xref: /openbmc/linux/fs/dcache.c (revision 79a93295)
1 /*
2  * fs/dcache.c
3  *
4  * Complete reimplementation
5  * (C) 1997 Thomas Schoebel-Theuer,
6  * with heavy changes by Linus Torvalds
7  */
8 
9 /*
10  * Notes on the allocation strategy:
11  *
12  * The dcache is a master of the icache - whenever a dcache entry
13  * exists, the inode will always exist. "iput()" is done either when
14  * the dcache entry is deleted or garbage collected.
15  */
16 
17 #include <linux/syscalls.h>
18 #include <linux/string.h>
19 #include <linux/mm.h>
20 #include <linux/fs.h>
21 #include <linux/fsnotify.h>
22 #include <linux/slab.h>
23 #include <linux/init.h>
24 #include <linux/hash.h>
25 #include <linux/cache.h>
26 #include <linux/export.h>
27 #include <linux/mount.h>
28 #include <linux/file.h>
29 #include <linux/uaccess.h>
30 #include <linux/security.h>
31 #include <linux/seqlock.h>
32 #include <linux/swap.h>
33 #include <linux/bootmem.h>
34 #include <linux/fs_struct.h>
35 #include <linux/hardirq.h>
36 #include <linux/bit_spinlock.h>
37 #include <linux/rculist_bl.h>
38 #include <linux/prefetch.h>
39 #include <linux/ratelimit.h>
40 #include <linux/list_lru.h>
41 #include <linux/kasan.h>
42 
43 #include "internal.h"
44 #include "mount.h"
45 
46 /*
47  * Usage:
48  * dcache->d_inode->i_lock protects:
49  *   - i_dentry, d_u.d_alias, d_inode of aliases
50  * dcache_hash_bucket lock protects:
51  *   - the dcache hash table
52  * s_anon bl list spinlock protects:
53  *   - the s_anon list (see __d_drop)
54  * dentry->d_sb->s_dentry_lru_lock protects:
55  *   - the dcache lru lists and counters
56  * d_lock protects:
57  *   - d_flags
58  *   - d_name
59  *   - d_lru
60  *   - d_count
61  *   - d_unhashed()
62  *   - d_parent and d_subdirs
63  *   - childrens' d_child and d_parent
64  *   - d_u.d_alias, d_inode
65  *
66  * Ordering:
67  * dentry->d_inode->i_lock
68  *   dentry->d_lock
69  *     dentry->d_sb->s_dentry_lru_lock
70  *     dcache_hash_bucket lock
71  *     s_anon lock
72  *
73  * If there is an ancestor relationship:
74  * dentry->d_parent->...->d_parent->d_lock
75  *   ...
76  *     dentry->d_parent->d_lock
77  *       dentry->d_lock
78  *
79  * If no ancestor relationship:
80  * if (dentry1 < dentry2)
81  *   dentry1->d_lock
82  *     dentry2->d_lock
83  */
84 int sysctl_vfs_cache_pressure __read_mostly = 100;
85 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
86 
87 __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
88 
89 EXPORT_SYMBOL(rename_lock);
90 
91 static struct kmem_cache *dentry_cache __read_mostly;
92 
93 /*
94  * This is the single most critical data structure when it comes
95  * to the dcache: the hashtable for lookups. Somebody should try
96  * to make this good - I've just made it work.
97  *
98  * This hash-function tries to avoid losing too many bits of hash
99  * information, yet avoid using a prime hash-size or similar.
100  */
101 
102 static unsigned int d_hash_mask __read_mostly;
103 static unsigned int d_hash_shift __read_mostly;
104 
105 static struct hlist_bl_head *dentry_hashtable __read_mostly;
106 
107 static inline struct hlist_bl_head *d_hash(unsigned int hash)
108 {
109 	return dentry_hashtable + (hash >> (32 - d_hash_shift));
110 }
111 
112 #define IN_LOOKUP_SHIFT 10
113 static struct hlist_bl_head in_lookup_hashtable[1 << IN_LOOKUP_SHIFT];
114 
115 static inline struct hlist_bl_head *in_lookup_hash(const struct dentry *parent,
116 					unsigned int hash)
117 {
118 	hash += (unsigned long) parent / L1_CACHE_BYTES;
119 	return in_lookup_hashtable + hash_32(hash, IN_LOOKUP_SHIFT);
120 }
121 
122 
123 /* Statistics gathering. */
124 struct dentry_stat_t dentry_stat = {
125 	.age_limit = 45,
126 };
127 
128 static DEFINE_PER_CPU(long, nr_dentry);
129 static DEFINE_PER_CPU(long, nr_dentry_unused);
130 
131 #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
132 
133 /*
134  * Here we resort to our own counters instead of using generic per-cpu counters
135  * for consistency with what the vfs inode code does. We are expected to harvest
136  * better code and performance by having our own specialized counters.
137  *
138  * Please note that the loop is done over all possible CPUs, not over all online
139  * CPUs. The reason for this is that we don't want to play games with CPUs going
140  * on and off. If one of them goes off, we will just keep their counters.
141  *
142  * glommer: See cffbc8a for details, and if you ever intend to change this,
143  * please update all vfs counters to match.
144  */
145 static long get_nr_dentry(void)
146 {
147 	int i;
148 	long sum = 0;
149 	for_each_possible_cpu(i)
150 		sum += per_cpu(nr_dentry, i);
151 	return sum < 0 ? 0 : sum;
152 }
153 
154 static long get_nr_dentry_unused(void)
155 {
156 	int i;
157 	long sum = 0;
158 	for_each_possible_cpu(i)
159 		sum += per_cpu(nr_dentry_unused, i);
160 	return sum < 0 ? 0 : sum;
161 }
162 
163 int proc_nr_dentry(struct ctl_table *table, int write, void __user *buffer,
164 		   size_t *lenp, loff_t *ppos)
165 {
166 	dentry_stat.nr_dentry = get_nr_dentry();
167 	dentry_stat.nr_unused = get_nr_dentry_unused();
168 	return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
169 }
170 #endif
171 
172 /*
173  * Compare 2 name strings, return 0 if they match, otherwise non-zero.
174  * The strings are both count bytes long, and count is non-zero.
175  */
176 #ifdef CONFIG_DCACHE_WORD_ACCESS
177 
178 #include <asm/word-at-a-time.h>
179 /*
180  * NOTE! 'cs' and 'scount' come from a dentry, so it has a
181  * aligned allocation for this particular component. We don't
182  * strictly need the load_unaligned_zeropad() safety, but it
183  * doesn't hurt either.
184  *
185  * In contrast, 'ct' and 'tcount' can be from a pathname, and do
186  * need the careful unaligned handling.
187  */
188 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
189 {
190 	unsigned long a,b,mask;
191 
192 	for (;;) {
193 		a = *(unsigned long *)cs;
194 		b = load_unaligned_zeropad(ct);
195 		if (tcount < sizeof(unsigned long))
196 			break;
197 		if (unlikely(a != b))
198 			return 1;
199 		cs += sizeof(unsigned long);
200 		ct += sizeof(unsigned long);
201 		tcount -= sizeof(unsigned long);
202 		if (!tcount)
203 			return 0;
204 	}
205 	mask = bytemask_from_count(tcount);
206 	return unlikely(!!((a ^ b) & mask));
207 }
208 
209 #else
210 
211 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
212 {
213 	do {
214 		if (*cs != *ct)
215 			return 1;
216 		cs++;
217 		ct++;
218 		tcount--;
219 	} while (tcount);
220 	return 0;
221 }
222 
223 #endif
224 
225 static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount)
226 {
227 	/*
228 	 * Be careful about RCU walk racing with rename:
229 	 * use 'lockless_dereference' to fetch the name pointer.
230 	 *
231 	 * NOTE! Even if a rename will mean that the length
232 	 * was not loaded atomically, we don't care. The
233 	 * RCU walk will check the sequence count eventually,
234 	 * and catch it. And we won't overrun the buffer,
235 	 * because we're reading the name pointer atomically,
236 	 * and a dentry name is guaranteed to be properly
237 	 * terminated with a NUL byte.
238 	 *
239 	 * End result: even if 'len' is wrong, we'll exit
240 	 * early because the data cannot match (there can
241 	 * be no NUL in the ct/tcount data)
242 	 */
243 	const unsigned char *cs = lockless_dereference(dentry->d_name.name);
244 
245 	return dentry_string_cmp(cs, ct, tcount);
246 }
247 
248 struct external_name {
249 	union {
250 		atomic_t count;
251 		struct rcu_head head;
252 	} u;
253 	unsigned char name[];
254 };
255 
256 static inline struct external_name *external_name(struct dentry *dentry)
257 {
258 	return container_of(dentry->d_name.name, struct external_name, name[0]);
259 }
260 
261 static void __d_free(struct rcu_head *head)
262 {
263 	struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
264 
265 	kmem_cache_free(dentry_cache, dentry);
266 }
267 
268 static void __d_free_external(struct rcu_head *head)
269 {
270 	struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
271 	kfree(external_name(dentry));
272 	kmem_cache_free(dentry_cache, dentry);
273 }
274 
275 static inline int dname_external(const struct dentry *dentry)
276 {
277 	return dentry->d_name.name != dentry->d_iname;
278 }
279 
280 static inline void __d_set_inode_and_type(struct dentry *dentry,
281 					  struct inode *inode,
282 					  unsigned type_flags)
283 {
284 	unsigned flags;
285 
286 	dentry->d_inode = inode;
287 	flags = READ_ONCE(dentry->d_flags);
288 	flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU);
289 	flags |= type_flags;
290 	WRITE_ONCE(dentry->d_flags, flags);
291 }
292 
293 static inline void __d_clear_type_and_inode(struct dentry *dentry)
294 {
295 	unsigned flags = READ_ONCE(dentry->d_flags);
296 
297 	flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU);
298 	WRITE_ONCE(dentry->d_flags, flags);
299 	dentry->d_inode = NULL;
300 }
301 
302 static void dentry_free(struct dentry *dentry)
303 {
304 	WARN_ON(!hlist_unhashed(&dentry->d_u.d_alias));
305 	if (unlikely(dname_external(dentry))) {
306 		struct external_name *p = external_name(dentry);
307 		if (likely(atomic_dec_and_test(&p->u.count))) {
308 			call_rcu(&dentry->d_u.d_rcu, __d_free_external);
309 			return;
310 		}
311 	}
312 	/* if dentry was never visible to RCU, immediate free is OK */
313 	if (!(dentry->d_flags & DCACHE_RCUACCESS))
314 		__d_free(&dentry->d_u.d_rcu);
315 	else
316 		call_rcu(&dentry->d_u.d_rcu, __d_free);
317 }
318 
319 /*
320  * Release the dentry's inode, using the filesystem
321  * d_iput() operation if defined.
322  */
323 static void dentry_unlink_inode(struct dentry * dentry)
324 	__releases(dentry->d_lock)
325 	__releases(dentry->d_inode->i_lock)
326 {
327 	struct inode *inode = dentry->d_inode;
328 	bool hashed = !d_unhashed(dentry);
329 
330 	if (hashed)
331 		raw_write_seqcount_begin(&dentry->d_seq);
332 	__d_clear_type_and_inode(dentry);
333 	hlist_del_init(&dentry->d_u.d_alias);
334 	if (hashed)
335 		raw_write_seqcount_end(&dentry->d_seq);
336 	spin_unlock(&dentry->d_lock);
337 	spin_unlock(&inode->i_lock);
338 	if (!inode->i_nlink)
339 		fsnotify_inoderemove(inode);
340 	if (dentry->d_op && dentry->d_op->d_iput)
341 		dentry->d_op->d_iput(dentry, inode);
342 	else
343 		iput(inode);
344 }
345 
346 /*
347  * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry
348  * is in use - which includes both the "real" per-superblock
349  * LRU list _and_ the DCACHE_SHRINK_LIST use.
350  *
351  * The DCACHE_SHRINK_LIST bit is set whenever the dentry is
352  * on the shrink list (ie not on the superblock LRU list).
353  *
354  * The per-cpu "nr_dentry_unused" counters are updated with
355  * the DCACHE_LRU_LIST bit.
356  *
357  * These helper functions make sure we always follow the
358  * rules. d_lock must be held by the caller.
359  */
360 #define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x))
361 static void d_lru_add(struct dentry *dentry)
362 {
363 	D_FLAG_VERIFY(dentry, 0);
364 	dentry->d_flags |= DCACHE_LRU_LIST;
365 	this_cpu_inc(nr_dentry_unused);
366 	WARN_ON_ONCE(!list_lru_add(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
367 }
368 
369 static void d_lru_del(struct dentry *dentry)
370 {
371 	D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
372 	dentry->d_flags &= ~DCACHE_LRU_LIST;
373 	this_cpu_dec(nr_dentry_unused);
374 	WARN_ON_ONCE(!list_lru_del(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
375 }
376 
377 static void d_shrink_del(struct dentry *dentry)
378 {
379 	D_FLAG_VERIFY(dentry, DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
380 	list_del_init(&dentry->d_lru);
381 	dentry->d_flags &= ~(DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
382 	this_cpu_dec(nr_dentry_unused);
383 }
384 
385 static void d_shrink_add(struct dentry *dentry, struct list_head *list)
386 {
387 	D_FLAG_VERIFY(dentry, 0);
388 	list_add(&dentry->d_lru, list);
389 	dentry->d_flags |= DCACHE_SHRINK_LIST | DCACHE_LRU_LIST;
390 	this_cpu_inc(nr_dentry_unused);
391 }
392 
393 /*
394  * These can only be called under the global LRU lock, ie during the
395  * callback for freeing the LRU list. "isolate" removes it from the
396  * LRU lists entirely, while shrink_move moves it to the indicated
397  * private list.
398  */
399 static void d_lru_isolate(struct list_lru_one *lru, struct dentry *dentry)
400 {
401 	D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
402 	dentry->d_flags &= ~DCACHE_LRU_LIST;
403 	this_cpu_dec(nr_dentry_unused);
404 	list_lru_isolate(lru, &dentry->d_lru);
405 }
406 
407 static void d_lru_shrink_move(struct list_lru_one *lru, struct dentry *dentry,
408 			      struct list_head *list)
409 {
410 	D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
411 	dentry->d_flags |= DCACHE_SHRINK_LIST;
412 	list_lru_isolate_move(lru, &dentry->d_lru, list);
413 }
414 
415 /*
416  * dentry_lru_(add|del)_list) must be called with d_lock held.
417  */
418 static void dentry_lru_add(struct dentry *dentry)
419 {
420 	if (unlikely(!(dentry->d_flags & DCACHE_LRU_LIST)))
421 		d_lru_add(dentry);
422 }
423 
424 /**
425  * d_drop - drop a dentry
426  * @dentry: dentry to drop
427  *
428  * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
429  * be found through a VFS lookup any more. Note that this is different from
430  * deleting the dentry - d_delete will try to mark the dentry negative if
431  * possible, giving a successful _negative_ lookup, while d_drop will
432  * just make the cache lookup fail.
433  *
434  * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
435  * reason (NFS timeouts or autofs deletes).
436  *
437  * __d_drop requires dentry->d_lock.
438  */
439 void __d_drop(struct dentry *dentry)
440 {
441 	if (!d_unhashed(dentry)) {
442 		struct hlist_bl_head *b;
443 		/*
444 		 * Hashed dentries are normally on the dentry hashtable,
445 		 * with the exception of those newly allocated by
446 		 * d_obtain_alias, which are always IS_ROOT:
447 		 */
448 		if (unlikely(IS_ROOT(dentry)))
449 			b = &dentry->d_sb->s_anon;
450 		else
451 			b = d_hash(dentry->d_name.hash);
452 
453 		hlist_bl_lock(b);
454 		__hlist_bl_del(&dentry->d_hash);
455 		dentry->d_hash.pprev = NULL;
456 		hlist_bl_unlock(b);
457 		/* After this call, in-progress rcu-walk path lookup will fail. */
458 		write_seqcount_invalidate(&dentry->d_seq);
459 	}
460 }
461 EXPORT_SYMBOL(__d_drop);
462 
463 void d_drop(struct dentry *dentry)
464 {
465 	spin_lock(&dentry->d_lock);
466 	__d_drop(dentry);
467 	spin_unlock(&dentry->d_lock);
468 }
469 EXPORT_SYMBOL(d_drop);
470 
471 static inline void dentry_unlist(struct dentry *dentry, struct dentry *parent)
472 {
473 	struct dentry *next;
474 	/*
475 	 * Inform d_walk() and shrink_dentry_list() that we are no longer
476 	 * attached to the dentry tree
477 	 */
478 	dentry->d_flags |= DCACHE_DENTRY_KILLED;
479 	if (unlikely(list_empty(&dentry->d_child)))
480 		return;
481 	__list_del_entry(&dentry->d_child);
482 	/*
483 	 * Cursors can move around the list of children.  While we'd been
484 	 * a normal list member, it didn't matter - ->d_child.next would've
485 	 * been updated.  However, from now on it won't be and for the
486 	 * things like d_walk() it might end up with a nasty surprise.
