xref: /openbmc/linux/fs/dcache.c (revision 77a87824)
1 /*
2  * fs/dcache.c
3  *
4  * Complete reimplementation
5  * (C) 1997 Thomas Schoebel-Theuer,
6  * with heavy changes by Linus Torvalds
7  */
8 
9 /*
10  * Notes on the allocation strategy:
11  *
12  * The dcache is a master of the icache - whenever a dcache entry
13  * exists, the inode will always exist. "iput()" is done either when
14  * the dcache entry is deleted or garbage collected.
15  */
16 
17 #include <linux/syscalls.h>
18 #include <linux/string.h>
19 #include <linux/mm.h>
20 #include <linux/fs.h>
21 #include <linux/fsnotify.h>
22 #include <linux/slab.h>
23 #include <linux/init.h>
24 #include <linux/hash.h>
25 #include <linux/cache.h>
26 #include <linux/export.h>
27 #include <linux/mount.h>
28 #include <linux/file.h>
29 #include <asm/uaccess.h>
30 #include <linux/security.h>
31 #include <linux/seqlock.h>
32 #include <linux/swap.h>
33 #include <linux/bootmem.h>
34 #include <linux/fs_struct.h>
35 #include <linux/hardirq.h>
36 #include <linux/bit_spinlock.h>
37 #include <linux/rculist_bl.h>
38 #include <linux/prefetch.h>
39 #include <linux/ratelimit.h>
40 #include <linux/list_lru.h>
41 #include <linux/kasan.h>
42 
43 #include "internal.h"
44 #include "mount.h"
45 
46 /*
47  * Usage:
48  * dcache->d_inode->i_lock protects:
49  *   - i_dentry, d_u.d_alias, d_inode of aliases
50  * dcache_hash_bucket lock protects:
51  *   - the dcache hash table
52  * s_anon bl list spinlock protects:
53  *   - the s_anon list (see __d_drop)
54  * dentry->d_sb->s_dentry_lru_lock protects:
55  *   - the dcache lru lists and counters
56  * d_lock protects:
57  *   - d_flags
58  *   - d_name
59  *   - d_lru
60  *   - d_count
61  *   - d_unhashed()
62  *   - d_parent and d_subdirs
63  *   - childrens' d_child and d_parent
64  *   - d_u.d_alias, d_inode
65  *
66  * Ordering:
67  * dentry->d_inode->i_lock
68  *   dentry->d_lock
69  *     dentry->d_sb->s_dentry_lru_lock
70  *     dcache_hash_bucket lock
71  *     s_anon lock
72  *
73  * If there is an ancestor relationship:
74  * dentry->d_parent->...->d_parent->d_lock
75  *   ...
76  *     dentry->d_parent->d_lock
77  *       dentry->d_lock
78  *
79  * If no ancestor relationship:
80  * if (dentry1 < dentry2)
81  *   dentry1->d_lock
82  *     dentry2->d_lock
83  */
84 int sysctl_vfs_cache_pressure __read_mostly = 100;
85 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
86 
87 __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
88 
89 EXPORT_SYMBOL(rename_lock);
90 
91 static struct kmem_cache *dentry_cache __read_mostly;
92 
93 /*
94  * This is the single most critical data structure when it comes
95  * to the dcache: the hashtable for lookups. Somebody should try
96  * to make this good - I've just made it work.
97  *
98  * This hash-function tries to avoid losing too many bits of hash
99  * information, yet avoid using a prime hash-size or similar.
100  */
101 
102 static unsigned int d_hash_mask __read_mostly;
103 static unsigned int d_hash_shift __read_mostly;
104 
105 static struct hlist_bl_head *dentry_hashtable __read_mostly;
106 
107 static inline struct hlist_bl_head *d_hash(unsigned int hash)
108 {
109 	return dentry_hashtable + (hash >> (32 - d_hash_shift));
110 }
111 
112 #define IN_LOOKUP_SHIFT 10
113 static struct hlist_bl_head in_lookup_hashtable[1 << IN_LOOKUP_SHIFT];
114 
115 static inline struct hlist_bl_head *in_lookup_hash(const struct dentry *parent,
116 					unsigned int hash)
117 {
118 	hash += (unsigned long) parent / L1_CACHE_BYTES;
119 	return in_lookup_hashtable + hash_32(hash, IN_LOOKUP_SHIFT);
120 }
121 
122 
123 /* Statistics gathering. */
124 struct dentry_stat_t dentry_stat = {
125 	.age_limit = 45,
126 };
127 
128 static DEFINE_PER_CPU(long, nr_dentry);
129 static DEFINE_PER_CPU(long, nr_dentry_unused);
130 
131 #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
132 
133 /*
134  * Here we resort to our own counters instead of using generic per-cpu counters
135  * for consistency with what the vfs inode code does. We are expected to harvest
136  * better code and performance by having our own specialized counters.
137  *
138  * Please note that the loop is done over all possible CPUs, not over all online
139  * CPUs. The reason for this is that we don't want to play games with CPUs going
140  * on and off. If one of them goes off, we will just keep their counters.
141  *
142  * glommer: See cffbc8a for details, and if you ever intend to change this,
143  * please update all vfs counters to match.
144  */
145 static long get_nr_dentry(void)
146 {
147 	int i;
148 	long sum = 0;
149 	for_each_possible_cpu(i)
150 		sum += per_cpu(nr_dentry, i);
151 	return sum < 0 ? 0 : sum;
152 }
153 
154 static long get_nr_dentry_unused(void)
155 {
156 	int i;
157 	long sum = 0;
158 	for_each_possible_cpu(i)
159 		sum += per_cpu(nr_dentry_unused, i);
160 	return sum < 0 ? 0 : sum;
161 }
162 
163 int proc_nr_dentry(struct ctl_table *table, int write, void __user *buffer,
164 		   size_t *lenp, loff_t *ppos)
165 {
166 	dentry_stat.nr_dentry = get_nr_dentry();
167 	dentry_stat.nr_unused = get_nr_dentry_unused();
168 	return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
169 }
170 #endif
171 
172 /*
173  * Compare 2 name strings, return 0 if they match, otherwise non-zero.
174  * The strings are both count bytes long, and count is non-zero.
175  */
176 #ifdef CONFIG_DCACHE_WORD_ACCESS
177 
178 #include <asm/word-at-a-time.h>
179 /*
180  * NOTE! 'cs' and 'scount' come from a dentry, so it has a
181  * aligned allocation for this particular component. We don't
182  * strictly need the load_unaligned_zeropad() safety, but it
183  * doesn't hurt either.
184  *
185  * In contrast, 'ct' and 'tcount' can be from a pathname, and do
186  * need the careful unaligned handling.
187  */
188 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
189 {
190 	unsigned long a,b,mask;
191 
192 	for (;;) {
193 		a = *(unsigned long *)cs;
194 		b = load_unaligned_zeropad(ct);
195 		if (tcount < sizeof(unsigned long))
196 			break;
197 		if (unlikely(a != b))
198 			return 1;
199 		cs += sizeof(unsigned long);
200 		ct += sizeof(unsigned long);
201 		tcount -= sizeof(unsigned long);
202 		if (!tcount)
203 			return 0;
204 	}
205 	mask = bytemask_from_count(tcount);
206 	return unlikely(!!((a ^ b) & mask));
207 }
208 
209 #else
210 
211 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
212 {
213 	do {
214 		if (*cs != *ct)
215 			return 1;
216 		cs++;
217 		ct++;
218 		tcount--;
219 	} while (tcount);
220 	return 0;
221 }
222 
223 #endif
224 
225 static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount)
226 {
227 	/*
228 	 * Be careful about RCU walk racing with rename:
229 	 * use 'lockless_dereference' to fetch the name pointer.
230 	 *
231 	 * NOTE! Even if a rename will mean that the length
232 	 * was not loaded atomically, we don't care. The
233 	 * RCU walk will check the sequence count eventually,
234 	 * and catch it. And we won't overrun the buffer,
235 	 * because we're reading the name pointer atomically,
236 	 * and a dentry name is guaranteed to be properly
237 	 * terminated with a NUL byte.
238 	 *
239 	 * End result: even if 'len' is wrong, we'll exit
240 	 * early because the data cannot match (there can
241 	 * be no NUL in the ct/tcount data)
242 	 */
243 	const unsigned char *cs = lockless_dereference(dentry->d_name.name);
244 
245 	return dentry_string_cmp(cs, ct, tcount);
246 }
247 
248 struct external_name {
249 	union {
250 		atomic_t count;
251 		struct rcu_head head;
252 	} u;
253 	unsigned char name[];
254 };
255 
256 static inline struct external_name *external_name(struct dentry *dentry)
257 {
258 	return container_of(dentry->d_name.name, struct external_name, name[0]);
259 }
260 
261 static void __d_free(struct rcu_head *head)
262 {
263 	struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
264 
265 	kmem_cache_free(dentry_cache, dentry);
266 }
267 
268 static void __d_free_external(struct rcu_head *head)
269 {
270 	struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
271 	kfree(external_name(dentry));
272 	kmem_cache_free(dentry_cache, dentry);
273 }
274 
275 static inline int dname_external(const struct dentry *dentry)
276 {
277 	return dentry->d_name.name != dentry->d_iname;
278 }
279 
280 static inline void __d_set_inode_and_type(struct dentry *dentry,
281 					  struct inode *inode,
282 					  unsigned type_flags)
283 {
284 	unsigned flags;
285 
286 	dentry->d_inode = inode;
287 	flags = READ_ONCE(dentry->d_flags);
288 	flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU);
289 	flags |= type_flags;
290 	WRITE_ONCE(dentry->d_flags, flags);
291 }
292 
293 static inline void __d_clear_type_and_inode(struct dentry *dentry)
294 {
295 	unsigned flags = READ_ONCE(dentry->d_flags);
296 
297 	flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU);
298 	WRITE_ONCE(dentry->d_flags, flags);
299 	dentry->d_inode = NULL;
300 }
301 
302 static void dentry_free(struct dentry *dentry)
303 {
304 	WARN_ON(!hlist_unhashed(&dentry->d_u.d_alias));
305 	if (unlikely(dname_external(dentry))) {
306 		struct external_name *p = external_name(dentry);
307 		if (likely(atomic_dec_and_test(&p->u.count))) {
308 			call_rcu(&dentry->d_u.d_rcu, __d_free_external);
309 			return;
310 		}
311 	}
312 	/* if dentry was never visible to RCU, immediate free is OK */
313 	if (!(dentry->d_flags & DCACHE_RCUACCESS))
314 		__d_free(&dentry->d_u.d_rcu);
315 	else
316 		call_rcu(&dentry->d_u.d_rcu, __d_free);
317 }
318 
319 /**
320  * dentry_rcuwalk_invalidate - invalidate in-progress rcu-walk lookups
321  * @dentry: the target dentry
322  * After this call, in-progress rcu-walk path lookup will fail. This
323  * should be called after unhashing, and after changing d_inode (if
324  * the dentry has not already been unhashed).
325  */
326 static inline void dentry_rcuwalk_invalidate(struct dentry *dentry)
327 {
328 	lockdep_assert_held(&dentry->d_lock);
329 	/* Go through am invalidation barrier */
330 	write_seqcount_invalidate(&dentry->d_seq);
331 }
332 
333 /*
334  * Release the dentry's inode, using the filesystem
335  * d_iput() operation if defined.
336  */
337 static void dentry_unlink_inode(struct dentry * dentry)
338 	__releases(dentry->d_lock)
339 	__releases(dentry->d_inode->i_lock)
340 {
341 	struct inode *inode = dentry->d_inode;
342 	bool hashed = !d_unhashed(dentry);
343 
344 	if (hashed)
345 		raw_write_seqcount_begin(&dentry->d_seq);
346 	__d_clear_type_and_inode(dentry);
347 	hlist_del_init(&dentry->d_u.d_alias);
348 	if (hashed)
349 		raw_write_seqcount_end(&dentry->d_seq);
350 	spin_unlock(&dentry->d_lock);
351 	spin_unlock(&inode->i_lock);
352 	if (!inode->i_nlink)
353 		fsnotify_inoderemove(inode);
354 	if (dentry->d_op && dentry->d_op->d_iput)
355 		dentry->d_op->d_iput(dentry, inode);
356 	else
357 		iput(inode);
358 }
359 
360 /*
361  * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry
362  * is in use - which includes both the "real" per-superblock
363  * LRU list _and_ the DCACHE_SHRINK_LIST use.
364  *
365  * The DCACHE_SHRINK_LIST bit is set whenever the dentry is
366  * on the shrink list (ie not on the superblock LRU list).
367  *
368  * The per-cpu "nr_dentry_unused" counters are updated with
369  * the DCACHE_LRU_LIST bit.
370  *
371  * These helper functions make sure we always follow the
372  * rules. d_lock must be held by the caller.
373  */
374 #define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x))
375 static void d_lru_add(struct dentry *dentry)
376 {
377 	D_FLAG_VERIFY(dentry, 0);
378 	dentry->d_flags |= DCACHE_LRU_LIST;
379 	this_cpu_inc(nr_dentry_unused);
380 	WARN_ON_ONCE(!list_lru_add(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
381 }
382 
383 static void d_lru_del(struct dentry *dentry)
384 {
385 	D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
386 	dentry->d_flags &= ~DCACHE_LRU_LIST;
387 	this_cpu_dec(nr_dentry_unused);
388 	WARN_ON_ONCE(!list_lru_del(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
389 }
390 
391 static void d_shrink_del(struct dentry *dentry)
392 {
393 	D_FLAG_VERIFY(dentry, DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
394 	list_del_init(&dentry->d_lru);
395 	dentry->d_flags &= ~(DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
396 	this_cpu_dec(nr_dentry_unused);
397 }
398 
399 static void d_shrink_add(struct dentry *dentry, struct list_head *list)
400 {
401 	D_FLAG_VERIFY(dentry, 0);
402 	list_add(&dentry->d_lru, list);
403 	dentry->d_flags |= DCACHE_SHRINK_LIST | DCACHE_LRU_LIST;
404 	this_cpu_inc(nr_dentry_unused);
405 }
406 
407 /*
408  * These can only be called under the global LRU lock, ie during the
409  * callback for freeing the LRU list. "isolate" removes it from the
410  * LRU lists entirely, while shrink_move moves it to the indicated
411  * private list.
412  */
413 static void d_lru_isolate(struct list_lru_one *lru, struct dentry *dentry)
414 {
415 	D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
416 	dentry->d_flags &= ~DCACHE_LRU_LIST;
417 	this_cpu_dec(nr_dentry_unused);
418 	list_lru_isolate(lru, &dentry->d_lru);
419 }
420 
421 static void d_lru_shrink_move(struct list_lru_one *lru, struct dentry *dentry,
422 			      struct list_head *list)
423 {
424 	D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
425 	dentry->d_flags |= DCACHE_SHRINK_LIST;
426 	list_lru_isolate_move(lru, &dentry->d_lru, list);
427 }
428 
429 /*
430  * dentry_lru_(add|del)_list) must be called with d_lock held.
431  */
432 static void dentry_lru_add(struct dentry *dentry)
433 {
434 	if (unlikely(!(dentry->d_flags & DCACHE_LRU_LIST)))
435 		d_lru_add(dentry);
436 }
437 
438 /**
439  * d_drop - drop a dentry
440  * @dentry: dentry to drop
441  *
442  * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
443  * be found through a VFS lookup any more. Note that this is different from
444  * deleting the dentry - d_delete will try to mark the dentry negative if
445  * possible, giving a successful _negative_ lookup, while d_drop will
446  * just make the cache lookup fail.
447  *
448  * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
449  * reason (NFS timeouts or autofs deletes).
450  *
451  * __d_drop requires dentry->d_lock.
