xref: /openbmc/linux/fs/dcache.c (revision 81d67439)
1 /*
2  * fs/dcache.c
3  *
4  * Complete reimplementation
5  * (C) 1997 Thomas Schoebel-Theuer,
6  * with heavy changes by Linus Torvalds
7  */
8 
9 /*
10  * Notes on the allocation strategy:
11  *
12  * The dcache is a master of the icache - whenever a dcache entry
13  * exists, the inode will always exist. "iput()" is done either when
14  * the dcache entry is deleted or garbage collected.
15  */
16 
17 #include <linux/syscalls.h>
18 #include <linux/string.h>
19 #include <linux/mm.h>
20 #include <linux/fs.h>
21 #include <linux/fsnotify.h>
22 #include <linux/slab.h>
23 #include <linux/init.h>
24 #include <linux/hash.h>
25 #include <linux/cache.h>
26 #include <linux/module.h>
27 #include <linux/mount.h>
28 #include <linux/file.h>
29 #include <asm/uaccess.h>
30 #include <linux/security.h>
31 #include <linux/seqlock.h>
32 #include <linux/swap.h>
33 #include <linux/bootmem.h>
34 #include <linux/fs_struct.h>
35 #include <linux/hardirq.h>
36 #include <linux/bit_spinlock.h>
37 #include <linux/rculist_bl.h>
38 #include <linux/prefetch.h>
39 #include "internal.h"
40 
41 /*
42  * Usage:
43  * dcache->d_inode->i_lock protects:
44  *   - i_dentry, d_alias, d_inode of aliases
45  * dcache_hash_bucket lock protects:
46  *   - the dcache hash table
47  * s_anon bl list spinlock protects:
48  *   - the s_anon list (see __d_drop)
49  * dcache_lru_lock protects:
50  *   - the dcache lru lists and counters
51  * d_lock protects:
52  *   - d_flags
53  *   - d_name
54  *   - d_lru
55  *   - d_count
56  *   - d_unhashed()
57  *   - d_parent and d_subdirs
58  *   - childrens' d_child and d_parent
59  *   - d_alias, d_inode
60  *
61  * Ordering:
62  * dentry->d_inode->i_lock
63  *   dentry->d_lock
64  *     dcache_lru_lock
65  *     dcache_hash_bucket lock
66  *     s_anon lock
67  *
68  * If there is an ancestor relationship:
69  * dentry->d_parent->...->d_parent->d_lock
70  *   ...
71  *     dentry->d_parent->d_lock
72  *       dentry->d_lock
73  *
74  * If no ancestor relationship:
75  * if (dentry1 < dentry2)
76  *   dentry1->d_lock
77  *     dentry2->d_lock
78  */
79 int sysctl_vfs_cache_pressure __read_mostly = 100;
80 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
81 
82 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(dcache_lru_lock);
83 __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
84 
85 EXPORT_SYMBOL(rename_lock);
86 
87 static struct kmem_cache *dentry_cache __read_mostly;
88 
89 /*
90  * This is the single most critical data structure when it comes
91  * to the dcache: the hashtable for lookups. Somebody should try
92  * to make this good - I've just made it work.
93  *
94  * This hash-function tries to avoid losing too many bits of hash
95  * information, yet avoid using a prime hash-size or similar.
96  */
97 #define D_HASHBITS     d_hash_shift
98 #define D_HASHMASK     d_hash_mask
99 
100 static unsigned int d_hash_mask __read_mostly;
101 static unsigned int d_hash_shift __read_mostly;
102 
103 static struct hlist_bl_head *dentry_hashtable __read_mostly;
104 
105 static inline struct hlist_bl_head *d_hash(struct dentry *parent,
106 					unsigned long hash)
107 {
108 	hash += ((unsigned long) parent ^ GOLDEN_RATIO_PRIME) / L1_CACHE_BYTES;
109 	hash = hash ^ ((hash ^ GOLDEN_RATIO_PRIME) >> D_HASHBITS);
110 	return dentry_hashtable + (hash & D_HASHMASK);
111 }
112 
113 /* Statistics gathering. */
114 struct dentry_stat_t dentry_stat = {
115 	.age_limit = 45,
116 };
117 
118 static DEFINE_PER_CPU(unsigned int, nr_dentry);
119 
120 #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
121 static int get_nr_dentry(void)
122 {
123 	int i;
124 	int sum = 0;
125 	for_each_possible_cpu(i)
126 		sum += per_cpu(nr_dentry, i);
127 	return sum < 0 ? 0 : sum;
128 }
129 
130 int proc_nr_dentry(ctl_table *table, int write, void __user *buffer,
131 		   size_t *lenp, loff_t *ppos)
132 {
133 	dentry_stat.nr_dentry = get_nr_dentry();
134 	return proc_dointvec(table, write, buffer, lenp, ppos);
135 }
136 #endif
137 
138 static void __d_free(struct rcu_head *head)
139 {
140 	struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
141 
142 	WARN_ON(!list_empty(&dentry->d_alias));
143 	if (dname_external(dentry))
144 		kfree(dentry->d_name.name);
145 	kmem_cache_free(dentry_cache, dentry);
146 }
147 
148 /*
149  * no locks, please.
150  */
151 static void d_free(struct dentry *dentry)
152 {
153 	BUG_ON(dentry->d_count);
154 	this_cpu_dec(nr_dentry);
155 	if (dentry->d_op && dentry->d_op->d_release)
156 		dentry->d_op->d_release(dentry);
157 
158 	/* if dentry was never visible to RCU, immediate free is OK */
159 	if (!(dentry->d_flags & DCACHE_RCUACCESS))
160 		__d_free(&dentry->d_u.d_rcu);
161 	else
162 		call_rcu(&dentry->d_u.d_rcu, __d_free);
163 }
164 
165 /**
166  * dentry_rcuwalk_barrier - invalidate in-progress rcu-walk lookups
167  * @dentry: the target dentry
168  * After this call, in-progress rcu-walk path lookup will fail. This
169  * should be called after unhashing, and after changing d_inode (if
170  * the dentry has not already been unhashed).
171  */
172 static inline void dentry_rcuwalk_barrier(struct dentry *dentry)
173 {
174 	assert_spin_locked(&dentry->d_lock);
175 	/* Go through a barrier */
176 	write_seqcount_barrier(&dentry->d_seq);
177 }
178 
179 /*
180  * Release the dentry's inode, using the filesystem
181  * d_iput() operation if defined. Dentry has no refcount
182  * and is unhashed.
183  */
184 static void dentry_iput(struct dentry * dentry)
185 	__releases(dentry->d_lock)
186 	__releases(dentry->d_inode->i_lock)
187 {
188 	struct inode *inode = dentry->d_inode;
189 	if (inode) {
190 		dentry->d_inode = NULL;
191 		list_del_init(&dentry->d_alias);
192 		spin_unlock(&dentry->d_lock);
193 		spin_unlock(&inode->i_lock);
194 		if (!inode->i_nlink)
195 			fsnotify_inoderemove(inode);
196 		if (dentry->d_op && dentry->d_op->d_iput)
197 			dentry->d_op->d_iput(dentry, inode);
198 		else
199 			iput(inode);
200 	} else {
201 		spin_unlock(&dentry->d_lock);
202 	}
203 }
204 
205 /*
206  * Release the dentry's inode, using the filesystem
207  * d_iput() operation if defined. dentry remains in-use.
208  */
209 static void dentry_unlink_inode(struct dentry * dentry)
210 	__releases(dentry->d_lock)
211 	__releases(dentry->d_inode->i_lock)
212 {
213 	struct inode *inode = dentry->d_inode;
214 	dentry->d_inode = NULL;
215 	list_del_init(&dentry->d_alias);
216 	dentry_rcuwalk_barrier(dentry);
217 	spin_unlock(&dentry->d_lock);
218 	spin_unlock(&inode->i_lock);
219 	if (!inode->i_nlink)
220 		fsnotify_inoderemove(inode);
221 	if (dentry->d_op && dentry->d_op->d_iput)
222 		dentry->d_op->d_iput(dentry, inode);
223 	else
224 		iput(inode);
225 }
226 
227 /*
228  * dentry_lru_(add|del|move_tail) must be called with d_lock held.
229  */
230 static void dentry_lru_add(struct dentry *dentry)
231 {
232 	if (list_empty(&dentry->d_lru)) {
233 		spin_lock(&dcache_lru_lock);
234 		list_add(&dentry->d_lru, &dentry->d_sb->s_dentry_lru);
235 		dentry->d_sb->s_nr_dentry_unused++;
236 		dentry_stat.nr_unused++;
237 		spin_unlock(&dcache_lru_lock);
238 	}
239 }
240 
241 static void __dentry_lru_del(struct dentry *dentry)
242 {
243 	list_del_init(&dentry->d_lru);
244 	dentry->d_sb->s_nr_dentry_unused--;
245 	dentry_stat.nr_unused--;
246 }
247 
248 static void dentry_lru_del(struct dentry *dentry)
249 {
250 	if (!list_empty(&dentry->d_lru)) {
251 		spin_lock(&dcache_lru_lock);
252 		__dentry_lru_del(dentry);
253 		spin_unlock(&dcache_lru_lock);
254 	}
255 }
256 
257 static void dentry_lru_move_tail(struct dentry *dentry)
258 {
259 	spin_lock(&dcache_lru_lock);
260 	if (list_empty(&dentry->d_lru)) {
261 		list_add_tail(&dentry->d_lru, &dentry->d_sb->s_dentry_lru);
262 		dentry->d_sb->s_nr_dentry_unused++;
263 		dentry_stat.nr_unused++;
264 	} else {
265 		list_move_tail(&dentry->d_lru, &dentry->d_sb->s_dentry_lru);
266 	}
267 	spin_unlock(&dcache_lru_lock);
268 }
269 
270 /**
271  * d_kill - kill dentry and return parent
272  * @dentry: dentry to kill
273  * @parent: parent dentry
274  *
275  * The dentry must already be unhashed and removed from the LRU.
276  *
277  * If this is the root of the dentry tree, return NULL.
278  *
279  * dentry->d_lock and parent->d_lock must be held by caller, and are dropped by
280  * d_kill.
281  */
282 static struct dentry *d_kill(struct dentry *dentry, struct dentry *parent)
283 	__releases(dentry->d_lock)
284 	__releases(parent->d_lock)
285 	__releases(dentry->d_inode->i_lock)
286 {
287 	list_del(&dentry->d_u.d_child);
288 	/*
289 	 * Inform try_to_ascend() that we are no longer attached to the
290 	 * dentry tree
291 	 */
292 	dentry->d_flags |= DCACHE_DISCONNECTED;
293 	if (parent)
294 		spin_unlock(&parent->d_lock);
295 	dentry_iput(dentry);
296 	/*
297 	 * dentry_iput drops the locks, at which point nobody (except
298 	 * transient RCU lookups) can reach this dentry.
299 	 */
300 	d_free(dentry);
301 	return parent;
302 }
303 
304 /**
305  * d_drop - drop a dentry
306  * @dentry: dentry to drop
307  *
308  * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
309  * be found through a VFS lookup any more. Note that this is different from
310  * deleting the dentry - d_delete will try to mark the dentry negative if
311  * possible, giving a successful _negative_ lookup, while d_drop will
312  * just make the cache lookup fail.
313  *
314  * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
315  * reason (NFS timeouts or autofs deletes).
316  *
317  * __d_drop requires dentry->d_lock.
318  */
319 void __d_drop(struct dentry *dentry)
320 {
321 	if (!d_unhashed(dentry)) {
322 		struct hlist_bl_head *b;
323 		if (unlikely(dentry->d_flags & DCACHE_DISCONNECTED))
324 			b = &dentry->d_sb->s_anon;
325 		else
326 			b = d_hash(dentry->d_parent, dentry->d_name.hash);
327 
328 		hlist_bl_lock(b);
329 		__hlist_bl_del(&dentry->d_hash);
330 		dentry->d_hash.pprev = NULL;
331 		hlist_bl_unlock(b);
332 
333 		dentry_rcuwalk_barrier(dentry);
334 	}
335 }
336 EXPORT_SYMBOL(__d_drop);
337 
338 void d_drop(struct dentry *dentry)
339 {
340 	spin_lock(&dentry->d_lock);
341 	__d_drop(dentry);
342 	spin_unlock(&dentry->d_lock);
343 }
344 EXPORT_SYMBOL(d_drop);
345 
346 /*
347  * d_clear_need_lookup - drop a dentry from cache and clear the need lookup flag
348  * @dentry: dentry to drop
349  *
350  * This is called when we do a lookup on a placeholder dentry that needed to be
351  * looked up.  The dentry should have been hashed in order for it to be found by
352  * the lookup code, but now needs to be unhashed while we do the actual lookup
353  * and clear the DCACHE_NEED_LOOKUP flag.
354  */
355 void d_clear_need_lookup(struct dentry *dentry)
356 {
357 	spin_lock(&dentry->d_lock);
358 	__d_drop(dentry);
359 	dentry->d_flags &= ~DCACHE_NEED_LOOKUP;
360 	spin_unlock(&dentry->d_lock);
361 }
362 EXPORT_SYMBOL(d_clear_need_lookup);
363 
364 /*
365  * Finish off a dentry we've decided to kill.
366  * dentry->d_lock must be held, returns with it unlocked.
367  * If ref is non-zero, then decrement the refcount too.
368  * Returns dentry requiring refcount drop, or NULL if we're done.
