xref: /openbmc/linux/fs/dcache.c (revision 827634ad)
1 /*
2  * fs/dcache.c
3  *
4  * Complete reimplementation
5  * (C) 1997 Thomas Schoebel-Theuer,
6  * with heavy changes by Linus Torvalds
7  */
8 
9 /*
10  * Notes on the allocation strategy:
11  *
12  * The dcache is a master of the icache - whenever a dcache entry
13  * exists, the inode will always exist. "iput()" is done either when
14  * the dcache entry is deleted or garbage collected.
15  */
16 
17 #include <linux/syscalls.h>
18 #include <linux/string.h>
19 #include <linux/mm.h>
20 #include <linux/fs.h>
21 #include <linux/fsnotify.h>
22 #include <linux/slab.h>
23 #include <linux/init.h>
24 #include <linux/hash.h>
25 #include <linux/cache.h>
26 #include <linux/export.h>
27 #include <linux/mount.h>
28 #include <linux/file.h>
29 #include <asm/uaccess.h>
30 #include <linux/security.h>
31 #include <linux/seqlock.h>
32 #include <linux/swap.h>
33 #include <linux/bootmem.h>
34 #include <linux/fs_struct.h>
35 #include <linux/hardirq.h>
36 #include <linux/bit_spinlock.h>
37 #include <linux/rculist_bl.h>
38 #include <linux/prefetch.h>
39 #include <linux/ratelimit.h>
40 #include <linux/list_lru.h>
41 #include <linux/kasan.h>
42 
43 #include "internal.h"
44 #include "mount.h"
45 
46 /*
47  * Usage:
48  * dcache->d_inode->i_lock protects:
49  *   - i_dentry, d_u.d_alias, d_inode of aliases
50  * dcache_hash_bucket lock protects:
51  *   - the dcache hash table
52  * s_anon bl list spinlock protects:
53  *   - the s_anon list (see __d_drop)
54  * dentry->d_sb->s_dentry_lru_lock protects:
55  *   - the dcache lru lists and counters
56  * d_lock protects:
57  *   - d_flags
58  *   - d_name
59  *   - d_lru
60  *   - d_count
61  *   - d_unhashed()
62  *   - d_parent and d_subdirs
63  *   - childrens' d_child and d_parent
64  *   - d_u.d_alias, d_inode
65  *
66  * Ordering:
67  * dentry->d_inode->i_lock
68  *   dentry->d_lock
69  *     dentry->d_sb->s_dentry_lru_lock
70  *     dcache_hash_bucket lock
71  *     s_anon lock
72  *
73  * If there is an ancestor relationship:
74  * dentry->d_parent->...->d_parent->d_lock
75  *   ...
76  *     dentry->d_parent->d_lock
77  *       dentry->d_lock
78  *
79  * If no ancestor relationship:
80  * if (dentry1 < dentry2)
81  *   dentry1->d_lock
82  *     dentry2->d_lock
83  */
84 int sysctl_vfs_cache_pressure __read_mostly = 100;
85 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
86 
87 __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
88 
89 EXPORT_SYMBOL(rename_lock);
90 
91 static struct kmem_cache *dentry_cache __read_mostly;
92 
93 /*
94  * This is the single most critical data structure when it comes
95  * to the dcache: the hashtable for lookups. Somebody should try
96  * to make this good - I've just made it work.
97  *
98  * This hash-function tries to avoid losing too many bits of hash
99  * information, yet avoid using a prime hash-size or similar.
100  */
101 
102 static unsigned int d_hash_mask __read_mostly;
103 static unsigned int d_hash_shift __read_mostly;
104 
105 static struct hlist_bl_head *dentry_hashtable __read_mostly;
106 
107 static inline struct hlist_bl_head *d_hash(const struct dentry *parent,
108 					unsigned int hash)
109 {
110 	hash += (unsigned long) parent / L1_CACHE_BYTES;
111 	return dentry_hashtable + hash_32(hash, d_hash_shift);
112 }
113 
114 /* Statistics gathering. */
115 struct dentry_stat_t dentry_stat = {
116 	.age_limit = 45,
117 };
118 
119 static DEFINE_PER_CPU(long, nr_dentry);
120 static DEFINE_PER_CPU(long, nr_dentry_unused);
121 
122 #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
123 
124 /*
125  * Here we resort to our own counters instead of using generic per-cpu counters
126  * for consistency with what the vfs inode code does. We are expected to harvest
127  * better code and performance by having our own specialized counters.
128  *
129  * Please note that the loop is done over all possible CPUs, not over all online
130  * CPUs. The reason for this is that we don't want to play games with CPUs going
131  * on and off. If one of them goes off, we will just keep their counters.
132  *
133  * glommer: See cffbc8a for details, and if you ever intend to change this,
134  * please update all vfs counters to match.
135  */
136 static long get_nr_dentry(void)
137 {
138 	int i;
139 	long sum = 0;
140 	for_each_possible_cpu(i)
141 		sum += per_cpu(nr_dentry, i);
142 	return sum < 0 ? 0 : sum;
143 }
144 
145 static long get_nr_dentry_unused(void)
146 {
147 	int i;
148 	long sum = 0;
149 	for_each_possible_cpu(i)
150 		sum += per_cpu(nr_dentry_unused, i);
151 	return sum < 0 ? 0 : sum;
152 }
153 
154 int proc_nr_dentry(struct ctl_table *table, int write, void __user *buffer,
155 		   size_t *lenp, loff_t *ppos)
156 {
157 	dentry_stat.nr_dentry = get_nr_dentry();
158 	dentry_stat.nr_unused = get_nr_dentry_unused();
159 	return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
160 }
161 #endif
162 
163 /*
164  * Compare 2 name strings, return 0 if they match, otherwise non-zero.
165  * The strings are both count bytes long, and count is non-zero.
166  */
167 #ifdef CONFIG_DCACHE_WORD_ACCESS
168 
169 #include <asm/word-at-a-time.h>
170 /*
171  * NOTE! 'cs' and 'scount' come from a dentry, so it has a
172  * aligned allocation for this particular component. We don't
173  * strictly need the load_unaligned_zeropad() safety, but it
174  * doesn't hurt either.
175  *
176  * In contrast, 'ct' and 'tcount' can be from a pathname, and do
177  * need the careful unaligned handling.
178  */
179 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
180 {
181 	unsigned long a,b,mask;
182 
183 	for (;;) {
184 		a = *(unsigned long *)cs;
185 		b = load_unaligned_zeropad(ct);
186 		if (tcount < sizeof(unsigned long))
187 			break;
188 		if (unlikely(a != b))
189 			return 1;
190 		cs += sizeof(unsigned long);
191 		ct += sizeof(unsigned long);
192 		tcount -= sizeof(unsigned long);
193 		if (!tcount)
194 			return 0;
195 	}
196 	mask = bytemask_from_count(tcount);
197 	return unlikely(!!((a ^ b) & mask));
198 }
199 
200 #else
201 
202 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
203 {
204 	do {
205 		if (*cs != *ct)
206 			return 1;
207 		cs++;
208 		ct++;
209 		tcount--;
210 	} while (tcount);
211 	return 0;
212 }
213 
214 #endif
215 
216 static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount)
217 {
218 	const unsigned char *cs;
219 	/*
220 	 * Be careful about RCU walk racing with rename:
221 	 * use ACCESS_ONCE to fetch the name pointer.
222 	 *
223 	 * NOTE! Even if a rename will mean that the length
224 	 * was not loaded atomically, we don't care. The
225 	 * RCU walk will check the sequence count eventually,
226 	 * and catch it. And we won't overrun the buffer,
227 	 * because we're reading the name pointer atomically,
228 	 * and a dentry name is guaranteed to be properly
229 	 * terminated with a NUL byte.
230 	 *
231 	 * End result: even if 'len' is wrong, we'll exit
232 	 * early because the data cannot match (there can
233 	 * be no NUL in the ct/tcount data)
234 	 */
235 	cs = ACCESS_ONCE(dentry->d_name.name);
236 	smp_read_barrier_depends();
237 	return dentry_string_cmp(cs, ct, tcount);
238 }
239 
240 struct external_name {
241 	union {
242 		atomic_t count;
243 		struct rcu_head head;
244 	} u;
245 	unsigned char name[];
246 };
247 
248 static inline struct external_name *external_name(struct dentry *dentry)
249 {
250 	return container_of(dentry->d_name.name, struct external_name, name[0]);
251 }
252 
253 static void __d_free(struct rcu_head *head)
254 {
255 	struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
256 
257 	kmem_cache_free(dentry_cache, dentry);
258 }
259 
260 static void __d_free_external(struct rcu_head *head)
261 {
262 	struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
263 	kfree(external_name(dentry));
264 	kmem_cache_free(dentry_cache, dentry);
265 }
266 
267 static inline int dname_external(const struct dentry *dentry)
268 {
269 	return dentry->d_name.name != dentry->d_iname;
270 }
271 
272 /*
273  * Make sure other CPUs see the inode attached before the type is set.
274  */
275 static inline void __d_set_inode_and_type(struct dentry *dentry,
276 					  struct inode *inode,
277 					  unsigned type_flags)
278 {
279 	unsigned flags;
280 
281 	dentry->d_inode = inode;
282 	smp_wmb();
283 	flags = READ_ONCE(dentry->d_flags);
284 	flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU);
285 	flags |= type_flags;
286 	WRITE_ONCE(dentry->d_flags, flags);
287 }
288 
289 /*
290  * Ideally, we want to make sure that other CPUs see the flags cleared before
291  * the inode is detached, but this is really a violation of RCU principles
292  * since the ordering suggests we should always set inode before flags.
293  *
294  * We should instead replace or discard the entire dentry - but that sucks
295  * performancewise on mass deletion/rename.
296  */
297 static inline void __d_clear_type_and_inode(struct dentry *dentry)
298 {
299 	unsigned flags = READ_ONCE(dentry->d_flags);
300 
301 	flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU);
302 	WRITE_ONCE(dentry->d_flags, flags);
303 	smp_wmb();
304 	dentry->d_inode = NULL;
305 }
306 
307 static void dentry_free(struct dentry *dentry)
308 {
309 	WARN_ON(!hlist_unhashed(&dentry->d_u.d_alias));
310 	if (unlikely(dname_external(dentry))) {
311 		struct external_name *p = external_name(dentry);
312 		if (likely(atomic_dec_and_test(&p->u.count))) {
313 			call_rcu(&dentry->d_u.d_rcu, __d_free_external);
314 			return;
315 		}
316 	}
317 	/* if dentry was never visible to RCU, immediate free is OK */
318 	if (!(dentry->d_flags & DCACHE_RCUACCESS))
319 		__d_free(&dentry->d_u.d_rcu);
320 	else
321 		call_rcu(&dentry->d_u.d_rcu, __d_free);
322 }
323 
324 /**
325  * dentry_rcuwalk_barrier - invalidate in-progress rcu-walk lookups
326  * @dentry: the target dentry
327  * After this call, in-progress rcu-walk path lookup will fail. This
328  * should be called after unhashing, and after changing d_inode (if
329  * the dentry has not already been unhashed).
330  */
331 static inline void dentry_rcuwalk_barrier(struct dentry *dentry)
332 {
333 	assert_spin_locked(&dentry->d_lock);
334 	/* Go through a barrier */
335 	write_seqcount_barrier(&dentry->d_seq);
336 }
337 
338 /*
339  * Release the dentry's inode, using the filesystem
340  * d_iput() operation if defined. Dentry has no refcount
341  * and is unhashed.
342  */
343 static void dentry_iput(struct dentry * dentry)
344 	__releases(dentry->d_lock)
345 	__releases(dentry->d_inode->i_lock)
346 {
347 	struct inode *inode = dentry->d_inode;
348 	if (inode) {
349 		__d_clear_type_and_inode(dentry);
350 		hlist_del_init(&dentry->d_u.d_alias);
351 		spin_unlock(&dentry->d_lock);
352 		spin_unlock(&inode->i_lock);
353 		if (!inode->i_nlink)
354 			fsnotify_inoderemove(inode);
355 		if (dentry->d_op && dentry->d_op->d_iput)
356 			dentry->d_op->d_iput(dentry, inode);
357 		else
358 			iput(inode);
359 	} else {
360 		spin_unlock(&dentry->d_lock);
361 	}
362 }
363 
364 /*
365  * Release the dentry's inode, using the filesystem
366  * d_iput() operation if defined. dentry remains in-use.
367  */
368 static void dentry_unlink_inode(struct dentry * dentry)
369 	__releases(dentry->d_lock)
370 	__releases(dentry->d_inode->i_lock)
371 {
372 	struct inode *inode = dentry->d_inode;
373 	__d_clear_type_and_inode(dentry);
374 	hlist_del_init(&dentry->d_u.d_alias);
375 	dentry_rcuwalk_barrier(dentry);
376 	spin_unlock(&dentry->d_lock);
377 	spin_unlock(&inode->i_lock);
378 	if (!inode->i_nlink)
379 		fsnotify_inoderemove(inode);
380 	if (dentry->d_op && dentry->d_op->d_iput)
381 		dentry->d_op->d_iput(dentry, inode);
382 	else
383 		iput(inode);
384 }
385 
386 /*
387  * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry
388  * is in use - which includes both the "real" per-superblock
389  * LRU list _and_ the DCACHE_SHRINK_LIST use.
390  *
391  * The DCACHE_SHRINK_LIST bit is set whenever the dentry is
392  * on the shrink list (ie not on the superblock LRU list).
393  *
394  * The per-cpu "nr_dentry_unused" counters are updated with
395  * the DCACHE_LRU_LIST bit.
396  *
397  * These helper functions make sure we always follow the
398  * rules. d_lock must be held by the caller.
399  */
400 #define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x))
401 static void d_lru_add(struct dentry *dentry)
402 {
403 	D_FLAG_VERIFY(dentry, 0);
404 	dentry->d_flags |= DCACHE_LRU_LIST;
405 	this_cpu_inc(nr_dentry_unused);
406 	WARN_ON_ONCE(!list_lru_add(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
407 }
408 
409 static void d_lru_del(struct dentry *dentry)
410 {
411 	D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
412 	dentry->d_flags &= ~DCACHE_LRU_LIST;
413 	this_cpu_dec(nr_dentry_unused);
414 	WARN_ON_ONCE(!list_lru_del(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
415 }
416 
417 static void d_shrink_del(struct dentry *dentry)
418 {
419 	D_FLAG_VERIFY(dentry, DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
420 	list_del_init(&dentry->d_lru);
421 	dentry->d_flags &= ~(DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
422 	this_cpu_dec(nr_dentry_unused);
423 }
424 
425 static void d_shrink_add(struct dentry *dentry, struct list_head *list)
426 {
427 	D_FLAG_VERIFY(dentry, 0);
428 	list_add(&dentry->d_lru, list);
429 	dentry->d_flags |= DCACHE_SHRINK_LIST | DCACHE_LRU_LIST;
430 	this_cpu_inc(nr_dentry_unused);
431 }
432 
433 /*
434  * These can only be called under the global LRU lock, ie during the
435  * callback for freeing the LRU list. "isolate" removes it from the
436  * LRU lists entirely, while shrink_move moves it to the indicated
437  * private list.
438  */
439 static void d_lru_isolate(struct list_lru_one *lru, struct dentry *dentry)
440 {
441 	D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
442 	dentry->d_flags &= ~DCACHE_LRU_LIST;
443 	this_cpu_dec(nr_dentry_unused);
444 	list_lru_isolate(lru, &dentry->d_lru);
445 }
446 
447 static void d_lru_shrink_move(struct list_lru_one *lru, struct dentry *dentry,
448 			      struct list_head *list)
449 {
450 	D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
451 	dentry->d_flags |= DCACHE_SHRINK_LIST;
452 	list_lru_isolate_move(lru, &dentry->d_lru, list);
453 }
454 
455 /*
456  * dentry_lru_(add|del)_list) must be called with d_lock held.
