xref: /openbmc/linux/fs/dcache.c (revision 82df5b73)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * fs/dcache.c
4  *
5  * Complete reimplementation
6  * (C) 1997 Thomas Schoebel-Theuer,
7  * with heavy changes by Linus Torvalds
8  */
9 
10 /*
11  * Notes on the allocation strategy:
12  *
13  * The dcache is a master of the icache - whenever a dcache entry
14  * exists, the inode will always exist. "iput()" is done either when
15  * the dcache entry is deleted or garbage collected.
16  */
17 
18 #include <linux/ratelimit.h>
19 #include <linux/string.h>
20 #include <linux/mm.h>
21 #include <linux/fs.h>
22 #include <linux/fscrypt.h>
23 #include <linux/fsnotify.h>
24 #include <linux/slab.h>
25 #include <linux/init.h>
26 #include <linux/hash.h>
27 #include <linux/cache.h>
28 #include <linux/export.h>
29 #include <linux/security.h>
30 #include <linux/seqlock.h>
31 #include <linux/memblock.h>
32 #include <linux/bit_spinlock.h>
33 #include <linux/rculist_bl.h>
34 #include <linux/list_lru.h>
35 #include "internal.h"
36 #include "mount.h"
37 
38 /*
39  * Usage:
40  * dcache->d_inode->i_lock protects:
41  *   - i_dentry, d_u.d_alias, d_inode of aliases
42  * dcache_hash_bucket lock protects:
43  *   - the dcache hash table
44  * s_roots bl list spinlock protects:
45  *   - the s_roots list (see __d_drop)
46  * dentry->d_sb->s_dentry_lru_lock protects:
47  *   - the dcache lru lists and counters
48  * d_lock protects:
49  *   - d_flags
50  *   - d_name
51  *   - d_lru
52  *   - d_count
53  *   - d_unhashed()
54  *   - d_parent and d_subdirs
55  *   - childrens' d_child and d_parent
56  *   - d_u.d_alias, d_inode
57  *
58  * Ordering:
59  * dentry->d_inode->i_lock
60  *   dentry->d_lock
61  *     dentry->d_sb->s_dentry_lru_lock
62  *     dcache_hash_bucket lock
63  *     s_roots lock
64  *
65  * If there is an ancestor relationship:
66  * dentry->d_parent->...->d_parent->d_lock
67  *   ...
68  *     dentry->d_parent->d_lock
69  *       dentry->d_lock
70  *
71  * If no ancestor relationship:
72  * arbitrary, since it's serialized on rename_lock
73  */
74 int sysctl_vfs_cache_pressure __read_mostly = 100;
75 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
76 
77 __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
78 
79 EXPORT_SYMBOL(rename_lock);
80 
81 static struct kmem_cache *dentry_cache __read_mostly;
82 
83 const struct qstr empty_name = QSTR_INIT("", 0);
84 EXPORT_SYMBOL(empty_name);
85 const struct qstr slash_name = QSTR_INIT("/", 1);
86 EXPORT_SYMBOL(slash_name);
87 
88 /*
89  * This is the single most critical data structure when it comes
90  * to the dcache: the hashtable for lookups. Somebody should try
91  * to make this good - I've just made it work.
92  *
93  * This hash-function tries to avoid losing too many bits of hash
94  * information, yet avoid using a prime hash-size or similar.
95  */
96 
97 static unsigned int d_hash_shift __read_mostly;
98 
99 static struct hlist_bl_head *dentry_hashtable __read_mostly;
100 
101 static inline struct hlist_bl_head *d_hash(unsigned int hash)
102 {
103 	return dentry_hashtable + (hash >> d_hash_shift);
104 }
105 
106 #define IN_LOOKUP_SHIFT 10
107 static struct hlist_bl_head in_lookup_hashtable[1 << IN_LOOKUP_SHIFT];
108 
109 static inline struct hlist_bl_head *in_lookup_hash(const struct dentry *parent,
110 					unsigned int hash)
111 {
112 	hash += (unsigned long) parent / L1_CACHE_BYTES;
113 	return in_lookup_hashtable + hash_32(hash, IN_LOOKUP_SHIFT);
114 }
115 
116 
117 /* Statistics gathering. */
118 struct dentry_stat_t dentry_stat = {
119 	.age_limit = 45,
120 };
121 
122 static DEFINE_PER_CPU(long, nr_dentry);
123 static DEFINE_PER_CPU(long, nr_dentry_unused);
124 static DEFINE_PER_CPU(long, nr_dentry_negative);
125 
126 #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
127 
128 /*
129  * Here we resort to our own counters instead of using generic per-cpu counters
130  * for consistency with what the vfs inode code does. We are expected to harvest
131  * better code and performance by having our own specialized counters.
132  *
133  * Please note that the loop is done over all possible CPUs, not over all online
134  * CPUs. The reason for this is that we don't want to play games with CPUs going
135  * on and off. If one of them goes off, we will just keep their counters.
136  *
137  * glommer: See cffbc8a for details, and if you ever intend to change this,
138  * please update all vfs counters to match.
139  */
140 static long get_nr_dentry(void)
141 {
142 	int i;
143 	long sum = 0;
144 	for_each_possible_cpu(i)
145 		sum += per_cpu(nr_dentry, i);
146 	return sum < 0 ? 0 : sum;
147 }
148 
149 static long get_nr_dentry_unused(void)
150 {
151 	int i;
152 	long sum = 0;
153 	for_each_possible_cpu(i)
154 		sum += per_cpu(nr_dentry_unused, i);
155 	return sum < 0 ? 0 : sum;
156 }
157 
158 static long get_nr_dentry_negative(void)
159 {
160 	int i;
161 	long sum = 0;
162 
163 	for_each_possible_cpu(i)
164 		sum += per_cpu(nr_dentry_negative, i);
165 	return sum < 0 ? 0 : sum;
166 }
167 
168 int proc_nr_dentry(struct ctl_table *table, int write, void *buffer,
169 		   size_t *lenp, loff_t *ppos)
170 {
171 	dentry_stat.nr_dentry = get_nr_dentry();
172 	dentry_stat.nr_unused = get_nr_dentry_unused();
173 	dentry_stat.nr_negative = get_nr_dentry_negative();
174 	return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
175 }
176 #endif
177 
178 /*
179  * Compare 2 name strings, return 0 if they match, otherwise non-zero.
180  * The strings are both count bytes long, and count is non-zero.
181  */
182 #ifdef CONFIG_DCACHE_WORD_ACCESS
183 
184 #include <asm/word-at-a-time.h>
185 /*
186  * NOTE! 'cs' and 'scount' come from a dentry, so it has a
187  * aligned allocation for this particular component. We don't
188  * strictly need the load_unaligned_zeropad() safety, but it
189  * doesn't hurt either.
190  *
191  * In contrast, 'ct' and 'tcount' can be from a pathname, and do
192  * need the careful unaligned handling.
193  */
194 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
195 {
196 	unsigned long a,b,mask;
197 
198 	for (;;) {
199 		a = read_word_at_a_time(cs);
200 		b = load_unaligned_zeropad(ct);
201 		if (tcount < sizeof(unsigned long))
202 			break;
203 		if (unlikely(a != b))
204 			return 1;
205 		cs += sizeof(unsigned long);
206 		ct += sizeof(unsigned long);
207 		tcount -= sizeof(unsigned long);
208 		if (!tcount)
209 			return 0;
210 	}
211 	mask = bytemask_from_count(tcount);
212 	return unlikely(!!((a ^ b) & mask));
213 }
214 
215 #else
216 
217 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
218 {
219 	do {
220 		if (*cs != *ct)
221 			return 1;
222 		cs++;
223 		ct++;
224 		tcount--;
225 	} while (tcount);
226 	return 0;
227 }
228 
229 #endif
230 
231 static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount)
232 {
233 	/*
234 	 * Be careful about RCU walk racing with rename:
235 	 * use 'READ_ONCE' to fetch the name pointer.
236 	 *
237 	 * NOTE! Even if a rename will mean that the length
238 	 * was not loaded atomically, we don't care. The
239 	 * RCU walk will check the sequence count eventually,
240 	 * and catch it. And we won't overrun the buffer,
241 	 * because we're reading the name pointer atomically,
242 	 * and a dentry name is guaranteed to be properly
243 	 * terminated with a NUL byte.
244 	 *
245 	 * End result: even if 'len' is wrong, we'll exit
246 	 * early because the data cannot match (there can
247 	 * be no NUL in the ct/tcount data)
248 	 */
249 	const unsigned char *cs = READ_ONCE(dentry->d_name.name);
250 
251 	return dentry_string_cmp(cs, ct, tcount);
252 }
253 
254 struct external_name {
255 	union {
256 		atomic_t count;
257 		struct rcu_head head;
258 	} u;
259 	unsigned char name[];
260 };
261 
262 static inline struct external_name *external_name(struct dentry *dentry)
263 {
264 	return container_of(dentry->d_name.name, struct external_name, name[0]);
265 }
266 
267 static void __d_free(struct rcu_head *head)
268 {
269 	struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
270 
271 	kmem_cache_free(dentry_cache, dentry);
272 }
273 
274 static void __d_free_external(struct rcu_head *head)
275 {
276 	struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
277 	kfree(external_name(dentry));
278 	kmem_cache_free(dentry_cache, dentry);
279 }
280 
281 static inline int dname_external(const struct dentry *dentry)
282 {
283 	return dentry->d_name.name != dentry->d_iname;
284 }
285 
286 void take_dentry_name_snapshot(struct name_snapshot *name, struct dentry *dentry)
287 {
288 	spin_lock(&dentry->d_lock);
289 	name->name = dentry->d_name;
290 	if (unlikely(dname_external(dentry))) {
291 		atomic_inc(&external_name(dentry)->u.count);
292 	} else {
293 		memcpy(name->inline_name, dentry->d_iname,
294 		       dentry->d_name.len + 1);
295 		name->name.name = name->inline_name;
296 	}
297 	spin_unlock(&dentry->d_lock);
298 }
299 EXPORT_SYMBOL(take_dentry_name_snapshot);
300 
301 void release_dentry_name_snapshot(struct name_snapshot *name)
302 {
303 	if (unlikely(name->name.name != name->inline_name)) {
304 		struct external_name *p;
305 		p = container_of(name->name.name, struct external_name, name[0]);
306 		if (unlikely(atomic_dec_and_test(&p->u.count)))
307 			kfree_rcu(p, u.head);
308 	}
309 }
310 EXPORT_SYMBOL(release_dentry_name_snapshot);
311 
312 static inline void __d_set_inode_and_type(struct dentry *dentry,
313 					  struct inode *inode,
314 					  unsigned type_flags)
315 {
316 	unsigned flags;
317 
318 	dentry->d_inode = inode;
319 	flags = READ_ONCE(dentry->d_flags);
320 	flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU);
321 	flags |= type_flags;
322 	smp_store_release(&dentry->d_flags, flags);
323 }
324 
325 static inline void __d_clear_type_and_inode(struct dentry *dentry)
326 {
327 	unsigned flags = READ_ONCE(dentry->d_flags);
328 
329 	flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU);
330 	WRITE_ONCE(dentry->d_flags, flags);
331 	dentry->d_inode = NULL;
332 	if (dentry->d_flags & DCACHE_LRU_LIST)
333 		this_cpu_inc(nr_dentry_negative);
334 }
335 
336 static void dentry_free(struct dentry *dentry)
337 {
338 	WARN_ON(!hlist_unhashed(&dentry->d_u.d_alias));
339 	if (unlikely(dname_external(dentry))) {
340 		struct external_name *p = external_name(dentry);
341 		if (likely(atomic_dec_and_test(&p->u.count))) {
342 			call_rcu(&dentry->d_u.d_rcu, __d_free_external);
343 			return;
344 		}
345 	}
346 	/* if dentry was never visible to RCU, immediate free is OK */
347 	if (dentry->d_flags & DCACHE_NORCU)
348 		__d_free(&dentry->d_u.d_rcu);
349 	else
350 		call_rcu(&dentry->d_u.d_rcu, __d_free);
351 }
352 
353 /*
354  * Release the dentry's inode, using the filesystem
355  * d_iput() operation if defined.
356  */
357 static void dentry_unlink_inode(struct dentry * dentry)
358 	__releases(dentry->d_lock)
359 	__releases(dentry->d_inode->i_lock)
360 {
361 	struct inode *inode = dentry->d_inode;
362 
363 	raw_write_seqcount_begin(&dentry->d_seq);
364 	__d_clear_type_and_inode(dentry);
365 	hlist_del_init(&dentry->d_u.d_alias);
366 	raw_write_seqcount_end(&dentry->d_seq);
367 	spin_unlock(&dentry->d_lock);
368 	spin_unlock(&inode->i_lock);
369 	if (!inode->i_nlink)
370 		fsnotify_inoderemove(inode);
371 	if (dentry->d_op && dentry->d_op->d_iput)
372 		dentry->d_op->d_iput(dentry, inode);
373 	else
374 		iput(inode);
375 }
376 
377 /*
378  * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry
379  * is in use - which includes both the "real" per-superblock
380  * LRU list _and_ the DCACHE_SHRINK_LIST use.
381  *
382  * The DCACHE_SHRINK_LIST bit is set whenever the dentry is
383  * on the shrink list (ie not on the superblock LRU list).
384  *
385  * The per-cpu "nr_dentry_unused" counters are updated with
386  * the DCACHE_LRU_LIST bit.
387  *
388  * The per-cpu "nr_dentry_negative" counters are only updated
389  * when deleted from or added to the per-superblock LRU list, not
390  * from/to the shrink list. That is to avoid an unneeded dec/inc
391  * pair when moving from LRU to shrink list in select_collect().
392  *
393  * These helper functions make sure we always follow the
394  * rules. d_lock must be held by the caller.
395  */
396 #define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x))
397 static void d_lru_add(struct dentry *dentry)
398 {
399 	D_FLAG_VERIFY(dentry, 0);
400 	dentry->d_flags |= DCACHE_LRU_LIST;
401 	this_cpu_inc(nr_dentry_unused);
402 	if (d_is_negative(dentry))
403 		this_cpu_inc(nr_dentry_negative);
404 	WARN_ON_ONCE(!list_lru_add(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
405 }
406 
407 static void d_lru_del(struct dentry *dentry)
408 {
409 	D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
410 	dentry->d_flags &= ~DCACHE_LRU_LIST;
411 	this_cpu_dec(nr_dentry_unused);
412 	if (d_is_negative(dentry))
413 		this_cpu_dec(nr_dentry_negative);
414 	WARN_ON_ONCE(!list_lru_del(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
415 }
416 
417 static void d_shrink_del(struct dentry *dentry)
418 {
419 	D_FLAG_VERIFY(dentry, DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
420 	list_del_init(&dentry->d_lru);
421 	dentry->d_flags &= ~(DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
422 	this_cpu_dec(nr_dentry_unused);
423 }
424 
425 static void d_shrink_add(struct dentry *dentry, struct list_head *list)
426 {
427 	D_FLAG_VERIFY(dentry, 0);
428 	list_add(&dentry->d_lru, list);
429 	dentry->d_flags |= DCACHE_SHRINK_LIST | DCACHE_LRU_LIST;
430 	this_cpu_inc(nr_dentry_unused);
431 }
432 
433 /*
434  * These can only be called under the global LRU lock, ie during the
435  * callback for freeing the LRU list. "isolate" removes it from the
436  * LRU lists entirely, while shrink_move moves it to the indicated
437  * private list.