369  */
370 static inline struct dentry *dentry_kill(struct dentry *dentry, int ref)
371 	__releases(dentry->d_lock)
372 {
373 	struct inode *inode;
374 	struct dentry *parent;
375 
376 	inode = dentry->d_inode;
377 	if (inode && !spin_trylock(&inode->i_lock)) {
378 relock:
379 		spin_unlock(&dentry->d_lock);
380 		cpu_relax();
381 		return dentry; /* try again with same dentry */
382 	}
383 	if (IS_ROOT(dentry))
384 		parent = NULL;
385 	else
386 		parent = dentry->d_parent;
387 	if (parent && !spin_trylock(&parent->d_lock)) {
388 		if (inode)
389 			spin_unlock(&inode->i_lock);
390 		goto relock;
391 	}
392 
393 	if (ref)
394 		dentry->d_count--;
395 	/* if dentry was on the d_lru list delete it from there */
396 	dentry_lru_del(dentry);
397 	/* if it was on the hash then remove it */
398 	__d_drop(dentry);
399 	return d_kill(dentry, parent);
400 }
401 
402 /*
403  * This is dput
404  *
405  * This is complicated by the fact that we do not want to put
406  * dentries that are no longer on any hash chain on the unused
407  * list: we'd much rather just get rid of them immediately.
408  *
409  * However, that implies that we have to traverse the dentry
410  * tree upwards to the parents which might _also_ now be
411  * scheduled for deletion (it may have been only waiting for
412  * its last child to go away).
413  *
414  * This tail recursion is done by hand as we don't want to depend
415  * on the compiler to always get this right (gcc generally doesn't).
416  * Real recursion would eat up our stack space.
417  */
418 
419 /*
420  * dput - release a dentry
421  * @dentry: dentry to release
422  *
423  * Release a dentry. This will drop the usage count and if appropriate
424  * call the dentry unlink method as well as removing it from the queues and
425  * releasing its resources. If the parent dentries were scheduled for release
426  * they too may now get deleted.
427  */
428 void dput(struct dentry *dentry)
429 {
430 	if (!dentry)
431 		return;
432 
433 repeat:
434 	if (dentry->d_count == 1)
435 		might_sleep();
436 	spin_lock(&dentry->d_lock);
437 	BUG_ON(!dentry->d_count);
438 	if (dentry->d_count > 1) {
439 		dentry->d_count--;
440 		spin_unlock(&dentry->d_lock);
441 		return;
442 	}
443 
444 	if (dentry->d_flags & DCACHE_OP_DELETE) {
445 		if (dentry->d_op->d_delete(dentry))
446 			goto kill_it;
447 	}
448 
449 	/* Unreachable? Get rid of it */
450  	if (d_unhashed(dentry))
451 		goto kill_it;
452 
453 	/*
454 	 * If this dentry needs lookup, don't set the referenced flag so that it
455 	 * is more likely to be cleaned up by the dcache shrinker in case of
456 	 * memory pressure.
457 	 */
458 	if (!d_need_lookup(dentry))
459 		dentry->d_flags |= DCACHE_REFERENCED;
460 	dentry_lru_add(dentry);
461 
462 	dentry->d_count--;
463 	spin_unlock(&dentry->d_lock);
464 	return;
465 
466 kill_it:
467 	dentry = dentry_kill(dentry, 1);
468 	if (dentry)
469 		goto repeat;
470 }
471 EXPORT_SYMBOL(dput);
472 
473 /**
474  * d_invalidate - invalidate a dentry
475  * @dentry: dentry to invalidate
476  *
477  * Try to invalidate the dentry if it turns out to be
478  * possible. If there are other dentries that can be
479  * reached through this one we can't delete it and we
480  * return -EBUSY. On success we return 0.
481  *
482  * no dcache lock.
483  */
484 
485 int d_invalidate(struct dentry * dentry)
486 {
487 	/*
488 	 * If it's already been dropped, return OK.
489 	 */
490 	spin_lock(&dentry->d_lock);
491 	if (d_unhashed(dentry)) {
492 		spin_unlock(&dentry->d_lock);
493 		return 0;
494 	}
495 	/*
496 	 * Check whether to do a partial shrink_dcache
497 	 * to get rid of unused child entries.
498 	 */
499 	if (!list_empty(&dentry->d_subdirs)) {
500 		spin_unlock(&dentry->d_lock);
501 		shrink_dcache_parent(dentry);
502 		spin_lock(&dentry->d_lock);
503 	}
504 
505 	/*
506 	 * Somebody else still using it?
507 	 *
508 	 * If it's a directory, we can't drop it
509 	 * for fear of somebody re-populating it
510 	 * with children (even though dropping it
511 	 * would make it unreachable from the root,
512 	 * we might still populate it if it was a
513 	 * working directory or similar).
514 	 */
515 	if (dentry->d_count > 1) {
516 		if (dentry->d_inode && S_ISDIR(dentry->d_inode->i_mode)) {
517 			spin_unlock(&dentry->d_lock);
518 			return -EBUSY;
519 		}
520 	}
521 
522 	__d_drop(dentry);
523 	spin_unlock(&dentry->d_lock);
524 	return 0;
525 }
526 EXPORT_SYMBOL(d_invalidate);
527 
528 /* This must be called with d_lock held */
529 static inline void __dget_dlock(struct dentry *dentry)
530 {
531 	dentry->d_count++;
532 }
533 
534 static inline void __dget(struct dentry *dentry)
535 {
536 	spin_lock(&dentry->d_lock);
537 	__dget_dlock(dentry);
538 	spin_unlock(&dentry->d_lock);
539 }
540 
541 struct dentry *dget_parent(struct dentry *dentry)
542 {
543 	struct dentry *ret;
544 
545 repeat:
546 	/*
547 	 * Don't need rcu_dereference because we re-check it was correct under
548 	 * the lock.
549 	 */
550 	rcu_read_lock();
551 	ret = dentry->d_parent;
552 	spin_lock(&ret->d_lock);
553 	if (unlikely(ret != dentry->d_parent)) {
554 		spin_unlock(&ret->d_lock);
555 		rcu_read_unlock();
556 		goto repeat;
557 	}
558 	rcu_read_unlock();
559 	BUG_ON(!ret->d_count);
560 	ret->d_count++;
561 	spin_unlock(&ret->d_lock);
562 	return ret;
563 }
564 EXPORT_SYMBOL(dget_parent);
565 
566 /**
567  * d_find_alias - grab a hashed alias of inode
568  * @inode: inode in question
569  * @want_discon:  flag, used by d_splice_alias, to request
570  *          that only a DISCONNECTED alias be returned.
571  *
572  * If inode has a hashed alias, or is a directory and has any alias,
573  * acquire the reference to alias and return it. Otherwise return NULL.
574  * Notice that if inode is a directory there can be only one alias and
575  * it can be unhashed only if it has no children, or if it is the root
576  * of a filesystem.
577  *
578  * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
579  * any other hashed alias over that one unless @want_discon is set,
580  * in which case only return an IS_ROOT, DCACHE_DISCONNECTED alias.
581  */
582 static struct dentry *__d_find_alias(struct inode *inode, int want_discon)
583 {
584 	struct dentry *alias, *discon_alias;
585 
586 again:
587 	discon_alias = NULL;
588 	list_for_each_entry(alias, &inode->i_dentry, d_alias) {
589 		spin_lock(&alias->d_lock);
590  		if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
591 			if (IS_ROOT(alias) &&
592 			    (alias->d_flags & DCACHE_DISCONNECTED)) {
593 				discon_alias = alias;
594 			} else if (!want_discon) {
595 				__dget_dlock(alias);
596 				spin_unlock(&alias->d_lock);
597 				return alias;
598 			}
599 		}
600 		spin_unlock(&alias->d_lock);
601 	}
602 	if (discon_alias) {
603 		alias = discon_alias;
604 		spin_lock(&alias->d_lock);
605 		if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
606 			if (IS_ROOT(alias) &&
607 			    (alias->d_flags & DCACHE_DISCONNECTED)) {
608 				__dget_dlock(alias);
609 				spin_unlock(&alias->d_lock);
610 				return alias;
611 			}
612 		}
613 		spin_unlock(&alias->d_lock);
614 		goto again;
615 	}
616 	return NULL;
617 }
618 
619 struct dentry *d_find_alias(struct inode *inode)
620 {
621 	struct dentry *de = NULL;
622 
623 	if (!list_empty(&inode->i_dentry)) {
624 		spin_lock(&inode->i_lock);
625 		de = __d_find_alias(inode, 0);
626 		spin_unlock(&inode->i_lock);
627 	}
628 	return de;
629 }
630 EXPORT_SYMBOL(d_find_alias);
631 
632 /*
633  *	Try to kill dentries associated with this inode.
634  * WARNING: you must own a reference to inode.
635  */
636 void d_prune_aliases(struct inode *inode)
637 {
638 	struct dentry *dentry;
639 restart:
640 	spin_lock(&inode->i_lock);
641 	list_for_each_entry(dentry, &inode->i_dentry, d_alias) {
642 		spin_lock(&dentry->d_lock);
643 		if (!dentry->d_count) {
644 			__dget_dlock(dentry);
645 			__d_drop(dentry);
646 			spin_unlock(&dentry->d_lock);
647 			spin_unlock(&inode->i_lock);
648 			dput(dentry);
649 			goto restart;
650 		}
651 		spin_unlock(&dentry->d_lock);
652 	}
653 	spin_unlock(&inode->i_lock);
654 }
655 EXPORT_SYMBOL(d_prune_aliases);
656 
657 /*
658  * Try to throw away a dentry - free the inode, dput the parent.
659  * Requires dentry->d_lock is held, and dentry->d_count == 0.
660  * Releases dentry->d_lock.
661  *
662  * This may fail if locks cannot be acquired no problem, just try again.
663  */
664 static void try_prune_one_dentry(struct dentry *dentry)
665 	__releases(dentry->d_lock)
666 {
667 	struct dentry *parent;
668 
669 	parent = dentry_kill(dentry, 0);
670 	/*
671 	 * If dentry_kill returns NULL, we have nothing more to do.
672 	 * if it returns the same dentry, trylocks failed. In either
673 	 * case, just loop again.
674 	 *
675 	 * Otherwise, we need to prune ancestors too. This is necessary
676 	 * to prevent quadratic behavior of shrink_dcache_parent(), but
677 	 * is also expected to be beneficial in reducing dentry cache
678 	 * fragmentation.
679 	 */
680 	if (!parent)
681 		return;
682 	if (parent == dentry)
683 		return;
684 
685 	/* Prune ancestors. */
686 	dentry = parent;
687 	while (dentry) {
688 		spin_lock(&dentry->d_lock);
689 		if (dentry->d_count > 1) {
690 			dentry->d_count--;
691 			spin_unlock(&dentry->d_lock);
692 			return;
693 		}
694 		dentry = dentry_kill(dentry, 1);
695 	}
696 }
697 
698 static void shrink_dentry_list(struct list_head *list)
699 {
700 	struct dentry *dentry;
701 
702 	rcu_read_lock();
703 	for (;;) {
704 		dentry = list_entry_rcu(list->prev, struct dentry, d_lru);
705 		if (&dentry->d_lru == list)
706 			break; /* empty */
707 		spin_lock(&dentry->d_lock);
708 		if (dentry != list_entry(list->prev, struct dentry, d_lru)) {
709 			spin_unlock(&dentry->d_lock);
710 			continue;
711 		}
712 
713 		/*
714 		 * We found an inuse dentry which was not removed from
715 		 * the LRU because of laziness during lookup.  Do not free
716 		 * it - just keep it off the LRU list.
717 		 */
718 		if (dentry->d_count) {
719 			dentry_lru_del(dentry);
720 			spin_unlock(&dentry->d_lock);
721 			continue;
722 		}
723 
724 		rcu_read_unlock();
725 
726 		try_prune_one_dentry(dentry);
727 
728 		rcu_read_lock();
729 	}
730 	rcu_read_unlock();
731 }
732 
733 /**
734  * __shrink_dcache_sb - shrink the dentry LRU on a given superblock
735  * @sb:		superblock to shrink dentry LRU.
736  * @count:	number of entries to prune
737  * @flags:	flags to control the dentry processing
738  *
739  * If flags contains DCACHE_REFERENCED reference dentries will not be pruned.
740  */
741 static void __shrink_dcache_sb(struct super_block *sb, int count, int flags)
742 {
743 	struct dentry *dentry;
744 	LIST_HEAD(referenced);
745 	LIST_HEAD(tmp);
746 
747 relock:
748 	spin_lock(&dcache_lru_lock);
749 	while (!list_empty(&sb->s_dentry_lru)) {
750 		dentry = list_entry(sb->s_dentry_lru.prev,
751 				struct dentry, d_lru);
752 		BUG_ON(dentry->d_sb != sb);
753 
754 		if (!spin_trylock(&dentry->d_lock)) {
755 			spin_unlock(&dcache_lru_lock);
756 			cpu_relax();
757 			goto relock;
758 		}
759 
760 		/*
761 		 * If we are honouring the DCACHE_REFERENCED flag and the
762 		 * dentry has this flag set, don't free it.  Clear the flag
763 		 * and put it back on the LRU.