457  */
458 static void dentry_lru_add(struct dentry *dentry)
459 {
460 	if (unlikely(!(dentry->d_flags & DCACHE_LRU_LIST)))
461 		d_lru_add(dentry);
462 }
463 
464 /**
465  * d_drop - drop a dentry
466  * @dentry: dentry to drop
467  *
468  * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
469  * be found through a VFS lookup any more. Note that this is different from
470  * deleting the dentry - d_delete will try to mark the dentry negative if
471  * possible, giving a successful _negative_ lookup, while d_drop will
472  * just make the cache lookup fail.
473  *
474  * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
475  * reason (NFS timeouts or autofs deletes).
476  *
477  * __d_drop requires dentry->d_lock.
478  */
479 void __d_drop(struct dentry *dentry)
480 {
481 	if (!d_unhashed(dentry)) {
482 		struct hlist_bl_head *b;
483 		/*
484 		 * Hashed dentries are normally on the dentry hashtable,
485 		 * with the exception of those newly allocated by
486 		 * d_obtain_alias, which are always IS_ROOT:
487 		 */
488 		if (unlikely(IS_ROOT(dentry)))
489 			b = &dentry->d_sb->s_anon;
490 		else
491 			b = d_hash(dentry->d_parent, dentry->d_name.hash);
492 
493 		hlist_bl_lock(b);
494 		__hlist_bl_del(&dentry->d_hash);
495 		dentry->d_hash.pprev = NULL;
496 		hlist_bl_unlock(b);
497 		dentry_rcuwalk_barrier(dentry);
498 	}
499 }
500 EXPORT_SYMBOL(__d_drop);
501 
502 void d_drop(struct dentry *dentry)
503 {
504 	spin_lock(&dentry->d_lock);
505 	__d_drop(dentry);
506 	spin_unlock(&dentry->d_lock);
507 }
508 EXPORT_SYMBOL(d_drop);
509 
510 static void __dentry_kill(struct dentry *dentry)
511 {
512 	struct dentry *parent = NULL;
513 	bool can_free = true;
514 	if (!IS_ROOT(dentry))
515 		parent = dentry->d_parent;
516 
517 	/*
518 	 * The dentry is now unrecoverably dead to the world.
519 	 */
520 	lockref_mark_dead(&dentry->d_lockref);
521 
522 	/*
523 	 * inform the fs via d_prune that this dentry is about to be
524 	 * unhashed and destroyed.
525 	 */
526 	if (dentry->d_flags & DCACHE_OP_PRUNE)
527 		dentry->d_op->d_prune(dentry);
528 
529 	if (dentry->d_flags & DCACHE_LRU_LIST) {
530 		if (!(dentry->d_flags & DCACHE_SHRINK_LIST))
531 			d_lru_del(dentry);
532 	}
533 	/* if it was on the hash then remove it */
534 	__d_drop(dentry);
535 	__list_del_entry(&dentry->d_child);
536 	/*
537 	 * Inform d_walk() that we are no longer attached to the
538 	 * dentry tree
539 	 */
540 	dentry->d_flags |= DCACHE_DENTRY_KILLED;
541 	if (parent)
542 		spin_unlock(&parent->d_lock);
543 	dentry_iput(dentry);
544 	/*
545 	 * dentry_iput drops the locks, at which point nobody (except
546 	 * transient RCU lookups) can reach this dentry.
547 	 */
548 	BUG_ON(dentry->d_lockref.count > 0);
549 	this_cpu_dec(nr_dentry);
550 	if (dentry->d_op && dentry->d_op->d_release)
551 		dentry->d_op->d_release(dentry);
552 
553 	spin_lock(&dentry->d_lock);
554 	if (dentry->d_flags & DCACHE_SHRINK_LIST) {
555 		dentry->d_flags |= DCACHE_MAY_FREE;
556 		can_free = false;
557 	}
558 	spin_unlock(&dentry->d_lock);
559 	if (likely(can_free))
560 		dentry_free(dentry);
561 }
562 
563 /*
564  * Finish off a dentry we've decided to kill.
565  * dentry->d_lock must be held, returns with it unlocked.
566  * If ref is non-zero, then decrement the refcount too.
567  * Returns dentry requiring refcount drop, or NULL if we're done.
568  */
569 static struct dentry *dentry_kill(struct dentry *dentry)
570 	__releases(dentry->d_lock)
571 {
572 	struct inode *inode = dentry->d_inode;
573 	struct dentry *parent = NULL;
574 
575 	if (inode && unlikely(!spin_trylock(&inode->i_lock)))
576 		goto failed;
577 
578 	if (!IS_ROOT(dentry)) {
579 		parent = dentry->d_parent;
580 		if (unlikely(!spin_trylock(&parent->d_lock))) {
581 			if (inode)
582 				spin_unlock(&inode->i_lock);
583 			goto failed;
584 		}
585 	}
586 
587 	__dentry_kill(dentry);
588 	return parent;
589 
590 failed:
591 	spin_unlock(&dentry->d_lock);
592 	cpu_relax();
593 	return dentry; /* try again with same dentry */
594 }
595 
596 static inline struct dentry *lock_parent(struct dentry *dentry)
597 {
598 	struct dentry *parent = dentry->d_parent;
599 	if (IS_ROOT(dentry))
600 		return NULL;
601 	if (unlikely(dentry->d_lockref.count < 0))
602 		return NULL;
603 	if (likely(spin_trylock(&parent->d_lock)))
604 		return parent;
605 	rcu_read_lock();
606 	spin_unlock(&dentry->d_lock);
607 again:
608 	parent = ACCESS_ONCE(dentry->d_parent);
609 	spin_lock(&parent->d_lock);
610 	/*
611 	 * We can't blindly lock dentry until we are sure
612 	 * that we won't violate the locking order.
613 	 * Any changes of dentry->d_parent must have
614 	 * been done with parent->d_lock held, so
615 	 * spin_lock() above is enough of a barrier
616 	 * for checking if it's still our child.
617 	 */
618 	if (unlikely(parent != dentry->d_parent)) {
619 		spin_unlock(&parent->d_lock);
620 		goto again;
621 	}
622 	rcu_read_unlock();
623 	if (parent != dentry)
624 		spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
625 	else
626 		parent = NULL;
627 	return parent;
628 }
629 
630 /*
631  * Try to do a lockless dput(), and return whether that was successful.
632  *
633  * If unsuccessful, we return false, having already taken the dentry lock.
634  *
635  * The caller needs to hold the RCU read lock, so that the dentry is
636  * guaranteed to stay around even if the refcount goes down to zero!
637  */
638 static inline bool fast_dput(struct dentry *dentry)
639 {
640 	int ret;
641 	unsigned int d_flags;
642 
643 	/*
644 	 * If we have a d_op->d_delete() operation, we sould not
645 	 * let the dentry count go to zero, so use "put__or_lock".
646 	 */
647 	if (unlikely(dentry->d_flags & DCACHE_OP_DELETE))
648 		return lockref_put_or_lock(&dentry->d_lockref);
649 
650 	/*
651 	 * .. otherwise, we can try to just decrement the
652 	 * lockref optimistically.
653 	 */
654 	ret = lockref_put_return(&dentry->d_lockref);
655 
656 	/*
657 	 * If the lockref_put_return() failed due to the lock being held
658 	 * by somebody else, the fast path has failed. We will need to
659 	 * get the lock, and then check the count again.
660 	 */
661 	if (unlikely(ret < 0)) {
662 		spin_lock(&dentry->d_lock);
663 		if (dentry->d_lockref.count > 1) {
664 			dentry->d_lockref.count--;
665 			spin_unlock(&dentry->d_lock);
666 			return 1;
667 		}
668 		return 0;
669 	}
670 
671 	/*
672 	 * If we weren't the last ref, we're done.
673 	 */
674 	if (ret)
675 		return 1;
676 
677 	/*
678 	 * Careful, careful. The reference count went down
679 	 * to zero, but we don't hold the dentry lock, so
680 	 * somebody else could get it again, and do another
681 	 * dput(), and we need to not race with that.
682 	 *
683 	 * However, there is a very special and common case
684 	 * where we don't care, because there is nothing to
685 	 * do: the dentry is still hashed, it does not have
686 	 * a 'delete' op, and it's referenced and already on
687 	 * the LRU list.
688 	 *
689 	 * NOTE! Since we aren't locked, these values are
690 	 * not "stable". However, it is sufficient that at
691 	 * some point after we dropped the reference the
692 	 * dentry was hashed and the flags had the proper
693 	 * value. Other dentry users may have re-gotten
694 	 * a reference to the dentry and change that, but
695 	 * our work is done - we can leave the dentry
696 	 * around with a zero refcount.
697 	 */
698 	smp_rmb();
699 	d_flags = ACCESS_ONCE(dentry->d_flags);
700 	d_flags &= DCACHE_REFERENCED | DCACHE_LRU_LIST;
701 
702 	/* Nothing to do? Dropping the reference was all we needed? */
703 	if (d_flags == (DCACHE_REFERENCED | DCACHE_LRU_LIST) && !d_unhashed(dentry))
704 		return 1;
705 
706 	/*
707 	 * Not the fast normal case? Get the lock. We've already decremented
708 	 * the refcount, but we'll need to re-check the situation after
709 	 * getting the lock.
710 	 */
711 	spin_lock(&dentry->d_lock);
712 
713 	/*
714 	 * Did somebody else grab a reference to it in the meantime, and
715 	 * we're no longer the last user after all? Alternatively, somebody
716 	 * else could have killed it and marked it dead. Either way, we
717 	 * don't need to do anything else.
718 	 */
719 	if (dentry->d_lockref.count) {
720 		spin_unlock(&dentry->d_lock);
721 		return 1;
722 	}
723 
724 	/*
725 	 * Re-get the reference we optimistically dropped. We hold the
726 	 * lock, and we just tested that it was zero, so we can just
727 	 * set it to 1.
728 	 */
729 	dentry->d_lockref.count = 1;
730 	return 0;
731 }
732 
733 
734 /*
735  * This is dput
736  *
737  * This is complicated by the fact that we do not want to put
738  * dentries that are no longer on any hash chain on the unused
739  * list: we'd much rather just get rid of them immediately.
740  *
741  * However, that implies that we have to traverse the dentry
742  * tree upwards to the parents which might _also_ now be
743  * scheduled for deletion (it may have been only waiting for
744  * its last child to go away).
745  *
746  * This tail recursion is done by hand as we don't want to depend
747  * on the compiler to always get this right (gcc generally doesn't).
748  * Real recursion would eat up our stack space.
749  */
750 
751 /*
752  * dput - release a dentry
753  * @dentry: dentry to release
754  *
755  * Release a dentry. This will drop the usage count and if appropriate
756  * call the dentry unlink method as well as removing it from the queues and
757  * releasing its resources. If the parent dentries were scheduled for release
758  * they too may now get deleted.
759  */
760 void dput(struct dentry *dentry)
761 {
762 	if (unlikely(!dentry))
763 		return;
764 
765 repeat:
766 	rcu_read_lock();
767 	if (likely(fast_dput(dentry))) {
768 		rcu_read_unlock();
769 		return;
770 	}
771 
772 	/* Slow case: now with the dentry lock held */
773 	rcu_read_unlock();
774 
775 	/* Unreachable? Get rid of it */
776 	if (unlikely(d_unhashed(dentry)))
777 		goto kill_it;
778 
779 	if (unlikely(dentry->d_flags & DCACHE_OP_DELETE)) {
780 		if (dentry->d_op->d_delete(dentry))
781 			goto kill_it;
782 	}
783 
784 	if (!(dentry->d_flags & DCACHE_REFERENCED))
785 		dentry->d_flags |= DCACHE_REFERENCED;
786 	dentry_lru_add(dentry);
787 
788 	dentry->d_lockref.count--;
789 	spin_unlock(&dentry->d_lock);
790 	return;
791 
792 kill_it:
793 	dentry = dentry_kill(dentry);
794 	if (dentry)
795 		goto repeat;
796 }
797 EXPORT_SYMBOL(dput);
798 
799 
800 /* This must be called with d_lock held */
801 static inline void __dget_dlock(struct dentry *dentry)
802 {
803 	dentry->d_lockref.count++;
804 }
805 
806 static inline void __dget(struct dentry *dentry)
807 {
808 	lockref_get(&dentry->d_lockref);
809 }
810 
811 struct dentry *dget_parent(struct dentry *dentry)
812 {
813 	int gotref;
814 	struct dentry *ret;
815 
816 	/*
817 	 * Do optimistic parent lookup without any
818 	 * locking.
819 	 */
820 	rcu_read_lock();
821 	ret = ACCESS_ONCE(dentry->d_parent);
822 	gotref = lockref_get_not_zero(&ret->d_lockref);
823 	rcu_read_unlock();
824 	if (likely(gotref)) {
825 		if (likely(ret == ACCESS_ONCE(dentry->d_parent)))
826 			return ret;
827 		dput(ret);
828 	}
829 
830 repeat:
831 	/*
832 	 * Don't need rcu_dereference because we re-check it was correct under
833 	 * the lock.
834 	 */
835 	rcu_read_lock();
836 	ret = dentry->d_parent;
837 	spin_lock(&ret->d_lock);
838 	if (unlikely(ret != dentry->d_parent)) {
839 		spin_unlock(&ret->d_lock);
840 		rcu_read_unlock();
841 		goto repeat;
842 	}
843 	rcu_read_unlock();
844 	BUG_ON(!ret->d_lockref.count);
845 	ret->d_lockref.count++;
846 	spin_unlock(&ret->d_lock);
847 	return ret;
848 }
849 EXPORT_SYMBOL(dget_parent);
850 
851 /**
852  * d_find_alias - grab a hashed alias of inode
853  * @inode: inode in question
854  *
855  * If inode has a hashed alias, or is a directory and has any alias,
856  * acquire the reference to alias and return it. Otherwise return NULL.
857  * Notice that if inode is a directory there can be only one alias and
858  * it can be unhashed only if it has no children, or if it is the root
859  * of a filesystem, or if the directory was renamed and d_revalidate
860  * was the first vfs operation to notice.
861  *
862  * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
863  * any other hashed alias over that one.
864  */
865 static struct dentry *__d_find_alias(struct inode *inode)
866 {
867 	struct dentry *alias, *discon_alias;
868 
869 again:
870 	discon_alias = NULL;
871 	hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
872 		spin_lock(&alias->d_lock);
873  		if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
874 			if (IS_ROOT(alias) &&
875 			    (alias->d_flags & DCACHE_DISCONNECTED)) {
876 				discon_alias = alias;
877 			} else {
878 				__dget_dlock(alias);
879 				spin_unlock(&alias->d_lock);
880 				return alias;
881 			}
882 		}
883 		spin_unlock(&alias->d_lock);
884 	}
885 	if (discon_alias) {
886 		alias = discon_alias;
887 		spin_lock(&alias->d_lock);
888 		if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
889 			__dget_dlock(alias);
890 			spin_unlock(&alias->d_lock);
891 			return alias;
892 		}
893 		spin_unlock(&alias->d_lock);
894 		goto again;
895 	}
896 	return NULL;
897 }
898 
899 struct dentry *d_find_alias(struct inode *inode)
900 {
901 	struct dentry *de = NULL;
902 
903 	if (!hlist_empty(&inode->i_dentry)) {
904 		spin_lock(&inode->i_lock);
905 		de = __d_find_alias(inode);
906 		spin_unlock(&inode->i_lock);
907 	}
908 	return de;
909 }
910 EXPORT_SYMBOL(d_find_alias);
911 
912 /*
913  *	Try to kill dentries associated with this inode.