438  */
439 static void d_lru_isolate(struct list_lru_one *lru, struct dentry *dentry)
440 {
441 	D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
442 	dentry->d_flags &= ~DCACHE_LRU_LIST;
443 	this_cpu_dec(nr_dentry_unused);
444 	if (d_is_negative(dentry))
445 		this_cpu_dec(nr_dentry_negative);
446 	list_lru_isolate(lru, &dentry->d_lru);
447 }
448 
449 static void d_lru_shrink_move(struct list_lru_one *lru, struct dentry *dentry,
450 			      struct list_head *list)
451 {
452 	D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
453 	dentry->d_flags |= DCACHE_SHRINK_LIST;
454 	if (d_is_negative(dentry))
455 		this_cpu_dec(nr_dentry_negative);
456 	list_lru_isolate_move(lru, &dentry->d_lru, list);
457 }
458 
459 /**
460  * d_drop - drop a dentry
461  * @dentry: dentry to drop
462  *
463  * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
464  * be found through a VFS lookup any more. Note that this is different from
465  * deleting the dentry - d_delete will try to mark the dentry negative if
466  * possible, giving a successful _negative_ lookup, while d_drop will
467  * just make the cache lookup fail.
468  *
469  * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
470  * reason (NFS timeouts or autofs deletes).
471  *
472  * __d_drop requires dentry->d_lock
473  * ___d_drop doesn't mark dentry as "unhashed"
474  *   (dentry->d_hash.pprev will be LIST_POISON2, not NULL).
475  */
476 static void ___d_drop(struct dentry *dentry)
477 {
478 	struct hlist_bl_head *b;
479 	/*
480 	 * Hashed dentries are normally on the dentry hashtable,
481 	 * with the exception of those newly allocated by
482 	 * d_obtain_root, which are always IS_ROOT:
483 	 */
484 	if (unlikely(IS_ROOT(dentry)))
485 		b = &dentry->d_sb->s_roots;
486 	else
487 		b = d_hash(dentry->d_name.hash);
488 
489 	hlist_bl_lock(b);
490 	__hlist_bl_del(&dentry->d_hash);
491 	hlist_bl_unlock(b);
492 }
493 
494 void __d_drop(struct dentry *dentry)
495 {
496 	if (!d_unhashed(dentry)) {
497 		___d_drop(dentry);
498 		dentry->d_hash.pprev = NULL;
499 		write_seqcount_invalidate(&dentry->d_seq);
500 	}
501 }
502 EXPORT_SYMBOL(__d_drop);
503 
504 void d_drop(struct dentry *dentry)
505 {
506 	spin_lock(&dentry->d_lock);
507 	__d_drop(dentry);
508 	spin_unlock(&dentry->d_lock);
509 }
510 EXPORT_SYMBOL(d_drop);
511 
512 static inline void dentry_unlist(struct dentry *dentry, struct dentry *parent)
513 {
514 	struct dentry *next;
515 	/*
516 	 * Inform d_walk() and shrink_dentry_list() that we are no longer
517 	 * attached to the dentry tree
518 	 */
519 	dentry->d_flags |= DCACHE_DENTRY_KILLED;
520 	if (unlikely(list_empty(&dentry->d_child)))
521 		return;
522 	__list_del_entry(&dentry->d_child);
523 	/*
524 	 * Cursors can move around the list of children.  While we'd been
525 	 * a normal list member, it didn't matter - ->d_child.next would've
526 	 * been updated.  However, from now on it won't be and for the
527 	 * things like d_walk() it might end up with a nasty surprise.
528 	 * Normally d_walk() doesn't care about cursors moving around -
529 	 * ->d_lock on parent prevents that and since a cursor has no children
530 	 * of its own, we get through it without ever unlocking the parent.
531 	 * There is one exception, though - if we ascend from a child that
532 	 * gets killed as soon as we unlock it, the next sibling is found
533 	 * using the value left in its ->d_child.next.  And if _that_
534 	 * pointed to a cursor, and cursor got moved (e.g. by lseek())
535 	 * before d_walk() regains parent->d_lock, we'll end up skipping
536 	 * everything the cursor had been moved past.
537 	 *
538 	 * Solution: make sure that the pointer left behind in ->d_child.next
539 	 * points to something that won't be moving around.  I.e. skip the
540 	 * cursors.
541 	 */
542 	while (dentry->d_child.next != &parent->d_subdirs) {
543 		next = list_entry(dentry->d_child.next, struct dentry, d_child);
544 		if (likely(!(next->d_flags & DCACHE_DENTRY_CURSOR)))
545 			break;
546 		dentry->d_child.next = next->d_child.next;
547 	}
548 }
549 
550 static void __dentry_kill(struct dentry *dentry)
551 {
552 	struct dentry *parent = NULL;
553 	bool can_free = true;
554 	if (!IS_ROOT(dentry))
555 		parent = dentry->d_parent;
556 
557 	/*
558 	 * The dentry is now unrecoverably dead to the world.
559 	 */
560 	lockref_mark_dead(&dentry->d_lockref);
561 
562 	/*
563 	 * inform the fs via d_prune that this dentry is about to be
564 	 * unhashed and destroyed.
565 	 */
566 	if (dentry->d_flags & DCACHE_OP_PRUNE)
567 		dentry->d_op->d_prune(dentry);
568 
569 	if (dentry->d_flags & DCACHE_LRU_LIST) {
570 		if (!(dentry->d_flags & DCACHE_SHRINK_LIST))
571 			d_lru_del(dentry);
572 	}
573 	/* if it was on the hash then remove it */
574 	__d_drop(dentry);
575 	dentry_unlist(dentry, parent);
576 	if (parent)
577 		spin_unlock(&parent->d_lock);
578 	if (dentry->d_inode)
579 		dentry_unlink_inode(dentry);
580 	else
581 		spin_unlock(&dentry->d_lock);
582 	this_cpu_dec(nr_dentry);
583 	if (dentry->d_op && dentry->d_op->d_release)
584 		dentry->d_op->d_release(dentry);
585 
586 	spin_lock(&dentry->d_lock);
587 	if (dentry->d_flags & DCACHE_SHRINK_LIST) {
588 		dentry->d_flags |= DCACHE_MAY_FREE;
589 		can_free = false;
590 	}
591 	spin_unlock(&dentry->d_lock);
592 	if (likely(can_free))
593 		dentry_free(dentry);
594 	cond_resched();
595 }
596 
597 static struct dentry *__lock_parent(struct dentry *dentry)
598 {
599 	struct dentry *parent;
600 	rcu_read_lock();
601 	spin_unlock(&dentry->d_lock);
602 again:
603 	parent = READ_ONCE(dentry->d_parent);
604 	spin_lock(&parent->d_lock);
605 	/*
606 	 * We can't blindly lock dentry until we are sure
607 	 * that we won't violate the locking order.
608 	 * Any changes of dentry->d_parent must have
609 	 * been done with parent->d_lock held, so
610 	 * spin_lock() above is enough of a barrier
611 	 * for checking if it's still our child.
612 	 */
613 	if (unlikely(parent != dentry->d_parent)) {
614 		spin_unlock(&parent->d_lock);
615 		goto again;
616 	}
617 	rcu_read_unlock();
618 	if (parent != dentry)
619 		spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
620 	else
621 		parent = NULL;
622 	return parent;
623 }
624 
625 static inline struct dentry *lock_parent(struct dentry *dentry)
626 {
627 	struct dentry *parent = dentry->d_parent;
628 	if (IS_ROOT(dentry))
629 		return NULL;
630 	if (likely(spin_trylock(&parent->d_lock)))
631 		return parent;
632 	return __lock_parent(dentry);
633 }
634 
635 static inline bool retain_dentry(struct dentry *dentry)
636 {
637 	WARN_ON(d_in_lookup(dentry));
638 
639 	/* Unreachable? Get rid of it */
640 	if (unlikely(d_unhashed(dentry)))
641 		return false;
642 
643 	if (unlikely(dentry->d_flags & DCACHE_DISCONNECTED))
644 		return false;
645 
646 	if (unlikely(dentry->d_flags & DCACHE_OP_DELETE)) {
647 		if (dentry->d_op->d_delete(dentry))
648 			return false;
649 	}
650 
651 	if (unlikely(dentry->d_flags & DCACHE_DONTCACHE))
652 		return false;
653 
654 	/* retain; LRU fodder */
655 	dentry->d_lockref.count--;
656 	if (unlikely(!(dentry->d_flags & DCACHE_LRU_LIST)))
657 		d_lru_add(dentry);
658 	else if (unlikely(!(dentry->d_flags & DCACHE_REFERENCED)))
659 		dentry->d_flags |= DCACHE_REFERENCED;
660 	return true;
661 }
662 
663 void d_mark_dontcache(struct inode *inode)
664 {
665 	struct dentry *de;
666 
667 	spin_lock(&inode->i_lock);
668 	hlist_for_each_entry(de, &inode->i_dentry, d_u.d_alias) {
669 		spin_lock(&de->d_lock);
670 		de->d_flags |= DCACHE_DONTCACHE;
671 		spin_unlock(&de->d_lock);
672 	}
673 	inode->i_state |= I_DONTCACHE;
674 	spin_unlock(&inode->i_lock);
675 }
676 EXPORT_SYMBOL(d_mark_dontcache);
677 
678 /*
679  * Finish off a dentry we've decided to kill.
680  * dentry->d_lock must be held, returns with it unlocked.
681  * Returns dentry requiring refcount drop, or NULL if we're done.
682  */
683 static struct dentry *dentry_kill(struct dentry *dentry)
684 	__releases(dentry->d_lock)
685 {
686 	struct inode *inode = dentry->d_inode;
687 	struct dentry *parent = NULL;
688 
689 	if (inode && unlikely(!spin_trylock(&inode->i_lock)))
690 		goto slow_positive;
691 
692 	if (!IS_ROOT(dentry)) {
693 		parent = dentry->d_parent;
694 		if (unlikely(!spin_trylock(&parent->d_lock))) {
695 			parent = __lock_parent(dentry);
696 			if (likely(inode || !dentry->d_inode))
697 				goto got_locks;
698 			/* negative that became positive */
699 			if (parent)
700 				spin_unlock(&parent->d_lock);
701 			inode = dentry->d_inode;
702 			goto slow_positive;
703 		}
704 	}
705 	__dentry_kill(dentry);
706 	return parent;
707 
708 slow_positive:
709 	spin_unlock(&dentry->d_lock);
710 	spin_lock(&inode->i_lock);
711 	spin_lock(&dentry->d_lock);
712 	parent = lock_parent(dentry);
713 got_locks:
714 	if (unlikely(dentry->d_lockref.count != 1)) {
715 		dentry->d_lockref.count--;
716 	} else if (likely(!retain_dentry(dentry))) {
717 		__dentry_kill(dentry);
718 		return parent;
719 	}
720 	/* we are keeping it, after all */
721 	if (inode)
722 		spin_unlock(&inode->i_lock);
723 	if (parent)
724 		spin_unlock(&parent->d_lock);
725 	spin_unlock(&dentry->d_lock);
726 	return NULL;
727 }
728 
729 /*
730  * Try to do a lockless dput(), and return whether that was successful.
731  *
732  * If unsuccessful, we return false, having already taken the dentry lock.
733  *
734  * The caller needs to hold the RCU read lock, so that the dentry is
735  * guaranteed to stay around even if the refcount goes down to zero!
736  */
737 static inline bool fast_dput(struct dentry *dentry)
738 {
739 	int ret;
740 	unsigned int d_flags;
741 
742 	/*
743 	 * If we have a d_op->d_delete() operation, we sould not
744 	 * let the dentry count go to zero, so use "put_or_lock".
745 	 */
746 	if (unlikely(dentry->d_flags & DCACHE_OP_DELETE))
747 		return lockref_put_or_lock(&dentry->d_lockref);
748 
749 	/*
750 	 * .. otherwise, we can try to just decrement the
751 	 * lockref optimistically.
752 	 */
753 	ret = lockref_put_return(&dentry->d_lockref);
754 
755 	/*
756 	 * If the lockref_put_return() failed due to the lock being held
757 	 * by somebody else, the fast path has failed. We will need to
758 	 * get the lock, and then check the count again.
759 	 */
760 	if (unlikely(ret < 0)) {
761 		spin_lock(&dentry->d_lock);
762 		if (dentry->d_lockref.count > 1) {
763 			dentry->d_lockref.count--;
764 			spin_unlock(&dentry->d_lock);
765 			return true;
766 		}
767 		return false;
768 	}
769 
770 	/*
771 	 * If we weren't the last ref, we're done.
772 	 */
773 	if (ret)
774 		return true;
775 
776 	/*
777 	 * Careful, careful. The reference count went down
778 	 * to zero, but we don't hold the dentry lock, so
779 	 * somebody else could get it again, and do another
780 	 * dput(), and we need to not race with that.
781 	 *
782 	 * However, there is a very special and common case
783 	 * where we don't care, because there is nothing to
784 	 * do: the dentry is still hashed, it does not have
785 	 * a 'delete' op, and it's referenced and already on
786 	 * the LRU list.
787 	 *
788 	 * NOTE! Since we aren't locked, these values are
789 	 * not "stable". However, it is sufficient that at
790 	 * some point after we dropped the reference the
791 	 * dentry was hashed and the flags had the proper
792 	 * value. Other dentry users may have re-gotten
793 	 * a reference to the dentry and change that, but
794 	 * our work is done - we can leave the dentry
795 	 * around with a zero refcount.
796 	 */
797 	smp_rmb();
798 	d_flags = READ_ONCE(dentry->d_flags);
799 	d_flags &= DCACHE_REFERENCED | DCACHE_LRU_LIST | DCACHE_DISCONNECTED;
800 
801 	/* Nothing to do? Dropping the reference was all we needed? */
802 	if (d_flags == (DCACHE_REFERENCED | DCACHE_LRU_LIST) && !d_unhashed(dentry))
803 		return true;
804 
805 	/*
806 	 * Not the fast normal case? Get the lock. We've already decremented
807 	 * the refcount, but we'll need to re-check the situation after
808 	 * getting the lock.
809 	 */
810 	spin_lock(&dentry->d_lock);
811 
812 	/*
813 	 * Did somebody else grab a reference to it in the meantime, and
814 	 * we're no longer the last user after all? Alternatively, somebody
815 	 * else could have killed it and marked it dead. Either way, we
816 	 * don't need to do anything else.
