1 /* 2 * fs/dcache.c 3 * 4 * Complete reimplementation 5 * (C) 1997 Thomas Schoebel-Theuer, 6 * with heavy changes by Linus Torvalds 7 */ 8 9 /* 10 * Notes on the allocation strategy: 11 * 12 * The dcache is a master of the icache - whenever a dcache entry 13 * exists, the inode will always exist. "iput()" is done either when 14 * the dcache entry is deleted or garbage collected. 15 */ 16 17 #include <linux/syscalls.h> 18 #include <linux/string.h> 19 #include <linux/mm.h> 20 #include <linux/fs.h> 21 #include <linux/fsnotify.h> 22 #include <linux/slab.h> 23 #include <linux/init.h> 24 #include <linux/hash.h> 25 #include <linux/cache.h> 26 #include <linux/export.h> 27 #include <linux/mount.h> 28 #include <linux/file.h> 29 #include <asm/uaccess.h> 30 #include <linux/security.h> 31 #include <linux/seqlock.h> 32 #include <linux/swap.h> 33 #include <linux/bootmem.h> 34 #include <linux/fs_struct.h> 35 #include <linux/hardirq.h> 36 #include <linux/bit_spinlock.h> 37 #include <linux/rculist_bl.h> 38 #include <linux/prefetch.h> 39 #include <linux/ratelimit.h> 40 #include <linux/list_lru.h> 41 #include <linux/kasan.h> 42 43 #include "internal.h" 44 #include "mount.h" 45 46 /* 47 * Usage: 48 * dcache->d_inode->i_lock protects: 49 * - i_dentry, d_u.d_alias, d_inode of aliases 50 * dcache_hash_bucket lock protects: 51 * - the dcache hash table 52 * s_anon bl list spinlock protects: 53 * - the s_anon list (see __d_drop) 54 * dentry->d_sb->s_dentry_lru_lock protects: 55 * - the dcache lru lists and counters 56 * d_lock protects: 57 * - d_flags 58 * - d_name 59 * - d_lru 60 * - d_count 61 * - d_unhashed() 62 * - d_parent and d_subdirs 63 * - childrens' d_child and d_parent 64 * - d_u.d_alias, d_inode 65 * 66 * Ordering: 67 * dentry->d_inode->i_lock 68 * dentry->d_lock 69 * dentry->d_sb->s_dentry_lru_lock 70 * dcache_hash_bucket lock 71 * s_anon lock 72 * 73 * If there is an ancestor relationship: 74 * dentry->d_parent->...->d_parent->d_lock 75 * ... 76 * dentry->d_parent->d_lock 77 * dentry->d_lock 78 * 79 * If no ancestor relationship: 80 * if (dentry1 < dentry2) 81 * dentry1->d_lock 82 * dentry2->d_lock 83 */ 84 int sysctl_vfs_cache_pressure __read_mostly = 100; 85 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure); 86 87 __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock); 88 89 EXPORT_SYMBOL(rename_lock); 90 91 static struct kmem_cache *dentry_cache __read_mostly; 92 93 /* 94 * This is the single most critical data structure when it comes 95 * to the dcache: the hashtable for lookups. Somebody should try 96 * to make this good - I've just made it work. 97 * 98 * This hash-function tries to avoid losing too many bits of hash 99 * information, yet avoid using a prime hash-size or similar. 100 */ 101 102 static unsigned int d_hash_mask __read_mostly; 103 static unsigned int d_hash_shift __read_mostly; 104 105 static struct hlist_bl_head *dentry_hashtable __read_mostly; 106 107 static inline struct hlist_bl_head *d_hash(const struct dentry *parent, 108 unsigned int hash) 109 { 110 hash += (unsigned long) parent / L1_CACHE_BYTES; 111 return dentry_hashtable + hash_32(hash, d_hash_shift); 112 } 113 114 /* Statistics gathering. */ 115 struct dentry_stat_t dentry_stat = { 116 .age_limit = 45, 117 }; 118 119 static DEFINE_PER_CPU(long, nr_dentry); 120 static DEFINE_PER_CPU(long, nr_dentry_unused); 121 122 #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS) 123 124 /* 125 * Here we resort to our own counters instead of using generic per-cpu counters 126 * for consistency with what the vfs inode code does. We are expected to harvest 127 * better code and performance by having our own specialized counters. 128 * 129 * Please note that the loop is done over all possible CPUs, not over all online 130 * CPUs. The reason for this is that we don't want to play games with CPUs going 131 * on and off. If one of them goes off, we will just keep their counters. 132 * 133 * glommer: See cffbc8a for details, and if you ever intend to change this, 134 * please update all vfs counters to match. 135 */ 136 static long get_nr_dentry(void) 137 { 138 int i; 139 long sum = 0; 140 for_each_possible_cpu(i) 141 sum += per_cpu(nr_dentry, i); 142 return sum < 0 ? 0 : sum; 143 } 144 145 static long get_nr_dentry_unused(void) 146 { 147 int i; 148 long sum = 0; 149 for_each_possible_cpu(i) 150 sum += per_cpu(nr_dentry_unused, i); 151 return sum < 0 ? 0 : sum; 152 } 153 154 int proc_nr_dentry(struct ctl_table *table, int write, void __user *buffer, 155 size_t *lenp, loff_t *ppos) 156 { 157 dentry_stat.nr_dentry = get_nr_dentry(); 158 dentry_stat.nr_unused = get_nr_dentry_unused(); 159 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos); 160 } 161 #endif 162 163 /* 164 * Compare 2 name strings, return 0 if they match, otherwise non-zero. 165 * The strings are both count bytes long, and count is non-zero. 166 */ 167 #ifdef CONFIG_DCACHE_WORD_ACCESS 168 169 #include <asm/word-at-a-time.h> 170 /* 171 * NOTE! 'cs' and 'scount' come from a dentry, so it has a 172 * aligned allocation for this particular component. We don't 173 * strictly need the load_unaligned_zeropad() safety, but it 174 * doesn't hurt either. 175 * 176 * In contrast, 'ct' and 'tcount' can be from a pathname, and do 177 * need the careful unaligned handling. 178 */ 179 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount) 180 { 181 unsigned long a,b,mask; 182 183 for (;;) { 184 a = *(unsigned long *)cs; 185 b = load_unaligned_zeropad(ct); 186 if (tcount < sizeof(unsigned long)) 187 break; 188 if (unlikely(a != b)) 189 return 1; 190 cs += sizeof(unsigned long); 191 ct += sizeof(unsigned long); 192 tcount -= sizeof(unsigned long); 193 if (!tcount) 194 return 0; 195 } 196 mask = bytemask_from_count(tcount); 197 return unlikely(!!((a ^ b) & mask)); 198 } 199 200 #else 201 202 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount) 203 { 204 do { 205 if (*cs != *ct) 206 return 1; 207 cs++; 208 ct++; 209 tcount--; 210 } while (tcount); 211 return 0; 212 } 213 214 #endif 215 216 static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount) 217 { 218 const unsigned char *cs; 219 /* 220 * Be careful about RCU walk racing with rename: 221 * use ACCESS_ONCE to fetch the name pointer. 222 * 223 * NOTE! Even if a rename will mean that the length 224 * was not loaded atomically, we don't care. The 225 * RCU walk will check the sequence count eventually, 226 * and catch it. And we won't overrun the buffer, 227 * because we're reading the name pointer atomically, 228 * and a dentry name is guaranteed to be properly 229 * terminated with a NUL byte. 230 * 231 * End result: even if 'len' is wrong, we'll exit 232 * early because the data cannot match (there can 233 * be no NUL in the ct/tcount data) 234 */ 235 cs = ACCESS_ONCE(dentry->d_name.name); 236 smp_read_barrier_depends(); 237 return dentry_string_cmp(cs, ct, tcount); 238 } 239 240 struct external_name { 241 union { 242 atomic_t count; 243 struct rcu_head head; 244 } u; 245 unsigned char name[]; 246 }; 247 248 static inline struct external_name *external_name(struct dentry *dentry) 249 { 250 return container_of(dentry->d_name.name, struct external_name, name[0]); 251 } 252 253 static void __d_free(struct rcu_head *head) 254 { 255 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu); 256 257 kmem_cache_free(dentry_cache, dentry); 258 } 259 260 static void __d_free_external(struct rcu_head *head) 261 { 262 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu); 263 kfree(external_name(dentry)); 264 kmem_cache_free(dentry_cache, dentry); 265 } 266 267 static inline int dname_external(const struct dentry *dentry) 268 { 269 return dentry->d_name.name != dentry->d_iname; 270 } 271 272 /* 273 * Make sure other CPUs see the inode attached before the type is set. 274 */ 275 static inline void __d_set_inode_and_type(struct dentry *dentry, 276 struct inode *inode, 277 unsigned type_flags) 278 { 279 unsigned flags; 280 281 dentry->d_inode = inode; 282 smp_wmb(); 283 flags = READ_ONCE(dentry->d_flags); 284 flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU); 285 flags |= type_flags; 286 WRITE_ONCE(dentry->d_flags, flags); 287 } 288 289 /* 290 * Ideally, we want to make sure that other CPUs see the flags cleared before 291 * the inode is detached, but this is really a violation of RCU principles 292 * since the ordering suggests we should always set inode before flags. 293 * 294 * We should instead replace or discard the entire dentry - but that sucks 295 * performancewise on mass deletion/rename. 296 */ 297 static inline void __d_clear_type_and_inode(struct dentry *dentry) 298 { 299 unsigned flags = READ_ONCE(dentry->d_flags); 300 301 flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU); 302 WRITE_ONCE(dentry->d_flags, flags); 303 smp_wmb(); 304 dentry->d_inode = NULL; 305 } 306 307 static void dentry_free(struct dentry *dentry) 308 { 309 WARN_ON(!hlist_unhashed(&dentry->d_u.d_alias)); 310 if (unlikely(dname_external(dentry))) { 311 struct external_name *p = external_name(dentry); 312 if (likely(atomic_dec_and_test(&p->u.count))) { 313 call_rcu(&dentry->d_u.d_rcu, __d_free_external); 314 return; 315 } 316 } 317 /* if dentry was never visible to RCU, immediate free is OK */ 318 if (!(dentry->d_flags & DCACHE_RCUACCESS)) 319 __d_free(&dentry->d_u.d_rcu); 320 else 321 call_rcu(&dentry->d_u.d_rcu, __d_free); 322 } 323 324 /** 325 * dentry_rcuwalk_barrier - invalidate in-progress rcu-walk lookups 326 * @dentry: the target dentry 327 * After this call, in-progress rcu-walk path lookup will fail. This 328 * should be called after unhashing, and after changing d_inode (if 329 * the dentry has not already been unhashed). 330 */ 331 static inline void dentry_rcuwalk_barrier(struct dentry *dentry) 332 { 333 assert_spin_locked(&dentry->d_lock); 334 /* Go through a barrier */ 335 write_seqcount_barrier(&dentry->d_seq); 336 } 337 338 /* 339 * Release the dentry's inode, using the filesystem 340 * d_iput() operation if defined. Dentry has no refcount 341 * and is unhashed. 342 */ 343 static void dentry_iput(struct dentry * dentry) 344 __releases(dentry->d_lock) 345 __releases(dentry->d_inode->i_lock) 346 { 347 struct inode *inode = dentry->d_inode; 348 if (inode) { 349 __d_clear_type_and_inode(dentry); 350 hlist_del_init(&dentry->d_u.d_alias); 351 spin_unlock(&dentry->d_lock); 352 spin_unlock(&inode->i_lock); 353 if (!inode->i_nlink) 354 fsnotify_inoderemove(inode); 355 if (dentry->d_op && dentry->d_op->d_iput) 356 dentry->d_op->d_iput(dentry, inode); 357 else 358 iput(inode); 359 } else { 360 spin_unlock(&dentry->d_lock); 361 } 362 } 363 364 /* 365 * Release the dentry's inode, using the filesystem 366 * d_iput() operation if defined. dentry remains in-use. 367 */ 368 static void dentry_unlink_inode(struct dentry * dentry) 369 __releases(dentry->d_lock) 370 __releases(dentry->d_inode->i_lock) 371 { 372 struct inode *inode = dentry->d_inode; 373 __d_clear_type_and_inode(dentry); 374 hlist_del_init(&dentry->d_u.d_alias); 375 dentry_rcuwalk_barrier(dentry); 376 spin_unlock(&dentry->d_lock); 377 spin_unlock(&inode->i_lock); 378 if (!inode->i_nlink) 379 fsnotify_inoderemove(inode); 380 if (dentry->d_op && dentry->d_op->d_iput) 381 dentry->d_op->d_iput(dentry, inode); 382 else 383 iput(inode); 384 } 385 386 /* 387 * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry 388 * is in use - which includes both the "real" per-superblock 389 * LRU list _and_ the DCACHE_SHRINK_LIST use. 390 * 391 * The DCACHE_SHRINK_LIST bit is set whenever the dentry is 392 * on the shrink list (ie not on the superblock LRU list). 393 * 394 * The per-cpu "nr_dentry_unused" counters are updated with 395 * the DCACHE_LRU_LIST bit. 396 * 397 * These helper functions make sure we always follow the 398 * rules. d_lock must be held by the caller. 399 */ 400 #define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x)) 401 static void d_lru_add(struct dentry *dentry) 402 { 403 D_FLAG_VERIFY(dentry, 0); 404 dentry->d_flags |= DCACHE_LRU_LIST; 405 this_cpu_inc(nr_dentry_unused); 406 WARN_ON_ONCE(!list_lru_add(&dentry->d_sb->s_dentry_lru, &dentry->d_lru)); 407 } 408 409 static void d_lru_del(struct dentry *dentry) 410 { 411 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST); 412 dentry->d_flags &= ~DCACHE_LRU_LIST; 413 this_cpu_dec(nr_dentry_unused); 414 WARN_ON_ONCE(!list_lru_del(&dentry->d_sb->s_dentry_lru, &dentry->d_lru)); 415 } 416 417 static void d_shrink_del(struct dentry *dentry) 418 { 419 D_FLAG_VERIFY(dentry, DCACHE_SHRINK_LIST | DCACHE_LRU_LIST); 420 list_del_init(&dentry->d_lru); 421 dentry->d_flags &= ~(DCACHE_SHRINK_LIST | DCACHE_LRU_LIST); 422 this_cpu_dec(nr_dentry_unused); 423 } 424 425 static void d_shrink_add(struct dentry *dentry, struct list_head *list) 426 { 427 D_FLAG_VERIFY(dentry, 0); 428 list_add(&dentry->d_lru, list); 429 dentry->d_flags |= DCACHE_SHRINK_LIST | DCACHE_LRU_LIST; 430 this_cpu_inc(nr_dentry_unused); 431 } 432 433 /* 434 * These can only be called under the global LRU lock, ie during the 435 * callback for freeing the LRU list. "isolate" removes it from the 436 * LRU lists entirely, while shrink_move moves it to the indicated 437 * private list. 438 */ 439 static void d_lru_isolate(struct list_lru_one *lru, struct dentry *dentry) 440 { 441 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST); 442 dentry->d_flags &= ~DCACHE_LRU_LIST; 443 this_cpu_dec(nr_dentry_unused); 444 list_lru_isolate(lru, &dentry->d_lru); 445 } 446 447 static void d_lru_shrink_move(struct list_lru_one *lru, struct dentry *dentry, 448 struct list_head *list) 449 { 450 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST); 451 dentry->d_flags |= DCACHE_SHRINK_LIST; 452 list_lru_isolate_move(lru, &dentry->d_lru, list); 453 } 454 455 /* 456 * dentry_lru_(add|del)_list) must be called with d_lock held. 457 */ 458 static void dentry_lru_add(struct dentry *dentry) 459 { 460 if (unlikely(!