452  */
453 void __d_drop(struct dentry *dentry)
454 {
455 	if (!d_unhashed(dentry)) {
456 		struct hlist_bl_head *b;
457 		/*
458 		 * Hashed dentries are normally on the dentry hashtable,
459 		 * with the exception of those newly allocated by
460 		 * d_obtain_alias, which are always IS_ROOT:
461 		 */
462 		if (unlikely(IS_ROOT(dentry)))
463 			b = &dentry->d_sb->s_anon;
464 		else
465 			b = d_hash(dentry->d_name.hash);
466 
467 		hlist_bl_lock(b);
468 		__hlist_bl_del(&dentry->d_hash);
469 		dentry->d_hash.pprev = NULL;
470 		hlist_bl_unlock(b);
471 		dentry_rcuwalk_invalidate(dentry);
472 	}
473 }
474 EXPORT_SYMBOL(__d_drop);
475 
476 void d_drop(struct dentry *dentry)
477 {
478 	spin_lock(&dentry->d_lock);
479 	__d_drop(dentry);
480 	spin_unlock(&dentry->d_lock);
481 }
482 EXPORT_SYMBOL(d_drop);
483 
484 static inline void dentry_unlist(struct dentry *dentry, struct dentry *parent)
485 {
486 	struct dentry *next;
487 	/*
488 	 * Inform d_walk() and shrink_dentry_list() that we are no longer
489 	 * attached to the dentry tree
490 	 */
491 	dentry->d_flags |= DCACHE_DENTRY_KILLED;
492 	if (unlikely(list_empty(&dentry->d_child)))
493 		return;
494 	__list_del_entry(&dentry->d_child);
495 	/*
496 	 * Cursors can move around the list of children.  While we'd been
497 	 * a normal list member, it didn't matter - ->d_child.next would've
498 	 * been updated.  However, from now on it won't be and for the
499 	 * things like d_walk() it might end up with a nasty surprise.
500 	 * Normally d_walk() doesn't care about cursors moving around -
501 	 * ->d_lock on parent prevents that and since a cursor has no children
502 	 * of its own, we get through it without ever unlocking the parent.
503 	 * There is one exception, though - if we ascend from a child that
504 	 * gets killed as soon as we unlock it, the next sibling is found
505 	 * using the value left in its ->d_child.next.  And if _that_
506 	 * pointed to a cursor, and cursor got moved (e.g. by lseek())
507 	 * before d_walk() regains parent->d_lock, we'll end up skipping
508 	 * everything the cursor had been moved past.
509 	 *
510 	 * Solution: make sure that the pointer left behind in ->d_child.next
511 	 * points to something that won't be moving around.  I.e. skip the
512 	 * cursors.
513 	 */
514 	while (dentry->d_child.next != &parent->d_subdirs) {
515 		next = list_entry(dentry->d_child.next, struct dentry, d_child);
516 		if (likely(!(next->d_flags & DCACHE_DENTRY_CURSOR)))
517 			break;
518 		dentry->d_child.next = next->d_child.next;
519 	}
520 }
521 
522 static void __dentry_kill(struct dentry *dentry)
523 {
524 	struct dentry *parent = NULL;
525 	bool can_free = true;
526 	if (!IS_ROOT(dentry))
527 		parent = dentry->d_parent;
528 
529 	/*
530 	 * The dentry is now unrecoverably dead to the world.
531 	 */
532 	lockref_mark_dead(&dentry->d_lockref);
533 
534 	/*
535 	 * inform the fs via d_prune that this dentry is about to be
536 	 * unhashed and destroyed.
537 	 */
538 	if (dentry->d_flags & DCACHE_OP_PRUNE)
539 		dentry->d_op->d_prune(dentry);
540 
541 	if (dentry->d_flags & DCACHE_LRU_LIST) {
542 		if (!(dentry->d_flags & DCACHE_SHRINK_LIST))
543 			d_lru_del(dentry);
544 	}
545 	/* if it was on the hash then remove it */
546 	__d_drop(dentry);
547 	dentry_unlist(dentry, parent);
548 	if (parent)
549 		spin_unlock(&parent->d_lock);
550 	if (dentry->d_inode)
551 		dentry_unlink_inode(dentry);
552 	else
553 		spin_unlock(&dentry->d_lock);
554 	this_cpu_dec(nr_dentry);
555 	if (dentry->d_op && dentry->d_op->d_release)
556 		dentry->d_op->d_release(dentry);
557 
558 	spin_lock(&dentry->d_lock);
559 	if (dentry->d_flags & DCACHE_SHRINK_LIST) {
560 		dentry->d_flags |= DCACHE_MAY_FREE;
561 		can_free = false;
562 	}
563 	spin_unlock(&dentry->d_lock);
564 	if (likely(can_free))
565 		dentry_free(dentry);
566 }
567 
568 /*
569  * Finish off a dentry we've decided to kill.
570  * dentry->d_lock must be held, returns with it unlocked.
571  * If ref is non-zero, then decrement the refcount too.
572  * Returns dentry requiring refcount drop, or NULL if we're done.
573  */
574 static struct dentry *dentry_kill(struct dentry *dentry)
575 	__releases(dentry->d_lock)
576 {
577 	struct inode *inode = dentry->d_inode;
578 	struct dentry *parent = NULL;
579 
580 	if (inode && unlikely(!spin_trylock(&inode->i_lock)))
581 		goto failed;
582 
583 	if (!IS_ROOT(dentry)) {
584 		parent = dentry->d_parent;
585 		if (unlikely(!spin_trylock(&parent->d_lock))) {
586 			if (inode)
587 				spin_unlock(&inode->i_lock);
588 			goto failed;
589 		}
590 	}
591 
592 	__dentry_kill(dentry);
593 	return parent;
594 
595 failed:
596 	spin_unlock(&dentry->d_lock);
597 	return dentry; /* try again with same dentry */
598 }
599 
600 static inline struct dentry *lock_parent(struct dentry *dentry)
601 {
602 	struct dentry *parent = dentry->d_parent;
603 	if (IS_ROOT(dentry))
604 		return NULL;
605 	if (unlikely(dentry->d_lockref.count < 0))
606 		return NULL;
607 	if (likely(spin_trylock(&parent->d_lock)))
608 		return parent;
609 	rcu_read_lock();
610 	spin_unlock(&dentry->d_lock);
611 again:
612 	parent = ACCESS_ONCE(dentry->d_parent);
613 	spin_lock(&parent->d_lock);
614 	/*
615 	 * We can't blindly lock dentry until we are sure
616 	 * that we won't violate the locking order.
617 	 * Any changes of dentry->d_parent must have
618 	 * been done with parent->d_lock held, so
619 	 * spin_lock() above is enough of a barrier
620 	 * for checking if it's still our child.
621 	 */
622 	if (unlikely(parent != dentry->d_parent)) {
623 		spin_unlock(&parent->d_lock);
624 		goto again;
625 	}
626 	rcu_read_unlock();
627 	if (parent != dentry)
628 		spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
629 	else
630 		parent = NULL;
631 	return parent;
632 }
633 
634 /*
635  * Try to do a lockless dput(), and return whether that was successful.
636  *
637  * If unsuccessful, we return false, having already taken the dentry lock.
638  *
639  * The caller needs to hold the RCU read lock, so that the dentry is
640  * guaranteed to stay around even if the refcount goes down to zero!
641  */
642 static inline bool fast_dput(struct dentry *dentry)
643 {
644 	int ret;
645 	unsigned int d_flags;
646 
647 	/*
648 	 * If we have a d_op->d_delete() operation, we sould not
649 	 * let the dentry count go to zero, so use "put_or_lock".
650 	 */
651 	if (unlikely(dentry->d_flags & DCACHE_OP_DELETE))
652 		return lockref_put_or_lock(&dentry->d_lockref);
653 
654 	/*
655 	 * .. otherwise, we can try to just decrement the
656 	 * lockref optimistically.
657 	 */
658 	ret = lockref_put_return(&dentry->d_lockref);
659 
660 	/*
661 	 * If the lockref_put_return() failed due to the lock being held
662 	 * by somebody else, the fast path has failed. We will need to
663 	 * get the lock, and then check the count again.
664 	 */
665 	if (unlikely(ret < 0)) {
666 		spin_lock(&dentry->d_lock);
667 		if (dentry->d_lockref.count > 1) {
668 			dentry->d_lockref.count--;
669 			spin_unlock(&dentry->d_lock);
670 			return 1;
671 		}
672 		return 0;
673 	}
674 
675 	/*
676 	 * If we weren't the last ref, we're done.
677 	 */
678 	if (ret)
679 		return 1;
680 
681 	/*
682 	 * Careful, careful. The reference count went down
683 	 * to zero, but we don't hold the dentry lock, so
684 	 * somebody else could get it again, and do another
685 	 * dput(), and we need to not race with that.
686 	 *
687 	 * However, there is a very special and common case
688 	 * where we don't care, because there is nothing to
689 	 * do: the dentry is still hashed, it does not have
690 	 * a 'delete' op, and it's referenced and already on
691 	 * the LRU list.
692 	 *
693 	 * NOTE! Since we aren't locked, these values are
694 	 * not "stable". However, it is sufficient that at
695 	 * some point after we dropped the reference the
696 	 * dentry was hashed and the flags had the proper
697 	 * value. Other dentry users may have re-gotten
698 	 * a reference to the dentry and change that, but
699 	 * our work is done - we can leave the dentry
700 	 * around with a zero refcount.
701 	 */
702 	smp_rmb();
703 	d_flags = ACCESS_ONCE(dentry->d_flags);
704 	d_flags &= DCACHE_REFERENCED | DCACHE_LRU_LIST | DCACHE_DISCONNECTED;
705 
706 	/* Nothing to do? Dropping the reference was all we needed? */
707 	if (d_flags == (DCACHE_REFERENCED | DCACHE_LRU_LIST) && !d_unhashed(dentry))
708 		return 1;
709 
710 	/*
711 	 * Not the fast normal case? Get the lock. We've already decremented
712 	 * the refcount, but we'll need to re-check the situation after
713 	 * getting the lock.
714 	 */
715 	spin_lock(&dentry->d_lock);
716 
717 	/*
718 	 * Did somebody else grab a reference to it in the meantime, and
719 	 * we're no longer the last user after all? Alternatively, somebody
720 	 * else could have killed it and marked it dead. Either way, we
721 	 * don't need to do anything else.
722 	 */
723 	if (dentry->d_lockref.count) {
724 		spin_unlock(&dentry->d_lock);
725 		return 1;
726 	}
727 
728 	/*
729 	 * Re-get the reference we optimistically dropped. We hold the
730 	 * lock, and we just tested that it was zero, so we can just
731 	 * set it to 1.
732 	 */
733 	dentry->d_lockref.count = 1;
734 	return 0;
735 }
736 
737 
738 /*
739  * This is dput
740  *
741  * This is complicated by the fact that we do not want to put
742  * dentries that are no longer on any hash chain on the unused
743  * list: we'd much rather just get rid of them immediately.
744  *
745  * However, that implies that we have to traverse the dentry
746  * tree upwards to the parents which might _also_ now be
747  * scheduled for deletion (it may have been only waiting for
748  * its last child to go away).
749  *
750  * This tail recursion is done by hand as we don't want to depend
751  * on the compiler to always get this right (gcc generally doesn't).
752  * Real recursion would eat up our stack space.
753  */
754 
755 /*
756  * dput - release a dentry
757  * @dentry: dentry to release
758  *
759  * Release a dentry. This will drop the usage count and if appropriate
760  * call the dentry unlink method as well as removing it from the queues and
761  * releasing its resources. If the parent dentries were scheduled for release
762  * they too may now get deleted.
763  */
764 void dput(struct dentry *dentry)
765 {
766 	if (unlikely(!dentry))
767 		return;
768 
769 repeat:
770 	might_sleep();
771 
772 	rcu_read_lock();
773 	if (likely(fast_dput(dentry))) {
774 		rcu_read_unlock();
775 		return;
776 	}
777 
778 	/* Slow case: now with the dentry lock held */
779 	rcu_read_unlock();
780 
781 	WARN_ON(d_in_lookup(dentry));
782 
783 	/* Unreachable? Get rid of it */
784 	if (unlikely(d_unhashed(dentry)))
785 		goto kill_it;
786 
787 	if (unlikely(dentry->d_flags & DCACHE_DISCONNECTED))
788 		goto kill_it;
789 
790 	if (unlikely(dentry->d_flags & DCACHE_OP_DELETE)) {
791 		if (dentry->d_op->d_delete(dentry))
792 			goto kill_it;
793 	}
794 
795 	if (!(dentry->d_flags & DCACHE_REFERENCED))
796 		dentry->d_flags |= DCACHE_REFERENCED;
797 	dentry_lru_add(dentry);
798 
799 	dentry->d_lockref.count--;
800 	spin_unlock(&dentry->d_lock);
801 	return;
802 
803 kill_it:
804 	dentry = dentry_kill(dentry);
805 	if (dentry) {
806 		cond_resched();
807 		goto repeat;
808 	}
809 }
810 EXPORT_SYMBOL(dput);
811 
812 
813 /* This must be called with d_lock held */
814 static inline void __dget_dlock(struct dentry *dentry)
815 {
816 	dentry->d_lockref.count++;
817 }
818 
819 static inline void __dget(struct dentry *dentry)
820 {
821 	lockref_get(&dentry->d_lockref);
822 }
823 
824 struct dentry *dget_parent(struct dentry *dentry)
825 {
826 	int gotref;
827 	struct dentry *ret;
828 
829 	/*
830 	 * Do optimistic parent lookup without any
831 	 * locking.
832 	 */
833 	rcu_read_lock();
834 	ret = ACCESS_ONCE(dentry->d_parent);
835 	gotref = lockref_get_not_zero(&ret->d_lockref);
836 	rcu_read_unlock();
837 	if (likely(gotref)) {
838 		if (likely(ret == ACCESS_ONCE(dentry->d_parent)))
839 			return ret;
840 		dput(ret);
841 	}
842 
843 repeat:
844 	/*
845 	 * Don't need rcu_dereference because we re-check it was correct under
846 	 * the lock.
847 	 */
848 	rcu_read_lock();
849 	ret = dentry->d_parent;
850 	spin_lock(&ret->d_lock);
851 	if (unlikely(ret != dentry->d_parent)) {
852 		spin_unlock(&ret->d_lock);
853 		rcu_read_unlock();
854 		goto repeat;
855 	}
856 	rcu_read_unlock();
857 	BUG_ON(!ret->d_lockref.count);
858 	ret->d_lockref.count++;
859 	spin_unlock(&ret->d_lock);
860 	return ret;
861 }
862 EXPORT_SYMBOL(dget_parent);
863 
864 /**
865  * d_find_alias - grab a hashed alias of inode
866  * @inode: inode in question
867  *
868  * If inode has a hashed alias, or is a directory and has any alias,
869  * acquire the reference to alias and return it. Otherwise return NULL.
870  * Notice that if inode is a directory there can be only one alias and
871  * it can be unhashed only if it has no children, or if it is the root
872  * of a filesystem, or if the directory was renamed and d_revalidate
873  * was the first vfs operation to notice.
874  *
875  * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
876  * any other hashed alias over that one.
877  */
878 static struct dentry *__d_find_alias(struct inode *inode)
879 {
880 	struct dentry *alias, *discon_alias;
881 
882 again:
883 	discon_alias = NULL;
884 	hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
885 		spin_lock(&alias->d_lock);
886  		if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
887 			if (IS_ROOT(alias) &&
888 			    (alias->d_flags & DCACHE_DISCONNECTED)) {
889 				discon_alias = alias;
890 			} else {
891 				__dget_dlock(alias);
892 				spin_unlock(&alias->d_lock);
893 				return alias;
894 			}
895 		}
896 		spin_unlock(&alias->d_lock);
897 	}
898 	if (discon_alias) {
899 		alias = discon_alias;
900 		spin_lock(&alias->d_lock);
901 		if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
902 			__dget_dlock(alias);
903 			spin_unlock(&alias->d_lock);
904 			return alias;
905 		}
906 		spin_unlock(&alias->d_lock);
907 		goto again;
908 	}
909 	return NULL;
910 }
911 
912 struct dentry *d_find_alias(struct inode *inode)
913 {
914 	struct dentry *de = NULL;
915 
916 	if (!hlist_empty(&inode->i_dentry)) {
917 		spin_lock(&inode->i_lock);
918 		de = __d_find_alias(inode);
919 		spin_unlock(&inode->i_lock);
920 	}
921 	return de;
922 }
923 EXPORT_SYMBOL(d_find_alias);
924 
925 /*
926  *	Try to kill dentries associated with this inode.
927  * WARNING: you must own a reference to inode.
928  */
929 void d_prune_aliases(struct inode *inode)
930 {
931 	struct dentry *dentry;
932 restart:
933 	spin_lock(&inode->i_lock);
934 	hlist_for_each_entry(dentry, &inode->i_dentry, d_u.d_alias) {
935 		spin_lock(&dentry->d_lock);
936 		if (!dentry->d_lockref.count) {
937 			struct dentry *parent = lock_parent(dentry);
938 			if (likely(!dentry->d_lockref.count)) {
939 				__dentry_kill(dentry);
940 				dput(parent);
941 				goto restart;
942 			}
943 			if (parent)
944 				spin_unlock(&parent->d_lock);
945 		}
946 		spin_unlock(&dentry->d_lock);
947 	}
948 	spin_unlock(&inode->i_lock);
949 }
950 EXPORT_SYMBOL(d_prune_aliases);
951 
952 static void shrink_dentry_list(struct list_head *list)
953 {
954 	struct dentry *dentry, *parent;
955 
956 	while (!list_empty(list)) {
957 		struct inode *inode;
958 		dentry = list_entry(list->prev, struct dentry, d_lru);
959 		spin_lock(&dentry->d_lock);
960 		parent = lock_parent(dentry);
961 
962 		/*
963 		 * The dispose list is isolated and dentries are not accounted
964 		 * to the LRU here, so we can simply remove it from the list
965 		 * here regardless of whether it is referenced or not.