487 	 * Normally d_walk() doesn't care about cursors moving around -
488 	 * ->d_lock on parent prevents that and since a cursor has no children
489 	 * of its own, we get through it without ever unlocking the parent.
490 	 * There is one exception, though - if we ascend from a child that
491 	 * gets killed as soon as we unlock it, the next sibling is found
492 	 * using the value left in its ->d_child.next.  And if _that_
493 	 * pointed to a cursor, and cursor got moved (e.g. by lseek())
494 	 * before d_walk() regains parent->d_lock, we'll end up skipping
495 	 * everything the cursor had been moved past.
496 	 *
497 	 * Solution: make sure that the pointer left behind in ->d_child.next
498 	 * points to something that won't be moving around.  I.e. skip the
499 	 * cursors.
500 	 */
501 	while (dentry->d_child.next != &parent->d_subdirs) {
502 		next = list_entry(dentry->d_child.next, struct dentry, d_child);
503 		if (likely(!(next->d_flags & DCACHE_DENTRY_CURSOR)))
504 			break;
505 		dentry->d_child.next = next->d_child.next;
506 	}
507 }
508 
509 static void __dentry_kill(struct dentry *dentry)
510 {
511 	struct dentry *parent = NULL;
512 	bool can_free = true;
513 	if (!IS_ROOT(dentry))
514 		parent = dentry->d_parent;
515 
516 	/*
517 	 * The dentry is now unrecoverably dead to the world.
518 	 */
519 	lockref_mark_dead(&dentry->d_lockref);
520 
521 	/*
522 	 * inform the fs via d_prune that this dentry is about to be
523 	 * unhashed and destroyed.
524 	 */
525 	if (dentry->d_flags & DCACHE_OP_PRUNE)
526 		dentry->d_op->d_prune(dentry);
527 
528 	if (dentry->d_flags & DCACHE_LRU_LIST) {
529 		if (!(dentry->d_flags & DCACHE_SHRINK_LIST))
530 			d_lru_del(dentry);
531 	}
532 	/* if it was on the hash then remove it */
533 	__d_drop(dentry);
534 	dentry_unlist(dentry, parent);
535 	if (parent)
536 		spin_unlock(&parent->d_lock);
537 	if (dentry->d_inode)
538 		dentry_unlink_inode(dentry);
539 	else
540 		spin_unlock(&dentry->d_lock);
541 	this_cpu_dec(nr_dentry);
542 	if (dentry->d_op && dentry->d_op->d_release)
543 		dentry->d_op->d_release(dentry);
544 
545 	spin_lock(&dentry->d_lock);
546 	if (dentry->d_flags & DCACHE_SHRINK_LIST) {
547 		dentry->d_flags |= DCACHE_MAY_FREE;
548 		can_free = false;
549 	}
550 	spin_unlock(&dentry->d_lock);
551 	if (likely(can_free))
552 		dentry_free(dentry);
553 }
554 
555 /*
556  * Finish off a dentry we've decided to kill.
557  * dentry->d_lock must be held, returns with it unlocked.
558  * If ref is non-zero, then decrement the refcount too.
559  * Returns dentry requiring refcount drop, or NULL if we're done.
560  */
561 static struct dentry *dentry_kill(struct dentry *dentry)
562 	__releases(dentry->d_lock)
563 {
564 	struct inode *inode = dentry->d_inode;
565 	struct dentry *parent = NULL;
566 
567 	if (inode && unlikely(!spin_trylock(&inode->i_lock)))
568 		goto failed;
569 
570 	if (!IS_ROOT(dentry)) {
571 		parent = dentry->d_parent;
572 		if (unlikely(!spin_trylock(&parent->d_lock))) {
573 			if (inode)
574 				spin_unlock(&inode->i_lock);
575 			goto failed;
576 		}
577 	}
578 
579 	__dentry_kill(dentry);
580 	return parent;
581 
582 failed:
583 	spin_unlock(&dentry->d_lock);
584 	return dentry; /* try again with same dentry */
585 }
586 
587 static inline struct dentry *lock_parent(struct dentry *dentry)
588 {
589 	struct dentry *parent = dentry->d_parent;
590 	if (IS_ROOT(dentry))
591 		return NULL;
592 	if (unlikely(dentry->d_lockref.count < 0))
593 		return NULL;
594 	if (likely(spin_trylock(&parent->d_lock)))
595 		return parent;
596 	rcu_read_lock();
597 	spin_unlock(&dentry->d_lock);
598 again:
599 	parent = ACCESS_ONCE(dentry->d_parent);
600 	spin_lock(&parent->d_lock);
601 	/*
602 	 * We can't blindly lock dentry until we are sure
603 	 * that we won't violate the locking order.
604 	 * Any changes of dentry->d_parent must have
605 	 * been done with parent->d_lock held, so
606 	 * spin_lock() above is enough of a barrier
607 	 * for checking if it's still our child.
608 	 */
609 	if (unlikely(parent != dentry->d_parent)) {
610 		spin_unlock(&parent->d_lock);
611 		goto again;
612 	}
613 	rcu_read_unlock();
614 	if (parent != dentry)
615 		spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
616 	else
617 		parent = NULL;
618 	return parent;
619 }
620 
621 /*
622  * Try to do a lockless dput(), and return whether that was successful.
623  *
624  * If unsuccessful, we return false, having already taken the dentry lock.
625  *
626  * The caller needs to hold the RCU read lock, so that the dentry is
627  * guaranteed to stay around even if the refcount goes down to zero!
628  */
629 static inline bool fast_dput(struct dentry *dentry)
630 {
631 	int ret;
632 	unsigned int d_flags;
633 
634 	/*
635 	 * If we have a d_op->d_delete() operation, we sould not
636 	 * let the dentry count go to zero, so use "put_or_lock".
637 	 */
638 	if (unlikely(dentry->d_flags & DCACHE_OP_DELETE))
639 		return lockref_put_or_lock(&dentry->d_lockref);
640 
641 	/*
642 	 * .. otherwise, we can try to just decrement the
643 	 * lockref optimistically.
644 	 */
645 	ret = lockref_put_return(&dentry->d_lockref);
646 
647 	/*
648 	 * If the lockref_put_return() failed due to the lock being held
649 	 * by somebody else, the fast path has failed. We will need to
650 	 * get the lock, and then check the count again.
651 	 */
652 	if (unlikely(ret < 0)) {
653 		spin_lock(&dentry->d_lock);
654 		if (dentry->d_lockref.count > 1) {
655 			dentry->d_lockref.count--;
656 			spin_unlock(&dentry->d_lock);
657 			return 1;
658 		}
659 		return 0;
660 	}
661 
662 	/*
663 	 * If we weren't the last ref, we're done.
664 	 */
665 	if (ret)
666 		return 1;
667 
668 	/*
669 	 * Careful, careful. The reference count went down
670 	 * to zero, but we don't hold the dentry lock, so
671 	 * somebody else could get it again, and do another
672 	 * dput(), and we need to not race with that.
673 	 *
674 	 * However, there is a very special and common case
675 	 * where we don't care, because there is nothing to
676 	 * do: the dentry is still hashed, it does not have
677 	 * a 'delete' op, and it's referenced and already on
678 	 * the LRU list.
679 	 *
680 	 * NOTE! Since we aren't locked, these values are
681 	 * not "stable". However, it is sufficient that at
682 	 * some point after we dropped the reference the
683 	 * dentry was hashed and the flags had the proper
684 	 * value. Other dentry users may have re-gotten
685 	 * a reference to the dentry and change that, but
686 	 * our work is done - we can leave the dentry
687 	 * around with a zero refcount.
688 	 */
689 	smp_rmb();
690 	d_flags = ACCESS_ONCE(dentry->d_flags);
691 	d_flags &= DCACHE_REFERENCED | DCACHE_LRU_LIST | DCACHE_DISCONNECTED;
692 
693 	/* Nothing to do? Dropping the reference was all we needed? */
694 	if (d_flags == (DCACHE_REFERENCED | DCACHE_LRU_LIST) && !d_unhashed(dentry))
695 		return 1;
696 
697 	/*
698 	 * Not the fast normal case? Get the lock. We've already decremented
699 	 * the refcount, but we'll need to re-check the situation after
700 	 * getting the lock.
701 	 */
702 	spin_lock(&dentry->d_lock);
703 
704 	/*
705 	 * Did somebody else grab a reference to it in the meantime, and
706 	 * we're no longer the last user after all? Alternatively, somebody
707 	 * else could have killed it and marked it dead. Either way, we
708 	 * don't need to do anything else.
709 	 */
710 	if (dentry->d_lockref.count) {
711 		spin_unlock(&dentry->d_lock);
712 		return 1;
713 	}
714 
715 	/*
716 	 * Re-get the reference we optimistically dropped. We hold the
717 	 * lock, and we just tested that it was zero, so we can just
718 	 * set it to 1.
719 	 */
720 	dentry->d_lockref.count = 1;
721 	return 0;
722 }
723 
724 
725 /*
726  * This is dput
727  *
728  * This is complicated by the fact that we do not want to put
729  * dentries that are no longer on any hash chain on the unused
730  * list: we'd much rather just get rid of them immediately.
731  *
732  * However, that implies that we have to traverse the dentry
733  * tree upwards to the parents which might _also_ now be
734  * scheduled for deletion (it may have been only waiting for
735  * its last child to go away).
736  *
737  * This tail recursion is done by hand as we don't want to depend
738  * on the compiler to always get this right (gcc generally doesn't).
739  * Real recursion would eat up our stack space.
740  */
741 
742 /*
743  * dput - release a dentry
744  * @dentry: dentry to release
745  *
746  * Release a dentry. This will drop the usage count and if appropriate
747  * call the dentry unlink method as well as removing it from the queues and
748  * releasing its resources. If the parent dentries were scheduled for release
749  * they too may now get deleted.
750  */
751 void dput(struct dentry *dentry)
752 {
753 	if (unlikely(!dentry))
754 		return;
755 
756 repeat:
757 	might_sleep();
758 
759 	rcu_read_lock();
760 	if (likely(fast_dput(dentry))) {
761 		rcu_read_unlock();
762 		return;
763 	}
764 
765 	/* Slow case: now with the dentry lock held */
766 	rcu_read_unlock();
767 
768 	WARN_ON(d_in_lookup(dentry));
769 
770 	/* Unreachable? Get rid of it */
771 	if (unlikely(d_unhashed(dentry)))
772 		goto kill_it;
773 
774 	if (unlikely(dentry->d_flags & DCACHE_DISCONNECTED))
775 		goto kill_it;
776 
777 	if (unlikely(dentry->d_flags & DCACHE_OP_DELETE)) {
778 		if (dentry->d_op->d_delete(dentry))
779 			goto kill_it;
780 	}
781 
782 	if (!(dentry->d_flags & DCACHE_REFERENCED))
783 		dentry->d_flags |= DCACHE_REFERENCED;
784 	dentry_lru_add(dentry);
785 
786 	dentry->d_lockref.count--;
787 	spin_unlock(&dentry->d_lock);
788 	return;
789 
790 kill_it:
791 	dentry = dentry_kill(dentry);
792 	if (dentry) {
793 		cond_resched();
794 		goto repeat;
795 	}
796 }
797 EXPORT_SYMBOL(dput);
798 
799 
800 /* This must be called with d_lock held */
801 static inline void __dget_dlock(struct dentry *dentry)
802 {
803 	dentry->d_lockref.count++;
804 }
805 
806 static inline void __dget(struct dentry *dentry)
807 {
808 	lockref_get(&dentry->d_lockref);
809 }
810 
811 struct dentry *dget_parent(struct dentry *dentry)
812 {
813 	int gotref;
814 	struct dentry *ret;
815 
816 	/*
817 	 * Do optimistic parent lookup without any
818 	 * locking.
819 	 */
820 	rcu_read_lock();
821 	ret = ACCESS_ONCE(dentry->d_parent);
822 	gotref = lockref_get_not_zero(&ret->d_lockref);
823 	rcu_read_unlock();
824 	if (likely(gotref)) {
825 		if (likely(ret == ACCESS_ONCE(dentry->d_parent)))
826 			return ret;
827 		dput(ret);
828 	}
829 
830 repeat:
831 	/*
832 	 * Don't need rcu_dereference because we re-check it was correct under
833 	 * the lock.
834 	 */
835 	rcu_read_lock();
836 	ret = dentry->d_parent;
837 	spin_lock(&ret->d_lock);
838 	if (unlikely(ret != dentry->d_parent)) {
839 		spin_unlock(&ret->d_lock);
840 		rcu_read_unlock();
841 		goto repeat;
842 	}
843 	rcu_read_unlock();
844 	BUG_ON(!ret->d_lockref.count);
845 	ret->d_lockref.count++;
846 	spin_unlock(&ret->d_lock);
847 	return ret;
848 }
849 EXPORT_SYMBOL(dget_parent);
850 
851 /**
852  * d_find_alias - grab a hashed alias of inode
853  * @inode: inode in question
854  *
855  * If inode has a hashed alias, or is a directory and has any alias,
856  * acquire the reference to alias and return it. Otherwise return NULL.
857  * Notice that if inode is a directory there can be only one alias and
858  * it can be unhashed only if it has no children, or if it is the root
859  * of a filesystem, or if the directory was renamed and d_revalidate
860  * was the first vfs operation to notice.
861  *
862  * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
863  * any other hashed alias over that one.
864  */
865 static struct dentry *__d_find_alias(struct inode *inode)
866 {
867 	struct dentry *alias, *discon_alias;
868 
869 again:
870 	discon_alias = NULL;
871 	hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
872 		spin_lock(&alias->d_lock);
873  		if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
874 			if (IS_ROOT(alias) &&
875 			    (alias->d_flags & DCACHE_DISCONNECTED)) {
876 				discon_alias = alias;
877 			} else {
878 				__dget_dlock(alias);
879 				spin_unlock(&alias->d_lock);
880 				return alias;
881 			}
882 		}
883 		spin_unlock(&alias->d_lock);
884 	}
885 	if (discon_alias) {
886 		alias = discon_alias;
887 		spin_lock(&alias->d_lock);
888 		if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
889 			__dget_dlock(alias);
890 			spin_unlock(&alias->d_lock);
891 			return alias;
892 		}
893 		spin_unlock(&alias->d_lock);
894 		goto again;
895 	}
896 	return NULL;
897 }
898 
899 struct dentry *d_find_alias(struct inode *inode)
900 {
901 	struct dentry *de = NULL;
902 
903 	if (!hlist_empty(&inode->i_dentry)) {
904 		spin_lock(&inode->i_lock);
905 		de = __d_find_alias(inode);
906 		spin_unlock(&inode->i_lock);
907 	}
908 	return de;
909 }
910 EXPORT_SYMBOL(d_find_alias);
911 
912 /*
913  *	Try to kill dentries associated with this inode.
914  * WARNING: you must own a reference to inode.
915  */
916 void d_prune_aliases(struct inode *inode)
917 {
918 	struct dentry *dentry;
919 restart:
920 	spin_lock(&inode->i_lock);
921 	hlist_for_each_entry(dentry, &inode->i_dentry, d_u.d_alias) {
922 		spin_lock(&dentry->d_lock);
923 		if (!dentry->d_lockref.count) {
924 			struct dentry *parent = lock_parent(dentry);
925 			if (likely(!dentry->d_lockref.count)) {
926 				__dentry_kill(dentry);
927 				dput(parent);
928 				goto restart;
929 			}
930 			if (parent)
931 				spin_unlock(&parent->d_lock);
932 		}
933 		spin_unlock(&dentry->d_lock);
934 	}
935 	spin_unlock(&inode->i_lock);
936 }
937 EXPORT_SYMBOL(d_prune_aliases);
938 
939 static void shrink_dentry_list(struct list_head *list)
940 {
941 	struct dentry *dentry, *parent;
942 
943 	while (!list_empty(list)) {
944 		struct inode *inode;
945 		dentry = list_entry(list->prev, struct dentry, d_lru);
946 		spin_lock(&dentry->d_lock);
947 		parent = lock_parent(dentry);
948 
949 		/*
950 		 * The dispose list is isolated and dentries are not accounted
951 		 * to the LRU here, so we can simply remove it from the list
952 		 * here regardless of whether it is referenced or not.