764 		 */
765 		if (flags & DCACHE_REFERENCED &&
766 				dentry->d_flags & DCACHE_REFERENCED) {
767 			dentry->d_flags &= ~DCACHE_REFERENCED;
768 			list_move(&dentry->d_lru, &referenced);
769 			spin_unlock(&dentry->d_lock);
770 		} else {
771 			list_move_tail(&dentry->d_lru, &tmp);
772 			spin_unlock(&dentry->d_lock);
773 			if (!--count)
774 				break;
775 		}
776 		cond_resched_lock(&dcache_lru_lock);
777 	}
778 	if (!list_empty(&referenced))
779 		list_splice(&referenced, &sb->s_dentry_lru);
780 	spin_unlock(&dcache_lru_lock);
781 
782 	shrink_dentry_list(&tmp);
783 }
784 
785 /**
786  * prune_dcache_sb - shrink the dcache
787  * @nr_to_scan: number of entries to try to free
788  *
789  * Attempt to shrink the superblock dcache LRU by @nr_to_scan entries. This is
790  * done when we need more memory an called from the superblock shrinker
791  * function.
792  *
793  * This function may fail to free any resources if all the dentries are in
794  * use.
795  */
796 void prune_dcache_sb(struct super_block *sb, int nr_to_scan)
797 {
798 	__shrink_dcache_sb(sb, nr_to_scan, DCACHE_REFERENCED);
799 }
800 
801 /**
802  * shrink_dcache_sb - shrink dcache for a superblock
803  * @sb: superblock
804  *
805  * Shrink the dcache for the specified super block. This is used to free
806  * the dcache before unmounting a file system.
807  */
808 void shrink_dcache_sb(struct super_block *sb)
809 {
810 	LIST_HEAD(tmp);
811 
812 	spin_lock(&dcache_lru_lock);
813 	while (!list_empty(&sb->s_dentry_lru)) {
814 		list_splice_init(&sb->s_dentry_lru, &tmp);
815 		spin_unlock(&dcache_lru_lock);
816 		shrink_dentry_list(&tmp);
817 		spin_lock(&dcache_lru_lock);
818 	}
819 	spin_unlock(&dcache_lru_lock);
820 }
821 EXPORT_SYMBOL(shrink_dcache_sb);
822 
823 /*
824  * destroy a single subtree of dentries for unmount
825  * - see the comments on shrink_dcache_for_umount() for a description of the
826  *   locking
827  */
828 static void shrink_dcache_for_umount_subtree(struct dentry *dentry)
829 {
830 	struct dentry *parent;
831 	unsigned detached = 0;
832 
833 	BUG_ON(!IS_ROOT(dentry));
834 
835 	/* detach this root from the system */
836 	spin_lock(&dentry->d_lock);
837 	dentry_lru_del(dentry);
838 	__d_drop(dentry);
839 	spin_unlock(&dentry->d_lock);
840 
841 	for (;;) {
842 		/* descend to the first leaf in the current subtree */
843 		while (!list_empty(&dentry->d_subdirs)) {
844 			struct dentry *loop;
845 
846 			/* this is a branch with children - detach all of them
847 			 * from the system in one go */
848 			spin_lock(&dentry->d_lock);
849 			list_for_each_entry(loop, &dentry->d_subdirs,
850 					    d_u.d_child) {
851 				spin_lock_nested(&loop->d_lock,
852 						DENTRY_D_LOCK_NESTED);
853 				dentry_lru_del(loop);
854 				__d_drop(loop);
855 				spin_unlock(&loop->d_lock);
856 			}
857 			spin_unlock(&dentry->d_lock);
858 
859 			/* move to the first child */
860 			dentry = list_entry(dentry->d_subdirs.next,
861 					    struct dentry, d_u.d_child);
862 		}
863 
864 		/* consume the dentries from this leaf up through its parents
865 		 * until we find one with children or run out altogether */
866 		do {
867 			struct inode *inode;
868 
869 			if (dentry->d_count != 0) {
870 				printk(KERN_ERR
871 				       "BUG: Dentry %p{i=%lx,n=%s}"
872 				       " still in use (%d)"
873 				       " [unmount of %s %s]\n",
874 				       dentry,
875 				       dentry->d_inode ?
876 				       dentry->d_inode->i_ino : 0UL,
877 				       dentry->d_name.name,
878 				       dentry->d_count,
879 				       dentry->d_sb->s_type->name,
880 				       dentry->d_sb->s_id);
881 				BUG();
882 			}
883 
884 			if (IS_ROOT(dentry)) {
885 				parent = NULL;
886 				list_del(&dentry->d_u.d_child);
887 			} else {
888 				parent = dentry->d_parent;
889 				spin_lock(&parent->d_lock);
890 				parent->d_count--;
891 				list_del(&dentry->d_u.d_child);
892 				spin_unlock(&parent->d_lock);
893 			}
894 
895 			detached++;
896 
897 			inode = dentry->d_inode;
898 			if (inode) {
899 				dentry->d_inode = NULL;
900 				list_del_init(&dentry->d_alias);
901 				if (dentry->d_op && dentry->d_op->d_iput)
902 					dentry->d_op->d_iput(dentry, inode);
903 				else
904 					iput(inode);
905 			}
906 
907 			d_free(dentry);
908 
909 			/* finished when we fall off the top of the tree,
910 			 * otherwise we ascend to the parent and move to the
911 			 * next sibling if there is one */
912 			if (!parent)
913 				return;
914 			dentry = parent;
915 		} while (list_empty(&dentry->d_subdirs));
916 
917 		dentry = list_entry(dentry->d_subdirs.next,
918 				    struct dentry, d_u.d_child);
919 	}
920 }
921 
922 /*
923  * destroy the dentries attached to a superblock on unmounting
924  * - we don't need to use dentry->d_lock because:
925  *   - the superblock is detached from all mountings and open files, so the
926  *     dentry trees will not be rearranged by the VFS
927  *   - s_umount is write-locked, so the memory pressure shrinker will ignore
928  *     any dentries belonging to this superblock that it comes across
929  *   - the filesystem itself is no longer permitted to rearrange the dentries
930  *     in this superblock
931  */
932 void shrink_dcache_for_umount(struct super_block *sb)
933 {
934 	struct dentry *dentry;
935 
936 	if (down_read_trylock(&sb->s_umount))
937 		BUG();
938 
939 	dentry = sb->s_root;
940 	sb->s_root = NULL;
941 	spin_lock(&dentry->d_lock);
942 	dentry->d_count--;
943 	spin_unlock(&dentry->d_lock);
944 	shrink_dcache_for_umount_subtree(dentry);
945 
946 	while (!hlist_bl_empty(&sb->s_anon)) {
947 		dentry = hlist_bl_entry(hlist_bl_first(&sb->s_anon), struct dentry, d_hash);
948 		shrink_dcache_for_umount_subtree(dentry);
949 	}
950 }
951 
952 /*
953  * This tries to ascend one level of parenthood, but
954  * we can race with renaming, so we need to re-check
955  * the parenthood after dropping the lock and check
956  * that the sequence number still matches.
957  */
958 static struct dentry *try_to_ascend(struct dentry *old, int locked, unsigned seq)
959 {
960 	struct dentry *new = old->d_parent;
961 
962 	rcu_read_lock();
963 	spin_unlock(&old->d_lock);
964 	spin_lock(&new->d_lock);
965 
966 	/*
967 	 * might go back up the wrong parent if we have had a rename
968 	 * or deletion
969 	 */
970 	if (new != old->d_parent ||
971 		 (old->d_flags & DCACHE_DISCONNECTED) ||
972 		 (!locked && read_seqretry(&rename_lock, seq))) {
973 		spin_unlock(&new->d_lock);
974 		new = NULL;
975 	}
976 	rcu_read_unlock();
977 	return new;
978 }
979 
980 
981 /*
982  * Search for at least 1 mount point in the dentry's subdirs.
983  * We descend to the next level whenever the d_subdirs
984  * list is non-empty and continue searching.
985  */
986 
987 /**
988  * have_submounts - check for mounts over a dentry
989  * @parent: dentry to check.
990  *
991  * Return true if the parent or its subdirectories contain
992  * a mount point
993  */
994 int have_submounts(struct dentry *parent)
995 {
996 	struct dentry *this_parent;
997 	struct list_head *next;
998 	unsigned seq;
999 	int locked = 0;
1000 
1001 	seq = read_seqbegin(&rename_lock);
1002 again:
1003 	this_parent = parent;
1004 
1005 	if (d_mountpoint(parent))
1006 		goto positive;
1007 	spin_lock(&this_parent->d_lock);
1008 repeat:
1009 	next = this_parent->d_subdirs.next;
1010 resume:
1011 	while (next != &this_parent->d_subdirs) {
1012 		struct list_head *tmp = next;
1013 		struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
1014 		next = tmp->next;
1015 
1016 		spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1017 		/* Have we found a mount point ? */
1018 		if (d_mountpoint(dentry)) {
1019 			spin_unlock(&dentry->d_lock);
1020 			spin_unlock(&this_parent->d_lock);
1021 			goto positive;
1022 		}
1023 		if (!list_empty(&dentry->d_subdirs)) {
1024 			spin_unlock(&this_parent->d_lock);
1025 			spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1026 			this_parent = dentry;
1027 			spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1028 			goto repeat;
1029 		}
1030 		spin_unlock(&dentry->d_lock);
1031 	}
1032 	/*
1033 	 * All done at this level ... ascend and resume the search.
1034 	 */
1035 	if (this_parent != parent) {
1036 		struct dentry *child = this_parent;
1037 		this_parent = try_to_ascend(this_parent, locked, seq);
1038 		if (!this_parent)
1039 			goto rename_retry;
1040 		next = child->d_u.d_child.next;
1041 		goto resume;
1042 	}
1043 	spin_unlock(&this_parent->d_lock);
1044 	if (!locked && read_seqretry(&rename_lock, seq))
1045 		goto rename_retry;
1046 	if (locked)
1047 		write_sequnlock(&rename_lock);
1048 	return 0; /* No mount points found in tree */
1049 positive:
1050 	if (!locked && read_seqretry(&rename_lock, seq))
1051 		goto rename_retry;
1052 	if (locked)
1053 		write_sequnlock(&rename_lock);
1054 	return 1;
1055 
1056 rename_retry:
1057 	locked = 1;
1058 	write_seqlock(&rename_lock);
1059 	goto again;
1060 }
1061 EXPORT_SYMBOL(have_submounts);
1062 
1063 /*
1064  * Search the dentry child list for the specified parent,
1065  * and move any unused dentries to the end of the unused
1066  * list for prune_dcache(). We descend to the next level
1067  * whenever the d_subdirs list is non-empty and continue
1068  * searching.
1069  *
1070  * It returns zero iff there are no unused children,
1071  * otherwise  it returns the number of children moved to
1072  * the end of the unused list. This may not be the total
1073  * number of unused children, because select_parent can
1074  * drop the lock and return early due to latency
1075  * constraints.
1076  */
1077 static int select_parent(struct dentry * parent)
1078 {
1079 	struct dentry *this_parent;
1080 	struct list_head *next;
1081 	unsigned seq;
1082 	int found = 0;
1083 	int locked = 0;
1084 
1085 	seq = read_seqbegin(&rename_lock);
1086 again:
1087 	this_parent = parent;
1088 	spin_lock(&this_parent->d_lock);
1089 repeat:
1090 	next = this_parent->d_subdirs.next;
1091 resume:
1092 	while (next != &this_parent->d_subdirs) {
1093 		struct list_head *tmp = next;
1094 		struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
1095 		next = tmp->next;
1096 
1097 		spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1098 
1099 		/*
1100 		 * move only zero ref count dentries to the end
1101 		 * of the unused list for prune_dcache
1102 		 */
1103 		if (!dentry->d_count) {
1104 			dentry_lru_move_tail(dentry);
1105 			found++;
1106 		} else {
1107 			dentry_lru_del(dentry);
1108 		}
1109 
1110 		/*
1111 		 * We can return to the caller if we have found some (this
1112 		 * ensures forward progress). We'll be coming back to find
1113 		 * the rest.
1114 		 */
1115 		if (found && need_resched()) {
1116 			spin_unlock(&dentry->d_lock);
1117 			goto out;
1118 		}
1119 
1120 		/*
1121 		 * Descend a level if the d_subdirs list is non-empty.
1122 		 */
1123 		if (!list_empty(&dentry->d_subdirs)) {
1124 			spin_unlock(&this_parent->d_lock);
1125 			spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1126 			this_parent = dentry;
1127 			spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1128 			goto repeat;
1129 		}
1130 
1131 		spin_unlock(&dentry->d_lock);
1132 	}
1133 	/*
1134 	 * All done at this level ... ascend and resume the search.
1135 	 */
1136 	if (this_parent != parent) {
1137 		struct dentry *child = this_parent;
1138 		this_parent = try_to_ascend(this_parent, locked, seq);
1139 		if (!this_parent)
1140 			goto rename_retry;
1141 		next = child->d_u.d_child.next;
1142 		goto resume;
1143 	}
1144 out:
1145 	spin_unlock(&this_parent->d_lock);
1146 	if (!locked && read_seqretry(&rename_lock, seq))
1147 		goto rename_retry;
1148 	if (locked)
1149 		write_sequnlock(&rename_lock);
1150 	return found;
1151 
1152 rename_retry:
1153 	if (found)
1154 		return found;
1155 	locked = 1;
1156 	write_seqlock(&rename_lock);
1157 	goto again;
1158 }
1159 
1160 /**
1161  * shrink_dcache_parent - prune dcache
1162  * @parent: parent of entries to prune
1163  *
1164  * Prune the dcache to remove unused children of the parent dentry.
