--) {
3128 		char c = *dname++;
3129 		if (!c)
3130 			break;
3131 		*p++ = c;
3132 	}
3133 	return 0;
3134 }
3135 
3136 /**
3137  * prepend_path - Prepend path string to a buffer
3138  * @path: the dentry/vfsmount to report
3139  * @root: root vfsmnt/dentry
3140  * @buffer: pointer to the end of the buffer
3141  * @buflen: pointer to buffer length
3142  *
3143  * The function will first try to write out the pathname without taking any
3144  * lock other than the RCU read lock to make sure that dentries won't go away.
3145  * It only checks the sequence number of the global rename_lock as any change
3146  * in the dentry's d_seq will be preceded by changes in the rename_lock
3147  * sequence number. If the sequence number had been changed, it will restart
3148  * the whole pathname back-tracing sequence again by taking the rename_lock.
3149  * In this case, there is no need to take the RCU read lock as the recursive
3150  * parent pointer references will keep the dentry chain alive as long as no
3151  * rename operation is performed.
3152  */
3153 static int prepend_path(const struct path *path,
3154 			const struct path *root,
3155 			char **buffer, int *buflen)
3156 {
3157 	struct dentry *dentry;
3158 	struct vfsmount *vfsmnt;
3159 	struct mount *mnt;
3160 	int error = 0;
3161 	unsigned seq, m_seq = 0;
3162 	char *bptr;
3163 	int blen;
3164 
3165 	rcu_read_lock();
3166 restart_mnt:
3167 	read_seqbegin_or_lock(&mount_lock, &m_seq);
3168 	seq = 0;
3169 	rcu_read_lock();
3170 restart:
3171 	bptr = *buffer;
3172 	blen = *buflen;
3173 	error = 0;
3174 	dentry = path->dentry;
3175 	vfsmnt = path->mnt;
3176 	mnt = real_mount(vfsmnt);
3177 	read_seqbegin_or_lock(&rename_lock, &seq);
3178 	while (dentry != root->dentry || vfsmnt != root->mnt) {
3179 		struct dentry * parent;
3180 
3181 		if (dentry == vfsmnt->mnt_root || IS_ROOT(dentry)) {
3182 			struct mount *parent = ACCESS_ONCE(mnt->mnt_parent);
3183 			/* Escaped? */
3184 			if (dentry != vfsmnt->mnt_root) {
3185 				bptr = *buffer;
3186 				blen = *buflen;
3187 				error = 3;
3188 				break;
3189 			}
3190 			/* Global root? */
3191 			if (mnt != parent) {
3192 				dentry = ACCESS_ONCE(mnt->mnt_mountpoint);
3193 				mnt = parent;
3194 				vfsmnt = &mnt->mnt;
3195 				continue;
3196 			}
3197 			if (!error)
3198 				error = is_mounted(vfsmnt) ? 1 : 2;
3199 			break;
3200 		}
3201 		parent = dentry->d_parent;
3202 		prefetch(parent);
3203 		error = prepend_name(&bptr, &blen, &dentry->d_name);
3204 		if (error)
3205 			break;
3206 
3207 		dentry = parent;
3208 	}
3209 	if (!(seq & 1))
3210 		rcu_read_unlock();
3211 	if (need_seqretry(&rename_lock, seq)) {
3212 		seq = 1;
3213 		goto restart;
3214 	}
3215 	done_seqretry(&rename_lock, seq);
3216 
3217 	if (!(m_seq & 1))
3218 		rcu_read_unlock();
3219 	if (need_seqretry(&mount_lock, m_seq)) {
3220 		m_seq = 1;
3221 		goto restart_mnt;
3222 	}
3223 	done_seqretry(&mount_lock, m_seq);
3224 
3225 	if (error >= 0 && bptr == *buffer) {
3226 		if (--blen < 0)
3227 			error = -ENAMETOOLONG;
3228 		else
3229 			*--bptr = '/';
3230 	}
3231 	*buffer = bptr;
3232 	*buflen = blen;
3233 	return error;
3234 }
3235 
3236 /**
3237  * __d_path - return the path of a dentry
3238  * @path: the dentry/vfsmount to report
3239  * @root: root vfsmnt/dentry
3240  * @buf: buffer to return value in
3241  * @buflen: buffer length
3242  *
3243  * Convert a dentry into an ASCII path name.