966 		 */
967 		d_shrink_del(dentry);
968 
969 		/*
970 		 * We found an inuse dentry which was not removed from
971 		 * the LRU because of laziness during lookup. Do not free it.
972 		 */
973 		if (dentry->d_lockref.count > 0) {
974 			spin_unlock(&dentry->d_lock);
975 			if (parent)
976 				spin_unlock(&parent->d_lock);
977 			continue;
978 		}
979 
980 
981 		if (unlikely(dentry->d_flags & DCACHE_DENTRY_KILLED)) {
982 			bool can_free = dentry->d_flags & DCACHE_MAY_FREE;
983 			spin_unlock(&dentry->d_lock);
984 			if (parent)
985 				spin_unlock(&parent->d_lock);
986 			if (can_free)
987 				dentry_free(dentry);
988 			continue;
989 		}
990 
991 		inode = dentry->d_inode;
992 		if (inode && unlikely(!spin_trylock(&inode->i_lock))) {
993 			d_shrink_add(dentry, list);
994 			spin_unlock(&dentry->d_lock);
995 			if (parent)
996 				spin_unlock(&parent->d_lock);
997 			continue;
998 		}
999 
1000 		__dentry_kill(dentry);
1001 
1002 		/*
1003 		 * We need to prune ancestors too. This is necessary to prevent
1004 		 * quadratic behavior of shrink_dcache_parent(), but is also
1005 		 * expected to be beneficial in reducing dentry cache
1006 		 * fragmentation.
1007 		 */
1008 		dentry = parent;
1009 		while (dentry && !lockref_put_or_lock(&dentry->d_lockref)) {
1010 			parent = lock_parent(dentry);
1011 			if (dentry->d_lockref.count != 1) {
1012 				dentry->d_lockref.count--;
1013 				spin_unlock(&dentry->d_lock);
1014 				if (parent)
1015 					spin_unlock(&parent->d_lock);
1016 				break;
1017 			}
1018 			inode = dentry->d_inode;	/* can't be NULL */
1019 			if (unlikely(!spin_trylock(&inode->i_lock))) {
1020 				spin_unlock(&dentry->d_lock);
1021 				if (parent)
1022 					spin_unlock(&parent->d_lock);
1023 				cpu_relax();
1024 				continue;
1025 			}
1026 			__dentry_kill(dentry);
1027 			dentry = parent;
1028 		}
1029 	}
1030 }
1031 
1032 static enum lru_status dentry_lru_isolate(struct list_head *item,
1033 		struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
1034 {
1035 	struct list_head *freeable = arg;
1036 	struct dentry	*dentry = container_of(item, struct dentry, d_lru);
1037 
1038 
1039 	/*
1040 	 * we are inverting the lru lock/dentry->d_lock here,
1041 	 * so use a trylock. If we fail to get the lock, just skip
1042 	 * it
1043 	 */
1044 	if (!spin_trylock(&dentry->d_lock))
1045 		return LRU_SKIP;
1046 
1047 	/*
1048 	 * Referenced dentries are still in use. If they have active
1049 	 * counts, just remove them from the LRU. Otherwise give them
1050 	 * another pass through the LRU.
1051 	 */
1052 	if (dentry->d_lockref.count) {
1053 		d_lru_isolate(lru, dentry);
1054 		spin_unlock(&dentry->d_lock);
1055 		return LRU_REMOVED;
1056 	}
1057 
1058 	if (dentry->d_flags & DCACHE_REFERENCED) {
1059 		dentry->d_flags &= ~DCACHE_REFERENCED;
1060 		spin_unlock(&dentry->d_lock);
1061 
1062 		/*
1063 		 * The list move itself will be made by the common LRU code. At
1064 		 * this point, we've dropped the dentry->d_lock but keep the
1065 		 * lru lock. This is safe to do, since every list movement is
1066 		 * protected by the lru lock even if both locks are held.
1067 		 *
1068 		 * This is guaranteed by the fact that all LRU management
1069 		 * functions are intermediated by the LRU API calls like
1070 		 * list_lru_add and list_lru_del. List movement in this file
1071 		 * only ever occur through this functions or through callbacks
1072 		 * like this one, that are called from the LRU API.
1073 		 *
1074 		 * The only exceptions to this are functions like
1075 		 * shrink_dentry_list, and code that first checks for the
1076 		 * DCACHE_SHRINK_LIST flag.  Those are guaranteed to be
1077 		 * operating only with stack provided lists after they are
1078 		 * properly isolated from the main list.  It is thus, always a
1079 		 * local access.
1080 		 */
1081 		return LRU_ROTATE;
1082 	}
1083 
1084 	d_lru_shrink_move(lru, dentry, freeable);
1085 	spin_unlock(&dentry->d_lock);
1086 
1087 	return LRU_REMOVED;
1088 }
1089 
1090 /**
1091  * prune_dcache_sb - shrink the dcache
1092  * @sb: superblock
1093  * @sc: shrink control, passed to list_lru_shrink_walk()
1094  *
1095  * Attempt to shrink the superblock dcache LRU by @sc->nr_to_scan entries. This
1096  * is done when we need more memory and called from the superblock shrinker
1097  * function.
1098  *
1099  * This function may fail to free any resources if all the dentries are in
1100  * use.
1101  */
1102 long prune_dcache_sb(struct super_block *sb, struct shrink_control *sc)
1103 {
1104 	LIST_HEAD(dispose);
1105 	long freed;
1106 
1107 	freed = list_lru_shrink_walk(&sb->s_dentry_lru, sc,
1108 				     dentry_lru_isolate, &dispose);
1109 	shrink_dentry_list(&dispose);
1110 	return freed;
1111 }
1112 
1113 static enum lru_status dentry_lru_isolate_shrink(struct list_head *item,
1114 		struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
1115 {
1116 	struct list_head *freeable = arg;
1117 	struct dentry	*dentry = container_of(item, struct dentry, d_lru);
1118 
1119 	/*
1120 	 * we are inverting the lru lock/dentry->d_lock here,
1121 	 * so use a trylock. If we fail to get the lock, just skip
1122 	 * it
1123 	 */
1124 	if (!spin_trylock(&dentry->d_lock))
1125 		return LRU_SKIP;
1126 
1127 	d_lru_shrink_move(lru, dentry, freeable);
1128 	spin_unlock(&dentry->d_lock);
1129 
1130 	return LRU_REMOVED;
1131 }
1132 
1133 
1134 /**
1135  * shrink_dcache_sb - shrink dcache for a superblock
1136  * @sb: superblock
1137  *
1138  * Shrink the dcache for the specified super block. This is used to free
1139  * the dcache before unmounting a file system.
1140  */
1141 void shrink_dcache_sb(struct super_block *sb)
1142 {
1143 	long freed;
1144 
1145 	do {
1146 		LIST_HEAD(dispose);
1147 
1148 		freed = list_lru_walk(&sb->s_dentry_lru,
1149 			dentry_lru_isolate_shrink, &dispose, UINT_MAX);
1150 
1151 		this_cpu_sub(nr_dentry_unused, freed);
1152 		shrink_dentry_list(&dispose);
1153 	} while (freed > 0);
1154 }
1155 EXPORT_SYMBOL(shrink_dcache_sb);
1156 
1157 /**
1158  * enum d_walk_ret - action to talke during tree walk
1159  * @D_WALK_CONTINUE:	contrinue walk
1160  * @D_WALK_QUIT:	quit walk
1161  * @D_WALK_NORETRY:	quit when retry is needed
1162  * @D_WALK_SKIP:	skip this dentry and its children
1163  */
1164 enum d_walk_ret {
1165 	D_WALK_CONTINUE,
1166 	D_WALK_QUIT,
1167 	D_WALK_NORETRY,
1168 	D_WALK_SKIP,
1169 };
1170 
1171 /**
1172  * d_walk - walk the dentry tree
1173  * @parent:	start of walk
1174  * @data:	data passed to @enter() and @finish()
1175  * @enter:	callback when first entering the dentry
1176  * @finish:	callback when successfully finished the walk
1177  *
1178  * The @enter() and @finish() callbacks are called with d_lock held.
1179  */
1180 static void d_walk(struct dentry *parent, void *data,
1181 		   enum d_walk_ret (*enter)(void *, struct dentry *),
1182 		   void (*finish)(void *))
1183 {
1184 	struct dentry *this_parent;
1185 	struct list_head *next;
1186 	unsigned seq = 0;
1187 	enum d_walk_ret ret;
1188 	bool retry = true;
1189 
1190 again:
1191 	read_seqbegin_or_lock(&rename_lock, &seq);
1192 	this_parent = parent;
1193 	spin_lock(&this_parent->d_lock);
1194 
1195 	ret = enter(data, this_parent);
1196 	switch (ret) {
1197 	case D_WALK_CONTINUE:
1198 		break;
1199 	case D_WALK_QUIT:
1200 	case D_WALK_SKIP:
1201 		goto out_unlock;
1202 	case D_WALK_NORETRY:
1203 		retry = false;
1204 		break;
1205 	}
1206 repeat:
1207 	next = this_parent->d_subdirs.next;
1208 resume:
1209 	while (next != &this_parent->d_subdirs) {
1210 		struct list_head *tmp = next;
1211 		struct dentry *dentry = list_entry(tmp, struct dentry, d_child);
1212 		next = tmp->next;
1213 
1214 		if (unlikely(dentry->d_flags & DCACHE_DENTRY_CURSOR))
1215 			continue;
1216 
1217 		spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1218 
1219 		ret = enter(data, dentry);
1220 		switch (ret) {
1221 		case D_WALK_CONTINUE:
1222 			break;
1223 		case D_WALK_QUIT:
1224 			spin_unlock(&dentry->d_lock);
1225 			goto out_unlock;
1226 		case D_WALK_NORETRY:
1227 			retry = false;
1228 			break;
1229 		case D_WALK_SKIP:
1230 			spin_unlock(&dentry->d_lock);
1231 			continue;
1232 		}
1233 
1234 		if (!list_empty(&dentry->d_subdirs)) {
1235 			spin_unlock(&this_parent->d_lock);
1236 			spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1237 			this_parent = dentry;
1238 			spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1239 			goto repeat;
1240 		}
1241 		spin_unlock(&dentry->d_lock);
1242 	}
1243 	/*
1244 	 * All done at this level ... ascend and resume the search.
1245 	 */
1246 	rcu_read_lock();
1247 ascend:
1248 	if (this_parent != parent) {
1249 		struct dentry *child = this_parent;
1250 		this_parent = child->d_parent;
1251 
1252 		spin_unlock(&child->d_lock);
1253 		spin_lock(&this_parent->d_lock);
1254 
1255 		/* might go back up the wrong parent if we have had a rename. */
1256 		if (need_seqretry(&rename_lock, seq))
1257 			goto rename_retry;
1258 		/* go into the first sibling still alive */
1259 		do {
1260 			next = child->d_child.next;
1261 			if (next == &this_parent->d_subdirs)
1262 				goto ascend;
1263 			child = list_entry(next, struct dentry, d_child);
1264 		} while (unlikely(child->d_flags & DCACHE_DENTRY_KILLED));
1265 		rcu_read_unlock();
1266 		goto resume;
1267 	}
1268 	if (need_seqretry(&rename_lock, seq))
1269 		goto rename_retry;
1270 	rcu_read_unlock();
1271 	if (finish)
1272 		finish(data);
1273 
1274 out_unlock:
1275 	spin_unlock(&this_parent->d_lock);
1276 	done_seqretry(&rename_lock, seq);
1277 	return;
1278 
1279 rename_retry:
1280 	spin_unlock(&this_parent->d_lock);
1281 	rcu_read_unlock();
1282 	BUG_ON(seq & 1);
1283 	if (!retry)
1284 		return;
1285 	seq = 1;
1286 	goto again;
1287 }
1288 
1289 /*
1290  * Search for at least 1 mount point in the dentry's subdirs.
1291  * We descend to the next level whenever the d_subdirs
1292  * list is non-empty and continue searching.
1293  */
1294 
1295 static enum d_walk_ret check_mount(void *data, struct dentry *dentry)
1296 {
1297 	int *ret = data;
1298 	if (d_mountpoint(dentry)) {
1299 		*ret = 1;
1300 		return D_WALK_QUIT;
1301 	}
1302 	return D_WALK_CONTINUE;
1303 }
1304 
1305 /**
1306  * have_submounts - check for mounts over a dentry
1307  * @parent: dentry to check.
1308  *
1309  * Return true if the parent or its subdirectories contain
1310  * a mount point
1311  */
1312 int have_submounts(struct dentry *parent)
1313 {
1314 	int ret = 0;
1315 
1316 	d_walk(parent, &ret, check_mount, NULL);
1317 
1318 	return ret;
1319 }
1320 EXPORT_SYMBOL(have_submounts);
1321 
1322 /*
1323  * Called by mount code to set a mountpoint and check if the mountpoint is
1324  * reachable (e.g. NFS can unhash a directory dentry and then the complete
1325  * subtree can become unreachable).
1326  *
1327  * Only one of d_invalidate() and d_set_mounted() must succeed.  For
1328  * this reason take rename_lock and d_lock on dentry and ancestors.
1329  */
1330 int d_set_mounted(struct dentry *dentry)
1331 {
1332 	struct dentry *p;
1333 	int ret = -ENOENT;
1334 	write_seqlock(&rename_lock);
1335 	for (p = dentry->d_parent; !IS_ROOT(p); p = p->d_parent) {
1336 		/* Need exclusion wrt. d_invalidate() */
1337 		spin_lock(&p->d_lock);
1338 		if (unlikely(d_unhashed(p))) {
1339 			spin_unlock(&p->d_lock);
1340 			goto out;
1341 		}
1342 		spin_unlock(&p->d_lock);
1343 	}
1344 	spin_lock(&dentry->d_lock);
1345 	if (!d_unlinked(dentry)) {
1346 		dentry->d_flags |= DCACHE_MOUNTED;
1347 		ret = 0;
1348 	}
1349  	spin_unlock(&dentry->d_lock);
1350 out:
1351 	write_sequnlock(&rename_lock);
1352 	return ret;
1353 }
1354 
1355 /*
1356  * Search the dentry child list of the specified parent,
1357  * and move any unused dentries to the end of the unused
1358  * list for prune_dcache(). We descend to the next level
1359  * whenever the d_subdirs list is non-empty and continue
1360  * searching.
1361  *
1362  * It returns zero iff there are no unused children,
1363  * otherwise  it returns the number of children moved to
1364  * the end of the unused list. This may not be the total
1365  * number of unused children, because select_parent can
1366  * drop the lock and return early due to latency
1367  * constraints.
1368  */
1369 
1370 struct select_data {
1371 	struct dentry *start;
1372 	struct list_head dispose;
1373 	int found;
1374 };
1375 
1376 static enum d_walk_ret select_collect(void *_data, struct dentry *dentry)
1377 {
1378 	struct select_data *data = _data;
1379 	enum d_walk_ret ret = D_WALK_CONTINUE;
1380 
1381 	if (data->start == dentry)
1382 		goto out;
1383 
1384 	if (dentry->d_flags & DCACHE_SHRINK_LIST) {
1385 		data->found++;
1386 	} else {
1387 		if (dentry->d_flags & DCACHE_LRU_LIST)
1388 			d_lru_del(dentry);
1389 		if (!dentry->d_lockref.count) {
1390 			d_shrink_add(dentry, &data->dispose);
1391 			data->found++;
1392 		}
1393 	}
1394 	/*
1395 	 * We can return to the caller if we have found some (this
1396 	 * ensures forward progress). We'll be coming back to find
1397 	 * the rest.
1398 	 */
1399 	if (!list_empty(&data->dispose))
1400 		ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY;
1401 out:
1402 	return ret;
1403 }
1404 
1405 /**
1406  * shrink_dcache_parent - prune dcache
1407  * @parent: parent of entries to prune
1408  *
1409  * Prune the dcache to remove unused children of the parent dentry.