(dentry->d_flags & DCACHE_LRU_LIST))) 461 d_lru_add(dentry); 462 } 463 464 /** 465 * d_drop - drop a dentry 466 * @dentry: dentry to drop 467 * 468 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't 469 * be found through a VFS lookup any more. Note that this is different from 470 * deleting the dentry - d_delete will try to mark the dentry negative if 471 * possible, giving a successful _negative_ lookup, while d_drop will 472 * just make the cache lookup fail. 473 * 474 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some 475 * reason (NFS timeouts or autofs deletes). 476 * 477 * __d_drop requires dentry->d_lock. 478 */ 479 void __d_drop(struct dentry *dentry) 480 { 481 if (!d_unhashed(dentry)) { 482 struct hlist_bl_head *b; 483 /* 484 * Hashed dentries are normally on the dentry hashtable, 485 * with the exception of those newly allocated by 486 * d_obtain_alias, which are always IS_ROOT: 487 */ 488 if (unlikely(IS_ROOT(dentry))) 489 b = &dentry->d_sb->s_anon; 490 else 491 b = d_hash(dentry->d_parent, dentry->d_name.hash); 492 493 hlist_bl_lock(b); 494 __hlist_bl_del(&dentry->d_hash); 495 dentry->d_hash.pprev = NULL; 496 hlist_bl_unlock(b); 497 dentry_rcuwalk_barrier(dentry); 498 } 499 } 500 EXPORT_SYMBOL(__d_drop); 501 502 void d_drop(struct dentry *dentry) 503 { 504 spin_lock(&dentry->d_lock); 505 __d_drop(dentry); 506 spin_unlock(&dentry->d_lock); 507 } 508 EXPORT_SYMBOL(d_drop); 509 510 static void __dentry_kill(struct dentry *dentry) 511 { 512 struct dentry *parent = NULL; 513 bool can_free = true; 514 if (!IS_ROOT(dentry)) 515 parent = dentry->d_parent; 516 517 /* 518 * The dentry is now unrecoverably dead to the world. 519 */ 520 lockref_mark_dead(&dentry->d_lockref); 521 522 /* 523 * inform the fs via d_prune that this dentry is about to be 524 * unhashed and destroyed. 525 */ 526 if (dentry->d_flags & DCACHE_OP_PRUNE) 527 dentry->d_op->d_prune(dentry); 528 529 if (dentry->d_flags & DCACHE_LRU_LIST) { 530 if (!(dentry->d_flags & DCACHE_SHRINK_LIST)) 531 d_lru_del(dentry); 532 } 533 /* if it was on the hash then remove it */ 534 __d_drop(dentry); 535 __list_del_entry(&dentry->d_child); 536 /* 537 * Inform d_walk() that we are no longer attached to the 538 * dentry tree 539 */ 540 dentry->d_flags |= DCACHE_DENTRY_KILLED; 541 if (parent) 542 spin_unlock(&parent->d_lock); 543 dentry_iput(dentry); 544 /* 545 * dentry_iput drops the locks, at which point nobody (except 546 * transient RCU lookups) can reach this dentry. 547 */ 548 BUG_ON(dentry->d_lockref.count > 0); 549 this_cpu_dec(nr_dentry); 550 if (dentry->d_op && dentry->d_op->d_release) 551 dentry->d_op->d_release(dentry); 552 553 spin_lock(&dentry->d_lock); 554 if (dentry->d_flags & DCACHE_SHRINK_LIST) { 555 dentry->d_flags |= DCACHE_MAY_FREE; 556 can_free = false; 557 } 558 spin_unlock(&dentry->d_lock); 559 if (likely(can_free)) 560 dentry_free(dentry); 561 } 562 563 /* 564 * Finish off a dentry we've decided to kill. 565 * dentry->d_lock must be held, returns with it unlocked. 566 * If ref is non-zero, then decrement the refcount too. 567 * Returns dentry requiring refcount drop, or NULL if we're done. 568 */ 569 static struct dentry *dentry_kill(struct dentry *dentry) 570 __releases(dentry->d_lock) 571 { 572 struct inode *inode = dentry->d_inode; 573 struct dentry *parent = NULL; 574 575 if (inode && unlikely(!spin_trylock(&inode->i_lock))) 576 goto failed; 577 578 if (!IS_ROOT(dentry)) { 579 parent = dentry->d_parent; 580 if (unlikely(!spin_trylock(&parent->d_lock))) { 581 if (inode) 582 spin_unlock(&inode->i_lock); 583 goto failed; 584 } 585 } 586 587 __dentry_kill(dentry); 588 return parent; 589 590 failed: 591 spin_unlock(&dentry->d_lock); 592 cpu_relax(); 593 return dentry; /* try again with same dentry */ 594 } 595 596 static inline struct dentry *lock_parent(struct dentry *dentry) 597 { 598 struct dentry *parent = dentry->d_parent; 599 if (IS_ROOT(dentry)) 600 return NULL; 601 if (unlikely(dentry->d_lockref.count < 0)) 602 return NULL; 603 if (likely(spin_trylock(&parent->d_lock))) 604 return parent; 605 rcu_read_lock(); 606 spin_unlock(&dentry->d_lock); 607 again: 608 parent = ACCESS_ONCE(dentry->d_parent); 609 spin_lock(&parent->d_lock); 610 /* 611 * We can't blindly lock dentry until we are sure 612 * that we won't violate the locking order. 613 * Any changes of dentry->d_parent must have 614 * been done with parent->d_lock held, so 615 * spin_lock() above is enough of a barrier 616 * for checking if it's still our child. 617 */ 618 if (unlikely(parent != dentry->d_parent)) { 619 spin_unlock(&parent->d_lock); 620 goto again; 621 } 622 rcu_read_unlock(); 623 if (parent != dentry) 624 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED); 625 else 626 parent = NULL; 627 return parent; 628 } 629 630 /* 631 * Try to do a lockless dput(), and return whether that was successful. 632 * 633 * If unsuccessful, we return false, having already taken the dentry lock. 634 * 635 * The caller needs to hold the RCU read lock, so that the dentry is 636 * guaranteed to stay around even if the refcount goes down to zero! 637 */ 638 static inline bool fast_dput(struct dentry *dentry) 639 { 640 int ret; 641 unsigned int d_flags; 642 643 /* 644 * If we have a d_op->d_delete() operation, we sould not 645 * let the dentry count go to zero, so use "put__or_lock". 646 */ 647 if (unlikely(dentry->d_flags & DCACHE_OP_DELETE)) 648 return lockref_put_or_lock(&dentry->d_lockref); 649 650 /* 651 * .. otherwise, we can try to just decrement the 652 * lockref optimistically. 653 */ 654 ret = lockref_put_return(&dentry->d_lockref); 655 656 /* 657 * If the lockref_put_return() failed due to the lock being held 658 * by somebody else, the fast path has failed. We will need to 659 * get the lock, and then check the count again. 660 */ 661 if (unlikely(ret < 0)) { 662 spin_lock(&dentry->d_lock); 663 if (dentry->d_lockref.count > 1) { 664 dentry->d_lockref.count--; 665 spin_unlock(&dentry->d_lock); 666 return 1; 667 } 668 return 0; 669 } 670 671 /* 672 * If we weren't the last ref, we're done. 673 */ 674 if (ret) 675 return 1; 676 677 /* 678 * Careful, careful. The reference count went down 679 * to zero, but we don't hold the dentry lock, so 680 * somebody else could get it again, and do another 681 * dput(), and we need to not race with that. 682 * 683 * However, there is a very special and common case 684 * where we don't care, because there is nothing to 685 * do: the dentry is still hashed, it does not have 686 * a 'delete' op, and it's referenced and already on 687 * the LRU list. 688 * 689 * NOTE! Since we aren't locked, these values are 690 * not "stable". However, it is sufficient that at 691 * some point after we dropped the reference the 692 * dentry was hashed and the flags had the proper 693 * value. Other dentry users may have re-gotten 694 * a reference to the dentry and change that, but 695 * our work is done - we can leave the dentry 696 * around with a zero refcount. 697 */ 698 smp_rmb(); 699 d_flags = ACCESS_ONCE(dentry->d_flags); 700 d_flags &= DCACHE_REFERENCED | DCACHE_LRU_LIST; 701 702 /* Nothing to do? Dropping the reference was all we needed? */ 703 if (d_flags == (DCACHE_REFERENCED | DCACHE_LRU_LIST) && !d_unhashed(dentry)) 704 return 1; 705 706 /* 707 * Not the fast normal case? Get the lock. We've already decremented 708 * the refcount, but we'll need to re-check the situation after 709 * getting the lock. 710 */ 711 spin_lock(&dentry->d_lock); 712 713 /* 714 * Did somebody else grab a reference to it in the meantime, and 715 * we're no longer the last user after all? Alternatively, somebody 716 * else could have killed it and marked it dead. Either way, we 717 * don't need to do anything else. 718 */ 719 if (dentry->d_lockref.count) { 720 spin_unlock(&dentry->d_lock); 721 return 1; 722 } 723 724 /* 725 * Re-get the reference we optimistically dropped. We hold the 726 * lock, and we just tested that it was zero, so we can just 727 * set it to 1. 728 */ 729 dentry->d_lockref.count = 1; 730 return 0; 731 } 732 733 734 /* 735 * This is dput 736 * 737 * This is complicated by the fact that we do not want to put 738 * dentries that are no longer on any hash chain on the unused 739 * list: we'd much rather just get rid of them immediately. 740 * 741 * However, that implies that we have to traverse the dentry 742 * tree upwards to the parents which might _also_ now be 743 * scheduled for deletion (it may have been only waiting for 744 * its last child to go away). 745 * 746 * This tail recursion is done by hand as we don't want to depend 747 * on the compiler to always get this right (gcc generally doesn't). 748 * Real recursion would eat up our stack space. 749 */ 750 751 /* 752 * dput - release a dentry 753 * @dentry: dentry to release 754 * 755 * Release a dentry. This will drop the usage count and if appropriate 756 * call the dentry unlink method as well as removing it from the queues and 757 * releasing its resources. If the parent dentries were scheduled for release 758 * they too may now get deleted. 759 */ 760 void dput(struct dentry *dentry) 761 { 762 if (unlikely(!dentry)) 763 return; 764 765 repeat: 766 rcu_read_lock(); 767 if (likely(fast_dput(dentry))) { 768 rcu_read_unlock(); 769 return; 770 } 771 772 /* Slow case: now with the dentry lock held */ 773 rcu_read_unlock(); 774 775 /* Unreachable? Get rid of it */ 776 if (unlikely(d_unhashed(dentry))) 777 goto kill_it; 778 779 if (unlikely(dentry->d_flags & DCACHE_OP_DELETE)) { 780 if (dentry->d_op->d_delete(dentry)) 781 goto kill_it; 782 } 783 784 if (!(dentry->d_flags & DCACHE_REFERENCED)) 785 dentry->d_flags |= DCACHE_REFERENCED; 786 dentry_lru_add(dentry); 787 788 dentry->d_lockref.count--; 789 spin_unlock(&dentry->d_lock); 790 return; 791 792 kill_it: 793 dentry = dentry_kill(dentry); 794 if (dentry) 795 goto repeat; 796 } 797 EXPORT_SYMBOL(dput); 798 799 800 /* This must be called with d_lock held */ 801 static inline void __dget_dlock(struct dentry *dentry) 802 { 803 dentry->d_lockref.count++; 804 } 805 806 static inline void __dget(struct dentry *dentry) 807 { 808 lockref_get(&dentry->d_lockref); 809 } 810 811 struct dentry *dget_parent(struct dentry *dentry) 812 { 813 int gotref; 814 struct dentry *ret; 815 816 /* 817 * Do optimistic parent lookup without any 818 * locking. 819 */ 820 rcu_read_lock(); 821 ret = ACCESS_ONCE(dentry->d_parent); 822 gotref = lockref_get_not_zero(&ret->d_lockref); 823 rcu_read_unlock(); 824 if (likely(gotref)) { 825 if (likely(ret == ACCESS_ONCE(dentry->d_parent))) 826 return ret; 827 dput(ret); 828 } 829 830 repeat: 831 /* 832 * Don't need rcu_dereference because we re-check it was correct under 833 * the lock. 834 */ 835 rcu_read_lock(); 836 ret = dentry->d_parent; 837 spin_lock(&ret->d_lock); 838 if (unlikely(ret != dentry->d_parent)) { 839 spin_unlock(&ret->d_lock); 840 rcu_read_unlock(); 841 goto repeat; 842 } 843 rcu_read_unlock(); 844 BUG_ON(!ret->d_lockref.count); 845 ret->d_lockref.count++; 846 spin_unlock(&ret->d_lock); 847 return ret; 848 } 849 EXPORT_SYMBOL(dget_parent); 850 851 /** 852 * d_find_alias - grab a hashed alias of inode 853 * @inode: inode in question 854 * 855 * If inode has a hashed alias, or is a directory and has any alias, 856 * acquire the reference to alias and return it. Otherwise return NULL. 857 * Notice that if inode is a directory there can be only one alias and 858 * it can be unhashed only if it has no children, or if it is the root 859 * of a filesystem, or if the directory was renamed and d_revalidate 860 * was the first vfs operation to notice. 