914  * WARNING: you must own a reference to inode.
915  */
916 void d_prune_aliases(struct inode *inode)
917 {
918 	struct dentry *dentry;
919 restart:
920 	spin_lock(&inode->i_lock);
921 	hlist_for_each_entry(dentry, &inode->i_dentry, d_u.d_alias) {
922 		spin_lock(&dentry->d_lock);
923 		if (!dentry->d_lockref.count) {
924 			struct dentry *parent = lock_parent(dentry);
925 			if (likely(!dentry->d_lockref.count)) {
926 				__dentry_kill(dentry);
927 				dput(parent);
928 				goto restart;
929 			}
930 			if (parent)
931 				spin_unlock(&parent->d_lock);
932 		}
933 		spin_unlock(&dentry->d_lock);
934 	}
935 	spin_unlock(&inode->i_lock);
936 }
937 EXPORT_SYMBOL(d_prune_aliases);
938 
939 static void shrink_dentry_list(struct list_head *list)
940 {
941 	struct dentry *dentry, *parent;
942 
943 	while (!list_empty(list)) {
944 		struct inode *inode;
945 		dentry = list_entry(list->prev, struct dentry, d_lru);
946 		spin_lock(&dentry->d_lock);
947 		parent = lock_parent(dentry);
948 
949 		/*
950 		 * The dispose list is isolated and dentries are not accounted
951 		 * to the LRU here, so we can simply remove it from the list
952 		 * here regardless of whether it is referenced or not.
953 		 */
954 		d_shrink_del(dentry);
955 
956 		/*
957 		 * We found an inuse dentry which was not removed from
958 		 * the LRU because of laziness during lookup. Do not free it.
959 		 */
960 		if (dentry->d_lockref.count > 0) {
961 			spin_unlock(&dentry->d_lock);
962 			if (parent)
963 				spin_unlock(&parent->d_lock);
964 			continue;
965 		}
966 
967 
968 		if (unlikely(dentry->d_flags & DCACHE_DENTRY_KILLED)) {
969 			bool can_free = dentry->d_flags & DCACHE_MAY_FREE;
970 			spin_unlock(&dentry->d_lock);
971 			if (parent)
972 				spin_unlock(&parent->d_lock);
973 			if (can_free)
974 				dentry_free(dentry);
975 			continue;
976 		}
977 
978 		inode = dentry->d_inode;
979 		if (inode && unlikely(!spin_trylock(&inode->i_lock))) {
980 			d_shrink_add(dentry, list);
981 			spin_unlock(&dentry->d_lock);
982 			if (parent)
983 				spin_unlock(&parent->d_lock);
984 			continue;
985 		}
986 
987 		__dentry_kill(dentry);
988 
989 		/*
990 		 * We need to prune ancestors too. This is necessary to prevent
991 		 * quadratic behavior of shrink_dcache_parent(), but is also
992 		 * expected to be beneficial in reducing dentry cache
993 		 * fragmentation.
994 		 */
995 		dentry = parent;
996 		while (dentry && !lockref_put_or_lock(&dentry->d_lockref)) {
997 			parent = lock_parent(dentry);
998 			if (dentry->d_lockref.count != 1) {
999 				dentry->d_lockref.count--;
1000 				spin_unlock(&dentry->d_lock);
1001 				if (parent)
1002 					spin_unlock(&parent->d_lock);
1003 				break;
1004 			}
1005 			inode = dentry->d_inode;	/* can't be NULL */
1006 			if (unlikely(!spin_trylock(&inode->i_lock))) {
1007 				spin_unlock(&dentry->d_lock);
1008 				if (parent)
1009 					spin_unlock(&parent->d_lock);
1010 				cpu_relax();
1011 				continue;
1012 			}
1013 			__dentry_kill(dentry);
1014 			dentry = parent;
1015 		}
1016 	}
1017 }
1018 
1019 static enum lru_status dentry_lru_isolate(struct list_head *item,
1020 		struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
1021 {
1022 	struct list_head *freeable = arg;
1023 	struct dentry	*dentry = container_of(item, struct dentry, d_lru);
1024 
1025 
1026 	/*
1027 	 * we are inverting the lru lock/dentry->d_lock here,
1028 	 * so use a trylock. If we fail to get the lock, just skip
1029 	 * it
1030 	 */
1031 	if (!spin_trylock(&dentry->d_lock))
1032 		return LRU_SKIP;
1033 
1034 	/*
1035 	 * Referenced dentries are still in use. If they have active
1036 	 * counts, just remove them from the LRU. Otherwise give them
1037 	 * another pass through the LRU.
1038 	 */
1039 	if (dentry->d_lockref.count) {
1040 		d_lru_isolate(lru, dentry);
1041 		spin_unlock(&dentry->d_lock);
1042 		return LRU_REMOVED;
1043 	}
1044 
1045 	if (dentry->d_flags & DCACHE_REFERENCED) {
1046 		dentry->d_flags &= ~DCACHE_REFERENCED;
1047 		spin_unlock(&dentry->d_lock);
1048 
1049 		/*
1050 		 * The list move itself will be made by the common LRU code. At
1051 		 * this point, we've dropped the dentry->d_lock but keep the
1052 		 * lru lock. This is safe to do, since every list movement is
1053 		 * protected by the lru lock even if both locks are held.
1054 		 *
1055 		 * This is guaranteed by the fact that all LRU management
1056 		 * functions are intermediated by the LRU API calls like
1057 		 * list_lru_add and list_lru_del. List movement in this file
1058 		 * only ever occur through this functions or through callbacks
1059 		 * like this one, that are called from the LRU API.
1060 		 *
1061 		 * The only exceptions to this are functions like
1062 		 * shrink_dentry_list, and code that first checks for the
1063 		 * DCACHE_SHRINK_LIST flag.  Those are guaranteed to be
1064 		 * operating only with stack provided lists after they are
1065 		 * properly isolated from the main list.  It is thus, always a
1066 		 * local access.
1067 		 */
1068 		return LRU_ROTATE;
1069 	}
1070 
1071 	d_lru_shrink_move(lru, dentry, freeable);
1072 	spin_unlock(&dentry->d_lock);
1073 
1074 	return LRU_REMOVED;
1075 }
1076 
1077 /**
1078  * prune_dcache_sb - shrink the dcache
1079  * @sb: superblock
1080  * @sc: shrink control, passed to list_lru_shrink_walk()
1081  *
1082  * Attempt to shrink the superblock dcache LRU by @sc->nr_to_scan entries. This
1083  * is done when we need more memory and called from the superblock shrinker
1084  * function.
1085  *
1086  * This function may fail to free any resources if all the dentries are in
1087  * use.
1088  */
1089 long prune_dcache_sb(struct super_block *sb, struct shrink_control *sc)
1090 {
1091 	LIST_HEAD(dispose);
1092 	long freed;
1093 
1094 	freed = list_lru_shrink_walk(&sb->s_dentry_lru, sc,
1095 				     dentry_lru_isolate, &dispose);
1096 	shrink_dentry_list(&dispose);
1097 	return freed;
1098 }
1099 
1100 static enum lru_status dentry_lru_isolate_shrink(struct list_head *item,
1101 		struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
1102 {
1103 	struct list_head *freeable = arg;
1104 	struct dentry	*dentry = container_of(item, struct dentry, d_lru);
1105 
1106 	/*
1107 	 * we are inverting the lru lock/dentry->d_lock here,
1108 	 * so use a trylock. If we fail to get the lock, just skip
1109 	 * it
1110 	 */
1111 	if (!spin_trylock(&dentry->d_lock))
1112 		return LRU_SKIP;
1113 
1114 	d_lru_shrink_move(lru, dentry, freeable);
1115 	spin_unlock(&dentry->d_lock);
1116 
1117 	return LRU_REMOVED;
1118 }
1119 
1120 
1121 /**
1122  * shrink_dcache_sb - shrink dcache for a superblock
1123  * @sb: superblock
1124  *
1125  * Shrink the dcache for the specified super block. This is used to free
1126  * the dcache before unmounting a file system.
1127  */
1128 void shrink_dcache_sb(struct super_block *sb)
1129 {
1130 	long freed;
1131 
1132 	do {
1133 		LIST_HEAD(dispose);
1134 
1135 		freed = list_lru_walk(&sb->s_dentry_lru,
1136 			dentry_lru_isolate_shrink, &dispose, UINT_MAX);
1137 
1138 		this_cpu_sub(nr_dentry_unused, freed);
1139 		shrink_dentry_list(&dispose);
1140 	} while (freed > 0);
1141 }
1142 EXPORT_SYMBOL(shrink_dcache_sb);
1143 
1144 /**
1145  * enum d_walk_ret - action to talke during tree walk
1146  * @D_WALK_CONTINUE:	contrinue walk
1147  * @D_WALK_QUIT:	quit walk
1148  * @D_WALK_NORETRY:	quit when retry is needed
1149  * @D_WALK_SKIP:	skip this dentry and its children
1150  */
1151 enum d_walk_ret {
1152 	D_WALK_CONTINUE,
1153 	D_WALK_QUIT,
1154 	D_WALK_NORETRY,
1155 	D_WALK_SKIP,
1156 };
1157 
1158 /**
1159  * d_walk - walk the dentry tree
1160  * @parent:	start of walk
1161  * @data:	data passed to @enter() and @finish()
1162  * @enter:	callback when first entering the dentry
1163  * @finish:	callback when successfully finished the walk
1164  *
1165  * The @enter() and @finish() callbacks are called with d_lock held.
1166  */
1167 static void d_walk(struct dentry *parent, void *data,
1168 		   enum d_walk_ret (*enter)(void *, struct dentry *),
1169 		   void (*finish)(void *))
1170 {
1171 	struct dentry *this_parent;
1172 	struct list_head *next;
1173 	unsigned seq = 0;
1174 	enum d_walk_ret ret;
1175 	bool retry = true;
1176 
1177 again:
1178 	read_seqbegin_or_lock(&rename_lock, &seq);
1179 	this_parent = parent;
1180 	spin_lock(&this_parent->d_lock);
1181 
1182 	ret = enter(data, this_parent);
1183 	switch (ret) {
1184 	case D_WALK_CONTINUE:
1185 		break;
1186 	case D_WALK_QUIT:
1187 	case D_WALK_SKIP:
1188 		goto out_unlock;
1189 	case D_WALK_NORETRY:
1190 		retry = false;
1191 		break;
1192 	}
1193 repeat:
1194 	next = this_parent->d_subdirs.next;
1195 resume:
1196 	while (next != &this_parent->d_subdirs) {
1197 		struct list_head *tmp = next;
1198 		struct dentry *dentry = list_entry(tmp, struct dentry, d_child);
1199 		next = tmp->next;
1200 
1201 		spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1202 
1203 		ret = enter(data, dentry);
1204 		switch (ret) {
1205 		case D_WALK_CONTINUE:
1206 			break;
1207 		case D_WALK_QUIT:
1208 			spin_unlock(&dentry->d_lock);
1209 			goto out_unlock;
1210 		case D_WALK_NORETRY:
1211 			retry = false;
1212 			break;
1213 		case D_WALK_SKIP:
1214 			spin_unlock(&dentry->d_lock);
1215 			continue;
1216 		}
1217 
1218 		if (!list_empty(&dentry->d_subdirs)) {
1219 			spin_unlock(&this_parent->d_lock);
1220 			spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1221 			this_parent = dentry;
1222 			spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1223 			goto repeat;
1224 		}
1225 		spin_unlock(&dentry->d_lock);
1226 	}
1227 	/*
1228 	 * All done at this level ... ascend and resume the search.
1229 	 */
1230 	rcu_read_lock();
1231 ascend:
1232 	if (this_parent != parent) {
1233 		struct dentry *child = this_parent;
1234 		this_parent = child->d_parent;
1235 
1236 		spin_unlock(&child->d_lock);
1237 		spin_lock(&this_parent->d_lock);
1238 
1239 		/* might go back up the wrong parent if we have had a rename. */
1240 		if (need_seqretry(&rename_lock, seq))
1241 			goto rename_retry;
1242 		next = child->d_child.next;
1243 		while (unlikely(child->d_flags & DCACHE_DENTRY_KILLED)) {
1244 			if (next == &this_parent->d_subdirs)
1245 				goto ascend;
1246 			child = list_entry(next, struct dentry, d_child);
1247 			next = next->next;
1248 		}
1249 		rcu_read_unlock();
1250 		goto resume;
1251 	}
1252 	if (need_seqretry(&rename_lock, seq))
1253 		goto rename_retry;
1254 	rcu_read_unlock();
1255 	if (finish)
1256 		finish(data);
1257 
1258 out_unlock:
1259 	spin_unlock(&this_parent->d_lock);
1260 	done_seqretry(&rename_lock, seq);
1261 	return;
1262 
1263 rename_retry:
1264 	spin_unlock(&this_parent->d_lock);
1265 	rcu_read_unlock();
1266 	BUG_ON(seq & 1);
1267 	if (!retry)
1268 		return;
1269 	seq = 1;
1270 	goto again;
1271 }
1272 
1273 /*
1274  * Search for at least 1 mount point in the dentry's subdirs.
1275  * We descend to the next level whenever the d_subdirs
1276  * list is non-empty and continue searching.
1277  */
1278 
1279 static enum d_walk_ret check_mount(void *data, struct dentry *dentry)
1280 {
1281 	int *ret = data;
1282 	if (d_mountpoint(dentry)) {
1283 		*ret = 1;
1284 		return D_WALK_QUIT;
1285 	}
1286 	return D_WALK_CONTINUE;
1287 }
1288 
1289 /**
1290  * have_submounts - check for mounts over a dentry
1291  * @parent: dentry to check.
1292  *
1293  * Return true if the parent or its subdirectories contain
1294  * a mount point
1295  */
1296 int have_submounts(struct dentry *parent)
1297 {
1298 	int ret = 0;
1299 
1300 	d_walk(parent, &ret, check_mount, NULL);
1301 
1302 	return ret;
1303 }
1304 EXPORT_SYMBOL(have_submounts);
1305 
1306 /*
1307  * Called by mount code to set a mountpoint and check if the mountpoint is
1308  * reachable (e.g. NFS can unhash a directory dentry and then the complete
1309  * subtree can become unreachable).
1310  *
1311  * Only one of d_invalidate() and d_set_mounted() must succeed.  For
1312  * this reason take rename_lock and d_lock on dentry and ancestors.
1313  */
1314 int d_set_mounted(struct dentry *dentry)
1315 {
1316 	struct dentry *p;
1317 	int ret = -ENOENT;
1318 	write_seqlock(&rename_lock);
1319 	for (p = dentry->d_parent; !IS_ROOT(p); p = p->d_parent) {
1320 		/* Need exclusion wrt. d_invalidate() */
1321 		spin_lock(&p->d_lock);
1322 		if (unlikely(d_unhashed(p))) {
1323 			spin_unlock(&p->d_lock);
1324 			goto out;
1325 		}
1326 		spin_unlock(&p->d_lock);
1327 	}
1328 	spin_lock(&dentry->d_lock);
1329 	if (!d_unlinked(dentry)) {
1330 		dentry->d_flags |= DCACHE_MOUNTED;
1331 		ret = 0;
1332 	}
1333  	spin_unlock(&dentry->d_lock);
1334 out:
1335 	write_sequnlock(&rename_lock);
1336 	return ret;
1337 }
1338 
1339 /*
1340  * Search the dentry child list of the specified parent,
1341  * and move any unused dentries to the end of the unused
1342  * list for prune_dcache(). We descend to the next level
1343  * whenever the d_subdirs list is non-empty and continue
1344  * searching.