817 	 */
818 	if (dentry->d_lockref.count) {
819 		spin_unlock(&dentry->d_lock);
820 		return true;
821 	}
822 
823 	/*
824 	 * Re-get the reference we optimistically dropped. We hold the
825 	 * lock, and we just tested that it was zero, so we can just
826 	 * set it to 1.
827 	 */
828 	dentry->d_lockref.count = 1;
829 	return false;
830 }
831 
832 
833 /*
834  * This is dput
835  *
836  * This is complicated by the fact that we do not want to put
837  * dentries that are no longer on any hash chain on the unused
838  * list: we'd much rather just get rid of them immediately.
839  *
840  * However, that implies that we have to traverse the dentry
841  * tree upwards to the parents which might _also_ now be
842  * scheduled for deletion (it may have been only waiting for
843  * its last child to go away).
844  *
845  * This tail recursion is done by hand as we don't want to depend
846  * on the compiler to always get this right (gcc generally doesn't).
847  * Real recursion would eat up our stack space.
848  */
849 
850 /*
851  * dput - release a dentry
852  * @dentry: dentry to release
853  *
854  * Release a dentry. This will drop the usage count and if appropriate
855  * call the dentry unlink method as well as removing it from the queues and
856  * releasing its resources. If the parent dentries were scheduled for release
857  * they too may now get deleted.
858  */
859 void dput(struct dentry *dentry)
860 {
861 	while (dentry) {
862 		might_sleep();
863 
864 		rcu_read_lock();
865 		if (likely(fast_dput(dentry))) {
866 			rcu_read_unlock();
867 			return;
868 		}
869 
870 		/* Slow case: now with the dentry lock held */
871 		rcu_read_unlock();
872 
873 		if (likely(retain_dentry(dentry))) {
874 			spin_unlock(&dentry->d_lock);
875 			return;
876 		}
877 
878 		dentry = dentry_kill(dentry);
879 	}
880 }
881 EXPORT_SYMBOL(dput);
882 
883 static void __dput_to_list(struct dentry *dentry, struct list_head *list)
884 __must_hold(&dentry->d_lock)
885 {
886 	if (dentry->d_flags & DCACHE_SHRINK_LIST) {
887 		/* let the owner of the list it's on deal with it */
888 		--dentry->d_lockref.count;
889 	} else {
890 		if (dentry->d_flags & DCACHE_LRU_LIST)
891 			d_lru_del(dentry);
892 		if (!--dentry->d_lockref.count)
893 			d_shrink_add(dentry, list);
894 	}
895 }
896 
897 void dput_to_list(struct dentry *dentry, struct list_head *list)
898 {
899 	rcu_read_lock();
900 	if (likely(fast_dput(dentry))) {
901 		rcu_read_unlock();
902 		return;
903 	}
904 	rcu_read_unlock();
905 	if (!retain_dentry(dentry))
906 		__dput_to_list(dentry, list);
907 	spin_unlock(&dentry->d_lock);
908 }
909 
910 /* This must be called with d_lock held */
911 static inline void __dget_dlock(struct dentry *dentry)
912 {
913 	dentry->d_lockref.count++;
914 }
915 
916 static inline void __dget(struct dentry *dentry)
917 {
918 	lockref_get(&dentry->d_lockref);
919 }
920 
921 struct dentry *dget_parent(struct dentry *dentry)
922 {
923 	int gotref;
924 	struct dentry *ret;
925 	unsigned seq;
926 
927 	/*
928 	 * Do optimistic parent lookup without any
929 	 * locking.
930 	 */
931 	rcu_read_lock();
932 	seq = raw_seqcount_begin(&dentry->d_seq);
933 	ret = READ_ONCE(dentry->d_parent);
934 	gotref = lockref_get_not_zero(&ret->d_lockref);
935 	rcu_read_unlock();
936 	if (likely(gotref)) {
937 		if (!read_seqcount_retry(&dentry->d_seq, seq))
938 			return ret;
939 		dput(ret);
940 	}
941 
942 repeat:
943 	/*
944 	 * Don't need rcu_dereference because we re-check it was correct under
945 	 * the lock.
946 	 */
947 	rcu_read_lock();
948 	ret = dentry->d_parent;
949 	spin_lock(&ret->d_lock);
950 	if (unlikely(ret != dentry->d_parent)) {
951 		spin_unlock(&ret->d_lock);
952 		rcu_read_unlock();
953 		goto repeat;
954 	}
955 	rcu_read_unlock();
956 	BUG_ON(!ret->d_lockref.count);
957 	ret->d_lockref.count++;
958 	spin_unlock(&ret->d_lock);
959 	return ret;
960 }
961 EXPORT_SYMBOL(dget_parent);
962 
963 static struct dentry * __d_find_any_alias(struct inode *inode)
964 {
965 	struct dentry *alias;
966 
967 	if (hlist_empty(&inode->i_dentry))
968 		return NULL;
969 	alias = hlist_entry(inode->i_dentry.first, struct dentry, d_u.d_alias);
970 	__dget(alias);
971 	return alias;
972 }
973 
974 /**
975  * d_find_any_alias - find any alias for a given inode
976  * @inode: inode to find an alias for
977  *
978  * If any aliases exist for the given inode, take and return a
979  * reference for one of them.  If no aliases exist, return %NULL.
980  */
981 struct dentry *d_find_any_alias(struct inode *inode)
982 {
983 	struct dentry *de;
984 
985 	spin_lock(&inode->i_lock);
986 	de = __d_find_any_alias(inode);
987 	spin_unlock(&inode->i_lock);
988 	return de;
989 }
990 EXPORT_SYMBOL(d_find_any_alias);
991 
992 /**
993  * d_find_alias - grab a hashed alias of inode
994  * @inode: inode in question
995  *
996  * If inode has a hashed alias, or is a directory and has any alias,
997  * acquire the reference to alias and return it. Otherwise return NULL.
998  * Notice that if inode is a directory there can be only one alias and
999  * it can be unhashed only if it has no children, or if it is the root
1000  * of a filesystem, or if the directory was renamed and d_revalidate
1001  * was the first vfs operation to notice.
1002  *
1003  * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
1004  * any other hashed alias over that one.
1005  */
1006 static struct dentry *__d_find_alias(struct inode *inode)
1007 {
1008 	struct dentry *alias;
1009 
1010 	if (S_ISDIR(inode->i_mode))
1011 		return __d_find_any_alias(inode);
1012 
1013 	hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
1014 		spin_lock(&alias->d_lock);
1015  		if (!d_unhashed(alias)) {
1016 			__dget_dlock(alias);
1017 			spin_unlock(&alias->d_lock);
1018 			return alias;
1019 		}
1020 		spin_unlock(&alias->d_lock);
1021 	}
1022 	return NULL;
1023 }
1024 
1025 struct dentry *d_find_alias(struct inode *inode)
1026 {
1027 	struct dentry *de = NULL;
1028 
1029 	if (!hlist_empty(&inode->i_dentry)) {
1030 		spin_lock(&inode->i_lock);
1031 		de = __d_find_alias(inode);
1032 		spin_unlock(&inode->i_lock);
1033 	}
1034 	return de;
1035 }
1036 EXPORT_SYMBOL(d_find_alias);
1037 
1038 /*
1039  *	Try to kill dentries associated with this inode.
1040  * WARNING: you must own a reference to inode.
1041  */
1042 void d_prune_aliases(struct inode *inode)
1043 {
1044 	struct dentry *dentry;
1045 restart:
1046 	spin_lock(&inode->i_lock);
1047 	hlist_for_each_entry(dentry, &inode->i_dentry, d_u.d_alias) {
1048 		spin_lock(&dentry->d_lock);
1049 		if (!dentry->d_lockref.count) {
1050 			struct dentry *parent = lock_parent(dentry);
1051 			if (likely(!dentry->d_lockref.count)) {
1052 				__dentry_kill(dentry);
1053 				dput(parent);
1054 				goto restart;
1055 			}
1056 			if (parent)
1057 				spin_unlock(&parent->d_lock);
1058 		}
1059 		spin_unlock(&dentry->d_lock);
1060 	}
1061 	spin_unlock(&inode->i_lock);
1062 }
1063 EXPORT_SYMBOL(d_prune_aliases);
1064 
1065 /*
1066  * Lock a dentry from shrink list.
1067  * Called under rcu_read_lock() and dentry->d_lock; the former
1068  * guarantees that nothing we access will be freed under us.
1069  * Note that dentry is *not* protected from concurrent dentry_kill(),
1070  * d_delete(), etc.
1071  *
1072  * Return false if dentry has been disrupted or grabbed, leaving
1073  * the caller to kick it off-list.  Otherwise, return true and have
1074  * that dentry's inode and parent both locked.
1075  */
1076 static bool shrink_lock_dentry(struct dentry *dentry)
1077 {
1078 	struct inode *inode;
1079 	struct dentry *parent;
1080 
1081 	if (dentry->d_lockref.count)
1082 		return false;
1083 
1084 	inode = dentry->d_inode;
1085 	if (inode && unlikely(!spin_trylock(&inode->i_lock))) {
1086 		spin_unlock(&dentry->d_lock);
1087 		spin_lock(&inode->i_lock);
1088 		spin_lock(&dentry->d_lock);
1089 		if (unlikely(dentry->d_lockref.count))
1090 			goto out;
1091 		/* changed inode means that somebody had grabbed it */
1092 		if (unlikely(inode != dentry->d_inode))
1093 			goto out;
1094 	}
1095 
1096 	parent = dentry->d_parent;
1097 	if (IS_ROOT(dentry) || likely(spin_trylock(&parent->d_lock)))
1098 		return true;
1099 
1100 	spin_unlock(&dentry->d_lock);
1101 	spin_lock(&parent->d_lock);
1102 	if (unlikely(parent != dentry->d_parent)) {
1103 		spin_unlock(&parent->d_lock);
1104 		spin_lock(&dentry->d_lock);
1105 		goto out;
1106 	}
1107 	spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1108 	if (likely(!dentry->d_lockref.count))
1109 		return true;
1110 	spin_unlock(&parent->d_lock);
1111 out:
1112 	if (inode)
1113 		spin_unlock(&inode->i_lock);
1114 	return false;
1115 }
1116 
1117 void shrink_dentry_list(struct list_head *list)
1118 {
1119 	while (!list_empty(list)) {
1120 		struct dentry *dentry, *parent;
1121 
1122 		dentry = list_entry(list->prev, struct dentry, d_lru);
1123 		spin_lock(&dentry->d_lock);
1124 		rcu_read_lock();
1125 		if (!shrink_lock_dentry(dentry)) {
1126 			bool can_free = false;
1127 			rcu_read_unlock();
1128 			d_shrink_del(dentry);
1129 			if (dentry->d_lockref.count < 0)
1130 				can_free = dentry->d_flags & DCACHE_MAY_FREE;
1131 			spin_unlock(&dentry->d_lock);
1132 			if (can_free)
1133 				dentry_free(dentry);
1134 			continue;
1135 		}
1136 		rcu_read_unlock();
1137 		d_shrink_del(dentry);
1138 		parent = dentry->d_parent;
1139 		if (parent != dentry)
1140 			__dput_to_list(parent, list);
1141 		__dentry_kill(dentry);
1142 	}
1143 }
1144 
1145 static enum lru_status dentry_lru_isolate(struct list_head *item,
1146 		struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
1147 {
1148 	struct list_head *freeable = arg;
1149 	struct dentry	*dentry = container_of(item, struct dentry, d_lru);
1150 
1151 
1152 	/*
1153 	 * we are inverting the lru lock/dentry->d_lock here,
1154 	 * so use a trylock. If we fail to get the lock, just skip
1155 	 * it
1156 	 */
1157 	if (!spin_trylock(&dentry->d_lock))
1158 		return LRU_SKIP;
1159 
1160 	/*
1161 	 * Referenced dentries are still in use. If they have active
1162 	 * counts, just remove them from the LRU. Otherwise give them
1163 	 * another pass through the LRU.
1164 	 */
1165 	if (dentry->d_lockref.count) {
1166 		d_lru_isolate(lru, dentry);
1167 		spin_unlock(&dentry->d_lock);
1168 		return LRU_REMOVED;
1169 	}
1170 
1171 	if (dentry->d_flags & DCACHE_REFERENCED) {
1172 		dentry->d_flags &= ~DCACHE_REFERENCED;
1173 		spin_unlock(&dentry->d_lock);
1174 
1175 		/*
1176 		 * The list move itself will be made by the common LRU code. At
1177 		 * this point, we've dropped the dentry->d_lock but keep the
1178 		 * lru lock. This is safe to do, since every list movement is
1179 		 * protected by the lru lock even if both locks are held.
1180 		 *
1181 		 * This is guaranteed by the fact that all LRU management
1182 		 * functions are intermediated by the LRU API calls like
1183 		 * list_lru_add and list_lru_del. List movement in this file
1184 		 * only ever occur through this functions or through callbacks
1185 		 * like this one, that are called from the LRU API.
1186 		 *
1187 		 * The only exceptions to this are functions like
1188 		 * shrink_dentry_list, and code that first checks for the
1189 		 * DCACHE_SHRINK_LIST flag.  Those are guaranteed to be
1190 		 * operating only with stack provided lists after they are
1191 		 * properly isolated from the main list.  It is thus, always a
1192 		 * local access.
1193 		 */
1194 		return LRU_ROTATE;
1195 	}
1196 
1197 	d_lru_shrink_move(lru, dentry, freeable);
1198 	spin_unlock(&dentry->d_lock);
1199 
1200 	return LRU_REMOVED;
1201 }
1202 
1203 /**
1204  * prune_dcache_sb - shrink the dcache
1205  * @sb: superblock
1206  * @sc: shrink control, passed to list_lru_shrink_walk()
1207  *
1208  * Attempt to shrink the superblock dcache LRU by @sc->nr_to_scan entries. This
1209  * is done when we need more memory and called from the superblock shrinker
1210  * function.
1211  *
1212  * This function may fail to free any resources if all the dentries are in
1213  * use.
1214  */
1215 long prune_dcache_sb(struct super_block *sb, struct shrink_control *sc)
1216 {
1217 	LIST_HEAD(dispose);
1218 	long freed;
1219 
1220 	freed = list_lru_shrink_walk(&sb->s_dentry_lru, sc,
1221 				     dentry_lru_isolate, &dispose);
1222 	shrink_dentry_list(&dispose);
1223 	return freed;
1224 }
1225 
1226 static enum lru_status dentry_lru_isolate_shrink(struct list_head *item,
1227 		struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
1228 {
1229 	struct list_head *freeable = arg;
1230 	struct dentry	*dentry = container_of(item, struct dentry, d_lru);
1231 
1232 	/*
1233 	 * we are inverting the lru lock/dentry->d_lock here,
1234 	 * so use a trylock. If we fail to get the lock, just skip
1235 	 * it
1236 	 */
1237 	if (!spin_trylock(&dentry->d_lock))
1238 		return LRU_SKIP;
1239 
1240 	d_lru_shrink_move(lru, dentry, freeable);
1241 	spin_unlock(&dentry->d_lock);
1242 
1243 	return LRU_REMOVED;
1244 }
1245 
1246 
1247 /**
1248  * shrink_dcache_sb - shrink dcache for a superblock
1249  * @sb: superblock
1250  *
1251  * Shrink the dcache for the specified super block. This is used to free
1252  * the dcache before unmounting a file system.