3244  *
3245  * Returns a pointer into the buffer or an error code if the
3246  * path was too long.
3247  *
3248  * "buflen" should be positive.
3249  *
3250  * If the path is not reachable from the supplied root, return %NULL.
3251  */
3252 char *__d_path(const struct path *path,
3253 	       const struct path *root,
3254 	       char *buf, int buflen)
3255 {
3256 	char *res = buf + buflen;
3257 	int error;
3258 
3259 	prepend(&res, &buflen, "\0", 1);
3260 	error = prepend_path(path, root, &res, &buflen);
3261 
3262 	if (error < 0)
3263 		return ERR_PTR(error);
3264 	if (error > 0)
3265 		return NULL;
3266 	return res;
3267 }
3268 
3269 char *d_absolute_path(const struct path *path,
3270 	       char *buf, int buflen)
3271 {
3272 	struct path root = {};
3273 	char *res = buf + buflen;
3274 	int error;
3275 
3276 	prepend(&res, &buflen, "\0", 1);
3277 	error = prepend_path(path, &root, &res, &buflen);
3278 
3279 	if (error > 1)
3280 		error = -EINVAL;
3281 	if (error < 0)
3282 		return ERR_PTR(error);
3283 	return res;
3284 }
3285 
3286 /*
3287  * same as __d_path but appends "(deleted)" for unlinked files.
3288  */
3289 static int path_with_deleted(const struct path *path,
3290 			     const struct path *root,
3291 			     char **buf, int *buflen)
3292 {
3293 	prepend(buf, buflen, "\0", 1);
3294 	if (d_unlinked(path->dentry)) {
3295 		int error = prepend(buf, buflen, " (deleted)", 10);
3296 		if (error)
3297 			return error;
3298 	}
3299 
3300 	return prepend_path(path, root, buf, buflen);
3301 }
3302 
3303 static int prepend_unreachable(char **buffer, int *buflen)
3304 {
3305 	return prepend(buffer, buflen, "(unreachable)", 13);
3306 }
3307 
3308 static void get_fs_root_rcu(struct fs_struct *fs, struct path *root)
3309 {
3310 	unsigned seq;
3311 
3312 	do {
3313 		seq = read_seqcount_begin(&fs->seq);
3314 		*root = fs->root;
3315 	} while (read_seqcount_retry(&fs->seq, seq));
3316 }
3317 
3318 /**
3319  * d_path - return the path of a dentry
3320  * @path: path to report
3321  * @buf: buffer to return value in
3322  * @buflen: buffer length
3323  *
3324  * Convert a dentry into an ASCII path name. If the entry has been deleted
3325  * the string " (deleted)" is appended. Note that this is ambiguous.
3326  *
3327  * Returns a pointer into the buffer or an error code if the path was
3328  * too long. Note: Callers should use the returned pointer, not the passed
3329  * in buffer, to use the name! The implementation often starts at an offset
3330  * into the buffer, and may leave 0 bytes at the start.
3331  *
3332  * "buflen" should be positive.
3333  */
3334 char *d_path(const struct path *path, char *buf, int buflen)
3335 {
3336 	char *res = buf + buflen;
3337 	struct path root;
3338 	int error;
3339 
3340 	/*
3341 	 * We have various synthetic filesystems that never get mounted.  On
3342 	 * these filesystems dentries are never used for lookup purposes, and
3343 	 * thus don't need to be hashed.  They also don't need a name until a
3344 	 * user wants to identify the object in /proc/pid/fd/.  The little hack
3345 	 * below allows us to generate a name for these objects on demand:
3346 	 *
3347 	 * Some pseudo inodes are mountable.  When they are mounted
3348 	 * path->dentry == path->mnt->mnt_root.  In that case don't call d_dname
3349 	 * and instead have d_path return the mounted path.