1410  */
1411 void shrink_dcache_parent(struct dentry *parent)
1412 {
1413 	for (;;) {
1414 		struct select_data data;
1415 
1416 		INIT_LIST_HEAD(&data.dispose);
1417 		data.start = parent;
1418 		data.found = 0;
1419 
1420 		d_walk(parent, &data, select_collect, NULL);
1421 		if (!data.found)
1422 			break;
1423 
1424 		shrink_dentry_list(&data.dispose);
1425 		cond_resched();
1426 	}
1427 }
1428 EXPORT_SYMBOL(shrink_dcache_parent);
1429 
1430 static enum d_walk_ret umount_check(void *_data, struct dentry *dentry)
1431 {
1432 	/* it has busy descendents; complain about those instead */
1433 	if (!list_empty(&dentry->d_subdirs))
1434 		return D_WALK_CONTINUE;
1435 
1436 	/* root with refcount 1 is fine */
1437 	if (dentry == _data && dentry->d_lockref.count == 1)
1438 		return D_WALK_CONTINUE;
1439 
1440 	printk(KERN_ERR "BUG: Dentry %p{i=%lx,n=%pd} "
1441 			" still in use (%d) [unmount of %s %s]\n",
1442 		       dentry,
1443 		       dentry->d_inode ?
1444 		       dentry->d_inode->i_ino : 0UL,
1445 		       dentry,
1446 		       dentry->d_lockref.count,
1447 		       dentry->d_sb->s_type->name,
1448 		       dentry->d_sb->s_id);
1449 	WARN_ON(1);
1450 	return D_WALK_CONTINUE;
1451 }
1452 
1453 static void do_one_tree(struct dentry *dentry)
1454 {
1455 	shrink_dcache_parent(dentry);
1456 	d_walk(dentry, dentry, umount_check, NULL);
1457 	d_drop(dentry);
1458 	dput(dentry);
1459 }
1460 
1461 /*
1462  * destroy the dentries attached to a superblock on unmounting
1463  */
1464 void shrink_dcache_for_umount(struct super_block *sb)
1465 {
1466 	struct dentry *dentry;
1467 
1468 	WARN(down_read_trylock(&sb->s_umount), "s_umount should've been locked");
1469 
1470 	dentry = sb->s_root;
1471 	sb->s_root = NULL;
1472 	do_one_tree(dentry);
1473 
1474 	while (!hlist_bl_empty(&sb->s_anon)) {
1475 		dentry = dget(hlist_bl_entry(hlist_bl_first(&sb->s_anon), struct dentry, d_hash));
1476 		do_one_tree(dentry);
1477 	}
1478 }
1479 
1480 struct detach_data {
1481 	struct select_data select;
1482 	struct dentry *mountpoint;
1483 };
1484 static enum d_walk_ret detach_and_collect(void *_data, struct dentry *dentry)
1485 {
1486 	struct detach_data *data = _data;
1487 
1488 	if (d_mountpoint(dentry)) {
1489 		__dget_dlock(dentry);
1490 		data->mountpoint = dentry;
1491 		return D_WALK_QUIT;
1492 	}
1493 
1494 	return select_collect(&data->select, dentry);
1495 }
1496 
1497 static void check_and_drop(void *_data)
1498 {
1499 	struct detach_data *data = _data;
1500 
1501 	if (!data->mountpoint && !data->select.found)
1502 		__d_drop(data->select.start);
1503 }
1504 
1505 /**
1506  * d_invalidate - detach submounts, prune dcache, and drop
1507  * @dentry: dentry to invalidate (aka detach, prune and drop)
1508  *
1509  * no dcache lock.
1510  *
1511  * The final d_drop is done as an atomic operation relative to
1512  * rename_lock ensuring there are no races with d_set_mounted.  This
1513  * ensures there are no unhashed dentries on the path to a mountpoint.
1514  */
1515 void d_invalidate(struct dentry *dentry)
1516 {
1517 	/*
1518 	 * If it's already been dropped, return OK.
1519 	 */
1520 	spin_lock(&dentry->d_lock);
1521 	if (d_unhashed(dentry)) {
1522 		spin_unlock(&dentry->d_lock);
1523 		return;
1524 	}
1525 	spin_unlock(&dentry->d_lock);
1526 
1527 	/* Negative dentries can be dropped without further checks */
1528 	if (!dentry->d_inode) {
1529 		d_drop(dentry);
1530 		return;
1531 	}
1532 
1533 	for (;;) {
1534 		struct detach_data data;
1535 
1536 		data.mountpoint = NULL;
1537 		INIT_LIST_HEAD(&data.select.dispose);
1538 		data.select.start = dentry;
1539 		data.select.found = 0;
1540 
1541 		d_walk(dentry, &data, detach_and_collect, check_and_drop);
1542 
1543 		if (data.select.found)
1544 			shrink_dentry_list(&data.select.dispose);
1545 
1546 		if (data.mountpoint) {
1547 			detach_mounts(data.mountpoint);
1548 			dput(data.mountpoint);
1549 		}
1550 
1551 		if (!data.mountpoint && !data.select.found)
1552 			break;
1553 
1554 		cond_resched();
1555 	}
1556 }
1557 EXPORT_SYMBOL(d_invalidate);
1558 
1559 /**
1560  * __d_alloc	-	allocate a dcache entry
1561  * @sb: filesystem it will belong to
1562  * @name: qstr of the name
1563  *
1564  * Allocates a dentry. It returns %NULL if there is insufficient memory
1565  * available. On a success the dentry is returned. The name passed in is
1566  * copied and the copy passed in may be reused after this call.
1567  */
1568 
1569 struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name)
1570 {
1571 	struct dentry *dentry;
1572 	char *dname;
1573 	int err;
1574 
1575 	dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
1576 	if (!dentry)
1577 		return NULL;
1578 
1579 	/*
1580 	 * We guarantee that the inline name is always NUL-terminated.
1581 	 * This way the memcpy() done by the name switching in rename
1582 	 * will still always have a NUL at the end, even if we might
1583 	 * be overwriting an internal NUL character
1584 	 */
1585 	dentry->d_iname[DNAME_INLINE_LEN-1] = 0;
1586 	if (unlikely(!name)) {
1587 		static const struct qstr anon = QSTR_INIT("/", 1);
1588 		name = &anon;
1589 		dname = dentry->d_iname;
1590 	} else if (name->len > DNAME_INLINE_LEN-1) {
1591 		size_t size = offsetof(struct external_name, name[1]);
1592 		struct external_name *p = kmalloc(size + name->len,
1593 						  GFP_KERNEL_ACCOUNT);
1594 		if (!p) {
1595 			kmem_cache_free(dentry_cache, dentry);
1596 			return NULL;
1597 		}
1598 		atomic_set(&p->u.count, 1);
1599 		dname = p->name;
1600 		if (IS_ENABLED(CONFIG_DCACHE_WORD_ACCESS))
1601 			kasan_unpoison_shadow(dname,
1602 				round_up(name->len + 1,	sizeof(unsigned long)));
1603 	} else  {
1604 		dname = dentry->d_iname;
1605 	}
1606 
1607 	dentry->d_name.len = name->len;
1608 	dentry->d_name.hash = name->hash;
1609 	memcpy(dname, name->name, name->len);
1610 	dname[name->len] = 0;
1611 
1612 	/* Make sure we always see the terminating NUL character */
1613 	smp_wmb();
1614 	dentry->d_name.name = dname;
1615 
1616 	dentry->d_lockref.count = 1;
1617 	dentry->d_flags = 0;
1618 	spin_lock_init(&dentry->d_lock);
1619 	seqcount_init(&dentry->d_seq);
1620 	dentry->d_inode = NULL;
1621 	dentry->d_parent = dentry;
1622 	dentry->d_sb = sb;
1623 	dentry->d_op = NULL;
1624 	dentry->d_fsdata = NULL;
1625 	INIT_HLIST_BL_NODE(&dentry->d_hash);
1626 	INIT_LIST_HEAD(&dentry->d_lru);
1627 	INIT_LIST_HEAD(&dentry->d_subdirs);
1628 	INIT_HLIST_NODE(&dentry->d_u.d_alias);
1629 	INIT_LIST_HEAD(&dentry->d_child);
1630 	d_set_d_op(dentry, dentry->d_sb->s_d_op);
1631 
1632 	if (dentry->d_op && dentry->d_op->d_init) {
1633 		err = dentry->d_op->d_init(dentry);
1634 		if (err) {
1635 			if (dname_external(dentry))
1636 				kfree(external_name(dentry));
1637 			kmem_cache_free(dentry_cache, dentry);
1638 			return NULL;
1639 		}
1640 	}
1641 
1642 	this_cpu_inc(nr_dentry);
1643 
1644 	return dentry;
1645 }
1646 
1647 /**
1648  * d_alloc	-	allocate a dcache entry
1649  * @parent: parent of entry to allocate
1650  * @name: qstr of the name
1651  *
1652  * Allocates a dentry. It returns %NULL if there is insufficient memory
1653  * available. On a success the dentry is returned. The name passed in is
1654  * copied and the copy passed in may be reused after this call.
1655  */
1656 struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1657 {
1658 	struct dentry *dentry = __d_alloc(parent->d_sb, name);
1659 	if (!dentry)
1660 		return NULL;
1661 	dentry->d_flags |= DCACHE_RCUACCESS;
1662 	spin_lock(&parent->d_lock);
1663 	/*
1664 	 * don't need child lock because it is not subject
1665 	 * to concurrency here
1666 	 */
1667 	__dget_dlock(parent);
1668 	dentry->d_parent = parent;
1669 	list_add(&dentry->d_child, &parent->d_subdirs);
1670 	spin_unlock(&parent->d_lock);
1671 
1672 	return dentry;
1673 }
1674 EXPORT_SYMBOL(d_alloc);
1675 
1676 struct dentry *d_alloc_cursor(struct dentry * parent)
1677 {
1678 	struct dentry *dentry = __d_alloc(parent->d_sb, NULL);
1679 	if (dentry) {
1680 		dentry->d_flags |= DCACHE_RCUACCESS | DCACHE_DENTRY_CURSOR;
1681 		dentry->d_parent = dget(parent);
1682 	}
1683 	return dentry;
1684 }
1685 
1686 /**
1687  * d_alloc_pseudo - allocate a dentry (for lookup-less filesystems)
1688  * @sb: the superblock
1689  * @name: qstr of the name
1690  *
1691  * For a filesystem that just pins its dentries in memory and never
1692  * performs lookups at all, return an unhashed IS_ROOT dentry.
1693  */
1694 struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
1695 {
1696 	return __d_alloc(sb, name);
1697 }
1698 EXPORT_SYMBOL(d_alloc_pseudo);
1699 
1700 struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1701 {
1702 	struct qstr q;
1703 
1704 	q.name = name;
1705 	q.hash_len = hashlen_string(parent, name);
1706 	return d_alloc(parent, &q);
1707 }
1708 EXPORT_SYMBOL(d_alloc_name);
1709 
1710 void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1711 {
1712 	WARN_ON_ONCE(dentry->d_op);
1713 	WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH	|
1714 				DCACHE_OP_COMPARE	|
1715 				DCACHE_OP_REVALIDATE	|
1716 				DCACHE_OP_WEAK_REVALIDATE	|
1717 				DCACHE_OP_DELETE	|
1718 				DCACHE_OP_REAL));
1719 	dentry->d_op = op;
1720 	if (!op)
1721 		return;
1722 	if (op->d_hash)
1723 		dentry->d_flags |= DCACHE_OP_HASH;
1724 	if (op->d_compare)
1725 		dentry->d_flags |= DCACHE_OP_COMPARE;
1726 	if (op->d_revalidate)
1727 		dentry->d_flags |= DCACHE_OP_REVALIDATE;
1728 	if (op->d_weak_revalidate)
1729 		dentry->d_flags |= DCACHE_OP_WEAK_REVALIDATE;
1730 	if (op->d_delete)
1731 		dentry->d_flags |= DCACHE_OP_DELETE;
1732 	if (op->d_prune)
1733 		dentry->d_flags |= DCACHE_OP_PRUNE;
1734 	if (op->d_real)
1735 		dentry->d_flags |= DCACHE_OP_REAL;
1736 
1737 }
1738 EXPORT_SYMBOL(d_set_d_op);
1739 
1740 
1741 /*
1742  * d_set_fallthru - Mark a dentry as falling through to a lower layer
1743  * @dentry - The dentry to mark
1744  *
1745  * Mark a dentry as falling through to the lower layer (as set with
1746  * d_pin_lower()).  This flag may be recorded on the medium.
1747  */
1748 void d_set_fallthru(struct dentry *dentry)
1749 {
1750 	spin_lock(&dentry->d_lock);
1751 	dentry->d_flags |= DCACHE_FALLTHRU;
1752 	spin_unlock(&dentry->d_lock);
1753 }
1754 EXPORT_SYMBOL(d_set_fallthru);
1755 
1756 static unsigned d_flags_for_inode(struct inode *inode)
1757 {
1758 	unsigned add_flags = DCACHE_REGULAR_TYPE;
1759 
1760 	if (!inode)
1761 		return DCACHE_MISS_TYPE;
1762 
1763 	if (S_ISDIR(inode->i_mode)) {
1764 		add_flags = DCACHE_DIRECTORY_TYPE;
1765 		if (unlikely(!(inode->i_opflags & IOP_LOOKUP))) {
1766 			if (unlikely(!inode->i_op->lookup))
1767 				add_flags = DCACHE_AUTODIR_TYPE;
1768 			else
1769 				inode->i_opflags |= IOP_LOOKUP;
1770 		}
1771 		goto type_determined;
1772 	}
1773 
1774 	if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) {
1775 		if (unlikely(inode->i_op->get_link)) {
1776 			add_flags = DCACHE_SYMLINK_TYPE;
1777 			goto type_determined;
1778 		}
1779 		inode->i_opflags |= IOP_NOFOLLOW;
1780 	}
1781 
1782 	if (unlikely(!S_ISREG(inode->i_mode)))
1783 		add_flags = DCACHE_SPECIAL_TYPE;
1784 
1785 type_determined:
1786 	if (unlikely(IS_AUTOMOUNT(inode)))
1787 		add_flags |= DCACHE_NEED_AUTOMOUNT;
1788 	return add_flags;
1789 }
1790 
1791 static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1792 {
1793 	unsigned add_flags = d_flags_for_inode(inode);
1794 	WARN_ON(d_in_lookup(dentry));
1795 
1796 	spin_lock(&dentry->d_lock);
1797 	hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
1798 	raw_write_seqcount_begin(&dentry->d_seq);
1799 	__d_set_inode_and_type(dentry, inode, add_flags);
1800 	raw_write_seqcount_end(&dentry->d_seq);
1801 	fsnotify_update_flags(dentry);
1802 	spin_unlock(&dentry->d_lock);
1803 }
1804 
1805 /**
1806  * d_instantiate - fill in inode information for a dentry
1807  * @entry: dentry to complete
1808  * @inode: inode to attach to this dentry
1809  *
1810  * Fill in inode information in the entry.
1811  *
1812  * This turns negative dentries into productive full members
1813  * of society.
1814  *
1815  * NOTE! This assumes that the inode count has been incremented
1816  * (or otherwise set) by the caller to indicate that it is now
1817  * in use by the dcache.
1818  */
1819 
1820 void d_instantiate(struct dentry *entry, struct inode * inode)
1821 {
1822 	BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
1823 	if (inode) {
1824 		security_d_instantiate(entry, inode);
1825 		spin_lock(&inode->i_lock);
1826 		__d_instantiate(entry, inode);
1827 		spin_unlock(&inode->i_lock);
1828 	}
1829 }
1830 EXPORT_SYMBOL(d_instantiate);
1831 
1832 /**
1833  * d_instantiate_no_diralias - instantiate a non-aliased dentry
1834  * @entry: dentry to complete
1835  * @inode: inode to attach to this dentry
1836  *
1837  * Fill in inode information in the entry.  If a directory alias is found, then
1838  * return an error (and drop inode).  Together with d_materialise_unique() this
1839  * guarantees that a directory inode may never have more than one alias.