861 * 862 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer 863 * any other hashed alias over that one. 864 */ 865 static struct dentry *__d_find_alias(struct inode *inode) 866 { 867 struct dentry *alias, *discon_alias; 868 869 again: 870 discon_alias = NULL; 871 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) { 872 spin_lock(&alias->d_lock); 873 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) { 874 if (IS_ROOT(alias) && 875 (alias->d_flags & DCACHE_DISCONNECTED)) { 876 discon_alias = alias; 877 } else { 878 __dget_dlock(alias); 879 spin_unlock(&alias->d_lock); 880 return alias; 881 } 882 } 883 spin_unlock(&alias->d_lock); 884 } 885 if (discon_alias) { 886 alias = discon_alias; 887 spin_lock(&alias->d_lock); 888 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) { 889 __dget_dlock(alias); 890 spin_unlock(&alias->d_lock); 891 return alias; 892 } 893 spin_unlock(&alias->d_lock); 894 goto again; 895 } 896 return NULL; 897 } 898 899 struct dentry *d_find_alias(struct inode *inode) 900 { 901 struct dentry *de = NULL; 902 903 if (!hlist_empty(&inode->i_dentry)) { 904 spin_lock(&inode->i_lock); 905 de = __d_find_alias(inode); 906 spin_unlock(&inode->i_lock); 907 } 908 return de; 909 } 910 EXPORT_SYMBOL(d_find_alias); 911 912 /* 913 * Try to kill dentries associated with this inode. 914 * WARNING: you must own a reference to inode. 915 */ 916 void d_prune_aliases(struct inode *inode) 917 { 918 struct dentry *dentry; 919 restart: 920 spin_lock(&inode->i_lock); 921 hlist_for_each_entry(dentry, &inode->i_dentry, d_u.d_alias) { 922 spin_lock(&dentry->d_lock); 923 if (!dentry->d_lockref.count) { 924 struct dentry *parent = lock_parent(dentry); 925 if (likely(!dentry->d_lockref.count)) { 926 __dentry_kill(dentry); 927 dput(parent); 928 goto restart; 929 } 930 if (parent) 931 spin_unlock(&parent->d_lock); 932 } 933 spin_unlock(&dentry->d_lock); 934 } 935 spin_unlock(&inode->i_lock); 936 } 937 EXPORT_SYMBOL(d_prune_aliases); 938 939 static void shrink_dentry_list(struct list_head *list) 940 { 941 struct dentry *dentry, *parent; 942 943 while (!list_empty(list)) { 944 struct inode *inode; 945 dentry = list_entry(list->prev, struct dentry, d_lru); 946 spin_lock(&dentry->d_lock); 947 parent = lock_parent(dentry); 948 949 /* 950 * The dispose list is isolated and dentries are not accounted 951 * to the LRU here, so we can simply remove it from the list 952 * here regardless of whether it is referenced or not. 953 */ 954 d_shrink_del(dentry); 955 956 /* 957 * We found an inuse dentry which was not removed from 958 * the LRU because of laziness during lookup. Do not free it. 959 */ 960 if (dentry->d_lockref.count > 0) { 961 spin_unlock(&dentry->d_lock); 962 if (parent) 963 spin_unlock(&parent->d_lock); 964 continue; 965 } 966 967 968 if (unlikely(dentry->d_flags & DCACHE_DENTRY_KILLED)) { 969 bool can_free = dentry->d_flags & DCACHE_MAY_FREE; 970 spin_unlock(&dentry->d_lock); 971 if (parent) 972 spin_unlock(&parent->d_lock); 973 if (can_free) 974 dentry_free(dentry); 975 continue; 976 } 977 978 inode = dentry->d_inode; 979 if (inode && unlikely(!spin_trylock(&inode->i_lock))) { 980 d_shrink_add(dentry, list); 981 spin_unlock(&dentry->d_lock); 982 if (parent) 983 spin_unlock(&parent->d_lock); 984 continue; 985 } 986 987 __dentry_kill(dentry); 988 989 /* 990 * We need to prune ancestors too. This is necessary to prevent 991 * quadratic behavior of shrink_dcache_parent(), but is also 992 * expected to be beneficial in reducing dentry cache 993 * fragmentation. 994 */ 995 dentry = parent; 996 while (dentry && !lockref_put_or_lock(&dentry->d_lockref)) { 997 parent = lock_parent(dentry); 998 if (dentry->d_lockref.count != 1) { 999 dentry->d_lockref.count--; 1000 spin_unlock(&dentry->d_lock); 1001 if (parent) 1002 spin_unlock(&parent->d_lock); 1003 break; 1004 } 1005 inode = dentry->d_inode; /* can't be NULL */ 1006 if (unlikely(!spin_trylock(&inode->i_lock))) { 1007 spin_unlock(&dentry->d_lock); 1008 if (parent) 1009 spin_unlock(&parent->d_lock); 1010 cpu_relax(); 1011 continue; 1012 } 1013 __dentry_kill(dentry); 1014 dentry = parent; 1015 } 1016 } 1017 } 1018 1019 static enum lru_status dentry_lru_isolate(struct list_head *item, 1020 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg) 1021 { 1022 struct list_head *freeable = arg; 1023 struct dentry *dentry = container_of(item, struct dentry, d_lru); 1024 1025 1026 /* 1027 * we are inverting the lru lock/dentry->d_lock here, 1028 * so use a trylock. If we fail to get the lock, just skip 1029 * it 1030 */ 1031 if (!spin_trylock(&dentry->d_lock)) 1032 return LRU_SKIP; 1033 1034 /* 1035 * Referenced dentries are still in use. If they have active 1036 * counts, just remove them from the LRU. Otherwise give them 1037 * another pass through the LRU. 1038 */ 1039 if (dentry->d_lockref.count) { 1040 d_lru_isolate(lru, dentry); 1041 spin_unlock(&dentry->d_lock); 1042 return LRU_REMOVED; 1043 } 1044 1045 if (dentry->d_flags & DCACHE_REFERENCED) { 1046 dentry->d_flags &= ~DCACHE_REFERENCED; 1047 spin_unlock(&dentry->d_lock); 1048 1049 /* 1050 * The list move itself will be made by the common LRU code. At 1051 * this point, we've dropped the dentry->d_lock but keep the 1052 * lru lock. This is safe to do, since every list movement is 1053 * protected by the lru lock even if both locks are held. 1054 * 1055 * This is guaranteed by the fact that all LRU management 1056 * functions are intermediated by the LRU API calls like 1057 * list_lru_add and list_lru_del. List movement in this file 1058 * only ever occur through this functions or through callbacks 1059 * like this one, that are called from the LRU API. 1060 * 1061 * The only exceptions to this are functions like 1062 * shrink_dentry_list, and code that first checks for the 1063 * DCACHE_SHRINK_LIST flag. Those are guaranteed to be 1064 * operating only with stack provided lists after they are 1065 * properly isolated from the main list. It is thus, always a 1066 * local access. 1067 */ 1068 return LRU_ROTATE; 1069 } 1070 1071 d_lru_shrink_move(lru, dentry, freeable); 1072 spin_unlock(&dentry->d_lock); 1073 1074 return LRU_REMOVED; 1075 } 1076 1077 /** 1078 * prune_dcache_sb - shrink the dcache 1079 * @sb: superblock 1080 * @sc: shrink control, passed to list_lru_shrink_walk() 1081 * 1082 * Attempt to shrink the superblock dcache LRU by @sc->nr_to_scan entries. This 1083 * is done when we need more memory and called from the superblock shrinker 1084 * function. 1085 * 1086 * This function may fail to free any resources if all the dentries are in 1087 * use. 1088 */ 1089 long prune_dcache_sb(struct super_block *sb, struct shrink_control *sc) 1090 { 1091 LIST_HEAD(dispose); 1092 long freed; 1093 1094 freed = list_lru_shrink_walk(&sb->s_dentry_lru, sc, 1095 dentry_lru_isolate, &dispose); 1096 shrink_dentry_list(&dispose); 1097 return freed; 1098 } 1099 1100 static enum lru_status dentry_lru_isolate_shrink(struct list_head *item, 1101 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg) 1102 { 1103 struct list_head *freeable = arg; 1104 struct dentry *dentry = container_of(item, struct dentry, d_lru); 1105 1106 /* 1107 * we are inverting the lru lock/dentry->d_lock here, 1108 * so use a trylock. If we fail to get the lock, just skip 1109 * it 1110 */ 1111 if (!spin_trylock(&dentry->d_lock)) 1112 return LRU_SKIP; 1113 1114 d_lru_shrink_move(lru, dentry, freeable); 1115 spin_unlock(&dentry->d_lock); 1116 1117 return LRU_REMOVED; 1118 } 1119 1120 1121 /** 1122 * shrink_dcache_sb - shrink dcache for a superblock 1123 * @sb: superblock 1124 * 1125 * Shrink the dcache for the specified super block. This is used to free 1126 * the dcache before unmounting a file system. 1127 */ 1128 void shrink_dcache_sb(struct super_block *sb) 1129 { 1130 long freed; 1131 1132 do { 1133 LIST_HEAD(dispose); 1134 1135 freed = list_lru_walk(&sb->s_dentry_lru, 1136 dentry_lru_isolate_shrink, &dispose, UINT_MAX); 1137 1138 this_cpu_sub(nr_dentry_unused, freed); 1139 shrink_dentry_list(&dispose); 1140 } while (freed > 0); 1141 } 1142 EXPORT_SYMBOL(shrink_dcache_sb); 1143 1144 /** 1145 * enum d_walk_ret - action to talke during tree walk 1146 * @D_WALK_CONTINUE: contrinue walk 1147 * @D_WALK_QUIT: quit walk 1148 * @D_WALK_NORETRY: quit when retry is needed 1149 * @D_WALK_SKIP: skip this dentry and its children 1150 */ 1151 enum d_walk_ret { 1152 D_WALK_CONTINUE, 1153 D_WALK_QUIT, 1154 D_WALK_NORETRY, 1155 D_WALK_SKIP, 1156 }; 1157 1158 /** 1159 * d_walk - walk the dentry tree 1160 * @parent: start of walk 1161 * @data: data passed to @enter() and @finish() 1162 * @enter: callback when first entering the dentry 1163 * @finish: callback when successfully finished the walk 1164 * 1165 * The @enter() and @finish() callbacks are called with d_lock held. 1166 */ 1167 static void d_walk(struct dentry *parent, void *data, 1168 enum d_walk_ret (*enter)(void *, struct dentry *), 1169 void (*finish)(void *)) 1170 { 1171 struct dentry *this_parent; 1172 struct list_head *next; 1173 unsigned seq = 0; 1174 enum d_walk_ret ret; 1175 bool retry = true; 1176 1177 again: 1178 read_seqbegin_or_lock(&rename_lock, &seq); 1179 this_parent = parent; 1180 spin_lock(&this_parent->d_lock); 1181 1182 ret = enter(data, this_parent); 1183 switch (ret) { 1184 case D_WALK_CONTINUE: 1185 break; 1186 case D_WALK_QUIT: 1187 case D_WALK_SKIP: 1188 goto out_unlock; 1189 case D_WALK_NORETRY: 1190 retry = false; 1191 break; 1192 } 1193 repeat: 1194 next = this_parent->d_subdirs.next; 1195 resume: 1196 while (next != &this_parent->d_subdirs) { 1197 struct list_head *tmp = next; 1198 struct dentry *dentry = list_entry(tmp, struct dentry, d_child); 1199 next = tmp->next; 1200 1201 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED); 1202 1203 ret = enter(data, dentry); 1204 switch (ret) { 1205 case D_WALK_CONTINUE: 1206 break; 1207 case D_WALK_QUIT: 1208 spin_unlock(&dentry->d_lock); 1209 goto out_unlock; 1210 case D_WALK_NORETRY: 1211 retry = false; 1212 break; 1213 case D_WALK_SKIP: 1214 spin_unlock(&dentry->d_lock); 1215 continue; 1216 } 1217 1218 if (!list_empty(&dentry->d_subdirs)) { 1219 spin_unlock(&this_parent->d_lock); 1220 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_); 1221 this_parent = dentry; 1222 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_); 1223 goto repeat; 1224 } 1225 spin_unlock(&dentry->d_lock); 1226 } 1227 /* 1228 * All done at this level ... ascend and resume the search. 1229 */ 1230 rcu_read_lock(); 1231 ascend: 1232 if (this_parent != parent) { 1233 struct dentry *child = this_parent; 1234 this_parent = child->d_parent; 1235 1236 spin_unlock(&child->d_lock); 1237 spin_lock(&this_parent->d_lock); 1238 1239 /* might go back up the wrong parent if we have had a rename. */ 1240 if (need_seqretry(&rename_lock, seq)) 1241 goto rename_retry; 1242 next = child->d_child.next; 1243 while (unlikely(child->d_flags & DCACHE_DENTRY_KILLED)) { 1244 if (next == &this_parent->d_subdirs) 1245 goto ascend; 1246 child = list_entry(next, struct dentry, d_child); 1247 next = next->next; 1248 } 1249 rcu_read_unlock(); 1250 goto resume; 1251 } 1252 if (need_seqretry(&rename_lock, seq)) 1253 goto rename_retry; 1254 rcu_read_unlock(); 1255 if (finish) 1256 finish(data); 1257 1258 out_unlock: 1259 spin_unlock(&this_parent->d_lock); 1260 done_seqretry(&rename_lock, seq); 1261 return; 1262 1263 rename_retry: 1264 spin_unlock(&this_parent->d_lock); 1265 rcu_read_unlock(); 1266 BUG_ON(seq & 1); 1267 if (!retry) 1268 return; 1269 seq = 1; 1270 goto again; 1271 } 1272 1273 /* 1274 * Search for at least 1 mount point in the dentry's subdirs. 1275 * We descend to the next level whenever the d_subdirs 1276 * list is non-empty and continue searching. 1277 */ 1278 1279 static enum d_walk_ret check_mount(void *data, struct dentry *dentry) 1280 { 1281 int *ret = data; 1282 if (d_mountpoint(dentry)) { 1283 *ret = 1; 1284 return D_WALK_QUIT; 1285 } 1286 return D_WALK_CONTINUE; 1287 } 1288 1289 /** 1290 * have_submounts - check for mounts over a dentry 1291 * @parent: dentry to check. 1292 * 1293 * Return true if the parent or its subdirectories contain 1294 * a mount point 1295 */ 1296 int have_submounts(struct dentry *parent) 1297 { 1298 int ret = 0; 1299 1300 d_walk(parent, &ret, check_mount, NULL); 1301 1302 return ret; 1303 } 1304 EXPORT_SYMBOL(have_submounts); 1305 1306 /* 1307 * Called by mount code to set a mountpoint and check if the mountpoint is 1308 * reachable (e.g. NFS can unhash a directory dentry and then the complete 1309 * subtree can become unreachable). 1310 * 1311 * Only one of d_invalidate() and d_set_mounted() must succeed. For 1312 * this reason take rename_lock and d_lock on dentry and ancestors. 1313 */ 1314 int d_set_mounted(struct dentry *dentry) 1315 { 1316 struct dentry *p; 1317 int ret = -ENOENT; 1318 write_seqlock(&rename_lock); 1319 for (p = dentry->d_parent; !IS_ROOT(p); p = p->d_parent) { 1320 /* Need exclusion wrt. d_invalidate() */ 1321 spin_lock(&p->d_lock); 1322 if (unlikely(d_unhashed(p))) { 1323 spin_unlock(&p->d_lock); 1324 goto out; 1325 } 1326 spin_unlock(&p->d_lock); 1327 } 1328 spin_lock(&dentry->d_lock); 1329 if (!d_unlinked(dentry)) { 1330 dentry->d_flags |= DCACHE_MOUNTED; 1331 ret = 0; 1332 } 1333 spin_unlock(&dentry->d_lock); 1334 out: 1335 write_sequnlock(&rename_lock); 1336 return ret; 1337 } 1338 1339 /* 1340 * Search the dentry child list of the specified parent, 1341 * and move any unused dentries to the end of the unused 1342 * list for prune_dcache(). We descend to the next level 1343 * whenever the d_subdirs list is non-empty and continue 1344 * searching. 