1345  *
1346  * It returns zero iff there are no unused children,
1347  * otherwise  it returns the number of children moved to
1348  * the end of the unused list. This may not be the total
1349  * number of unused children, because select_parent can
1350  * drop the lock and return early due to latency
1351  * constraints.
1352  */
1353 
1354 struct select_data {
1355 	struct dentry *start;
1356 	struct list_head dispose;
1357 	int found;
1358 };
1359 
1360 static enum d_walk_ret select_collect(void *_data, struct dentry *dentry)
1361 {
1362 	struct select_data *data = _data;
1363 	enum d_walk_ret ret = D_WALK_CONTINUE;
1364 
1365 	if (data->start == dentry)
1366 		goto out;
1367 
1368 	if (dentry->d_flags & DCACHE_SHRINK_LIST) {
1369 		data->found++;
1370 	} else {
1371 		if (dentry->d_flags & DCACHE_LRU_LIST)
1372 			d_lru_del(dentry);
1373 		if (!dentry->d_lockref.count) {
1374 			d_shrink_add(dentry, &data->dispose);
1375 			data->found++;
1376 		}
1377 	}
1378 	/*
1379 	 * We can return to the caller if we have found some (this
1380 	 * ensures forward progress). We'll be coming back to find
1381 	 * the rest.
1382 	 */
1383 	if (!list_empty(&data->dispose))
1384 		ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY;
1385 out:
1386 	return ret;
1387 }
1388 
1389 /**
1390  * shrink_dcache_parent - prune dcache
1391  * @parent: parent of entries to prune
1392  *
1393  * Prune the dcache to remove unused children of the parent dentry.
1394  */
1395 void shrink_dcache_parent(struct dentry *parent)
1396 {
1397 	for (;;) {
1398 		struct select_data data;
1399 
1400 		INIT_LIST_HEAD(&data.dispose);
1401 		data.start = parent;
1402 		data.found = 0;
1403 
1404 		d_walk(parent, &data, select_collect, NULL);
1405 		if (!data.found)
1406 			break;
1407 
1408 		shrink_dentry_list(&data.dispose);
1409 		cond_resched();
1410 	}
1411 }
1412 EXPORT_SYMBOL(shrink_dcache_parent);
1413 
1414 static enum d_walk_ret umount_check(void *_data, struct dentry *dentry)
1415 {
1416 	/* it has busy descendents; complain about those instead */
1417 	if (!list_empty(&dentry->d_subdirs))
1418 		return D_WALK_CONTINUE;
1419 
1420 	/* root with refcount 1 is fine */
1421 	if (dentry == _data && dentry->d_lockref.count == 1)
1422 		return D_WALK_CONTINUE;
1423 
1424 	printk(KERN_ERR "BUG: Dentry %p{i=%lx,n=%pd} "
1425 			" still in use (%d) [unmount of %s %s]\n",
1426 		       dentry,
1427 		       dentry->d_inode ?
1428 		       dentry->d_inode->i_ino : 0UL,
1429 		       dentry,
1430 		       dentry->d_lockref.count,
1431 		       dentry->d_sb->s_type->name,
1432 		       dentry->d_sb->s_id);
1433 	WARN_ON(1);
1434 	return D_WALK_CONTINUE;
1435 }
1436 
1437 static void do_one_tree(struct dentry *dentry)
1438 {
1439 	shrink_dcache_parent(dentry);
1440 	d_walk(dentry, dentry, umount_check, NULL);
1441 	d_drop(dentry);
1442 	dput(dentry);
1443 }
1444 
1445 /*
1446  * destroy the dentries attached to a superblock on unmounting
1447  */
1448 void shrink_dcache_for_umount(struct super_block *sb)
1449 {
1450 	struct dentry *dentry;
1451 
1452 	WARN(down_read_trylock(&sb->s_umount), "s_umount should've been locked");
1453 
1454 	dentry = sb->s_root;
1455 	sb->s_root = NULL;
1456 	do_one_tree(dentry);
1457 
1458 	while (!hlist_bl_empty(&sb->s_anon)) {
1459 		dentry = dget(hlist_bl_entry(hlist_bl_first(&sb->s_anon), struct dentry, d_hash));
1460 		do_one_tree(dentry);
1461 	}
1462 }
1463 
1464 struct detach_data {
1465 	struct select_data select;
1466 	struct dentry *mountpoint;
1467 };
1468 static enum d_walk_ret detach_and_collect(void *_data, struct dentry *dentry)
1469 {
1470 	struct detach_data *data = _data;
1471 
1472 	if (d_mountpoint(dentry)) {
1473 		__dget_dlock(dentry);
1474 		data->mountpoint = dentry;
1475 		return D_WALK_QUIT;
1476 	}
1477 
1478 	return select_collect(&data->select, dentry);
1479 }
1480 
1481 static void check_and_drop(void *_data)
1482 {
1483 	struct detach_data *data = _data;
1484 
1485 	if (!data->mountpoint && !data->select.found)
1486 		__d_drop(data->select.start);
1487 }
1488 
1489 /**
1490  * d_invalidate - detach submounts, prune dcache, and drop
1491  * @dentry: dentry to invalidate (aka detach, prune and drop)
1492  *
1493  * no dcache lock.
1494  *
1495  * The final d_drop is done as an atomic operation relative to
1496  * rename_lock ensuring there are no races with d_set_mounted.  This
1497  * ensures there are no unhashed dentries on the path to a mountpoint.
1498  */
1499 void d_invalidate(struct dentry *dentry)
1500 {
1501 	/*
1502 	 * If it's already been dropped, return OK.
1503 	 */
1504 	spin_lock(&dentry->d_lock);
1505 	if (d_unhashed(dentry)) {
1506 		spin_unlock(&dentry->d_lock);
1507 		return;
1508 	}
1509 	spin_unlock(&dentry->d_lock);
1510 
1511 	/* Negative dentries can be dropped without further checks */
1512 	if (!dentry->d_inode) {
1513 		d_drop(dentry);
1514 		return;
1515 	}
1516 
1517 	for (;;) {
1518 		struct detach_data data;
1519 
1520 		data.mountpoint = NULL;
1521 		INIT_LIST_HEAD(&data.select.dispose);
1522 		data.select.start = dentry;
1523 		data.select.found = 0;
1524 
1525 		d_walk(dentry, &data, detach_and_collect, check_and_drop);
1526 
1527 		if (data.select.found)
1528 			shrink_dentry_list(&data.select.dispose);
1529 
1530 		if (data.mountpoint) {
1531 			detach_mounts(data.mountpoint);
1532 			dput(data.mountpoint);
1533 		}
1534 
1535 		if (!data.mountpoint && !data.select.found)
1536 			break;
1537 
1538 		cond_resched();
1539 	}
1540 }
1541 EXPORT_SYMBOL(d_invalidate);
1542 
1543 /**
1544  * __d_alloc	-	allocate a dcache entry
1545  * @sb: filesystem it will belong to
1546  * @name: qstr of the name
1547  *
1548  * Allocates a dentry. It returns %NULL if there is insufficient memory
1549  * available. On a success the dentry is returned. The name passed in is
1550  * copied and the copy passed in may be reused after this call.
1551  */
1552 
1553 struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name)
1554 {
1555 	struct dentry *dentry;
1556 	char *dname;
1557 
1558 	dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
1559 	if (!dentry)
1560 		return NULL;
1561 
1562 	/*
1563 	 * We guarantee that the inline name is always NUL-terminated.
1564 	 * This way the memcpy() done by the name switching in rename
1565 	 * will still always have a NUL at the end, even if we might
1566 	 * be overwriting an internal NUL character
1567 	 */
1568 	dentry->d_iname[DNAME_INLINE_LEN-1] = 0;
1569 	if (name->len > DNAME_INLINE_LEN-1) {
1570 		size_t size = offsetof(struct external_name, name[1]);
1571 		struct external_name *p = kmalloc(size + name->len, GFP_KERNEL);
1572 		if (!p) {
1573 			kmem_cache_free(dentry_cache, dentry);
1574 			return NULL;
1575 		}
1576 		atomic_set(&p->u.count, 1);
1577 		dname = p->name;
1578 		if (IS_ENABLED(CONFIG_DCACHE_WORD_ACCESS))
1579 			kasan_unpoison_shadow(dname,
1580 				round_up(name->len + 1,	sizeof(unsigned long)));
1581 	} else  {
1582 		dname = dentry->d_iname;
1583 	}
1584 
1585 	dentry->d_name.len = name->len;
1586 	dentry->d_name.hash = name->hash;
1587 	memcpy(dname, name->name, name->len);
1588 	dname[name->len] = 0;
1589 
1590 	/* Make sure we always see the terminating NUL character */
1591 	smp_wmb();
1592 	dentry->d_name.name = dname;
1593 
1594 	dentry->d_lockref.count = 1;
1595 	dentry->d_flags = 0;
1596 	spin_lock_init(&dentry->d_lock);
1597 	seqcount_init(&dentry->d_seq);
1598 	dentry->d_inode = NULL;
1599 	dentry->d_parent = dentry;
1600 	dentry->d_sb = sb;
1601 	dentry->d_op = NULL;
1602 	dentry->d_fsdata = NULL;
1603 	INIT_HLIST_BL_NODE(&dentry->d_hash);
1604 	INIT_LIST_HEAD(&dentry->d_lru);
1605 	INIT_LIST_HEAD(&dentry->d_subdirs);
1606 	INIT_HLIST_NODE(&dentry->d_u.d_alias);
1607 	INIT_LIST_HEAD(&dentry->d_child);
1608 	d_set_d_op(dentry, dentry->d_sb->s_d_op);
1609 
1610 	this_cpu_inc(nr_dentry);
1611 
1612 	return dentry;
1613 }
1614 
1615 /**
1616  * d_alloc	-	allocate a dcache entry
1617  * @parent: parent of entry to allocate
1618  * @name: qstr of the name
1619  *
1620  * Allocates a dentry. It returns %NULL if there is insufficient memory
1621  * available. On a success the dentry is returned. The name passed in is
1622  * copied and the copy passed in may be reused after this call.
1623  */
1624 struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1625 {
1626 	struct dentry *dentry = __d_alloc(parent->d_sb, name);
1627 	if (!dentry)
1628 		return NULL;
1629 
1630 	spin_lock(&parent->d_lock);
1631 	/*
1632 	 * don't need child lock because it is not subject
1633 	 * to concurrency here
1634 	 */
1635 	__dget_dlock(parent);
1636 	dentry->d_parent = parent;
1637 	list_add(&dentry->d_child, &parent->d_subdirs);
1638 	spin_unlock(&parent->d_lock);
1639 
1640 	return dentry;
1641 }
1642 EXPORT_SYMBOL(d_alloc);
1643 
1644 /**
1645  * d_alloc_pseudo - allocate a dentry (for lookup-less filesystems)
1646  * @sb: the superblock
1647  * @name: qstr of the name
1648  *
1649  * For a filesystem that just pins its dentries in memory and never
1650  * performs lookups at all, return an unhashed IS_ROOT dentry.
1651  */
1652 struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
1653 {
1654 	return __d_alloc(sb, name);
1655 }
1656 EXPORT_SYMBOL(d_alloc_pseudo);
1657 
1658 struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1659 {
1660 	struct qstr q;
1661 
1662 	q.name = name;
1663 	q.len = strlen(name);
1664 	q.hash = full_name_hash(q.name, q.len);
1665 	return d_alloc(parent, &q);
1666 }
1667 EXPORT_SYMBOL(d_alloc_name);
1668 
1669 void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1670 {
1671 	WARN_ON_ONCE(dentry->d_op);
1672 	WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH	|
1673 				DCACHE_OP_COMPARE	|
1674 				DCACHE_OP_REVALIDATE	|
1675 				DCACHE_OP_WEAK_REVALIDATE	|
1676 				DCACHE_OP_DELETE ));
1677 	dentry->d_op = op;
1678 	if (!op)
1679 		return;
1680 	if (op->d_hash)
1681 		dentry->d_flags |= DCACHE_OP_HASH;
1682 	if (op->d_compare)
1683 		dentry->d_flags |= DCACHE_OP_COMPARE;
1684 	if (op->d_revalidate)
1685 		dentry->d_flags |= DCACHE_OP_REVALIDATE;
1686 	if (op->d_weak_revalidate)
1687 		dentry->d_flags |= DCACHE_OP_WEAK_REVALIDATE;
1688 	if (op->d_delete)
1689 		dentry->d_flags |= DCACHE_OP_DELETE;
1690 	if (op->d_prune)
1691 		dentry->d_flags |= DCACHE_OP_PRUNE;
1692 
1693 }
1694 EXPORT_SYMBOL(d_set_d_op);
1695 
1696 
1697 /*
1698  * d_set_fallthru - Mark a dentry as falling through to a lower layer
1699  * @dentry - The dentry to mark
1700  *
1701  * Mark a dentry as falling through to the lower layer (as set with
1702  * d_pin_lower()).  This flag may be recorded on the medium.
1703  */
1704 void d_set_fallthru(struct dentry *dentry)
1705 {
1706 	spin_lock(&dentry->d_lock);
1707 	dentry->d_flags |= DCACHE_FALLTHRU;
1708 	spin_unlock(&dentry->d_lock);
1709 }
1710 EXPORT_SYMBOL(d_set_fallthru);
1711 
1712 static unsigned d_flags_for_inode(struct inode *inode)
1713 {
1714 	unsigned add_flags = DCACHE_REGULAR_TYPE;
1715 
1716 	if (!inode)
1717 		return DCACHE_MISS_TYPE;
1718 
1719 	if (S_ISDIR(inode->i_mode)) {
1720 		add_flags = DCACHE_DIRECTORY_TYPE;
1721 		if (unlikely(!(inode->i_opflags & IOP_LOOKUP))) {
1722 			if (unlikely(!inode->i_op->lookup))
1723 				add_flags = DCACHE_AUTODIR_TYPE;
1724 			else
1725 				inode->i_opflags |= IOP_LOOKUP;
1726 		}
1727 		goto type_determined;
1728 	}
1729 
1730 	if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) {
1731 		if (unlikely(inode->i_op->follow_link)) {
1732 			add_flags = DCACHE_SYMLINK_TYPE;
1733 			goto type_determined;
1734 		}
1735 		inode->i_opflags |= IOP_NOFOLLOW;
1736 	}
1737 
1738 	if (unlikely(!S_ISREG(inode->i_mode)))
1739 		add_flags = DCACHE_SPECIAL_TYPE;
1740 
1741 type_determined:
1742 	if (unlikely(IS_AUTOMOUNT(inode)))
1743 		add_flags |= DCACHE_NEED_AUTOMOUNT;
1744 	return add_flags;
1745 }
1746 
1747 static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1748 {
1749 	unsigned add_flags = d_flags_for_inode(inode);
1750 
1751 	spin_lock(&dentry->d_lock);
1752 	if (inode)
1753 		hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
1754 	__d_set_inode_and_type(dentry, inode, add_flags);
1755 	dentry_rcuwalk_barrier(dentry);
1756 	spin_unlock(&dentry->d_lock);
1757 	fsnotify_d_instantiate(dentry, inode);
1758 }
1759 
1760 /**
1761  * d_instantiate - fill in inode information for a dentry
1762  * @entry: dentry to complete
1763  * @inode: inode to attach to this dentry
1764  *
1765  * Fill in inode information in the entry.
1766  *
1767  * This turns negative dentries into productive full members
1768  * of society.
1769  *
1770  * NOTE! This assumes that the inode count has been incremented
1771  * (or otherwise set) by the caller to indicate that it is now
1772  * in use by the dcache.