3350 	 */
3351 	if (path->dentry->d_op && path->dentry->d_op->d_dname &&
3352 	    (!IS_ROOT(path->dentry) || path->dentry != path->mnt->mnt_root))
3353 		return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
3354 
3355 	rcu_read_lock();
3356 	get_fs_root_rcu(current->fs, &root);
3357 	error = path_with_deleted(path, &root, &res, &buflen);
3358 	rcu_read_unlock();
3359 
3360 	if (error < 0)
3361 		res = ERR_PTR(error);
3362 	return res;
3363 }
3364 EXPORT_SYMBOL(d_path);
3365 
3366 /*
3367  * Helper function for dentry_operations.d_dname() members
3368  */
3369 char *dynamic_dname(struct dentry *dentry, char *buffer, int buflen,
3370 			const char *fmt, ...)
3371 {
3372 	va_list args;
3373 	char temp[64];
3374 	int sz;
3375 
3376 	va_start(args, fmt);
3377 	sz = vsnprintf(temp, sizeof(temp), fmt, args) + 1;
3378 	va_end(args);
3379 
3380 	if (sz > sizeof(temp) || sz > buflen)
3381 		return ERR_PTR(-ENAMETOOLONG);
3382 
3383 	buffer += buflen - sz;
3384 	return memcpy(buffer, temp, sz);
3385 }
3386 
3387 char *simple_dname(struct dentry *dentry, char *buffer, int buflen)
3388 {
3389 	char *end = buffer + buflen;
3390 	/* these dentries are never renamed, so d_lock is not needed */
3391 	if (prepend(&end, &buflen, " (deleted)", 11) ||
3392 	    prepend(&end, &buflen, dentry->d_name.name, dentry->d_name.len) ||
3393 	    prepend(&end, &buflen, "/", 1))
3394 		end = ERR_PTR(-ENAMETOOLONG);
3395 	return end;
3396 }
3397 EXPORT_SYMBOL(simple_dname);
3398 
3399 /*
3400  * Write full pathname from the root of the filesystem into the buffer.
3401  */
3402 static char *__dentry_path(struct dentry *d, char *buf, int buflen)
3403 {
3404 	struct dentry *dentry;
3405 	char *end, *retval;
3406 	int len, seq = 0;
3407 	int error = 0;
3408 
3409 	if (buflen < 2)
3410 		goto Elong;
3411 
3412 	rcu_read_lock();
3413 restart:
3414 	dentry = d;
3415 	end = buf + buflen;
3416 	len = buflen;
3417 	prepend(&end, &len, "\0", 1);
3418 	/* Get '/' right */
3419 	retval = end-1;
3420 	*retval = '/';
3421 	read_seqbegin_or_lock(&rename_lock, &seq);
3422 	while (!IS_ROOT(dentry)) {
3423 		struct dentry *parent = dentry->d_parent;
3424 
3425 		prefetch(parent);
3426 		error = prepend_name(&end, &len, &dentry->d_name);
3427 		if (error)
3428 			break;
3429 
3430 		retval = end;
3431 		dentry = parent;
3432 	}
3433 	if (!(seq & 1))
3434 		rcu_read_unlock();
3435 	if (need_seqretry(&rename_lock, seq)) {
3436 		seq = 1;
3437 		goto restart;
3438 	}
3439 	done_seqretry(&rename_lock, seq);
3440 	if (error)
3441 		goto Elong;
3442 	return retval;
3443 Elong:
3444 	return ERR_PTR(-ENAMETOOLONG);
3445 }
3446 
3447 char *dentry_path_raw(struct dentry *dentry, char *buf, int buflen)
3448 {
3449 	return __dentry_path(dentry, buf, buflen);
3450 }
3451 EXPORT_SYMBOL(dentry_path_raw);
3452 