1840  */
1841 int d_instantiate_no_diralias(struct dentry *entry, struct inode *inode)
1842 {
1843 	BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
1844 
1845 	security_d_instantiate(entry, inode);
1846 	spin_lock(&inode->i_lock);
1847 	if (S_ISDIR(inode->i_mode) && !hlist_empty(&inode->i_dentry)) {
1848 		spin_unlock(&inode->i_lock);
1849 		iput(inode);
1850 		return -EBUSY;
1851 	}
1852 	__d_instantiate(entry, inode);
1853 	spin_unlock(&inode->i_lock);
1854 
1855 	return 0;
1856 }
1857 EXPORT_SYMBOL(d_instantiate_no_diralias);
1858 
1859 struct dentry *d_make_root(struct inode *root_inode)
1860 {
1861 	struct dentry *res = NULL;
1862 
1863 	if (root_inode) {
1864 		res = __d_alloc(root_inode->i_sb, NULL);
1865 		if (res)
1866 			d_instantiate(res, root_inode);
1867 		else
1868 			iput(root_inode);
1869 	}
1870 	return res;
1871 }
1872 EXPORT_SYMBOL(d_make_root);
1873 
1874 static struct dentry * __d_find_any_alias(struct inode *inode)
1875 {
1876 	struct dentry *alias;
1877 
1878 	if (hlist_empty(&inode->i_dentry))
1879 		return NULL;
1880 	alias = hlist_entry(inode->i_dentry.first, struct dentry, d_u.d_alias);
1881 	__dget(alias);
1882 	return alias;
1883 }
1884 
1885 /**
1886  * d_find_any_alias - find any alias for a given inode
1887  * @inode: inode to find an alias for
1888  *
1889  * If any aliases exist for the given inode, take and return a
1890  * reference for one of them.  If no aliases exist, return %NULL.
1891  */
1892 struct dentry *d_find_any_alias(struct inode *inode)
1893 {
1894 	struct dentry *de;
1895 
1896 	spin_lock(&inode->i_lock);
1897 	de = __d_find_any_alias(inode);
1898 	spin_unlock(&inode->i_lock);
1899 	return de;
1900 }
1901 EXPORT_SYMBOL(d_find_any_alias);
1902 
1903 static struct dentry *__d_obtain_alias(struct inode *inode, int disconnected)
1904 {
1905 	struct dentry *tmp;
1906 	struct dentry *res;
1907 	unsigned add_flags;
1908 
1909 	if (!inode)
1910 		return ERR_PTR(-ESTALE);
1911 	if (IS_ERR(inode))
1912 		return ERR_CAST(inode);
1913 
1914 	res = d_find_any_alias(inode);
1915 	if (res)
1916 		goto out_iput;
1917 
1918 	tmp = __d_alloc(inode->i_sb, NULL);
1919 	if (!tmp) {
1920 		res = ERR_PTR(-ENOMEM);
1921 		goto out_iput;
1922 	}
1923 
1924 	security_d_instantiate(tmp, inode);
1925 	spin_lock(&inode->i_lock);
1926 	res = __d_find_any_alias(inode);
1927 	if (res) {
1928 		spin_unlock(&inode->i_lock);
1929 		dput(tmp);
1930 		goto out_iput;
1931 	}
1932 
1933 	/* attach a disconnected dentry */
1934 	add_flags = d_flags_for_inode(inode);
1935 
1936 	if (disconnected)
1937 		add_flags |= DCACHE_DISCONNECTED;
1938 
1939 	spin_lock(&tmp->d_lock);
1940 	__d_set_inode_and_type(tmp, inode, add_flags);
1941 	hlist_add_head(&tmp->d_u.d_alias, &inode->i_dentry);
1942 	hlist_bl_lock(&tmp->d_sb->s_anon);
1943 	hlist_bl_add_head(&tmp->d_hash, &tmp->d_sb->s_anon);
1944 	hlist_bl_unlock(&tmp->d_sb->s_anon);
1945 	spin_unlock(&tmp->d_lock);
1946 	spin_unlock(&inode->i_lock);
1947 
1948 	return tmp;
1949 
1950  out_iput:
1951 	iput(inode);
1952 	return res;
1953 }
1954 
1955 /**
1956  * d_obtain_alias - find or allocate a DISCONNECTED dentry for a given inode
1957  * @inode: inode to allocate the dentry for
1958  *
1959  * Obtain a dentry for an inode resulting from NFS filehandle conversion or
1960  * similar open by handle operations.  The returned dentry may be anonymous,
1961  * or may have a full name (if the inode was already in the cache).
1962  *
1963  * When called on a directory inode, we must ensure that the inode only ever
1964  * has one dentry.  If a dentry is found, that is returned instead of
1965  * allocating a new one.
1966  *
1967  * On successful return, the reference to the inode has been transferred
1968  * to the dentry.  In case of an error the reference on the inode is released.
1969  * To make it easier to use in export operations a %NULL or IS_ERR inode may
1970  * be passed in and the error will be propagated to the return value,
1971  * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
1972  */
1973 struct dentry *d_obtain_alias(struct inode *inode)
1974 {
1975 	return __d_obtain_alias(inode, 1);
1976 }
1977 EXPORT_SYMBOL(d_obtain_alias);
1978 
1979 /**
1980  * d_obtain_root - find or allocate a dentry for a given inode
1981  * @inode: inode to allocate the dentry for
1982  *
1983  * Obtain an IS_ROOT dentry for the root of a filesystem.
1984  *
1985  * We must ensure that directory inodes only ever have one dentry.  If a
1986  * dentry is found, that is returned instead of allocating a new one.
1987  *
1988  * On successful return, the reference to the inode has been transferred
1989  * to the dentry.  In case of an error the reference on the inode is
1990  * released.  A %NULL or IS_ERR inode may be passed in and will be the
1991  * error will be propagate to the return value, with a %NULL @inode
1992  * replaced by ERR_PTR(-ESTALE).
1993  */
1994 struct dentry *d_obtain_root(struct inode *inode)
1995 {
1996 	return __d_obtain_alias(inode, 0);
1997 }
1998 EXPORT_SYMBOL(d_obtain_root);
1999 
2000 /**
2001  * d_add_ci - lookup or allocate new dentry with case-exact name
2002  * @inode:  the inode case-insensitive lookup has found
2003  * @dentry: the negative dentry that was passed to the parent's lookup func
2004  * @name:   the case-exact name to be associated with the returned dentry
2005  *
2006  * This is to avoid filling the dcache with case-insensitive names to the
2007  * same inode, only the actual correct case is stored in the dcache for
2008  * case-insensitive filesystems.
2009  *
2010  * For a case-insensitive lookup match and if the the case-exact dentry
2011  * already exists in in the dcache, use it and return it.
2012  *
2013  * If no entry exists with the exact case name, allocate new dentry with
2014  * the exact case, and return the spliced entry.
2015  */
2016 struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
2017 			struct qstr *name)
2018 {
2019 	struct dentry *found, *res;
2020 
2021 	/*
2022 	 * First check if a dentry matching the name already exists,
2023 	 * if not go ahead and create it now.
2024 	 */
2025 	found = d_hash_and_lookup(dentry->d_parent, name);
2026 	if (found) {
2027 		iput(inode);
2028 		return found;
2029 	}
2030 	if (d_in_lookup(dentry)) {
2031 		found = d_alloc_parallel(dentry->d_parent, name,
2032 					dentry->d_wait);
2033 		if (IS_ERR(found) || !d_in_lookup(found)) {
2034 			iput(inode);
2035 			return found;
2036 		}
2037 	} else {
2038 		found = d_alloc(dentry->d_parent, name);
2039 		if (!found) {
2040 			iput(inode);
2041 			return ERR_PTR(-ENOMEM);
2042 		}
2043 	}
2044 	res = d_splice_alias(inode, found);
2045 	if (res) {
2046 		dput(found);
2047 		return res;
2048 	}
2049 	return found;
2050 }
2051 EXPORT_SYMBOL(d_add_ci);
2052 
2053 
2054 static inline bool d_same_name(const struct dentry *dentry,
2055 				const struct dentry *parent,
2056 				const struct qstr *name)
2057 {
2058 	if (likely(!(parent->d_flags & DCACHE_OP_COMPARE))) {
2059 		if (dentry->d_name.len != name->len)
2060 			return false;
2061 		return dentry_cmp(dentry, name->name, name->len) == 0;
2062 	}
2063 	return parent->d_op->d_compare(parent, dentry,
2064 				       dentry->d_name.len, dentry->d_name.name,
2065 				       name) == 0;
2066 }
2067 
2068 /**
2069  * __d_lookup_rcu - search for a dentry (racy, store-free)
2070  * @parent: parent dentry
2071  * @name: qstr of name we wish to find
2072  * @seqp: returns d_seq value at the point where the dentry was found
2073  * Returns: dentry, or NULL
2074  *
2075  * __d_lookup_rcu is the dcache lookup function for rcu-walk name
2076  * resolution (store-free path walking) design described in
2077  * Documentation/filesystems/path-lookup.txt.
2078  *
2079  * This is not to be used outside core vfs.
2080  *
2081  * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
2082  * held, and rcu_read_lock held. The returned dentry must not be stored into
2083  * without taking d_lock and checking d_seq sequence count against @seq
2084  * returned here.
2085  *
2086  * A refcount may be taken on the found dentry with the d_rcu_to_refcount
2087  * function.
2088  *
2089  * Alternatively, __d_lookup_rcu may be called again to look up the child of
2090  * the returned dentry, so long as its parent's seqlock is checked after the
2091  * child is looked up. Thus, an interlocking stepping of sequence lock checks
2092  * is formed, giving integrity down the path walk.
2093  *
2094  * NOTE! The caller *has* to check the resulting dentry against the sequence
2095  * number we've returned before using any of the resulting dentry state!
2096  */
2097 struct dentry *__d_lookup_rcu(const struct dentry *parent,
2098 				const struct qstr *name,
2099 				unsigned *seqp)
2100 {
2101 	u64 hashlen = name->hash_len;
2102 	const unsigned char *str = name->name;
2103 	struct hlist_bl_head *b = d_hash(hashlen_hash(hashlen));
2104 	struct hlist_bl_node *node;
2105 	struct dentry *dentry;
2106 
2107 	/*
2108 	 * Note: There is significant duplication with __d_lookup_rcu which is
2109 	 * required to prevent single threaded performance regressions
2110 	 * especially on architectures where smp_rmb (in seqcounts) are costly.
2111 	 * Keep the two functions in sync.
2112 	 */
2113 
2114 	/*
2115 	 * The hash list is protected using RCU.
2116 	 *
2117 	 * Carefully use d_seq when comparing a candidate dentry, to avoid
2118 	 * races with d_move().
2119 	 *
2120 	 * It is possible that concurrent renames can mess up our list
2121 	 * walk here and result in missing our dentry, resulting in the
2122 	 * false-negative result. d_lookup() protects against concurrent
2123 	 * renames using rename_lock seqlock.
2124 	 *
2125 	 * See Documentation/filesystems/path-lookup.txt for more details.
2126 	 */
2127 	hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2128 		unsigned seq;
2129 
2130 seqretry:
2131 		/*
2132 		 * The dentry sequence count protects us from concurrent
2133 		 * renames, and thus protects parent and name fields.
2134 		 *
2135 		 * The caller must perform a seqcount check in order
2136 		 * to do anything useful with the returned dentry.
2137 		 *
2138 		 * NOTE! We do a "raw" seqcount_begin here. That means that
2139 		 * we don't wait for the sequence count to stabilize if it
2140 		 * is in the middle of a sequence change. If we do the slow
2141 		 * dentry compare, we will do seqretries until it is stable,
2142 		 * and if we end up with a successful lookup, we actually
2143 		 * want to exit RCU lookup anyway.
2144 		 *
2145 		 * Note that raw_seqcount_begin still *does* smp_rmb(), so
2146 		 * we are still guaranteed NUL-termination of ->d_name.name.
2147 		 */
2148 		seq = raw_seqcount_begin(&dentry->d_seq);
2149 		if (dentry->d_parent != parent)
2150 			continue;
2151 		if (d_unhashed(dentry))
2152 			continue;
2153 
2154 		if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) {
2155 			int tlen;
2156 			const char *tname;
2157 			if (dentry->d_name.hash != hashlen_hash(hashlen))
2158 				continue;
2159 			tlen = dentry->d_name.len;
2160 			tname = dentry->d_name.name;
2161 			/* we want a consistent (name,len) pair */
2162 			if (read_seqcount_retry(&dentry->d_seq, seq)) {
2163 				cpu_relax();
2164 				goto seqretry;
2165 			}
2166 			if (parent->d_op->d_compare(parent, dentry,
2167 						    tlen, tname, name) != 0)
2168 				continue;
2169 		} else {
2170 			if (dentry->d_name.hash_len != hashlen)
2171 				continue;
2172 			if (dentry_cmp(dentry, str, hashlen_len(hashlen)) != 0)
2173 				continue;
2174 		}
2175 		*seqp = seq;
2176 		return dentry;
2177 	}
2178 	return NULL;
2179 }
2180 
2181 /**
2182  * d_lookup - search for a dentry
2183  * @parent: parent dentry
2184  * @name: qstr of name we wish to find
2185  * Returns: dentry, or NULL
2186  *
2187  * d_lookup searches the children of the parent dentry for the name in
2188  * question. If the dentry is found its reference count is incremented and the
2189  * dentry is returned. The caller must use dput to free the entry when it has
2190  * finished using it. %NULL is returned if the dentry does not exist.
2191  */
2192 struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name)
2193 {
2194 	struct dentry *dentry;
2195 	unsigned seq;
2196 
2197 	do {
2198 		seq = read_seqbegin(&rename_lock);
2199 		dentry = __d_lookup(parent, name);
2200 		if (dentry)
2201 			break;
2202 	} while (read_seqretry(&rename_lock, seq));
2203 	return dentry;
2204 }
2205 EXPORT_SYMBOL(d_lookup);
2206 
2207 /**
2208  * __d_lookup - search for a dentry (racy)
2209  * @parent: parent dentry
2210  * @name: qstr of name we wish to find
2211  * Returns: dentry, or NULL
2212  *
2213  * __d_lookup is like d_lookup, however it may (rarely) return a
2214  * false-negative result due to unrelated rename activity.
2215  *
2216  * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
2217  * however it must be used carefully, eg. with a following d_lookup in
2218  * the case of failure.
2219  *
2220  * __d_lookup callers must be commented.
2221  */
2222 struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name)
2223 {
2224 	unsigned int hash = name->hash;
2225 	struct hlist_bl_head *b = d_hash(hash);
2226 	struct hlist_bl_node *node;
2227 	struct dentry *found = NULL;
2228 	struct dentry *dentry;
2229 
2230 	/*
2231 	 * Note: There is significant duplication with __d_lookup_rcu which is
2232 	 * required to prevent single threaded performance regressions
2233 	 * especially on architectures where smp_rmb (in seqcounts) are costly.
2234 	 * Keep the two functions in sync.
2235 	 */
2236 
2237 	/*
2238 	 * The hash list is protected using RCU.
2239 	 *
2240 	 * Take d_lock when comparing a candidate dentry, to avoid races
2241 	 * with d_move().
2242 	 *
2243 	 * It is possible that concurrent renames can mess up our list
2244 	 * walk here and result in missing our dentry, resulting in the
2245 	 * false-negative result. d_lookup() protects against concurrent
2246 	 * renames using rename_lock seqlock.
2247 	 *
2248 	 * See Documentation/filesystems/path-lookup.txt for more details.
2249 	 */
2250 	rcu_read_lock();
2251 
2252 	hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2253 
2254 		if (dentry->d_name.hash != hash)
2255 			continue;
2256 
2257 		spin_lock(&dentry->d_lock);
2258 		if (dentry->d_parent != parent)
2259 			goto next;
2260 		if (d_unhashed(dentry))
2261 			goto next;
2262 
2263 		if (!d_same_name(dentry, parent, name))
2264 			goto next;
2265 
2266 		dentry->d_lockref.count++;
2267 		found = dentry;
2268 		spin_unlock(&dentry->d_lock);
2269 		break;
2270 next:
2271 		spin_unlock(&dentry->d_lock);
2272  	}
2273  	rcu_read_unlock();
2274 
2275  	return found;
2276 }
2277 
2278 /**
2279  * d_hash_and_lookup - hash the qstr then search for a dentry
2280  * @dir: Directory to search in
2281  * @name: qstr of name we wish to find
2282  *
2283  * On lookup failure NULL is returned; on bad name - ERR_PTR(-error)
2284  */
2285 struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
2286 {
2287 	/*
2288 	 * Check for a fs-specific hash function. Note that we must
2289 	 * calculate the standard hash first, as the d_op->d_hash()
2290 	 * routine may choose to leave the hash value unchanged.
2291 	 */
2292 	name->hash = full_name_hash(dir, name->name, name->len);
2293 	if (dir->d_flags & DCACHE_OP_HASH) {
2294 		int err = dir->d_op->d_hash(dir, name);
2295 		if (unlikely(err < 0))
2296 			return ERR_PTR(err);
2297 	}
2298 	return d_lookup(dir, name);
2299 }
2300 EXPORT_SYMBOL(d_hash_and_lookup);
2301 
2302 /*
2303  * When a file is deleted, we have two options:
2304  * - turn this dentry into a negative dentry
2305  * - unhash this dentry and free it.