953 		 */
954 		d_shrink_del(dentry);
955 
956 		/*
957 		 * We found an inuse dentry which was not removed from
958 		 * the LRU because of laziness during lookup. Do not free it.
959 		 */
960 		if (dentry->d_lockref.count > 0) {
961 			spin_unlock(&dentry->d_lock);
962 			if (parent)
963 				spin_unlock(&parent->d_lock);
964 			continue;
965 		}
966 
967 
968 		if (unlikely(dentry->d_flags & DCACHE_DENTRY_KILLED)) {
969 			bool can_free = dentry->d_flags & DCACHE_MAY_FREE;
970 			spin_unlock(&dentry->d_lock);
971 			if (parent)
972 				spin_unlock(&parent->d_lock);
973 			if (can_free)
974 				dentry_free(dentry);
975 			continue;
976 		}
977 
978 		inode = dentry->d_inode;
979 		if (inode && unlikely(!spin_trylock(&inode->i_lock))) {
980 			d_shrink_add(dentry, list);
981 			spin_unlock(&dentry->d_lock);
982 			if (parent)
983 				spin_unlock(&parent->d_lock);
984 			continue;
985 		}
986 
987 		__dentry_kill(dentry);
988 
989 		/*
990 		 * We need to prune ancestors too. This is necessary to prevent
991 		 * quadratic behavior of shrink_dcache_parent(), but is also
992 		 * expected to be beneficial in reducing dentry cache
993 		 * fragmentation.
994 		 */
995 		dentry = parent;
996 		while (dentry && !lockref_put_or_lock(&dentry->d_lockref)) {
997 			parent = lock_parent(dentry);
998 			if (dentry->d_lockref.count != 1) {
999 				dentry->d_lockref.count--;
1000 				spin_unlock(&dentry->d_lock);
1001 				if (parent)
1002 					spin_unlock(&parent->d_lock);
1003 				break;
1004 			}
1005 			inode = dentry->d_inode;	/* can't be NULL */
1006 			if (unlikely(!spin_trylock(&inode->i_lock))) {
1007 				spin_unlock(&dentry->d_lock);
1008 				if (parent)
1009 					spin_unlock(&parent->d_lock);
1010 				cpu_relax();
1011 				continue;
1012 			}
1013 			__dentry_kill(dentry);
1014 			dentry = parent;
1015 		}
1016 	}
1017 }
1018 
1019 static enum lru_status dentry_lru_isolate(struct list_head *item,
1020 		struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
1021 {
1022 	struct list_head *freeable = arg;
1023 	struct dentry	*dentry = container_of(item, struct dentry, d_lru);
1024 
1025 
1026 	/*
1027 	 * we are inverting the lru lock/dentry->d_lock here,
1028 	 * so use a trylock. If we fail to get the lock, just skip
1029 	 * it
1030 	 */
1031 	if (!spin_trylock(&dentry->d_lock))
1032 		return LRU_SKIP;
1033 
1034 	/*
1035 	 * Referenced dentries are still in use. If they have active
1036 	 * counts, just remove them from the LRU. Otherwise give them
1037 	 * another pass through the LRU.
1038 	 */
1039 	if (dentry->d_lockref.count) {
1040 		d_lru_isolate(lru, dentry);
1041 		spin_unlock(&dentry->d_lock);
1042 		return LRU_REMOVED;
1043 	}
1044 
1045 	if (dentry->d_flags & DCACHE_REFERENCED) {
1046 		dentry->d_flags &= ~DCACHE_REFERENCED;
1047 		spin_unlock(&dentry->d_lock);
1048 
1049 		/*
1050 		 * The list move itself will be made by the common LRU code. At
1051 		 * this point, we've dropped the dentry->d_lock but keep the
1052 		 * lru lock. This is safe to do, since every list movement is
1053 		 * protected by the lru lock even if both locks are held.
1054 		 *
1055 		 * This is guaranteed by the fact that all LRU management
1056 		 * functions are intermediated by the LRU API calls like
1057 		 * list_lru_add and list_lru_del. List movement in this file
1058 		 * only ever occur through this functions or through callbacks
1059 		 * like this one, that are called from the LRU API.
1060 		 *
1061 		 * The only exceptions to this are functions like
1062 		 * shrink_dentry_list, and code that first checks for the
1063 		 * DCACHE_SHRINK_LIST flag.  Those are guaranteed to be
1064 		 * operating only with stack provided lists after they are
1065 		 * properly isolated from the main list.  It is thus, always a
1066 		 * local access.
1067 		 */
1068 		return LRU_ROTATE;
1069 	}
1070 
1071 	d_lru_shrink_move(lru, dentry, freeable);
1072 	spin_unlock(&dentry->d_lock);
1073 
1074 	return LRU_REMOVED;
1075 }
1076 
1077 /**
1078  * prune_dcache_sb - shrink the dcache
1079  * @sb: superblock
1080  * @sc: shrink control, passed to list_lru_shrink_walk()
1081  *
1082  * Attempt to shrink the superblock dcache LRU by @sc->nr_to_scan entries. This
1083  * is done when we need more memory and called from the superblock shrinker
1084  * function.
1085  *
1086  * This function may fail to free any resources if all the dentries are in
1087  * use.
1088  */
1089 long prune_dcache_sb(struct super_block *sb, struct shrink_control *sc)
1090 {
1091 	LIST_HEAD(dispose);
1092 	long freed;
1093 
1094 	freed = list_lru_shrink_walk(&sb->s_dentry_lru, sc,
1095 				     dentry_lru_isolate, &dispose);
1096 	shrink_dentry_list(&dispose);
1097 	return freed;
1098 }
1099 
1100 static enum lru_status dentry_lru_isolate_shrink(struct list_head *item,
1101 		struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
1102 {
1103 	struct list_head *freeable = arg;
1104 	struct dentry	*dentry = container_of(item, struct dentry, d_lru);
1105 
1106 	/*
1107 	 * we are inverting the lru lock/dentry->d_lock here,
1108 	 * so use a trylock. If we fail to get the lock, just skip
1109 	 * it
1110 	 */
1111 	if (!spin_trylock(&dentry->d_lock))
1112 		return LRU_SKIP;
1113 
1114 	d_lru_shrink_move(lru, dentry, freeable);
1115 	spin_unlock(&dentry->d_lock);
1116 
1117 	return LRU_REMOVED;
1118 }
1119 
1120 
1121 /**
1122  * shrink_dcache_sb - shrink dcache for a superblock
1123  * @sb: superblock
1124  *
1125  * Shrink the dcache for the specified super block. This is used to free
1126  * the dcache before unmounting a file system.
1127  */
1128 void shrink_dcache_sb(struct super_block *sb)
1129 {
1130 	long freed;
1131 
1132 	do {
1133 		LIST_HEAD(dispose);
1134 
1135 		freed = list_lru_walk(&sb->s_dentry_lru,
1136 			dentry_lru_isolate_shrink, &dispose, UINT_MAX);
1137 
1138 		this_cpu_sub(nr_dentry_unused, freed);
1139 		shrink_dentry_list(&dispose);
1140 	} while (freed > 0);
1141 }
1142 EXPORT_SYMBOL(shrink_dcache_sb);
1143 
1144 /**
1145  * enum d_walk_ret - action to talke during tree walk
1146  * @D_WALK_CONTINUE:	contrinue walk
1147  * @D_WALK_QUIT:	quit walk
1148  * @D_WALK_NORETRY:	quit when retry is needed
1149  * @D_WALK_SKIP:	skip this dentry and its children
1150  */
1151 enum d_walk_ret {
1152 	D_WALK_CONTINUE,
1153 	D_WALK_QUIT,
1154 	D_WALK_NORETRY,
1155 	D_WALK_SKIP,
1156 };
1157 
1158 /**
1159  * d_walk - walk the dentry tree
1160  * @parent:	start of walk
1161  * @data:	data passed to @enter() and @finish()
1162  * @enter:	callback when first entering the dentry
1163  * @finish:	callback when successfully finished the walk
1164  *
1165  * The @enter() and @finish() callbacks are called with d_lock held.
1166  */
1167 static void d_walk(struct dentry *parent, void *data,
1168 		   enum d_walk_ret (*enter)(void *, struct dentry *),
1169 		   void (*finish)(void *))
1170 {
1171 	struct dentry *this_parent;
1172 	struct list_head *next;
1173 	unsigned seq = 0;
1174 	enum d_walk_ret ret;
1175 	bool retry = true;
1176 
1177 again:
1178 	read_seqbegin_or_lock(&rename_lock, &seq);
1179 	this_parent = parent;
1180 	spin_lock(&this_parent->d_lock);
1181 
1182 	ret = enter(data, this_parent);
1183 	switch (ret) {
1184 	case D_WALK_CONTINUE:
1185 		break;
1186 	case D_WALK_QUIT:
1187 	case D_WALK_SKIP:
1188 		goto out_unlock;
1189 	case D_WALK_NORETRY:
1190 		retry = false;
1191 		break;
1192 	}
1193 repeat:
1194 	next = this_parent->d_subdirs.next;
1195 resume:
1196 	while (next != &this_parent->d_subdirs) {
1197 		struct list_head *tmp = next;
1198 		struct dentry *dentry = list_entry(tmp, struct dentry, d_child);
1199 		next = tmp->next;
1200 
1201 		if (unlikely(dentry->d_flags & DCACHE_DENTRY_CURSOR))
1202 			continue;
1203 
1204 		spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1205 
1206 		ret = enter(data, dentry);
1207 		switch (ret) {
1208 		case D_WALK_CONTINUE:
1209 			break;
1210 		case D_WALK_QUIT:
1211 			spin_unlock(&dentry->d_lock);
1212 			goto out_unlock;
1213 		case D_WALK_NORETRY:
1214 			retry = false;
1215 			break;
1216 		case D_WALK_SKIP:
1217 			spin_unlock(&dentry->d_lock);
1218 			continue;
1219 		}
1220 
1221 		if (!list_empty(&dentry->d_subdirs)) {
1222 			spin_unlock(&this_parent->d_lock);
1223 			spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1224 			this_parent = dentry;
1225 			spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1226 			goto repeat;
1227 		}
1228 		spin_unlock(&dentry->d_lock);
1229 	}
1230 	/*
1231 	 * All done at this level ... ascend and resume the search.
1232 	 */
1233 	rcu_read_lock();
1234 ascend:
1235 	if (this_parent != parent) {
1236 		struct dentry *child = this_parent;
1237 		this_parent = child->d_parent;
1238 
1239 		spin_unlock(&child->d_lock);
1240 		spin_lock(&this_parent->d_lock);
1241 
1242 		/* might go back up the wrong parent if we have had a rename. */
1243 		if (need_seqretry(&rename_lock, seq))
1244 			goto rename_retry;
1245 		/* go into the first sibling still alive */
1246 		do {
1247 			next = child->d_child.next;
1248 			if (next == &this_parent->d_subdirs)
1249 				goto ascend;
1250 			child = list_entry(next, struct dentry, d_child);
1251 		} while (unlikely(child->d_flags & DCACHE_DENTRY_KILLED));
1252 		rcu_read_unlock();
1253 		goto resume;
1254 	}
1255 	if (need_seqretry(&rename_lock, seq))
1256 		goto rename_retry;
1257 	rcu_read_unlock();
1258 	if (finish)
1259 		finish(data);
1260 
1261 out_unlock:
1262 	spin_unlock(&this_parent->d_lock);
1263 	done_seqretry(&rename_lock, seq);
1264 	return;
1265 
1266 rename_retry:
1267 	spin_unlock(&this_parent->d_lock);
1268 	rcu_read_unlock();
1269 	BUG_ON(seq & 1);
1270 	if (!retry)
1271 		return;
1272 	seq = 1;
1273 	goto again;
1274 }
1275 
1276 struct check_mount {
1277 	struct vfsmount *mnt;
1278 	unsigned int mounted;
1279 };
1280 
1281 static enum d_walk_ret path_check_mount(void *data, struct dentry *dentry)
1282 {
1283 	struct check_mount *info = data;
1284 	struct path path = { .mnt = info->mnt, .dentry = dentry };
1285 
1286 	if (likely(!d_mountpoint(dentry)))
1287 		return D_WALK_CONTINUE;
1288 	if (__path_is_mountpoint(&path)) {
1289 		info->mounted = 1;
1290 		return D_WALK_QUIT;
1291 	}
1292 	return D_WALK_CONTINUE;
1293 }
1294 
1295 /**
1296  * path_has_submounts - check for mounts over a dentry in the
1297  *                      current namespace.
1298  * @parent: path to check.
1299  *
1300  * Return true if the parent or its subdirectories contain
1301  * a mount point in the current namespace.
1302  */
1303 int path_has_submounts(const struct path *parent)
1304 {
1305 	struct check_mount data = { .mnt = parent->mnt, .mounted = 0 };
1306 
1307 	read_seqlock_excl(&mount_lock);
1308 	d_walk(parent->dentry, &data, path_check_mount, NULL);
1309 	read_sequnlock_excl(&mount_lock);
1310 
1311 	return data.mounted;
1312 }
1313 EXPORT_SYMBOL(path_has_submounts);
1314 
1315 /*
1316  * Called by mount code to set a mountpoint and check if the mountpoint is
1317  * reachable (e.g. NFS can unhash a directory dentry and then the complete
1318  * subtree can become unreachable).
1319  *
1320  * Only one of d_invalidate() and d_set_mounted() must succeed.  For
1321  * this reason take rename_lock and d_lock on dentry and ancestors.
1322  */
1323 int d_set_mounted(struct dentry *dentry)
1324 {
1325 	struct dentry *p;
1326 	int ret = -ENOENT;
1327 	write_seqlock(&rename_lock);
1328 	for (p = dentry->d_parent; !IS_ROOT(p); p = p->d_parent) {
1329 		/* Need exclusion wrt. d_invalidate() */
1330 		spin_lock(&p->d_lock);
1331 		if (unlikely(d_unhashed(p))) {
1332 			spin_unlock(&p->d_lock);
1333 			goto out;
1334 		}
1335 		spin_unlock(&p->d_lock);
1336 	}
1337 	spin_lock(&dentry->d_lock);
1338 	if (!d_unlinked(dentry)) {
1339 		dentry->d_flags |= DCACHE_MOUNTED;
1340 		ret = 0;
1341 	}
1342  	spin_unlock(&dentry->d_lock);
1343 out:
1344 	write_sequnlock(&rename_lock);
1345 	return ret;
1346 }
1347 
1348 /*
1349  * Search the dentry child list of the specified parent,
1350  * and move any unused dentries to the end of the unused
1351  * list for prune_dcache(). We descend to the next level
1352  * whenever the d_subdirs list is non-empty and continue
1353  * searching.
1354  *
1355  * It returns zero iff there are no unused children,
1356  * otherwise  it returns the number of children moved to
1357  * the end of the unused list. This may not be the total
1358  * number of unused children, because select_parent can
1359  * drop the lock and return early due to latency
1360  * constraints.
1361  */
1362 
1363 struct select_data {
1364 	struct dentry *start;
1365 	struct list_head dispose;
1366 	int found;
1367 };
1368 
1369 static enum d_walk_ret select_collect(void *_data, struct dentry *dentry)
1370 {
1371 	struct select_data *data = _data;
1372 	enum d_walk_ret ret = D_WALK_CONTINUE;
1373 
1374 	if (data->start == dentry)
1375 		goto out;
1376 
1377 	if (dentry->d_flags & DCACHE_SHRINK_LIST) {
1378 		data->found++;
1379 	} else {
1380 		if (dentry->d_flags & DCACHE_LRU_LIST)
1381 			d_lru_del(dentry);
1382 		if (!dentry->d_lockref.count) {
1383 			d_shrink_add(dentry, &data->dispose);
1384 			data->found++;
1385 		}
1386 	}
1387 	/*
1388 	 * We can return to the caller if we have found some (this
1389 	 * ensures forward progress). We'll be coming back to find
1390 	 * the rest.
1391 	 */
1392 	if (!list_empty(&data->dispose))
1393 		ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY;
1394 out:
1395 	return ret;
1396 }
1397 
1398 /**
1399  * shrink_dcache_parent - prune dcache
1400  * @parent: parent of entries to prune
1401  *
1402  * Prune the dcache to remove unused children of the parent dentry.