1253  */
1254 void shrink_dcache_sb(struct super_block *sb)
1255 {
1256 	do {
1257 		LIST_HEAD(dispose);
1258 
1259 		list_lru_walk(&sb->s_dentry_lru,
1260 			dentry_lru_isolate_shrink, &dispose, 1024);
1261 		shrink_dentry_list(&dispose);
1262 	} while (list_lru_count(&sb->s_dentry_lru) > 0);
1263 }
1264 EXPORT_SYMBOL(shrink_dcache_sb);
1265 
1266 /**
1267  * enum d_walk_ret - action to talke during tree walk
1268  * @D_WALK_CONTINUE:	contrinue walk
1269  * @D_WALK_QUIT:	quit walk
1270  * @D_WALK_NORETRY:	quit when retry is needed
1271  * @D_WALK_SKIP:	skip this dentry and its children
1272  */
1273 enum d_walk_ret {
1274 	D_WALK_CONTINUE,
1275 	D_WALK_QUIT,
1276 	D_WALK_NORETRY,
1277 	D_WALK_SKIP,
1278 };
1279 
1280 /**
1281  * d_walk - walk the dentry tree
1282  * @parent:	start of walk
1283  * @data:	data passed to @enter() and @finish()
1284  * @enter:	callback when first entering the dentry
1285  *
1286  * The @enter() callbacks are called with d_lock held.
1287  */
1288 static void d_walk(struct dentry *parent, void *data,
1289 		   enum d_walk_ret (*enter)(void *, struct dentry *))
1290 {
1291 	struct dentry *this_parent;
1292 	struct list_head *next;
1293 	unsigned seq = 0;
1294 	enum d_walk_ret ret;
1295 	bool retry = true;
1296 
1297 again:
1298 	read_seqbegin_or_lock(&rename_lock, &seq);
1299 	this_parent = parent;
1300 	spin_lock(&this_parent->d_lock);
1301 
1302 	ret = enter(data, this_parent);
1303 	switch (ret) {
1304 	case D_WALK_CONTINUE:
1305 		break;
1306 	case D_WALK_QUIT:
1307 	case D_WALK_SKIP:
1308 		goto out_unlock;
1309 	case D_WALK_NORETRY:
1310 		retry = false;
1311 		break;
1312 	}
1313 repeat:
1314 	next = this_parent->d_subdirs.next;
1315 resume:
1316 	while (next != &this_parent->d_subdirs) {
1317 		struct list_head *tmp = next;
1318 		struct dentry *dentry = list_entry(tmp, struct dentry, d_child);
1319 		next = tmp->next;
1320 
1321 		if (unlikely(dentry->d_flags & DCACHE_DENTRY_CURSOR))
1322 			continue;
1323 
1324 		spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1325 
1326 		ret = enter(data, dentry);
1327 		switch (ret) {
1328 		case D_WALK_CONTINUE:
1329 			break;
1330 		case D_WALK_QUIT:
1331 			spin_unlock(&dentry->d_lock);
1332 			goto out_unlock;
1333 		case D_WALK_NORETRY:
1334 			retry = false;
1335 			break;
1336 		case D_WALK_SKIP:
1337 			spin_unlock(&dentry->d_lock);
1338 			continue;
1339 		}
1340 
1341 		if (!list_empty(&dentry->d_subdirs)) {
1342 			spin_unlock(&this_parent->d_lock);
1343 			spin_release(&dentry->d_lock.dep_map, _RET_IP_);
1344 			this_parent = dentry;
1345 			spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1346 			goto repeat;
1347 		}
1348 		spin_unlock(&dentry->d_lock);
1349 	}
1350 	/*
1351 	 * All done at this level ... ascend and resume the search.
1352 	 */
1353 	rcu_read_lock();
1354 ascend:
1355 	if (this_parent != parent) {
1356 		struct dentry *child = this_parent;
1357 		this_parent = child->d_parent;
1358 
1359 		spin_unlock(&child->d_lock);
1360 		spin_lock(&this_parent->d_lock);
1361 
1362 		/* might go back up the wrong parent if we have had a rename. */
1363 		if (need_seqretry(&rename_lock, seq))
1364 			goto rename_retry;
1365 		/* go into the first sibling still alive */
1366 		do {
1367 			next = child->d_child.next;
1368 			if (next == &this_parent->d_subdirs)
1369 				goto ascend;
1370 			child = list_entry(next, struct dentry, d_child);
1371 		} while (unlikely(child->d_flags & DCACHE_DENTRY_KILLED));
1372 		rcu_read_unlock();
1373 		goto resume;
1374 	}
1375 	if (need_seqretry(&rename_lock, seq))
1376 		goto rename_retry;
1377 	rcu_read_unlock();
1378 
1379 out_unlock:
1380 	spin_unlock(&this_parent->d_lock);
1381 	done_seqretry(&rename_lock, seq);
1382 	return;
1383 
1384 rename_retry:
1385 	spin_unlock(&this_parent->d_lock);
1386 	rcu_read_unlock();
1387 	BUG_ON(seq & 1);
1388 	if (!retry)
1389 		return;
1390 	seq = 1;
1391 	goto again;
1392 }
1393 
1394 struct check_mount {
1395 	struct vfsmount *mnt;
1396 	unsigned int mounted;
1397 };
1398 
1399 static enum d_walk_ret path_check_mount(void *data, struct dentry *dentry)
1400 {
1401 	struct check_mount *info = data;
1402 	struct path path = { .mnt = info->mnt, .dentry = dentry };
1403 
1404 	if (likely(!d_mountpoint(dentry)))
1405 		return D_WALK_CONTINUE;
1406 	if (__path_is_mountpoint(&path)) {
1407 		info->mounted = 1;
1408 		return D_WALK_QUIT;
1409 	}
1410 	return D_WALK_CONTINUE;
1411 }
1412 
1413 /**
1414  * path_has_submounts - check for mounts over a dentry in the
1415  *                      current namespace.
1416  * @parent: path to check.
1417  *
1418  * Return true if the parent or its subdirectories contain
1419  * a mount point in the current namespace.
1420  */
1421 int path_has_submounts(const struct path *parent)
1422 {
1423 	struct check_mount data = { .mnt = parent->mnt, .mounted = 0 };
1424 
1425 	read_seqlock_excl(&mount_lock);
1426 	d_walk(parent->dentry, &data, path_check_mount);
1427 	read_sequnlock_excl(&mount_lock);
1428 
1429 	return data.mounted;
1430 }
1431 EXPORT_SYMBOL(path_has_submounts);
1432 
1433 /*
1434  * Called by mount code to set a mountpoint and check if the mountpoint is
1435  * reachable (e.g. NFS can unhash a directory dentry and then the complete
1436  * subtree can become unreachable).
1437  *
1438  * Only one of d_invalidate() and d_set_mounted() must succeed.  For
1439  * this reason take rename_lock and d_lock on dentry and ancestors.
1440  */
1441 int d_set_mounted(struct dentry *dentry)
1442 {
1443 	struct dentry *p;
1444 	int ret = -ENOENT;
1445 	write_seqlock(&rename_lock);
1446 	for (p = dentry->d_parent; !IS_ROOT(p); p = p->d_parent) {
1447 		/* Need exclusion wrt. d_invalidate() */
1448 		spin_lock(&p->d_lock);
1449 		if (unlikely(d_unhashed(p))) {
1450 			spin_unlock(&p->d_lock);
1451 			goto out;
1452 		}
1453 		spin_unlock(&p->d_lock);
1454 	}
1455 	spin_lock(&dentry->d_lock);
1456 	if (!d_unlinked(dentry)) {
1457 		ret = -EBUSY;
1458 		if (!d_mountpoint(dentry)) {
1459 			dentry->d_flags |= DCACHE_MOUNTED;
1460 			ret = 0;
1461 		}
1462 	}
1463  	spin_unlock(&dentry->d_lock);
1464 out:
1465 	write_sequnlock(&rename_lock);
1466 	return ret;
1467 }
1468 
1469 /*
1470  * Search the dentry child list of the specified parent,
1471  * and move any unused dentries to the end of the unused
1472  * list for prune_dcache(). We descend to the next level
1473  * whenever the d_subdirs list is non-empty and continue
1474  * searching.
1475  *
1476  * It returns zero iff there are no unused children,
1477  * otherwise  it returns the number of children moved to
1478  * the end of the unused list. This may not be the total
1479  * number of unused children, because select_parent can
1480  * drop the lock and return early due to latency
1481  * constraints.
1482  */
1483 
1484 struct select_data {
1485 	struct dentry *start;
1486 	union {
1487 		long found;
1488 		struct dentry *victim;
1489 	};
1490 	struct list_head dispose;
1491 };
1492 
1493 static enum d_walk_ret select_collect(void *_data, struct dentry *dentry)
1494 {
1495 	struct select_data *data = _data;
1496 	enum d_walk_ret ret = D_WALK_CONTINUE;
1497 
1498 	if (data->start == dentry)
1499 		goto out;
1500 
1501 	if (dentry->d_flags & DCACHE_SHRINK_LIST) {
1502 		data->found++;
1503 	} else {
1504 		if (dentry->d_flags & DCACHE_LRU_LIST)
1505 			d_lru_del(dentry);
1506 		if (!dentry->d_lockref.count) {
1507 			d_shrink_add(dentry, &data->dispose);
1508 			data->found++;
1509 		}
1510 	}
1511 	/*
1512 	 * We can return to the caller if we have found some (this
1513 	 * ensures forward progress). We'll be coming back to find
1514 	 * the rest.
1515 	 */
1516 	if (!list_empty(&data->dispose))
1517 		ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY;
1518 out:
1519 	return ret;
1520 }
1521 
1522 static enum d_walk_ret select_collect2(void *_data, struct dentry *dentry)
1523 {
1524 	struct select_data *data = _data;
1525 	enum d_walk_ret ret = D_WALK_CONTINUE;
1526 
1527 	if (data->start == dentry)
1528 		goto out;
1529 
1530 	if (dentry->d_flags & DCACHE_SHRINK_LIST) {
1531 		if (!dentry->d_lockref.count) {
1532 			rcu_read_lock();
1533 			data->victim = dentry;
1534 			return D_WALK_QUIT;
1535 		}
1536 	} else {
1537 		if (dentry->d_flags & DCACHE_LRU_LIST)
1538 			d_lru_del(dentry);
1539 		if (!dentry->d_lockref.count)
1540 			d_shrink_add(dentry, &data->dispose);
1541 	}
1542 	/*
1543 	 * We can return to the caller if we have found some (this
1544 	 * ensures forward progress). We'll be coming back to find
1545 	 * the rest.
1546 	 */
1547 	if (!list_empty(&data->dispose))
1548 		ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY;
1549 out:
1550 	return ret;
1551 }
1552 
1553 /**
1554  * shrink_dcache_parent - prune dcache
1555  * @parent: parent of entries to prune
1556  *
1557  * Prune the dcache to remove unused children of the parent dentry.
1558  */
1559 void shrink_dcache_parent(struct dentry *parent)
1560 {
1561 	for (;;) {
1562 		struct select_data data = {.start = parent};
1563 
1564 		INIT_LIST_HEAD(&data.dispose);
1565 		d_walk(parent, &data, select_collect);
1566 
1567 		if (!list_empty(&data.dispose)) {
1568 			shrink_dentry_list(&data.dispose);
1569 			continue;
1570 		}
1571 
1572 		cond_resched();
1573 		if (!data.found)
1574 			break;
1575 		data.victim = NULL;
1576 		d_walk(parent, &data, select_collect2);
1577 		if (data.victim) {
1578 			struct dentry *parent;
1579 			spin_lock(&data.victim->d_lock);
1580 			if (!shrink_lock_dentry(data.victim)) {
1581 				spin_unlock(&data.victim->d_lock);
1582 				rcu_read_unlock();
1583 			} else {
1584 				rcu_read_unlock();
1585 				parent = data.victim->d_parent;
1586 				if (parent != data.victim)
1587 					__dput_to_list(parent, &data.dispose);
1588 				__dentry_kill(data.victim);
1589 			}
1590 		}
1591 		if (!list_empty(&data.dispose))
1592 			shrink_dentry_list(&data.dispose);
1593 	}
1594 }
1595 EXPORT_SYMBOL(shrink_dcache_parent);
1596 
1597 static enum d_walk_ret umount_check(void *_data, struct dentry *dentry)
1598 {
1599 	/* it has busy descendents; complain about those instead */
1600 	if (!list_empty(&dentry->d_subdirs))
1601 		return D_WALK_CONTINUE;
1602 
1603 	/* root with refcount 1 is fine */
1604 	if (dentry == _data && dentry->d_lockref.count == 1)
1605 		return D_WALK_CONTINUE;
1606 
1607 	printk(KERN_ERR "BUG: Dentry %p{i=%lx,n=%pd} "
1608 			" still in use (%d) [unmount of %s %s]\n",
1609 		       dentry,
1610 		       dentry->d_inode ?
1611 		       dentry->d_inode->i_ino : 0UL,
1612 		       dentry,
1613 		       dentry->d_lockref.count,
1614 		       dentry->d_sb->s_type->name,
1615 		       dentry->d_sb->s_id);
1616 	WARN_ON(1);
1617 	return D_WALK_CONTINUE;
1618 }
1619 
1620 static void do_one_tree(struct dentry *dentry)
1621 {
1622 	shrink_dcache_parent(dentry);
1623 	d_walk(dentry, dentry, umount_check);
1624 	d_drop(dentry);
1625 	dput(dentry);
1626 }
1627 
1628 /*
1629  * destroy the dentries attached to a superblock on unmounting
1630  */
1631 void shrink_dcache_for_umount(struct super_block *sb)
1632 {
1633 	struct dentry *dentry;
1634 
1635 	WARN(down_read_trylock(&sb->s_umount), "s_umount should've been locked");
1636 
1637 	dentry = sb->s_root;
1638 	sb->s_root = NULL;
1639 	do_one_tree(dentry);
1640 
1641 	while (!hlist_bl_empty(&sb->s_roots)) {
1642 		dentry = dget(hlist_bl_entry(hlist_bl_first(&sb->s_roots), struct dentry, d_hash));
1643 		do_one_tree(dentry);
1644 	}
1645 }
1646 
1647 static enum d_walk_ret find_submount(void *_data, struct dentry *dentry)
1648 {
1649 	struct dentry **victim = _data;
1650 	if (d_mountpoint(dentry)) {
1651 		__dget_dlock(dentry);
1652 		*victim = dentry;
1653 		return D_WALK_QUIT;
1654 	}
1655 	return D_WALK_CONTINUE;
1656 }
1657 
1658 /**
1659  * d_invalidate - detach submounts, prune dcache, and drop
1660  * @dentry: dentry to invalidate (aka detach, prune and drop)
1661  */
1662 void d_invalidate(struct dentry *dentry)
1663 {
1664 	bool had_submounts = false;
1665 	spin_lock(&dentry->d_lock);
1666 	if (d_unhashed(dentry)) {
1667 		spin_unlock(&dentry->d_lock);
1668 		return;
1669 	}
1670 	__d_drop(dentry);
1671 	spin_unlock(&dentry->d_lock);
1672 
1673 	/* Negative dentries can be dropped without further checks */
1674 	if (!dentry->d_inode)
1675 		return;
1676 
1677 	shrink_dcache_parent(dentry);
1678 	for (;;) {
1679 		struct dentry *victim = NULL;
1680 		d_walk(dentry, &victim, find_submount);
1681 		if (!victim) {
1682 			if (had_submounts)
1683 				shrink_dcache_parent(dentry);
1684 			return;
1685 		}
1686 		had_submounts = true;
1687 		detach_mounts(victim);
1688 		dput(victim);
1689 	}
1690 }
1691 EXPORT_SYMBOL(d_invalidate);
1692 
1693 /**
1694  * __d_alloc	-	allocate a dcache entry
1695  * @sb: filesystem it will belong to
1696  * @name: qstr of the name
1697  *
1698  * Allocates a dentry. It returns %NULL if there is insufficient memory
1699  * available. On a success the dentry is returned. The name passed in is
1700  * copied and the copy passed in may be reused after this call.