2306  *
2307  * Usually, we want to just turn this into
2308  * a negative dentry, but if anybody else is
2309  * currently using the dentry or the inode
2310  * we can't do that and we fall back on removing
2311  * it from the hash queues and waiting for
2312  * it to be deleted later when it has no users
2313  */
2314 
2315 /**
2316  * d_delete - delete a dentry
2317  * @dentry: The dentry to delete
2318  *
2319  * Turn the dentry into a negative dentry if possible, otherwise
2320  * remove it from the hash queues so it can be deleted later
2321  */
2322 
2323 void d_delete(struct dentry * dentry)
2324 {
2325 	struct inode *inode;
2326 	int isdir = 0;
2327 	/*
2328 	 * Are we the only user?
2329 	 */
2330 again:
2331 	spin_lock(&dentry->d_lock);
2332 	inode = dentry->d_inode;
2333 	isdir = S_ISDIR(inode->i_mode);
2334 	if (dentry->d_lockref.count == 1) {
2335 		if (!spin_trylock(&inode->i_lock)) {
2336 			spin_unlock(&dentry->d_lock);
2337 			cpu_relax();
2338 			goto again;
2339 		}
2340 		dentry->d_flags &= ~DCACHE_CANT_MOUNT;
2341 		dentry_unlink_inode(dentry);
2342 		fsnotify_nameremove(dentry, isdir);
2343 		return;
2344 	}
2345 
2346 	if (!d_unhashed(dentry))
2347 		__d_drop(dentry);
2348 
2349 	spin_unlock(&dentry->d_lock);
2350 
2351 	fsnotify_nameremove(dentry, isdir);
2352 }
2353 EXPORT_SYMBOL(d_delete);
2354 
2355 static void __d_rehash(struct dentry * entry, struct hlist_bl_head *b)
2356 {
2357 	BUG_ON(!d_unhashed(entry));
2358 	hlist_bl_lock(b);
2359 	hlist_bl_add_head_rcu(&entry->d_hash, b);
2360 	hlist_bl_unlock(b);
2361 }
2362 
2363 static void _d_rehash(struct dentry * entry)
2364 {
2365 	__d_rehash(entry, d_hash(entry->d_name.hash));
2366 }
2367 
2368 /**
2369  * d_rehash	- add an entry back to the hash
2370  * @entry: dentry to add to the hash
2371  *
2372  * Adds a dentry to the hash according to its name.
2373  */
2374 
2375 void d_rehash(struct dentry * entry)
2376 {
2377 	spin_lock(&entry->d_lock);
2378 	_d_rehash(entry);
2379 	spin_unlock(&entry->d_lock);
2380 }
2381 EXPORT_SYMBOL(d_rehash);
2382 
2383 static inline unsigned start_dir_add(struct inode *dir)
2384 {
2385 
2386 	for (;;) {
2387 		unsigned n = dir->i_dir_seq;
2388 		if (!(n & 1) && cmpxchg(&dir->i_dir_seq, n, n + 1) == n)
2389 			return n;
2390 		cpu_relax();
2391 	}
2392 }
2393 
2394 static inline void end_dir_add(struct inode *dir, unsigned n)
2395 {
2396 	smp_store_release(&dir->i_dir_seq, n + 2);
2397 }
2398 
2399 static void d_wait_lookup(struct dentry *dentry)
2400 {
2401 	if (d_in_lookup(dentry)) {
2402 		DECLARE_WAITQUEUE(wait, current);
2403 		add_wait_queue(dentry->d_wait, &wait);
2404 		do {
2405 			set_current_state(TASK_UNINTERRUPTIBLE);
2406 			spin_unlock(&dentry->d_lock);
2407 			schedule();
2408 			spin_lock(&dentry->d_lock);
2409 		} while (d_in_lookup(dentry));
2410 	}
2411 }
2412 
2413 struct dentry *d_alloc_parallel(struct dentry *parent,
2414 				const struct qstr *name,
2415 				wait_queue_head_t *wq)
2416 {
2417 	unsigned int hash = name->hash;
2418 	struct hlist_bl_head *b = in_lookup_hash(parent, hash);
2419 	struct hlist_bl_node *node;
2420 	struct dentry *new = d_alloc(parent, name);
2421 	struct dentry *dentry;
2422 	unsigned seq, r_seq, d_seq;
2423 
2424 	if (unlikely(!new))
2425 		return ERR_PTR(-ENOMEM);
2426 
2427 retry:
2428 	rcu_read_lock();
2429 	seq = smp_load_acquire(&parent->d_inode->i_dir_seq) & ~1;
2430 	r_seq = read_seqbegin(&rename_lock);
2431 	dentry = __d_lookup_rcu(parent, name, &d_seq);
2432 	if (unlikely(dentry)) {
2433 		if (!lockref_get_not_dead(&dentry->d_lockref)) {
2434 			rcu_read_unlock();
2435 			goto retry;
2436 		}
2437 		if (read_seqcount_retry(&dentry->d_seq, d_seq)) {
2438 			rcu_read_unlock();
2439 			dput(dentry);
2440 			goto retry;
2441 		}
2442 		rcu_read_unlock();
2443 		dput(new);
2444 		return dentry;
2445 	}
2446 	if (unlikely(read_seqretry(&rename_lock, r_seq))) {
2447 		rcu_read_unlock();
2448 		goto retry;
2449 	}
2450 	hlist_bl_lock(b);
2451 	if (unlikely(parent->d_inode->i_dir_seq != seq)) {
2452 		hlist_bl_unlock(b);
2453 		rcu_read_unlock();
2454 		goto retry;
2455 	}
2456 	/*
2457 	 * No changes for the parent since the beginning of d_lookup().
2458 	 * Since all removals from the chain happen with hlist_bl_lock(),
2459 	 * any potential in-lookup matches are going to stay here until
2460 	 * we unlock the chain.  All fields are stable in everything
2461 	 * we encounter.
2462 	 */
2463 	hlist_bl_for_each_entry(dentry, node, b, d_u.d_in_lookup_hash) {
2464 		if (dentry->d_name.hash != hash)
2465 			continue;
2466 		if (dentry->d_parent != parent)
2467 			continue;
2468 		if (!d_same_name(dentry, parent, name))
2469 			continue;
2470 		hlist_bl_unlock(b);
2471 		/* now we can try to grab a reference */
2472 		if (!lockref_get_not_dead(&dentry->d_lockref)) {
2473 			rcu_read_unlock();
2474 			goto retry;
2475 		}
2476 
2477 		rcu_read_unlock();
2478 		/*
2479 		 * somebody is likely to be still doing lookup for it;
2480 		 * wait for them to finish
2481 		 */
2482 		spin_lock(&dentry->d_lock);
2483 		d_wait_lookup(dentry);
2484 		/*
2485 		 * it's not in-lookup anymore; in principle we should repeat
2486 		 * everything from dcache lookup, but it's likely to be what
2487 		 * d_lookup() would've found anyway.  If it is, just return it;
2488 		 * otherwise we really have to repeat the whole thing.
2489 		 */
2490 		if (unlikely(dentry->d_name.hash != hash))
2491 			goto mismatch;
2492 		if (unlikely(dentry->d_parent != parent))
2493 			goto mismatch;
2494 		if (unlikely(d_unhashed(dentry)))
2495 			goto mismatch;
2496 		if (unlikely(!d_same_name(dentry, parent, name)))
2497 			goto mismatch;
2498 		/* OK, it *is* a hashed match; return it */
2499 		spin_unlock(&dentry->d_lock);
2500 		dput(new);
2501 		return dentry;
2502 	}
2503 	rcu_read_unlock();
2504 	/* we can't take ->d_lock here; it's OK, though. */
2505 	new->d_flags |= DCACHE_PAR_LOOKUP;
2506 	new->d_wait = wq;
2507 	hlist_bl_add_head_rcu(&new->d_u.d_in_lookup_hash, b);
2508 	hlist_bl_unlock(b);
2509 	return new;
2510 mismatch:
2511 	spin_unlock(&dentry->d_lock);
2512 	dput(dentry);
2513 	goto retry;
2514 }
2515 EXPORT_SYMBOL(d_alloc_parallel);
2516 
2517 void __d_lookup_done(struct dentry *dentry)
2518 {
2519 	struct hlist_bl_head *b = in_lookup_hash(dentry->d_parent,
2520 						 dentry->d_name.hash);
2521 	hlist_bl_lock(b);
2522 	dentry->d_flags &= ~DCACHE_PAR_LOOKUP;
2523 	__hlist_bl_del(&dentry->d_u.d_in_lookup_hash);
2524 	wake_up_all(dentry->d_wait);
2525 	dentry->d_wait = NULL;
2526 	hlist_bl_unlock(b);
2527 	INIT_HLIST_NODE(&dentry->d_u.d_alias);
2528 	INIT_LIST_HEAD(&dentry->d_lru);
2529 }
2530 EXPORT_SYMBOL(__d_lookup_done);
2531 
2532 /* inode->i_lock held if inode is non-NULL */
2533 
2534 static inline void __d_add(struct dentry *dentry, struct inode *inode)
2535 {
2536 	struct inode *dir = NULL;
2537 	unsigned n;
2538 	spin_lock(&dentry->d_lock);
2539 	if (unlikely(d_in_lookup(dentry))) {
2540 		dir = dentry->d_parent->d_inode;
2541 		n = start_dir_add(dir);
2542 		__d_lookup_done(dentry);
2543 	}
2544 	if (inode) {
2545 		unsigned add_flags = d_flags_for_inode(inode);
2546 		hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
2547 		raw_write_seqcount_begin(&dentry->d_seq);
2548 		__d_set_inode_and_type(dentry, inode, add_flags);
2549 		raw_write_seqcount_end(&dentry->d_seq);
2550 		fsnotify_update_flags(dentry);
2551 	}
2552 	_d_rehash(dentry);
2553 	if (dir)
2554 		end_dir_add(dir, n);
2555 	spin_unlock(&dentry->d_lock);
2556 	if (inode)
2557 		spin_unlock(&inode->i_lock);
2558 }
2559 
2560 /**
2561  * d_add - add dentry to hash queues
2562  * @entry: dentry to add
2563  * @inode: The inode to attach to this dentry
2564  *
2565  * This adds the entry to the hash queues and initializes @inode.
2566  * The entry was actually filled in earlier during d_alloc().
2567  */
2568 
2569 void d_add(struct dentry *entry, struct inode *inode)
2570 {
2571 	if (inode) {
2572 		security_d_instantiate(entry, inode);
2573 		spin_lock(&inode->i_lock);
2574 	}
2575 	__d_add(entry, inode);
2576 }
2577 EXPORT_SYMBOL(d_add);
2578 
2579 /**
2580  * d_exact_alias - find and hash an exact unhashed alias
2581  * @entry: dentry to add
2582  * @inode: The inode to go with this dentry
2583  *
2584  * If an unhashed dentry with the same name/parent and desired
2585  * inode already exists, hash and return it.  Otherwise, return
2586  * NULL.
2587  *
2588  * Parent directory should be locked.
2589  */
2590 struct dentry *d_exact_alias(struct dentry *entry, struct inode *inode)
2591 {
2592 	struct dentry *alias;
2593 	unsigned int hash = entry->d_name.hash;
2594 
2595 	spin_lock(&inode->i_lock);
2596 	hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
2597 		/*
2598 		 * Don't need alias->d_lock here, because aliases with
2599 		 * d_parent == entry->d_parent are not subject to name or
2600 		 * parent changes, because the parent inode i_mutex is held.
2601 		 */
2602 		if (alias->d_name.hash != hash)
2603 			continue;
2604 		if (alias->d_parent != entry->d_parent)
2605 			continue;
2606 		if (!d_same_name(alias, entry->d_parent, &entry->d_name))
2607 			continue;
2608 		spin_lock(&alias->d_lock);
2609 		if (!d_unhashed(alias)) {
2610 			spin_unlock(&alias->d_lock);
2611 			alias = NULL;
2612 		} else {
2613 			__dget_dlock(alias);
2614 			_d_rehash(alias);
2615 			spin_unlock(&alias->d_lock);
2616 		}
2617 		spin_unlock(&inode->i_lock);
2618 		return alias;
2619 	}
2620 	spin_unlock(&inode->i_lock);
2621 	return NULL;
2622 }
2623 EXPORT_SYMBOL(d_exact_alias);
2624 
2625 /**
2626  * dentry_update_name_case - update case insensitive dentry with a new name
2627  * @dentry: dentry to be updated
2628  * @name: new name
2629  *
2630  * Update a case insensitive dentry with new case of name.
2631  *
2632  * dentry must have been returned by d_lookup with name @name. Old and new
2633  * name lengths must match (ie. no d_compare which allows mismatched name
2634  * lengths).
2635  *
2636  * Parent inode i_mutex must be held over d_lookup and into this call (to
2637  * keep renames and concurrent inserts, and readdir(2) away).
2638  */
2639 void dentry_update_name_case(struct dentry *dentry, struct qstr *name)
2640 {
2641 	BUG_ON(!inode_is_locked(dentry->d_parent->d_inode));
2642 	BUG_ON(dentry->d_name.len != name->len); /* d_lookup gives this */
2643 
2644 	spin_lock(&dentry->d_lock);
2645 	write_seqcount_begin(&dentry->d_seq);
2646 	memcpy((unsigned char *)dentry->d_name.name, name->name, name->len);
2647 	write_seqcount_end(&dentry->d_seq);
2648 	spin_unlock(&dentry->d_lock);
2649 }
2650 EXPORT_SYMBOL(dentry_update_name_case);
2651 
2652 static void swap_names(struct dentry *dentry, struct dentry *target)
2653 {
2654 	if (unlikely(dname_external(target))) {
2655 		if (unlikely(dname_external(dentry))) {
2656 			/*
2657 			 * Both external: swap the pointers
2658 			 */
2659 			swap(target->d_name.name, dentry->d_name.name);
2660 		} else {
2661 			/*
2662 			 * dentry:internal, target:external.  Steal target's
2663 			 * storage and make target internal.
2664 			 */
2665 			memcpy(target->d_iname, dentry->d_name.name,
2666 					dentry->d_name.len + 1);
2667 			dentry->d_name.name = target->d_name.name;
2668 			target->d_name.name = target->d_iname;
2669 		}
2670 	} else {
2671 		if (unlikely(dname_external(dentry))) {
2672 			/*
2673 			 * dentry:external, target:internal.  Give dentry's
2674 			 * storage to target and make dentry internal
2675 			 */
2676 			memcpy(dentry->d_iname, target->d_name.name,
2677 					target->d_name.len + 1);
2678 			target->d_name.name = dentry->d_name.name;
2679 			dentry->d_name.name = dentry->d_iname;
2680 		} else {
2681 			/*
2682 			 * Both are internal.
2683 			 */
2684 			unsigned int i;
2685 			BUILD_BUG_ON(!IS_ALIGNED(DNAME_INLINE_LEN, sizeof(long)));
2686 			kmemcheck_mark_initialized(dentry->d_iname, DNAME_INLINE_LEN);
2687 			kmemcheck_mark_initialized(target->d_iname, DNAME_INLINE_LEN);
2688 			for (i = 0; i < DNAME_INLINE_LEN / sizeof(long); i++) {
2689 				swap(((long *) &dentry->d_iname)[i],
2690 				     ((long *) &target->d_iname)[i]);
2691 			}
2692 		}
2693 	}
2694 	swap(dentry->d_name.hash_len, target->d_name.hash_len);
2695 }
2696 
2697 static void copy_name(struct dentry *dentry, struct dentry *target)
2698 {
2699 	struct external_name *old_name = NULL;
2700 	if (unlikely(dname_external(dentry)))
2701 		old_name = external_name(dentry);
2702 	if (unlikely(dname_external(target))) {
2703 		atomic_inc(&external_name(target)->u.count);
2704 		dentry->d_name = target->d_name;
2705 	} else {
2706 		memcpy(dentry->d_iname, target->d_name.name,
2707 				target->d_name.len + 1);
2708 		dentry->d_name.name = dentry->d_iname;
2709 		dentry->d_name.hash_len = target->d_name.hash_len;
2710 	}
2711 	if (old_name && likely(atomic_dec_and_test(&old_name->u.count)))
2712 		kfree_rcu(old_name, u.head);
2713 }
2714 
2715 static void dentry_lock_for_move(struct dentry *dentry, struct dentry *target)
2716 {
2717 	/*
2718 	 * XXXX: do we really need to take target->d_lock?