1165  */
1166 
1167 void shrink_dcache_parent(struct dentry * parent)
1168 {
1169 	struct super_block *sb = parent->d_sb;
1170 	int found;
1171 
1172 	while ((found = select_parent(parent)) != 0)
1173 		__shrink_dcache_sb(sb, found, 0);
1174 }
1175 EXPORT_SYMBOL(shrink_dcache_parent);
1176 
1177 /**
1178  * __d_alloc	-	allocate a dcache entry
1179  * @sb: filesystem it will belong to
1180  * @name: qstr of the name
1181  *
1182  * Allocates a dentry. It returns %NULL if there is insufficient memory
1183  * available. On a success the dentry is returned. The name passed in is
1184  * copied and the copy passed in may be reused after this call.
1185  */
1186 
1187 struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name)
1188 {
1189 	struct dentry *dentry;
1190 	char *dname;
1191 
1192 	dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
1193 	if (!dentry)
1194 		return NULL;
1195 
1196 	if (name->len > DNAME_INLINE_LEN-1) {
1197 		dname = kmalloc(name->len + 1, GFP_KERNEL);
1198 		if (!dname) {
1199 			kmem_cache_free(dentry_cache, dentry);
1200 			return NULL;
1201 		}
1202 	} else  {
1203 		dname = dentry->d_iname;
1204 	}
1205 	dentry->d_name.name = dname;
1206 
1207 	dentry->d_name.len = name->len;
1208 	dentry->d_name.hash = name->hash;
1209 	memcpy(dname, name->name, name->len);
1210 	dname[name->len] = 0;
1211 
1212 	dentry->d_count = 1;
1213 	dentry->d_flags = 0;
1214 	spin_lock_init(&dentry->d_lock);
1215 	seqcount_init(&dentry->d_seq);
1216 	dentry->d_inode = NULL;
1217 	dentry->d_parent = dentry;
1218 	dentry->d_sb = sb;
1219 	dentry->d_op = NULL;
1220 	dentry->d_fsdata = NULL;
1221 	INIT_HLIST_BL_NODE(&dentry->d_hash);
1222 	INIT_LIST_HEAD(&dentry->d_lru);
1223 	INIT_LIST_HEAD(&dentry->d_subdirs);
1224 	INIT_LIST_HEAD(&dentry->d_alias);
1225 	INIT_LIST_HEAD(&dentry->d_u.d_child);
1226 	d_set_d_op(dentry, dentry->d_sb->s_d_op);
1227 
1228 	this_cpu_inc(nr_dentry);
1229 
1230 	return dentry;
1231 }
1232 
1233 /**
1234  * d_alloc	-	allocate a dcache entry
1235  * @parent: parent of entry to allocate
1236  * @name: qstr of the name
1237  *
1238  * Allocates a dentry. It returns %NULL if there is insufficient memory
1239  * available. On a success the dentry is returned. The name passed in is
1240  * copied and the copy passed in may be reused after this call.
1241  */
1242 struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1243 {
1244 	struct dentry *dentry = __d_alloc(parent->d_sb, name);
1245 	if (!dentry)
1246 		return NULL;
1247 
1248 	spin_lock(&parent->d_lock);
1249 	/*
1250 	 * don't need child lock because it is not subject
1251 	 * to concurrency here
1252 	 */
1253 	__dget_dlock(parent);
1254 	dentry->d_parent = parent;
1255 	list_add(&dentry->d_u.d_child, &parent->d_subdirs);
1256 	spin_unlock(&parent->d_lock);
1257 
1258 	return dentry;
1259 }
1260 EXPORT_SYMBOL(d_alloc);
1261 
1262 struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
1263 {
1264 	struct dentry *dentry = __d_alloc(sb, name);
1265 	if (dentry)
1266 		dentry->d_flags |= DCACHE_DISCONNECTED;
1267 	return dentry;
1268 }
1269 EXPORT_SYMBOL(d_alloc_pseudo);
1270 
1271 struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1272 {
1273 	struct qstr q;
1274 
1275 	q.name = name;
1276 	q.len = strlen(name);
1277 	q.hash = full_name_hash(q.name, q.len);
1278 	return d_alloc(parent, &q);
1279 }
1280 EXPORT_SYMBOL(d_alloc_name);
1281 
1282 void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1283 {
1284 	WARN_ON_ONCE(dentry->d_op);
1285 	WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH	|
1286 				DCACHE_OP_COMPARE	|
1287 				DCACHE_OP_REVALIDATE	|
1288 				DCACHE_OP_DELETE ));
1289 	dentry->d_op = op;
1290 	if (!op)
1291 		return;
1292 	if (op->d_hash)
1293 		dentry->d_flags |= DCACHE_OP_HASH;
1294 	if (op->d_compare)
1295 		dentry->d_flags |= DCACHE_OP_COMPARE;
1296 	if (op->d_revalidate)
1297 		dentry->d_flags |= DCACHE_OP_REVALIDATE;
1298 	if (op->d_delete)
1299 		dentry->d_flags |= DCACHE_OP_DELETE;
1300 
1301 }
1302 EXPORT_SYMBOL(d_set_d_op);
1303 
1304 static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1305 {
1306 	spin_lock(&dentry->d_lock);
1307 	if (inode) {
1308 		if (unlikely(IS_AUTOMOUNT(inode)))
1309 			dentry->d_flags |= DCACHE_NEED_AUTOMOUNT;
1310 		list_add(&dentry->d_alias, &inode->i_dentry);
1311 	}
1312 	dentry->d_inode = inode;
1313 	dentry_rcuwalk_barrier(dentry);
1314 	spin_unlock(&dentry->d_lock);
1315 	fsnotify_d_instantiate(dentry, inode);
1316 }
1317 
1318 /**
1319  * d_instantiate - fill in inode information for a dentry
1320  * @entry: dentry to complete
1321  * @inode: inode to attach to this dentry
1322  *
1323  * Fill in inode information in the entry.
1324  *
1325  * This turns negative dentries into productive full members
1326  * of society.
1327  *
1328  * NOTE! This assumes that the inode count has been incremented
1329  * (or otherwise set) by the caller to indicate that it is now
1330  * in use by the dcache.
1331  */
1332 
1333 void d_instantiate(struct dentry *entry, struct inode * inode)
1334 {
1335 	BUG_ON(!list_empty(&entry->d_alias));
1336 	if (inode)
1337 		spin_lock(&inode->i_lock);
1338 	__d_instantiate(entry, inode);
1339 	if (inode)
1340 		spin_unlock(&inode->i_lock);
1341 	security_d_instantiate(entry, inode);
1342 }
1343 EXPORT_SYMBOL(d_instantiate);
1344 
1345 /**
1346  * d_instantiate_unique - instantiate a non-aliased dentry
1347  * @entry: dentry to instantiate
1348  * @inode: inode to attach to this dentry
1349  *
1350  * Fill in inode information in the entry. On success, it returns NULL.
1351  * If an unhashed alias of "entry" already exists, then we return the
1352  * aliased dentry instead and drop one reference to inode.
1353  *
1354  * Note that in order to avoid conflicts with rename() etc, the caller
1355  * had better be holding the parent directory semaphore.
1356  *
1357  * This also assumes that the inode count has been incremented
1358  * (or otherwise set) by the caller to indicate that it is now
1359  * in use by the dcache.
1360  */
1361 static struct dentry *__d_instantiate_unique(struct dentry *entry,
1362 					     struct inode *inode)
1363 {
1364 	struct dentry *alias;
1365 	int len = entry->d_name.len;
1366 	const char *name = entry->d_name.name;
1367 	unsigned int hash = entry->d_name.hash;
1368 
1369 	if (!inode) {
1370 		__d_instantiate(entry, NULL);
1371 		return NULL;
1372 	}
1373 
1374 	list_for_each_entry(alias, &inode->i_dentry, d_alias) {
1375 		struct qstr *qstr = &alias->d_name;
1376 
1377 		/*
1378 		 * Don't need alias->d_lock here, because aliases with
1379 		 * d_parent == entry->d_parent are not subject to name or
1380 		 * parent changes, because the parent inode i_mutex is held.
1381 		 */
1382 		if (qstr->hash != hash)
1383 			continue;
1384 		if (alias->d_parent != entry->d_parent)
1385 			continue;
1386 		if (dentry_cmp(qstr->name, qstr->len, name, len))
1387 			continue;
1388 		__dget(alias);
1389 		return alias;
1390 	}
1391 
1392 	__d_instantiate(entry, inode);
1393 	return NULL;
1394 }
1395 
1396 struct dentry *d_instantiate_unique(struct dentry *entry, struct inode *inode)
1397 {
1398 	struct dentry *result;
1399 
1400 	BUG_ON(!list_empty(&entry->d_alias));
1401 
1402 	if (inode)
1403 		spin_lock(&inode->i_lock);
1404 	result = __d_instantiate_unique(entry, inode);
1405 	if (inode)
1406 		spin_unlock(&inode->i_lock);
1407 
1408 	if (!result) {
1409 		security_d_instantiate(entry, inode);
1410 		return NULL;
1411 	}
1412 
1413 	BUG_ON(!d_unhashed(result));
1414 	iput(inode);
1415 	return result;
1416 }
1417 
1418 EXPORT_SYMBOL(d_instantiate_unique);
1419 
1420 /**
1421  * d_alloc_root - allocate root dentry
1422  * @root_inode: inode to allocate the root for
1423  *
1424  * Allocate a root ("/") dentry for the inode given. The inode is
1425  * instantiated and returned. %NULL is returned if there is insufficient
1426  * memory or the inode passed is %NULL.
1427  */
1428 
1429 struct dentry * d_alloc_root(struct inode * root_inode)
1430 {
1431 	struct dentry *res = NULL;
1432 
1433 	if (root_inode) {
1434 		static const struct qstr name = { .name = "/", .len = 1 };
1435 
1436 		res = __d_alloc(root_inode->i_sb, &name);
1437 		if (res)
1438 			d_instantiate(res, root_inode);
1439 	}
1440 	return res;
1441 }
1442 EXPORT_SYMBOL(d_alloc_root);
1443 
1444 static struct dentry * __d_find_any_alias(struct inode *inode)
1445 {
1446 	struct dentry *alias;
1447 
1448 	if (list_empty(&inode->i_dentry))
1449 		return NULL;
1450 	alias = list_first_entry(&inode->i_dentry, struct dentry, d_alias);
1451 	__dget(alias);
1452 	return alias;
1453 }
1454 
1455 static struct dentry * d_find_any_alias(struct inode *inode)
1456 {
1457 	struct dentry *de;
1458 
1459 	spin_lock(&inode->i_lock);
1460 	de = __d_find_any_alias(inode);
1461 	spin_unlock(&inode->i_lock);
1462 	return de;
1463 }
1464 
1465 
1466 /**
1467  * d_obtain_alias - find or allocate a dentry for a given inode
1468  * @inode: inode to allocate the dentry for
1469  *
1470  * Obtain a dentry for an inode resulting from NFS filehandle conversion or
1471  * similar open by handle operations.  The returned dentry may be anonymous,
1472  * or may have a full name (if the inode was already in the cache).
1473  *
1474  * When called on a directory inode, we must ensure that the inode only ever
1475  * has one dentry.  If a dentry is found, that is returned instead of
1476  * allocating a new one.
1477  *
1478  * On successful return, the reference to the inode has been transferred
1479  * to the dentry.  In case of an error the reference on the inode is released.
1480  * To make it easier to use in export operations a %NULL or IS_ERR inode may
1481  * be passed in and will be the error will be propagate to the return value,
1482  * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
1483  */
1484 struct dentry *d_obtain_alias(struct inode *inode)
1485 {
1486 	static const struct qstr anonstring = { .name = "" };
1487 	struct dentry *tmp;
1488 	struct dentry *res;
1489 
1490 	if (!inode)
1491 		return ERR_PTR(-ESTALE);
1492 	if (IS_ERR(inode))
1493 		return ERR_CAST(inode);
1494 
1495 	res = d_find_any_alias(inode);
1496 	if (res)
1497 		goto out_iput;
1498 
1499 	tmp = __d_alloc(inode->i_sb, &anonstring);
1500 	if (!tmp) {
1501 		res = ERR_PTR(-ENOMEM);
1502 		goto out_iput;
1503 	}
1504 
1505 	spin_lock(&inode->i_lock);
1506 	res = __d_find_any_alias(inode);
1507 	if (res) {
1508 		spin_unlock(&inode->i_lock);
1509 		dput(tmp);
1510 		goto out_iput;
1511 	}
1512 
1513 	/* attach a disconnected dentry */
1514 	spin_lock(&tmp->d_lock);
1515 	tmp->d_inode = inode;
1516 	tmp->d_flags |= DCACHE_DISCONNECTED;
1517 	list_add(&tmp->d_alias, &inode->i_dentry);
1518 	hlist_bl_lock(&tmp->d_sb->s_anon);
1519 	hlist_bl_add_head(&tmp->d_hash, &tmp->d_sb->s_anon);
1520 	hlist_bl_unlock(&tmp->d_sb->s_anon);
1521 	spin_unlock(&tmp->d_lock);
1522 	spin_unlock(&inode->i_lock);
1523 	security_d_instantiate(tmp, inode);
1524 
1525 	return tmp;
1526 
1527  out_iput:
1528 	if (res && !IS_ERR(res))
1529 		security_d_instantiate(res, inode);
1530 	iput(inode);
1531 	return res;
1532 }
1533 EXPORT_SYMBOL(d_obtain_alias);
1534 
1535 /**
1536  * d_splice_alias - splice a disconnected dentry into the tree if one exists
1537  * @inode:  the inode which may have a disconnected dentry
1538  * @dentry: a negative dentry which we want to point to the inode.