1701  */
1702 
1703 static struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name)
1704 {
1705 	struct dentry *dentry;
1706 	char *dname;
1707 	int err;
1708 
1709 	dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
1710 	if (!dentry)
1711 		return NULL;
1712 
1713 	/*
1714 	 * We guarantee that the inline name is always NUL-terminated.
1715 	 * This way the memcpy() done by the name switching in rename
1716 	 * will still always have a NUL at the end, even if we might
1717 	 * be overwriting an internal NUL character
1718 	 */
1719 	dentry->d_iname[DNAME_INLINE_LEN-1] = 0;
1720 	if (unlikely(!name)) {
1721 		name = &slash_name;
1722 		dname = dentry->d_iname;
1723 	} else if (name->len > DNAME_INLINE_LEN-1) {
1724 		size_t size = offsetof(struct external_name, name[1]);
1725 		struct external_name *p = kmalloc(size + name->len,
1726 						  GFP_KERNEL_ACCOUNT |
1727 						  __GFP_RECLAIMABLE);
1728 		if (!p) {
1729 			kmem_cache_free(dentry_cache, dentry);
1730 			return NULL;
1731 		}
1732 		atomic_set(&p->u.count, 1);
1733 		dname = p->name;
1734 	} else  {
1735 		dname = dentry->d_iname;
1736 	}
1737 
1738 	dentry->d_name.len = name->len;
1739 	dentry->d_name.hash = name->hash;
1740 	memcpy(dname, name->name, name->len);
1741 	dname[name->len] = 0;
1742 
1743 	/* Make sure we always see the terminating NUL character */
1744 	smp_store_release(&dentry->d_name.name, dname); /* ^^^ */
1745 
1746 	dentry->d_lockref.count = 1;
1747 	dentry->d_flags = 0;
1748 	spin_lock_init(&dentry->d_lock);
1749 	seqcount_init(&dentry->d_seq);
1750 	dentry->d_inode = NULL;
1751 	dentry->d_parent = dentry;
1752 	dentry->d_sb = sb;
1753 	dentry->d_op = NULL;
1754 	dentry->d_fsdata = NULL;
1755 	INIT_HLIST_BL_NODE(&dentry->d_hash);
1756 	INIT_LIST_HEAD(&dentry->d_lru);
1757 	INIT_LIST_HEAD(&dentry->d_subdirs);
1758 	INIT_HLIST_NODE(&dentry->d_u.d_alias);
1759 	INIT_LIST_HEAD(&dentry->d_child);
1760 	d_set_d_op(dentry, dentry->d_sb->s_d_op);
1761 
1762 	if (dentry->d_op && dentry->d_op->d_init) {
1763 		err = dentry->d_op->d_init(dentry);
1764 		if (err) {
1765 			if (dname_external(dentry))
1766 				kfree(external_name(dentry));
1767 			kmem_cache_free(dentry_cache, dentry);
1768 			return NULL;
1769 		}
1770 	}
1771 
1772 	this_cpu_inc(nr_dentry);
1773 
1774 	return dentry;
1775 }
1776 
1777 /**
1778  * d_alloc	-	allocate a dcache entry
1779  * @parent: parent of entry to allocate
1780  * @name: qstr of the name
1781  *
1782  * Allocates a dentry. It returns %NULL if there is insufficient memory
1783  * available. On a success the dentry is returned. The name passed in is
1784  * copied and the copy passed in may be reused after this call.
1785  */
1786 struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1787 {
1788 	struct dentry *dentry = __d_alloc(parent->d_sb, name);
1789 	if (!dentry)
1790 		return NULL;
1791 	spin_lock(&parent->d_lock);
1792 	/*
1793 	 * don't need child lock because it is not subject
1794 	 * to concurrency here
1795 	 */
1796 	__dget_dlock(parent);
1797 	dentry->d_parent = parent;
1798 	list_add(&dentry->d_child, &parent->d_subdirs);
1799 	spin_unlock(&parent->d_lock);
1800 
1801 	return dentry;
1802 }
1803 EXPORT_SYMBOL(d_alloc);
1804 
1805 struct dentry *d_alloc_anon(struct super_block *sb)
1806 {
1807 	return __d_alloc(sb, NULL);
1808 }
1809 EXPORT_SYMBOL(d_alloc_anon);
1810 
1811 struct dentry *d_alloc_cursor(struct dentry * parent)
1812 {
1813 	struct dentry *dentry = d_alloc_anon(parent->d_sb);
1814 	if (dentry) {
1815 		dentry->d_flags |= DCACHE_DENTRY_CURSOR;
1816 		dentry->d_parent = dget(parent);
1817 	}
1818 	return dentry;
1819 }
1820 
1821 /**
1822  * d_alloc_pseudo - allocate a dentry (for lookup-less filesystems)
1823  * @sb: the superblock
1824  * @name: qstr of the name
1825  *
1826  * For a filesystem that just pins its dentries in memory and never
1827  * performs lookups at all, return an unhashed IS_ROOT dentry.
1828  * This is used for pipes, sockets et.al. - the stuff that should
1829  * never be anyone's children or parents.  Unlike all other
1830  * dentries, these will not have RCU delay between dropping the
1831  * last reference and freeing them.
1832  *
1833  * The only user is alloc_file_pseudo() and that's what should
1834  * be considered a public interface.  Don't use directly.
1835  */
1836 struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
1837 {
1838 	struct dentry *dentry = __d_alloc(sb, name);
1839 	if (likely(dentry))
1840 		dentry->d_flags |= DCACHE_NORCU;
1841 	return dentry;
1842 }
1843 
1844 struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1845 {
1846 	struct qstr q;
1847 
1848 	q.name = name;
1849 	q.hash_len = hashlen_string(parent, name);
1850 	return d_alloc(parent, &q);
1851 }
1852 EXPORT_SYMBOL(d_alloc_name);
1853 
1854 void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1855 {
1856 	WARN_ON_ONCE(dentry->d_op);
1857 	WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH	|
1858 				DCACHE_OP_COMPARE	|
1859 				DCACHE_OP_REVALIDATE	|
1860 				DCACHE_OP_WEAK_REVALIDATE	|
1861 				DCACHE_OP_DELETE	|
1862 				DCACHE_OP_REAL));
1863 	dentry->d_op = op;
1864 	if (!op)
1865 		return;
1866 	if (op->d_hash)
1867 		dentry->d_flags |= DCACHE_OP_HASH;
1868 	if (op->d_compare)
1869 		dentry->d_flags |= DCACHE_OP_COMPARE;
1870 	if (op->d_revalidate)
1871 		dentry->d_flags |= DCACHE_OP_REVALIDATE;
1872 	if (op->d_weak_revalidate)
1873 		dentry->d_flags |= DCACHE_OP_WEAK_REVALIDATE;
1874 	if (op->d_delete)
1875 		dentry->d_flags |= DCACHE_OP_DELETE;
1876 	if (op->d_prune)
1877 		dentry->d_flags |= DCACHE_OP_PRUNE;
1878 	if (op->d_real)
1879 		dentry->d_flags |= DCACHE_OP_REAL;
1880 
1881 }
1882 EXPORT_SYMBOL(d_set_d_op);
1883 
1884 
1885 /*
1886  * d_set_fallthru - Mark a dentry as falling through to a lower layer
1887  * @dentry - The dentry to mark
1888  *
1889  * Mark a dentry as falling through to the lower layer (as set with
1890  * d_pin_lower()).  This flag may be recorded on the medium.
1891  */
1892 void d_set_fallthru(struct dentry *dentry)
1893 {
1894 	spin_lock(&dentry->d_lock);
1895 	dentry->d_flags |= DCACHE_FALLTHRU;
1896 	spin_unlock(&dentry->d_lock);
1897 }
1898 EXPORT_SYMBOL(d_set_fallthru);
1899 
1900 static unsigned d_flags_for_inode(struct inode *inode)
1901 {
1902 	unsigned add_flags = DCACHE_REGULAR_TYPE;
1903 
1904 	if (!inode)
1905 		return DCACHE_MISS_TYPE;
1906 
1907 	if (S_ISDIR(inode->i_mode)) {
1908 		add_flags = DCACHE_DIRECTORY_TYPE;
1909 		if (unlikely(!(inode->i_opflags & IOP_LOOKUP))) {
1910 			if (unlikely(!inode->i_op->lookup))
1911 				add_flags = DCACHE_AUTODIR_TYPE;
1912 			else
1913 				inode->i_opflags |= IOP_LOOKUP;
1914 		}
1915 		goto type_determined;
1916 	}
1917 
1918 	if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) {
1919 		if (unlikely(inode->i_op->get_link)) {
1920 			add_flags = DCACHE_SYMLINK_TYPE;
1921 			goto type_determined;
1922 		}
1923 		inode->i_opflags |= IOP_NOFOLLOW;
1924 	}
1925 
1926 	if (unlikely(!S_ISREG(inode->i_mode)))
1927 		add_flags = DCACHE_SPECIAL_TYPE;
1928 
1929 type_determined:
1930 	if (unlikely(IS_AUTOMOUNT(inode)))
1931 		add_flags |= DCACHE_NEED_AUTOMOUNT;
1932 	return add_flags;
1933 }
1934 
1935 static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1936 {
1937 	unsigned add_flags = d_flags_for_inode(inode);
1938 	WARN_ON(d_in_lookup(dentry));
1939 
1940 	spin_lock(&dentry->d_lock);
1941 	/*
1942 	 * Decrement negative dentry count if it was in the LRU list.
1943 	 */
1944 	if (dentry->d_flags & DCACHE_LRU_LIST)
1945 		this_cpu_dec(nr_dentry_negative);
1946 	hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
1947 	raw_write_seqcount_begin(&dentry->d_seq);
1948 	__d_set_inode_and_type(dentry, inode, add_flags);
1949 	raw_write_seqcount_end(&dentry->d_seq);
1950 	fsnotify_update_flags(dentry);
1951 	spin_unlock(&dentry->d_lock);
1952 }
1953 
1954 /**
1955  * d_instantiate - fill in inode information for a dentry
1956  * @entry: dentry to complete
1957  * @inode: inode to attach to this dentry
1958  *
1959  * Fill in inode information in the entry.
1960  *
1961  * This turns negative dentries into productive full members
1962  * of society.
1963  *
1964  * NOTE! This assumes that the inode count has been incremented
1965  * (or otherwise set) by the caller to indicate that it is now
1966  * in use by the dcache.
1967  */
1968 
1969 void d_instantiate(struct dentry *entry, struct inode * inode)
1970 {
1971 	BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
1972 	if (inode) {
1973 		security_d_instantiate(entry, inode);
1974 		spin_lock(&inode->i_lock);
1975 		__d_instantiate(entry, inode);
1976 		spin_unlock(&inode->i_lock);
1977 	}
1978 }
1979 EXPORT_SYMBOL(d_instantiate);
1980 
1981 /*
1982  * This should be equivalent to d_instantiate() + unlock_new_inode(),
1983  * with lockdep-related part of unlock_new_inode() done before
1984  * anything else.  Use that instead of open-coding d_instantiate()/
1985  * unlock_new_inode() combinations.
1986  */
1987 void d_instantiate_new(struct dentry *entry, struct inode *inode)
1988 {
1989 	BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
1990 	BUG_ON(!inode);
1991 	lockdep_annotate_inode_mutex_key(inode);
1992 	security_d_instantiate(entry, inode);
1993 	spin_lock(&inode->i_lock);
1994 	__d_instantiate(entry, inode);
1995 	WARN_ON(!(inode->i_state & I_NEW));
1996 	inode->i_state &= ~I_NEW & ~I_CREATING;
1997 	smp_mb();
1998 	wake_up_bit(&inode->i_state, __I_NEW);
1999 	spin_unlock(&inode->i_lock);
2000 }
2001 EXPORT_SYMBOL(d_instantiate_new);
2002 
2003 struct dentry *d_make_root(struct inode *root_inode)
2004 {
2005 	struct dentry *res = NULL;
2006 
2007 	if (root_inode) {
2008 		res = d_alloc_anon(root_inode->i_sb);
2009 		if (res)
2010 			d_instantiate(res, root_inode);
2011 		else
2012 			iput(root_inode);
2013 	}
2014 	return res;
2015 }
2016 EXPORT_SYMBOL(d_make_root);
2017 
2018 static struct dentry *__d_instantiate_anon(struct dentry *dentry,
2019 					   struct inode *inode,
2020 					   bool disconnected)
2021 {
2022 	struct dentry *res;
2023 	unsigned add_flags;
2024 
2025 	security_d_instantiate(dentry, inode);
2026 	spin_lock(&inode->i_lock);
2027 	res = __d_find_any_alias(inode);
2028 	if (res) {
2029 		spin_unlock(&inode->i_lock);
2030 		dput(dentry);
2031 		goto out_iput;
2032 	}
2033 
2034 	/* attach a disconnected dentry */
2035 	add_flags = d_flags_for_inode(inode);
2036 
2037 	if (disconnected)
2038 		add_flags |= DCACHE_DISCONNECTED;
2039 
2040 	spin_lock(&dentry->d_lock);
2041 	__d_set_inode_and_type(dentry, inode, add_flags);
2042 	hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
2043 	if (!disconnected) {
2044 		hlist_bl_lock(&dentry->d_sb->s_roots);
2045 		hlist_bl_add_head(&dentry->d_hash, &dentry->d_sb->s_roots);
2046 		hlist_bl_unlock(&dentry->d_sb->s_roots);
2047 	}
2048 	spin_unlock(&dentry->d_lock);
2049 	spin_unlock(&inode->i_lock);
2050 
2051 	return dentry;
2052 
2053  out_iput:
2054 	iput(inode);
2055 	return res;
2056 }
2057 
2058 struct dentry *d_instantiate_anon(struct dentry *dentry, struct inode *inode)
2059 {
2060 	return __d_instantiate_anon(dentry, inode, true);
2061 }
2062 EXPORT_SYMBOL(d_instantiate_anon);
2063 
2064 static struct dentry *__d_obtain_alias(struct inode *inode, bool disconnected)
2065 {
2066 	struct dentry *tmp;
2067 	struct dentry *res;
2068 
2069 	if (!inode)
2070 		return ERR_PTR(-ESTALE);
2071 	if (IS_ERR(inode))
2072 		return ERR_CAST(inode);
2073 
2074 	res = d_find_any_alias(inode);
2075 	if (res)
2076 		goto out_iput;
2077 
2078 	tmp = d_alloc_anon(inode->i_sb);
2079 	if (!tmp) {
2080 		res = ERR_PTR(-ENOMEM);
2081 		goto out_iput;
2082 	}
2083 
2084 	return __d_instantiate_anon(tmp, inode, disconnected);
2085 
2086 out_iput:
2087 	iput(inode);
2088 	return res;
2089 }
2090 
2091 /**
2092  * d_obtain_alias - find or allocate a DISCONNECTED dentry for a given inode
2093  * @inode: inode to allocate the dentry for
2094  *
2095  * Obtain a dentry for an inode resulting from NFS filehandle conversion or
2096  * similar open by handle operations.  The returned dentry may be anonymous,
2097  * or may have a full name (if the inode was already in the cache).