1403  */
1404 void shrink_dcache_parent(struct dentry *parent)
1405 {
1406 	for (;;) {
1407 		struct select_data data;
1408 
1409 		INIT_LIST_HEAD(&data.dispose);
1410 		data.start = parent;
1411 		data.found = 0;
1412 
1413 		d_walk(parent, &data, select_collect, NULL);
1414 		if (!data.found)
1415 			break;
1416 
1417 		shrink_dentry_list(&data.dispose);
1418 		cond_resched();
1419 	}
1420 }
1421 EXPORT_SYMBOL(shrink_dcache_parent);
1422 
1423 static enum d_walk_ret umount_check(void *_data, struct dentry *dentry)
1424 {
1425 	/* it has busy descendents; complain about those instead */
1426 	if (!list_empty(&dentry->d_subdirs))
1427 		return D_WALK_CONTINUE;
1428 
1429 	/* root with refcount 1 is fine */
1430 	if (dentry == _data && dentry->d_lockref.count == 1)
1431 		return D_WALK_CONTINUE;
1432 
1433 	printk(KERN_ERR "BUG: Dentry %p{i=%lx,n=%pd} "
1434 			" still in use (%d) [unmount of %s %s]\n",
1435 		       dentry,
1436 		       dentry->d_inode ?
1437 		       dentry->d_inode->i_ino : 0UL,
1438 		       dentry,
1439 		       dentry->d_lockref.count,
1440 		       dentry->d_sb->s_type->name,
1441 		       dentry->d_sb->s_id);
1442 	WARN_ON(1);
1443 	return D_WALK_CONTINUE;
1444 }
1445 
1446 static void do_one_tree(struct dentry *dentry)
1447 {
1448 	shrink_dcache_parent(dentry);
1449 	d_walk(dentry, dentry, umount_check, NULL);
1450 	d_drop(dentry);
1451 	dput(dentry);
1452 }
1453 
1454 /*
1455  * destroy the dentries attached to a superblock on unmounting
1456  */
1457 void shrink_dcache_for_umount(struct super_block *sb)
1458 {
1459 	struct dentry *dentry;
1460 
1461 	WARN(down_read_trylock(&sb->s_umount), "s_umount should've been locked");
1462 
1463 	dentry = sb->s_root;
1464 	sb->s_root = NULL;
1465 	do_one_tree(dentry);
1466 
1467 	while (!hlist_bl_empty(&sb->s_anon)) {
1468 		dentry = dget(hlist_bl_entry(hlist_bl_first(&sb->s_anon), struct dentry, d_hash));
1469 		do_one_tree(dentry);
1470 	}
1471 }
1472 
1473 struct detach_data {
1474 	struct select_data select;
1475 	struct dentry *mountpoint;
1476 };
1477 static enum d_walk_ret detach_and_collect(void *_data, struct dentry *dentry)
1478 {
1479 	struct detach_data *data = _data;
1480 
1481 	if (d_mountpoint(dentry)) {
1482 		__dget_dlock(dentry);
1483 		data->mountpoint = dentry;
1484 		return D_WALK_QUIT;
1485 	}
1486 
1487 	return select_collect(&data->select, dentry);
1488 }
1489 
1490 static void check_and_drop(void *_data)
1491 {
1492 	struct detach_data *data = _data;
1493 
1494 	if (!data->mountpoint && !data->select.found)
1495 		__d_drop(data->select.start);
1496 }
1497 
1498 /**
1499  * d_invalidate - detach submounts, prune dcache, and drop
1500  * @dentry: dentry to invalidate (aka detach, prune and drop)
1501  *
1502  * no dcache lock.
1503  *
1504  * The final d_drop is done as an atomic operation relative to
1505  * rename_lock ensuring there are no races with d_set_mounted.  This
1506  * ensures there are no unhashed dentries on the path to a mountpoint.
1507  */
1508 void d_invalidate(struct dentry *dentry)
1509 {
1510 	/*
1511 	 * If it's already been dropped, return OK.
1512 	 */
1513 	spin_lock(&dentry->d_lock);
1514 	if (d_unhashed(dentry)) {
1515 		spin_unlock(&dentry->d_lock);
1516 		return;
1517 	}
1518 	spin_unlock(&dentry->d_lock);
1519 
1520 	/* Negative dentries can be dropped without further checks */
1521 	if (!dentry->d_inode) {
1522 		d_drop(dentry);
1523 		return;
1524 	}
1525 
1526 	for (;;) {
1527 		struct detach_data data;
1528 
1529 		data.mountpoint = NULL;
1530 		INIT_LIST_HEAD(&data.select.dispose);
1531 		data.select.start = dentry;
1532 		data.select.found = 0;
1533 
1534 		d_walk(dentry, &data, detach_and_collect, check_and_drop);
1535 
1536 		if (data.select.found)
1537 			shrink_dentry_list(&data.select.dispose);
1538 
1539 		if (data.mountpoint) {
1540 			detach_mounts(data.mountpoint);
1541 			dput(data.mountpoint);
1542 		}
1543 
1544 		if (!data.mountpoint && !data.select.found)
1545 			break;
1546 
1547 		cond_resched();
1548 	}
1549 }
1550 EXPORT_SYMBOL(d_invalidate);
1551 
1552 /**
1553  * __d_alloc	-	allocate a dcache entry
1554  * @sb: filesystem it will belong to
1555  * @name: qstr of the name
1556  *
1557  * Allocates a dentry. It returns %NULL if there is insufficient memory
1558  * available. On a success the dentry is returned. The name passed in is
1559  * copied and the copy passed in may be reused after this call.
1560  */
1561 
1562 struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name)
1563 {
1564 	struct dentry *dentry;
1565 	char *dname;
1566 	int err;
1567 
1568 	dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
1569 	if (!dentry)
1570 		return NULL;
1571 
1572 	/*
1573 	 * We guarantee that the inline name is always NUL-terminated.
1574 	 * This way the memcpy() done by the name switching in rename
1575 	 * will still always have a NUL at the end, even if we might
1576 	 * be overwriting an internal NUL character
1577 	 */
1578 	dentry->d_iname[DNAME_INLINE_LEN-1] = 0;
1579 	if (unlikely(!name)) {
1580 		static const struct qstr anon = QSTR_INIT("/", 1);
1581 		name = &anon;
1582 		dname = dentry->d_iname;
1583 	} else if (name->len > DNAME_INLINE_LEN-1) {
1584 		size_t size = offsetof(struct external_name, name[1]);
1585 		struct external_name *p = kmalloc(size + name->len,
1586 						  GFP_KERNEL_ACCOUNT);
1587 		if (!p) {
1588 			kmem_cache_free(dentry_cache, dentry);
1589 			return NULL;
1590 		}
1591 		atomic_set(&p->u.count, 1);
1592 		dname = p->name;
1593 		if (IS_ENABLED(CONFIG_DCACHE_WORD_ACCESS))
1594 			kasan_unpoison_shadow(dname,
1595 				round_up(name->len + 1,	sizeof(unsigned long)));
1596 	} else  {
1597 		dname = dentry->d_iname;
1598 	}
1599 
1600 	dentry->d_name.len = name->len;
1601 	dentry->d_name.hash = name->hash;
1602 	memcpy(dname, name->name, name->len);
1603 	dname[name->len] = 0;
1604 
1605 	/* Make sure we always see the terminating NUL character */
1606 	smp_wmb();
1607 	dentry->d_name.name = dname;
1608 
1609 	dentry->d_lockref.count = 1;
1610 	dentry->d_flags = 0;
1611 	spin_lock_init(&dentry->d_lock);
1612 	seqcount_init(&dentry->d_seq);
1613 	dentry->d_inode = NULL;
1614 	dentry->d_parent = dentry;
1615 	dentry->d_sb = sb;
1616 	dentry->d_op = NULL;
1617 	dentry->d_fsdata = NULL;
1618 	INIT_HLIST_BL_NODE(&dentry->d_hash);
1619 	INIT_LIST_HEAD(&dentry->d_lru);
1620 	INIT_LIST_HEAD(&dentry->d_subdirs);
1621 	INIT_HLIST_NODE(&dentry->d_u.d_alias);
1622 	INIT_LIST_HEAD(&dentry->d_child);
1623 	d_set_d_op(dentry, dentry->d_sb->s_d_op);
1624 
1625 	if (dentry->d_op && dentry->d_op->d_init) {
1626 		err = dentry->d_op->d_init(dentry);
1627 		if (err) {
1628 			if (dname_external(dentry))
1629 				kfree(external_name(dentry));
1630 			kmem_cache_free(dentry_cache, dentry);
1631 			return NULL;
1632 		}
1633 	}
1634 
1635 	this_cpu_inc(nr_dentry);
1636 
1637 	return dentry;
1638 }
1639 
1640 /**
1641  * d_alloc	-	allocate a dcache entry
1642  * @parent: parent of entry to allocate
1643  * @name: qstr of the name
1644  *
1645  * Allocates a dentry. It returns %NULL if there is insufficient memory
1646  * available. On a success the dentry is returned. The name passed in is
1647  * copied and the copy passed in may be reused after this call.
1648  */
1649 struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1650 {
1651 	struct dentry *dentry = __d_alloc(parent->d_sb, name);
1652 	if (!dentry)
1653 		return NULL;
1654 	dentry->d_flags |= DCACHE_RCUACCESS;
1655 	spin_lock(&parent->d_lock);
1656 	/*
1657 	 * don't need child lock because it is not subject
1658 	 * to concurrency here
1659 	 */
1660 	__dget_dlock(parent);
1661 	dentry->d_parent = parent;
1662 	list_add(&dentry->d_child, &parent->d_subdirs);
1663 	spin_unlock(&parent->d_lock);
1664 
1665 	return dentry;
1666 }
1667 EXPORT_SYMBOL(d_alloc);
1668 
1669 struct dentry *d_alloc_cursor(struct dentry * parent)
1670 {
1671 	struct dentry *dentry = __d_alloc(parent->d_sb, NULL);
1672 	if (dentry) {
1673 		dentry->d_flags |= DCACHE_RCUACCESS | DCACHE_DENTRY_CURSOR;
1674 		dentry->d_parent = dget(parent);
1675 	}
1676 	return dentry;
1677 }
1678 
1679 /**
1680  * d_alloc_pseudo - allocate a dentry (for lookup-less filesystems)
1681  * @sb: the superblock
1682  * @name: qstr of the name
1683  *
1684  * For a filesystem that just pins its dentries in memory and never
1685  * performs lookups at all, return an unhashed IS_ROOT dentry.
1686  */
1687 struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
1688 {
1689 	return __d_alloc(sb, name);
1690 }
1691 EXPORT_SYMBOL(d_alloc_pseudo);
1692 
1693 struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1694 {
1695 	struct qstr q;
1696 
1697 	q.name = name;
1698 	q.hash_len = hashlen_string(parent, name);
1699 	return d_alloc(parent, &q);
1700 }
1701 EXPORT_SYMBOL(d_alloc_name);
1702 
1703 void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1704 {
1705 	WARN_ON_ONCE(dentry->d_op);
1706 	WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH	|
1707 				DCACHE_OP_COMPARE	|
1708 				DCACHE_OP_REVALIDATE	|
1709 				DCACHE_OP_WEAK_REVALIDATE	|
1710 				DCACHE_OP_DELETE	|
1711 				DCACHE_OP_REAL));
1712 	dentry->d_op = op;
1713 	if (!op)
1714 		return;
1715 	if (op->d_hash)
1716 		dentry->d_flags |= DCACHE_OP_HASH;
1717 	if (op->d_compare)
1718 		dentry->d_flags |= DCACHE_OP_COMPARE;
1719 	if (op->d_revalidate)
1720 		dentry->d_flags |= DCACHE_OP_REVALIDATE;
1721 	if (op->d_weak_revalidate)
1722 		dentry->d_flags |= DCACHE_OP_WEAK_REVALIDATE;
1723 	if (op->d_delete)
1724 		dentry->d_flags |= DCACHE_OP_DELETE;
1725 	if (op->d_prune)
1726 		dentry->d_flags |= DCACHE_OP_PRUNE;
1727 	if (op->d_real)
1728 		dentry->d_flags |= DCACHE_OP_REAL;
1729 
1730 }
1731 EXPORT_SYMBOL(d_set_d_op);
1732 
1733 
1734 /*
1735  * d_set_fallthru - Mark a dentry as falling through to a lower layer
1736  * @dentry - The dentry to mark
1737  *
1738  * Mark a dentry as falling through to the lower layer (as set with
1739  * d_pin_lower()).  This flag may be recorded on the medium.
1740  */
1741 void d_set_fallthru(struct dentry *dentry)
1742 {
1743 	spin_lock(&dentry->d_lock);
1744 	dentry->d_flags |= DCACHE_FALLTHRU;
1745 	spin_unlock(&dentry->d_lock);
1746 }
1747 EXPORT_SYMBOL(d_set_fallthru);
1748 
1749 static unsigned d_flags_for_inode(struct inode *inode)
1750 {
1751 	unsigned add_flags = DCACHE_REGULAR_TYPE;
1752 
1753 	if (!inode)
1754 		return DCACHE_MISS_TYPE;
1755 
1756 	if (S_ISDIR(inode->i_mode)) {
1757 		add_flags = DCACHE_DIRECTORY_TYPE;
1758 		if (unlikely(!(inode->i_opflags & IOP_LOOKUP))) {
1759 			if (unlikely(!inode->i_op->lookup))
1760 				add_flags = DCACHE_AUTODIR_TYPE;
1761 			else
1762 				inode->i_opflags |= IOP_LOOKUP;
1763 		}
1764 		goto type_determined;
1765 	}
1766 
1767 	if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) {
1768 		if (unlikely(inode->i_op->get_link)) {
1769 			add_flags = DCACHE_SYMLINK_TYPE;
1770 			goto type_determined;
1771 		}
1772 		inode->i_opflags |= IOP_NOFOLLOW;
1773 	}
1774 
1775 	if (unlikely(!S_ISREG(inode->i_mode)))
1776 		add_flags = DCACHE_SPECIAL_TYPE;
1777 
1778 type_determined:
1779 	if (unlikely(IS_AUTOMOUNT(inode)))
1780 		add_flags |= DCACHE_NEED_AUTOMOUNT;
1781 	return add_flags;
1782 }
1783 
1784 static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1785 {
1786 	unsigned add_flags = d_flags_for_inode(inode);
1787 	WARN_ON(d_in_lookup(dentry));
1788 
1789 	spin_lock(&dentry->d_lock);
1790 	hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
1791 	raw_write_seqcount_begin(&dentry->d_seq);
1792 	__d_set_inode_and_type(dentry, inode, add_flags);
1793 	raw_write_seqcount_end(&dentry->d_seq);
1794 	fsnotify_update_flags(dentry);
1795 	spin_unlock(&dentry->d_lock);
1796 }
1797 
1798 /**
1799  * d_instantiate - fill in inode information for a dentry
1800  * @entry: dentry to complete
1801  * @inode: inode to attach to this dentry
1802  *
1803  * Fill in inode information in the entry.
1804  *
1805  * This turns negative dentries into productive full members
1806  * of society.
1807  *
1808  * NOTE! This assumes that the inode count has been incremented
1809  * (or otherwise set) by the caller to indicate that it is now
1810  * in use by the dcache.
1811  */
1812 
1813 void d_instantiate(struct dentry *entry, struct inode * inode)
1814 {
1815 	BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
1816 	if (inode) {
1817 		security_d_instantiate(entry, inode);
1818 		spin_lock(&inode->i_lock);
1819 		__d_instantiate(entry, inode);
1820 		spin_unlock(&inode->i_lock);
1821 	}
1822 }
1823 EXPORT_SYMBOL(d_instantiate);
1824 
1825 /**
1826  * d_instantiate_no_diralias - instantiate a non-aliased dentry
1827  * @entry: dentry to complete
1828  * @inode: inode to attach to this dentry
1829  *
1830  * Fill in inode information in the entry.  If a directory alias is found, then
1831  * return an error (and drop inode).  Together with d_materialise_unique() this
1832  * guarantees that a directory inode may never have more than one alias.
