1 /* 2 * fs/dcache.c 3 * 4 * Complete reimplementation 5 * (C) 1997 Thomas Schoebel-Theuer, 6 * with heavy changes by Linus Torvalds 7 */ 8 9 /* 10 * Notes on the allocation strategy: 11 * 12 * The dcache is a master of the icache - whenever a dcache entry 13 * exists, the inode will always exist. "iput()" is done either when 14 * the dcache entry is deleted or garbage collected. 15 */ 16 17 #include <linux/syscalls.h> 18 #include <linux/string.h> 19 #include <linux/mm.h> 20 #include <linux/fs.h> 21 #include <linux/fsnotify.h> 22 #include <linux/slab.h> 23 #include <linux/init.h> 24 #include <linux/hash.h> 25 #include <linux/cache.h> 26 #include <linux/export.h> 27 #include <linux/mount.h> 28 #include <linux/file.h> 29 #include <asm/uaccess.h> 30 #include <linux/security.h> 31 #include <linux/seqlock.h> 32 #include <linux/swap.h> 33 #include <linux/bootmem.h> 34 #include <linux/fs_struct.h> 35 #include <linux/hardirq.h> 36 #include <linux/bit_spinlock.h> 37 #include <linux/rculist_bl.h> 38 #include <linux/prefetch.h> 39 #include <linux/ratelimit.h> 40 #include <linux/list_lru.h> 41 #include <linux/kasan.h> 42 43 #include "internal.h" 44 #include "mount.h" 45 46 /* 47 * Usage: 48 * dcache->d_inode->i_lock protects: 49 * - i_dentry, d_u.d_alias, d_inode of aliases 50 * dcache_hash_bucket lock protects: 51 * - the dcache hash table 52 * s_anon bl list spinlock protects: 53 * - the s_anon list (see __d_drop) 54 * dentry->d_sb->s_dentry_lru_lock protects: 55 * - the dcache lru lists and counters 56 * d_lock protects: 57 * - d_flags 58 * - d_name 59 * - d_lru 60 * - d_count 61 * - d_unhashed() 62 * - d_parent and d_subdirs 63 * - childrens' d_child and d_parent 64 * - d_u.d_alias, d_inode 65 * 66 * Ordering: 67 * dentry->d_inode->i_lock 68 * dentry->d_lock 69 * dentry->d_sb->s_dentry_lru_lock 70 * dcache_hash_bucket lock 71 * s_anon lock 72 * 73 * If there is an ancestor relationship: 74 * dentry->d_parent->...->d_parent->d_lock 75 * ... 76 * dentry->d_parent->d_lock 77 * dentry->d_lock 78 * 79 * If no ancestor relationship: 80 * if (dentry1 < dentry2) 81 * dentry1->d_lock 82 * dentry2->d_lock 83 */ 84 int sysctl_vfs_cache_pressure __read_mostly = 100; 85 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure); 86 87 __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock); 88 89 EXPORT_SYMBOL(rename_lock); 90 91 static struct kmem_cache *dentry_cache __read_mostly; 92 93 /* 94 * This is the single most critical data structure when it comes 95 * to the dcache: the hashtable for lookups. Somebody should try 96 * to make this good - I've just made it work. 97 * 98 * This hash-function tries to avoid losing too many bits of hash 99 * information, yet avoid using a prime hash-size or similar. 100 */ 101 102 static unsigned int d_hash_mask __read_mostly; 103 static unsigned int d_hash_shift __read_mostly; 104 105 static struct hlist_bl_head *dentry_hashtable __read_mostly; 106 107 static inline struct hlist_bl_head *d_hash(unsigned int hash) 108 { 109 return dentry_hashtable + (hash >> (32 - d_hash_shift)); 110 } 111 112 #define IN_LOOKUP_SHIFT 10 113 static struct hlist_bl_head in_lookup_hashtable[1 << IN_LOOKUP_SHIFT]; 114 115 static inline struct hlist_bl_head *in_lookup_hash(const struct dentry *parent, 116 unsigned int hash) 117 { 118 hash += (unsigned long) parent / L1_CACHE_BYTES; 119 return in_lookup_hashtable + hash_32(hash, IN_LOOKUP_SHIFT); 120 } 121 122 123 /* Statistics gathering. */ 124 struct dentry_stat_t dentry_stat = { 125 .age_limit = 45, 126 }; 127 128 static DEFINE_PER_CPU(long, nr_dentry); 129 static DEFINE_PER_CPU(long, nr_dentry_unused); 130 131 #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS) 132 133 /* 134 * Here we resort to our own counters instead of using generic per-cpu counters 135 * for consistency with what the vfs inode code does. We are expected to harvest 136 * better code and performance by having our own specialized counters. 