1345 * 1346 * It returns zero iff there are no unused children, 1347 * otherwise it returns the number of children moved to 1348 * the end of the unused list. This may not be the total 1349 * number of unused children, because select_parent can 1350 * drop the lock and return early due to latency 1351 * constraints. 1352 */ 1353 1354 struct select_data { 1355 struct dentry *start; 1356 struct list_head dispose; 1357 int found; 1358 }; 1359 1360 static enum d_walk_ret select_collect(void *_data, struct dentry *dentry) 1361 { 1362 struct select_data *data = _data; 1363 enum d_walk_ret ret = D_WALK_CONTINUE; 1364 1365 if (data->start == dentry) 1366 goto out; 1367 1368 if (dentry->d_flags & DCACHE_SHRINK_LIST) { 1369 data->found++; 1370 } else { 1371 if (dentry->d_flags & DCACHE_LRU_LIST) 1372 d_lru_del(dentry); 1373 if (!dentry->d_lockref.count) { 1374 d_shrink_add(dentry, &data->dispose); 1375 data->found++; 1376 } 1377 } 1378 /* 1379 * We can return to the caller if we have found some (this 1380 * ensures forward progress). We'll be coming back to find 1381 * the rest. 1382 */ 1383 if (!list_empty(&data->dispose)) 1384 ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY; 1385 out: 1386 return ret; 1387 } 1388 1389 /** 1390 * shrink_dcache_parent - prune dcache 1391 * @parent: parent of entries to prune 1392 * 1393 * Prune the dcache to remove unused children of the parent dentry. 1394 */ 1395 void shrink_dcache_parent(struct dentry *parent) 1396 { 1397 for (;;) { 1398 struct select_data data; 1399 1400 INIT_LIST_HEAD(&data.dispose); 1401 data.start = parent; 1402 data.found = 0; 1403 1404 d_walk(parent, &data, select_collect, NULL); 1405 if (!data.found) 1406 break; 1407 1408 shrink_dentry_list(&data.dispose); 1409 cond_resched(); 1410 } 1411 } 1412 EXPORT_SYMBOL(shrink_dcache_parent); 1413 1414 static enum d_walk_ret umount_check(void *_data, struct dentry *dentry) 1415 { 1416 /* it has busy descendents; complain about those instead */ 1417 if (!list_empty(&dentry->d_subdirs)) 1418 return D_WALK_CONTINUE; 1419 1420 /* root with refcount 1 is fine */ 1421 if (dentry == _data && dentry->d_lockref.count == 1) 1422 return D_WALK_CONTINUE; 1423 1424 printk(KERN_ERR "BUG: Dentry %p{i=%lx,n=%pd} " 1425 " still in use (%d) [unmount of %s %s]\n", 1426 dentry, 1427 dentry->d_inode ? 1428 dentry->d_inode->i_ino : 0UL, 1429 dentry, 1430 dentry->d_lockref.count, 1431 dentry->d_sb->s_type->name, 1432 dentry->d_sb->s_id); 1433 WARN_ON(1); 1434 return D_WALK_CONTINUE; 1435 } 1436 1437 static void do_one_tree(struct dentry *dentry) 1438 { 1439 shrink_dcache_parent(dentry); 1440 d_walk(dentry, dentry, umount_check, NULL); 1441 d_drop(dentry); 1442 dput(dentry); 1443 } 1444 1445 /* 1446 * destroy the dentries attached to a superblock on unmounting 1447 */ 1448 void shrink_dcache_for_umount(struct super_block *sb) 1449 { 1450 struct dentry *dentry; 1451 1452 WARN(down_read_trylock(&sb->s_umount), "s_umount should've been locked"); 1453 1454 dentry = sb->s_root; 1455 sb->s_root = NULL; 1456 do_one_tree(dentry); 1457 1458 while (!hlist_bl_empty(&sb->s_anon)) { 1459 dentry = dget(hlist_bl_entry(hlist_bl_first(&sb->s_anon), struct dentry, d_hash)); 1460 do_one_tree(dentry); 1461 } 1462 } 1463 1464 struct detach_data { 1465 struct select_data select; 1466 struct dentry *mountpoint; 1467 }; 1468 static enum d_walk_ret detach_and_collect(void *_data, struct dentry *dentry) 1469 { 1470 struct detach_data *data = _data; 1471 1472 if (d_mountpoint(dentry)) { 1473 __dget_dlock(dentry); 1474 data->mountpoint = dentry; 1475 return D_WALK_QUIT; 1476 } 1477 1478 return select_collect(&data->select, dentry); 1479 } 1480 1481 static void check_and_drop(void *_data) 1482 { 1483 struct detach_data *data = _data; 1484 1485 if (!data->mountpoint && !data->select.found) 1486 __d_drop(data->select.start); 1487 } 1488 1489 /** 1490 * d_invalidate - detach submounts, prune dcache, and drop 1491 * @dentry: dentry to invalidate (aka detach, prune and drop) 1492 * 1493 * no dcache lock. 1494 * 1495 * The final d_drop is done as an atomic operation relative to 1496 * rename_lock ensuring there are no races with d_set_mounted. This 1497 * ensures there are no unhashed dentries on the path to a mountpoint. 1498 */ 1499 void d_invalidate(struct dentry *dentry) 1500 { 1501 /* 1502 * If it's already been dropped, return OK. 1503 */ 1504 spin_lock(&dentry->d_lock); 1505 if (d_unhashed(dentry)) { 1506 spin_unlock(&dentry->d_lock); 1507 return; 1508 } 1509 spin_unlock(&dentry->d_lock); 1510 1511 /* Negative dentries can be dropped without further checks */ 1512 if (!dentry->d_inode) { 1513 d_drop(dentry); 1514 return; 1515 } 1516 1517 for (;;) { 1518 struct detach_data data; 1519 1520 data.mountpoint = NULL; 1521 INIT_LIST_HEAD(&data.select.dispose); 1522 data.select.start = dentry; 1523 data.select.found = 0; 1524 1525 d_walk(dentry, &data, detach_and_collect, check_and_drop); 1526 1527 if (data.select.found) 1528 shrink_dentry_list(&data.select.dispose); 1529 1530 if (data.mountpoint) { 1531 detach_mounts(data.mountpoint); 1532 dput(data.mountpoint); 1533 } 1534 1535 if (!data.mountpoint && !data.select.found) 1536 break; 1537 1538 cond_resched(); 1539 } 1540 } 1541 EXPORT_SYMBOL(d_invalidate); 1542 1543 /** 1544 * __d_alloc - allocate a dcache entry 1545 * @sb: filesystem it will belong to 1546 * @name: qstr of the name 1547 * 1548 * Allocates a dentry. It returns %NULL if there is insufficient memory 1549 * available. On a success the dentry is returned. The name passed in is 1550 * copied and the copy passed in may be reused after this call. 1551 */ 1552 1553 struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name) 1554 { 1555 struct dentry *dentry; 1556 char *dname; 1557 1558 dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL); 1559 if (!dentry) 1560 return NULL; 1561 1562 /* 1563 * We guarantee that the inline name is always NUL-terminated. 1564 * This way the memcpy() done by the name switching in rename 1565 * will still always have a NUL at the end, even if we might 1566 * be overwriting an internal NUL character 1567 */ 1568 dentry->d_iname[DNAME_INLINE_LEN-1] = 0; 1569 if (name->len > DNAME_INLINE_LEN-1) { 1570 size_t size = offsetof(struct external_name, name[1]); 1571 struct external_name *p = kmalloc(size + name->len, GFP_KERNEL); 1572 if (!p) { 1573 kmem_cache_free(dentry_cache, dentry); 1574 return NULL; 1575 } 1576 atomic_set(&p->u.count, 1); 1577 dname = p->name; 1578 if (IS_ENABLED(CONFIG_DCACHE_WORD_ACCESS)) 1579 kasan_unpoison_shadow(dname, 1580 round_up(name->len + 1, sizeof(unsigned long))); 1581 } else { 1582 dname = dentry->d_iname; 1583 } 1584 1585 dentry->d_name.len = name->len; 1586 dentry->d_name.hash = name->hash; 1587 memcpy(dname, name->name, name->len); 1588 dname[name->len] = 0; 1589 1590 /* Make sure we always see the terminating NUL character */ 1591 smp_wmb(); 1592 dentry->d_name.name = dname; 1593 1594 dentry->d_lockref.count = 1; 1595 dentry->d_flags = 0; 1596 spin_lock_init(&dentry->d_lock); 1597 seqcount_init(&dentry->d_seq); 1598 dentry->d_inode = NULL; 1599 dentry->d_parent = dentry; 1600 dentry->d_sb = sb; 1601 dentry->d_op = NULL; 1602 dentry->d_fsdata = NULL; 1603 INIT_HLIST_BL_NODE(&dentry->d_hash); 1604 INIT_LIST_HEAD(&dentry->d_lru); 1605 INIT_LIST_HEAD(&dentry->d_subdirs); 1606 INIT_HLIST_NODE(&dentry->d_u.d_alias); 1607 INIT_LIST_HEAD(&dentry->d_child); 1608 d_set_d_op(dentry, dentry->d_sb->s_d_op); 1609 1610 this_cpu_inc(nr_dentry); 1611 1612 return dentry; 1613 } 1614 1615 /** 1616 * d_alloc - allocate a dcache entry 1617 * @parent: parent of entry to allocate 1618 * @name: qstr of the name 1619 * 1620 * Allocates a dentry. It returns %NULL if there is insufficient memory 1621 * available. On a success the dentry is returned. The name passed in is 1622 * copied and the copy passed in may be reused after this call. 1623 */ 1624 struct dentry *d_alloc(struct dentry * parent, const struct qstr *name) 1625 { 1626 struct dentry *dentry = __d_alloc(parent->d_sb, name); 1627 if (!dentry) 1628 return NULL; 1629 1630 spin_lock(&parent->d_lock); 1631 /* 1632 * don't need child lock because it is not subject 1633 * to concurrency here 1634 */ 1635 __dget_dlock(parent); 1636 dentry->d_parent = parent; 1637 list_add(&dentry->d_child, &parent->d_subdirs); 1638 spin_unlock(&parent->d_lock); 1639 1640 return dentry; 1641 } 1642 EXPORT_SYMBOL(d_alloc); 1643 1644 /** 1645 * d_alloc_pseudo - allocate a dentry (for lookup-less filesystems) 1646 * @sb: the superblock 1647 * @name: qstr of the name 1648 * 1649 * For a filesystem that just pins its dentries in memory and never 1650 * performs lookups at all, return an unhashed IS_ROOT dentry. 1651 */ 1652 struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name) 1653 { 1654 return __d_alloc(sb, name); 1655 } 1656 EXPORT_SYMBOL(d_alloc_pseudo); 1657 1658 struct dentry *d_alloc_name(struct dentry *parent, const char *name) 1659 { 1660 struct qstr q; 1661 1662 q.name = name; 1663 q.len = strlen(name); 1664 q.hash = full_name_hash(q.name, q.len); 1665 return d_alloc(parent, &q); 1666 } 1667 EXPORT_SYMBOL(d_alloc_name); 1668 1669 void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op) 1670 { 1671 WARN_ON_ONCE(dentry->d_op); 1672 WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH | 1673 DCACHE_OP_COMPARE | 1674 DCACHE_OP_REVALIDATE | 1675 DCACHE_OP_WEAK_REVALIDATE | 1676 DCACHE_OP_DELETE )); 1677 dentry->d_op = op; 1678 if (!op) 1679 return; 1680 if (op->d_hash) 1681 dentry->d_flags |= DCACHE_OP_HASH; 1682 if (op->d_compare) 1683 dentry->d_flags |= DCACHE_OP_COMPARE; 1684 if (op->d_revalidate) 1685 dentry->d_flags |= DCACHE_OP_REVALIDATE; 1686 if (op->d_weak_revalidate) 1687 dentry->d_flags |= DCACHE_OP_WEAK_REVALIDATE; 1688 if (op->d_delete) 1689 dentry->d_flags |= DCACHE_OP_DELETE; 1690 if (op->d_prune) 1691 dentry->d_flags |= DCACHE_OP_PRUNE; 1692 1693 } 1694 EXPORT_SYMBOL(d_set_d_op); 1695 1696 1697 /* 1698 * d_set_fallthru - Mark a dentry as falling through to a lower layer 1699 * @dentry - The dentry to mark 1700 * 1701 * Mark a dentry as falling through to the lower layer (as set with 1702 * d_pin_lower()). This flag may be recorded on the medium. 1703 */ 1704 void d_set_fallthru(struct dentry *dentry) 1705 { 1706 spin_lock(&dentry->d_lock); 1707 dentry->d_flags |= DCACHE_FALLTHRU; 1708 spin_unlock(&dentry->d_lock); 1709 } 1710 EXPORT_SYMBOL(d_set_fallthru); 1711 1712 static unsigned d_flags_for_inode(struct inode *inode) 1713 { 1714 unsigned add_flags = DCACHE_REGULAR_TYPE; 1715 1716 if (!inode) 1717 return DCACHE_MISS_TYPE; 1718 1719 if (S_ISDIR(inode->i_mode)) { 1720 add_flags = DCACHE_DIRECTORY_TYPE; 1721 if (unlikely(!(inode->i_opflags & IOP_LOOKUP))) { 1722 if (unlikely(!inode->i_op->lookup)) 1723 add_flags = DCACHE_AUTODIR_TYPE; 1724 else 1725 inode->i_opflags |= IOP_LOOKUP; 1726 } 1727 goto type_determined; 1728 } 1729 1730 if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) { 1731 if (unlikely(inode->i_op->follow_link)) { 1732 add_flags = DCACHE_SYMLINK_TYPE; 1733 goto type_determined; 1734 } 1735 inode->i_opflags |= IOP_NOFOLLOW; 1736 } 1737 1738 if (unlikely(!S_ISREG(inode->i_mode))) 1739 add_flags = DCACHE_SPECIAL_TYPE; 1740 1741 type_determined: 1742 if (unlikely(IS_AUTOMOUNT(inode))) 1743 add_flags |= DCACHE_NEED_AUTOMOUNT; 1744 return add_flags; 1745 } 1746 1747 static void __d_instantiate(struct dentry *dentry, struct inode *inode) 1748 { 1749 unsigned add_flags = d_flags_for_inode(inode); 1750 1751 spin_lock(&dentry->d_lock); 1752 if (inode) 1753 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry); 1754 __d_set_inode_and_type(dentry, inode, add_flags); 1755 dentry_rcuwalk_barrier(dentry); 1756 spin_unlock(&dentry->d_lock); 1757 fsnotify_d_instantiate(dentry, inode); 1758 } 1759 1760 /** 1761 * d_instantiate - fill in inode information for a dentry 1762 * @entry: dentry to complete 1763 * @inode: inode to attach to this dentry 1764 * 1765 * Fill in inode information in the entry. 1766 * 1767 * This turns negative dentries into productive full members 1768 * of society. 1769 * 1770 * NOTE! This assumes that the inode count has been incremented 1771 * (or otherwise set) by the caller to indicate that it is now 1772 * in use by the dcache. 