2098  *
2099  * When called on a directory inode, we must ensure that the inode only ever
2100  * has one dentry.  If a dentry is found, that is returned instead of
2101  * allocating a new one.
2102  *
2103  * On successful return, the reference to the inode has been transferred
2104  * to the dentry.  In case of an error the reference on the inode is released.
2105  * To make it easier to use in export operations a %NULL or IS_ERR inode may
2106  * be passed in and the error will be propagated to the return value,
2107  * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
2108  */
2109 struct dentry *d_obtain_alias(struct inode *inode)
2110 {
2111 	return __d_obtain_alias(inode, true);
2112 }
2113 EXPORT_SYMBOL(d_obtain_alias);
2114 
2115 /**
2116  * d_obtain_root - find or allocate a dentry for a given inode
2117  * @inode: inode to allocate the dentry for
2118  *
2119  * Obtain an IS_ROOT dentry for the root of a filesystem.
2120  *
2121  * We must ensure that directory inodes only ever have one dentry.  If a
2122  * dentry is found, that is returned instead of allocating a new one.
2123  *
2124  * On successful return, the reference to the inode has been transferred
2125  * to the dentry.  In case of an error the reference on the inode is
2126  * released.  A %NULL or IS_ERR inode may be passed in and will be the
2127  * error will be propagate to the return value, with a %NULL @inode
2128  * replaced by ERR_PTR(-ESTALE).
2129  */
2130 struct dentry *d_obtain_root(struct inode *inode)
2131 {
2132 	return __d_obtain_alias(inode, false);
2133 }
2134 EXPORT_SYMBOL(d_obtain_root);
2135 
2136 /**
2137  * d_add_ci - lookup or allocate new dentry with case-exact name
2138  * @inode:  the inode case-insensitive lookup has found
2139  * @dentry: the negative dentry that was passed to the parent's lookup func
2140  * @name:   the case-exact name to be associated with the returned dentry
2141  *
2142  * This is to avoid filling the dcache with case-insensitive names to the
2143  * same inode, only the actual correct case is stored in the dcache for
2144  * case-insensitive filesystems.
2145  *
2146  * For a case-insensitive lookup match and if the the case-exact dentry
2147  * already exists in in the dcache, use it and return it.
2148  *
2149  * If no entry exists with the exact case name, allocate new dentry with
2150  * the exact case, and return the spliced entry.
2151  */
2152 struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
2153 			struct qstr *name)
2154 {
2155 	struct dentry *found, *res;
2156 
2157 	/*
2158 	 * First check if a dentry matching the name already exists,
2159 	 * if not go ahead and create it now.
2160 	 */
2161 	found = d_hash_and_lookup(dentry->d_parent, name);
2162 	if (found) {
2163 		iput(inode);
2164 		return found;
2165 	}
2166 	if (d_in_lookup(dentry)) {
2167 		found = d_alloc_parallel(dentry->d_parent, name,
2168 					dentry->d_wait);
2169 		if (IS_ERR(found) || !d_in_lookup(found)) {
2170 			iput(inode);
2171 			return found;
2172 		}
2173 	} else {
2174 		found = d_alloc(dentry->d_parent, name);
2175 		if (!found) {
2176 			iput(inode);
2177 			return ERR_PTR(-ENOMEM);
2178 		}
2179 	}
2180 	res = d_splice_alias(inode, found);
2181 	if (res) {
2182 		dput(found);
2183 		return res;
2184 	}
2185 	return found;
2186 }
2187 EXPORT_SYMBOL(d_add_ci);
2188 
2189 
2190 static inline bool d_same_name(const struct dentry *dentry,
2191 				const struct dentry *parent,
2192 				const struct qstr *name)
2193 {
2194 	if (likely(!(parent->d_flags & DCACHE_OP_COMPARE))) {
2195 		if (dentry->d_name.len != name->len)
2196 			return false;
2197 		return dentry_cmp(dentry, name->name, name->len) == 0;
2198 	}
2199 	return parent->d_op->d_compare(dentry,
2200 				       dentry->d_name.len, dentry->d_name.name,
2201 				       name) == 0;
2202 }
2203 
2204 /**
2205  * __d_lookup_rcu - search for a dentry (racy, store-free)
2206  * @parent: parent dentry
2207  * @name: qstr of name we wish to find
2208  * @seqp: returns d_seq value at the point where the dentry was found
2209  * Returns: dentry, or NULL
2210  *
2211  * __d_lookup_rcu is the dcache lookup function for rcu-walk name
2212  * resolution (store-free path walking) design described in
2213  * Documentation/filesystems/path-lookup.txt.
2214  *
2215  * This is not to be used outside core vfs.
2216  *
2217  * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
2218  * held, and rcu_read_lock held. The returned dentry must not be stored into
2219  * without taking d_lock and checking d_seq sequence count against @seq
2220  * returned here.
2221  *
2222  * A refcount may be taken on the found dentry with the d_rcu_to_refcount
2223  * function.
2224  *
2225  * Alternatively, __d_lookup_rcu may be called again to look up the child of
2226  * the returned dentry, so long as its parent's seqlock is checked after the
2227  * child is looked up. Thus, an interlocking stepping of sequence lock checks
2228  * is formed, giving integrity down the path walk.
2229  *
2230  * NOTE! The caller *has* to check the resulting dentry against the sequence
2231  * number we've returned before using any of the resulting dentry state!
2232  */
2233 struct dentry *__d_lookup_rcu(const struct dentry *parent,
2234 				const struct qstr *name,
2235 				unsigned *seqp)
2236 {
2237 	u64 hashlen = name->hash_len;
2238 	const unsigned char *str = name->name;
2239 	struct hlist_bl_head *b = d_hash(hashlen_hash(hashlen));
2240 	struct hlist_bl_node *node;
2241 	struct dentry *dentry;
2242 
2243 	/*
2244 	 * Note: There is significant duplication with __d_lookup_rcu which is
2245 	 * required to prevent single threaded performance regressions
2246 	 * especially on architectures where smp_rmb (in seqcounts) are costly.
2247 	 * Keep the two functions in sync.
2248 	 */
2249 
2250 	/*
2251 	 * The hash list is protected using RCU.
2252 	 *
2253 	 * Carefully use d_seq when comparing a candidate dentry, to avoid
2254 	 * races with d_move().
2255 	 *
2256 	 * It is possible that concurrent renames can mess up our list
2257 	 * walk here and result in missing our dentry, resulting in the
2258 	 * false-negative result. d_lookup() protects against concurrent
2259 	 * renames using rename_lock seqlock.
2260 	 *
2261 	 * See Documentation/filesystems/path-lookup.txt for more details.
2262 	 */
2263 	hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2264 		unsigned seq;
2265 
2266 seqretry:
2267 		/*
2268 		 * The dentry sequence count protects us from concurrent
2269 		 * renames, and thus protects parent and name fields.
2270 		 *
2271 		 * The caller must perform a seqcount check in order
2272 		 * to do anything useful with the returned dentry.
2273 		 *
2274 		 * NOTE! We do a "raw" seqcount_begin here. That means that
2275 		 * we don't wait for the sequence count to stabilize if it
2276 		 * is in the middle of a sequence change. If we do the slow
2277 		 * dentry compare, we will do seqretries until it is stable,
2278 		 * and if we end up with a successful lookup, we actually
2279 		 * want to exit RCU lookup anyway.
2280 		 *
2281 		 * Note that raw_seqcount_begin still *does* smp_rmb(), so
2282 		 * we are still guaranteed NUL-termination of ->d_name.name.
2283 		 */
2284 		seq = raw_seqcount_begin(&dentry->d_seq);
2285 		if (dentry->d_parent != parent)
2286 			continue;
2287 		if (d_unhashed(dentry))
2288 			continue;
2289 
2290 		if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) {
2291 			int tlen;
2292 			const char *tname;
2293 			if (dentry->d_name.hash != hashlen_hash(hashlen))
2294 				continue;
2295 			tlen = dentry->d_name.len;
2296 			tname = dentry->d_name.name;
2297 			/* we want a consistent (name,len) pair */
2298 			if (read_seqcount_retry(&dentry->d_seq, seq)) {
2299 				cpu_relax();
2300 				goto seqretry;
2301 			}
2302 			if (parent->d_op->d_compare(dentry,
2303 						    tlen, tname, name) != 0)
2304 				continue;
2305 		} else {
2306 			if (dentry->d_name.hash_len != hashlen)
2307 				continue;
2308 			if (dentry_cmp(dentry, str, hashlen_len(hashlen)) != 0)
2309 				continue;
2310 		}
2311 		*seqp = seq;
2312 		return dentry;
2313 	}
2314 	return NULL;
2315 }
2316 
2317 /**
2318  * d_lookup - search for a dentry
2319  * @parent: parent dentry
2320  * @name: qstr of name we wish to find
2321  * Returns: dentry, or NULL
2322  *
2323  * d_lookup searches the children of the parent dentry for the name in
2324  * question. If the dentry is found its reference count is incremented and the
2325  * dentry is returned. The caller must use dput to free the entry when it has
2326  * finished using it. %NULL is returned if the dentry does not exist.
2327  */
2328 struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name)
2329 {
2330 	struct dentry *dentry;
2331 	unsigned seq;
2332 
2333 	do {
2334 		seq = read_seqbegin(&rename_lock);
2335 		dentry = __d_lookup(parent, name);
2336 		if (dentry)
2337 			break;
2338 	} while (read_seqretry(&rename_lock, seq));
2339 	return dentry;
2340 }
2341 EXPORT_SYMBOL(d_lookup);
2342 
2343 /**
2344  * __d_lookup - search for a dentry (racy)
2345  * @parent: parent dentry
2346  * @name: qstr of name we wish to find
2347  * Returns: dentry, or NULL
2348  *
2349  * __d_lookup is like d_lookup, however it may (rarely) return a
2350  * false-negative result due to unrelated rename activity.
2351  *
2352  * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
2353  * however it must be used carefully, eg. with a following d_lookup in
2354  * the case of failure.
2355  *
2356  * __d_lookup callers must be commented.
2357  */
2358 struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name)
2359 {
2360 	unsigned int hash = name->hash;
2361 	struct hlist_bl_head *b = d_hash(hash);
2362 	struct hlist_bl_node *node;
2363 	struct dentry *found = NULL;
2364 	struct dentry *dentry;
2365 
2366 	/*
2367 	 * Note: There is significant duplication with __d_lookup_rcu which is
2368 	 * required to prevent single threaded performance regressions
2369 	 * especially on architectures where smp_rmb (in seqcounts) are costly.
2370 	 * Keep the two functions in sync.
2371 	 */
2372 
2373 	/*
2374 	 * The hash list is protected using RCU.
2375 	 *
2376 	 * Take d_lock when comparing a candidate dentry, to avoid races
2377 	 * with d_move().
2378 	 *
2379 	 * It is possible that concurrent renames can mess up our list
2380 	 * walk here and result in missing our dentry, resulting in the
2381 	 * false-negative result. d_lookup() protects against concurrent
2382 	 * renames using rename_lock seqlock.
2383 	 *
2384 	 * See Documentation/filesystems/path-lookup.txt for more details.
2385 	 */
2386 	rcu_read_lock();
2387 
2388 	hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2389 
2390 		if (dentry->d_name.hash != hash)
2391 			continue;
2392 
2393 		spin_lock(&dentry->d_lock);
2394 		if (dentry->d_parent != parent)
2395 			goto next;
2396 		if (d_unhashed(dentry))
2397 			goto next;
2398 
2399 		if (!d_same_name(dentry, parent, name))
2400 			goto next;
2401 
2402 		dentry->d_lockref.count++;
2403 		found = dentry;
2404 		spin_unlock(&dentry->d_lock);
2405 		break;
2406 next:
2407 		spin_unlock(&dentry->d_lock);
2408  	}
2409  	rcu_read_unlock();
2410 
2411  	return found;
2412 }
2413 
2414 /**
2415  * d_hash_and_lookup - hash the qstr then search for a dentry
2416  * @dir: Directory to search in
2417  * @name: qstr of name we wish to find
2418  *
2419  * On lookup failure NULL is returned; on bad name - ERR_PTR(-error)
2420  */
2421 struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
2422 {
2423 	/*
2424 	 * Check for a fs-specific hash function. Note that we must
2425 	 * calculate the standard hash first, as the d_op->d_hash()
2426 	 * routine may choose to leave the hash value unchanged.
2427 	 */
2428 	name->hash = full_name_hash(dir, name->name, name->len);
2429 	if (dir->d_flags & DCACHE_OP_HASH) {
2430 		int err = dir->d_op->d_hash(dir, name);
2431 		if (unlikely(err < 0))
2432 			return ERR_PTR(err);
2433 	}
2434 	return d_lookup(dir, name);
2435 }
2436 EXPORT_SYMBOL(d_hash_and_lookup);
2437 
2438 /*
2439  * When a file is deleted, we have two options:
2440  * - turn this dentry into a negative dentry
2441  * - unhash this dentry and free it.