137 * 138 * Please note that the loop is done over all possible CPUs, not over all online 139 * CPUs. The reason for this is that we don't want to play games with CPUs going 140 * on and off. If one of them goes off, we will just keep their counters. 141 * 142 * glommer: See cffbc8a for details, and if you ever intend to change this, 143 * please update all vfs counters to match. 144 */ 145 static long get_nr_dentry(void) 146 { 147 int i; 148 long sum = 0; 149 for_each_possible_cpu(i) 150 sum += per_cpu(nr_dentry, i); 151 return sum < 0 ? 0 : sum; 152 } 153 154 static long get_nr_dentry_unused(void) 155 { 156 int i; 157 long sum = 0; 158 for_each_possible_cpu(i) 159 sum += per_cpu(nr_dentry_unused, i); 160 return sum < 0 ? 0 : sum; 161 } 162 163 int proc_nr_dentry(struct ctl_table *table, int write, void __user *buffer, 164 size_t *lenp, loff_t *ppos) 165 { 166 dentry_stat.nr_dentry = get_nr_dentry(); 167 dentry_stat.nr_unused = get_nr_dentry_unused(); 168 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos); 169 } 170 #endif 171 172 /* 173 * Compare 2 name strings, return 0 if they match, otherwise non-zero. 174 * The strings are both count bytes long, and count is non-zero. 175 */ 176 #ifdef CONFIG_DCACHE_WORD_ACCESS 177 178 #include <asm/word-at-a-time.h> 179 /* 180 * NOTE! 'cs' and 'scount' come from a dentry, so it has a 181 * aligned allocation for this particular component. We don't 182 * strictly need the load_unaligned_zeropad() safety, but it 183 * doesn't hurt either. 184 * 185 * In contrast, 'ct' and 'tcount' can be from a pathname, and do 186 * need the careful unaligned handling. 187 */ 188 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount) 189 { 190 unsigned long a,b,mask; 191 192 for (;;) { 193 a = *(unsigned long *)cs; 194 b = load_unaligned_zeropad(ct); 195 if (tcount < sizeof(unsigned long)) 196 break; 197 if (unlikely(a != b)) 198 return 1; 199 cs += sizeof(unsigned long); 200 ct += sizeof(unsigned long); 201 tcount -= sizeof(unsigned long); 202 if (!tcount) 203 return 0; 204 } 205 mask = bytemask_from_count(tcount); 206 return unlikely(!!((a ^ b) & mask)); 207 } 208 209 #else 210 211 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount) 212 { 213 do { 214 if (*cs != *ct) 215 return 1; 216 cs++; 217 ct++; 218 tcount--; 219 } while (tcount); 220 return 0; 221 } 222 223 #endif 224 225 static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount) 226 { 227 /* 228 * Be careful about RCU walk racing with rename: 229 * use 'lockless_dereference' to fetch the name pointer. 230 * 231 * NOTE! Even if a rename will mean that the length 232 * was not loaded atomically, we don't care. The 233 * RCU walk will check the sequence count eventually, 234 * and catch it. And we won't overrun the buffer, 235 * because we're reading the name pointer atomically, 236 * and a dentry name is guaranteed to be properly 237 * terminated with a NUL byte. 238 * 239 * End result: even if 'len' is wrong, we'll exit 240 * early because the data cannot match (there can 241 * be no NUL in the ct/tcount data) 242 */ 243 const unsigned char *cs = lockless_dereference(dentry->d_name.name); 244 245 return dentry_string_cmp(cs, ct, tcount); 246 } 247 248 struct external_name { 249 union { 250 atomic_t count; 251 struct rcu_head head; 252 } u; 253 unsigned char name[]; 254 }; 255 256 static inline struct external_name *external_name(struct dentry *dentry) 257 { 258 return container_of(dentry->d_name.name, struct external_name, name[0]); 259 } 260 261 static void __d_free(struct rcu_head *head) 262 { 263 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu); 264 265 kmem_cache_free(dentry_cache, dentry); 266 } 267 268 static void __d_free_external(struct rcu_head *head) 269 { 270 