3453 char *dentry_path(struct dentry *dentry, char *buf, int buflen)
3454 {
3455 	char *p = NULL;
3456 	char *retval;
3457 
3458 	if (d_unlinked(dentry)) {
3459 		p = buf + buflen;
3460 		if (prepend(&p, &buflen, "//deleted", 10) != 0)
3461 			goto Elong;
3462 		buflen++;
3463 	}
3464 	retval = __dentry_path(dentry, buf, buflen);
3465 	if (!IS_ERR(retval) && p)
3466 		*p = '/';	/* restore '/' overriden with '\0' */
3467 	return retval;
3468 Elong:
3469 	return ERR_PTR(-ENAMETOOLONG);
3470 }
3471 
3472 static void get_fs_root_and_pwd_rcu(struct fs_struct *fs, struct path *root,
3473 				    struct path *pwd)
3474 {
3475 	unsigned seq;
3476 
3477 	do {
3478 		seq = read_seqcount_begin(&fs->seq);
3479 		*root = fs->root;
3480 		*pwd = fs->pwd;
3481 	} while (read_seqcount_retry(&fs->seq, seq));
3482 }
3483 
3484 /*
3485  * NOTE! The user-level library version returns a
3486  * character pointer. The kernel system call just
3487  * returns the length of the buffer filled (which
3488  * includes the ending '\0' character), or a negative
3489  * error value. So libc would do something like
3490  *
3491  *	char *getcwd(char * buf, size_t size)
3492  *	{
3493  *		int retval;
3494  *
3495  *		retval = sys_getcwd(buf, size);
3496  *		if (retval >= 0)
3497  *			return buf;
3498  *		errno = -retval;
3499  *		return NULL;
3500  *	}
3501  */
3502 SYSCALL_DEFINE2(getcwd, char __user *, buf, unsigned long, size)
3503 {
3504 	int error;
3505 	struct path pwd, root;
3506 	char *page = __getname();
3507 
3508 	if (!page)
3509 		return -ENOMEM;
3510 
3511 	rcu_read_lock();
3512 	get_fs_root_and_pwd_rcu(current->fs, &root, &pwd);
3513 
3514 	error = -ENOENT;
3515 	if (!d_unlinked(pwd.dentry)) {
3516 		unsigned long len;
3517 		char *cwd = page + PATH_MAX;
3518 		int buflen = PATH_MAX;
3519 
3520 		prepend(&cwd, &buflen, "\0", 1);
3521 		error = prepend_path(&pwd, &root, &cwd, &buflen);
3522 		rcu_read_unlock();
3523 
3524 		if (error < 0)
3525 			goto out;
3526 
3527 		/* Unreachable from current root */
3528 		if (error > 0) {
3529 			error = prepend_unreachable(&cwd, &buflen);
3530 			if (error)
3531 				goto out;
3532 		}
3533 
3534 		error = -ERANGE;
3535 		len = PATH_MAX + page - cwd;
3536 		if (len <= size) {
3537 			error = len;
3538 			if (copy_to_user(buf, cwd, len))
3539 				error = -EFAULT;
3540 		}
3541 	} else {
3542 		rcu_read_unlock();
3543 	}
3544 
3545 out:
3546 	__putname(page);
3547 	return error;
3548 }
3549 
3550 /*
3551  * Test whether new_dentry is a subdirectory of old_dentry.
3552  *
3553  * Trivially implemented using the dcache structure
3554  */
3555 
3556 /**
3557  * is_subdir - is new dentry a subdirectory of old_dentry
3558  * @new_dentry: new dentry
3559  * @old_dentry: old dentry
3560  *
3561  * Returns true if new_dentry is a subdirectory of the parent (at any depth).
3562  * Returns false otherwise.