1833  */
1834 int d_instantiate_no_diralias(struct dentry *entry, struct inode *inode)
1835 {
1836 	BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
1837 
1838 	security_d_instantiate(entry, inode);
1839 	spin_lock(&inode->i_lock);
1840 	if (S_ISDIR(inode->i_mode) && !hlist_empty(&inode->i_dentry)) {
1841 		spin_unlock(&inode->i_lock);
1842 		iput(inode);
1843 		return -EBUSY;
1844 	}
1845 	__d_instantiate(entry, inode);
1846 	spin_unlock(&inode->i_lock);
1847 
1848 	return 0;
1849 }
1850 EXPORT_SYMBOL(d_instantiate_no_diralias);
1851 
1852 struct dentry *d_make_root(struct inode *root_inode)
1853 {
1854 	struct dentry *res = NULL;
1855 
1856 	if (root_inode) {
1857 		res = __d_alloc(root_inode->i_sb, NULL);
1858 		if (res)
1859 			d_instantiate(res, root_inode);
1860 		else
1861 			iput(root_inode);
1862 	}
1863 	return res;
1864 }
1865 EXPORT_SYMBOL(d_make_root);
1866 
1867 static struct dentry * __d_find_any_alias(struct inode *inode)
1868 {
1869 	struct dentry *alias;
1870 
1871 	if (hlist_empty(&inode->i_dentry))
1872 		return NULL;
1873 	alias = hlist_entry(inode->i_dentry.first, struct dentry, d_u.d_alias);
1874 	__dget(alias);
1875 	return alias;
1876 }
1877 
1878 /**
1879  * d_find_any_alias - find any alias for a given inode
1880  * @inode: inode to find an alias for
1881  *
1882  * If any aliases exist for the given inode, take and return a
1883  * reference for one of them.  If no aliases exist, return %NULL.
1884  */
1885 struct dentry *d_find_any_alias(struct inode *inode)
1886 {
1887 	struct dentry *de;
1888 
1889 	spin_lock(&inode->i_lock);
1890 	de = __d_find_any_alias(inode);
1891 	spin_unlock(&inode->i_lock);
1892 	return de;
1893 }
1894 EXPORT_SYMBOL(d_find_any_alias);
1895 
1896 static struct dentry *__d_obtain_alias(struct inode *inode, int disconnected)
1897 {
1898 	struct dentry *tmp;
1899 	struct dentry *res;
1900 	unsigned add_flags;
1901 
1902 	if (!inode)
1903 		return ERR_PTR(-ESTALE);
1904 	if (IS_ERR(inode))
1905 		return ERR_CAST(inode);
1906 
1907 	res = d_find_any_alias(inode);
1908 	if (res)
1909 		goto out_iput;
1910 
1911 	tmp = __d_alloc(inode->i_sb, NULL);
1912 	if (!tmp) {
1913 		res = ERR_PTR(-ENOMEM);
1914 		goto out_iput;
1915 	}
1916 
1917 	security_d_instantiate(tmp, inode);
1918 	spin_lock(&inode->i_lock);
1919 	res = __d_find_any_alias(inode);
1920 	if (res) {
1921 		spin_unlock(&inode->i_lock);
1922 		dput(tmp);
1923 		goto out_iput;
1924 	}
1925 
1926 	/* attach a disconnected dentry */
1927 	add_flags = d_flags_for_inode(inode);
1928 
1929 	if (disconnected)
1930 		add_flags |= DCACHE_DISCONNECTED;
1931 
1932 	spin_lock(&tmp->d_lock);
1933 	__d_set_inode_and_type(tmp, inode, add_flags);
1934 	hlist_add_head(&tmp->d_u.d_alias, &inode->i_dentry);
1935 	hlist_bl_lock(&tmp->d_sb->s_anon);
1936 	hlist_bl_add_head(&tmp->d_hash, &tmp->d_sb->s_anon);
1937 	hlist_bl_unlock(&tmp->d_sb->s_anon);
1938 	spin_unlock(&tmp->d_lock);
1939 	spin_unlock(&inode->i_lock);
1940 
1941 	return tmp;
1942 
1943  out_iput:
1944 	iput(inode);
1945 	return res;
1946 }
1947 
1948 /**
1949  * d_obtain_alias - find or allocate a DISCONNECTED dentry for a given inode
1950  * @inode: inode to allocate the dentry for
1951  *
1952  * Obtain a dentry for an inode resulting from NFS filehandle conversion or
1953  * similar open by handle operations.  The returned dentry may be anonymous,
1954  * or may have a full name (if the inode was already in the cache).
1955  *
1956  * When called on a directory inode, we must ensure that the inode only ever
1957  * has one dentry.  If a dentry is found, that is returned instead of
1958  * allocating a new one.
1959  *
1960  * On successful return, the reference to the inode has been transferred
1961  * to the dentry.  In case of an error the reference on the inode is released.
1962  * To make it easier to use in export operations a %NULL or IS_ERR inode may
1963  * be passed in and the error will be propagated to the return value,
1964  * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
1965  */
1966 struct dentry *d_obtain_alias(struct inode *inode)
1967 {
1968 	return __d_obtain_alias(inode, 1);
1969 }
1970 EXPORT_SYMBOL(d_obtain_alias);
1971 
1972 /**
1973  * d_obtain_root - find or allocate a dentry for a given inode
1974  * @inode: inode to allocate the dentry for
1975  *
1976  * Obtain an IS_ROOT dentry for the root of a filesystem.
1977  *
1978  * We must ensure that directory inodes only ever have one dentry.  If a
1979  * dentry is found, that is returned instead of allocating a new one.
1980  *
1981  * On successful return, the reference to the inode has been transferred
1982  * to the dentry.  In case of an error the reference on the inode is
1983  * released.  A %NULL or IS_ERR inode may be passed in and will be the
1984  * error will be propagate to the return value, with a %NULL @inode
1985  * replaced by ERR_PTR(-ESTALE).
1986  */
1987 struct dentry *d_obtain_root(struct inode *inode)
1988 {
1989 	return __d_obtain_alias(inode, 0);
1990 }
1991 EXPORT_SYMBOL(d_obtain_root);
1992 
1993 /**
1994  * d_add_ci - lookup or allocate new dentry with case-exact name
1995  * @inode:  the inode case-insensitive lookup has found
1996  * @dentry: the negative dentry that was passed to the parent's lookup func
1997  * @name:   the case-exact name to be associated with the returned dentry
1998  *
1999  * This is to avoid filling the dcache with case-insensitive names to the
2000  * same inode, only the actual correct case is stored in the dcache for
2001  * case-insensitive filesystems.
2002  *
2003  * For a case-insensitive lookup match and if the the case-exact dentry
2004  * already exists in in the dcache, use it and return it.
2005  *
2006  * If no entry exists with the exact case name, allocate new dentry with
2007  * the exact case, and return the spliced entry.
2008  */
2009 struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
2010 			struct qstr *name)
2011 {
2012 	struct dentry *found, *res;
2013 
2014 	/*
2015 	 * First check if a dentry matching the name already exists,
2016 	 * if not go ahead and create it now.
2017 	 */
2018 	found = d_hash_and_lookup(dentry->d_parent, name);
2019 	if (found) {
2020 		iput(inode);
2021 		return found;
2022 	}
2023 	if (d_in_lookup(dentry)) {
2024 		found = d_alloc_parallel(dentry->d_parent, name,
2025 					dentry->d_wait);
2026 		if (IS_ERR(found) || !d_in_lookup(found)) {
2027 			iput(inode);
2028 			return found;
2029 		}
2030 	} else {
2031 		found = d_alloc(dentry->d_parent, name);
2032 		if (!found) {
2033 			iput(inode);
2034 			return ERR_PTR(-ENOMEM);
2035 		}
2036 	}
2037 	res = d_splice_alias(inode, found);
2038 	if (res) {
2039 		dput(found);
2040 		return res;
2041 	}
2042 	return found;
2043 }
2044 EXPORT_SYMBOL(d_add_ci);
2045 
2046 
2047 static inline bool d_same_name(const struct dentry *dentry,
2048 				const struct dentry *parent,
2049 				const struct qstr *name)
2050 {
2051 	if (likely(!(parent->d_flags & DCACHE_OP_COMPARE))) {
2052 		if (dentry->d_name.len != name->len)
2053 			return false;
2054 		return dentry_cmp(dentry, name->name, name->len) == 0;
2055 	}
2056 	return parent->d_op->d_compare(dentry,
2057 				       dentry->d_name.len, dentry->d_name.name,
2058 				       name) == 0;
2059 }
2060 
2061 /**
2062  * __d_lookup_rcu - search for a dentry (racy, store-free)
2063  * @parent: parent dentry
2064  * @name: qstr of name we wish to find
2065  * @seqp: returns d_seq value at the point where the dentry was found
2066  * Returns: dentry, or NULL
2067  *
2068  * __d_lookup_rcu is the dcache lookup function for rcu-walk name
2069  * resolution (store-free path walking) design described in
2070  * Documentation/filesystems/path-lookup.txt.
2071  *
2072  * This is not to be used outside core vfs.
2073  *
2074  * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
2075  * held, and rcu_read_lock held. The returned dentry must not be stored into
2076  * without taking d_lock and checking d_seq sequence count against @seq
2077  * returned here.
2078  *
2079  * A refcount may be taken on the found dentry with the d_rcu_to_refcount
2080  * function.
2081  *
2082  * Alternatively, __d_lookup_rcu may be called again to look up the child of
2083  * the returned dentry, so long as its parent's seqlock is checked after the
2084  * child is looked up. Thus, an interlocking stepping of sequence lock checks
2085  * is formed, giving integrity down the path walk.
2086  *
2087  * NOTE! The caller *has* to check the resulting dentry against the sequence
2088  * number we've returned before using any of the resulting dentry state!
2089  */
2090 struct dentry *__d_lookup_rcu(const struct dentry *parent,
2091 				const struct qstr *name,
2092 				unsigned *seqp)
2093 {
2094 	u64 hashlen = name->hash_len;
2095 	const unsigned char *str = name->name;
2096 	struct hlist_bl_head *b = d_hash(hashlen_hash(hashlen));
2097 	struct hlist_bl_node *node;
2098 	struct dentry *dentry;
2099 
2100 	/*
2101 	 * Note: There is significant duplication with __d_lookup_rcu which is
2102 	 * required to prevent single threaded performance regressions
2103 	 * especially on architectures where smp_rmb (in seqcounts) are costly.
2104 	 * Keep the two functions in sync.
2105 	 */
2106 
2107 	/*
2108 	 * The hash list is protected using RCU.
2109 	 *
2110 	 * Carefully use d_seq when comparing a candidate dentry, to avoid
2111 	 * races with d_move().
2112 	 *
2113 	 * It is possible that concurrent renames can mess up our list
2114 	 * walk here and result in missing our dentry, resulting in the
2115 	 * false-negative result. d_lookup() protects against concurrent
2116 	 * renames using rename_lock seqlock.
2117 	 *
2118 	 * See Documentation/filesystems/path-lookup.txt for more details.
2119 	 */
2120 	hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2121 		unsigned seq;
2122 
2123 seqretry:
2124 		/*
2125 		 * The dentry sequence count protects us from concurrent
2126 		 * renames, and thus protects parent and name fields.
2127 		 *
2128 		 * The caller must perform a seqcount check in order
2129 		 * to do anything useful with the returned dentry.
2130 		 *
2131 		 * NOTE! We do a "raw" seqcount_begin here. That means that
2132 		 * we don't wait for the sequence count to stabilize if it
2133 		 * is in the middle of a sequence change. If we do the slow
2134 		 * dentry compare, we will do seqretries until it is stable,
2135 		 * and if we end up with a successful lookup, we actually
2136 		 * want to exit RCU lookup anyway.
2137 		 *
2138 		 * Note that raw_seqcount_begin still *does* smp_rmb(), so
2139 		 * we are still guaranteed NUL-termination of ->d_name.name.
2140 		 */
2141 		seq = raw_seqcount_begin(&dentry->d_seq);
2142 		if (dentry->d_parent != parent)
2143 			continue;
2144 		if (d_unhashed(dentry))
2145 			continue;
2146 
2147 		if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) {
2148 			int tlen;
2149 			const char *tname;
2150 			if (dentry->d_name.hash != hashlen_hash(hashlen))
2151 				continue;
2152 			tlen = dentry->d_name.len;
2153 			tname = dentry->d_name.name;
2154 			/* we want a consistent (name,len) pair */
2155 			if (read_seqcount_retry(&dentry->d_seq, seq)) {
2156 				cpu_relax();
2157 				goto seqretry;
2158 			}
2159 			if (parent->d_op->d_compare(dentry,
2160 						    tlen, tname, name) != 0)
2161 				continue;
2162 		} else {
2163 			if (dentry->d_name.hash_len != hashlen)
2164 				continue;
2165 			if (dentry_cmp(dentry, str, hashlen_len(hashlen)) != 0)
2166 				continue;
2167 		}
2168 		*seqp = seq;
2169 		return dentry;
2170 	}
2171 	return NULL;
2172 }
2173 
2174 /**
2175  * d_lookup - search for a dentry
2176  * @parent: parent dentry
2177  * @name: qstr of name we wish to find
2178  * Returns: dentry, or NULL
2179  *
2180  * d_lookup searches the children of the parent dentry for the name in
2181  * question. If the dentry is found its reference count is incremented and the
2182  * dentry is returned. The caller must use dput to free the entry when it has
2183  * finished using it. %NULL is returned if the dentry does not exist.
2184  */
2185 struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name)
2186 {
2187 	struct dentry *dentry;
2188 	unsigned seq;
2189 
2190 	do {
2191 		seq = read_seqbegin(&rename_lock);
2192 		dentry = __d_lookup(parent, name);
2193 		if (dentry)
2194 			break;
2195 	} while (read_seqretry(&rename_lock, seq));
2196 	return dentry;
2197 }
2198 EXPORT_SYMBOL(d_lookup);
2199 
2200 /**
2201  * __d_lookup - search for a dentry (racy)
2202  * @parent: parent dentry
2203  * @name: qstr of name we wish to find
2204  * Returns: dentry, or NULL
2205  *
2206  * __d_lookup is like d_lookup, however it may (rarely) return a
2207  * false-negative result due to unrelated rename activity.
2208  *
2209  * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
2210  * however it must be used carefully, eg. with a following d_lookup in
2211  * the case of failure.
2212  *
2213  * __d_lookup callers must be commented.
2214  */
2215 struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name)
2216 {
2217 	unsigned int hash = name->hash;
2218 	struct hlist_bl_head *b = d_hash(hash);
2219 	struct hlist_bl_node *node;
2220 	struct dentry *found = NULL;
2221 	struct dentry *dentry;
2222 
2223 	/*
2224 	 * Note: There is significant duplication with __d_lookup_rcu which is
2225 	 * required to prevent single threaded performance regressions
2226 	 * especially on architectures where smp_rmb (in seqcounts) are costly.
2227 	 * Keep the two functions in sync.
2228 	 */
2229 
2230 	/*
2231 	 * The hash list is protected using RCU.
2232 	 *
2233 	 * Take d_lock when comparing a candidate dentry, to avoid races
2234 	 * with d_move().
2235 	 *
2236 	 * It is possible that concurrent renames can mess up our list
2237 	 * walk here and result in missing our dentry, resulting in the
2238 	 * false-negative result. d_lookup() protects against concurrent
2239 	 * renames using rename_lock seqlock.
2240 	 *
2241 	 * See Documentation/filesystems/path-lookup.txt for more details.
2242 	 */
2243 	rcu_read_lock();
2244 
2245 	hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2246 
2247 		if (dentry->d_name.hash != hash)
2248 			continue;
2249 
2250 		spin_lock(&dentry->d_lock);
2251 		if (dentry->d_parent != parent)
2252 			goto next;
2253 		if (d_unhashed(dentry))
2254 			goto next;
2255 
2256 		if (!d_same_name(dentry, parent, name))
2257 			goto next;
2258 
2259 		dentry->d_lockref.count++;
2260 		found = dentry;
2261 		spin_unlock(&dentry->d_lock);
2262 		break;
2263 next:
2264 		spin_unlock(&dentry->d_lock);
2265  	}
2266  	rcu_read_unlock();
2267 
2268  	return found;
2269 }
2270 
2271 /**
2272  * d_hash_and_lookup - hash the qstr then search for a dentry
2273  * @dir: Directory to search in
2274  * @name: qstr of name we wish to find
2275  *
2276  * On lookup failure NULL is returned; on bad name - ERR_PTR(-error)
2277  */
2278 struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
2279 {
2280 	/*
2281 	 * Check for a fs-specific hash function. Note that we must
2282 	 * calculate the standard hash first, as the d_op->d_hash()
2283 	 * routine may choose to leave the hash value unchanged.
2284 	 */
2285 	name->hash = full_name_hash(dir, name->name, name->len);
2286 	if (dir->d_flags & DCACHE_OP_HASH) {
2287 		int err = dir->d_op->d_hash(dir, name);
2288 		if (unlikely(err < 0))
2289 			return ERR_PTR(err);
2290 	}
2291 	return d_lookup(dir, name);
2292 }
2293 EXPORT_SYMBOL(d_hash_and_lookup);
2294 
2295 /*
2296  * When a file is deleted, we have two options:
2297  * - turn this dentry into a negative dentry
2298  * - unhash this dentry and free it.