1539  *
1540  * If inode is a directory and has a 'disconnected' dentry (i.e. IS_ROOT and
1541  * DCACHE_DISCONNECTED), then d_move that in place of the given dentry
1542  * and return it, else simply d_add the inode to the dentry and return NULL.
1543  *
1544  * This is needed in the lookup routine of any filesystem that is exportable
1545  * (via knfsd) so that we can build dcache paths to directories effectively.
1546  *
1547  * If a dentry was found and moved, then it is returned.  Otherwise NULL
1548  * is returned.  This matches the expected return value of ->lookup.
1549  *
1550  */
1551 struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
1552 {
1553 	struct dentry *new = NULL;
1554 
1555 	if (IS_ERR(inode))
1556 		return ERR_CAST(inode);
1557 
1558 	if (inode && S_ISDIR(inode->i_mode)) {
1559 		spin_lock(&inode->i_lock);
1560 		new = __d_find_alias(inode, 1);
1561 		if (new) {
1562 			BUG_ON(!(new->d_flags & DCACHE_DISCONNECTED));
1563 			spin_unlock(&inode->i_lock);
1564 			security_d_instantiate(new, inode);
1565 			d_move(new, dentry);
1566 			iput(inode);
1567 		} else {
1568 			/* already taking inode->i_lock, so d_add() by hand */
1569 			__d_instantiate(dentry, inode);
1570 			spin_unlock(&inode->i_lock);
1571 			security_d_instantiate(dentry, inode);
1572 			d_rehash(dentry);
1573 		}
1574 	} else
1575 		d_add(dentry, inode);
1576 	return new;
1577 }
1578 EXPORT_SYMBOL(d_splice_alias);
1579 
1580 /**
1581  * d_add_ci - lookup or allocate new dentry with case-exact name
1582  * @inode:  the inode case-insensitive lookup has found
1583  * @dentry: the negative dentry that was passed to the parent's lookup func
1584  * @name:   the case-exact name to be associated with the returned dentry
1585  *
1586  * This is to avoid filling the dcache with case-insensitive names to the
1587  * same inode, only the actual correct case is stored in the dcache for
1588  * case-insensitive filesystems.
1589  *
1590  * For a case-insensitive lookup match and if the the case-exact dentry
1591  * already exists in in the dcache, use it and return it.
1592  *
1593  * If no entry exists with the exact case name, allocate new dentry with
1594  * the exact case, and return the spliced entry.
1595  */
1596 struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
1597 			struct qstr *name)
1598 {
1599 	int error;
1600 	struct dentry *found;
1601 	struct dentry *new;
1602 
1603 	/*
1604 	 * First check if a dentry matching the name already exists,
1605 	 * if not go ahead and create it now.
1606 	 */
1607 	found = d_hash_and_lookup(dentry->d_parent, name);
1608 	if (!found) {
1609 		new = d_alloc(dentry->d_parent, name);
1610 		if (!new) {
1611 			error = -ENOMEM;
1612 			goto err_out;
1613 		}
1614 
1615 		found = d_splice_alias(inode, new);
1616 		if (found) {
1617 			dput(new);
1618 			return found;
1619 		}
1620 		return new;
1621 	}
1622 
1623 	/*
1624 	 * If a matching dentry exists, and it's not negative use it.
1625 	 *
1626 	 * Decrement the reference count to balance the iget() done
1627 	 * earlier on.
1628 	 */
1629 	if (found->d_inode) {
1630 		if (unlikely(found->d_inode != inode)) {
1631 			/* This can't happen because bad inodes are unhashed. */
1632 			BUG_ON(!is_bad_inode(inode));
1633 			BUG_ON(!is_bad_inode(found->d_inode));
1634 		}
1635 		iput(inode);
1636 		return found;
1637 	}
1638 
1639 	/*
1640 	 * We are going to instantiate this dentry, unhash it and clear the
1641 	 * lookup flag so we can do that.
1642 	 */
1643 	if (unlikely(d_need_lookup(found)))
1644 		d_clear_need_lookup(found);
1645 
1646 	/*
1647 	 * Negative dentry: instantiate it unless the inode is a directory and
1648 	 * already has a dentry.
1649 	 */
1650 	new = d_splice_alias(inode, found);
1651 	if (new) {
1652 		dput(found);
1653 		found = new;
1654 	}
1655 	return found;
1656 
1657 err_out:
1658 	iput(inode);
1659 	return ERR_PTR(error);
1660 }
1661 EXPORT_SYMBOL(d_add_ci);
1662 
1663 /**
1664  * __d_lookup_rcu - search for a dentry (racy, store-free)
1665  * @parent: parent dentry
1666  * @name: qstr of name we wish to find
1667  * @seq: returns d_seq value at the point where the dentry was found
1668  * @inode: returns dentry->d_inode when the inode was found valid.
1669  * Returns: dentry, or NULL
1670  *
1671  * __d_lookup_rcu is the dcache lookup function for rcu-walk name
1672  * resolution (store-free path walking) design described in
1673  * Documentation/filesystems/path-lookup.txt.
1674  *
1675  * This is not to be used outside core vfs.
1676  *
1677  * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
1678  * held, and rcu_read_lock held. The returned dentry must not be stored into
1679  * without taking d_lock and checking d_seq sequence count against @seq
1680  * returned here.
1681  *
1682  * A refcount may be taken on the found dentry with the __d_rcu_to_refcount
1683  * function.
1684  *
1685  * Alternatively, __d_lookup_rcu may be called again to look up the child of
1686  * the returned dentry, so long as its parent's seqlock is checked after the
1687  * child is looked up. Thus, an interlocking stepping of sequence lock checks
1688  * is formed, giving integrity down the path walk.
1689  */
1690 struct dentry *__d_lookup_rcu(struct dentry *parent, struct qstr *name,
1691 				unsigned *seq, struct inode **inode)
1692 {
1693 	unsigned int len = name->len;
1694 	unsigned int hash = name->hash;
1695 	const unsigned char *str = name->name;
1696 	struct hlist_bl_head *b = d_hash(parent, hash);
1697 	struct hlist_bl_node *node;
1698 	struct dentry *dentry;
1699 
1700 	/*
1701 	 * Note: There is significant duplication with __d_lookup_rcu which is
1702 	 * required to prevent single threaded performance regressions
1703 	 * especially on architectures where smp_rmb (in seqcounts) are costly.
1704 	 * Keep the two functions in sync.
1705 	 */
1706 
1707 	/*
1708 	 * The hash list is protected using RCU.
1709 	 *
1710 	 * Carefully use d_seq when comparing a candidate dentry, to avoid
1711 	 * races with d_move().
1712 	 *
1713 	 * It is possible that concurrent renames can mess up our list
1714 	 * walk here and result in missing our dentry, resulting in the
1715 	 * false-negative result. d_lookup() protects against concurrent
1716 	 * renames using rename_lock seqlock.
1717 	 *
1718 	 * See Documentation/filesystems/path-lookup.txt for more details.
1719 	 */
1720 	hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
1721 		struct inode *i;
1722 		const char *tname;
1723 		int tlen;
1724 
1725 		if (dentry->d_name.hash != hash)
1726 			continue;
1727 
1728 seqretry:
1729 		*seq = read_seqcount_begin(&dentry->d_seq);
1730 		if (dentry->d_parent != parent)
1731 			continue;
1732 		if (d_unhashed(dentry))
1733 			continue;
1734 		tlen = dentry->d_name.len;
1735 		tname = dentry->d_name.name;
1736 		i = dentry->d_inode;
1737 		prefetch(tname);
1738 		/*
1739 		 * This seqcount check is required to ensure name and
1740 		 * len are loaded atomically, so as not to walk off the
1741 		 * edge of memory when walking. If we could load this
1742 		 * atomically some other way, we could drop this check.
1743 		 */
1744 		if (read_seqcount_retry(&dentry->d_seq, *seq))
1745 			goto seqretry;
1746 		if (parent->d_flags & DCACHE_OP_COMPARE) {
1747 			if (parent->d_op->d_compare(parent, *inode,
1748 						dentry, i,
1749 						tlen, tname, name))
1750 				continue;
1751 		} else {
1752 			if (dentry_cmp(tname, tlen, str, len))
1753 				continue;
1754 		}
1755 		/*
1756 		 * No extra seqcount check is required after the name
1757 		 * compare. The caller must perform a seqcount check in
1758 		 * order to do anything useful with the returned dentry
1759 		 * anyway.
1760 		 */
1761 		*inode = i;
1762 		return dentry;
1763 	}
1764 	return NULL;
1765 }
1766 
1767 /**
1768  * d_lookup - search for a dentry
1769  * @parent: parent dentry
1770  * @name: qstr of name we wish to find
1771  * Returns: dentry, or NULL
1772  *
1773  * d_lookup searches the children of the parent dentry for the name in
1774  * question. If the dentry is found its reference count is incremented and the
1775  * dentry is returned. The caller must use dput to free the entry when it has
1776  * finished using it. %NULL is returned if the dentry does not exist.
1777  */
1778 struct dentry *d_lookup(struct dentry *parent, struct qstr *name)
1779 {
1780 	struct dentry *dentry;
1781 	unsigned seq;
1782 
1783         do {
1784                 seq = read_seqbegin(&rename_lock);
1785                 dentry = __d_lookup(parent, name);
1786                 if (dentry)
1787 			break;
1788 	} while (read_seqretry(&rename_lock, seq));
1789 	return dentry;
1790 }
1791 EXPORT_SYMBOL(d_lookup);
1792 
1793 /**
1794  * __d_lookup - search for a dentry (racy)
1795  * @parent: parent dentry
1796  * @name: qstr of name we wish to find
1797  * Returns: dentry, or NULL
1798  *
1799  * __d_lookup is like d_lookup, however it may (rarely) return a
1800  * false-negative result due to unrelated rename activity.
1801  *
1802  * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
1803  * however it must be used carefully, eg. with a following d_lookup in
1804  * the case of failure.
1805  *
1806  * __d_lookup callers must be commented.
1807  */
1808 struct dentry *__d_lookup(struct dentry *parent, struct qstr *name)
1809 {
1810 	unsigned int len = name->len;
1811 	unsigned int hash = name->hash;
1812 	const unsigned char *str = name->name;
1813 	struct hlist_bl_head *b = d_hash(parent, hash);
1814 	struct hlist_bl_node *node;
1815 	struct dentry *found = NULL;
1816 	struct dentry *dentry;
1817 
1818 	/*
1819 	 * Note: There is significant duplication with __d_lookup_rcu which is
1820 	 * required to prevent single threaded performance regressions
1821 	 * especially on architectures where smp_rmb (in seqcounts) are costly.
1822 	 * Keep the two functions in sync.
1823 	 */
1824 
1825 	/*
1826 	 * The hash list is protected using RCU.
1827 	 *
1828 	 * Take d_lock when comparing a candidate dentry, to avoid races
1829 	 * with d_move().
1830 	 *
1831 	 * It is possible that concurrent renames can mess up our list
1832 	 * walk here and result in missing our dentry, resulting in the
1833 	 * false-negative result. d_lookup() protects against concurrent
1834 	 * renames using rename_lock seqlock.
1835 	 *
1836 	 * See Documentation/filesystems/path-lookup.txt for more details.
1837 	 */
1838 	rcu_read_lock();
1839 
1840 	hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
1841 		const char *tname;
1842 		int tlen;
1843 
1844 		if (dentry->d_name.hash != hash)
1845 			continue;
1846 
1847 		spin_lock(&dentry->d_lock);
1848 		if (dentry->d_parent != parent)
1849 			goto next;
1850 		if (d_unhashed(dentry))
1851 			goto next;
1852 
1853 		/*
1854 		 * It is safe to compare names since d_move() cannot
1855 		 * change the qstr (protected by d_lock).
1856 		 */
1857 		tlen = dentry->d_name.len;
1858 		tname = dentry->d_name.name;
1859 		if (parent->d_flags & DCACHE_OP_COMPARE) {
1860 			if (parent->d_op->d_compare(parent, parent->d_inode,
1861 						dentry, dentry->d_inode,
1862 						tlen, tname, name))
1863 				goto next;
1864 		} else {
1865 			if (dentry_cmp(tname, tlen, str, len))
1866 				goto next;
1867 		}
1868 
1869 		dentry->d_count++;
1870 		found = dentry;
1871 		spin_unlock(&dentry->d_lock);
1872 		break;
1873 next:
1874 		spin_unlock(&dentry->d_lock);
1875  	}
1876  	rcu_read_unlock();
1877 
1878  	return found;
1879 }
1880 
1881 /**
1882  * d_hash_and_lookup - hash the qstr then search for a dentry
1883  * @dir: Directory to search in
1884  * @name: qstr of name we wish to find
1885  *
1886  * On hash failure or on lookup failure NULL is returned.
1887  */
1888 struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
1889 {
1890 	struct dentry *dentry = NULL;
1891 
1892 	/*
1893 	 * Check for a fs-specific hash function. Note that we must
1894 	 * calculate the standard hash first, as the d_op->d_hash()
1895 	 * routine may choose to leave the hash value unchanged.