1773 */ 1774 1775 void d_instantiate(struct dentry *entry, struct inode * inode) 1776 { 1777 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias)); 1778 if (inode) 1779 spin_lock(&inode->i_lock); 1780 __d_instantiate(entry, inode); 1781 if (inode) 1782 spin_unlock(&inode->i_lock); 1783 security_d_instantiate(entry, inode); 1784 } 1785 EXPORT_SYMBOL(d_instantiate); 1786 1787 /** 1788 * d_instantiate_unique - instantiate a non-aliased dentry 1789 * @entry: dentry to instantiate 1790 * @inode: inode to attach to this dentry 1791 * 1792 * Fill in inode information in the entry. On success, it returns NULL. 1793 * If an unhashed alias of "entry" already exists, then we return the 1794 * aliased dentry instead and drop one reference to inode. 1795 * 1796 * Note that in order to avoid conflicts with rename() etc, the caller 1797 * had better be holding the parent directory semaphore. 1798 * 1799 * This also assumes that the inode count has been incremented 1800 * (or otherwise set) by the caller to indicate that it is now 1801 * in use by the dcache. 1802 */ 1803 static struct dentry *__d_instantiate_unique(struct dentry *entry, 1804 struct inode *inode) 1805 { 1806 struct dentry *alias; 1807 int len = entry->d_name.len; 1808 const char *name = entry->d_name.name; 1809 unsigned int hash = entry->d_name.hash; 1810 1811 if (!inode) { 1812 __d_instantiate(entry, NULL); 1813 return NULL; 1814 } 1815 1816 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) { 1817 /* 1818 * Don't need alias->d_lock here, because aliases with 1819 * d_parent == entry->d_parent are not subject to name or 1820 * parent changes, because the parent inode i_mutex is held. 1821 */ 1822 if (alias->d_name.hash != hash) 1823 continue; 1824 if (alias->d_parent != entry->d_parent) 1825 continue; 1826 if (alias->d_name.len != len) 1827 continue; 1828 if (dentry_cmp(alias, name, len)) 1829 continue; 1830 __dget(alias); 1831 return alias; 1832 } 1833 1834 __d_instantiate(entry, inode); 1835 return NULL; 1836 } 1837 1838 struct dentry *d_instantiate_unique(struct dentry *entry, struct inode *inode) 1839 { 1840 struct dentry *result; 1841 1842 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias)); 1843 1844 if (inode) 1845 spin_lock(&inode->i_lock); 1846 result = __d_instantiate_unique(entry, inode); 1847 if (inode) 1848 spin_unlock(&inode->i_lock); 1849 1850 if (!result) { 1851 security_d_instantiate(entry, inode); 1852 return NULL; 1853 } 1854 1855 BUG_ON(!d_unhashed(result)); 1856 iput(inode); 1857 return result; 1858 } 1859 1860 EXPORT_SYMBOL(d_instantiate_unique); 1861 1862 /** 1863 * d_instantiate_no_diralias - instantiate a non-aliased dentry 1864 * @entry: dentry to complete 1865 * @inode: inode to attach to this dentry 1866 * 1867 * Fill in inode information in the entry. If a directory alias is found, then 1868 * return an error (and drop inode). Together with d_materialise_unique() this 1869 * guarantees that a directory inode may never have more than one alias. 1870 */ 1871 int d_instantiate_no_diralias(struct dentry *entry, struct inode *inode) 1872 { 1873 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias)); 1874 1875 spin_lock(&inode->i_lock); 1876 if (S_ISDIR(inode->i_mode) && !hlist_empty(&inode->i_dentry)) { 1877 spin_unlock(&inode->i_lock); 1878 iput(inode); 1879 return -EBUSY; 1880 } 1881 __d_instantiate(entry, inode); 1882 spin_unlock(&inode->i_lock); 1883 security_d_instantiate(entry, inode); 1884 1885 return 0; 1886 } 1887 EXPORT_SYMBOL(d_instantiate_no_diralias); 1888 1889 struct dentry *d_make_root(struct inode *root_inode) 1890 { 1891 struct dentry *res = NULL; 1892 1893 if (root_inode) { 1894 static const struct qstr name = QSTR_INIT("/", 1); 1895 1896 res = __d_alloc(root_inode->i_sb, &name); 1897 if (res) 1898 d_instantiate(res, root_inode); 1899 else 1900 iput(root_inode); 1901 } 1902 return res; 1903 } 1904 EXPORT_SYMBOL(d_make_root); 1905 1906 static struct dentry * __d_find_any_alias(struct inode *inode) 1907 { 1908 struct dentry *alias; 1909 1910 if (hlist_empty(&inode->i_dentry)) 1911 return NULL; 1912 alias = hlist_entry(inode->i_dentry.first, struct dentry, d_u.d_alias); 1913 __dget(alias); 1914 return alias; 1915 } 1916 1917 /** 1918 * d_find_any_alias - find any alias for a given inode 1919 * @inode: inode to find an alias for 1920 * 1921 * If any aliases exist for the given inode, take and return a 1922 * reference for one of them. If no aliases exist, return %NULL. 1923 */ 1924 struct dentry *d_find_any_alias(struct inode *inode) 1925 { 1926 struct dentry *de; 1927 1928 spin_lock(&inode->i_lock); 1929 de = __d_find_any_alias(inode); 1930 spin_unlock(&inode->i_lock); 1931 return de; 1932 } 1933 EXPORT_SYMBOL(d_find_any_alias); 1934 1935 static struct dentry *__d_obtain_alias(struct inode *inode, int disconnected) 1936 { 1937 static const struct qstr anonstring = QSTR_INIT("/", 1); 1938 struct dentry *tmp; 1939 struct dentry *res; 1940 unsigned add_flags; 1941 1942 if (!inode) 1943 return ERR_PTR(-ESTALE); 1944 if (IS_ERR(inode)) 1945 return ERR_CAST(inode); 1946 1947 res = d_find_any_alias(inode); 1948 if (res) 1949 goto out_iput; 1950 1951 tmp = __d_alloc(inode->i_sb, &anonstring); 1952 if (!tmp) { 1953 res = ERR_PTR(-ENOMEM); 1954 goto out_iput; 1955 } 1956 1957 spin_lock(&inode->i_lock); 1958 res = __d_find_any_alias(inode); 1959 if (res) { 1960 spin_unlock(&inode->i_lock); 1961 dput(tmp); 1962 goto out_iput; 1963 } 1964 1965 /* attach a disconnected dentry */ 1966 add_flags = d_flags_for_inode(inode); 1967 1968 if (disconnected) 1969 add_flags |= DCACHE_DISCONNECTED; 1970 1971 spin_lock(&tmp->d_lock); 1972 __d_set_inode_and_type(tmp, inode, add_flags); 1973 hlist_add_head(&tmp->d_u.d_alias, &inode->i_dentry); 1974 hlist_bl_lock(&tmp->d_sb->s_anon); 1975 hlist_bl_add_head(&tmp->d_hash, &tmp->d_sb->s_anon); 1976 hlist_bl_unlock(&tmp->d_sb->s_anon); 1977 spin_unlock(&tmp->d_lock); 1978 spin_unlock(&inode->i_lock); 1979 security_d_instantiate(tmp, inode); 1980 1981 return tmp; 1982 1983 out_iput: 1984 if (res && !IS_ERR(res)) 1985 security_d_instantiate(res, inode); 1986 iput(inode); 1987 return res; 1988 } 1989 1990 /** 1991 * d_obtain_alias - find or allocate a DISCONNECTED dentry for a given inode 1992 * @inode: inode to allocate the dentry for 1993 * 1994 * Obtain a dentry for an inode resulting from NFS filehandle conversion or 1995 * similar open by handle operations. The returned dentry may be anonymous, 1996 * or may have a full name (if the inode was already in the cache). 1997 * 1998 * When called on a directory inode, we must ensure that the inode only ever 1999 * has one dentry. If a dentry is found, that is returned instead of 2000 * allocating a new one. 2001 * 2002 * On successful return, the reference to the inode has been transferred 2003 * to the dentry. In case of an error the reference on the inode is released. 2004 * To make it easier to use in export operations a %NULL or IS_ERR inode may 2005 * be passed in and the error will be propagated to the return value, 2006 * with a %NULL @inode replaced by ERR_PTR(-ESTALE). 2007 */ 2008 struct dentry *d_obtain_alias(struct inode *inode) 2009 { 2010 return __d_obtain_alias(inode, 1); 2011 } 2012 EXPORT_SYMBOL(d_obtain_alias); 2013 2014 /** 2015 * d_obtain_root - find or allocate a dentry for a given inode 2016 * @inode: inode to allocate the dentry for 2017 * 2018 * Obtain an IS_ROOT dentry for the root of a filesystem. 2019 * 2020 * We must ensure that directory inodes only ever have one dentry. If a 2021 * dentry is found, that is returned instead of allocating a new one. 2022 * 2023 * On successful return, the reference to the inode has been transferred 2024 * to the dentry. In case of an error the reference on the inode is 2025 * released. A %NULL or IS_ERR inode may be passed in and will be the 2026 * error will be propagate to the return value, with a %NULL @inode 2027 * replaced by ERR_PTR(-ESTALE). 2028 */ 2029 struct dentry *d_obtain_root(struct inode *inode) 2030 { 2031 return __d_obtain_alias(inode, 0); 2032 } 2033 EXPORT_SYMBOL(d_obtain_root); 2034 2035 /** 2036 * d_add_ci - lookup or allocate new dentry with case-exact name 2037 * @inode: the inode case-insensitive lookup has found 2038 * @dentry: the negative dentry that was passed to the parent's lookup func 2039 * @name: the case-exact name to be associated with the returned dentry 2040 * 2041 * This is to avoid filling the dcache with case-insensitive names to the 2042 * same inode, only the actual correct case is stored in the dcache for 2043 * case-insensitive filesystems. 2044 * 2045 * For a case-insensitive lookup match and if the the case-exact dentry 2046 * already exists in in the dcache, use it and return it. 2047 * 2048 * If no entry exists with the exact case name, allocate new dentry with 2049 * the exact case, and return the spliced entry. 2050 */ 2051 struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode, 2052 struct qstr *name) 2053 { 2054 struct dentry *found; 2055 struct dentry *new; 2056 2057 /* 2058 * First check if a dentry matching the name already exists, 2059 * if not go ahead and create it now. 2060 */ 2061 found = d_hash_and_lookup(dentry->d_parent, name); 2062 if (!found) { 2063 new = d_alloc(dentry->d_parent, name); 2064 if (!new) { 2065 found = ERR_PTR(-ENOMEM); 2066 } else { 2067 found = d_splice_alias(inode, new); 2068 if (found) { 2069 dput(new); 2070 return found; 2071 } 2072 return new; 2073 } 2074 } 2075 iput(inode); 2076 return found; 2077 } 2078 EXPORT_SYMBOL(d_add_ci); 2079 2080 /* 2081 * Do the slow-case of the dentry name compare. 2082 * 2083 * Unlike the dentry_cmp() function, we need to atomically 2084 * load the name and length information, so that the 2085 * filesystem can rely on them, and can use the 'name' and 2086 * 'len' information without worrying about walking off the 2087 * end of memory etc. 2088 * 2089 * Thus the read_seqcount_retry() and the "duplicate" info 2090 * in arguments (the low-level filesystem should not look 2091 * at the dentry inode or name contents directly, since 2092 * rename can change them while we're in RCU mode). 2093 */ 2094 enum slow_d_compare { 2095 D_COMP_OK, 2096 D_COMP_NOMATCH, 2097 D_COMP_SEQRETRY, 2098 }; 2099 2100 static noinline enum slow_d_compare slow_dentry_cmp( 2101 const struct dentry *parent, 2102 struct dentry *dentry, 2103 unsigned int seq, 2104 const struct qstr *name) 2105 { 2106 int tlen = dentry->d_name.len; 2107 const char *tname = dentry->d_name.name; 2108 2109 if (read_seqcount_retry(&dentry->d_seq, seq)) { 2110 cpu_relax(); 2111 return D_COMP_SEQRETRY; 2112 } 2113 if (parent->d_op->d_compare(parent, dentry, tlen, tname, name)) 2114 return D_COMP_NOMATCH; 2115 return D_COMP_OK; 2116 } 2117 2118 /** 2119 * __d_lookup_rcu - search for a dentry (racy, store-free) 2120 * @parent: parent dentry 2121 * @name: qstr of name we wish to find 2122 * @seqp: returns d_seq value at the point where the dentry was found 2123 * Returns: dentry, or NULL 2124 * 2125 * __d_lookup_rcu is the dcache lookup function for rcu-walk name 2126 * resolution (store-free path walking) design described in 2127 * Documentation/filesystems/path-lookup.txt. 2128 * 2129 * This is not to be used outside core vfs. 2130 * 2131 * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock 2132 * held, and rcu_read_lock held. The returned dentry must not be stored into 2133 * without taking d_lock and checking d_seq sequence count against @seq 2134 * returned here. 2135 * 2136 * A refcount may be taken on the found dentry with the d_rcu_to_refcount 2137 * function. 2138 * 2139 * Alternatively, __d_lookup_rcu may be called again to look up the child of 2140 * the returned dentry, so long as its parent's seqlock is checked after the 2141 * child is looked up. Thus, an interlocking stepping of sequence lock checks 2142 * is formed, giving integrity down the path walk. 2143 * 2144 * NOTE! The caller *has* to check the resulting dentry against the sequence 2145 * number we've returned before using any of the resulting dentry state! 2146 */ 2147 struct dentry *__d_lookup_rcu(const struct dentry *parent, 2148 const struct qstr *name, 2149 unsigned *seqp) 2150 { 2151 u64 hashlen = name->hash_len; 2152 const unsigned char *str = name->name; 2153 struct hlist_bl_head *b = d_hash(parent, hashlen_hash(hashlen)); 2154 struct hlist_bl_node *node; 2155 struct dentry *dentry; 2156 2157 /* 2158 * Note: There is significant duplication with __d_lookup_rcu which is 2159 * required to prevent single threaded performance regressions 2160 * especially on architectures where smp_rmb (in seqcounts) are costly. 2161 * Keep the two functions in sync. 2162 */ 2163 2164 /* 2165 * The hash list is protected using RCU. 2166 * 2167 * Carefully use d_seq when comparing a candidate dentry, to avoid 2168 * races with d_move(). 2169 * 2170 * It is possible that concurrent renames can mess up our list 2171 * walk here and result in missing our dentry, resulting in the 2172 * false-negative result. d_lookup() protects against concurrent 2173 * renames using rename_lock seqlock. 