2719 	 */
2720 	if (IS_ROOT(dentry) || dentry->d_parent == target->d_parent)
2721 		spin_lock(&target->d_parent->d_lock);
2722 	else {
2723 		if (d_ancestor(dentry->d_parent, target->d_parent)) {
2724 			spin_lock(&dentry->d_parent->d_lock);
2725 			spin_lock_nested(&target->d_parent->d_lock,
2726 						DENTRY_D_LOCK_NESTED);
2727 		} else {
2728 			spin_lock(&target->d_parent->d_lock);
2729 			spin_lock_nested(&dentry->d_parent->d_lock,
2730 						DENTRY_D_LOCK_NESTED);
2731 		}
2732 	}
2733 	if (target < dentry) {
2734 		spin_lock_nested(&target->d_lock, 2);
2735 		spin_lock_nested(&dentry->d_lock, 3);
2736 	} else {
2737 		spin_lock_nested(&dentry->d_lock, 2);
2738 		spin_lock_nested(&target->d_lock, 3);
2739 	}
2740 }
2741 
2742 static void dentry_unlock_for_move(struct dentry *dentry, struct dentry *target)
2743 {
2744 	if (target->d_parent != dentry->d_parent)
2745 		spin_unlock(&dentry->d_parent->d_lock);
2746 	if (target->d_parent != target)
2747 		spin_unlock(&target->d_parent->d_lock);
2748 	spin_unlock(&target->d_lock);
2749 	spin_unlock(&dentry->d_lock);
2750 }
2751 
2752 /*
2753  * When switching names, the actual string doesn't strictly have to
2754  * be preserved in the target - because we're dropping the target
2755  * anyway. As such, we can just do a simple memcpy() to copy over
2756  * the new name before we switch, unless we are going to rehash
2757  * it.  Note that if we *do* unhash the target, we are not allowed
2758  * to rehash it without giving it a new name/hash key - whether
2759  * we swap or overwrite the names here, resulting name won't match
2760  * the reality in filesystem; it's only there for d_path() purposes.
2761  * Note that all of this is happening under rename_lock, so the
2762  * any hash lookup seeing it in the middle of manipulations will
2763  * be discarded anyway.  So we do not care what happens to the hash
2764  * key in that case.
2765  */
2766 /*
2767  * __d_move - move a dentry
2768  * @dentry: entry to move
2769  * @target: new dentry
2770  * @exchange: exchange the two dentries
2771  *
2772  * Update the dcache to reflect the move of a file name. Negative
2773  * dcache entries should not be moved in this way. Caller must hold
2774  * rename_lock, the i_mutex of the source and target directories,
2775  * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
2776  */
2777 static void __d_move(struct dentry *dentry, struct dentry *target,
2778 		     bool exchange)
2779 {
2780 	struct inode *dir = NULL;
2781 	unsigned n;
2782 	if (!dentry->d_inode)
2783 		printk(KERN_WARNING "VFS: moving negative dcache entry\n");
2784 
2785 	BUG_ON(d_ancestor(dentry, target));
2786 	BUG_ON(d_ancestor(target, dentry));
2787 
2788 	dentry_lock_for_move(dentry, target);
2789 	if (unlikely(d_in_lookup(target))) {
2790 		dir = target->d_parent->d_inode;
2791 		n = start_dir_add(dir);
2792 		__d_lookup_done(target);
2793 	}
2794 
2795 	write_seqcount_begin(&dentry->d_seq);
2796 	write_seqcount_begin_nested(&target->d_seq, DENTRY_D_LOCK_NESTED);
2797 
2798 	/* __d_drop does write_seqcount_barrier, but they're OK to nest. */
2799 
2800 	/*
2801 	 * Move the dentry to the target hash queue. Don't bother checking
2802 	 * for the same hash queue because of how unlikely it is.
2803 	 */
2804 	__d_drop(dentry);
2805 	__d_rehash(dentry, d_hash(target->d_name.hash));
2806 
2807 	/*
2808 	 * Unhash the target (d_delete() is not usable here).  If exchanging
2809 	 * the two dentries, then rehash onto the other's hash queue.
2810 	 */
2811 	__d_drop(target);
2812 	if (exchange) {
2813 		__d_rehash(target, d_hash(dentry->d_name.hash));
2814 	}
2815 
2816 	/* Switch the names.. */
2817 	if (exchange)
2818 		swap_names(dentry, target);
2819 	else
2820 		copy_name(dentry, target);
2821 
2822 	/* ... and switch them in the tree */
2823 	if (IS_ROOT(dentry)) {
2824 		/* splicing a tree */
2825 		dentry->d_flags |= DCACHE_RCUACCESS;
2826 		dentry->d_parent = target->d_parent;
2827 		target->d_parent = target;
2828 		list_del_init(&target->d_child);
2829 		list_move(&dentry->d_child, &dentry->d_parent->d_subdirs);
2830 	} else {
2831 		/* swapping two dentries */
2832 		swap(dentry->d_parent, target->d_parent);
2833 		list_move(&target->d_child, &target->d_parent->d_subdirs);
2834 		list_move(&dentry->d_child, &dentry->d_parent->d_subdirs);
2835 		if (exchange)
2836 			fsnotify_update_flags(target);
2837 		fsnotify_update_flags(dentry);
2838 	}
2839 
2840 	write_seqcount_end(&target->d_seq);
2841 	write_seqcount_end(&dentry->d_seq);
2842 
2843 	if (dir)
2844 		end_dir_add(dir, n);
2845 	dentry_unlock_for_move(dentry, target);
2846 }
2847 
2848 /*
2849  * d_move - move a dentry
2850  * @dentry: entry to move
2851  * @target: new dentry
2852  *
2853  * Update the dcache to reflect the move of a file name. Negative
2854  * dcache entries should not be moved in this way. See the locking
2855  * requirements for __d_move.
2856  */
2857 void d_move(struct dentry *dentry, struct dentry *target)
2858 {
2859 	write_seqlock(&rename_lock);
2860 	__d_move(dentry, target, false);
2861 	write_sequnlock(&rename_lock);
2862 }
2863 EXPORT_SYMBOL(d_move);
2864 
2865 /*
2866  * d_exchange - exchange two dentries
2867  * @dentry1: first dentry
2868  * @dentry2: second dentry
2869  */
2870 void d_exchange(struct dentry *dentry1, struct dentry *dentry2)
2871 {
2872 	write_seqlock(&rename_lock);
2873 
2874 	WARN_ON(!dentry1->d_inode);
2875 	WARN_ON(!dentry2->d_inode);
2876 	WARN_ON(IS_ROOT(dentry1));
2877 	WARN_ON(IS_ROOT(dentry2));
2878 
2879 	__d_move(dentry1, dentry2, true);
2880 
2881 	write_sequnlock(&rename_lock);
2882 }
2883 
2884 /**
2885  * d_ancestor - search for an ancestor
2886  * @p1: ancestor dentry
2887  * @p2: child dentry
2888  *
2889  * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2890  * an ancestor of p2, else NULL.
2891  */
2892 struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
2893 {
2894 	struct dentry *p;
2895 
2896 	for (p = p2; !IS_ROOT(p); p = p->d_parent) {
2897 		if (p->d_parent == p1)
2898 			return p;
2899 	}
2900 	return NULL;
2901 }
2902 
2903 /*
2904  * This helper attempts to cope with remotely renamed directories
2905  *
2906  * It assumes that the caller is already holding
2907  * dentry->d_parent->d_inode->i_mutex, and rename_lock
2908  *
2909  * Note: If ever the locking in lock_rename() changes, then please
2910  * remember to update this too...
2911  */
2912 static int __d_unalias(struct inode *inode,
2913 		struct dentry *dentry, struct dentry *alias)
2914 {
2915 	struct mutex *m1 = NULL;
2916 	struct rw_semaphore *m2 = NULL;
2917 	int ret = -ESTALE;
2918 
2919 	/* If alias and dentry share a parent, then no extra locks required */
2920 	if (alias->d_parent == dentry->d_parent)
2921 		goto out_unalias;
2922 
2923 	/* See lock_rename() */
2924 	if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
2925 		goto out_err;
2926 	m1 = &dentry->d_sb->s_vfs_rename_mutex;
2927 	if (!inode_trylock_shared(alias->d_parent->d_inode))
2928 		goto out_err;
2929 	m2 = &alias->d_parent->d_inode->i_rwsem;
2930 out_unalias:
2931 	__d_move(alias, dentry, false);
2932 	ret = 0;
2933 out_err:
2934 	if (m2)
2935 		up_read(m2);
2936 	if (m1)
2937 		mutex_unlock(m1);
2938 	return ret;
2939 }
2940 
2941 /**
2942  * d_splice_alias - splice a disconnected dentry into the tree if one exists
2943  * @inode:  the inode which may have a disconnected dentry
2944  * @dentry: a negative dentry which we want to point to the inode.
2945  *
2946  * If inode is a directory and has an IS_ROOT alias, then d_move that in
2947  * place of the given dentry and return it, else simply d_add the inode
2948  * to the dentry and return NULL.
2949  *
2950  * If a non-IS_ROOT directory is found, the filesystem is corrupt, and
2951  * we should error out: directories can't have multiple aliases.
2952  *
2953  * This is needed in the lookup routine of any filesystem that is exportable
2954  * (via knfsd) so that we can build dcache paths to directories effectively.
2955  *
2956  * If a dentry was found and moved, then it is returned.  Otherwise NULL
2957  * is returned.  This matches the expected return value of ->lookup.
2958  *
2959  * Cluster filesystems may call this function with a negative, hashed dentry.
2960  * In that case, we know that the inode will be a regular file, and also this
2961  * will only occur during atomic_open. So we need to check for the dentry
2962  * being already hashed only in the final case.
2963  */
2964 struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
2965 {
2966 	if (IS_ERR(inode))
2967 		return ERR_CAST(inode);
2968 
2969 	BUG_ON(!d_unhashed(dentry));
2970 
2971 	if (!inode)
2972 		goto out;
2973 
2974 	security_d_instantiate(dentry, inode);
2975 	spin_lock(&inode->i_lock);
2976 	if (S_ISDIR(inode->i_mode)) {
2977 		struct dentry *new = __d_find_any_alias(inode);
2978 		if (unlikely(new)) {
2979 			/* The reference to new ensures it remains an alias */
2980 			spin_unlock(&inode->i_lock);
2981 			write_seqlock(&rename_lock);
2982 			if (unlikely(d_ancestor(new, dentry))) {
2983 				write_sequnlock(&rename_lock);
2984 				dput(new);
2985 				new = ERR_PTR(-ELOOP);
2986 				pr_warn_ratelimited(
2987 					"VFS: Lookup of '%s' in %s %s"
2988 					" would have caused loop\n",
2989 					dentry->d_name.name,
2990 					inode->i_sb->s_type->name,
2991 					inode->i_sb->s_id);
2992 			} else if (!IS_ROOT(new)) {
2993 				int err = __d_unalias(inode, dentry, new);
2994 				write_sequnlock(&rename_lock);
2995 				if (err) {
2996 					dput(new);
2997 					new = ERR_PTR(err);
2998 				}
2999 			} else {
3000 				__d_move(new, dentry, false);
3001 				write_sequnlock(&rename_lock);
3002 			}
3003 			iput(inode);
3004 			return new;
3005 		}
3006 	}
3007 out:
3008 	__d_add(dentry, inode);
3009 	return NULL;
3010 }
3011 EXPORT_SYMBOL(d_splice_alias);
3012 
3013 static int prepend(char **buffer, int *buflen, const char *str, int namelen)
3014 {
3015 	*buflen -= namelen;
3016 	if (*buflen < 0)
3017 		return -ENAMETOOLONG;
3018 	*buffer -= namelen;
3019 	memcpy(*buffer, str, namelen);
3020 	return 0;
3021 }
3022 
3023 /**
3024  * prepend_name - prepend a pathname in front of current buffer pointer
3025  * @buffer: buffer pointer
3026  * @buflen: allocated length of the buffer
3027  * @name:   name string and length qstr structure
3028  *
3029  * With RCU path tracing, it may race with d_move(). Use ACCESS_ONCE() to
3030  * make sure that either the old or the new name pointer and length are
3031  * fetched. However, there may be mismatch between length and pointer.
3032  * The length cannot be trusted, we need to copy it byte-by-byte until
3033  * the length is reached or a null byte is found. It also prepends "/" at
3034  * the beginning of the name. The sequence number check at the caller will
3035  * retry it again when a d_move() does happen. So any garbage in the buffer
3036  * due to mismatched pointer and length will be discarded.
3037  *
3038  * Data dependency barrier is needed to make sure that we see that terminating
3039  * NUL.  Alpha strikes again, film at 11...
3040  */
3041 static int prepend_name(char **buffer, int *buflen, struct qstr *name)
3042 {
3043 	const char *dname = ACCESS_ONCE(name->name);
3044 	u32 dlen = ACCESS_ONCE(name->len);
3045 	char *p;
3046 
3047 	smp_read_barrier_depends();
3048 
3049 	*buflen -= dlen + 1;
3050 	if (*buflen < 0)
3051 		return -ENAMETOOLONG;
3052 	p = *buffer -= dlen + 1;
3053 	*p++ = '/';
3054 	while (dlen--) {
3055 		char c = *dname++;
3056 		if (!c)
3057 			break;
3058 		*p++ = c;
3059 	}
3060 	return 0;
3061 }
3062 
3063 /**
3064  * prepend_path - Prepend path string to a buffer
3065  * @path: the dentry/vfsmount to report
3066  * @root: root vfsmnt/dentry
3067  * @buffer: pointer to the end of the buffer
3068  * @buflen: pointer to buffer length
3069  *
3070  * The function will first try to write out the pathname without taking any
3071  * lock other than the RCU read lock to make sure that dentries won't go away.
3072  * It only checks the sequence number of the global rename_lock as any change
3073  * in the dentry's d_seq will be preceded by changes in the rename_lock
3074  * sequence number. If the sequence number had been changed, it will restart
3075  * the whole pathname back-tracing sequence again by taking the rename_lock.
3076  * In this case, there is no need to take the RCU read lock as the recursive
3077  * parent pointer references will keep the dentry chain alive as long as no
3078  * rename operation is performed.
3079  */
3080 static int prepend_path(const struct path *path,
3081 			const struct path *root,
3082 			char **buffer, int *buflen)
3083 {
3084 	struct dentry *dentry;
3085 	struct vfsmount *vfsmnt;
3086 	struct mount *mnt;
3087 	int error = 0;
3088 	unsigned seq, m_seq = 0;
3089 	char *bptr;
3090 	int blen;
3091 
3092 	rcu_read_lock();
3093 restart_mnt:
3094 	read_seqbegin_or_lock(&mount_lock, &m_seq);
3095 	seq = 0;
3096 	rcu_read_lock();
3097 restart:
3098 	bptr = *buffer;
3099 	blen = *buflen;
3100 	error = 0;
3101 	dentry = path->dentry;
3102 	vfsmnt = path->mnt;
3103 	mnt = real_mount(vfsmnt);
3104 	read_seqbegin_or_lock(&rename_lock, &seq);
3105 	while (dentry != root->dentry || vfsmnt != root->mnt) {
3106 		struct dentry * parent;
3107 
3108 		if (dentry == vfsmnt->mnt_root || IS_ROOT(dentry)) {
3109 			struct mount *parent = ACCESS_ONCE(mnt->mnt_parent);
3110 			/* Escaped? */
3111 			if (dentry != vfsmnt->mnt_root) {
3112 				bptr = *buffer;
3113 				blen = *buflen;
3114 				error = 3;
3115 				break;
3116 			}
3117 			/* Global root? */
3118 			if (mnt != parent) {
3119 				dentry = ACCESS_ONCE(mnt->mnt_mountpoint);
3120 				mnt = parent;
3121 				vfsmnt = &mnt->mnt;
3122 				continue;
3123 			}
3124 			if (!error)
3125 				error = is_mounted(vfsmnt) ? 1 : 2;
3126 			break;
3127 		}
3128 		parent = dentry->d_parent;
3129 		prefetch(parent);
3130 		error = prepend_name(&bptr, &blen, &dentry->d_name);
3131 		if (error)
3132 			break;
3133 
3134 		dentry = parent;
3135 	}
3136 	if (!(seq & 1))
3137 		rcu_read_unlock();
3138 	if (need_seqretry(&rename_lock, seq)) {
3139 		seq = 1;
3140 		goto restart;
3141 	}
3142 	done_seqretry(&rename_lock, seq);
3143 
3144 	if (!(m_seq & 1))
3145 		rcu_read_unlock();
3146 	if (need_seqretry(&mount_lock, m_seq)) {
3147 		m_seq = 1;
3148 		goto restart_mnt;
3149 	}
3150 	done_seqretry(&mount_lock, m_seq);
3151 
3152 	if (error >= 0 && bptr == *buffer) {
3153 		if (--blen < 0)
3154 			error = -ENAMETOOLONG;
3155 		else
3156 			*--bptr = '/';
3157 	}
3158 	*buffer = bptr;
3159 	*buflen = blen;
3160 	return error;
3161 }
3162 
3163 /**
3164  * __d_path - return the path of a dentry
3165  * @path: the dentry/vfsmount to report
3166  * @root: root vfsmnt/dentry
3167  * @buf: buffer to return value in
3168  * @buflen: buffer length
3169  *
3170  * Convert a dentry into an ASCII path name.