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu); 271 kfree(external_name(dentry)); 272 kmem_cache_free(dentry_cache, dentry); 273 } 274 275 static inline int dname_external(const struct dentry *dentry) 276 { 277 return dentry->d_name.name != dentry->d_iname; 278 } 279 280 static inline void __d_set_inode_and_type(struct dentry *dentry, 281 struct inode *inode, 282 unsigned type_flags) 283 { 284 unsigned flags; 285 286 dentry->d_inode = inode; 287 flags = READ_ONCE(dentry->d_flags); 288 flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU); 289 flags |= type_flags; 290 WRITE_ONCE(dentry->d_flags, flags); 291 } 292 293 static inline void __d_clear_type_and_inode(struct dentry *dentry) 294 { 295 unsigned flags = READ_ONCE(dentry->d_flags); 296 297 flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU); 298 WRITE_ONCE(dentry->d_flags, flags); 299 dentry->d_inode = NULL; 300 } 301 302 static void dentry_free(struct dentry *dentry) 303 { 304 WARN_ON(!hlist_unhashed(&dentry->d_u.d_alias)); 305 if (unlikely(dname_external(dentry))) { 306 struct external_name *p = external_name(dentry); 307 if (likely(atomic_dec_and_test(&p->u.count))) { 308 call_rcu(&dentry->d_u.d_rcu, __d_free_external); 309 return; 310 } 311 } 312 /* if dentry was never visible to RCU, immediate free is OK */ 313 if (!(dentry->d_flags & DCACHE_RCUACCESS)) 314 __d_free(&dentry->d_u.d_rcu); 315 else 316 call_rcu(&dentry->d_u.d_rcu, __d_free); 317 } 318 319 /** 320 * dentry_rcuwalk_invalidate - invalidate in-progress rcu-walk lookups 321 * @dentry: the target dentry 322 * After this call, in-progress rcu-walk path lookup will fail. This 323 * should be called after unhashing, and after changing d_inode (if 324 * the dentry has not already been unhashed). 325 */ 326 static inline void dentry_rcuwalk_invalidate(struct dentry *dentry) 327 { 328 lockdep_assert_held(&dentry->d_lock); 329 /* Go through am invalidation barrier */ 330 write_seqcount_invalidate(&dentry->d_seq); 331 } 332 333 /* 334 * Release the dentry's inode, using the filesystem 335 * d_iput() operation if defined. 336 */ 337 static void dentry_unlink_inode(struct dentry * dentry) 338 __releases(dentry->d_lock) 339 __releases(dentry->d_inode->i_lock) 340 { 341 struct inode *inode = dentry->d_inode; 342 bool hashed = !d_unhashed(dentry); 343 344 if (hashed) 345 raw_write_seqcount_begin(&dentry->d_seq); 346 __d_clear_type_and_inode(dentry); 347 hlist_del_init(&dentry->d_u.d_alias); 348 if (hashed) 349 raw_write_seqcount_end(&dentry->d_seq); 350 spin_unlock(&dentry->d_lock); 351 spin_unlock(&inode->i_lock); 352 if (!inode->i_nlink) 353 fsnotify_inoderemove(inode); 354 if (dentry->d_op && dentry->d_op->d_iput) 355 dentry->d_op->d_iput(dentry, inode); 356 else 357 iput(inode); 358 } 359 360 /* 361 * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry 362 * is in use - which includes both the "real" per-superblock 363 * LRU list _and_ the DCACHE_SHRINK_LIST use. 364 * 365 * The DCACHE_SHRINK_LIST bit is set whenever the dentry is 366 * on the shrink list (ie not on the superblock LRU list). 367 * 368 * The per-cpu "nr_dentry_unused" counters are updated with 369 * the DCACHE_LRU_LIST bit. 370 * 371 * These helper functions make sure we always follow the 372 * rules. d_lock must be held by the caller. 