2299  *
2300  * Usually, we want to just turn this into
2301  * a negative dentry, but if anybody else is
2302  * currently using the dentry or the inode
2303  * we can't do that and we fall back on removing
2304  * it from the hash queues and waiting for
2305  * it to be deleted later when it has no users
2306  */
2307 
2308 /**
2309  * d_delete - delete a dentry
2310  * @dentry: The dentry to delete
2311  *
2312  * Turn the dentry into a negative dentry if possible, otherwise
2313  * remove it from the hash queues so it can be deleted later
2314  */
2315 
2316 void d_delete(struct dentry * dentry)
2317 {
2318 	struct inode *inode;
2319 	int isdir = 0;
2320 	/*
2321 	 * Are we the only user?
2322 	 */
2323 again:
2324 	spin_lock(&dentry->d_lock);
2325 	inode = dentry->d_inode;
2326 	isdir = S_ISDIR(inode->i_mode);
2327 	if (dentry->d_lockref.count == 1) {
2328 		if (!spin_trylock(&inode->i_lock)) {
2329 			spin_unlock(&dentry->d_lock);
2330 			cpu_relax();
2331 			goto again;
2332 		}
2333 		dentry->d_flags &= ~DCACHE_CANT_MOUNT;
2334 		dentry_unlink_inode(dentry);
2335 		fsnotify_nameremove(dentry, isdir);
2336 		return;
2337 	}
2338 
2339 	if (!d_unhashed(dentry))
2340 		__d_drop(dentry);
2341 
2342 	spin_unlock(&dentry->d_lock);
2343 
2344 	fsnotify_nameremove(dentry, isdir);
2345 }
2346 EXPORT_SYMBOL(d_delete);
2347 
2348 static void __d_rehash(struct dentry *entry)
2349 {
2350 	struct hlist_bl_head *b = d_hash(entry->d_name.hash);
2351 	BUG_ON(!d_unhashed(entry));
2352 	hlist_bl_lock(b);
2353 	hlist_bl_add_head_rcu(&entry->d_hash, b);
2354 	hlist_bl_unlock(b);
2355 }
2356 
2357 /**
2358  * d_rehash	- add an entry back to the hash
2359  * @entry: dentry to add to the hash
2360  *
2361  * Adds a dentry to the hash according to its name.
2362  */
2363 
2364 void d_rehash(struct dentry * entry)
2365 {
2366 	spin_lock(&entry->d_lock);
2367 	__d_rehash(entry);
2368 	spin_unlock(&entry->d_lock);
2369 }
2370 EXPORT_SYMBOL(d_rehash);
2371 
2372 static inline unsigned start_dir_add(struct inode *dir)
2373 {
2374 
2375 	for (;;) {
2376 		unsigned n = dir->i_dir_seq;
2377 		if (!(n & 1) && cmpxchg(&dir->i_dir_seq, n, n + 1) == n)
2378 			return n;
2379 		cpu_relax();
2380 	}
2381 }
2382 
2383 static inline void end_dir_add(struct inode *dir, unsigned n)
2384 {
2385 	smp_store_release(&dir->i_dir_seq, n + 2);
2386 }
2387 
2388 static void d_wait_lookup(struct dentry *dentry)
2389 {
2390 	if (d_in_lookup(dentry)) {
2391 		DECLARE_WAITQUEUE(wait, current);
2392 		add_wait_queue(dentry->d_wait, &wait);
2393 		do {
2394 			set_current_state(TASK_UNINTERRUPTIBLE);
2395 			spin_unlock(&dentry->d_lock);
2396 			schedule();
2397 			spin_lock(&dentry->d_lock);
2398 		} while (d_in_lookup(dentry));
2399 	}
2400 }
2401 
2402 struct dentry *d_alloc_parallel(struct dentry *parent,
2403 				const struct qstr *name,
2404 				wait_queue_head_t *wq)
2405 {
2406 	unsigned int hash = name->hash;
2407 	struct hlist_bl_head *b = in_lookup_hash(parent, hash);
2408 	struct hlist_bl_node *node;
2409 	struct dentry *new = d_alloc(parent, name);
2410 	struct dentry *dentry;
2411 	unsigned seq, r_seq, d_seq;
2412 
2413 	if (unlikely(!new))
2414 		return ERR_PTR(-ENOMEM);
2415 
2416 retry:
2417 	rcu_read_lock();
2418 	seq = smp_load_acquire(&parent->d_inode->i_dir_seq) & ~1;
2419 	r_seq = read_seqbegin(&rename_lock);
2420 	dentry = __d_lookup_rcu(parent, name, &d_seq);
2421 	if (unlikely(dentry)) {
2422 		if (!lockref_get_not_dead(&dentry->d_lockref)) {
2423 			rcu_read_unlock();
2424 			goto retry;
2425 		}
2426 		if (read_seqcount_retry(&dentry->d_seq, d_seq)) {
2427 			rcu_read_unlock();
2428 			dput(dentry);
2429 			goto retry;
2430 		}
2431 		rcu_read_unlock();
2432 		dput(new);
2433 		return dentry;
2434 	}
2435 	if (unlikely(read_seqretry(&rename_lock, r_seq))) {
2436 		rcu_read_unlock();
2437 		goto retry;
2438 	}
2439 	hlist_bl_lock(b);
2440 	if (unlikely(parent->d_inode->i_dir_seq != seq)) {
2441 		hlist_bl_unlock(b);
2442 		rcu_read_unlock();
2443 		goto retry;
2444 	}
2445 	/*
2446 	 * No changes for the parent since the beginning of d_lookup().
2447 	 * Since all removals from the chain happen with hlist_bl_lock(),
2448 	 * any potential in-lookup matches are going to stay here until
2449 	 * we unlock the chain.  All fields are stable in everything
2450 	 * we encounter.
2451 	 */
2452 	hlist_bl_for_each_entry(dentry, node, b, d_u.d_in_lookup_hash) {
2453 		if (dentry->d_name.hash != hash)
2454 			continue;
2455 		if (dentry->d_parent != parent)
2456 			continue;
2457 		if (!d_same_name(dentry, parent, name))
2458 			continue;
2459 		hlist_bl_unlock(b);
2460 		/* now we can try to grab a reference */
2461 		if (!lockref_get_not_dead(&dentry->d_lockref)) {
2462 			rcu_read_unlock();
2463 			goto retry;
2464 		}
2465 
2466 		rcu_read_unlock();
2467 		/*
2468 		 * somebody is likely to be still doing lookup for it;
2469 		 * wait for them to finish
2470 		 */
2471 		spin_lock(&dentry->d_lock);
2472 		d_wait_lookup(dentry);
2473 		/*
2474 		 * it's not in-lookup anymore; in principle we should repeat
2475 		 * everything from dcache lookup, but it's likely to be what
2476 		 * d_lookup() would've found anyway.  If it is, just return it;
2477 		 * otherwise we really have to repeat the whole thing.
2478 		 */
2479 		if (unlikely(dentry->d_name.hash != hash))
2480 			goto mismatch;
2481 		if (unlikely(dentry->d_parent != parent))
2482 			goto mismatch;
2483 		if (unlikely(d_unhashed(dentry)))
2484 			goto mismatch;
2485 		if (unlikely(!d_same_name(dentry, parent, name)))
2486 			goto mismatch;
2487 		/* OK, it *is* a hashed match; return it */
2488 		spin_unlock(&dentry->d_lock);
2489 		dput(new);
2490 		return dentry;
2491 	}
2492 	rcu_read_unlock();
2493 	/* we can't take ->d_lock here; it's OK, though. */
2494 	new->d_flags |= DCACHE_PAR_LOOKUP;
2495 	new->d_wait = wq;
2496 	hlist_bl_add_head_rcu(&new->d_u.d_in_lookup_hash, b);
2497 	hlist_bl_unlock(b);
2498 	return new;
2499 mismatch:
2500 	spin_unlock(&dentry->d_lock);
2501 	dput(dentry);
2502 	goto retry;
2503 }
2504 EXPORT_SYMBOL(d_alloc_parallel);
2505 
2506 void __d_lookup_done(struct dentry *dentry)
2507 {
2508 	struct hlist_bl_head *b = in_lookup_hash(dentry->d_parent,
2509 						 dentry->d_name.hash);
2510 	hlist_bl_lock(b);
2511 	dentry->d_flags &= ~DCACHE_PAR_LOOKUP;
2512 	__hlist_bl_del(&dentry->d_u.d_in_lookup_hash);
2513 	wake_up_all(dentry->d_wait);
2514 	dentry->d_wait = NULL;
2515 	hlist_bl_unlock(b);
2516 	INIT_HLIST_NODE(&dentry->d_u.d_alias);
2517 	INIT_LIST_HEAD(&dentry->d_lru);
2518 }
2519 EXPORT_SYMBOL(__d_lookup_done);
2520 
2521 /* inode->i_lock held if inode is non-NULL */
2522 
2523 static inline void __d_add(struct dentry *dentry, struct inode *inode)
2524 {
2525 	struct inode *dir = NULL;
2526 	unsigned n;
2527 	spin_lock(&dentry->d_lock);
2528 	if (unlikely(d_in_lookup(dentry))) {
2529 		dir = dentry->d_parent->d_inode;
2530 		n = start_dir_add(dir);
2531 		__d_lookup_done(dentry);
2532 	}
2533 	if (inode) {
2534 		unsigned add_flags = d_flags_for_inode(inode);
2535 		hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
2536 		raw_write_seqcount_begin(&dentry->d_seq);
2537 		__d_set_inode_and_type(dentry, inode, add_flags);
2538 		raw_write_seqcount_end(&dentry->d_seq);
2539 		fsnotify_update_flags(dentry);
2540 	}
2541 	__d_rehash(dentry);
2542 	if (dir)
2543 		end_dir_add(dir, n);
2544 	spin_unlock(&dentry->d_lock);
2545 	if (inode)
2546 		spin_unlock(&inode->i_lock);
2547 }
2548 
2549 /**
2550  * d_add - add dentry to hash queues
2551  * @entry: dentry to add
2552  * @inode: The inode to attach to this dentry
2553  *
2554  * This adds the entry to the hash queues and initializes @inode.
2555  * The entry was actually filled in earlier during d_alloc().
2556  */
2557 
2558 void d_add(struct dentry *entry, struct inode *inode)
2559 {
2560 	if (inode) {
2561 		security_d_instantiate(entry, inode);
2562 		spin_lock(&inode->i_lock);
2563 	}
2564 	__d_add(entry, inode);
2565 }
2566 EXPORT_SYMBOL(d_add);
2567 
2568 /**
2569  * d_exact_alias - find and hash an exact unhashed alias
2570  * @entry: dentry to add
2571  * @inode: The inode to go with this dentry
2572  *
2573  * If an unhashed dentry with the same name/parent and desired
2574  * inode already exists, hash and return it.  Otherwise, return
2575  * NULL.
2576  *
2577  * Parent directory should be locked.
2578  */
2579 struct dentry *d_exact_alias(struct dentry *entry, struct inode *inode)
2580 {
2581 	struct dentry *alias;
2582 	unsigned int hash = entry->d_name.hash;
2583 
2584 	spin_lock(&inode->i_lock);
2585 	hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
2586 		/*
2587 		 * Don't need alias->d_lock here, because aliases with
2588 		 * d_parent == entry->d_parent are not subject to name or
2589 		 * parent changes, because the parent inode i_mutex is held.
2590 		 */
2591 		if (alias->d_name.hash != hash)
2592 			continue;
2593 		if (alias->d_parent != entry->d_parent)
2594 			continue;
2595 		if (!d_same_name(alias, entry->d_parent, &entry->d_name))
2596 			continue;
2597 		spin_lock(&alias->d_lock);
2598 		if (!d_unhashed(alias)) {
2599 			spin_unlock(&alias->d_lock);
2600 			alias = NULL;
2601 		} else {
2602 			__dget_dlock(alias);
2603 			__d_rehash(alias);
2604 			spin_unlock(&alias->d_lock);
2605 		}
2606 		spin_unlock(&inode->i_lock);
2607 		return alias;
2608 	}
2609 	spin_unlock(&inode->i_lock);
2610 	return NULL;
2611 }
2612 EXPORT_SYMBOL(d_exact_alias);
2613 
2614 /**
2615  * dentry_update_name_case - update case insensitive dentry with a new name
2616  * @dentry: dentry to be updated
2617  * @name: new name
2618  *
2619  * Update a case insensitive dentry with new case of name.
2620  *
2621  * dentry must have been returned by d_lookup with name @name. Old and new
2622  * name lengths must match (ie. no d_compare which allows mismatched name
2623  * lengths).
2624  *
2625  * Parent inode i_mutex must be held over d_lookup and into this call (to
2626  * keep renames and concurrent inserts, and readdir(2) away).
2627  */
2628 void dentry_update_name_case(struct dentry *dentry, const struct qstr *name)
2629 {
2630 	BUG_ON(!inode_is_locked(dentry->d_parent->d_inode));
2631 	BUG_ON(dentry->d_name.len != name->len); /* d_lookup gives this */
2632 
2633 	spin_lock(&dentry->d_lock);
2634 	write_seqcount_begin(&dentry->d_seq);
2635 	memcpy((unsigned char *)dentry->d_name.name, name->name, name->len);
2636 	write_seqcount_end(&dentry->d_seq);
2637 	spin_unlock(&dentry->d_lock);
2638 }
2639 EXPORT_SYMBOL(dentry_update_name_case);
2640 
2641 static void swap_names(struct dentry *dentry, struct dentry *target)
2642 {
2643 	if (unlikely(dname_external(target))) {
2644 		if (unlikely(dname_external(dentry))) {
2645 			/*
2646 			 * Both external: swap the pointers
2647 			 */
2648 			swap(target->d_name.name, dentry->d_name.name);
2649 		} else {
2650 			/*
2651 			 * dentry:internal, target:external.  Steal target's
2652 			 * storage and make target internal.
2653 			 */
2654 			memcpy(target->d_iname, dentry->d_name.name,
2655 					dentry->d_name.len + 1);
2656 			dentry->d_name.name = target->d_name.name;
2657 			target->d_name.name = target->d_iname;
2658 		}
2659 	} else {
2660 		if (unlikely(dname_external(dentry))) {
2661 			/*
2662 			 * dentry:external, target:internal.  Give dentry's
2663 			 * storage to target and make dentry internal
2664 			 */
2665 			memcpy(dentry->d_iname, target->d_name.name,
2666 					target->d_name.len + 1);
2667 			target->d_name.name = dentry->d_name.name;
2668 			dentry->d_name.name = dentry->d_iname;
2669 		} else {
2670 			/*
2671 			 * Both are internal.
2672 			 */
2673 			unsigned int i;
2674 			BUILD_BUG_ON(!IS_ALIGNED(DNAME_INLINE_LEN, sizeof(long)));
2675 			kmemcheck_mark_initialized(dentry->d_iname, DNAME_INLINE_LEN);
2676 			kmemcheck_mark_initialized(target->d_iname, DNAME_INLINE_LEN);
2677 			for (i = 0; i < DNAME_INLINE_LEN / sizeof(long); i++) {
2678 				swap(((long *) &dentry->d_iname)[i],
2679 				     ((long *) &target->d_iname)[i]);
2680 			}
2681 		}
2682 	}
2683 	swap(dentry->d_name.hash_len, target->d_name.hash_len);
2684 }
2685 
2686 static void copy_name(struct dentry *dentry, struct dentry *target)
2687 {
2688 	struct external_name *old_name = NULL;
2689 	if (unlikely(dname_external(dentry)))
2690 		old_name = external_name(dentry);
2691 	if (unlikely(dname_external(target))) {
2692 		atomic_inc(&external_name(target)->u.count);
2693 		dentry->d_name = target->d_name;
2694 	} else {
2695 		memcpy(dentry->d_iname, target->d_name.name,
2696 				target->d_name.len + 1);
2697 		dentry->d_name.name = dentry->d_iname;
2698 		dentry->d_name.hash_len = target->d_name.hash_len;
2699 	}
2700 	if (old_name && likely(atomic_dec_and_test(&old_name->u.count)))
2701 		kfree_rcu(old_name, u.head);
2702 }
2703 
2704 static void dentry_lock_for_move(struct dentry *dentry, struct dentry *target)
2705 {
2706 	/*
2707 	 * XXXX: do we really need to take target->d_lock?