2442  *
2443  * Usually, we want to just turn this into
2444  * a negative dentry, but if anybody else is
2445  * currently using the dentry or the inode
2446  * we can't do that and we fall back on removing
2447  * it from the hash queues and waiting for
2448  * it to be deleted later when it has no users
2449  */
2450 
2451 /**
2452  * d_delete - delete a dentry
2453  * @dentry: The dentry to delete
2454  *
2455  * Turn the dentry into a negative dentry if possible, otherwise
2456  * remove it from the hash queues so it can be deleted later
2457  */
2458 
2459 void d_delete(struct dentry * dentry)
2460 {
2461 	struct inode *inode = dentry->d_inode;
2462 
2463 	spin_lock(&inode->i_lock);
2464 	spin_lock(&dentry->d_lock);
2465 	/*
2466 	 * Are we the only user?
2467 	 */
2468 	if (dentry->d_lockref.count == 1) {
2469 		dentry->d_flags &= ~DCACHE_CANT_MOUNT;
2470 		dentry_unlink_inode(dentry);
2471 	} else {
2472 		__d_drop(dentry);
2473 		spin_unlock(&dentry->d_lock);
2474 		spin_unlock(&inode->i_lock);
2475 	}
2476 }
2477 EXPORT_SYMBOL(d_delete);
2478 
2479 static void __d_rehash(struct dentry *entry)
2480 {
2481 	struct hlist_bl_head *b = d_hash(entry->d_name.hash);
2482 
2483 	hlist_bl_lock(b);
2484 	hlist_bl_add_head_rcu(&entry->d_hash, b);
2485 	hlist_bl_unlock(b);
2486 }
2487 
2488 /**
2489  * d_rehash	- add an entry back to the hash
2490  * @entry: dentry to add to the hash
2491  *
2492  * Adds a dentry to the hash according to its name.
2493  */
2494 
2495 void d_rehash(struct dentry * entry)
2496 {
2497 	spin_lock(&entry->d_lock);
2498 	__d_rehash(entry);
2499 	spin_unlock(&entry->d_lock);
2500 }
2501 EXPORT_SYMBOL(d_rehash);
2502 
2503 static inline unsigned start_dir_add(struct inode *dir)
2504 {
2505 
2506 	for (;;) {
2507 		unsigned n = dir->i_dir_seq;
2508 		if (!(n & 1) && cmpxchg(&dir->i_dir_seq, n, n + 1) == n)
2509 			return n;
2510 		cpu_relax();
2511 	}
2512 }
2513 
2514 static inline void end_dir_add(struct inode *dir, unsigned n)
2515 {
2516 	smp_store_release(&dir->i_dir_seq, n + 2);
2517 }
2518 
2519 static void d_wait_lookup(struct dentry *dentry)
2520 {
2521 	if (d_in_lookup(dentry)) {
2522 		DECLARE_WAITQUEUE(wait, current);
2523 		add_wait_queue(dentry->d_wait, &wait);
2524 		do {
2525 			set_current_state(TASK_UNINTERRUPTIBLE);
2526 			spin_unlock(&dentry->d_lock);
2527 			schedule();
2528 			spin_lock(&dentry->d_lock);
2529 		} while (d_in_lookup(dentry));
2530 	}
2531 }
2532 
2533 struct dentry *d_alloc_parallel(struct dentry *parent,
2534 				const struct qstr *name,
2535 				wait_queue_head_t *wq)
2536 {
2537 	unsigned int hash = name->hash;
2538 	struct hlist_bl_head *b = in_lookup_hash(parent, hash);
2539 	struct hlist_bl_node *node;
2540 	struct dentry *new = d_alloc(parent, name);
2541 	struct dentry *dentry;
2542 	unsigned seq, r_seq, d_seq;
2543 
2544 	if (unlikely(!new))
2545 		return ERR_PTR(-ENOMEM);
2546 
2547 retry:
2548 	rcu_read_lock();
2549 	seq = smp_load_acquire(&parent->d_inode->i_dir_seq);
2550 	r_seq = read_seqbegin(&rename_lock);
2551 	dentry = __d_lookup_rcu(parent, name, &d_seq);
2552 	if (unlikely(dentry)) {
2553 		if (!lockref_get_not_dead(&dentry->d_lockref)) {
2554 			rcu_read_unlock();
2555 			goto retry;
2556 		}
2557 		if (read_seqcount_retry(&dentry->d_seq, d_seq)) {
2558 			rcu_read_unlock();
2559 			dput(dentry);
2560 			goto retry;
2561 		}
2562 		rcu_read_unlock();
2563 		dput(new);
2564 		return dentry;
2565 	}
2566 	if (unlikely(read_seqretry(&rename_lock, r_seq))) {
2567 		rcu_read_unlock();
2568 		goto retry;
2569 	}
2570 
2571 	if (unlikely(seq & 1)) {
2572 		rcu_read_unlock();
2573 		goto retry;
2574 	}
2575 
2576 	hlist_bl_lock(b);
2577 	if (unlikely(READ_ONCE(parent->d_inode->i_dir_seq) != seq)) {
2578 		hlist_bl_unlock(b);
2579 		rcu_read_unlock();
2580 		goto retry;
2581 	}
2582 	/*
2583 	 * No changes for the parent since the beginning of d_lookup().
2584 	 * Since all removals from the chain happen with hlist_bl_lock(),
2585 	 * any potential in-lookup matches are going to stay here until
2586 	 * we unlock the chain.  All fields are stable in everything
2587 	 * we encounter.
2588 	 */
2589 	hlist_bl_for_each_entry(dentry, node, b, d_u.d_in_lookup_hash) {
2590 		if (dentry->d_name.hash != hash)
2591 			continue;
2592 		if (dentry->d_parent != parent)
2593 			continue;
2594 		if (!d_same_name(dentry, parent, name))
2595 			continue;
2596 		hlist_bl_unlock(b);
2597 		/* now we can try to grab a reference */
2598 		if (!lockref_get_not_dead(&dentry->d_lockref)) {
2599 			rcu_read_unlock();
2600 			goto retry;
2601 		}
2602 
2603 		rcu_read_unlock();
2604 		/*
2605 		 * somebody is likely to be still doing lookup for it;
2606 		 * wait for them to finish
2607 		 */
2608 		spin_lock(&dentry->d_lock);
2609 		d_wait_lookup(dentry);
2610 		/*
2611 		 * it's not in-lookup anymore; in principle we should repeat
2612 		 * everything from dcache lookup, but it's likely to be what
2613 		 * d_lookup() would've found anyway.  If it is, just return it;
2614 		 * otherwise we really have to repeat the whole thing.
2615 		 */
2616 		if (unlikely(dentry->d_name.hash != hash))
2617 			goto mismatch;
2618 		if (unlikely(dentry->d_parent != parent))
2619 			goto mismatch;
2620 		if (unlikely(d_unhashed(dentry)))
2621 			goto mismatch;
2622 		if (unlikely(!d_same_name(dentry, parent, name)))
2623 			goto mismatch;
2624 		/* OK, it *is* a hashed match; return it */
2625 		spin_unlock(&dentry->d_lock);
2626 		dput(new);
2627 		return dentry;
2628 	}
2629 	rcu_read_unlock();
2630 	/* we can't take ->d_lock here; it's OK, though. */
2631 	new->d_flags |= DCACHE_PAR_LOOKUP;
2632 	new->d_wait = wq;
2633 	hlist_bl_add_head_rcu(&new->d_u.d_in_lookup_hash, b);
2634 	hlist_bl_unlock(b);
2635 	return new;
2636 mismatch:
2637 	spin_unlock(&dentry->d_lock);
2638 	dput(dentry);
2639 	goto retry;
2640 }
2641 EXPORT_SYMBOL(d_alloc_parallel);
2642 
2643 void __d_lookup_done(struct dentry *dentry)
2644 {
2645 	struct hlist_bl_head *b = in_lookup_hash(dentry->d_parent,
2646 						 dentry->d_name.hash);
2647 	hlist_bl_lock(b);
2648 	dentry->d_flags &= ~DCACHE_PAR_LOOKUP;
2649 	__hlist_bl_del(&dentry->d_u.d_in_lookup_hash);
2650 	wake_up_all(dentry->d_wait);
2651 	dentry->d_wait = NULL;
2652 	hlist_bl_unlock(b);
2653 	INIT_HLIST_NODE(&dentry->d_u.d_alias);
2654 	INIT_LIST_HEAD(&dentry->d_lru);
2655 }
2656 EXPORT_SYMBOL(__d_lookup_done);
2657 
2658 /* inode->i_lock held if inode is non-NULL */
2659 
2660 static inline void __d_add(struct dentry *dentry, struct inode *inode)
2661 {
2662 	struct inode *dir = NULL;
2663 	unsigned n;
2664 	spin_lock(&dentry->d_lock);
2665 	if (unlikely(d_in_lookup(dentry))) {
2666 		dir = dentry->d_parent->d_inode;
2667 		n = start_dir_add(dir);
2668 		__d_lookup_done(dentry);
2669 	}
2670 	if (inode) {
2671 		unsigned add_flags = d_flags_for_inode(inode);
2672 		hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
2673 		raw_write_seqcount_begin(&dentry->d_seq);
2674 		__d_set_inode_and_type(dentry, inode, add_flags);
2675 		raw_write_seqcount_end(&dentry->d_seq);
2676 		fsnotify_update_flags(dentry);
2677 	}
2678 	__d_rehash(dentry);
2679 	if (dir)
2680 		end_dir_add(dir, n);
2681 	spin_unlock(&dentry->d_lock);
2682 	if (inode)
2683 		spin_unlock(&inode->i_lock);
2684 }
2685 
2686 /**
2687  * d_add - add dentry to hash queues
2688  * @entry: dentry to add
2689  * @inode: The inode to attach to this dentry
2690  *
2691  * This adds the entry to the hash queues and initializes @inode.
2692  * The entry was actually filled in earlier during d_alloc().
2693  */
2694 
2695 void d_add(struct dentry *entry, struct inode *inode)
2696 {
2697 	if (inode) {
2698 		security_d_instantiate(entry, inode);
2699 		spin_lock(&inode->i_lock);
2700 	}
2701 	__d_add(entry, inode);
2702 }
2703 EXPORT_SYMBOL(d_add);
2704 
2705 /**
2706  * d_exact_alias - find and hash an exact unhashed alias
2707  * @entry: dentry to add
2708  * @inode: The inode to go with this dentry
2709  *
2710  * If an unhashed dentry with the same name/parent and desired
2711  * inode already exists, hash and return it.  Otherwise, return
2712  * NULL.
2713  *
2714  * Parent directory should be locked.
2715  */
2716 struct dentry *d_exact_alias(struct dentry *entry, struct inode *inode)
2717 {
2718 	struct dentry *alias;
2719 	unsigned int hash = entry->d_name.hash;
2720 
2721 	spin_lock(&inode->i_lock);
2722 	hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
2723 		/*
2724 		 * Don't need alias->d_lock here, because aliases with
2725 		 * d_parent == entry->d_parent are not subject to name or
2726 		 * parent changes, because the parent inode i_mutex is held.
2727 		 */
2728 		if (alias->d_name.hash != hash)
2729 			continue;
2730 		if (alias->d_parent != entry->d_parent)
2731 			continue;
2732 		if (!d_same_name(alias, entry->d_parent, &entry->d_name))
2733 			continue;
2734 		spin_lock(&alias->d_lock);
2735 		if (!d_unhashed(alias)) {
2736 			spin_unlock(&alias->d_lock);
2737 			alias = NULL;
2738 		} else {
2739 			__dget_dlock(alias);
2740 			__d_rehash(alias);
2741 			spin_unlock(&alias->d_lock);
2742 		}
2743 		spin_unlock(&inode->i_lock);
2744 		return alias;
2745 	}
2746 	spin_unlock(&inode->i_lock);
2747 	return NULL;
2748 }
2749 EXPORT_SYMBOL(d_exact_alias);
2750 
2751 static void swap_names(struct dentry *dentry, struct dentry *target)
2752 {
2753 	if (unlikely(dname_external(target))) {
2754 		if (unlikely(dname_external(dentry))) {
2755 			/*
2756 			 * Both external: swap the pointers
2757 			 */
2758 			swap(target->d_name.name, dentry->d_name.name);
2759 		} else {
2760 			/*
2761 			 * dentry:internal, target:external.  Steal target's
2762 			 * storage and make target internal.
2763 			 */
2764 			memcpy(target->d_iname, dentry->d_name.name,
2765 					dentry->d_name.len + 1);
2766 			dentry->d_name.name = target->d_name.name;
2767 			target->d_name.name = target->d_iname;
2768 		}
2769 	} else {
2770 		if (unlikely(dname_external(dentry))) {
2771 			/*
2772 			 * dentry:external, target:internal.  Give dentry's
2773 			 * storage to target and make dentry internal
2774 			 */
2775 			memcpy(dentry->d_iname, target->d_name.name,
2776 					target->d_name.len + 1);
2777 			target->d_name.name = dentry->d_name.name;
2778 			dentry->d_name.name = dentry->d_iname;
2779 		} else {
2780 			/*
2781 			 * Both are internal.