1773  */
1774 
1775 void d_instantiate(struct dentry *entry, struct inode * inode)
1776 {
1777 	BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
1778 	if (inode)
1779 		spin_lock(&inode->i_lock);
1780 	__d_instantiate(entry, inode);
1781 	if (inode)
1782 		spin_unlock(&inode->i_lock);
1783 	security_d_instantiate(entry, inode);
1784 }
1785 EXPORT_SYMBOL(d_instantiate);
1786 
1787 /**
1788  * d_instantiate_unique - instantiate a non-aliased dentry
1789  * @entry: dentry to instantiate
1790  * @inode: inode to attach to this dentry
1791  *
1792  * Fill in inode information in the entry. On success, it returns NULL.
1793  * If an unhashed alias of "entry" already exists, then we return the
1794  * aliased dentry instead and drop one reference to inode.
1795  *
1796  * Note that in order to avoid conflicts with rename() etc, the caller
1797  * had better be holding the parent directory semaphore.
1798  *
1799  * This also assumes that the inode count has been incremented
1800  * (or otherwise set) by the caller to indicate that it is now
1801  * in use by the dcache.
1802  */
1803 static struct dentry *__d_instantiate_unique(struct dentry *entry,
1804 					     struct inode *inode)
1805 {
1806 	struct dentry *alias;
1807 	int len = entry->d_name.len;
1808 	const char *name = entry->d_name.name;
1809 	unsigned int hash = entry->d_name.hash;
1810 
1811 	if (!inode) {
1812 		__d_instantiate(entry, NULL);
1813 		return NULL;
1814 	}
1815 
1816 	hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
1817 		/*
1818 		 * Don't need alias->d_lock here, because aliases with
1819 		 * d_parent == entry->d_parent are not subject to name or
1820 		 * parent changes, because the parent inode i_mutex is held.
1821 		 */
1822 		if (alias->d_name.hash != hash)
1823 			continue;
1824 		if (alias->d_parent != entry->d_parent)
1825 			continue;
1826 		if (alias->d_name.len != len)
1827 			continue;
1828 		if (dentry_cmp(alias, name, len))
1829 			continue;
1830 		__dget(alias);
1831 		return alias;
1832 	}
1833 
1834 	__d_instantiate(entry, inode);
1835 	return NULL;
1836 }
1837 
1838 struct dentry *d_instantiate_unique(struct dentry *entry, struct inode *inode)
1839 {
1840 	struct dentry *result;
1841 
1842 	BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
1843 
1844 	if (inode)
1845 		spin_lock(&inode->i_lock);
1846 	result = __d_instantiate_unique(entry, inode);
1847 	if (inode)
1848 		spin_unlock(&inode->i_lock);
1849 
1850 	if (!result) {
1851 		security_d_instantiate(entry, inode);
1852 		return NULL;
1853 	}
1854 
1855 	BUG_ON(!d_unhashed(result));
1856 	iput(inode);
1857 	return result;
1858 }
1859 
1860 EXPORT_SYMBOL(d_instantiate_unique);
1861 
1862 /**
1863  * d_instantiate_no_diralias - instantiate a non-aliased dentry
1864  * @entry: dentry to complete
1865  * @inode: inode to attach to this dentry
1866  *
1867  * Fill in inode information in the entry.  If a directory alias is found, then
1868  * return an error (and drop inode).  Together with d_materialise_unique() this
1869  * guarantees that a directory inode may never have more than one alias.
1870  */
1871 int d_instantiate_no_diralias(struct dentry *entry, struct inode *inode)
1872 {
1873 	BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
1874 
1875 	spin_lock(&inode->i_lock);
1876 	if (S_ISDIR(inode->i_mode) && !hlist_empty(&inode->i_dentry)) {
1877 		spin_unlock(&inode->i_lock);
1878 		iput(inode);
1879 		return -EBUSY;
1880 	}
1881 	__d_instantiate(entry, inode);
1882 	spin_unlock(&inode->i_lock);
1883 	security_d_instantiate(entry, inode);
1884 
1885 	return 0;
1886 }
1887 EXPORT_SYMBOL(d_instantiate_no_diralias);
1888 
1889 struct dentry *d_make_root(struct inode *root_inode)
1890 {
1891 	struct dentry *res = NULL;
1892 
1893 	if (root_inode) {
1894 		static const struct qstr name = QSTR_INIT("/", 1);
1895 
1896 		res = __d_alloc(root_inode->i_sb, &name);
1897 		if (res)
1898 			d_instantiate(res, root_inode);
1899 		else
1900 			iput(root_inode);
1901 	}
1902 	return res;
1903 }
1904 EXPORT_SYMBOL(d_make_root);
1905 
1906 static struct dentry * __d_find_any_alias(struct inode *inode)
1907 {
1908 	struct dentry *alias;
1909 
1910 	if (hlist_empty(&inode->i_dentry))
1911 		return NULL;
1912 	alias = hlist_entry(inode->i_dentry.first, struct dentry, d_u.d_alias);
1913 	__dget(alias);
1914 	return alias;
1915 }
1916 
1917 /**
1918  * d_find_any_alias - find any alias for a given inode
1919  * @inode: inode to find an alias for
1920  *
1921  * If any aliases exist for the given inode, take and return a
1922  * reference for one of them.  If no aliases exist, return %NULL.
1923  */
1924 struct dentry *d_find_any_alias(struct inode *inode)
1925 {
1926 	struct dentry *de;
1927 
1928 	spin_lock(&inode->i_lock);
1929 	de = __d_find_any_alias(inode);
1930 	spin_unlock(&inode->i_lock);
1931 	return de;
1932 }
1933 EXPORT_SYMBOL(d_find_any_alias);
1934 
1935 static struct dentry *__d_obtain_alias(struct inode *inode, int disconnected)
1936 {
1937 	static const struct qstr anonstring = QSTR_INIT("/", 1);
1938 	struct dentry *tmp;
1939 	struct dentry *res;
1940 	unsigned add_flags;
1941 
1942 	if (!inode)
1943 		return ERR_PTR(-ESTALE);
1944 	if (IS_ERR(inode))
1945 		return ERR_CAST(inode);
1946 
1947 	res = d_find_any_alias(inode);
1948 	if (res)
1949 		goto out_iput;
1950 
1951 	tmp = __d_alloc(inode->i_sb, &anonstring);
1952 	if (!tmp) {
1953 		res = ERR_PTR(-ENOMEM);
1954 		goto out_iput;
1955 	}
1956 
1957 	spin_lock(&inode->i_lock);
1958 	res = __d_find_any_alias(inode);
1959 	if (res) {
1960 		spin_unlock(&inode->i_lock);
1961 		dput(tmp);
1962 		goto out_iput;
1963 	}
1964 
1965 	/* attach a disconnected dentry */
1966 	add_flags = d_flags_for_inode(inode);
1967 
1968 	if (disconnected)
1969 		add_flags |= DCACHE_DISCONNECTED;
1970 
1971 	spin_lock(&tmp->d_lock);
1972 	__d_set_inode_and_type(tmp, inode, add_flags);
1973 	hlist_add_head(&tmp->d_u.d_alias, &inode->i_dentry);
1974 	hlist_bl_lock(&tmp->d_sb->s_anon);
1975 	hlist_bl_add_head(&tmp->d_hash, &tmp->d_sb->s_anon);
1976 	hlist_bl_unlock(&tmp->d_sb->s_anon);
1977 	spin_unlock(&tmp->d_lock);
1978 	spin_unlock(&inode->i_lock);
1979 	security_d_instantiate(tmp, inode);
1980 
1981 	return tmp;
1982 
1983  out_iput:
1984 	if (res && !IS_ERR(res))
1985 		security_d_instantiate(res, inode);
1986 	iput(inode);
1987 	return res;
1988 }
1989 
1990 /**
1991  * d_obtain_alias - find or allocate a DISCONNECTED dentry for a given inode
1992  * @inode: inode to allocate the dentry for
1993  *
1994  * Obtain a dentry for an inode resulting from NFS filehandle conversion or
1995  * similar open by handle operations.  The returned dentry may be anonymous,
1996  * or may have a full name (if the inode was already in the cache).
1997  *
1998  * When called on a directory inode, we must ensure that the inode only ever
1999  * has one dentry.  If a dentry is found, that is returned instead of
2000  * allocating a new one.
2001  *
2002  * On successful return, the reference to the inode has been transferred
2003  * to the dentry.  In case of an error the reference on the inode is released.
2004  * To make it easier to use in export operations a %NULL or IS_ERR inode may
2005  * be passed in and the error will be propagated to the return value,
2006  * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
2007  */
2008 struct dentry *d_obtain_alias(struct inode *inode)
2009 {
2010 	return __d_obtain_alias(inode, 1);
2011 }
2012 EXPORT_SYMBOL(d_obtain_alias);
2013 
2014 /**
2015  * d_obtain_root - find or allocate a dentry for a given inode
2016  * @inode: inode to allocate the dentry for
2017  *
2018  * Obtain an IS_ROOT dentry for the root of a filesystem.
2019  *
2020  * We must ensure that directory inodes only ever have one dentry.  If a
2021  * dentry is found, that is returned instead of allocating a new one.
2022  *
2023  * On successful return, the reference to the inode has been transferred
2024  * to the dentry.  In case of an error the reference on the inode is
2025  * released.  A %NULL or IS_ERR inode may be passed in and will be the
2026  * error will be propagate to the return value, with a %NULL @inode
2027  * replaced by ERR_PTR(-ESTALE).
2028  */
2029 struct dentry *d_obtain_root(struct inode *inode)
2030 {
2031 	return __d_obtain_alias(inode, 0);
2032 }
2033 EXPORT_SYMBOL(d_obtain_root);
2034 
2035 /**
2036  * d_add_ci - lookup or allocate new dentry with case-exact name
2037  * @inode:  the inode case-insensitive lookup has found
2038  * @dentry: the negative dentry that was passed to the parent's lookup func
2039  * @name:   the case-exact name to be associated with the returned dentry
2040  *
2041  * This is to avoid filling the dcache with case-insensitive names to the
2042  * same inode, only the actual correct case is stored in the dcache for
2043  * case-insensitive filesystems.
2044  *
2045  * For a case-insensitive lookup match and if the the case-exact dentry
2046  * already exists in in the dcache, use it and return it.
2047  *
2048  * If no entry exists with the exact case name, allocate new dentry with
2049  * the exact case, and return the spliced entry.
2050  */
2051 struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
2052 			struct qstr *name)
2053 {
2054 	struct dentry *found;
2055 	struct dentry *new;
2056 
2057 	/*
2058 	 * First check if a dentry matching the name already exists,
2059 	 * if not go ahead and create it now.
2060 	 */
2061 	found = d_hash_and_lookup(dentry->d_parent, name);
2062 	if (!found) {
2063 		new = d_alloc(dentry->d_parent, name);
2064 		if (!new) {
2065 			found = ERR_PTR(-ENOMEM);
2066 		} else {
2067 			found = d_splice_alias(inode, new);
2068 			if (found) {
2069 				dput(new);
2070 				return found;
2071 			}
2072 			return new;
2073 		}
2074 	}
2075 	iput(inode);
2076 	return found;
2077 }
2078 EXPORT_SYMBOL(d_add_ci);
2079 
2080 /*
2081  * Do the slow-case of the dentry name compare.
2082  *
2083  * Unlike the dentry_cmp() function, we need to atomically
2084  * load the name and length information, so that the
2085  * filesystem can rely on them, and can use the 'name' and
2086  * 'len' information without worrying about walking off the
2087  * end of memory etc.
2088  *
2089  * Thus the read_seqcount_retry() and the "duplicate" info
2090  * in arguments (the low-level filesystem should not look
2091  * at the dentry inode or name contents directly, since
2092  * rename can change them while we're in RCU mode).
2093  */
2094 enum slow_d_compare {
2095 	D_COMP_OK,
2096 	D_COMP_NOMATCH,
2097 	D_COMP_SEQRETRY,
2098 };
2099 
2100 static noinline enum slow_d_compare slow_dentry_cmp(
2101 		const struct dentry *parent,
2102 		struct dentry *dentry,
2103 		unsigned int seq,
2104 		const struct qstr *name)
2105 {
2106 	int tlen = dentry->d_name.len;
2107 	const char *tname = dentry->d_name.name;
2108 
2109 	if (read_seqcount_retry(&dentry->d_seq, seq)) {
2110 		cpu_relax();
2111 		return D_COMP_SEQRETRY;
2112 	}
2113 	if (parent->d_op->d_compare(parent, dentry, tlen, tname, name))
2114 		return D_COMP_NOMATCH;
2115 	return D_COMP_OK;
2116 }
2117 
2118 /**
2119  * __d_lookup_rcu - search for a dentry (racy, store-free)
2120  * @parent: parent dentry
2121  * @name: qstr of name we wish to find
2122  * @seqp: returns d_seq value at the point where the dentry was found
2123  * Returns: dentry, or NULL
2124  *
2125  * __d_lookup_rcu is the dcache lookup function for rcu-walk name
2126  * resolution (store-free path walking) design described in
2127  * Documentation/filesystems/path-lookup.txt.
2128  *
2129  * This is not to be used outside core vfs.
2130  *
2131  * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
2132  * held, and rcu_read_lock held. The returned dentry must not be stored into
2133  * without taking d_lock and checking d_seq sequence count against @seq
2134  * returned here.
2135  *
2136  * A refcount may be taken on the found dentry with the d_rcu_to_refcount
2137  * function.
2138  *
2139  * Alternatively, __d_lookup_rcu may be called again to look up the child of
2140  * the returned dentry, so long as its parent's seqlock is checked after the
2141  * child is looked up. Thus, an interlocking stepping of sequence lock checks
2142  * is formed, giving integrity down the path walk.
2143  *
2144  * NOTE! The caller *has* to check the resulting dentry against the sequence
2145  * number we've returned before using any of the resulting dentry state!
2146  */
2147 struct dentry *__d_lookup_rcu(const struct dentry *parent,
2148 				const struct qstr *name,
2149 				unsigned *seqp)
2150 {
2151 	u64 hashlen = name->hash_len;
2152 	const unsigned char *str = name->name;
2153 	struct hlist_bl_head *b = d_hash(parent, hashlen_hash(hashlen));
2154 	struct hlist_bl_node *node;
2155 	struct dentry *dentry;
2156 
2157 	/*
2158 	 * Note: There is significant duplication with __d_lookup_rcu which is
2159 	 * required to prevent single threaded performance regressions
2160 	 * especially on architectures where smp_rmb (in seqcounts) are costly.
2161 	 * Keep the two functions in sync.
2162 	 */
2163 
2164 	/*
2165 	 * The hash list is protected using RCU.
2166 	 *
2167 	 * Carefully use d_seq when comparing a candidate dentry, to avoid
2168 	 * races with d_move().
2169 	 *
2170 	 * It is possible that concurrent renames can mess up our list
2171 	 * walk here and result in missing our dentry, resulting in the
2172 	 * false-negative result. d_lookup() protects against concurrent
2173 	 * renames using rename_lock seqlock.
2174 	 *
2175 	 * See Documentation/filesystems/path-lookup.txt for more details.
2176 	 */
2177 	hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2178 		unsigned seq;
2179 
2180 seqretry:
2181 		/*
2182 		 * The dentry sequence count protects us from concurrent
2183 		 * renames, and thus protects parent and name fields.
2184 		 *
2185 		 * The caller must perform a seqcount check in order
2186 		 * to do anything useful with the returned dentry.