2174 * 2175 * See Documentation/filesystems/path-lookup.txt for more details. 2176 */ 2177 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) { 2178 unsigned seq; 2179 2180 seqretry: 2181 /* 2182 * The dentry sequence count protects us from concurrent 2183 * renames, and thus protects parent and name fields. 2184 * 2185 * The caller must perform a seqcount check in order 2186 * to do anything useful with the returned dentry. 2187 * 2188 * NOTE! We do a "raw" seqcount_begin here. That means that 2189 * we don't wait for the sequence count to stabilize if it 2190 * is in the middle of a sequence change. If we do the slow 2191 * dentry compare, we will do seqretries until it is stable, 2192 * and if we end up with a successful lookup, we actually 2193 * want to exit RCU lookup anyway. 2194 */ 2195 seq = raw_seqcount_begin(&dentry->d_seq); 2196 if (dentry->d_parent != parent) 2197 continue; 2198 if (d_unhashed(dentry)) 2199 continue; 2200 2201 if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) { 2202 if (dentry->d_name.hash != hashlen_hash(hashlen)) 2203 continue; 2204 *seqp = seq; 2205 switch (slow_dentry_cmp(parent, dentry, seq, name)) { 2206 case D_COMP_OK: 2207 return dentry; 2208 case D_COMP_NOMATCH: 2209 continue; 2210 default: 2211 goto seqretry; 2212 } 2213 } 2214 2215 if (dentry->d_name.hash_len != hashlen) 2216 continue; 2217 *seqp = seq; 2218 if (!dentry_cmp(dentry, str, hashlen_len(hashlen))) 2219 return dentry; 2220 } 2221 return NULL; 2222 } 2223 2224 /** 2225 * d_lookup - search for a dentry 2226 * @parent: parent dentry 2227 * @name: qstr of name we wish to find 2228 * Returns: dentry, or NULL 2229 * 2230 * d_lookup searches the children of the parent dentry for the name in 2231 * question. If the dentry is found its reference count is incremented and the 2232 * dentry is returned. The caller must use dput to free the entry when it has 2233 * finished using it. %NULL is returned if the dentry does not exist. 2234 */ 2235 struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name) 2236 { 2237 struct dentry *dentry; 2238 unsigned seq; 2239 2240 do { 2241 seq = read_seqbegin(&rename_lock); 2242 dentry = __d_lookup(parent, name); 2243 if (dentry) 2244 break; 2245 } while (read_seqretry(&rename_lock, seq)); 2246 return dentry; 2247 } 2248 EXPORT_SYMBOL(d_lookup); 2249 2250 /** 2251 * __d_lookup - search for a dentry (racy) 2252 * @parent: parent dentry 2253 * @name: qstr of name we wish to find 2254 * Returns: dentry, or NULL 2255 * 2256 * __d_lookup is like d_lookup, however it may (rarely) return a 2257 * false-negative result due to unrelated rename activity. 2258 * 2259 * __d_lookup is slightly faster by avoiding rename_lock read seqlock, 2260 * however it must be used carefully, eg. with a following d_lookup in 2261 * the case of failure. 2262 * 2263 * __d_lookup callers must be commented. 2264 */ 2265 struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name) 2266 { 2267 unsigned int len = name->len; 2268 unsigned int hash = name->hash; 2269 const unsigned char *str = name->name; 2270 struct hlist_bl_head *b = d_hash(parent, hash); 2271 struct hlist_bl_node *node; 2272 struct dentry *found = NULL; 2273 struct dentry *dentry; 2274 2275 /* 2276 * Note: There is significant duplication with __d_lookup_rcu which is 2277 * required to prevent single threaded performance regressions 2278 * especially on architectures where smp_rmb (in seqcounts) are costly. 2279 * Keep the two functions in sync. 2280 */ 2281 2282 /* 2283 * The hash list is protected using RCU. 2284 * 2285 * Take d_lock when comparing a candidate dentry, to avoid races 2286 * with d_move(). 2287 * 2288 * It is possible that concurrent renames can mess up our list 2289 * walk here and result in missing our dentry, resulting in the 2290 * false-negative result. d_lookup() protects against concurrent 2291 * renames using rename_lock seqlock. 2292 * 2293 * See Documentation/filesystems/path-lookup.txt for more details. 2294 */ 2295 rcu_read_lock(); 2296 2297 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) { 2298 2299 if (dentry->d_name.hash != hash) 2300 continue; 2301 2302 spin_lock(&dentry->d_lock); 2303 if (dentry->d_parent != parent) 2304 goto next; 2305 if (d_unhashed(dentry)) 2306 goto next; 2307 2308 /* 2309 * It is safe to compare names since d_move() cannot 2310 * change the qstr (protected by d_lock). 2311 */ 2312 if (parent->d_flags & DCACHE_OP_COMPARE) { 2313 int tlen = dentry->d_name.len; 2314 const char *tname = dentry->d_name.name; 2315 if (parent->d_op->d_compare(parent, dentry, tlen, tname, name)) 2316 goto next; 2317 } else { 2318 if (dentry->d_name.len != len) 2319 goto next; 2320 if (dentry_cmp(dentry, str, len)) 2321 goto next; 2322 } 2323 2324 dentry->d_lockref.count++; 2325 found = dentry; 2326 spin_unlock(&dentry->d_lock); 2327 break; 2328 next: 2329 spin_unlock(&dentry->d_lock); 2330 } 2331 rcu_read_unlock(); 2332 2333 return found; 2334 } 2335 2336 /** 2337 * d_hash_and_lookup - hash the qstr then search for a dentry 2338 * @dir: Directory to search in 2339 * @name: qstr of name we wish to find 2340 * 2341 * On lookup failure NULL is returned; on bad name - ERR_PTR(-error) 2342 */ 2343 struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name) 2344 { 2345 /* 2346 * Check for a fs-specific hash function. Note that we must 2347 * calculate the standard hash first, as the d_op->d_hash() 2348 * routine may choose to leave the hash value unchanged. 2349 */ 2350 name->hash = full_name_hash(name->name, name->len); 2351 if (dir->d_flags & DCACHE_OP_HASH) { 2352 int err = dir->d_op->d_hash(dir, name); 2353 if (unlikely(err < 0)) 2354 return ERR_PTR(err); 2355 } 2356 return d_lookup(dir, name); 2357 } 2358 EXPORT_SYMBOL(d_hash_and_lookup); 2359 2360 /* 2361 * When a file is deleted, we have two options: 2362 * - turn this dentry into a negative dentry 2363 * - unhash this dentry and free it. 2364 * 2365 * Usually, we want to just turn this into 2366 * a negative dentry, but if anybody else is 2367 * currently using the dentry or the inode 2368 * we can't do that and we fall back on removing 2369 * it from the hash queues and waiting for 2370 * it to be deleted later when it has no users 2371 */ 2372 2373 /** 2374 * d_delete - delete a dentry 2375 * @dentry: The dentry to delete 2376 * 2377 * Turn the dentry into a negative dentry if possible, otherwise 2378 * remove it from the hash queues so it can be deleted later 2379 */ 2380 2381 void d_delete(struct dentry * dentry) 2382 { 2383 struct inode *inode; 2384 int isdir = 0; 2385 /* 2386 * Are we the only user? 2387 */ 2388 again: 2389 spin_lock(&dentry->d_lock); 2390 inode = dentry->d_inode; 2391 isdir = S_ISDIR(inode->i_mode); 2392 if (dentry->d_lockref.count == 1) { 2393 if (!spin_trylock(&inode->i_lock)) { 2394 spin_unlock(&dentry->d_lock); 2395 cpu_relax(); 2396 goto again; 2397 } 2398 dentry->d_flags &= ~DCACHE_CANT_MOUNT; 2399 dentry_unlink_inode(dentry); 2400 fsnotify_nameremove(dentry, isdir); 2401 return; 2402 } 2403 2404 if (!d_unhashed(dentry)) 2405 __d_drop(dentry); 2406 2407 spin_unlock(&dentry->d_lock); 2408 2409 fsnotify_nameremove(dentry, isdir); 2410 } 2411 EXPORT_SYMBOL(d_delete); 2412 2413 static void __d_rehash(struct dentry * entry, struct hlist_bl_head *b) 2414 { 2415 BUG_ON(!d_unhashed(entry)); 2416 hlist_bl_lock(b); 2417 entry->d_flags |= DCACHE_RCUACCESS; 2418 hlist_bl_add_head_rcu(&entry->d_hash, b); 2419 hlist_bl_unlock(b); 2420 } 2421 2422 static void _d_rehash(struct dentry * entry) 2423 { 2424 __d_rehash(entry, d_hash(entry->d_parent, entry->d_name.hash)); 2425 } 2426 2427 /** 2428 * d_rehash - add an entry back to the hash 2429 * @entry: dentry to add to the hash 2430 * 2431 * Adds a dentry to the hash according to its name. 2432 */ 2433 2434 void d_rehash(struct dentry * entry) 2435 { 2436 spin_lock(&entry->d_lock); 2437 _d_rehash(entry); 2438 spin_unlock(&entry->d_lock); 2439 } 2440 EXPORT_SYMBOL(d_rehash); 2441 2442 /** 2443 * dentry_update_name_case - update case insensitive dentry with a new name 2444 * @dentry: dentry to be updated 2445 * @name: new name 2446 * 2447 * Update a case insensitive dentry with new case of name. 2448 * 2449 * dentry must have been returned by d_lookup with name @name. Old and new 2450 * name lengths must match (ie. no d_compare which allows mismatched name 2451 * lengths). 2452 * 2453 * Parent inode i_mutex must be held over d_lookup and into this call (to 2454 * keep renames and concurrent inserts, and readdir(2) away). 2455 */ 2456 void dentry_update_name_case(struct dentry *dentry, struct qstr *name) 2457 { 2458 BUG_ON(!mutex_is_locked(&dentry->d_parent->d_inode->i_mutex)); 2459 BUG_ON(dentry->d_name.len != name->len); /* d_lookup gives this */ 2460 2461 spin_lock(&dentry->d_lock); 2462 write_seqcount_begin(&dentry->d_seq); 2463 memcpy((unsigned char *)dentry->d_name.name, name->name, name->len); 2464 write_seqcount_end(&dentry->d_seq); 2465 spin_unlock(&dentry->d_lock); 2466 } 2467 EXPORT_SYMBOL(dentry_update_name_case); 2468 2469 static void swap_names(struct dentry *dentry, struct dentry *target) 2470 { 2471 if (unlikely(dname_external(target))) { 2472 if (unlikely(dname_external(dentry))) { 2473 /* 2474 * Both external: swap the pointers 2475 */ 2476 swap(target->d_name.name, dentry->d_name.name); 2477 } else { 2478 /* 2479 * dentry:internal, target:external. Steal target's 2480 * storage and make target internal. 2481 */ 2482 memcpy(target->d_iname, dentry->d_name.name, 2483 dentry->d_name.len + 1); 2484 dentry->d_name.name = target->d_name.name; 2485 target->d_name.name = target->d_iname; 2486 } 2487 } else { 2488 if (unlikely(dname_external(dentry))) { 2489 /* 2490 * dentry:external, target:internal. Give dentry's 2491 * storage to target and make dentry internal 2492 */ 2493 memcpy(dentry->d_iname, target->d_name.name, 2494 target->d_name.len + 1); 2495 target->d_name.name = dentry->d_name.name; 2496 dentry->d_name.name = dentry->d_iname; 2497 } else { 2498 /* 2499 * Both are internal. 2500 */ 2501 unsigned int i; 2502 BUILD_BUG_ON(!IS_ALIGNED(DNAME_INLINE_LEN, sizeof(long))); 2503 kmemcheck_mark_initialized(dentry->d_iname, DNAME_INLINE_LEN); 2504 kmemcheck_mark_initialized(target->d_iname, DNAME_INLINE_LEN); 2505 for (i = 0; i < DNAME_INLINE_LEN / sizeof(long); i++) { 2506 swap(((long *) &dentry->d_iname)[i], 2507 ((long *) &target->d_iname)[i]); 2508 } 2509 } 2510 } 2511 swap(dentry->d_name.hash_len, target->d_name.hash_len); 2512 } 2513 2514 static void copy_name(struct dentry *dentry, struct dentry *target) 2515 { 2516 struct external_name *old_name = NULL; 2517 if (unlikely(dname_external(dentry))) 2518 old_name = external_name(dentry); 2519 if (unlikely(dname_external(target))) { 2520 atomic_inc(&external_name(target)->u.count); 2521 dentry->d_name = target->d_name; 2522 } else { 2523 memcpy(dentry->d_iname, target->d_name.name, 2524 target->d_name.len + 1); 2525 dentry->d_name.name = dentry->d_iname; 2526 dentry->d_name.hash_len = target->d_name.hash_len; 2527 } 2528 if (old_name && likely(atomic_dec_and_test(&old_name->u.count))) 2529 kfree_rcu(old_name, u.head); 2530 } 2531 2532 static void dentry_lock_for_move(struct dentry *dentry, struct dentry *target) 2533 { 2534 /* 2535 * XXXX: do we really need to take target->d_lock? 2536 */ 2537 if (IS_ROOT(dentry) || dentry->d_parent == target->d_parent) 2538 spin_lock(&target->d_parent->d_lock); 2539 else { 2540 if (d_ancestor(dentry->d_parent, target->d_parent)) { 2541 spin_lock(&dentry->d_parent->d_lock); 2542 spin_lock_nested(&target->d_parent->d_lock, 2543 DENTRY_D_LOCK_NESTED); 2544 } else { 2545 spin_lock(&target->d_parent->d_lock); 2546 spin_lock_nested(&dentry->d_parent->d_lock, 2547 DENTRY_D_LOCK_NESTED); 2548 } 2549 } 2550 if (target < dentry) { 2551 spin_lock_nested(&target->d_lock, 2); 2552 spin_lock_nested(&dentry->d_lock, 3); 2553 } else { 2554 spin_lock_nested(&dentry->d_lock, 2); 2555 spin_lock_nested(&target->d_lock, 3); 2556 } 2557 } 2558 2559 static void dentry_unlock_for_move(struct dentry *dentry, struct dentry *target) 2560 { 2561 if (target->d_parent != dentry->d_parent) 2562 spin_unlock(&dentry->d_parent->d_lock); 2563 if (target->d_parent != target) 2564 spin_unlock(&target->d_parent->d_lock); 2565 spin_unlock(&target->d_lock); 2566 spin_unlock(&dentry->d_lock); 2567 } 2568 2569 /* 2570 * When switching names, the actual string doesn't strictly have to 2571 * be preserved in the target - because we're dropping the target 2572 * anyway. As such, we can just do a simple memcpy() to copy over 2573 * the new name before we switch, unless we are going to rehash 2574 * it. Note that if we *do* unhash the target, we are not allowed 2575 * to rehash it without giving it a new name/hash key - whether 2576 * we swap or overwrite the names here, resulting name won't match 2577 * the reality in filesystem; it's only there for d_path() purposes. 