2782 			 */
2783 			unsigned int i;
2784 			BUILD_BUG_ON(!IS_ALIGNED(DNAME_INLINE_LEN, sizeof(long)));
2785 			for (i = 0; i < DNAME_INLINE_LEN / sizeof(long); i++) {
2786 				swap(((long *) &dentry->d_iname)[i],
2787 				     ((long *) &target->d_iname)[i]);
2788 			}
2789 		}
2790 	}
2791 	swap(dentry->d_name.hash_len, target->d_name.hash_len);
2792 }
2793 
2794 static void copy_name(struct dentry *dentry, struct dentry *target)
2795 {
2796 	struct external_name *old_name = NULL;
2797 	if (unlikely(dname_external(dentry)))
2798 		old_name = external_name(dentry);
2799 	if (unlikely(dname_external(target))) {
2800 		atomic_inc(&external_name(target)->u.count);
2801 		dentry->d_name = target->d_name;
2802 	} else {
2803 		memcpy(dentry->d_iname, target->d_name.name,
2804 				target->d_name.len + 1);
2805 		dentry->d_name.name = dentry->d_iname;
2806 		dentry->d_name.hash_len = target->d_name.hash_len;
2807 	}
2808 	if (old_name && likely(atomic_dec_and_test(&old_name->u.count)))
2809 		kfree_rcu(old_name, u.head);
2810 }
2811 
2812 /*
2813  * __d_move - move a dentry
2814  * @dentry: entry to move
2815  * @target: new dentry
2816  * @exchange: exchange the two dentries
2817  *
2818  * Update the dcache to reflect the move of a file name. Negative
2819  * dcache entries should not be moved in this way. Caller must hold
2820  * rename_lock, the i_mutex of the source and target directories,
2821  * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
2822  */
2823 static void __d_move(struct dentry *dentry, struct dentry *target,
2824 		     bool exchange)
2825 {
2826 	struct dentry *old_parent, *p;
2827 	struct inode *dir = NULL;
2828 	unsigned n;
2829 
2830 	WARN_ON(!dentry->d_inode);
2831 	if (WARN_ON(dentry == target))
2832 		return;
2833 
2834 	BUG_ON(d_ancestor(target, dentry));
2835 	old_parent = dentry->d_parent;
2836 	p = d_ancestor(old_parent, target);
2837 	if (IS_ROOT(dentry)) {
2838 		BUG_ON(p);
2839 		spin_lock(&target->d_parent->d_lock);
2840 	} else if (!p) {
2841 		/* target is not a descendent of dentry->d_parent */
2842 		spin_lock(&target->d_parent->d_lock);
2843 		spin_lock_nested(&old_parent->d_lock, DENTRY_D_LOCK_NESTED);
2844 	} else {
2845 		BUG_ON(p == dentry);
2846 		spin_lock(&old_parent->d_lock);
2847 		if (p != target)
2848 			spin_lock_nested(&target->d_parent->d_lock,
2849 					DENTRY_D_LOCK_NESTED);
2850 	}
2851 	spin_lock_nested(&dentry->d_lock, 2);
2852 	spin_lock_nested(&target->d_lock, 3);
2853 
2854 	if (unlikely(d_in_lookup(target))) {
2855 		dir = target->d_parent->d_inode;
2856 		n = start_dir_add(dir);
2857 		__d_lookup_done(target);
2858 	}
2859 
2860 	write_seqcount_begin(&dentry->d_seq);
2861 	write_seqcount_begin_nested(&target->d_seq, DENTRY_D_LOCK_NESTED);
2862 
2863 	/* unhash both */
2864 	if (!d_unhashed(dentry))
2865 		___d_drop(dentry);
2866 	if (!d_unhashed(target))
2867 		___d_drop(target);
2868 
2869 	/* ... and switch them in the tree */
2870 	dentry->d_parent = target->d_parent;
2871 	if (!exchange) {
2872 		copy_name(dentry, target);
2873 		target->d_hash.pprev = NULL;
2874 		dentry->d_parent->d_lockref.count++;
2875 		if (dentry != old_parent) /* wasn't IS_ROOT */
2876 			WARN_ON(!--old_parent->d_lockref.count);
2877 	} else {
2878 		target->d_parent = old_parent;
2879 		swap_names(dentry, target);
2880 		list_move(&target->d_child, &target->d_parent->d_subdirs);
2881 		__d_rehash(target);
2882 		fsnotify_update_flags(target);
2883 	}
2884 	list_move(&dentry->d_child, &dentry->d_parent->d_subdirs);
2885 	__d_rehash(dentry);
2886 	fsnotify_update_flags(dentry);
2887 	fscrypt_handle_d_move(dentry);
2888 
2889 	write_seqcount_end(&target->d_seq);
2890 	write_seqcount_end(&dentry->d_seq);
2891 
2892 	if (dir)
2893 		end_dir_add(dir, n);
2894 
2895 	if (dentry->d_parent != old_parent)
2896 		spin_unlock(&dentry->d_parent->d_lock);
2897 	if (dentry != old_parent)
2898 		spin_unlock(&old_parent->d_lock);
2899 	spin_unlock(&target->d_lock);
2900 	spin_unlock(&dentry->d_lock);
2901 }
2902 
2903 /*
2904  * d_move - move a dentry
2905  * @dentry: entry to move
2906  * @target: new dentry
2907  *
2908  * Update the dcache to reflect the move of a file name. Negative
2909  * dcache entries should not be moved in this way. See the locking
2910  * requirements for __d_move.
2911  */
2912 void d_move(struct dentry *dentry, struct dentry *target)
2913 {
2914 	write_seqlock(&rename_lock);
2915 	__d_move(dentry, target, false);
2916 	write_sequnlock(&rename_lock);
2917 }
2918 EXPORT_SYMBOL(d_move);
2919 
2920 /*
2921  * d_exchange - exchange two dentries
2922  * @dentry1: first dentry
2923  * @dentry2: second dentry
2924  */
2925 void d_exchange(struct dentry *dentry1, struct dentry *dentry2)
2926 {
2927 	write_seqlock(&rename_lock);
2928 
2929 	WARN_ON(!dentry1->d_inode);
2930 	WARN_ON(!dentry2->d_inode);
2931 	WARN_ON(IS_ROOT(dentry1));
2932 	WARN_ON(IS_ROOT(dentry2));
2933 
2934 	__d_move(dentry1, dentry2, true);
2935 
2936 	write_sequnlock(&rename_lock);
2937 }
2938 
2939 /**
2940  * d_ancestor - search for an ancestor
2941  * @p1: ancestor dentry
2942  * @p2: child dentry
2943  *
2944  * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2945  * an ancestor of p2, else NULL.
2946  */
2947 struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
2948 {
2949 	struct dentry *p;
2950 
2951 	for (p = p2; !IS_ROOT(p); p = p->d_parent) {
2952 		if (p->d_parent == p1)
2953 			return p;
2954 	}
2955 	return NULL;
2956 }
2957 
2958 /*
2959  * This helper attempts to cope with remotely renamed directories
2960  *
2961  * It assumes that the caller is already holding
2962  * dentry->d_parent->d_inode->i_mutex, and rename_lock
2963  *
2964  * Note: If ever the locking in lock_rename() changes, then please
2965  * remember to update this too...
2966  */
2967 static int __d_unalias(struct inode *inode,
2968 		struct dentry *dentry, struct dentry *alias)
2969 {
2970 	struct mutex *m1 = NULL;
2971 	struct rw_semaphore *m2 = NULL;
2972 	int ret = -ESTALE;
2973 
2974 	/* If alias and dentry share a parent, then no extra locks required */
2975 	if (alias->d_parent == dentry->d_parent)
2976 		goto out_unalias;
2977 
2978 	/* See lock_rename() */
2979 	if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
2980 		goto out_err;
2981 	m1 = &dentry->d_sb->s_vfs_rename_mutex;
2982 	if (!inode_trylock_shared(alias->d_parent->d_inode))
2983 		goto out_err;
2984 	m2 = &alias->d_parent->d_inode->i_rwsem;
2985 out_unalias:
2986 	__d_move(alias, dentry, false);
2987 	ret = 0;
2988 out_err:
2989 	if (m2)
2990 		up_read(m2);
2991 	if (m1)
2992 		mutex_unlock(m1);
2993 	return ret;
2994 }
2995 
2996 /**
2997  * d_splice_alias - splice a disconnected dentry into the tree if one exists
2998  * @inode:  the inode which may have a disconnected dentry
2999  * @dentry: a negative dentry which we want to point to the inode.
3000  *
3001  * If inode is a directory and has an IS_ROOT alias, then d_move that in
3002  * place of the given dentry and return it, else simply d_add the inode
3003  * to the dentry and return NULL.
3004  *
3005  * If a non-IS_ROOT directory is found, the filesystem is corrupt, and
3006  * we should error out: directories can't have multiple aliases.
3007  *
3008  * This is needed in the lookup routine of any filesystem that is exportable
3009  * (via knfsd) so that we can build dcache paths to directories effectively.
3010  *
3011  * If a dentry was found and moved, then it is returned.  Otherwise NULL
3012  * is returned.  This matches the expected return value of ->lookup.
3013  *
3014  * Cluster filesystems may call this function with a negative, hashed dentry.
3015  * In that case, we know that the inode will be a regular file, and also this
3016  * will only occur during atomic_open. So we need to check for the dentry
3017  * being already hashed only in the final case.
3018  */
3019 struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
3020 {
3021 	if (IS_ERR(inode))
3022 		return ERR_CAST(inode);
3023 
3024 	BUG_ON(!d_unhashed(dentry));
3025 
3026 	if (!inode)
3027 		goto out;
3028 
3029 	security_d_instantiate(dentry, inode);
3030 	spin_lock(&inode->i_lock);
3031 	if (S_ISDIR(inode->i_mode)) {
3032 		struct dentry *new = __d_find_any_alias(inode);
3033 		if (unlikely(new)) {
3034 			/* The reference to new ensures it remains an alias */
3035 			spin_unlock(&inode->i_lock);
3036 			write_seqlock(&rename_lock);
3037 			if (unlikely(d_ancestor(new, dentry))) {
3038 				write_sequnlock(&rename_lock);
3039 				dput(new);
3040 				new = ERR_PTR(-ELOOP);
3041 				pr_warn_ratelimited(
3042 					"VFS: Lookup of '%s' in %s %s"
3043 					" would have caused loop\n",
3044 					dentry->d_name.name,
3045 					inode->i_sb->s_type->name,
3046 					inode->i_sb->s_id);
3047 			} else if (!IS_ROOT(new)) {
3048 				struct dentry *old_parent = dget(new->d_parent);
3049 				int err = __d_unalias(inode, dentry, new);
3050 				write_sequnlock(&rename_lock);
3051 				if (err) {
3052 					dput(new);
3053 					new = ERR_PTR(err);
3054 				}
3055 				dput(old_parent);
3056 			} else {
3057 				__d_move(new, dentry, false);
3058 				write_sequnlock(&rename_lock);
3059 			}
3060 			iput(inode);
3061 			return new;
3062 		}
3063 	}
3064 out:
3065 	__d_add(dentry, inode);
3066 	return NULL;
3067 }
3068 EXPORT_SYMBOL(d_splice_alias);
3069 
3070 /*
3071  * Test whether new_dentry is a subdirectory of old_dentry.
3072  *
3073  * Trivially implemented using the dcache structure
3074  */
3075 
3076 /**
3077  * is_subdir - is new dentry a subdirectory of old_dentry
3078  * @new_dentry: new dentry
3079  * @old_dentry: old dentry
3080  *
3081  * Returns true if new_dentry is a subdirectory of the parent (at any depth).
3082  * Returns false otherwise.
3083  * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
3084  */
3085 
3086 bool is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
3087 {
3088 	bool result;
3089 	unsigned seq;
3090 
3091 	if (new_dentry == old_dentry)
3092 		return true;
3093 
3094 	do {
3095 		/* for restarting inner loop in case of seq retry */
3096 		seq = read_seqbegin(&rename_lock);
3097 		/*
3098 		 * Need rcu_readlock to protect against the d_parent trashing
3099 		 * due to d_move
3100 		 */
3101 		rcu_read_lock();
3102 		if (d_ancestor(old_dentry, new_dentry))
3103 			result = true;
3104 		else
3105 			result = false;
3106 		rcu_read_unlock();
3107 	} while (read_seqretry(&rename_lock, seq));
3108 
3109 	return result;
3110 }
3111 EXPORT_SYMBOL(is_subdir);
3112 
3113 static enum d_walk_ret d_genocide_kill(void *data, struct dentry *dentry)
3114 {
3115 	struct dentry *root = data;
3116 	if (dentry != root) {
3117 		if (d_unhashed(dentry) || !dentry->d_inode)
3118 			return D_WALK_SKIP;
3119 
3120 		if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
3121 			dentry->d_flags |= DCACHE_GENOCIDE;
3122 			dentry->d_lockref.count--;
3123 		}
3124 	}
3125 	return D_WALK_CONTINUE;
3126 }
3127 
3128 void d_genocide(struct dentry *parent)
3129 {
3130 	d_walk(parent, parent, d_genocide_kill);
3131 }
3132 
3133 EXPORT_SYMBOL(d_genocide);
3134 
3135 void d_tmpfile(struct dentry *dentry, struct inode *inode)
3136 {
3137 	inode_dec_link_count(inode);
3138 	BUG_ON(dentry->d_name.name != dentry->d_iname ||
3139 		!hlist_unhashed(&dentry->d_u.d_alias) ||
3140 		!d_unlinked(dentry));
3141 	spin_lock(&dentry->d_parent->d_lock);
3142 	spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
3143 	dentry->d_name.len = sprintf(dentry->d_iname, "#%llu",
3144 				(unsigned long long)inode->i_ino);
3145 	spin_unlock(&dentry->d_lock);
3146 	spin_unlock(&dentry->d_parent->d_lock);
3147 	d_instantiate(dentry, inode);
3148 }
3149 EXPORT_SYMBOL(d_tmpfile);
3150 
3151 static __initdata unsigned long dhash_entries;
3152 static int __init set_dhash_entries(char *str)
3153 {
3154 	if (!str)
3155 		return 0;
3156 	dhash_entries = simple_strtoul(str, &str, 0);
3157 	return 1;
3158 }
3159 __setup("dhash_entries=", set_dhash_entries);
3160 
3161 static void __init dcache_init_early(void)
3162 {
3163 	/* If hashes are distributed across NUMA nodes, defer
3164 	 * hash allocation until vmalloc space is available.
3165 	 */
3166 	if (hashdist)
3167 		return;
3168 
3169 	dentry_hashtable =
3170 		alloc_large_system_hash("Dentry cache",
3171 					sizeof(struct hlist_bl_head),
3172 					dhash_entries,
3173 					13,
3174 					HASH_EARLY | HASH_ZERO,
3175 					&d_hash_shift,
3176 					NULL,
3177 					0,
3178 					0);
3179 	d_hash_shift = 32 - d_hash_shift;
3180 }
3181 
3182 static void __init dcache_init(void)
3183 {
3184 	/*
3185 	 * A constructor could be added for stable state like the lists,
3186 	 * but it is probably not worth it because of the cache nature
3187 	 * of the dcache.
3188 	 */
3189 	dentry_cache = KMEM_CACHE_USERCOPY(dentry,
3190 		SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD|SLAB_ACCOUNT,
3191 		d_iname);
3192 
3193 	/* Hash may have been set up in dcache_init_early */
3194 	if (!hashdist)
3195 		return;
3196 
3197 	dentry_hashtable =
3198 		alloc_large_system_hash("Dentry cache",
3199 					sizeof(struct hlist_bl_head),
3200 					dhash_entries,
3201 					13,
3202 					HASH_ZERO,
3203 					&d_hash_shift,
3204 					NULL,
3205 					0,
3206 					0);
3207 	d_hash_shift = 32 - d_hash_shift;
3208 }
3209 
3210 /* SLAB cache for __getname() consumers */
3211 struct kmem_cache *names_cachep __read_mostly;
3212 EXPORT_SYMBOL(names_cachep);
3213 
3214 void __init vfs_caches_init_early(void)
3215 {
3216 	int i;
3217 
3218 	for (i = 0; i < ARRAY_SIZE(in_lookup_hashtable); i++)
3219 		INIT_HLIST_BL_HEAD(&in_lookup_hashtable[i]);
3220 
3221 	dcache_init_early();
3222 	inode_init_early();
3223 }
3224 
3225 void __init vfs_caches_init(void)
3226 {
3227 	names_cachep = kmem_cache_create_usercopy("names_cache", PATH_MAX, 0,
3228 			SLAB_HWCACHE_ALIGN|SLAB_PANIC, 0, PATH_MAX, NULL);
3229 
3230 	dcache_init();
3231 	inode_init();
3232 	files_init();
3233 	files_maxfiles_init();
3234 	mnt_init();
3235 	bdev_cache_init();
3236 	chrdev_init();
3237 }
3238