373 */ 374 #define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x)) 375 static void d_lru_add(struct dentry *dentry) 376 { 377 D_FLAG_VERIFY(dentry, 0); 378 dentry->d_flags |= DCACHE_LRU_LIST; 379 this_cpu_inc(nr_dentry_unused); 380 WARN_ON_ONCE(!list_lru_add(&dentry->d_sb->s_dentry_lru, &dentry->d_lru)); 381 } 382 383 static void d_lru_del(struct dentry *dentry) 384 { 385 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST); 386 dentry->d_flags &= ~DCACHE_LRU_LIST; 387 this_cpu_dec(nr_dentry_unused); 388 WARN_ON_ONCE(!list_lru_del(&dentry->d_sb->s_dentry_lru, &dentry->d_lru)); 389 } 390 391 static void d_shrink_del(struct dentry *dentry) 392 { 393 D_FLAG_VERIFY(dentry, DCACHE_SHRINK_LIST | DCACHE_LRU_LIST); 394 list_del_init(&dentry->d_lru); 395 dentry->d_flags &= ~(DCACHE_SHRINK_LIST | DCACHE_LRU_LIST); 396 this_cpu_dec(nr_dentry_unused); 397 } 398 399 static void d_shrink_add(struct dentry *dentry, struct list_head *list) 400 { 401 D_FLAG_VERIFY(dentry, 0); 402 list_add(&dentry->d_lru, list); 403 dentry->d_flags |= DCACHE_SHRINK_LIST | DCACHE_LRU_LIST; 404 this_cpu_inc(nr_dentry_unused); 405 } 406 407 /* 408 * These can only be called under the global LRU lock, ie during the 409 * callback for freeing the LRU list. "isolate" removes it from the 410 * LRU lists entirely, while shrink_move moves it to the indicated 411 * private list. 412 */ 413 static void d_lru_isolate(struct list_lru_one *lru, struct dentry *dentry) 414 { 415 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST); 416 dentry->d_flags &= ~DCACHE_LRU_LIST; 417 this_cpu_dec(nr_dentry_unused); 418 list_lru_isolate(lru, &dentry->d_lru); 419 } 420 421 static void d_lru_shrink_move(struct list_lru_one *lru, struct dentry *dentry, 422 struct list_head *list) 423 { 424 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST); 425 dentry->d_flags |= DCACHE_SHRINK_LIST; 426 list_lru_isolate_move(lru, &dentry->d_lru, list); 427 } 428 429 /* 430 * dentry_lru_(add|del)_list) must be called with d_lock held. 431 */ 432 static void dentry_lru_add(struct dentry *dentry) 433 { 434 if (unlikely(!(dentry->d_flags & DCACHE_LRU_LIST))) 435 d_lru_add(dentry); 436 } 437 438 /** 439 * d_drop - drop a dentry 440 * @dentry: dentry to drop 441 * 442 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't 443 * be found through a VFS lookup any more. Note that this is different from 444 * deleting the dentry - d_delete will try to mark the dentry negative if 445 * possible, giving a successful _negative_ lookup, while d_drop will 446 * just make the cache lookup fail. 447 * 448 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some 449 * reason (NFS timeouts or autofs deletes). 450 * 451 * __d_drop requires dentry->d_lock. 452 */ 453 void __d_drop(struct dentry *dentry) 454 { 455 if (!d_unhashed(dentry)) { 456 struct hlist_bl_head *b; 457 /* 458 * Hashed dentries are normally on the dentry hashtable, 459 * with the exception of those newly allocated by 460 * d_obtain_alias, which are always IS_ROOT: 461 */ 462 if (unlikely(IS_ROOT(dentry))) 463 b = &dentry->d_sb->s_anon; 464 else 465 b = d_hash(dentry->d_name.hash); 466 467 hlist_bl_lock(b); 468 __hlist_bl_del(&dentry->d_hash); 469 dentry->d_hash.pprev = NULL; 470 hlist_bl_unlock(b); 471 dentry_rcuwalk_invalidate(dentry); 472 } 473 } 474 EXPORT_SYMBOL(__d_drop); 475 476 void d_drop(struct dentry *dentry) 477 { 478 spin_lock(&dentry->d_lock); 479 __d_drop(dentry); 480 spin_unlock(&dentry->d_lock); 481 } 482 EXPORT_SYMBOL(d_drop); 483 484 static inline void dentry_unlist(struct dentry *dentry, struct dentry *parent) 485 { 486 struct dentry *next; 487 /* 488 * Inform d_walk() and shrink_dentry_list() that we are no longer 489 * attached to the dentry tree 490 */ 491 dentry->d_flags |= DCACHE_DENTRY_KILLED; 492 if (unlikely(list_empty(&dentry->d_child))) 493 return; 494 __list_del_entry(&dentry->d_child); 495 /* 496 * Cursors can move around the list of children. While we'd been 497 * a normal list member, it didn't matter - ->d_child.next would've 498 * been updated. However, from now on it won't be and for the 499 * things like d_walk() it might end up with a nasty surprise. 500 * Normally d_walk() doesn't care about cursors moving around - 501 * ->d_lock on parent prevents that and since a cursor has no children 502 * of its own, we get through it without ever unlocking the parent. 