2578 * Note that all of this is happening under rename_lock, so the 2579 * any hash lookup seeing it in the middle of manipulations will 2580 * be discarded anyway. So we do not care what happens to the hash 2581 * key in that case. 2582 */ 2583 /* 2584 * __d_move - move a dentry 2585 * @dentry: entry to move 2586 * @target: new dentry 2587 * @exchange: exchange the two dentries 2588 * 2589 * Update the dcache to reflect the move of a file name. Negative 2590 * dcache entries should not be moved in this way. Caller must hold 2591 * rename_lock, the i_mutex of the source and target directories, 2592 * and the sb->s_vfs_rename_mutex if they differ. See lock_rename(). 2593 */ 2594 static void __d_move(struct dentry *dentry, struct dentry *target, 2595 bool exchange) 2596 { 2597 if (!dentry->d_inode) 2598 printk(KERN_WARNING "VFS: moving negative dcache entry\n"); 2599 2600 BUG_ON(d_ancestor(dentry, target)); 2601 BUG_ON(d_ancestor(target, dentry)); 2602 2603 dentry_lock_for_move(dentry, target); 2604 2605 write_seqcount_begin(&dentry->d_seq); 2606 write_seqcount_begin_nested(&target->d_seq, DENTRY_D_LOCK_NESTED); 2607 2608 /* __d_drop does write_seqcount_barrier, but they're OK to nest. */ 2609 2610 /* 2611 * Move the dentry to the target hash queue. Don't bother checking 2612 * for the same hash queue because of how unlikely it is. 2613 */ 2614 __d_drop(dentry); 2615 __d_rehash(dentry, d_hash(target->d_parent, target->d_name.hash)); 2616 2617 /* 2618 * Unhash the target (d_delete() is not usable here). If exchanging 2619 * the two dentries, then rehash onto the other's hash queue. 2620 */ 2621 __d_drop(target); 2622 if (exchange) { 2623 __d_rehash(target, 2624 d_hash(dentry->d_parent, dentry->d_name.hash)); 2625 } 2626 2627 /* Switch the names.. */ 2628 if (exchange) 2629 swap_names(dentry, target); 2630 else 2631 copy_name(dentry, target); 2632 2633 /* ... and switch them in the tree */ 2634 if (IS_ROOT(dentry)) { 2635 /* splicing a tree */ 2636 dentry->d_parent = target->d_parent; 2637 target->d_parent = target; 2638 list_del_init(&target->d_child); 2639 list_move(&dentry->d_child, &dentry->d_parent->d_subdirs); 2640 } else { 2641 /* swapping two dentries */ 2642 swap(dentry->d_parent, target->d_parent); 2643 list_move(&target->d_child, &target->d_parent->d_subdirs); 2644 list_move(&dentry->d_child, &dentry->d_parent->d_subdirs); 2645 if (exchange) 2646 fsnotify_d_move(target); 2647 fsnotify_d_move(dentry); 2648 } 2649 2650 write_seqcount_end(&target->d_seq); 2651 write_seqcount_end(&dentry->d_seq); 2652 2653 dentry_unlock_for_move(dentry, target); 2654 } 2655 2656 /* 2657 * d_move - move a dentry 2658 * @dentry: entry to move 2659 * @target: new dentry 2660 * 2661 * Update the dcache to reflect the move of a file name. Negative 2662 * dcache entries should not be moved in this way. See the locking 2663 * requirements for __d_move. 2664 */ 2665 void d_move(struct dentry *dentry, struct dentry *target) 2666 { 2667 write_seqlock(&rename_lock); 2668 __d_move(dentry, target, false); 2669 write_sequnlock(&rename_lock); 2670 } 2671 EXPORT_SYMBOL(d_move); 2672 2673 /* 2674 * d_exchange - exchange two dentries 2675 * @dentry1: first dentry 2676 * @dentry2: second dentry 2677 */ 2678 void d_exchange(struct dentry *dentry1, struct dentry *dentry2) 2679 { 2680 write_seqlock(&rename_lock); 2681 2682 WARN_ON(!dentry1->d_inode); 2683 WARN_ON(!dentry2->d_inode); 2684 WARN_ON(IS_ROOT(dentry1)); 2685 WARN_ON(IS_ROOT(dentry2)); 2686 2687 __d_move(dentry1, dentry2, true); 2688 2689 write_sequnlock(&rename_lock); 2690 } 2691 2692 /** 2693 * d_ancestor - search for an ancestor 2694 * @p1: ancestor dentry 2695 * @p2: child dentry 2696 * 2697 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is 2698 * an ancestor of p2, else NULL. 2699 */ 2700 struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2) 2701 { 2702 struct dentry *p; 2703 2704 for (p = p2; !IS_ROOT(p); p = p->d_parent) { 2705 if (p->d_parent == p1) 2706 return p; 2707 } 2708 return NULL; 2709 } 2710 2711 /* 2712 * This helper attempts to cope with remotely renamed directories 2713 * 2714 * It assumes that the caller is already holding 2715 * dentry->d_parent->d_inode->i_mutex, inode->i_lock and rename_lock 2716 * 2717 * Note: If ever the locking in lock_rename() changes, then please 2718 * remember to update this too... 2719 */ 2720 static int __d_unalias(struct inode *inode, 2721 struct dentry *dentry, struct dentry *alias) 2722 { 2723 struct mutex *m1 = NULL, *m2 = NULL; 2724 int ret = -ESTALE; 2725 2726 /* If alias and dentry share a parent, then no extra locks required */ 2727 if (alias->d_parent == dentry->d_parent) 2728 goto out_unalias; 2729 2730 /* See lock_rename() */ 2731 if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex)) 2732 goto out_err; 2733 m1 = &dentry->d_sb->s_vfs_rename_mutex; 2734 if (!mutex_trylock(&alias->d_parent->d_inode->i_mutex)) 2735 goto out_err; 2736 m2 = &alias->d_parent->d_inode->i_mutex; 2737 out_unalias: 2738 __d_move(alias, dentry, false); 2739 ret = 0; 2740 out_err: 2741 spin_unlock(&inode->i_lock); 2742 if (m2) 2743 mutex_unlock(m2); 2744 if (m1) 2745 mutex_unlock(m1); 2746 return ret; 2747 } 2748 2749 /** 2750 * d_splice_alias - splice a disconnected dentry into the tree if one exists 2751 * @inode: the inode which may have a disconnected dentry 2752 * @dentry: a negative dentry which we want to point to the inode. 2753 * 2754 * If inode is a directory and has an IS_ROOT alias, then d_move that in 2755 * place of the given dentry and return it, else simply d_add the inode 2756 * to the dentry and return NULL. 2757 * 2758 * If a non-IS_ROOT directory is found, the filesystem is corrupt, and 2759 * we should error out: directories can't have multiple aliases. 2760 * 2761 * This is needed in the lookup routine of any filesystem that is exportable 2762 * (via knfsd) so that we can build dcache paths to directories effectively. 2763 * 2764 * If a dentry was found and moved, then it is returned. Otherwise NULL 2765 * is returned. This matches the expected return value of ->lookup. 2766 * 2767 * Cluster filesystems may call this function with a negative, hashed dentry. 2768 * In that case, we know that the inode will be a regular file, and also this 2769 * will only occur during atomic_open. So we need to check for the dentry 2770 * being already hashed only in the final case. 2771 */ 2772 struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry) 2773 { 2774 if (IS_ERR(inode)) 2775 return ERR_CAST(inode); 2776 2777 BUG_ON(!d_unhashed(dentry)); 2778 2779 if (!inode) { 2780 __d_instantiate(dentry, NULL); 2781 goto out; 2782 } 2783 spin_lock(&inode->i_lock); 2784 if (S_ISDIR(inode->i_mode)) { 2785 struct dentry *new = __d_find_any_alias(inode); 2786 if (unlikely(new)) { 2787 write_seqlock(&rename_lock); 2788 if (unlikely(d_ancestor(new, dentry))) { 2789 write_sequnlock(&rename_lock); 2790 spin_unlock(&inode->i_lock); 2791 dput(new); 2792 new = ERR_PTR(-ELOOP); 2793 pr_warn_ratelimited( 2794 "VFS: Lookup of '%s' in %s %s" 2795 " would have caused loop\n", 2796 dentry->d_name.name, 2797 inode->i_sb->s_type->name, 2798 inode->i_sb->s_id); 2799 } else if (!IS_ROOT(new)) { 2800 int err = __d_unalias(inode, dentry, new); 2801 write_sequnlock(&rename_lock); 2802 if (err) { 2803 dput(new); 2804 new = ERR_PTR(err); 2805 } 2806 } else { 2807 __d_move(new, dentry, false); 2808 write_sequnlock(&rename_lock); 2809 spin_unlock(&inode->i_lock); 2810 security_d_instantiate(new, inode); 2811 } 2812 iput(inode); 2813 return new; 2814 } 2815 } 2816 /* already taking inode->i_lock, so d_add() by hand */ 2817 __d_instantiate(dentry, inode); 2818 spin_unlock(&inode->i_lock); 2819 out: 2820 security_d_instantiate(dentry, inode); 2821 d_rehash(dentry); 2822 return NULL; 2823 } 2824 EXPORT_SYMBOL(d_splice_alias); 2825 2826 static int prepend(char **buffer, int *buflen, const char *str, int namelen) 2827 { 2828 *buflen -= namelen; 2829 if (*buflen < 0) 2830 return -ENAMETOOLONG; 2831 *buffer -= namelen; 2832 memcpy(*buffer, str, namelen); 2833 return 0; 2834 } 2835 2836 /** 2837 * prepend_name - prepend a pathname in front of current buffer pointer 2838 * @buffer: buffer pointer 2839 * @buflen: allocated length of the buffer 2840 * @name: name string and length qstr structure 2841 * 2842 * With RCU path tracing, it may race with d_move(). Use ACCESS_ONCE() to 2843 * make sure that either the old or the new name pointer and length are 2844 * fetched. However, there may be mismatch between length and pointer. 2845 * The length cannot be trusted, we need to copy it byte-by-byte until 2846 * the length is reached or a null byte is found. It also prepends "/" at 2847 * the beginning of the name. The sequence number check at the caller will 2848 * retry it again when a d_move() does happen. So any garbage in the buffer 2849 * due to mismatched pointer and length will be discarded. 2850 * 2851 * Data dependency barrier is needed to make sure that we see that terminating 2852 * NUL. Alpha strikes again, film at 11... 2853 */ 2854 static int prepend_name(char **buffer, int *buflen, struct qstr *name) 2855 { 2856 const char *dname = ACCESS_ONCE(name->name); 2857 u32 dlen = ACCESS_ONCE(name->len); 2858 char *p; 2859 2860 smp_read_barrier_depends(); 2861 2862 *buflen -= dlen + 1; 2863 if (*buflen < 0) 2864 return -ENAMETOOLONG; 2865 p = *buffer -= dlen + 1; 2866 *p++ = '/'; 2867 while (dlen--) { 2868 char c = *dname++; 2869 if (!c) 2870 break; 2871 *p++ = c; 2872 } 2873 return 0; 2874 } 2875 2876 /** 2877 * prepend_path - Prepend path string to a buffer 2878 * @path: the dentry/vfsmount to report 2879 * @root: root vfsmnt/dentry 2880 * @buffer: pointer to the end of the buffer 2881 * @buflen: pointer to buffer length 2882 * 2883 * The function will first try to write out the pathname without taking any 2884 * lock other than the RCU read lock to make sure that dentries won't go away. 2885 * It only checks the sequence number of the global rename_lock as any change 2886 * in the dentry's d_seq will be preceded by changes in the rename_lock 2887 * sequence number. If the sequence number had been changed, it will restart 2888 * the whole pathname back-tracing sequence again by taking the rename_lock. 2889 * In this case, there is no need to take the RCU read lock as the recursive 2890 * parent pointer references will keep the dentry chain alive as long as no 2891 * rename operation is performed. 2892 */ 2893 static int prepend_path(const struct path *path, 2894 const struct path *root, 2895 char **buffer, int *buflen) 2896 { 2897 struct dentry *dentry; 2898 struct vfsmount *vfsmnt; 2899 struct mount *mnt; 2900 int error = 0; 2901 unsigned seq, m_seq = 0; 2902 char *bptr; 2903 int blen; 2904 2905 rcu_read_lock(); 2906 restart_mnt: 2907 read_seqbegin_or_lock(&mount_lock, &m_seq); 2908 seq = 0; 2909 rcu_read_lock(); 2910 restart: 2911 bptr = *buffer; 2912 blen = *buflen; 2913 error = 0; 2914 dentry = path->dentry; 2915 vfsmnt = path->mnt; 2916 mnt = real_mount(vfsmnt); 2917 read_seqbegin_or_lock(&rename_lock, &seq); 2918 while (dentry != root->dentry || vfsmnt != root->mnt) { 2919 struct dentry * parent; 2920 2921 if (dentry == vfsmnt->mnt_root || IS_ROOT(dentry)) { 2922 struct mount *parent = ACCESS_ONCE(mnt->mnt_parent); 2923 /* Global root? */ 2924 if (mnt != parent) { 2925 dentry = ACCESS_ONCE(mnt->mnt_mountpoint); 2926 mnt = parent; 2927 vfsmnt = &mnt->mnt; 2928 continue; 2929 } 2930 /* 2931 * Filesystems needing to implement special "root names" 2932 * should do so with ->d_dname() 2933 */ 2934 if (IS_ROOT(dentry) && 2935 (dentry->d_name.len != 1 || 2936 dentry->d_name.name[0] != '/')) { 2937 WARN(1, "Root dentry has weird name <%.*s>\n", 2938 (int) dentry->d_name.len, 2939 dentry->d_name.name); 2940 } 2941 if (!error) 2942 error = is_mounted(vfsmnt) ? 1 : 2; 2943 break; 2944 } 2945 parent = dentry->d_parent; 2946 prefetch(parent); 2947 error = prepend_name(&bptr, &blen, &dentry->d_name); 2948 if (error) 2949 break; 2950 2951 dentry = parent; 2952 } 2953 if (!(seq & 1)) 2954 rcu_read_unlock(); 2955 if (need_seqretry(&rename_lock, seq)) { 2956 seq = 1; 2957 goto restart; 2958 } 2959 done_seqretry(&rename_lock, seq); 2960 2961 if (!(m_seq & 1)) 2962 rcu_read_unlock(); 2963 if (need_seqretry(&mount_lock, m_seq)) { 2964 m_seq = 1; 2965 goto restart_mnt; 2966 } 2967 done_seqretry(&mount_lock, m_seq); 2968 2969 if (error >= 0 && bptr == *buffer) { 2970 if (--blen < 0) 2971 error = -ENAMETOOLONG; 2972 else 2973 *--bptr = '/'; 2974 } 2975 *buffer = bptr; 2976 *buflen = blen; 2977 return error; 2978 } 2979 2980 /** 2981 * __d_path - return the path of a dentry 2982 * @path: the dentry/vfsmount to report 2983 * @root: root vfsmnt/dentry 2984 * @buf: buffer to return value in 2985 * @buflen: buffer length 2986 * 2987 * Convert a dentry into an ASCII path name. 2988 * 2989 * Returns a pointer into the buffer or an error code if the 2990 * path was too long. 2991 * 2992 * "buflen" should be positive. 