2708 	 */
2709 	if (IS_ROOT(dentry) || dentry->d_parent == target->d_parent)
2710 		spin_lock(&target->d_parent->d_lock);
2711 	else {
2712 		if (d_ancestor(dentry->d_parent, target->d_parent)) {
2713 			spin_lock(&dentry->d_parent->d_lock);
2714 			spin_lock_nested(&target->d_parent->d_lock,
2715 						DENTRY_D_LOCK_NESTED);
2716 		} else {
2717 			spin_lock(&target->d_parent->d_lock);
2718 			spin_lock_nested(&dentry->d_parent->d_lock,
2719 						DENTRY_D_LOCK_NESTED);
2720 		}
2721 	}
2722 	if (target < dentry) {
2723 		spin_lock_nested(&target->d_lock, 2);
2724 		spin_lock_nested(&dentry->d_lock, 3);
2725 	} else {
2726 		spin_lock_nested(&dentry->d_lock, 2);
2727 		spin_lock_nested(&target->d_lock, 3);
2728 	}
2729 }
2730 
2731 static void dentry_unlock_for_move(struct dentry *dentry, struct dentry *target)
2732 {
2733 	if (target->d_parent != dentry->d_parent)
2734 		spin_unlock(&dentry->d_parent->d_lock);
2735 	if (target->d_parent != target)
2736 		spin_unlock(&target->d_parent->d_lock);
2737 	spin_unlock(&target->d_lock);
2738 	spin_unlock(&dentry->d_lock);
2739 }
2740 
2741 /*
2742  * When switching names, the actual string doesn't strictly have to
2743  * be preserved in the target - because we're dropping the target
2744  * anyway. As such, we can just do a simple memcpy() to copy over
2745  * the new name before we switch, unless we are going to rehash
2746  * it.  Note that if we *do* unhash the target, we are not allowed
2747  * to rehash it without giving it a new name/hash key - whether
2748  * we swap or overwrite the names here, resulting name won't match
2749  * the reality in filesystem; it's only there for d_path() purposes.
2750  * Note that all of this is happening under rename_lock, so the
2751  * any hash lookup seeing it in the middle of manipulations will
2752  * be discarded anyway.  So we do not care what happens to the hash
2753  * key in that case.
2754  */
2755 /*
2756  * __d_move - move a dentry
2757  * @dentry: entry to move
2758  * @target: new dentry
2759  * @exchange: exchange the two dentries
2760  *
2761  * Update the dcache to reflect the move of a file name. Negative
2762  * dcache entries should not be moved in this way. Caller must hold
2763  * rename_lock, the i_mutex of the source and target directories,
2764  * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
2765  */
2766 static void __d_move(struct dentry *dentry, struct dentry *target,
2767 		     bool exchange)
2768 {
2769 	struct inode *dir = NULL;
2770 	unsigned n;
2771 	if (!dentry->d_inode)
2772 		printk(KERN_WARNING "VFS: moving negative dcache entry\n");
2773 
2774 	BUG_ON(d_ancestor(dentry, target));
2775 	BUG_ON(d_ancestor(target, dentry));
2776 
2777 	dentry_lock_for_move(dentry, target);
2778 	if (unlikely(d_in_lookup(target))) {
2779 		dir = target->d_parent->d_inode;
2780 		n = start_dir_add(dir);
2781 		__d_lookup_done(target);
2782 	}
2783 
2784 	write_seqcount_begin(&dentry->d_seq);
2785 	write_seqcount_begin_nested(&target->d_seq, DENTRY_D_LOCK_NESTED);
2786 
2787 	/* unhash both */
2788 	/* __d_drop does write_seqcount_barrier, but they're OK to nest. */
2789 	__d_drop(dentry);
2790 	__d_drop(target);
2791 
2792 	/* Switch the names.. */
2793 	if (exchange)
2794 		swap_names(dentry, target);
2795 	else
2796 		copy_name(dentry, target);
2797 
2798 	/* rehash in new place(s) */
2799 	__d_rehash(dentry);
2800 	if (exchange)
2801 		__d_rehash(target);
2802 
2803 	/* ... and switch them in the tree */
2804 	if (IS_ROOT(dentry)) {
2805 		/* splicing a tree */
2806 		dentry->d_flags |= DCACHE_RCUACCESS;
2807 		dentry->d_parent = target->d_parent;
2808 		target->d_parent = target;
2809 		list_del_init(&target->d_child);
2810 		list_move(&dentry->d_child, &dentry->d_parent->d_subdirs);
2811 	} else {
2812 		/* swapping two dentries */
2813 		swap(dentry->d_parent, target->d_parent);
2814 		list_move(&target->d_child, &target->d_parent->d_subdirs);
2815 		list_move(&dentry->d_child, &dentry->d_parent->d_subdirs);
2816 		if (exchange)
2817 			fsnotify_update_flags(target);
2818 		fsnotify_update_flags(dentry);
2819 	}
2820 
2821 	write_seqcount_end(&target->d_seq);
2822 	write_seqcount_end(&dentry->d_seq);
2823 
2824 	if (dir)
2825 		end_dir_add(dir, n);
2826 	dentry_unlock_for_move(dentry, target);
2827 }
2828 
2829 /*
2830  * d_move - move a dentry
2831  * @dentry: entry to move
2832  * @target: new dentry
2833  *
2834  * Update the dcache to reflect the move of a file name. Negative
2835  * dcache entries should not be moved in this way. See the locking
2836  * requirements for __d_move.
2837  */
2838 void d_move(struct dentry *dentry, struct dentry *target)
2839 {
2840 	write_seqlock(&rename_lock);
2841 	__d_move(dentry, target, false);
2842 	write_sequnlock(&rename_lock);
2843 }
2844 EXPORT_SYMBOL(d_move);
2845 
2846 /*
2847  * d_exchange - exchange two dentries
2848  * @dentry1: first dentry
2849  * @dentry2: second dentry
2850  */
2851 void d_exchange(struct dentry *dentry1, struct dentry *dentry2)
2852 {
2853 	write_seqlock(&rename_lock);
2854 
2855 	WARN_ON(!dentry1->d_inode);
2856 	WARN_ON(!dentry2->d_inode);
2857 	WARN_ON(IS_ROOT(dentry1));
2858 	WARN_ON(IS_ROOT(dentry2));
2859 
2860 	__d_move(dentry1, dentry2, true);
2861 
2862 	write_sequnlock(&rename_lock);
2863 }
2864 
2865 /**
2866  * d_ancestor - search for an ancestor
2867  * @p1: ancestor dentry
2868  * @p2: child dentry
2869  *
2870  * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2871  * an ancestor of p2, else NULL.
2872  */
2873 struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
2874 {
2875 	struct dentry *p;
2876 
2877 	for (p = p2; !IS_ROOT(p); p = p->d_parent) {
2878 		if (p->d_parent == p1)
2879 			return p;
2880 	}
2881 	return NULL;
2882 }
2883 
2884 /*
2885  * This helper attempts to cope with remotely renamed directories
2886  *
2887  * It assumes that the caller is already holding
2888  * dentry->d_parent->d_inode->i_mutex, and rename_lock
2889  *
2890  * Note: If ever the locking in lock_rename() changes, then please
2891  * remember to update this too...
2892  */
2893 static int __d_unalias(struct inode *inode,
2894 		struct dentry *dentry, struct dentry *alias)
2895 {
2896 	struct mutex *m1 = NULL;
2897 	struct rw_semaphore *m2 = NULL;
2898 	int ret = -ESTALE;
2899 
2900 	/* If alias and dentry share a parent, then no extra locks required */
2901 	if (alias->d_parent == dentry->d_parent)
2902 		goto out_unalias;
2903 
2904 	/* See lock_rename() */
2905 	if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
2906 		goto out_err;
2907 	m1 = &dentry->d_sb->s_vfs_rename_mutex;
2908 	if (!inode_trylock_shared(alias->d_parent->d_inode))
2909 		goto out_err;
2910 	m2 = &alias->d_parent->d_inode->i_rwsem;
2911 out_unalias:
2912 	__d_move(alias, dentry, false);
2913 	ret = 0;
2914 out_err:
2915 	if (m2)
2916 		up_read(m2);
2917 	if (m1)
2918 		mutex_unlock(m1);
2919 	return ret;
2920 }
2921 
2922 /**
2923  * d_splice_alias - splice a disconnected dentry into the tree if one exists
2924  * @inode:  the inode which may have a disconnected dentry
2925  * @dentry: a negative dentry which we want to point to the inode.
2926  *
2927  * If inode is a directory and has an IS_ROOT alias, then d_move that in
2928  * place of the given dentry and return it, else simply d_add the inode
2929  * to the dentry and return NULL.
2930  *
2931  * If a non-IS_ROOT directory is found, the filesystem is corrupt, and
2932  * we should error out: directories can't have multiple aliases.
2933  *
2934  * This is needed in the lookup routine of any filesystem that is exportable
2935  * (via knfsd) so that we can build dcache paths to directories effectively.
2936  *
2937  * If a dentry was found and moved, then it is returned.  Otherwise NULL
2938  * is returned.  This matches the expected return value of ->lookup.
2939  *
2940  * Cluster filesystems may call this function with a negative, hashed dentry.
2941  * In that case, we know that the inode will be a regular file, and also this
2942  * will only occur during atomic_open. So we need to check for the dentry
2943  * being already hashed only in the final case.
2944  */
2945 struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
2946 {
2947 	if (IS_ERR(inode))
2948 		return ERR_CAST(inode);
2949 
2950 	BUG_ON(!d_unhashed(dentry));
2951 
2952 	if (!inode)
2953 		goto out;
2954 
2955 	security_d_instantiate(dentry, inode);
2956 	spin_lock(&inode->i_lock);
2957 	if (S_ISDIR(inode->i_mode)) {
2958 		struct dentry *new = __d_find_any_alias(inode);
2959 		if (unlikely(new)) {
2960 			/* The reference to new ensures it remains an alias */
2961 			spin_unlock(&inode->i_lock);
2962 			write_seqlock(&rename_lock);
2963 			if (unlikely(d_ancestor(new, dentry))) {
2964 				write_sequnlock(&rename_lock);
2965 				dput(new);
2966 				new = ERR_PTR(-ELOOP);
2967 				pr_warn_ratelimited(
2968 					"VFS: Lookup of '%s' in %s %s"
2969 					" would have caused loop\n",
2970 					dentry->d_name.name,
2971 					inode->i_sb->s_type->name,
2972 					inode->i_sb->s_id);
2973 			} else if (!IS_ROOT(new)) {
2974 				int err = __d_unalias(inode, dentry, new);
2975 				write_sequnlock(&rename_lock);
2976 				if (err) {
2977 					dput(new);
2978 					new = ERR_PTR(err);
2979 				}
2980 			} else {
2981 				__d_move(new, dentry, false);
2982 				write_sequnlock(&rename_lock);
2983 			}
2984 			iput(inode);
2985 			return new;
2986 		}
2987 	}
2988 out:
2989 	__d_add(dentry, inode);
2990 	return NULL;
2991 }
2992 EXPORT_SYMBOL(d_splice_alias);
2993 
2994 static int prepend(char **buffer, int *buflen, const char *str, int namelen)
2995 {
2996 	*buflen -= namelen;
2997 	if (*buflen < 0)
2998 		return -ENAMETOOLONG;
2999 	*buffer -= namelen;
3000 	memcpy(*buffer, str, namelen);
3001 	return 0;
3002 }
3003 
3004 /**
3005  * prepend_name - prepend a pathname in front of current buffer pointer
3006  * @buffer: buffer pointer
3007  * @buflen: allocated length of the buffer
3008  * @name:   name string and length qstr structure
3009  *
3010  * With RCU path tracing, it may race with d_move(). Use ACCESS_ONCE() to
3011  * make sure that either the old or the new name pointer and length are
3012  * fetched. However, there may be mismatch between length and pointer.
3013  * The length cannot be trusted, we need to copy it byte-by-byte until
3014  * the length is reached or a null byte is found. It also prepends "/" at
3015  * the beginning of the name. The sequence number check at the caller will
3016  * retry it again when a d_move() does happen. So any garbage in the buffer
3017  * due to mismatched pointer and length will be discarded.
3018  *
3019  * Data dependency barrier is needed to make sure that we see that terminating
3020  * NUL.  Alpha strikes again, film at 11...
3021  */
3022 static int prepend_name(char **buffer, int *buflen, const struct qstr *name)
3023 {
3024 	const char *dname = ACCESS_ONCE(name->name);
3025 	u32 dlen = ACCESS_ONCE(name->len);
3026 	char *p;
3027 
3028 	smp_read_barrier_depends();
3029 
3030 	*buflen -= dlen + 1;
3031 	if (*buflen < 0)
3032 		return -ENAMETOOLONG;
3033 	p = *buffer -= dlen + 1;
3034 	*p++ = '/';
3035 	while (dlen--) {
3036 		char c = *dname++;
3037 		if (!c)
3038 			break;
3039 		*p++ = c;
3040 	}
3041 	return 0;
3042 }
3043 
3044 /**
3045  * prepend_path - Prepend path string to a buffer
3046  * @path: the dentry/vfsmount to report
3047  * @root: root vfsmnt/dentry
3048  * @buffer: pointer to the end of the buffer
3049  * @buflen: pointer to buffer length
3050  *
3051  * The function will first try to write out the pathname without taking any
3052  * lock other than the RCU read lock to make sure that dentries won't go away.
3053  * It only checks the sequence number of the global rename_lock as any change
3054  * in the dentry's d_seq will be preceded by changes in the rename_lock
3055  * sequence number. If the sequence number had been changed, it will restart
3056  * the whole pathname back-tracing sequence again by taking the rename_lock.
3057  * In this case, there is no need to take the RCU read lock as the recursive
3058  * parent pointer references will keep the dentry chain alive as long as no
3059  * rename operation is performed.
3060  */
3061 static int prepend_path(const struct path *path,
3062 			const struct path *root,
3063 			char **buffer, int *buflen)
3064 {
3065 	struct dentry *dentry;
3066 	struct vfsmount *vfsmnt;
3067 	struct mount *mnt;
3068 	int error = 0;
3069 	unsigned seq, m_seq = 0;
3070 	char *bptr;
3071 	int blen;
3072 
3073 	rcu_read_lock();
3074 restart_mnt:
3075 	read_seqbegin_or_lock(&mount_lock, &m_seq);
3076 	seq = 0;
3077 	rcu_read_lock();
3078 restart:
3079 	bptr = *buffer;
3080 	blen = *buflen;
3081 	error = 0;
3082 	dentry = path->dentry;
3083 	vfsmnt = path->mnt;
3084 	mnt = real_mount(vfsmnt);
3085 	read_seqbegin_or_lock(&rename_lock, &seq);
3086 	while (dentry != root->dentry || vfsmnt != root->mnt) {
3087 		struct dentry * parent;
3088 
3089 		if (dentry == vfsmnt->mnt_root || IS_ROOT(dentry)) {
3090 			struct mount *parent = ACCESS_ONCE(mnt->mnt_parent);
3091 			/* Escaped? */
3092 			if (dentry != vfsmnt->mnt_root) {
3093 				bptr = *buffer;
3094 				blen = *buflen;
3095 				error = 3;
3096 				break;
3097 			}
3098 			/* Global root? */
3099 			if (mnt != parent) {
3100 				dentry = ACCESS_ONCE(mnt->mnt_mountpoint);
3101 				mnt = parent;
3102 				vfsmnt = &mnt->mnt;
3103 				continue;
3104 			}
3105 			if (!error)
3106 				error = is_mounted(vfsmnt) ? 1 : 2;
3107 			break;
3108 		}
3109 		parent = dentry->d_parent;
3110 		prefetch(parent);
3111 		error = prepend_name(&bptr, &blen, &dentry->d_name);
3112 		if (error)
3113 			break;
3114 
3115 		dentry = parent;
3116 	}
3117 	if (!(seq & 1))
3118 		rcu_read_unlock();
3119 	if (need_seqretry(&rename_lock, seq)) {
3120 		seq = 1;
3121 		goto restart;
3122 	}
3123 	done_seqretry(&rename_lock, seq);
3124 
3125 	if (!(m_seq & 1))
3126 		rcu_read_unlock();
3127 	if (need_seqretry(&mount_lock, m_seq)) {
3128 		m_seq = 1;
3129 		goto restart_mnt;
3130 	}
3131 	done_seqretry(&mount_lock, m_seq);
3132 
3133 	if (error >= 0 && bptr == *buffer) {
3134 		if (--blen < 0)
3135 			error = -ENAMETOOLONG;
3136 		else
3137 			*--bptr = '/';
3138 	}
3139 	*buffer = bptr;
3140 	*buflen = blen;
3141 	return error;
3142 }
3143 
3144 /**
3145  * __d_path - return the path of a dentry
3146  * @path: the dentry/vfsmount to report
3147  * @root: root vfsmnt/dentry
3148  * @buf: buffer to return value in
3149  * @buflen: buffer length
3150  *
3151  * Convert a dentry into an ASCII path name.