2187 		 *
2188 		 * NOTE! We do a "raw" seqcount_begin here. That means that
2189 		 * we don't wait for the sequence count to stabilize if it
2190 		 * is in the middle of a sequence change. If we do the slow
2191 		 * dentry compare, we will do seqretries until it is stable,
2192 		 * and if we end up with a successful lookup, we actually
2193 		 * want to exit RCU lookup anyway.
2194 		 */
2195 		seq = raw_seqcount_begin(&dentry->d_seq);
2196 		if (dentry->d_parent != parent)
2197 			continue;
2198 		if (d_unhashed(dentry))
2199 			continue;
2200 
2201 		if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) {
2202 			if (dentry->d_name.hash != hashlen_hash(hashlen))
2203 				continue;
2204 			*seqp = seq;
2205 			switch (slow_dentry_cmp(parent, dentry, seq, name)) {
2206 			case D_COMP_OK:
2207 				return dentry;
2208 			case D_COMP_NOMATCH:
2209 				continue;
2210 			default:
2211 				goto seqretry;
2212 			}
2213 		}
2214 
2215 		if (dentry->d_name.hash_len != hashlen)
2216 			continue;
2217 		*seqp = seq;
2218 		if (!dentry_cmp(dentry, str, hashlen_len(hashlen)))
2219 			return dentry;
2220 	}
2221 	return NULL;
2222 }
2223 
2224 /**
2225  * d_lookup - search for a dentry
2226  * @parent: parent dentry
2227  * @name: qstr of name we wish to find
2228  * Returns: dentry, or NULL
2229  *
2230  * d_lookup searches the children of the parent dentry for the name in
2231  * question. If the dentry is found its reference count is incremented and the
2232  * dentry is returned. The caller must use dput to free the entry when it has
2233  * finished using it. %NULL is returned if the dentry does not exist.
2234  */
2235 struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name)
2236 {
2237 	struct dentry *dentry;
2238 	unsigned seq;
2239 
2240 	do {
2241 		seq = read_seqbegin(&rename_lock);
2242 		dentry = __d_lookup(parent, name);
2243 		if (dentry)
2244 			break;
2245 	} while (read_seqretry(&rename_lock, seq));
2246 	return dentry;
2247 }
2248 EXPORT_SYMBOL(d_lookup);
2249 
2250 /**
2251  * __d_lookup - search for a dentry (racy)
2252  * @parent: parent dentry
2253  * @name: qstr of name we wish to find
2254  * Returns: dentry, or NULL
2255  *
2256  * __d_lookup is like d_lookup, however it may (rarely) return a
2257  * false-negative result due to unrelated rename activity.
2258  *
2259  * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
2260  * however it must be used carefully, eg. with a following d_lookup in
2261  * the case of failure.
2262  *
2263  * __d_lookup callers must be commented.
2264  */
2265 struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name)
2266 {
2267 	unsigned int len = name->len;
2268 	unsigned int hash = name->hash;
2269 	const unsigned char *str = name->name;
2270 	struct hlist_bl_head *b = d_hash(parent, hash);
2271 	struct hlist_bl_node *node;
2272 	struct dentry *found = NULL;
2273 	struct dentry *dentry;
2274 
2275 	/*
2276 	 * Note: There is significant duplication with __d_lookup_rcu which is
2277 	 * required to prevent single threaded performance regressions
2278 	 * especially on architectures where smp_rmb (in seqcounts) are costly.
2279 	 * Keep the two functions in sync.
2280 	 */
2281 
2282 	/*
2283 	 * The hash list is protected using RCU.
2284 	 *
2285 	 * Take d_lock when comparing a candidate dentry, to avoid races
2286 	 * with d_move().
2287 	 *
2288 	 * It is possible that concurrent renames can mess up our list
2289 	 * walk here and result in missing our dentry, resulting in the
2290 	 * false-negative result. d_lookup() protects against concurrent
2291 	 * renames using rename_lock seqlock.
2292 	 *
2293 	 * See Documentation/filesystems/path-lookup.txt for more details.
2294 	 */
2295 	rcu_read_lock();
2296 
2297 	hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2298 
2299 		if (dentry->d_name.hash != hash)
2300 			continue;
2301 
2302 		spin_lock(&dentry->d_lock);
2303 		if (dentry->d_parent != parent)
2304 			goto next;
2305 		if (d_unhashed(dentry))
2306 			goto next;
2307 
2308 		/*
2309 		 * It is safe to compare names since d_move() cannot
2310 		 * change the qstr (protected by d_lock).
2311 		 */
2312 		if (parent->d_flags & DCACHE_OP_COMPARE) {
2313 			int tlen = dentry->d_name.len;
2314 			const char *tname = dentry->d_name.name;
2315 			if (parent->d_op->d_compare(parent, dentry, tlen, tname, name))
2316 				goto next;
2317 		} else {
2318 			if (dentry->d_name.len != len)
2319 				goto next;
2320 			if (dentry_cmp(dentry, str, len))
2321 				goto next;
2322 		}
2323 
2324 		dentry->d_lockref.count++;
2325 		found = dentry;
2326 		spin_unlock(&dentry->d_lock);
2327 		break;
2328 next:
2329 		spin_unlock(&dentry->d_lock);
2330  	}
2331  	rcu_read_unlock();
2332 
2333  	return found;
2334 }
2335 
2336 /**
2337  * d_hash_and_lookup - hash the qstr then search for a dentry
2338  * @dir: Directory to search in
2339  * @name: qstr of name we wish to find
2340  *
2341  * On lookup failure NULL is returned; on bad name - ERR_PTR(-error)
2342  */
2343 struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
2344 {
2345 	/*
2346 	 * Check for a fs-specific hash function. Note that we must
2347 	 * calculate the standard hash first, as the d_op->d_hash()
2348 	 * routine may choose to leave the hash value unchanged.
2349 	 */
2350 	name->hash = full_name_hash(name->name, name->len);
2351 	if (dir->d_flags & DCACHE_OP_HASH) {
2352 		int err = dir->d_op->d_hash(dir, name);
2353 		if (unlikely(err < 0))
2354 			return ERR_PTR(err);
2355 	}
2356 	return d_lookup(dir, name);
2357 }
2358 EXPORT_SYMBOL(d_hash_and_lookup);
2359 
2360 /*
2361  * When a file is deleted, we have two options:
2362  * - turn this dentry into a negative dentry
2363  * - unhash this dentry and free it.
2364  *
2365  * Usually, we want to just turn this into
2366  * a negative dentry, but if anybody else is
2367  * currently using the dentry or the inode
2368  * we can't do that and we fall back on removing
2369  * it from the hash queues and waiting for
2370  * it to be deleted later when it has no users
2371  */
2372 
2373 /**
2374  * d_delete - delete a dentry
2375  * @dentry: The dentry to delete
2376  *
2377  * Turn the dentry into a negative dentry if possible, otherwise
2378  * remove it from the hash queues so it can be deleted later
2379  */
2380 
2381 void d_delete(struct dentry * dentry)
2382 {
2383 	struct inode *inode;
2384 	int isdir = 0;
2385 	/*
2386 	 * Are we the only user?
2387 	 */
2388 again:
2389 	spin_lock(&dentry->d_lock);
2390 	inode = dentry->d_inode;
2391 	isdir = S_ISDIR(inode->i_mode);
2392 	if (dentry->d_lockref.count == 1) {
2393 		if (!spin_trylock(&inode->i_lock)) {
2394 			spin_unlock(&dentry->d_lock);
2395 			cpu_relax();
2396 			goto again;
2397 		}
2398 		dentry->d_flags &= ~DCACHE_CANT_MOUNT;
2399 		dentry_unlink_inode(dentry);
2400 		fsnotify_nameremove(dentry, isdir);
2401 		return;
2402 	}
2403 
2404 	if (!d_unhashed(dentry))
2405 		__d_drop(dentry);
2406 
2407 	spin_unlock(&dentry->d_lock);
2408 
2409 	fsnotify_nameremove(dentry, isdir);
2410 }
2411 EXPORT_SYMBOL(d_delete);
2412 
2413 static void __d_rehash(struct dentry * entry, struct hlist_bl_head *b)
2414 {
2415 	BUG_ON(!d_unhashed(entry));
2416 	hlist_bl_lock(b);
2417 	entry->d_flags |= DCACHE_RCUACCESS;
2418 	hlist_bl_add_head_rcu(&entry->d_hash, b);
2419 	hlist_bl_unlock(b);
2420 }
2421 
2422 static void _d_rehash(struct dentry * entry)
2423 {
2424 	__d_rehash(entry, d_hash(entry->d_parent, entry->d_name.hash));
2425 }
2426 
2427 /**
2428  * d_rehash	- add an entry back to the hash
2429  * @entry: dentry to add to the hash
2430  *
2431  * Adds a dentry to the hash according to its name.
2432  */
2433 
2434 void d_rehash(struct dentry * entry)
2435 {
2436 	spin_lock(&entry->d_lock);
2437 	_d_rehash(entry);
2438 	spin_unlock(&entry->d_lock);
2439 }
2440 EXPORT_SYMBOL(d_rehash);
2441 
2442 /**
2443  * dentry_update_name_case - update case insensitive dentry with a new name
2444  * @dentry: dentry to be updated
2445  * @name: new name
2446  *
2447  * Update a case insensitive dentry with new case of name.
2448  *
2449  * dentry must have been returned by d_lookup with name @name. Old and new
2450  * name lengths must match (ie. no d_compare which allows mismatched name
2451  * lengths).
2452  *
2453  * Parent inode i_mutex must be held over d_lookup and into this call (to
2454  * keep renames and concurrent inserts, and readdir(2) away).
2455  */
2456 void dentry_update_name_case(struct dentry *dentry, struct qstr *name)
2457 {
2458 	BUG_ON(!mutex_is_locked(&dentry->d_parent->d_inode->i_mutex));
2459 	BUG_ON(dentry->d_name.len != name->len); /* d_lookup gives this */
2460 
2461 	spin_lock(&dentry->d_lock);
2462 	write_seqcount_begin(&dentry->d_seq);
2463 	memcpy((unsigned char *)dentry->d_name.name, name->name, name->len);
2464 	write_seqcount_end(&dentry->d_seq);
2465 	spin_unlock(&dentry->d_lock);
2466 }
2467 EXPORT_SYMBOL(dentry_update_name_case);
2468 
2469 static void swap_names(struct dentry *dentry, struct dentry *target)
2470 {
2471 	if (unlikely(dname_external(target))) {
2472 		if (unlikely(dname_external(dentry))) {
2473 			/*
2474 			 * Both external: swap the pointers
2475 			 */
2476 			swap(target->d_name.name, dentry->d_name.name);
2477 		} else {
2478 			/*
2479 			 * dentry:internal, target:external.  Steal target's
2480 			 * storage and make target internal.
2481 			 */
2482 			memcpy(target->d_iname, dentry->d_name.name,
2483 					dentry->d_name.len + 1);
2484 			dentry->d_name.name = target->d_name.name;
2485 			target->d_name.name = target->d_iname;
2486 		}
2487 	} else {
2488 		if (unlikely(dname_external(dentry))) {
2489 			/*
2490 			 * dentry:external, target:internal.  Give dentry's
2491 			 * storage to target and make dentry internal
2492 			 */
2493 			memcpy(dentry->d_iname, target->d_name.name,
2494 					target->d_name.len + 1);
2495 			target->d_name.name = dentry->d_name.name;
2496 			dentry->d_name.name = dentry->d_iname;
2497 		} else {
2498 			/*
2499 			 * Both are internal.
2500 			 */
2501 			unsigned int i;
2502 			BUILD_BUG_ON(!IS_ALIGNED(DNAME_INLINE_LEN, sizeof(long)));
2503 			kmemcheck_mark_initialized(dentry->d_iname, DNAME_INLINE_LEN);
2504 			kmemcheck_mark_initialized(target->d_iname, DNAME_INLINE_LEN);
2505 			for (i = 0; i < DNAME_INLINE_LEN / sizeof(long); i++) {
2506 				swap(((long *) &dentry->d_iname)[i],
2507 				     ((long *) &target->d_iname)[i]);
2508 			}
2509 		}
2510 	}
2511 	swap(dentry->d_name.hash_len, target->d_name.hash_len);
2512 }
2513 
2514 static void copy_name(struct dentry *dentry, struct dentry *target)
2515 {
2516 	struct external_name *old_name = NULL;
2517 	if (unlikely(dname_external(dentry)))
2518 		old_name = external_name(dentry);
2519 	if (unlikely(dname_external(target))) {
2520 		atomic_inc(&external_name(target)->u.count);
2521 		dentry->d_name = target->d_name;
2522 	} else {
2523 		memcpy(dentry->d_iname, target->d_name.name,
2524 				target->d_name.len + 1);
2525 		dentry->d_name.name = dentry->d_iname;
2526 		dentry->d_name.hash_len = target->d_name.hash_len;
2527 	}
2528 	if (old_name && likely(atomic_dec_and_test(&old_name->u.count)))
2529 		kfree_rcu(old_name, u.head);
2530 }
2531 
2532 static void dentry_lock_for_move(struct dentry *dentry, struct dentry *target)
2533 {
2534 	/*
2535 	 * XXXX: do we really need to take target->d_lock?
2536 	 */
2537 	if (IS_ROOT(dentry) || dentry->d_parent == target->d_parent)
2538 		spin_lock(&target->d_parent->d_lock);
2539 	else {
2540 		if (d_ancestor(dentry->d_parent, target->d_parent)) {
2541 			spin_lock(&dentry->d_parent->d_lock);
2542 			spin_lock_nested(&target->d_parent->d_lock,
2543 						DENTRY_D_LOCK_NESTED);
2544 		} else {
2545 			spin_lock(&target->d_parent->d_lock);
2546 			spin_lock_nested(&dentry->d_parent->d_lock,
2547 						DENTRY_D_LOCK_NESTED);
2548 		}
2549 	}
2550 	if (target < dentry) {
2551 		spin_lock_nested(&target->d_lock, 2);
2552 		spin_lock_nested(&dentry->d_lock, 3);
2553 	} else {
2554 		spin_lock_nested(&dentry->d_lock, 2);
2555 		spin_lock_nested(&target->d_lock, 3);
2556 	}
2557 }
2558 
2559 static void dentry_unlock_for_move(struct dentry *dentry, struct dentry *target)
2560 {
2561 	if (target->d_parent != dentry->d_parent)
2562 		spin_unlock(&dentry->d_parent->d_lock);
2563 	if (target->d_parent != target)
2564 		spin_unlock(&target->d_parent->d_lock);
2565 	spin_unlock(&target->d_lock);
2566 	spin_unlock(&dentry->d_lock);
2567 }
2568 
2569 /*
2570  * When switching names, the actual string doesn't strictly have to
2571  * be preserved in the target - because we're dropping the target
2572  * anyway. As such, we can just do a simple memcpy() to copy over
2573  * the new name before we switch, unless we are going to rehash
2574  * it.  Note that if we *do* unhash the target, we are not allowed
2575  * to rehash it without giving it a new name/hash key - whether
2576  * we swap or overwrite the names here, resulting name won't match
2577  * the reality in filesystem; it's only there for d_path() purposes.
2578  * Note that all of this is happening under rename_lock, so the
2579  * any hash lookup seeing it in the middle of manipulations will
2580  * be discarded anyway.  So we do not care what happens to the hash
2581  * key in that case.