2993 * 2994 * If the path is not reachable from the supplied root, return %NULL. 2995 */ 2996 char *__d_path(const struct path *path, 2997 const struct path *root, 2998 char *buf, int buflen) 2999 { 3000 char *res = buf + buflen; 3001 int error; 3002 3003 prepend(&res, &buflen, "\0", 1); 3004 error = prepend_path(path, root, &res, &buflen); 3005 3006 if (error < 0) 3007 return ERR_PTR(error); 3008 if (error > 0) 3009 return NULL; 3010 return res; 3011 } 3012 3013 char *d_absolute_path(const struct path *path, 3014 char *buf, int buflen) 3015 { 3016 struct path root = {}; 3017 char *res = buf + buflen; 3018 int error; 3019 3020 prepend(&res, &buflen, "\0", 1); 3021 error = prepend_path(path, &root, &res, &buflen); 3022 3023 if (error > 1) 3024 error = -EINVAL; 3025 if (error < 0) 3026 return ERR_PTR(error); 3027 return res; 3028 } 3029 3030 /* 3031 * same as __d_path but appends "(deleted)" for unlinked files. 3032 */ 3033 static int path_with_deleted(const struct path *path, 3034 const struct path *root, 3035 char **buf, int *buflen) 3036 { 3037 prepend(buf, buflen, "\0", 1); 3038 if (d_unlinked(path->dentry)) { 3039 int error = prepend(buf, buflen, " (deleted)", 10); 3040 if (error) 3041 return error; 3042 } 3043 3044 return prepend_path(path, root, buf, buflen); 3045 } 3046 3047 static int prepend_unreachable(char **buffer, int *buflen) 3048 { 3049 return prepend(buffer, buflen, "(unreachable)", 13); 3050 } 3051 3052 static void get_fs_root_rcu(struct fs_struct *fs, struct path *root) 3053 { 3054 unsigned seq; 3055 3056 do { 3057 seq = read_seqcount_begin(&fs->seq); 3058 *root = fs->root; 3059 } while (read_seqcount_retry(&fs->seq, seq)); 3060 } 3061 3062 /** 3063 * d_path - return the path of a dentry 3064 * @path: path to report 3065 * @buf: buffer to return value in 3066 * @buflen: buffer length 3067 * 3068 * Convert a dentry into an ASCII path name. If the entry has been deleted 3069 * the string " (deleted)" is appended. Note that this is ambiguous. 3070 * 3071 * Returns a pointer into the buffer or an error code if the path was 3072 * too long. Note: Callers should use the returned pointer, not the passed 3073 * in buffer, to use the name! The implementation often starts at an offset 3074 * into the buffer, and may leave 0 bytes at the start. 3075 * 3076 * "buflen" should be positive. 3077 */ 3078 char *d_path(const struct path *path, char *buf, int buflen) 3079 { 3080 char *res = buf + buflen; 3081 struct path root; 3082 int error; 3083 3084 /* 3085 * We have various synthetic filesystems that never get mounted. On 3086 * these filesystems dentries are never used for lookup purposes, and 3087 * thus don't need to be hashed. They also don't need a name until a 3088 * user wants to identify the object in /proc/pid/fd/. The little hack 3089 * below allows us to generate a name for these objects on demand: 3090 * 3091 * Some pseudo inodes are mountable. When they are mounted 3092 * path->dentry == path->mnt->mnt_root. In that case don't call d_dname 3093 * and instead have d_path return the mounted path. 3094 */ 3095 if (path->dentry->d_op && path->dentry->d_op->d_dname && 3096 (!IS_ROOT(path->dentry) || path->dentry != path->mnt->mnt_root)) 3097 return path->dentry->d_op->d_dname(path->dentry, buf, buflen); 3098 3099 rcu_read_lock(); 3100 get_fs_root_rcu(current->fs, &root); 3101 error = path_with_deleted(path, &root, &res, &buflen); 3102 rcu_read_unlock(); 3103 3104 if (error < 0) 3105 res = ERR_PTR(error); 3106 return res; 3107 } 3108 EXPORT_SYMBOL(d_path); 3109 3110 /* 3111 * Helper function for dentry_operations.d_dname() members 3112 */ 3113 char *dynamic_dname(struct dentry *dentry, char *buffer, int buflen, 3114 const char *fmt, ...) 3115 { 3116 va_list args; 3117 char temp[64]; 3118 int sz; 3119 3120 va_start(args, fmt); 3121 sz = vsnprintf(temp, sizeof(temp), fmt, args) + 1; 3122 va_end(args); 3123 3124 if (sz > sizeof(temp) || sz > buflen) 3125 return ERR_PTR(-ENAMETOOLONG); 3126 3127 buffer += buflen - sz; 3128 return memcpy(buffer, temp, sz); 3129 } 3130 3131 char *simple_dname(struct dentry *dentry, char *buffer, int buflen) 3132 { 3133 char *end = buffer + buflen; 3134 /* these dentries are never renamed, so d_lock is not needed */ 3135 if (prepend(&end, &buflen, " (deleted)", 11) || 3136 prepend(&end, &buflen, dentry->d_name.name, dentry->d_name.len) || 3137 prepend(&end, &buflen, "/", 1)) 3138 end = ERR_PTR(-ENAMETOOLONG); 3139 return end; 3140 } 3141 EXPORT_SYMBOL(simple_dname); 3142 3143 /* 3144 * Write full pathname from the root of the filesystem into the buffer. 3145 */ 3146 static char *__dentry_path(struct dentry *d, char *buf, int buflen) 3147 { 3148 struct dentry *dentry; 3149 char *end, *retval; 3150 int len, seq = 0; 3151 int error = 0; 3152 3153 if (buflen < 2) 3154 goto Elong; 3155 3156 rcu_read_lock(); 3157 restart: 3158 dentry = d; 3159 end = buf + buflen; 3160 len = buflen; 3161 prepend(&end, &len, "\0", 1); 3162 /* Get '/' right */ 3163 retval = end-1; 3164 *retval = '/'; 3165 read_seqbegin_or_lock(&rename_lock, &seq); 3166 while (!IS_ROOT(dentry)) { 3167 struct dentry *parent = dentry->d_parent; 3168 3169 prefetch(parent); 3170 error = prepend_name(&end, &len, &dentry->d_name); 3171 if (error) 3172 break; 3173 3174 retval = end; 3175 dentry = parent; 3176 } 3177 if (!(seq & 1)) 3178 rcu_read_unlock(); 3179 if (need_seqretry(&rename_lock, seq)) { 3180 seq = 1; 3181 goto restart; 3182 } 3183 done_seqretry(&rename_lock, seq); 3184 if (error) 3185 goto Elong; 3186 return retval; 3187 Elong: 3188 return ERR_PTR(-ENAMETOOLONG); 3189 } 3190 3191 char *dentry_path_raw(struct dentry *dentry, char *buf, int buflen) 3192 { 3193 return __dentry_path(dentry, buf, buflen); 3194 } 3195 EXPORT_SYMBOL(dentry_path_raw); 3196 3197 char *dentry_path(struct dentry *dentry, char *buf, int buflen) 3198 { 3199 char *p = NULL; 3200 char *retval; 3201 3202 if (d_unlinked(dentry)) { 3203 p = buf + buflen; 3204 if (prepend(&p, &buflen, "//deleted", 10) != 0) 3205 goto Elong; 3206 buflen++; 3207 } 3208 retval = __dentry_path(dentry, buf, buflen); 3209 if (!IS_ERR(retval) && p) 3210 *p = '/'; /* restore '/' overriden with '\0' */ 3211 return retval; 3212 Elong: 3213 return ERR_PTR(-ENAMETOOLONG); 3214 } 3215 3216 static void get_fs_root_and_pwd_rcu(struct fs_struct *fs, struct path *root, 3217 struct path *pwd) 3218 { 3219 unsigned seq; 3220 3221 do { 3222 seq = read_seqcount_begin(&fs->seq); 3223 *root = fs->root; 3224 *pwd = fs->pwd; 3225 } while (read_seqcount_retry(&fs->seq, seq)); 3226 } 3227 3228 /* 3229 * NOTE! The user-level library version returns a 3230 * character pointer. The kernel system call just 3231 * returns the length of the buffer filled (which 3232 * includes the ending '\0' character), or a negative 3233 * error value. So libc would do something like 3234 * 3235 * char *getcwd(char * buf, size_t size) 3236 * { 3237 * int retval; 3238 * 3239 * retval = sys_getcwd(buf, size); 3240 * if (retval >= 0) 3241 * return buf; 3242 * errno = -retval; 3243 * return NULL; 3244 * } 3245 */ 3246 SYSCALL_DEFINE2(getcwd, char __user *, buf, unsigned long, size) 3247 { 3248 int error; 3249 struct path pwd, root; 3250 char *page = __getname(); 3251 3252 if (!page) 3253 return -ENOMEM; 3254 3255 rcu_read_lock(); 3256 get_fs_root_and_pwd_rcu(current->fs, &root, &pwd); 3257 3258 error = -ENOENT; 3259 if (!d_unlinked(pwd.dentry)) { 3260 unsigned long len; 3261 char *cwd = page + PATH_MAX; 3262 int buflen = PATH_MAX; 3263 3264 prepend(&cwd, &buflen, "\0", 1); 3265 error = prepend_path(&pwd, &root, &cwd, &buflen); 3266 rcu_read_unlock(); 3267 3268 if (error < 0) 3269 goto out; 3270 3271 /* Unreachable from current root */ 3272 if (error > 0) { 3273 error = prepend_unreachable(&cwd, &buflen); 3274 if (error) 3275 goto out; 3276 } 3277 3278 error = -ERANGE; 3279 len = PATH_MAX + page - cwd; 3280 if (len <= size) { 3281 error = len; 3282 if (copy_to_user(buf, cwd, len)) 3283 error = -EFAULT; 3284 } 3285 } else { 3286 rcu_read_unlock(); 3287 } 3288 3289 out: 3290 __putname(page); 3291 return error; 3292 } 3293 3294 /* 3295 * Test whether new_dentry is a subdirectory of old_dentry. 3296 * 3297 * Trivially implemented using the dcache structure 3298 */ 3299 3300 /** 3301 * is_subdir - is new dentry a subdirectory of old_dentry 3302 * @new_dentry: new dentry 3303 * @old_dentry: old dentry 3304 * 3305 * Returns 1 if new_dentry is a subdirectory of the parent (at any depth). 3306 * Returns 0 otherwise. 3307 * Caller must ensure that "new_dentry" is pinned before calling is_subdir() 3308 */ 3309 3310 int is_subdir(struct dentry *new_dentry, struct dentry *old_dentry) 3311 { 3312 int result; 3313 unsigned seq; 3314 3315 if (new_dentry == old_dentry) 3316 return 1; 3317 3318 do { 3319 /* for restarting inner loop in case of seq retry */ 3320 seq = read_seqbegin(&rename_lock); 3321 /* 3322 * Need rcu_readlock to protect against the d_parent trashing 3323 * due to d_move 3324 */ 3325 rcu_read_lock(); 3326 if (d_ancestor(old_dentry, new_dentry)) 3327 result = 1; 3328 else 3329 result = 0; 3330 rcu_read_unlock(); 3331 } while (read_seqretry(&rename_lock, seq)); 3332 3333 return result; 3334 } 3335 3336 static enum d_walk_ret d_genocide_kill(void *data, struct dentry *dentry) 3337 { 3338 struct dentry *root = data; 3339 if (dentry != root) { 3340 if (d_unhashed(dentry) || !dentry->d_inode) 3341 return D_WALK_SKIP; 3342 3343 if (!(dentry->d_flags & DCACHE_GENOCIDE)) { 3344 dentry->d_flags |= DCACHE_GENOCIDE; 3345 dentry->d_lockref.count--; 3346 } 3347 } 3348 return D_WALK_CONTINUE; 3349 } 3350 3351 void d_genocide(struct dentry *parent) 3352 { 3353 d_walk(parent, parent, d_genocide_kill, NULL); 3354 } 3355 3356 void d_tmpfile(struct dentry *dentry, struct inode *inode) 3357 { 3358 inode_dec_link_count(inode); 3359 BUG_ON(dentry->d_name.name != dentry->d_iname || 3360 !hlist_unhashed(&dentry->d_u.d_alias) || 3361 !d_unlinked(dentry)); 3362 spin_lock(&dentry->d_parent->d_lock); 3363 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED); 3364 dentry->d_name.len = sprintf(dentry->d_iname, "#%llu", 3365 (unsigned long long)inode->i_ino); 3366 spin_unlock(&dentry->d_lock); 3367 spin_unlock(&dentry->d_parent->d_lock); 3368 d_instantiate(dentry, inode); 3369 } 3370 EXPORT_SYMBOL(d_tmpfile); 3371 3372 static __initdata unsigned long dhash_entries; 3373 static int __init set_dhash_entries(char *str) 3374 { 3375 if (!str) 3376 return 0; 3377 dhash_entries = simple_strtoul(str, &str, 0); 3378 return 1; 3379 } 3380 __setup("dhash_entries=", set_dhash_entries); 3381 3382 static void __init dcache_init_early(void) 3383 { 3384 unsigned int loop; 3385 3386 /* If hashes are distributed across NUMA nodes, defer 3387 * hash allocation until vmalloc space is available. 3388 */ 3389 if (hashdist) 3390 return; 3391 3392 dentry_hashtable = 3393 alloc_large_system_hash("Dentry cache", 3394 sizeof(struct hlist_bl_head), 3395 dhash_entries, 3396 13, 3397 HASH_EARLY, 3398 &d_hash_shift, 3399 &d_hash_mask, 3400 0, 3401 0); 3402 3403 for (loop = 0; loop < (1U << d_hash_shift); loop++) 3404 INIT_HLIST_BL_HEAD(dentry_hashtable + loop); 3405 } 3406 3407 static void __init dcache_init(void) 3408 { 3409 unsigned int loop; 3410 3411 /* 3412 * A constructor could be added for stable state like the lists, 3413 * but it is probably not worth it because of the cache nature 3414 * of the dcache. 3415 */ 3416 dentry_cache = KMEM_CACHE(dentry, 3417 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD); 3418 3419 /* Hash may have been set up in dcache_init_early */ 3420 if (!hashdist) 3421 return; 3422 3423 dentry_hashtable = 3424 alloc_large_system_hash("Dentry cache", 3425 sizeof(struct hlist_bl_head), 3426 dhash_entries, 3427 13, 3428 0, 3429 &d_hash_shift, 3430 &d_hash_mask, 3431 0, 3432 0); 3433 3434 for (loop = 0; loop < (1U << d_hash_shift); loop++) 3435 INIT_HLIST_BL_HEAD(dentry_hashtable + loop); 3436 } 3437 3438 /* SLAB cache for __getname() consumers */ 3439 struct kmem_cache *names_cachep __read_mostly; 3440 EXPORT_SYMBOL(names_cachep); 3441 3442 EXPORT_SYMBOL(d_genocide); 3443 3444 void __init vfs_caches_init_early(void) 3445 { 3446 dcache_init_early(); 3447 inode_init_early(); 3448 } 3449 3450 void __init vfs_caches_init(unsigned long mempages) 3451 { 3452 unsigned long reserve; 3453 3454 /* Base hash sizes on available memory, with a reserve equal to 3455 150% of current kernel size */ 3456 3457 reserve = min((mempages - nr_free_pages()) * 3/2, mempages - 1); 3458 mempages -= reserve; 3459 3460 names_cachep = kmem_cache_create("names_cache", PATH_MAX, 0, 3461 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL); 3462 3463 dcache_init(); 3464 inode_init(); 3465 files_init(mempages); 3466 mnt_init(); 3467 bdev_cache_init(); 3468 chrdev_init(); 3469 } 3470