3152  *
3153  * Returns a pointer into the buffer or an error code if the
3154  * path was too long.
3155  *
3156  * "buflen" should be positive.
3157  *
3158  * If the path is not reachable from the supplied root, return %NULL.
3159  */
3160 char *__d_path(const struct path *path,
3161 	       const struct path *root,
3162 	       char *buf, int buflen)
3163 {
3164 	char *res = buf + buflen;
3165 	int error;
3166 
3167 	prepend(&res, &buflen, "\0", 1);
3168 	error = prepend_path(path, root, &res, &buflen);
3169 
3170 	if (error < 0)
3171 		return ERR_PTR(error);
3172 	if (error > 0)
3173 		return NULL;
3174 	return res;
3175 }
3176 
3177 char *d_absolute_path(const struct path *path,
3178 	       char *buf, int buflen)
3179 {
3180 	struct path root = {};
3181 	char *res = buf + buflen;
3182 	int error;
3183 
3184 	prepend(&res, &buflen, "\0", 1);
3185 	error = prepend_path(path, &root, &res, &buflen);
3186 
3187 	if (error > 1)
3188 		error = -EINVAL;
3189 	if (error < 0)
3190 		return ERR_PTR(error);
3191 	return res;
3192 }
3193 
3194 /*
3195  * same as __d_path but appends "(deleted)" for unlinked files.
3196  */
3197 static int path_with_deleted(const struct path *path,
3198 			     const struct path *root,
3199 			     char **buf, int *buflen)
3200 {
3201 	prepend(buf, buflen, "\0", 1);
3202 	if (d_unlinked(path->dentry)) {
3203 		int error = prepend(buf, buflen, " (deleted)", 10);
3204 		if (error)
3205 			return error;
3206 	}
3207 
3208 	return prepend_path(path, root, buf, buflen);
3209 }
3210 
3211 static int prepend_unreachable(char **buffer, int *buflen)
3212 {
3213 	return prepend(buffer, buflen, "(unreachable)", 13);
3214 }
3215 
3216 static void get_fs_root_rcu(struct fs_struct *fs, struct path *root)
3217 {
3218 	unsigned seq;
3219 
3220 	do {
3221 		seq = read_seqcount_begin(&fs->seq);
3222 		*root = fs->root;
3223 	} while (read_seqcount_retry(&fs->seq, seq));
3224 }
3225 
3226 /**
3227  * d_path - return the path of a dentry
3228  * @path: path to report
3229  * @buf: buffer to return value in
3230  * @buflen: buffer length
3231  *
3232  * Convert a dentry into an ASCII path name. If the entry has been deleted
3233  * the string " (deleted)" is appended. Note that this is ambiguous.
3234  *
3235  * Returns a pointer into the buffer or an error code if the path was
3236  * too long. Note: Callers should use the returned pointer, not the passed
3237  * in buffer, to use the name! The implementation often starts at an offset
3238  * into the buffer, and may leave 0 bytes at the start.
3239  *
3240  * "buflen" should be positive.
3241  */
3242 char *d_path(const struct path *path, char *buf, int buflen)
3243 {
3244 	char *res = buf + buflen;
3245 	struct path root;
3246 	int error;
3247 
3248 	/*
3249 	 * We have various synthetic filesystems that never get mounted.  On
3250 	 * these filesystems dentries are never used for lookup purposes, and
3251 	 * thus don't need to be hashed.  They also don't need a name until a
3252 	 * user wants to identify the object in /proc/pid/fd/.  The little hack
3253 	 * below allows us to generate a name for these objects on demand:
3254 	 *
3255 	 * Some pseudo inodes are mountable.  When they are mounted
3256 	 * path->dentry == path->mnt->mnt_root.  In that case don't call d_dname
3257 	 * and instead have d_path return the mounted path.
3258 	 */
3259 	if (path->dentry->d_op && path->dentry->d_op->d_dname &&
3260 	    (!IS_ROOT(path->dentry) || path->dentry != path->mnt->mnt_root))
3261 		return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
3262 
3263 	rcu_read_lock();
3264 	get_fs_root_rcu(current->fs, &root);
3265 	error = path_with_deleted(path, &root, &res, &buflen);
3266 	rcu_read_unlock();
3267 
3268 	if (error < 0)
3269 		res = ERR_PTR(error);
3270 	return res;
3271 }
3272 EXPORT_SYMBOL(d_path);
3273 
3274 /*
3275  * Helper function for dentry_operations.d_dname() members
3276  */
3277 char *dynamic_dname(struct dentry *dentry, char *buffer, int buflen,
3278 			const char *fmt, ...)
3279 {
3280 	va_list args;
3281 	char temp[64];
3282 	int sz;
3283 
3284 	va_start(args, fmt);
3285 	sz = vsnprintf(temp, sizeof(temp), fmt, args) + 1;
3286 	va_end(args);
3287 
3288 	if (sz > sizeof(temp) || sz > buflen)
3289 		return ERR_PTR(-ENAMETOOLONG);
3290 
3291 	buffer += buflen - sz;
3292 	return memcpy(buffer, temp, sz);
3293 }
3294 
3295 char *simple_dname(struct dentry *dentry, char *buffer, int buflen)
3296 {
3297 	char *end = buffer + buflen;
3298 	/* these dentries are never renamed, so d_lock is not needed */
3299 	if (prepend(&end, &buflen, " (deleted)", 11) ||
3300 	    prepend(&end, &buflen, dentry->d_name.name, dentry->d_name.len) ||
3301 	    prepend(&end, &buflen, "/", 1))
3302 		end = ERR_PTR(-ENAMETOOLONG);
3303 	return end;
3304 }
3305 EXPORT_SYMBOL(simple_dname);
3306 
3307 /*
3308  * Write full pathname from the root of the filesystem into the buffer.
3309  */
3310 static char *__dentry_path(struct dentry *d, char *buf, int buflen)
3311 {
3312 	struct dentry *dentry;
3313 	char *end, *retval;
3314 	int len, seq = 0;
3315 	int error = 0;
3316 
3317 	if (buflen < 2)
3318 		goto Elong;
3319 
3320 	rcu_read_lock();
3321 restart:
3322 	dentry = d;
3323 	end = buf + buflen;
3324 	len = buflen;
3325 	prepend(&end, &len, "\0", 1);
3326 	/* Get '/' right */
3327 	retval = end-1;
3328 	*retval = '/';
3329 	read_seqbegin_or_lock(&rename_lock, &seq);
3330 	while (!IS_ROOT(dentry)) {
3331 		struct dentry *parent = dentry->d_parent;
3332 
3333 		prefetch(parent);
3334 		error = prepend_name(&end, &len, &dentry->d_name);
3335 		if (error)
3336 			break;
3337 
3338 		retval = end;
3339 		dentry = parent;
3340 	}
3341 	if (!(seq & 1))
3342 		rcu_read_unlock();
3343 	if (need_seqretry(&rename_lock, seq)) {
3344 		seq = 1;
3345 		goto restart;
3346 	}
3347 	done_seqretry(&rename_lock, seq);
3348 	if (error)
3349 		goto Elong;
3350 	return retval;
3351 Elong:
3352 	return ERR_PTR(-ENAMETOOLONG);
3353 }
3354 
3355 char *dentry_path_raw(struct dentry *dentry, char *buf, int buflen)
3356 {
3357 	return __dentry_path(dentry, buf, buflen);
3358 }
3359 EXPORT_SYMBOL(dentry_path_raw);
3360 
3361 char *dentry_path(struct dentry *dentry, char *buf, int buflen)
3362 {
3363 	char *p = NULL;
3364 	char *retval;
3365 
3366 	if (d_unlinked(dentry)) {
3367 		p = buf + buflen;
3368 		if (prepend(&p, &buflen, "//deleted", 10) != 0)
3369 			goto Elong;
3370 		buflen++;
3371 	}
3372 	retval = __dentry_path(dentry, buf, buflen);
3373 	if (!IS_ERR(retval) && p)
3374 		*p = '/';	/* restore '/' overriden with '\0' */
3375 	return retval;
3376 Elong:
3377 	return ERR_PTR(-ENAMETOOLONG);
3378 }
3379 
3380 static void get_fs_root_and_pwd_rcu(struct fs_struct *fs, struct path *root,
3381 				    struct path *pwd)
3382 {
3383 	unsigned seq;
3384 
3385 	do {
3386 		seq = read_seqcount_begin(&fs->seq);
3387 		*root = fs->root;
3388 		*pwd = fs->pwd;
3389 	} while (read_seqcount_retry(&fs->seq, seq));
3390 }
3391 
3392 /*
3393  * NOTE! The user-level library version returns a
3394  * character pointer. The kernel system call just
3395  * returns the length of the buffer filled (which
3396  * includes the ending '\0' character), or a negative
3397  * error value. So libc would do something like
3398  *
3399  *	char *getcwd(char * buf, size_t size)
3400  *	{
3401  *		int retval;
3402  *
3403  *		retval = sys_getcwd(buf, size);
3404  *		if (retval >= 0)
3405  *			return buf;
3406  *		errno = -retval;
3407  *		return NULL;
3408  *	}
3409  */
3410 SYSCALL_DEFINE2(getcwd, char __user *, buf, unsigned long, size)
3411 {
3412 	int error;
3413 	struct path pwd, root;
3414 	char *page = __getname();
3415 
3416 	if (!page)
3417 		return -ENOMEM;
3418 
3419 	rcu_read_lock();
3420 	get_fs_root_and_pwd_rcu(current->fs, &root, &pwd);
3421 
3422 	error = -ENOENT;
3423 	if (!d_unlinked(pwd.dentry)) {
3424 		unsigned long len;
3425 		char *cwd = page + PATH_MAX;
3426 		int buflen = PATH_MAX;
3427 
3428 		prepend(&cwd, &buflen, "\0", 1);
3429 		error = prepend_path(&pwd, &root, &cwd, &buflen);
3430 		rcu_read_unlock();
3431 
3432 		if (error < 0)
3433 			goto out;
3434 
3435 		/* Unreachable from current root */
3436 		if (error > 0) {
3437 			error = prepend_unreachable(&cwd, &buflen);
3438 			if (error)
3439 				goto out;
3440 		}
3441 
3442 		error = -ERANGE;
3443 		len = PATH_MAX + page - cwd;
3444 		if (len <= size) {
3445 			error = len;
3446 			if (copy_to_user(buf, cwd, len))
3447 				error = -EFAULT;
3448 		}
3449 	} else {
3450 		rcu_read_unlock();
3451 	}
3452 
3453 out:
3454 	__putname(page);
3455 	return error;
3456 }
3457 
3458 /*
3459  * Test whether new_dentry is a subdirectory of old_dentry.
3460  *
3461  * Trivially implemented using the dcache structure
3462  */
3463 
3464 /**
3465  * is_subdir - is new dentry a subdirectory of old_dentry
3466  * @new_dentry: new dentry
3467  * @old_dentry: old dentry
3468  *
3469  * Returns true if new_dentry is a subdirectory of the parent (at any depth).
3470  * Returns false otherwise.
3471  * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
3472  */
3473 
3474 bool is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
3475 {
3476 	bool result;
3477 	unsigned seq;
3478 
3479 	if (new_dentry == old_dentry)
3480 		return true;
3481 
3482 	do {
3483 		/* for restarting inner loop in case of seq retry */
3484 		seq = read_seqbegin(&rename_lock);
3485 		/*
3486 		 * Need rcu_readlock to protect against the d_parent trashing
3487 		 * due to d_move
3488 		 */
3489 		rcu_read_lock();
3490 		if (d_ancestor(old_dentry, new_dentry))
3491 			result = true;
3492 		else
3493 			result = false;
3494 		rcu_read_unlock();
3495 	} while (read_seqretry(&rename_lock, seq));
3496 
3497 	return result;
3498 }
3499 
3500 static enum d_walk_ret d_genocide_kill(void *data, struct dentry *dentry)
3501 {
3502 	struct dentry *root = data;
3503 	if (dentry != root) {
3504 		if (d_unhashed(dentry) || !dentry->d_inode)
3505 			return D_WALK_SKIP;
3506 
3507 		if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
3508 			dentry->d_flags |= DCACHE_GENOCIDE;
3509 			dentry->d_lockref.count--;
3510 		}
3511 	}
3512 	return D_WALK_CONTINUE;
3513 }
3514 
3515 void d_genocide(struct dentry *parent)
3516 {
3517 	d_walk(parent, parent, d_genocide_kill, NULL);
3518 }
3519 
3520 void d_tmpfile(struct dentry *dentry, struct inode *inode)
3521 {
3522 	inode_dec_link_count(inode);
3523 	BUG_ON(dentry->d_name.name != dentry->d_iname ||
3524 		!hlist_unhashed(&dentry->d_u.d_alias) ||
3525 		!d_unlinked(dentry));
3526 	spin_lock(&dentry->d_parent->d_lock);
3527 	spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
3528 	dentry->d_name.len = sprintf(dentry->d_iname, "#%llu",
3529 				(unsigned long long)inode->i_ino);
3530 	spin_unlock(&dentry->d_lock);
3531 	spin_unlock(&dentry->d_parent->d_lock);
3532 	d_instantiate(dentry, inode);
3533 }
3534 EXPORT_SYMBOL(d_tmpfile);
3535 
3536 static __initdata unsigned long dhash_entries;
3537 static int __init set_dhash_entries(char *str)
3538 {
3539 	if (!str)
3540 		return 0;
3541 	dhash_entries = simple_strtoul(str, &str, 0);
3542 	return 1;
3543 }
3544 __setup("dhash_entries=", set_dhash_entries);
3545 
3546 static void __init dcache_init_early(void)
3547 {
3548 	unsigned int loop;
3549 
3550 	/* If hashes are distributed across NUMA nodes, defer
3551 	 * hash allocation until vmalloc space is available.
3552 	 */
3553 	if (hashdist)
3554 		return;
3555 
3556 	dentry_hashtable =
3557 		alloc_large_system_hash("Dentry cache",
3558 					sizeof(struct hlist_bl_head),
3559 					dhash_entries,
3560 					13,
3561 					HASH_EARLY,
3562 					&d_hash_shift,
3563 					&d_hash_mask,
3564 					0,
3565 					0);
3566 
3567 	for (loop = 0; loop < (1U << d_hash_shift); loop++)
3568 		INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
3569 }
3570 
3571 static void __init dcache_init(void)
3572 {
3573 	unsigned int loop;
3574 
3575 	/*
3576 	 * A constructor could be added for stable state like the lists,
3577 	 * but it is probably not worth it because of the cache nature
3578 	 * of the dcache.
3579 	 */
3580 	dentry_cache = KMEM_CACHE(dentry,
3581 		SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD|SLAB_ACCOUNT);
3582 
3583 	/* Hash may have been set up in dcache_init_early */
3584 	if (!hashdist)
3585 		return;
3586 
3587 	dentry_hashtable =
3588 		alloc_large_system_hash("Dentry cache",
3589 					sizeof(struct hlist_bl_head),
3590 					dhash_entries,
3591 					13,
3592 					0,
3593 					&d_hash_shift,
3594 					&d_hash_mask,
3595 					0,
3596 					0);
3597 
3598 	for (loop = 0; loop < (1U << d_hash_shift); loop++)
3599 		INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
3600 }
3601 
3602 /* SLAB cache for __getname() consumers */
3603 struct kmem_cache *names_cachep __read_mostly;
3604 EXPORT_SYMBOL(names_cachep);
3605 
3606 EXPORT_SYMBOL(d_genocide);
3607 
3608 void __init vfs_caches_init_early(void)
3609 {
3610 	dcache_init_early();
3611 	inode_init_early();
3612 }
3613 
3614 void __init vfs_caches_init(void)
3615 {
3616 	names_cachep = kmem_cache_create("names_cache", PATH_MAX, 0,
3617 			SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
3618 
3619 	dcache_init();
3620 	inode_init();
3621 	files_init();
3622 	files_maxfiles_init();
3623 	mnt_init();
3624 	bdev_cache_init();
3625 	chrdev_init();
3626 }
3627