2582  */
2583 /*
2584  * __d_move - move a dentry
2585  * @dentry: entry to move
2586  * @target: new dentry
2587  * @exchange: exchange the two dentries
2588  *
2589  * Update the dcache to reflect the move of a file name. Negative
2590  * dcache entries should not be moved in this way. Caller must hold
2591  * rename_lock, the i_mutex of the source and target directories,
2592  * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
2593  */
2594 static void __d_move(struct dentry *dentry, struct dentry *target,
2595 		     bool exchange)
2596 {
2597 	if (!dentry->d_inode)
2598 		printk(KERN_WARNING "VFS: moving negative dcache entry\n");
2599 
2600 	BUG_ON(d_ancestor(dentry, target));
2601 	BUG_ON(d_ancestor(target, dentry));
2602 
2603 	dentry_lock_for_move(dentry, target);
2604 
2605 	write_seqcount_begin(&dentry->d_seq);
2606 	write_seqcount_begin_nested(&target->d_seq, DENTRY_D_LOCK_NESTED);
2607 
2608 	/* __d_drop does write_seqcount_barrier, but they're OK to nest. */
2609 
2610 	/*
2611 	 * Move the dentry to the target hash queue. Don't bother checking
2612 	 * for the same hash queue because of how unlikely it is.
2613 	 */
2614 	__d_drop(dentry);
2615 	__d_rehash(dentry, d_hash(target->d_parent, target->d_name.hash));
2616 
2617 	/*
2618 	 * Unhash the target (d_delete() is not usable here).  If exchanging
2619 	 * the two dentries, then rehash onto the other's hash queue.
2620 	 */
2621 	__d_drop(target);
2622 	if (exchange) {
2623 		__d_rehash(target,
2624 			   d_hash(dentry->d_parent, dentry->d_name.hash));
2625 	}
2626 
2627 	/* Switch the names.. */
2628 	if (exchange)
2629 		swap_names(dentry, target);
2630 	else
2631 		copy_name(dentry, target);
2632 
2633 	/* ... and switch them in the tree */
2634 	if (IS_ROOT(dentry)) {
2635 		/* splicing a tree */
2636 		dentry->d_parent = target->d_parent;
2637 		target->d_parent = target;
2638 		list_del_init(&target->d_child);
2639 		list_move(&dentry->d_child, &dentry->d_parent->d_subdirs);
2640 	} else {
2641 		/* swapping two dentries */
2642 		swap(dentry->d_parent, target->d_parent);
2643 		list_move(&target->d_child, &target->d_parent->d_subdirs);
2644 		list_move(&dentry->d_child, &dentry->d_parent->d_subdirs);
2645 		if (exchange)
2646 			fsnotify_d_move(target);
2647 		fsnotify_d_move(dentry);
2648 	}
2649 
2650 	write_seqcount_end(&target->d_seq);
2651 	write_seqcount_end(&dentry->d_seq);
2652 
2653 	dentry_unlock_for_move(dentry, target);
2654 }
2655 
2656 /*
2657  * d_move - move a dentry
2658  * @dentry: entry to move
2659  * @target: new dentry
2660  *
2661  * Update the dcache to reflect the move of a file name. Negative
2662  * dcache entries should not be moved in this way. See the locking
2663  * requirements for __d_move.
2664  */
2665 void d_move(struct dentry *dentry, struct dentry *target)
2666 {
2667 	write_seqlock(&rename_lock);
2668 	__d_move(dentry, target, false);
2669 	write_sequnlock(&rename_lock);
2670 }
2671 EXPORT_SYMBOL(d_move);
2672 
2673 /*
2674  * d_exchange - exchange two dentries
2675  * @dentry1: first dentry
2676  * @dentry2: second dentry
2677  */
2678 void d_exchange(struct dentry *dentry1, struct dentry *dentry2)
2679 {
2680 	write_seqlock(&rename_lock);
2681 
2682 	WARN_ON(!dentry1->d_inode);
2683 	WARN_ON(!dentry2->d_inode);
2684 	WARN_ON(IS_ROOT(dentry1));
2685 	WARN_ON(IS_ROOT(dentry2));
2686 
2687 	__d_move(dentry1, dentry2, true);
2688 
2689 	write_sequnlock(&rename_lock);
2690 }
2691 
2692 /**
2693  * d_ancestor - search for an ancestor
2694  * @p1: ancestor dentry
2695  * @p2: child dentry
2696  *
2697  * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2698  * an ancestor of p2, else NULL.
2699  */
2700 struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
2701 {
2702 	struct dentry *p;
2703 
2704 	for (p = p2; !IS_ROOT(p); p = p->d_parent) {
2705 		if (p->d_parent == p1)
2706 			return p;
2707 	}
2708 	return NULL;
2709 }
2710 
2711 /*
2712  * This helper attempts to cope with remotely renamed directories
2713  *
2714  * It assumes that the caller is already holding
2715  * dentry->d_parent->d_inode->i_mutex, inode->i_lock and rename_lock
2716  *
2717  * Note: If ever the locking in lock_rename() changes, then please
2718  * remember to update this too...
2719  */
2720 static int __d_unalias(struct inode *inode,
2721 		struct dentry *dentry, struct dentry *alias)
2722 {
2723 	struct mutex *m1 = NULL, *m2 = NULL;
2724 	int ret = -ESTALE;
2725 
2726 	/* If alias and dentry share a parent, then no extra locks required */
2727 	if (alias->d_parent == dentry->d_parent)
2728 		goto out_unalias;
2729 
2730 	/* See lock_rename() */
2731 	if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
2732 		goto out_err;
2733 	m1 = &dentry->d_sb->s_vfs_rename_mutex;
2734 	if (!mutex_trylock(&alias->d_parent->d_inode->i_mutex))
2735 		goto out_err;
2736 	m2 = &alias->d_parent->d_inode->i_mutex;
2737 out_unalias:
2738 	__d_move(alias, dentry, false);
2739 	ret = 0;
2740 out_err:
2741 	spin_unlock(&inode->i_lock);
2742 	if (m2)
2743 		mutex_unlock(m2);
2744 	if (m1)
2745 		mutex_unlock(m1);
2746 	return ret;
2747 }
2748 
2749 /**
2750  * d_splice_alias - splice a disconnected dentry into the tree if one exists
2751  * @inode:  the inode which may have a disconnected dentry
2752  * @dentry: a negative dentry which we want to point to the inode.
2753  *
2754  * If inode is a directory and has an IS_ROOT alias, then d_move that in
2755  * place of the given dentry and return it, else simply d_add the inode
2756  * to the dentry and return NULL.
2757  *
2758  * If a non-IS_ROOT directory is found, the filesystem is corrupt, and
2759  * we should error out: directories can't have multiple aliases.
2760  *
2761  * This is needed in the lookup routine of any filesystem that is exportable
2762  * (via knfsd) so that we can build dcache paths to directories effectively.
2763  *
2764  * If a dentry was found and moved, then it is returned.  Otherwise NULL
2765  * is returned.  This matches the expected return value of ->lookup.
2766  *
2767  * Cluster filesystems may call this function with a negative, hashed dentry.
2768  * In that case, we know that the inode will be a regular file, and also this
2769  * will only occur during atomic_open. So we need to check for the dentry
2770  * being already hashed only in the final case.
2771  */
2772 struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
2773 {
2774 	if (IS_ERR(inode))
2775 		return ERR_CAST(inode);
2776 
2777 	BUG_ON(!d_unhashed(dentry));
2778 
2779 	if (!inode) {
2780 		__d_instantiate(dentry, NULL);
2781 		goto out;
2782 	}
2783 	spin_lock(&inode->i_lock);
2784 	if (S_ISDIR(inode->i_mode)) {
2785 		struct dentry *new = __d_find_any_alias(inode);
2786 		if (unlikely(new)) {
2787 			write_seqlock(&rename_lock);
2788 			if (unlikely(d_ancestor(new, dentry))) {
2789 				write_sequnlock(&rename_lock);
2790 				spin_unlock(&inode->i_lock);
2791 				dput(new);
2792 				new = ERR_PTR(-ELOOP);
2793 				pr_warn_ratelimited(
2794 					"VFS: Lookup of '%s' in %s %s"
2795 					" would have caused loop\n",
2796 					dentry->d_name.name,
2797 					inode->i_sb->s_type->name,
2798 					inode->i_sb->s_id);
2799 			} else if (!IS_ROOT(new)) {
2800 				int err = __d_unalias(inode, dentry, new);
2801 				write_sequnlock(&rename_lock);
2802 				if (err) {
2803 					dput(new);
2804 					new = ERR_PTR(err);
2805 				}
2806 			} else {
2807 				__d_move(new, dentry, false);
2808 				write_sequnlock(&rename_lock);
2809 				spin_unlock(&inode->i_lock);
2810 				security_d_instantiate(new, inode);
2811 			}
2812 			iput(inode);
2813 			return new;
2814 		}
2815 	}
2816 	/* already taking inode->i_lock, so d_add() by hand */
2817 	__d_instantiate(dentry, inode);
2818 	spin_unlock(&inode->i_lock);
2819 out:
2820 	security_d_instantiate(dentry, inode);
2821 	d_rehash(dentry);
2822 	return NULL;
2823 }
2824 EXPORT_SYMBOL(d_splice_alias);
2825 
2826 static int prepend(char **buffer, int *buflen, const char *str, int namelen)
2827 {
2828 	*buflen -= namelen;
2829 	if (*buflen < 0)
2830 		return -ENAMETOOLONG;
2831 	*buffer -= namelen;
2832 	memcpy(*buffer, str, namelen);
2833 	return 0;
2834 }
2835 
2836 /**
2837  * prepend_name - prepend a pathname in front of current buffer pointer
2838  * @buffer: buffer pointer
2839  * @buflen: allocated length of the buffer
2840  * @name:   name string and length qstr structure
2841  *
2842  * With RCU path tracing, it may race with d_move(). Use ACCESS_ONCE() to
2843  * make sure that either the old or the new name pointer and length are
2844  * fetched. However, there may be mismatch between length and pointer.
2845  * The length cannot be trusted, we need to copy it byte-by-byte until
2846  * the length is reached or a null byte is found. It also prepends "/" at
2847  * the beginning of the name. The sequence number check at the caller will
2848  * retry it again when a d_move() does happen. So any garbage in the buffer
2849  * due to mismatched pointer and length will be discarded.
2850  *
2851  * Data dependency barrier is needed to make sure that we see that terminating
2852  * NUL.  Alpha strikes again, film at 11...
2853  */
2854 static int prepend_name(char **buffer, int *buflen, struct qstr *name)
2855 {
2856 	const char *dname = ACCESS_ONCE(name->name);
2857 	u32 dlen = ACCESS_ONCE(name->len);
2858 	char *p;
2859 
2860 	smp_read_barrier_depends();
2861 
2862 	*buflen -= dlen + 1;
2863 	if (*buflen < 0)
2864 		return -ENAMETOOLONG;
2865 	p = *buffer -= dlen + 1;
2866 	*p++ = '/';
2867 	while (dlen--) {
2868 		char c = *dname++;
2869 		if (!c)
2870 			break;
2871 		*p++ = c;
2872 	}
2873 	return 0;
2874 }
2875 
2876 /**
2877  * prepend_path - Prepend path string to a buffer
2878  * @path: the dentry/vfsmount to report
2879  * @root: root vfsmnt/dentry
2880  * @buffer: pointer to the end of the buffer
2881  * @buflen: pointer to buffer length
2882  *
2883  * The function will first try to write out the pathname without taking any
2884  * lock other than the RCU read lock to make sure that dentries won't go away.
2885  * It only checks the sequence number of the global rename_lock as any change
2886  * in the dentry's d_seq will be preceded by changes in the rename_lock
2887  * sequence number. If the sequence number had been changed, it will restart
2888  * the whole pathname back-tracing sequence again by taking the rename_lock.
2889  * In this case, there is no need to take the RCU read lock as the recursive
2890  * parent pointer references will keep the dentry chain alive as long as no
2891  * rename operation is performed.
2892  */
2893 static int prepend_path(const struct path *path,
2894 			const struct path *root,
2895 			char **buffer, int *buflen)
2896 {
2897 	struct dentry *dentry;
2898 	struct vfsmount *vfsmnt;
2899 	struct mount *mnt;
2900 	int error = 0;
2901 	unsigned seq, m_seq = 0;
2902 	char *bptr;
2903 	int blen;
2904 
2905 	rcu_read_lock();
2906 restart_mnt:
2907 	read_seqbegin_or_lock(&mount_lock, &m_seq);
2908 	seq = 0;
2909 	rcu_read_lock();
2910 restart:
2911 	bptr = *buffer;
2912 	blen = *buflen;
2913 	error = 0;
2914 	dentry = path->dentry;
2915 	vfsmnt = path->mnt;
2916 	mnt = real_mount(vfsmnt);
2917 	read_seqbegin_or_lock(&rename_lock, &seq);
2918 	while (dentry != root->dentry || vfsmnt != root->mnt) {
2919 		struct dentry * parent;
2920 
2921 		if (dentry == vfsmnt->mnt_root || IS_ROOT(dentry)) {
2922 			struct mount *parent = ACCESS_ONCE(mnt->mnt_parent);
2923 			/* Global root? */
2924 			if (mnt != parent) {
2925 				dentry = ACCESS_ONCE(mnt->mnt_mountpoint);
2926 				mnt = parent;
2927 				vfsmnt = &mnt->mnt;
2928 				continue;
2929 			}
2930 			/*
2931 			 * Filesystems needing to implement special "root names"
2932 			 * should do so with ->d_dname()
2933 			 */
2934 			if (IS_ROOT(dentry) &&
2935 			   (dentry->d_name.len != 1 ||
2936 			    dentry->d_name.name[0] != '/')) {
2937 				WARN(1, "Root dentry has weird name <%.*s>\n",
2938 				     (int) dentry->d_name.len,
2939 				     dentry->d_name.name);
2940 			}
2941 			if (!error)
2942 				error = is_mounted(vfsmnt) ? 1 : 2;
2943 			break;
2944 		}
2945 		parent = dentry->d_parent;
2946 		prefetch(parent);
2947 		error = prepend_name(&bptr, &blen, &dentry->d_name);
2948 		if (error)
2949 			break;
2950 
2951 		dentry = parent;
2952 	}
2953 	if (!(seq & 1))
2954 		rcu_read_unlock();
2955 	if (need_seqretry(&rename_lock, seq)) {
2956 		seq = 1;
2957 		goto restart;
2958 	}
2959 	done_seqretry(&rename_lock, seq);
2960 
2961 	if (!(m_seq & 1))
2962 		rcu_read_unlock();
2963 	if (need_seqretry(&mount_lock, m_seq)) {
2964 		m_seq = 1;
2965 		goto restart_mnt;
2966 	}
2967 	done_seqretry(&mount_lock, m_seq);
2968 
2969 	if (error >= 0 && bptr == *buffer) {
2970 		if (--blen < 0)
2971 			error = -ENAMETOOLONG;
2972 		else
2973 			*--bptr = '/';
2974 	}
2975 	*buffer = bptr;
2976 	*buflen = blen;
2977 	return error;
2978 }
2979 
2980 /**
2981  * __d_path - return the path of a dentry
2982  * @path: the dentry/vfsmount to report
2983  * @root: root vfsmnt/dentry
2984  * @buf: buffer to return value in
2985  * @buflen: buffer length
2986  *
2987  * Convert a dentry into an ASCII path name.
2988  *
2989  * Returns a pointer into the buffer or an error code if the
2990  * path was too long.
2991  *
2992  * "buflen" should be positive.
2993  *
2994  * If the path is not reachable from the supplied root, return %NULL.