1896 	 */
1897 	name->hash = full_name_hash(name->name, name->len);
1898 	if (dir->d_flags & DCACHE_OP_HASH) {
1899 		if (dir->d_op->d_hash(dir, dir->d_inode, name) < 0)
1900 			goto out;
1901 	}
1902 	dentry = d_lookup(dir, name);
1903 out:
1904 	return dentry;
1905 }
1906 
1907 /**
1908  * d_validate - verify dentry provided from insecure source (deprecated)
1909  * @dentry: The dentry alleged to be valid child of @dparent
1910  * @dparent: The parent dentry (known to be valid)
1911  *
1912  * An insecure source has sent us a dentry, here we verify it and dget() it.
1913  * This is used by ncpfs in its readdir implementation.
1914  * Zero is returned in the dentry is invalid.
1915  *
1916  * This function is slow for big directories, and deprecated, do not use it.
1917  */
1918 int d_validate(struct dentry *dentry, struct dentry *dparent)
1919 {
1920 	struct dentry *child;
1921 
1922 	spin_lock(&dparent->d_lock);
1923 	list_for_each_entry(child, &dparent->d_subdirs, d_u.d_child) {
1924 		if (dentry == child) {
1925 			spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1926 			__dget_dlock(dentry);
1927 			spin_unlock(&dentry->d_lock);
1928 			spin_unlock(&dparent->d_lock);
1929 			return 1;
1930 		}
1931 	}
1932 	spin_unlock(&dparent->d_lock);
1933 
1934 	return 0;
1935 }
1936 EXPORT_SYMBOL(d_validate);
1937 
1938 /*
1939  * When a file is deleted, we have two options:
1940  * - turn this dentry into a negative dentry
1941  * - unhash this dentry and free it.
1942  *
1943  * Usually, we want to just turn this into
1944  * a negative dentry, but if anybody else is
1945  * currently using the dentry or the inode
1946  * we can't do that and we fall back on removing
1947  * it from the hash queues and waiting for
1948  * it to be deleted later when it has no users
1949  */
1950 
1951 /**
1952  * d_delete - delete a dentry
1953  * @dentry: The dentry to delete
1954  *
1955  * Turn the dentry into a negative dentry if possible, otherwise
1956  * remove it from the hash queues so it can be deleted later
1957  */
1958 
1959 void d_delete(struct dentry * dentry)
1960 {
1961 	struct inode *inode;
1962 	int isdir = 0;
1963 	/*
1964 	 * Are we the only user?
1965 	 */
1966 again:
1967 	spin_lock(&dentry->d_lock);
1968 	inode = dentry->d_inode;
1969 	isdir = S_ISDIR(inode->i_mode);
1970 	if (dentry->d_count == 1) {
1971 		if (inode && !spin_trylock(&inode->i_lock)) {
1972 			spin_unlock(&dentry->d_lock);
1973 			cpu_relax();
1974 			goto again;
1975 		}
1976 		dentry->d_flags &= ~DCACHE_CANT_MOUNT;
1977 		dentry_unlink_inode(dentry);
1978 		fsnotify_nameremove(dentry, isdir);
1979 		return;
1980 	}
1981 
1982 	if (!d_unhashed(dentry))
1983 		__d_drop(dentry);
1984 
1985 	spin_unlock(&dentry->d_lock);
1986 
1987 	fsnotify_nameremove(dentry, isdir);
1988 }
1989 EXPORT_SYMBOL(d_delete);
1990 
1991 static void __d_rehash(struct dentry * entry, struct hlist_bl_head *b)
1992 {
1993 	BUG_ON(!d_unhashed(entry));
1994 	hlist_bl_lock(b);
1995 	entry->d_flags |= DCACHE_RCUACCESS;
1996 	hlist_bl_add_head_rcu(&entry->d_hash, b);
1997 	hlist_bl_unlock(b);
1998 }
1999 
2000 static void _d_rehash(struct dentry * entry)
2001 {
2002 	__d_rehash(entry, d_hash(entry->d_parent, entry->d_name.hash));
2003 }
2004 
2005 /**
2006  * d_rehash	- add an entry back to the hash
2007  * @entry: dentry to add to the hash
2008  *
2009  * Adds a dentry to the hash according to its name.
2010  */
2011 
2012 void d_rehash(struct dentry * entry)
2013 {
2014 	spin_lock(&entry->d_lock);
2015 	_d_rehash(entry);
2016 	spin_unlock(&entry->d_lock);
2017 }
2018 EXPORT_SYMBOL(d_rehash);
2019 
2020 /**
2021  * dentry_update_name_case - update case insensitive dentry with a new name
2022  * @dentry: dentry to be updated
2023  * @name: new name
2024  *
2025  * Update a case insensitive dentry with new case of name.
2026  *
2027  * dentry must have been returned by d_lookup with name @name. Old and new
2028  * name lengths must match (ie. no d_compare which allows mismatched name
2029  * lengths).
2030  *
2031  * Parent inode i_mutex must be held over d_lookup and into this call (to
2032  * keep renames and concurrent inserts, and readdir(2) away).
2033  */
2034 void dentry_update_name_case(struct dentry *dentry, struct qstr *name)
2035 {
2036 	BUG_ON(!mutex_is_locked(&dentry->d_parent->d_inode->i_mutex));
2037 	BUG_ON(dentry->d_name.len != name->len); /* d_lookup gives this */
2038 
2039 	spin_lock(&dentry->d_lock);
2040 	write_seqcount_begin(&dentry->d_seq);
2041 	memcpy((unsigned char *)dentry->d_name.name, name->name, name->len);
2042 	write_seqcount_end(&dentry->d_seq);
2043 	spin_unlock(&dentry->d_lock);
2044 }
2045 EXPORT_SYMBOL(dentry_update_name_case);
2046 
2047 static void switch_names(struct dentry *dentry, struct dentry *target)
2048 {
2049 	if (dname_external(target)) {
2050 		if (dname_external(dentry)) {
2051 			/*
2052 			 * Both external: swap the pointers
2053 			 */
2054 			swap(target->d_name.name, dentry->d_name.name);
2055 		} else {
2056 			/*
2057 			 * dentry:internal, target:external.  Steal target's
2058 			 * storage and make target internal.
2059 			 */
2060 			memcpy(target->d_iname, dentry->d_name.name,
2061 					dentry->d_name.len + 1);
2062 			dentry->d_name.name = target->d_name.name;
2063 			target->d_name.name = target->d_iname;
2064 		}
2065 	} else {
2066 		if (dname_external(dentry)) {
2067 			/*
2068 			 * dentry:external, target:internal.  Give dentry's
2069 			 * storage to target and make dentry internal
2070 			 */
2071 			memcpy(dentry->d_iname, target->d_name.name,
2072 					target->d_name.len + 1);
2073 			target->d_name.name = dentry->d_name.name;
2074 			dentry->d_name.name = dentry->d_iname;
2075 		} else {
2076 			/*
2077 			 * Both are internal.  Just copy target to dentry
2078 			 */
2079 			memcpy(dentry->d_iname, target->d_name.name,
2080 					target->d_name.len + 1);
2081 			dentry->d_name.len = target->d_name.len;
2082 			return;
2083 		}
2084 	}
2085 	swap(dentry->d_name.len, target->d_name.len);
2086 }
2087 
2088 static void dentry_lock_for_move(struct dentry *dentry, struct dentry *target)
2089 {
2090 	/*
2091 	 * XXXX: do we really need to take target->d_lock?
2092 	 */
2093 	if (IS_ROOT(dentry) || dentry->d_parent == target->d_parent)
2094 		spin_lock(&target->d_parent->d_lock);
2095 	else {
2096 		if (d_ancestor(dentry->d_parent, target->d_parent)) {
2097 			spin_lock(&dentry->d_parent->d_lock);
2098 			spin_lock_nested(&target->d_parent->d_lock,
2099 						DENTRY_D_LOCK_NESTED);
2100 		} else {
2101 			spin_lock(&target->d_parent->d_lock);
2102 			spin_lock_nested(&dentry->d_parent->d_lock,
2103 						DENTRY_D_LOCK_NESTED);
2104 		}
2105 	}
2106 	if (target < dentry) {
2107 		spin_lock_nested(&target->d_lock, 2);
2108 		spin_lock_nested(&dentry->d_lock, 3);
2109 	} else {
2110 		spin_lock_nested(&dentry->d_lock, 2);
2111 		spin_lock_nested(&target->d_lock, 3);
2112 	}
2113 }
2114 
2115 static void dentry_unlock_parents_for_move(struct dentry *dentry,
2116 					struct dentry *target)
2117 {
2118 	if (target->d_parent != dentry->d_parent)
2119 		spin_unlock(&dentry->d_parent->d_lock);
2120 	if (target->d_parent != target)
2121 		spin_unlock(&target->d_parent->d_lock);
2122 }
2123 
2124 /*
2125  * When switching names, the actual string doesn't strictly have to
2126  * be preserved in the target - because we're dropping the target
2127  * anyway. As such, we can just do a simple memcpy() to copy over
2128  * the new name before we switch.
2129  *
2130  * Note that we have to be a lot more careful about getting the hash
2131  * switched - we have to switch the hash value properly even if it
2132  * then no longer matches the actual (corrupted) string of the target.
2133  * The hash value has to match the hash queue that the dentry is on..
2134  */
2135 /*
2136  * __d_move - move a dentry
2137  * @dentry: entry to move
2138  * @target: new dentry
2139  *
2140  * Update the dcache to reflect the move of a file name. Negative
2141  * dcache entries should not be moved in this way.  Caller hold
2142  * rename_lock.
2143  */
2144 static void __d_move(struct dentry * dentry, struct dentry * target)
2145 {
2146 	if (!dentry->d_inode)
2147 		printk(KERN_WARNING "VFS: moving negative dcache entry\n");
2148 
2149 	BUG_ON(d_ancestor(dentry, target));
2150 	BUG_ON(d_ancestor(target, dentry));
2151 
2152 	dentry_lock_for_move(dentry, target);
2153 
2154 	write_seqcount_begin(&dentry->d_seq);
2155 	write_seqcount_begin(&target->d_seq);
2156 
2157 	/* __d_drop does write_seqcount_barrier, but they're OK to nest. */
2158 
2159 	/*
2160 	 * Move the dentry to the target hash queue. Don't bother checking
2161 	 * for the same hash queue because of how unlikely it is.
2162 	 */
2163 	__d_drop(dentry);
2164 	__d_rehash(dentry, d_hash(target->d_parent, target->d_name.hash));
2165 
2166 	/* Unhash the target: dput() will then get rid of it */
2167 	__d_drop(target);
2168 
2169 	list_del(&dentry->d_u.d_child);
2170 	list_del(&target->d_u.d_child);
2171 
2172 	/* Switch the names.. */
2173 	switch_names(dentry, target);
2174 	swap(dentry->d_name.hash, target->d_name.hash);
2175 
2176 	/* ... and switch the parents */
2177 	if (IS_ROOT(dentry)) {
2178 		dentry->d_parent = target->d_parent;
2179 		target->d_parent = target;
2180 		INIT_LIST_HEAD(&target->d_u.d_child);
2181 	} else {
2182 		swap(dentry->d_parent, target->d_parent);
2183 
2184 		/* And add them back to the (new) parent lists */
2185 		list_add(&target->d_u.d_child, &target->d_parent->d_subdirs);
2186 	}
2187 
2188 	list_add(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs);
2189 
2190 	write_seqcount_end(&target->d_seq);
2191 	write_seqcount_end(&dentry->d_seq);
2192 
2193 	dentry_unlock_parents_for_move(dentry, target);
2194 	spin_unlock(&target->d_lock);
2195 	fsnotify_d_move(dentry);
2196 	spin_unlock(&dentry->d_lock);
2197 }
2198 
2199 /*
2200  * d_move - move a dentry
2201  * @dentry: entry to move
2202  * @target: new dentry
2203  *
2204  * Update the dcache to reflect the move of a file name. Negative
2205  * dcache entries should not be moved in this way.
2206  */
2207 void d_move(struct dentry *dentry, struct dentry *target)
2208 {
2209 	write_seqlock(&rename_lock);
2210 	__d_move(dentry, target);
2211 	write_sequnlock(&rename_lock);
2212 }
2213 EXPORT_SYMBOL(d_move);
2214 
2215 /**
2216  * d_ancestor - search for an ancestor
2217  * @p1: ancestor dentry
2218  * @p2: child dentry
2219  *
2220  * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2221  * an ancestor of p2, else NULL.
2222  */
2223 struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
2224 {
2225 	struct dentry *p;
2226 
2227 	for (p = p2; !IS_ROOT(p); p = p->d_parent) {
2228 		if (p->d_parent == p1)
2229 			return p;
2230 	}
2231 	return NULL;
2232 }
2233 
2234 /*
2235  * This helper attempts to cope with remotely renamed directories
2236  *
2237  * It assumes that the caller is already holding
2238  * dentry->d_parent->d_inode->i_mutex, inode->i_lock and rename_lock
2239  *
2240  * Note: If ever the locking in lock_rename() changes, then please
2241  * remember to update this too...