503 * There is one exception, though - if we ascend from a child that 504 * gets killed as soon as we unlock it, the next sibling is found 505 * using the value left in its ->d_child.next. And if _that_ 506 * pointed to a cursor, and cursor got moved (e.g. by lseek()) 507 * before d_walk() regains parent->d_lock, we'll end up skipping 508 * everything the cursor had been moved past. 509 * 510 * Solution: make sure that the pointer left behind in ->d_child.next 511 * points to something that won't be moving around. I.e. skip the 512 * cursors. 513 */ 514 while (dentry->d_child.next != &parent->d_subdirs) { 515 next = list_entry(dentry->d_child.next, struct dentry, d_child); 516 if (likely(!(next->d_flags & DCACHE_DENTRY_CURSOR))) 517 break; 518 dentry->d_child.next = next->d_child.next; 519 } 520 } 521 522 static void __dentry_kill(struct dentry *dentry) 523 { 524 struct dentry *parent = NULL; 525 bool can_free = true; 526 if (!IS_ROOT(dentry)) 527 parent = dentry->d_parent; 528 529 /* 530 * The dentry is now unrecoverably dead to the world. 531 */ 532 lockref_mark_dead(&dentry->d_lockref); 533 534 /* 535 * inform the fs via d_prune that this dentry is about to be 536 * unhashed and destroyed. 537 */ 538 if (dentry->d_flags & DCACHE_OP_PRUNE) 539 dentry->d_op->d_prune(dentry); 540 541 if (dentry->d_flags & DCACHE_LRU_LIST) { 542 if (!(dentry->d_flags & DCACHE_SHRINK_LIST)) 543 d_lru_del(dentry); 544 } 545 /* if it was on the hash then remove it */ 546 __d_drop(dentry); 547 dentry_unlist(dentry, parent); 548 if (parent) 549 spin_unlock(&parent->d_lock); 550 if (dentry->d_inode) 551 dentry_unlink_inode(dentry); 552 else 553 spin_unlock(&dentry->d_lock); 554 this_cpu_dec(nr_dentry); 555 if (dentry->d_op && dentry->d_op->d_release) 556 dentry->d_op->d_release(dentry); 557 558 spin_lock(&dentry->d_lock); 559 if (dentry->d_flags & DCACHE_SHRINK_LIST) { 560 dentry->d_flags |= DCACHE_MAY_FREE; 561 can_free = false; 562 } 563 spin_unlock(&dentry->d_lock); 564 if (likely(can_free)) 565 dentry_free(dentry); 566 } 567 568 /* 569 * Finish off a dentry we've decided to kill. 570 * dentry->d_lock must be held, returns with it unlocked. 571 * If ref is non-zero, then decrement the refcount too. 572 * Returns dentry requiring refcount drop, or NULL if we're done. 573 */ 574 static struct dentry *dentry_kill(struct dentry *dentry) 575 __releases(dentry->d_lock) 576 { 577 struct inode *inode = dentry->d_inode; 578 struct dentry *parent = NULL; 579 580 if (inode && unlikely(!spin_trylock(&inode->i_lock))) 581 goto failed; 582 583 if (!IS_ROOT(dentry)) { 584 parent = dentry->d_parent; 585 if (unlikely(!spin_trylock(&parent->d_lock))) { 586 if (inode) 587 spin_unlock(&inode->i_lock); 588 goto failed; 589 } 590 } 591 592 __dentry_kill(dentry); 593 return parent; 594 595 failed: 596 spin_unlock(&dentry->d_lock); 597 return dentry; /* try again with same dentry */ 598 } 599 600 static inline struct dentry *lock_parent(struct dentry *dentry) 601 { 602 struct dentry *parent = dentry->d_parent; 603 if (IS_ROOT(dentry)) 604 return NULL; 605 if (unlikely(dentry->d_lockref.count < 0)) 606 return NULL; 607 if (likely(spin_trylock(&parent->d_lock))) 608 return parent; 609 rcu_read_lock(); 610 spin_unlock(&dentry->d_lock); 611 again: 612 parent = ACCESS_ONCE(dentry->d_parent); 613 spin_lock(&parent->d_lock); 614 /* 615 * We can't blindly lock dentry until we are sure 616 * that we won't violate the locking order. 617 * Any changes of dentry->d_parent must have 618 * been done with parent->d_lock held, so 619 * spin_lock() above is enough of a barrier 620 * for checking if it's still our child. 621 */ 622 if (unlikely(parent != dentry->d_parent)) { 623 spin_unlock(&parent->d_lock); 624 goto again; 625 } 626 rcu_read_unlock(); 627 if (parent != dentry) 628 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED); 629 else 630 parent = NULL; 631 return parent; 632 } 633 634 /* 635 * Try to do a lockless dput(), and return whether that was successful. 