3563  * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
3564  */
3565 
3566 bool is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
3567 {
3568 	bool result;
3569 	unsigned seq;
3570 
3571 	if (new_dentry == old_dentry)
3572 		return true;
3573 
3574 	do {
3575 		/* for restarting inner loop in case of seq retry */
3576 		seq = read_seqbegin(&rename_lock);
3577 		/*
3578 		 * Need rcu_readlock to protect against the d_parent trashing
3579 		 * due to d_move
3580 		 */
3581 		rcu_read_lock();
3582 		if (d_ancestor(old_dentry, new_dentry))
3583 			result = true;
3584 		else
3585 			result = false;
3586 		rcu_read_unlock();
3587 	} while (read_seqretry(&rename_lock, seq));
3588 
3589 	return result;
3590 }
3591 
3592 static enum d_walk_ret d_genocide_kill(void *data, struct dentry *dentry)
3593 {
3594 	struct dentry *root = data;
3595 	if (dentry != root) {
3596 		if (d_unhashed(dentry) || !dentry->d_inode)
3597 			return D_WALK_SKIP;
3598 
3599 		if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
3600 			dentry->d_flags |= DCACHE_GENOCIDE;
3601 			dentry->d_lockref.count--;
3602 		}
3603 	}
3604 	return D_WALK_CONTINUE;
3605 }
3606 
3607 void d_genocide(struct dentry *parent)
3608 {
3609 	d_walk(parent, parent, d_genocide_kill, NULL);
3610 }
3611 
3612 void d_tmpfile(struct dentry *dentry, struct inode *inode)
3613 {
3614 	inode_dec_link_count(inode);
3615 	BUG_ON(dentry->d_name.name != dentry->d_iname ||
3616 		!hlist_unhashed(&dentry->d_u.d_alias) ||
3617 		!d_unlinked(dentry));
3618 	spin_lock(&dentry->d_parent->d_lock);
3619 	spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
3620 	dentry->d_name.len = sprintf(dentry->d_iname, "#%llu",
3621 				(unsigned long long)inode->i_ino);
3622 	spin_unlock(&dentry->d_lock);
3623 	spin_unlock(&dentry->d_parent->d_lock);
3624 	d_instantiate(dentry, inode);
3625 }
3626 EXPORT_SYMBOL(d_tmpfile);
3627 
3628 static __initdata unsigned long dhash_entries;
3629 static int __init set_dhash_entries(char *str)
3630 {
3631 	if (!str)
3632 		return 0;
3633 	dhash_entries = simple_strtoul(str, &str, 0);
3634 	return 1;
3635 }
3636 __setup("dhash_entries=", set_dhash_entries);
3637 
3638 static void __init dcache_init_early(void)
3639 {
3640 	unsigned int loop;
3641 
3642 	/* If hashes are distributed across NUMA nodes, defer
3643 	 * hash allocation until vmalloc space is available.
3644 	 */
3645 	if (hashdist)
3646 		return;
3647 
3648 	dentry_hashtable =
3649 		alloc_large_system_hash("Dentry cache",
3650 					sizeof(struct hlist_bl_head),
3651 					dhash_entries,
3652 					13,
3653 					HASH_EARLY,
3654 					&d_hash_shift,
3655 					&d_hash_mask,
3656 					0,
3657 					0);
3658 
3659 	for (loop = 0; loop < (1U << d_hash_shift); loop++)
3660 		INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
3661 }
3662 
3663 static void __init dcache_init(void)
3664 {
3665 	unsigned int loop;
3666 
3667 	/*
3668 	 * A constructor could be added for stable state like the lists,
3669 	 * but it is probably not worth it because of the cache nature
3670 	 * of the dcache.
3671 	 */
3672 	dentry_cache = KMEM_CACHE(dentry,
3673 		SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD|SLAB_ACCOUNT);
3674 
3675 	/* Hash may have been set up in dcache_init_early */
3676 	if (!hashdist)
3677 		return;
3678 
3679 	dentry_hashtable =
3680 		alloc_large_system_hash("Dentry cache",
3681 					sizeof(struct hlist_bl_head),
3682 					dhash_entries,
3683 					13,
3684 					0,
3685 					&d_hash_shift,
3686 					&d_hash_mask,
3687 					0,
3688 					0);
3689 
3690 	for (loop = 0; loop < (1U << d_hash_shift); loop++)
3691 		INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
3692 }
3693 
3694 /* SLAB cache for __getname() consumers */
3695 struct kmem_cache *names_cachep __read_mostly;
3696 EXPORT_SYMBOL(names_cachep);
3697 
3698 EXPORT_SYMBOL(d_genocide);
3699 
3700 void __init vfs_caches_init_early(void)
3701 {
3702 	dcache_init_early();
3703 	inode_init_early();
3704 }
3705 
3706 void __init vfs_caches_init(void)
3707 {
3708 	names_cachep = kmem_cache_create("names_cache", PATH_MAX, 0,
3709 			SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
3710 
3711 	dcache_init();
3712 	inode_init();
3713 	files_init();
3714 	files_maxfiles_init();
3715 	mnt_init();
3716 	bdev_cache_init();
3717 	chrdev_init();
3718 }
3719