2995  */
2996 char *__d_path(const struct path *path,
2997 	       const struct path *root,
2998 	       char *buf, int buflen)
2999 {
3000 	char *res = buf + buflen;
3001 	int error;
3002 
3003 	prepend(&res, &buflen, "\0", 1);
3004 	error = prepend_path(path, root, &res, &buflen);
3005 
3006 	if (error < 0)
3007 		return ERR_PTR(error);
3008 	if (error > 0)
3009 		return NULL;
3010 	return res;
3011 }
3012 
3013 char *d_absolute_path(const struct path *path,
3014 	       char *buf, int buflen)
3015 {
3016 	struct path root = {};
3017 	char *res = buf + buflen;
3018 	int error;
3019 
3020 	prepend(&res, &buflen, "\0", 1);
3021 	error = prepend_path(path, &root, &res, &buflen);
3022 
3023 	if (error > 1)
3024 		error = -EINVAL;
3025 	if (error < 0)
3026 		return ERR_PTR(error);
3027 	return res;
3028 }
3029 
3030 /*
3031  * same as __d_path but appends "(deleted)" for unlinked files.
3032  */
3033 static int path_with_deleted(const struct path *path,
3034 			     const struct path *root,
3035 			     char **buf, int *buflen)
3036 {
3037 	prepend(buf, buflen, "\0", 1);
3038 	if (d_unlinked(path->dentry)) {
3039 		int error = prepend(buf, buflen, " (deleted)", 10);
3040 		if (error)
3041 			return error;
3042 	}
3043 
3044 	return prepend_path(path, root, buf, buflen);
3045 }
3046 
3047 static int prepend_unreachable(char **buffer, int *buflen)
3048 {
3049 	return prepend(buffer, buflen, "(unreachable)", 13);
3050 }
3051 
3052 static void get_fs_root_rcu(struct fs_struct *fs, struct path *root)
3053 {
3054 	unsigned seq;
3055 
3056 	do {
3057 		seq = read_seqcount_begin(&fs->seq);
3058 		*root = fs->root;
3059 	} while (read_seqcount_retry(&fs->seq, seq));
3060 }
3061 
3062 /**
3063  * d_path - return the path of a dentry
3064  * @path: path to report
3065  * @buf: buffer to return value in
3066  * @buflen: buffer length
3067  *
3068  * Convert a dentry into an ASCII path name. If the entry has been deleted
3069  * the string " (deleted)" is appended. Note that this is ambiguous.
3070  *
3071  * Returns a pointer into the buffer or an error code if the path was
3072  * too long. Note: Callers should use the returned pointer, not the passed
3073  * in buffer, to use the name! The implementation often starts at an offset
3074  * into the buffer, and may leave 0 bytes at the start.
3075  *
3076  * "buflen" should be positive.
3077  */
3078 char *d_path(const struct path *path, char *buf, int buflen)
3079 {
3080 	char *res = buf + buflen;
3081 	struct path root;
3082 	int error;
3083 
3084 	/*
3085 	 * We have various synthetic filesystems that never get mounted.  On
3086 	 * these filesystems dentries are never used for lookup purposes, and
3087 	 * thus don't need to be hashed.  They also don't need a name until a
3088 	 * user wants to identify the object in /proc/pid/fd/.  The little hack
3089 	 * below allows us to generate a name for these objects on demand:
3090 	 *
3091 	 * Some pseudo inodes are mountable.  When they are mounted
3092 	 * path->dentry == path->mnt->mnt_root.  In that case don't call d_dname
3093 	 * and instead have d_path return the mounted path.
3094 	 */
3095 	if (path->dentry->d_op && path->dentry->d_op->d_dname &&
3096 	    (!IS_ROOT(path->dentry) || path->dentry != path->mnt->mnt_root))
3097 		return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
3098 
3099 	rcu_read_lock();
3100 	get_fs_root_rcu(current->fs, &root);
3101 	error = path_with_deleted(path, &root, &res, &buflen);
3102 	rcu_read_unlock();
3103 
3104 	if (error < 0)
3105 		res = ERR_PTR(error);
3106 	return res;
3107 }
3108 EXPORT_SYMBOL(d_path);
3109 
3110 /*
3111  * Helper function for dentry_operations.d_dname() members
3112  */
3113 char *dynamic_dname(struct dentry *dentry, char *buffer, int buflen,
3114 			const char *fmt, ...)
3115 {
3116 	va_list args;
3117 	char temp[64];
3118 	int sz;
3119 
3120 	va_start(args, fmt);
3121 	sz = vsnprintf(temp, sizeof(temp), fmt, args) + 1;
3122 	va_end(args);
3123 
3124 	if (sz > sizeof(temp) || sz > buflen)
3125 		return ERR_PTR(-ENAMETOOLONG);
3126 
3127 	buffer += buflen - sz;
3128 	return memcpy(buffer, temp, sz);
3129 }
3130 
3131 char *simple_dname(struct dentry *dentry, char *buffer, int buflen)
3132 {
3133 	char *end = buffer + buflen;
3134 	/* these dentries are never renamed, so d_lock is not needed */
3135 	if (prepend(&end, &buflen, " (deleted)", 11) ||
3136 	    prepend(&end, &buflen, dentry->d_name.name, dentry->d_name.len) ||
3137 	    prepend(&end, &buflen, "/", 1))
3138 		end = ERR_PTR(-ENAMETOOLONG);
3139 	return end;
3140 }
3141 EXPORT_SYMBOL(simple_dname);
3142 
3143 /*
3144  * Write full pathname from the root of the filesystem into the buffer.
3145  */
3146 static char *__dentry_path(struct dentry *d, char *buf, int buflen)
3147 {
3148 	struct dentry *dentry;
3149 	char *end, *retval;
3150 	int len, seq = 0;
3151 	int error = 0;
3152 
3153 	if (buflen < 2)
3154 		goto Elong;
3155 
3156 	rcu_read_lock();
3157 restart:
3158 	dentry = d;
3159 	end = buf + buflen;
3160 	len = buflen;
3161 	prepend(&end, &len, "\0", 1);
3162 	/* Get '/' right */
3163 	retval = end-1;
3164 	*retval = '/';
3165 	read_seqbegin_or_lock(&rename_lock, &seq);
3166 	while (!IS_ROOT(dentry)) {
3167 		struct dentry *parent = dentry->d_parent;
3168 
3169 		prefetch(parent);
3170 		error = prepend_name(&end, &len, &dentry->d_name);
3171 		if (error)
3172 			break;
3173 
3174 		retval = end;
3175 		dentry = parent;
3176 	}
3177 	if (!(seq & 1))
3178 		rcu_read_unlock();
3179 	if (need_seqretry(&rename_lock, seq)) {
3180 		seq = 1;
3181 		goto restart;
3182 	}
3183 	done_seqretry(&rename_lock, seq);
3184 	if (error)
3185 		goto Elong;
3186 	return retval;
3187 Elong:
3188 	return ERR_PTR(-ENAMETOOLONG);
3189 }
3190 
3191 char *dentry_path_raw(struct dentry *dentry, char *buf, int buflen)
3192 {
3193 	return __dentry_path(dentry, buf, buflen);
3194 }
3195 EXPORT_SYMBOL(dentry_path_raw);
3196 
3197 char *dentry_path(struct dentry *dentry, char *buf, int buflen)
3198 {
3199 	char *p = NULL;
3200 	char *retval;
3201 
3202 	if (d_unlinked(dentry)) {
3203 		p = buf + buflen;
3204 		if (prepend(&p, &buflen, "//deleted", 10) != 0)
3205 			goto Elong;
3206 		buflen++;
3207 	}
3208 	retval = __dentry_path(dentry, buf, buflen);
3209 	if (!IS_ERR(retval) && p)
3210 		*p = '/';	/* restore '/' overriden with '\0' */
3211 	return retval;
3212 Elong:
3213 	return ERR_PTR(-ENAMETOOLONG);
3214 }
3215 
3216 static void get_fs_root_and_pwd_rcu(struct fs_struct *fs, struct path *root,
3217 				    struct path *pwd)
3218 {
3219 	unsigned seq;
3220 
3221 	do {
3222 		seq = read_seqcount_begin(&fs->seq);
3223 		*root = fs->root;
3224 		*pwd = fs->pwd;
3225 	} while (read_seqcount_retry(&fs->seq, seq));
3226 }
3227 
3228 /*
3229  * NOTE! The user-level library version returns a
3230  * character pointer. The kernel system call just
3231  * returns the length of the buffer filled (which
3232  * includes the ending '\0' character), or a negative
3233  * error value. So libc would do something like
3234  *
3235  *	char *getcwd(char * buf, size_t size)
3236  *	{
3237  *		int retval;
3238  *
3239  *		retval = sys_getcwd(buf, size);
3240  *		if (retval >= 0)
3241  *			return buf;
3242  *		errno = -retval;
3243  *		return NULL;
3244  *	}
3245  */
3246 SYSCALL_DEFINE2(getcwd, char __user *, buf, unsigned long, size)
3247 {
3248 	int error;
3249 	struct path pwd, root;
3250 	char *page = __getname();
3251 
3252 	if (!page)
3253 		return -ENOMEM;
3254 
3255 	rcu_read_lock();
3256 	get_fs_root_and_pwd_rcu(current->fs, &root, &pwd);
3257 
3258 	error = -ENOENT;
3259 	if (!d_unlinked(pwd.dentry)) {
3260 		unsigned long len;
3261 		char *cwd = page + PATH_MAX;
3262 		int buflen = PATH_MAX;
3263 
3264 		prepend(&cwd, &buflen, "\0", 1);
3265 		error = prepend_path(&pwd, &root, &cwd, &buflen);
3266 		rcu_read_unlock();
3267 
3268 		if (error < 0)
3269 			goto out;
3270 
3271 		/* Unreachable from current root */
3272 		if (error > 0) {
3273 			error = prepend_unreachable(&cwd, &buflen);
3274 			if (error)
3275 				goto out;
3276 		}
3277 
3278 		error = -ERANGE;
3279 		len = PATH_MAX + page - cwd;
3280 		if (len <= size) {
3281 			error = len;
3282 			if (copy_to_user(buf, cwd, len))
3283 				error = -EFAULT;
3284 		}
3285 	} else {
3286 		rcu_read_unlock();
3287 	}
3288 
3289 out:
3290 	__putname(page);
3291 	return error;
3292 }
3293 
3294 /*
3295  * Test whether new_dentry is a subdirectory of old_dentry.
3296  *
3297  * Trivially implemented using the dcache structure
3298  */
3299 
3300 /**
3301  * is_subdir - is new dentry a subdirectory of old_dentry
3302  * @new_dentry: new dentry
3303  * @old_dentry: old dentry
3304  *
3305  * Returns 1 if new_dentry is a subdirectory of the parent (at any depth).
3306  * Returns 0 otherwise.
3307  * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
3308  */
3309 
3310 int is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
3311 {
3312 	int result;
3313 	unsigned seq;
3314 
3315 	if (new_dentry == old_dentry)
3316 		return 1;
3317 
3318 	do {
3319 		/* for restarting inner loop in case of seq retry */
3320 		seq = read_seqbegin(&rename_lock);
3321 		/*
3322 		 * Need rcu_readlock to protect against the d_parent trashing
3323 		 * due to d_move
3324 		 */
3325 		rcu_read_lock();
3326 		if (d_ancestor(old_dentry, new_dentry))
3327 			result = 1;
3328 		else
3329 			result = 0;
3330 		rcu_read_unlock();
3331 	} while (read_seqretry(&rename_lock, seq));
3332 
3333 	return result;
3334 }
3335 
3336 static enum d_walk_ret d_genocide_kill(void *data, struct dentry *dentry)
3337 {
3338 	struct dentry *root = data;
3339 	if (dentry != root) {
3340 		if (d_unhashed(dentry) || !dentry->d_inode)
3341 			return D_WALK_SKIP;
3342 
3343 		if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
3344 			dentry->d_flags |= DCACHE_GENOCIDE;
3345 			dentry->d_lockref.count--;
3346 		}
3347 	}
3348 	return D_WALK_CONTINUE;
3349 }
3350 
3351 void d_genocide(struct dentry *parent)
3352 {
3353 	d_walk(parent, parent, d_genocide_kill, NULL);
3354 }
3355 
3356 void d_tmpfile(struct dentry *dentry, struct inode *inode)
3357 {
3358 	inode_dec_link_count(inode);
3359 	BUG_ON(dentry->d_name.name != dentry->d_iname ||
3360 		!hlist_unhashed(&dentry->d_u.d_alias) ||
3361 		!d_unlinked(dentry));
3362 	spin_lock(&dentry->d_parent->d_lock);
3363 	spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
3364 	dentry->d_name.len = sprintf(dentry->d_iname, "#%llu",
3365 				(unsigned long long)inode->i_ino);
3366 	spin_unlock(&dentry->d_lock);
3367 	spin_unlock(&dentry->d_parent->d_lock);
3368 	d_instantiate(dentry, inode);
3369 }
3370 EXPORT_SYMBOL(d_tmpfile);
3371 
3372 static __initdata unsigned long dhash_entries;
3373 static int __init set_dhash_entries(char *str)
3374 {
3375 	if (!str)
3376 		return 0;
3377 	dhash_entries = simple_strtoul(str, &str, 0);
3378 	return 1;
3379 }
3380 __setup("dhash_entries=", set_dhash_entries);
3381 
3382 static void __init dcache_init_early(void)
3383 {
3384 	unsigned int loop;
3385 
3386 	/* If hashes are distributed across NUMA nodes, defer
3387 	 * hash allocation until vmalloc space is available.
3388 	 */
3389 	if (hashdist)
3390 		return;
3391 
3392 	dentry_hashtable =
3393 		alloc_large_system_hash("Dentry cache",
3394 					sizeof(struct hlist_bl_head),
3395 					dhash_entries,
3396 					13,
3397 					HASH_EARLY,
3398 					&d_hash_shift,
3399 					&d_hash_mask,
3400 					0,
3401 					0);
3402 
3403 	for (loop = 0; loop < (1U << d_hash_shift); loop++)
3404 		INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
3405 }
3406 
3407 static void __init dcache_init(void)
3408 {
3409 	unsigned int loop;
3410 
3411 	/*
3412 	 * A constructor could be added for stable state like the lists,
3413 	 * but it is probably not worth it because of the cache nature
3414 	 * of the dcache.
3415 	 */
3416 	dentry_cache = KMEM_CACHE(dentry,
3417 		SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD);
3418 
3419 	/* Hash may have been set up in dcache_init_early */
3420 	if (!hashdist)
3421 		return;
3422 
3423 	dentry_hashtable =
3424 		alloc_large_system_hash("Dentry cache",
3425 					sizeof(struct hlist_bl_head),
3426 					dhash_entries,
3427 					13,
3428 					0,
3429 					&d_hash_shift,
3430 					&d_hash_mask,
3431 					0,
3432 					0);
3433 
3434 	for (loop = 0; loop < (1U << d_hash_shift); loop++)
3435 		INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
3436 }
3437 
3438 /* SLAB cache for __getname() consumers */
3439 struct kmem_cache *names_cachep __read_mostly;
3440 EXPORT_SYMBOL(names_cachep);
3441 
3442 EXPORT_SYMBOL(d_genocide);
3443 
3444 void __init vfs_caches_init_early(void)
3445 {
3446 	dcache_init_early();
3447 	inode_init_early();
3448 }
3449 
3450 void __init vfs_caches_init(unsigned long mempages)
3451 {
3452 	unsigned long reserve;
3453 
3454 	/* Base hash sizes on available memory, with a reserve equal to
3455            150% of current kernel size */
3456 
3457 	reserve = min((mempages - nr_free_pages()) * 3/2, mempages - 1);
3458 	mempages -= reserve;
3459 
3460 	names_cachep = kmem_cache_create("names_cache", PATH_MAX, 0,
3461 			SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
3462 
3463 	dcache_init();
3464 	inode_init();
3465 	files_init(mempages);
3466 	mnt_init();
3467 	bdev_cache_init();
3468 	chrdev_init();
3469 }
3470