2242  */
2243 static struct dentry *__d_unalias(struct inode *inode,
2244 		struct dentry *dentry, struct dentry *alias)
2245 {
2246 	struct mutex *m1 = NULL, *m2 = NULL;
2247 	struct dentry *ret;
2248 
2249 	/* If alias and dentry share a parent, then no extra locks required */
2250 	if (alias->d_parent == dentry->d_parent)
2251 		goto out_unalias;
2252 
2253 	/* See lock_rename() */
2254 	ret = ERR_PTR(-EBUSY);
2255 	if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
2256 		goto out_err;
2257 	m1 = &dentry->d_sb->s_vfs_rename_mutex;
2258 	if (!mutex_trylock(&alias->d_parent->d_inode->i_mutex))
2259 		goto out_err;
2260 	m2 = &alias->d_parent->d_inode->i_mutex;
2261 out_unalias:
2262 	__d_move(alias, dentry);
2263 	ret = alias;
2264 out_err:
2265 	spin_unlock(&inode->i_lock);
2266 	if (m2)
2267 		mutex_unlock(m2);
2268 	if (m1)
2269 		mutex_unlock(m1);
2270 	return ret;
2271 }
2272 
2273 /*
2274  * Prepare an anonymous dentry for life in the superblock's dentry tree as a
2275  * named dentry in place of the dentry to be replaced.
2276  * returns with anon->d_lock held!
2277  */
2278 static void __d_materialise_dentry(struct dentry *dentry, struct dentry *anon)
2279 {
2280 	struct dentry *dparent, *aparent;
2281 
2282 	dentry_lock_for_move(anon, dentry);
2283 
2284 	write_seqcount_begin(&dentry->d_seq);
2285 	write_seqcount_begin(&anon->d_seq);
2286 
2287 	dparent = dentry->d_parent;
2288 	aparent = anon->d_parent;
2289 
2290 	switch_names(dentry, anon);
2291 	swap(dentry->d_name.hash, anon->d_name.hash);
2292 
2293 	dentry->d_parent = (aparent == anon) ? dentry : aparent;
2294 	list_del(&dentry->d_u.d_child);
2295 	if (!IS_ROOT(dentry))
2296 		list_add(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs);
2297 	else
2298 		INIT_LIST_HEAD(&dentry->d_u.d_child);
2299 
2300 	anon->d_parent = (dparent == dentry) ? anon : dparent;
2301 	list_del(&anon->d_u.d_child);
2302 	if (!IS_ROOT(anon))
2303 		list_add(&anon->d_u.d_child, &anon->d_parent->d_subdirs);
2304 	else
2305 		INIT_LIST_HEAD(&anon->d_u.d_child);
2306 
2307 	write_seqcount_end(&dentry->d_seq);
2308 	write_seqcount_end(&anon->d_seq);
2309 
2310 	dentry_unlock_parents_for_move(anon, dentry);
2311 	spin_unlock(&dentry->d_lock);
2312 
2313 	/* anon->d_lock still locked, returns locked */
2314 	anon->d_flags &= ~DCACHE_DISCONNECTED;
2315 }
2316 
2317 /**
2318  * d_materialise_unique - introduce an inode into the tree
2319  * @dentry: candidate dentry
2320  * @inode: inode to bind to the dentry, to which aliases may be attached
2321  *
2322  * Introduces an dentry into the tree, substituting an extant disconnected
2323  * root directory alias in its place if there is one
2324  */
2325 struct dentry *d_materialise_unique(struct dentry *dentry, struct inode *inode)
2326 {
2327 	struct dentry *actual;
2328 
2329 	BUG_ON(!d_unhashed(dentry));
2330 
2331 	if (!inode) {
2332 		actual = dentry;
2333 		__d_instantiate(dentry, NULL);
2334 		d_rehash(actual);
2335 		goto out_nolock;
2336 	}
2337 
2338 	spin_lock(&inode->i_lock);
2339 
2340 	if (S_ISDIR(inode->i_mode)) {
2341 		struct dentry *alias;
2342 
2343 		/* Does an aliased dentry already exist? */
2344 		alias = __d_find_alias(inode, 0);
2345 		if (alias) {
2346 			actual = alias;
2347 			write_seqlock(&rename_lock);
2348 
2349 			if (d_ancestor(alias, dentry)) {
2350 				/* Check for loops */
2351 				actual = ERR_PTR(-ELOOP);
2352 			} else if (IS_ROOT(alias)) {
2353 				/* Is this an anonymous mountpoint that we
2354 				 * could splice into our tree? */
2355 				__d_materialise_dentry(dentry, alias);
2356 				write_sequnlock(&rename_lock);
2357 				__d_drop(alias);
2358 				goto found;
2359 			} else {
2360 				/* Nope, but we must(!) avoid directory
2361 				 * aliasing */
2362 				actual = __d_unalias(inode, dentry, alias);
2363 			}
2364 			write_sequnlock(&rename_lock);
2365 			if (IS_ERR(actual))
2366 				dput(alias);
2367 			goto out_nolock;
2368 		}
2369 	}
2370 
2371 	/* Add a unique reference */
2372 	actual = __d_instantiate_unique(dentry, inode);
2373 	if (!actual)
2374 		actual = dentry;
2375 	else
2376 		BUG_ON(!d_unhashed(actual));
2377 
2378 	spin_lock(&actual->d_lock);
2379 found:
2380 	_d_rehash(actual);
2381 	spin_unlock(&actual->d_lock);
2382 	spin_unlock(&inode->i_lock);
2383 out_nolock:
2384 	if (actual == dentry) {
2385 		security_d_instantiate(dentry, inode);
2386 		return NULL;
2387 	}
2388 
2389 	iput(inode);
2390 	return actual;
2391 }
2392 EXPORT_SYMBOL_GPL(d_materialise_unique);
2393 
2394 static int prepend(char **buffer, int *buflen, const char *str, int namelen)
2395 {
2396 	*buflen -= namelen;
2397 	if (*buflen < 0)
2398 		return -ENAMETOOLONG;
2399 	*buffer -= namelen;
2400 	memcpy(*buffer, str, namelen);
2401 	return 0;
2402 }
2403 
2404 static int prepend_name(char **buffer, int *buflen, struct qstr *name)
2405 {
2406 	return prepend(buffer, buflen, name->name, name->len);
2407 }
2408 
2409 /**
2410  * prepend_path - Prepend path string to a buffer
2411  * @path: the dentry/vfsmount to report
2412  * @root: root vfsmnt/dentry (may be modified by this function)
2413  * @buffer: pointer to the end of the buffer
2414  * @buflen: pointer to buffer length
2415  *
2416  * Caller holds the rename_lock.
2417  *
2418  * If path is not reachable from the supplied root, then the value of
2419  * root is changed (without modifying refcounts).
2420  */
2421 static int prepend_path(const struct path *path, struct path *root,
2422 			char **buffer, int *buflen)
2423 {
2424 	struct dentry *dentry = path->dentry;
2425 	struct vfsmount *vfsmnt = path->mnt;
2426 	bool slash = false;
2427 	int error = 0;
2428 
2429 	br_read_lock(vfsmount_lock);
2430 	while (dentry != root->dentry || vfsmnt != root->mnt) {
2431 		struct dentry * parent;
2432 
2433 		if (dentry == vfsmnt->mnt_root || IS_ROOT(dentry)) {
2434 			/* Global root? */
2435 			if (vfsmnt->mnt_parent == vfsmnt) {
2436 				goto global_root;
2437 			}
2438 			dentry = vfsmnt->mnt_mountpoint;
2439 			vfsmnt = vfsmnt->mnt_parent;
2440 			continue;
2441 		}
2442 		parent = dentry->d_parent;
2443 		prefetch(parent);
2444 		spin_lock(&dentry->d_lock);
2445 		error = prepend_name(buffer, buflen, &dentry->d_name);
2446 		spin_unlock(&dentry->d_lock);
2447 		if (!error)
2448 			error = prepend(buffer, buflen, "/", 1);
2449 		if (error)
2450 			break;
2451 
2452 		slash = true;
2453 		dentry = parent;
2454 	}
2455 
2456 out:
2457 	if (!error && !slash)
2458 		error = prepend(buffer, buflen, "/", 1);
2459 
2460 	br_read_unlock(vfsmount_lock);
2461 	return error;
2462 
2463 global_root:
2464 	/*
2465 	 * Filesystems needing to implement special "root names"
2466 	 * should do so with ->d_dname()
2467 	 */
2468 	if (IS_ROOT(dentry) &&
2469 	    (dentry->d_name.len != 1 || dentry->d_name.name[0] != '/')) {
2470 		WARN(1, "Root dentry has weird name <%.*s>\n",
2471 		     (int) dentry->d_name.len, dentry->d_name.name);
2472 	}
2473 	root->mnt = vfsmnt;
2474 	root->dentry = dentry;
2475 	goto out;
2476 }
2477 
2478 /**
2479  * __d_path - return the path of a dentry
2480  * @path: the dentry/vfsmount to report
2481  * @root: root vfsmnt/dentry (may be modified by this function)
2482  * @buf: buffer to return value in
2483  * @buflen: buffer length
2484  *
2485  * Convert a dentry into an ASCII path name.
2486  *
2487  * Returns a pointer into the buffer or an error code if the
2488  * path was too long.
2489  *
2490  * "buflen" should be positive.
2491  *
2492  * If path is not reachable from the supplied root, then the value of
2493  * root is changed (without modifying refcounts).
2494  */
2495 char *__d_path(const struct path *path, struct path *root,
2496 	       char *buf, int buflen)
2497 {
2498 	char *res = buf + buflen;
2499 	int error;
2500 
2501 	prepend(&res, &buflen, "\0", 1);
2502 	write_seqlock(&rename_lock);
2503 	error = prepend_path(path, root, &res, &buflen);
2504 	write_sequnlock(&rename_lock);
2505 
2506 	if (error)
2507 		return ERR_PTR(error);
2508 	return res;
2509 }
2510 
2511 /*
2512  * same as __d_path but appends "(deleted)" for unlinked files.
2513  */
2514 static int path_with_deleted(const struct path *path, struct path *root,
2515 				 char **buf, int *buflen)
2516 {
2517 	prepend(buf, buflen, "\0", 1);
2518 	if (d_unlinked(path->dentry)) {
2519 		int error = prepend(buf, buflen, " (deleted)", 10);
2520 		if (error)
2521 			return error;
2522 	}
2523 
2524 	return prepend_path(path, root, buf, buflen);
2525 }
2526 
2527 static int prepend_unreachable(char **buffer, int *buflen)
2528 {
2529 	return prepend(buffer, buflen, "(unreachable)", 13);
2530 }
2531 
2532 /**
2533  * d_path - return the path of a dentry
2534  * @path: path to report
2535  * @buf: buffer to return value in
2536  * @buflen: buffer length
2537  *
2538  * Convert a dentry into an ASCII path name. If the entry has been deleted
2539  * the string " (deleted)" is appended. Note that this is ambiguous.
2540  *
2541  * Returns a pointer into the buffer or an error code if the path was
2542  * too long. Note: Callers should use the returned pointer, not the passed
2543  * in buffer, to use the name! The implementation often starts at an offset
2544  * into the buffer, and may leave 0 bytes at the start.
2545  *
2546  * "buflen" should be positive.
2547  */
2548 char *d_path(const struct path *path, char *buf, int buflen)
2549 {
2550 	char *res = buf + buflen;
2551 	struct path root;
2552 	struct path tmp;
2553 	int error;
2554 
2555 	/*
2556 	 * We have various synthetic filesystems that never get mounted.  On
2557 	 * these filesystems dentries are never used for lookup purposes, and
2558 	 * thus don't need to be hashed.  They also don't need a name until a
2559 	 * user wants to identify the object in /proc/pid/fd/.  The little hack
2560 	 * below allows us to generate a name for these objects on demand:
2561 	 */
2562 	if (path->dentry->d_op && path->dentry->d_op->d_dname)
2563 		return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
2564 
2565 	get_fs_root(current->fs, &root);
2566 	write_seqlock(&rename_lock);
2567 	tmp = root;
2568 	error = path_with_deleted(path, &tmp, &res, &buflen);
2569 	if (error)
2570 		res = ERR_PTR(error);
2571 	write_sequnlock(&rename_lock);
2572 	path_put(&root);
2573 	return res;
2574 }
2575 EXPORT_SYMBOL(d_path);
2576 
2577 /**
2578  * d_path_with_unreachable - return the path of a dentry
2579  * @path: path to report
2580  * @buf: buffer to return value in
2581  * @buflen: buffer length
2582  *
2583  * The difference from d_path() is that this prepends "(unreachable)"
2584  * to paths which are unreachable from the current process' root.
2585  */
2586 char *d_path_with_unreachable(const struct path *path, char *buf, int buflen)
2587 {
2588 	char *res = buf + buflen;
2589 	struct path root;
2590 	struct path tmp;
2591 	int error;
2592 
2593 	if (path->dentry->d_op && path->dentry->d_op->d_dname)
2594 		return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
2595 
2596 	get_fs_root(current->fs, &root);
2597 	write_seqlock(&rename_lock);
2598 	tmp = root;
2599 	error = path_with_deleted(path, &tmp, &res, &buflen);
2600 	if (!error && !path_equal(&tmp, &root))
2601 		error = prepend_unreachable(&res, &buflen);
2602 	write_sequnlock(&rename_lock);
2603 	path_put(&root);
2604 	if (error)
2605 		res =  ERR_PTR(error);
2606 
2607 	return res;
2608 }
2609 
2610 /*
2611  * Helper function for dentry_operations.d_dname() members
2612  */
2613 char *dynamic_dname(struct dentry *dentry, char *buffer, int buflen,
2614 			const char *fmt, ...)