3171  *
3172  * Returns a pointer into the buffer or an error code if the
3173  * path was too long.
3174  *
3175  * "buflen" should be positive.
3176  *
3177  * If the path is not reachable from the supplied root, return %NULL.
3178  */
3179 char *__d_path(const struct path *path,
3180 	       const struct path *root,
3181 	       char *buf, int buflen)
3182 {
3183 	char *res = buf + buflen;
3184 	int error;
3185 
3186 	prepend(&res, &buflen, "\0", 1);
3187 	error = prepend_path(path, root, &res, &buflen);
3188 
3189 	if (error < 0)
3190 		return ERR_PTR(error);
3191 	if (error > 0)
3192 		return NULL;
3193 	return res;
3194 }
3195 
3196 char *d_absolute_path(const struct path *path,
3197 	       char *buf, int buflen)
3198 {
3199 	struct path root = {};
3200 	char *res = buf + buflen;
3201 	int error;
3202 
3203 	prepend(&res, &buflen, "\0", 1);
3204 	error = prepend_path(path, &root, &res, &buflen);
3205 
3206 	if (error > 1)
3207 		error = -EINVAL;
3208 	if (error < 0)
3209 		return ERR_PTR(error);
3210 	return res;
3211 }
3212 
3213 /*
3214  * same as __d_path but appends "(deleted)" for unlinked files.
3215  */
3216 static int path_with_deleted(const struct path *path,
3217 			     const struct path *root,
3218 			     char **buf, int *buflen)
3219 {
3220 	prepend(buf, buflen, "\0", 1);
3221 	if (d_unlinked(path->dentry)) {
3222 		int error = prepend(buf, buflen, " (deleted)", 10);
3223 		if (error)
3224 			return error;
3225 	}
3226 
3227 	return prepend_path(path, root, buf, buflen);
3228 }
3229 
3230 static int prepend_unreachable(char **buffer, int *buflen)
3231 {
3232 	return prepend(buffer, buflen, "(unreachable)", 13);
3233 }
3234 
3235 static void get_fs_root_rcu(struct fs_struct *fs, struct path *root)
3236 {
3237 	unsigned seq;
3238 
3239 	do {
3240 		seq = read_seqcount_begin(&fs->seq);
3241 		*root = fs->root;
3242 	} while (read_seqcount_retry(&fs->seq, seq));
3243 }
3244 
3245 /**
3246  * d_path - return the path of a dentry
3247  * @path: path to report
3248  * @buf: buffer to return value in
3249  * @buflen: buffer length
3250  *
3251  * Convert a dentry into an ASCII path name. If the entry has been deleted
3252  * the string " (deleted)" is appended. Note that this is ambiguous.
3253  *
3254  * Returns a pointer into the buffer or an error code if the path was
3255  * too long. Note: Callers should use the returned pointer, not the passed
3256  * in buffer, to use the name! The implementation often starts at an offset
3257  * into the buffer, and may leave 0 bytes at the start.
3258  *
3259  * "buflen" should be positive.
3260  */
3261 char *d_path(const struct path *path, char *buf, int buflen)
3262 {
3263 	char *res = buf + buflen;
3264 	struct path root;
3265 	int error;
3266 
3267 	/*
3268 	 * We have various synthetic filesystems that never get mounted.  On
3269 	 * these filesystems dentries are never used for lookup purposes, and
3270 	 * thus don't need to be hashed.  They also don't need a name until a
3271 	 * user wants to identify the object in /proc/pid/fd/.  The little hack
3272 	 * below allows us to generate a name for these objects on demand:
3273 	 *
3274 	 * Some pseudo inodes are mountable.  When they are mounted
3275 	 * path->dentry == path->mnt->mnt_root.  In that case don't call d_dname
3276 	 * and instead have d_path return the mounted path.
3277 	 */
3278 	if (path->dentry->d_op && path->dentry->d_op->d_dname &&
3279 	    (!IS_ROOT(path->dentry) || path->dentry != path->mnt->mnt_root))
3280 		return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
3281 
3282 	rcu_read_lock();
3283 	get_fs_root_rcu(current->fs, &root);
3284 	error = path_with_deleted(path, &root, &res, &buflen);
3285 	rcu_read_unlock();
3286 
3287 	if (error < 0)
3288 		res = ERR_PTR(error);
3289 	return res;
3290 }
3291 EXPORT_SYMBOL(d_path);
3292 
3293 /*
3294  * Helper function for dentry_operations.d_dname() members
3295  */
3296 char *dynamic_dname(struct dentry *dentry, char *buffer, int buflen,
3297 			const char *fmt, ...)
3298 {
3299 	va_list args;
3300 	char temp[64];
3301 	int sz;
3302 
3303 	va_start(args, fmt);
3304 	sz = vsnprintf(temp, sizeof(temp), fmt, args) + 1;
3305 	va_end(args);
3306 
3307 	if (sz > sizeof(temp) || sz > buflen)
3308 		return ERR_PTR(-ENAMETOOLONG);
3309 
3310 	buffer += buflen - sz;
3311 	return memcpy(buffer, temp, sz);
3312 }
3313 
3314 char *simple_dname(struct dentry *dentry, char *buffer, int buflen)
3315 {
3316 	char *end = buffer + buflen;
3317 	/* these dentries are never renamed, so d_lock is not needed */
3318 	if (prepend(&end, &buflen, " (deleted)", 11) ||
3319 	    prepend(&end, &buflen, dentry->d_name.name, dentry->d_name.len) ||
3320 	    prepend(&end, &buflen, "/", 1))
3321 		end = ERR_PTR(-ENAMETOOLONG);
3322 	return end;
3323 }
3324 EXPORT_SYMBOL(simple_dname);
3325 
3326 /*
3327  * Write full pathname from the root of the filesystem into the buffer.
3328  */
3329 static char *__dentry_path(struct dentry *d, char *buf, int buflen)
3330 {
3331 	struct dentry *dentry;
3332 	char *end, *retval;
3333 	int len, seq = 0;
3334 	int error = 0;
3335 
3336 	if (buflen < 2)
3337 		goto Elong;
3338 
3339 	rcu_read_lock();
3340 restart:
3341 	dentry = d;
3342 	end = buf + buflen;
3343 	len = buflen;
3344 	prepend(&end, &len, "\0", 1);
3345 	/* Get '/' right */
3346 	retval = end-1;
3347 	*retval = '/';
3348 	read_seqbegin_or_lock(&rename_lock, &seq);
3349 	while (!IS_ROOT(dentry)) {
3350 		struct dentry *parent = dentry->d_parent;
3351 
3352 		prefetch(parent);
3353 		error = prepend_name(&end, &len, &dentry->d_name);
3354 		if (error)
3355 			break;
3356 
3357 		retval = end;
3358 		dentry = parent;
3359 	}
3360 	if (!(seq & 1))
3361 		rcu_read_unlock();
3362 	if (need_seqretry(&rename_lock, seq)) {
3363 		seq = 1;
3364 		goto restart;
3365 	}
3366 	done_seqretry(&rename_lock, seq);
3367 	if (error)
3368 		goto Elong;
3369 	return retval;
3370 Elong:
3371 	return ERR_PTR(-ENAMETOOLONG);
3372 }
3373 
3374 char *dentry_path_raw(struct dentry *dentry, char *buf, int buflen)
3375 {
3376 	return __dentry_path(dentry, buf, buflen);
3377 }
3378 EXPORT_SYMBOL(dentry_path_raw);
3379 
3380 char *dentry_path(struct dentry *dentry, char *buf, int buflen)
3381 {
3382 	char *p = NULL;
3383 	char *retval;
3384 
3385 	if (d_unlinked(dentry)) {
3386 		p = buf + buflen;
3387 		if (prepend(&p, &buflen, "//deleted", 10) != 0)
3388 			goto Elong;
3389 		buflen++;
3390 	}
3391 	retval = __dentry_path(dentry, buf, buflen);
3392 	if (!IS_ERR(retval) && p)
3393 		*p = '/';	/* restore '/' overriden with '\0' */
3394 	return retval;
3395 Elong:
3396 	return ERR_PTR(-ENAMETOOLONG);
3397 }
3398 
3399 static void get_fs_root_and_pwd_rcu(struct fs_struct *fs, struct path *root,
3400 				    struct path *pwd)
3401 {
3402 	unsigned seq;
3403 
3404 	do {
3405 		seq = read_seqcount_begin(&fs->seq);
3406 		*root = fs->root;
3407 		*pwd = fs->pwd;
3408 	} while (read_seqcount_retry(&fs->seq, seq));
3409 }
3410 
3411 /*
3412  * NOTE! The user-level library version returns a
3413  * character pointer. The kernel system call just
3414  * returns the length of the buffer filled (which
3415  * includes the ending '\0' character), or a negative
3416  * error value. So libc would do something like
3417  *
3418  *	char *getcwd(char * buf, size_t size)
3419  *	{
3420  *		int retval;
3421  *
3422  *		retval = sys_getcwd(buf, size);
3423  *		if (retval >= 0)
3424  *			return buf;
3425  *		errno = -retval;
3426  *		return NULL;
3427  *	}
3428  */
3429 SYSCALL_DEFINE2(getcwd, char __user *, buf, unsigned long, size)
3430 {
3431 	int error;
3432 	struct path pwd, root;
3433 	char *page = __getname();
3434 
3435 	if (!page)
3436 		return -ENOMEM;
3437 
3438 	rcu_read_lock();
3439 	get_fs_root_and_pwd_rcu(current->fs, &root, &pwd);
3440 
3441 	error = -ENOENT;
3442 	if (!d_unlinked(pwd.dentry)) {
3443 		unsigned long len;
3444 		char *cwd = page + PATH_MAX;
3445 		int buflen = PATH_MAX;
3446 
3447 		prepend(&cwd, &buflen, "\0", 1);
3448 		error = prepend_path(&pwd, &root, &cwd, &buflen);
3449 		rcu_read_unlock();
3450 
3451 		if (error < 0)
3452 			goto out;
3453 
3454 		/* Unreachable from current root */
3455 		if (error > 0) {
3456 			error = prepend_unreachable(&cwd, &buflen);
3457 			if (error)
3458 				goto out;
3459 		}
3460 
3461 		error = -ERANGE;
3462 		len = PATH_MAX + page - cwd;
3463 		if (len <= size) {
3464 			error = len;
3465 			if (copy_to_user(buf, cwd, len))
3466 				error = -EFAULT;
3467 		}
3468 	} else {
3469 		rcu_read_unlock();
3470 	}
3471 
3472 out:
3473 	__putname(page);
3474 	return error;
3475 }
3476 
3477 /*
3478  * Test whether new_dentry is a subdirectory of old_dentry.
3479  *
3480  * Trivially implemented using the dcache structure
3481  */
3482 
3483 /**
3484  * is_subdir - is new dentry a subdirectory of old_dentry
3485  * @new_dentry: new dentry
3486  * @old_dentry: old dentry
3487  *
3488  * Returns true if new_dentry is a subdirectory of the parent (at any depth).
3489  * Returns false otherwise.
3490  * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
3491  */
3492 
3493 bool is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
3494 {
3495 	bool result;
3496 	unsigned seq;
3497 
3498 	if (new_dentry == old_dentry)
3499 		return true;
3500 
3501 	do {
3502 		/* for restarting inner loop in case of seq retry */
3503 		seq = read_seqbegin(&rename_lock);
3504 		/*
3505 		 * Need rcu_readlock to protect against the d_parent trashing
3506 		 * due to d_move
3507 		 */
3508 		rcu_read_lock();
3509 		if (d_ancestor(old_dentry, new_dentry))
3510 			result = true;
3511 		else
3512 			result = false;
3513 		rcu_read_unlock();
3514 	} while (read_seqretry(&rename_lock, seq));
3515 
3516 	return result;
3517 }
3518 
3519 static enum d_walk_ret d_genocide_kill(void *data, struct dentry *dentry)
3520 {
3521 	struct dentry *root = data;
3522 	if (dentry != root) {
3523 		if (d_unhashed(dentry) || !dentry->d_inode)
3524 			return D_WALK_SKIP;
3525 
3526 		if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
3527 			dentry->d_flags |= DCACHE_GENOCIDE;
3528 			dentry->d_lockref.count--;
3529 		}
3530 	}
3531 	return D_WALK_CONTINUE;
3532 }
3533 
3534 void d_genocide(struct dentry *parent)
3535 {
3536 	d_walk(parent, parent, d_genocide_kill, NULL);
3537 }
3538 
3539 void d_tmpfile(struct dentry *dentry, struct inode *inode)
3540 {
3541 	inode_dec_link_count(inode);
3542 	BUG_ON(dentry->d_name.name != dentry->d_iname ||
3543 		!hlist_unhashed(&dentry->d_u.d_alias) ||
3544 		!d_unlinked(dentry));
3545 	spin_lock(&dentry->d_parent->d_lock);
3546 	spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
3547 	dentry->d_name.len = sprintf(dentry->d_iname, "#%llu",
3548 				(unsigned long long)inode->i_ino);
3549 	spin_unlock(&dentry->d_lock);
3550 	spin_unlock(&dentry->d_parent->d_lock);
3551 	d_instantiate(dentry, inode);
3552 }
3553 EXPORT_SYMBOL(d_tmpfile);
3554 
3555 static __initdata unsigned long dhash_entries;
3556 static int __init set_dhash_entries(char *str)
3557 {
3558 	if (!str)
3559 		return 0;
3560 	dhash_entries = simple_strtoul(str, &str, 0);
3561 	return 1;
3562 }
3563 __setup("dhash_entries=", set_dhash_entries);
3564 
3565 static void __init dcache_init_early(void)
3566 {
3567 	unsigned int loop;
3568 
3569 	/* If hashes are distributed across NUMA nodes, defer
3570 	 * hash allocation until vmalloc space is available.
3571 	 */
3572 	if (hashdist)
3573 		return;
3574 
3575 	dentry_hashtable =
3576 		alloc_large_system_hash("Dentry cache",
3577 					sizeof(struct hlist_bl_head),
3578 					dhash_entries,
3579 					13,
3580 					HASH_EARLY,
3581 					&d_hash_shift,
3582 					&d_hash_mask,
3583 					0,
3584 					0);
3585 
3586 	for (loop = 0; loop < (1U << d_hash_shift); loop++)
3587 		INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
3588 }
3589 
3590 static void __init dcache_init(void)
3591 {
3592 	unsigned int loop;
3593 
3594 	/*
3595 	 * A constructor could be added for stable state like the lists,
3596 	 * but it is probably not worth it because of the cache nature
3597 	 * of the dcache.
3598 	 */
3599 	dentry_cache = KMEM_CACHE(dentry,
3600 		SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD|SLAB_ACCOUNT);
3601 
3602 	/* Hash may have been set up in dcache_init_early */
3603 	if (!hashdist)
3604 		return;
3605 
3606 	dentry_hashtable =
3607 		alloc_large_system_hash("Dentry cache",
3608 					sizeof(struct hlist_bl_head),
3609 					dhash_entries,
3610 					13,
3611 					0,
3612 					&d_hash_shift,
3613 					&d_hash_mask,
3614 					0,
3615 					0);
3616 
3617 	for (loop = 0; loop < (1U << d_hash_shift); loop++)
3618 		INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
3619 }
3620 
3621 /* SLAB cache for __getname() consumers */
3622 struct kmem_cache *names_cachep __read_mostly;
3623 EXPORT_SYMBOL(names_cachep);
3624 
3625 EXPORT_SYMBOL(d_genocide);
3626 
3627 void __init vfs_caches_init_early(void)
3628 {
3629 	dcache_init_early();
3630 	inode_init_early();
3631 }
3632 
3633 void __init vfs_caches_init(void)
3634 {
3635 	names_cachep = kmem_cache_create("names_cache", PATH_MAX, 0,
3636 			SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
3637 
3638 	dcache_init();
3639 	inode_init();
3640 	files_init();
3641 	files_maxfiles_init();
3642 	mnt_init();
3643 	bdev_cache_init();
3644 	chrdev_init();
3645 }
3646