2615 {
2616 	va_list args;
2617 	char temp[64];
2618 	int sz;
2619 
2620 	va_start(args, fmt);
2621 	sz = vsnprintf(temp, sizeof(temp), fmt, args) + 1;
2622 	va_end(args);
2623 
2624 	if (sz > sizeof(temp) || sz > buflen)
2625 		return ERR_PTR(-ENAMETOOLONG);
2626 
2627 	buffer += buflen - sz;
2628 	return memcpy(buffer, temp, sz);
2629 }
2630 
2631 /*
2632  * Write full pathname from the root of the filesystem into the buffer.
2633  */
2634 static char *__dentry_path(struct dentry *dentry, char *buf, int buflen)
2635 {
2636 	char *end = buf + buflen;
2637 	char *retval;
2638 
2639 	prepend(&end, &buflen, "\0", 1);
2640 	if (buflen < 1)
2641 		goto Elong;
2642 	/* Get '/' right */
2643 	retval = end-1;
2644 	*retval = '/';
2645 
2646 	while (!IS_ROOT(dentry)) {
2647 		struct dentry *parent = dentry->d_parent;
2648 		int error;
2649 
2650 		prefetch(parent);
2651 		spin_lock(&dentry->d_lock);
2652 		error = prepend_name(&end, &buflen, &dentry->d_name);
2653 		spin_unlock(&dentry->d_lock);
2654 		if (error != 0 || prepend(&end, &buflen, "/", 1) != 0)
2655 			goto Elong;
2656 
2657 		retval = end;
2658 		dentry = parent;
2659 	}
2660 	return retval;
2661 Elong:
2662 	return ERR_PTR(-ENAMETOOLONG);
2663 }
2664 
2665 char *dentry_path_raw(struct dentry *dentry, char *buf, int buflen)
2666 {
2667 	char *retval;
2668 
2669 	write_seqlock(&rename_lock);
2670 	retval = __dentry_path(dentry, buf, buflen);
2671 	write_sequnlock(&rename_lock);
2672 
2673 	return retval;
2674 }
2675 EXPORT_SYMBOL(dentry_path_raw);
2676 
2677 char *dentry_path(struct dentry *dentry, char *buf, int buflen)
2678 {
2679 	char *p = NULL;
2680 	char *retval;
2681 
2682 	write_seqlock(&rename_lock);
2683 	if (d_unlinked(dentry)) {
2684 		p = buf + buflen;
2685 		if (prepend(&p, &buflen, "//deleted", 10) != 0)
2686 			goto Elong;
2687 		buflen++;
2688 	}
2689 	retval = __dentry_path(dentry, buf, buflen);
2690 	write_sequnlock(&rename_lock);
2691 	if (!IS_ERR(retval) && p)
2692 		*p = '/';	/* restore '/' overriden with '\0' */
2693 	return retval;
2694 Elong:
2695 	return ERR_PTR(-ENAMETOOLONG);
2696 }
2697 
2698 /*
2699  * NOTE! The user-level library version returns a
2700  * character pointer. The kernel system call just
2701  * returns the length of the buffer filled (which
2702  * includes the ending '\0' character), or a negative
2703  * error value. So libc would do something like
2704  *
2705  *	char *getcwd(char * buf, size_t size)
2706  *	{
2707  *		int retval;
2708  *
2709  *		retval = sys_getcwd(buf, size);
2710  *		if (retval >= 0)
2711  *			return buf;
2712  *		errno = -retval;
2713  *		return NULL;
2714  *	}
2715  */
2716 SYSCALL_DEFINE2(getcwd, char __user *, buf, unsigned long, size)
2717 {
2718 	int error;
2719 	struct path pwd, root;
2720 	char *page = (char *) __get_free_page(GFP_USER);
2721 
2722 	if (!page)
2723 		return -ENOMEM;
2724 
2725 	get_fs_root_and_pwd(current->fs, &root, &pwd);
2726 
2727 	error = -ENOENT;
2728 	write_seqlock(&rename_lock);
2729 	if (!d_unlinked(pwd.dentry)) {
2730 		unsigned long len;
2731 		struct path tmp = root;
2732 		char *cwd = page + PAGE_SIZE;
2733 		int buflen = PAGE_SIZE;
2734 
2735 		prepend(&cwd, &buflen, "\0", 1);
2736 		error = prepend_path(&pwd, &tmp, &cwd, &buflen);
2737 		write_sequnlock(&rename_lock);
2738 
2739 		if (error)
2740 			goto out;
2741 
2742 		/* Unreachable from current root */
2743 		if (!path_equal(&tmp, &root)) {
2744 			error = prepend_unreachable(&cwd, &buflen);
2745 			if (error)
2746 				goto out;
2747 		}
2748 
2749 		error = -ERANGE;
2750 		len = PAGE_SIZE + page - cwd;
2751 		if (len <= size) {
2752 			error = len;
2753 			if (copy_to_user(buf, cwd, len))
2754 				error = -EFAULT;
2755 		}
2756 	} else {
2757 		write_sequnlock(&rename_lock);
2758 	}
2759 
2760 out:
2761 	path_put(&pwd);
2762 	path_put(&root);
2763 	free_page((unsigned long) page);
2764 	return error;
2765 }
2766 
2767 /*
2768  * Test whether new_dentry is a subdirectory of old_dentry.
2769  *
2770  * Trivially implemented using the dcache structure
2771  */
2772 
2773 /**
2774  * is_subdir - is new dentry a subdirectory of old_dentry
2775  * @new_dentry: new dentry
2776  * @old_dentry: old dentry
2777  *
2778  * Returns 1 if new_dentry is a subdirectory of the parent (at any depth).
2779  * Returns 0 otherwise.
2780  * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
2781  */
2782 
2783 int is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
2784 {
2785 	int result;
2786 	unsigned seq;
2787 
2788 	if (new_dentry == old_dentry)
2789 		return 1;
2790 
2791 	do {
2792 		/* for restarting inner loop in case of seq retry */
2793 		seq = read_seqbegin(&rename_lock);
2794 		/*
2795 		 * Need rcu_readlock to protect against the d_parent trashing
2796 		 * due to d_move
2797 		 */
2798 		rcu_read_lock();
2799 		if (d_ancestor(old_dentry, new_dentry))
2800 			result = 1;
2801 		else
2802 			result = 0;
2803 		rcu_read_unlock();
2804 	} while (read_seqretry(&rename_lock, seq));
2805 
2806 	return result;
2807 }
2808 
2809 int path_is_under(struct path *path1, struct path *path2)
2810 {
2811 	struct vfsmount *mnt = path1->mnt;
2812 	struct dentry *dentry = path1->dentry;
2813 	int res;
2814 
2815 	br_read_lock(vfsmount_lock);
2816 	if (mnt != path2->mnt) {
2817 		for (;;) {
2818 			if (mnt->mnt_parent == mnt) {
2819 				br_read_unlock(vfsmount_lock);
2820 				return 0;
2821 			}
2822 			if (mnt->mnt_parent == path2->mnt)
2823 				break;
2824 			mnt = mnt->mnt_parent;
2825 		}
2826 		dentry = mnt->mnt_mountpoint;
2827 	}
2828 	res = is_subdir(dentry, path2->dentry);
2829 	br_read_unlock(vfsmount_lock);
2830 	return res;
2831 }
2832 EXPORT_SYMBOL(path_is_under);
2833 
2834 void d_genocide(struct dentry *root)
2835 {
2836 	struct dentry *this_parent;
2837 	struct list_head *next;
2838 	unsigned seq;
2839 	int locked = 0;
2840 
2841 	seq = read_seqbegin(&rename_lock);
2842 again:
2843 	this_parent = root;
2844 	spin_lock(&this_parent->d_lock);
2845 repeat:
2846 	next = this_parent->d_subdirs.next;
2847 resume:
2848 	while (next != &this_parent->d_subdirs) {
2849 		struct list_head *tmp = next;
2850 		struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
2851 		next = tmp->next;
2852 
2853 		spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
2854 		if (d_unhashed(dentry) || !dentry->d_inode) {
2855 			spin_unlock(&dentry->d_lock);
2856 			continue;
2857 		}
2858 		if (!list_empty(&dentry->d_subdirs)) {
2859 			spin_unlock(&this_parent->d_lock);
2860 			spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
2861 			this_parent = dentry;
2862 			spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
2863 			goto repeat;
2864 		}
2865 		if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
2866 			dentry->d_flags |= DCACHE_GENOCIDE;
2867 			dentry->d_count--;
2868 		}
2869 		spin_unlock(&dentry->d_lock);
2870 	}
2871 	if (this_parent != root) {
2872 		struct dentry *child = this_parent;
2873 		if (!(this_parent->d_flags & DCACHE_GENOCIDE)) {
2874 			this_parent->d_flags |= DCACHE_GENOCIDE;
2875 			this_parent->d_count--;
2876 		}
2877 		this_parent = try_to_ascend(this_parent, locked, seq);
2878 		if (!this_parent)
2879 			goto rename_retry;
2880 		next = child->d_u.d_child.next;
2881 		goto resume;
2882 	}
2883 	spin_unlock(&this_parent->d_lock);
2884 	if (!locked && read_seqretry(&rename_lock, seq))
2885 		goto rename_retry;
2886 	if (locked)
2887 		write_sequnlock(&rename_lock);
2888 	return;
2889 
2890 rename_retry:
2891 	locked = 1;
2892 	write_seqlock(&rename_lock);
2893 	goto again;
2894 }
2895 
2896 /**
2897  * find_inode_number - check for dentry with name
2898  * @dir: directory to check
2899  * @name: Name to find.
2900  *
2901  * Check whether a dentry already exists for the given name,
2902  * and return the inode number if it has an inode. Otherwise
2903  * 0 is returned.
2904  *
2905  * This routine is used to post-process directory listings for
2906  * filesystems using synthetic inode numbers, and is necessary
2907  * to keep getcwd() working.
2908  */
2909 
2910 ino_t find_inode_number(struct dentry *dir, struct qstr *name)
2911 {
2912 	struct dentry * dentry;
2913 	ino_t ino = 0;
2914 
2915 	dentry = d_hash_and_lookup(dir, name);
2916 	if (dentry) {
2917 		if (dentry->d_inode)
2918 			ino = dentry->d_inode->i_ino;
2919 		dput(dentry);
2920 	}
2921 	return ino;
2922 }
2923 EXPORT_SYMBOL(find_inode_number);
2924 
2925 static __initdata unsigned long dhash_entries;
2926 static int __init set_dhash_entries(char *str)
2927 {
2928 	if (!str)
2929 		return 0;
2930 	dhash_entries = simple_strtoul(str, &str, 0);
2931 	return 1;
2932 }
2933 __setup("dhash_entries=", set_dhash_entries);
2934 
2935 static void __init dcache_init_early(void)
2936 {
2937 	int loop;
2938 
2939 	/* If hashes are distributed across NUMA nodes, defer
2940 	 * hash allocation until vmalloc space is available.
2941 	 */
2942 	if (hashdist)
2943 		return;
2944 
2945 	dentry_hashtable =
2946 		alloc_large_system_hash("Dentry cache",
2947 					sizeof(struct hlist_bl_head),
2948 					dhash_entries,
2949 					13,
2950 					HASH_EARLY,
2951 					&d_hash_shift,
2952 					&d_hash_mask,
2953 					0);
2954 
2955 	for (loop = 0; loop < (1 << d_hash_shift); loop++)
2956 		INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
2957 }
2958 
2959 static void __init dcache_init(void)
2960 {
2961 	int loop;
2962 
2963 	/*
2964 	 * A constructor could be added for stable state like the lists,
2965 	 * but it is probably not worth it because of the cache nature
2966 	 * of the dcache.
2967 	 */
2968 	dentry_cache = KMEM_CACHE(dentry,
2969 		SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD);
2970 
2971 	/* Hash may have been set up in dcache_init_early */
2972 	if (!hashdist)
2973 		return;
2974 
2975 	dentry_hashtable =
2976 		alloc_large_system_hash("Dentry cache",
2977 					sizeof(struct hlist_bl_head),
2978 					dhash_entries,
2979 					13,
2980 					0,
2981 					&d_hash_shift,
2982 					&d_hash_mask,
2983 					0);
2984 
2985 	for (loop = 0; loop < (1 << d_hash_shift); loop++)
2986 		INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
2987 }
2988 
2989 /* SLAB cache for __getname() consumers */
2990 struct kmem_cache *names_cachep __read_mostly;
2991 EXPORT_SYMBOL(names_cachep);
2992 
2993 EXPORT_SYMBOL(d_genocide);
2994 
2995 void __init vfs_caches_init_early(void)
2996 {
2997 	dcache_init_early();
2998 	inode_init_early();
2999 }
3000 
3001 void __init vfs_caches_init(unsigned long mempages)
3002 {
3003 	unsigned long reserve;
3004 
3005 	/* Base hash sizes on available memory, with a reserve equal to
3006            150% of current kernel size */
3007 
3008 	reserve = min((mempages - nr_free_pages()) * 3/2, mempages - 1);
3009 	mempages -= reserve;
3010 
3011 	names_cachep = kmem_cache_create("names_cache", PATH_MAX, 0,
3012 			SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
3013 
3014 	dcache_init();
3015 	inode_init();
3016 	files_init(mempages);
3017 	mnt_init();
3018 	bdev_cache_init();
3019 	chrdev_init();
3020 }
3021