636 * 637 * If unsuccessful, we return false, having already taken the dentry lock. 638 * 639 * The caller needs to hold the RCU read lock, so that the dentry is 640 * guaranteed to stay around even if the refcount goes down to zero! 641 */ 642 static inline bool fast_dput(struct dentry *dentry) 643 { 644 int ret; 645 unsigned int d_flags; 646 647 /* 648 * If we have a d_op->d_delete() operation, we sould not 649 * let the dentry count go to zero, so use "put_or_lock". 650 */ 651 if (unlikely(dentry->d_flags & DCACHE_OP_DELETE)) 652 return lockref_put_or_lock(&dentry->d_lockref); 653 654 /* 655 * .. otherwise, we can try to just decrement the 656 * lockref optimistically. 657 */ 658 ret = lockref_put_return(&dentry->d_lockref); 659 660 /* 661 * If the lockref_put_return() failed due to the lock being held 662 * by somebody else, the fast path has failed. We will need to 663 * get the lock, and then check the count again. 664 */ 665 if (unlikely(ret < 0)) { 666 spin_lock(&dentry->d_lock); 667 if (dentry->d_lockref.count > 1) { 668 dentry->d_lockref.count--; 669 spin_unlock(&dentry->d_lock); 670 return 1; 671 } 672 return 0; 673 } 674 675 /* 676 * If we weren't the last ref, we're done. 677 */ 678 if (ret) 679 return 1; 680 681 /* 682 * Careful, careful. The reference count went down 683 * to zero, but we don't hold the dentry lock, so 684 * somebody else could get it again, and do another 685 * dput(), and we need to not race with that. 686 * 687 * However, there is a very special and common case 688 * where we don't care, because there is nothing to 689 * do: the dentry is still hashed, it does not have 690 * a 'delete' op, and it's referenced and already on 691 * the LRU list. 692 * 693 * NOTE! Since we aren't locked, these values are 694 * not "stable". However, it is sufficient that at 695 * some point after we dropped the reference the 696 * dentry was hashed and the flags had the proper 697 * value. Other dentry users may have re-gotten 698 * a reference to the dentry and change that, but 699 * our work is done - we can leave the dentry 700 * around with a zero refcount. 701 */ 702 smp_rmb(); 703 d_flags = ACCESS_ONCE(dentry->d_flags); 704 d_flags &= DCACHE_REFERENCED | DCACHE_LRU_LIST | DCACHE_DISCONNECTED; 705 706 /* Nothing to do? Dropping the reference was all we needed? */ 707 if (d_flags == (DCACHE_REFERENCED | DCACHE_LRU_LIST) && !d_unhashed(dentry)) 708 return 1; 709 710 /* 711 * Not the fast normal case? Get the lock. We've already decremented 712 * the refcount, but we'll need to re-check the situation after 713 * getting the lock. 714 */ 715 spin_lock(&dentry->d_lock); 716 717 /* 718 * Did somebody else grab a reference to it in the meantime, and 719 * we're no longer the last user after all? Alternatively, somebody 720 * else could have killed it and marked it dead. Either way, we 721 * don't need to do anything else. 722 */ 723 if (dentry->d_lockref.count) { 724 spin_unlock(&dentry->d_lock); 725 return 1; 726 } 727 728 /* 729 * Re-get the reference we optimistically dropped. We hold the 730 * lock, and we just tested that it was zero, so we can just 731 * set it to 1. 732 */ 733 dentry->d_lockref.count = 1; 734 return 0; 735 } 736 737 738 /* 739 * This is dput 740 * 741 * This is complicated by the fact that we do not want to put 742 * dentries that are no longer on any hash chain on the unused 743 * list: we'd much rather just get rid of them immediately. 744 * 745 * However, that implies that we have to traverse the dentry 746 * tree upwards to the parents which might _also_ now be 747 * scheduled for deletion (it may have been only waiting for 748 * its last child to go away). 749 * 750 * This tail recursion is done by hand as we don't want to depend 751 * on the compiler to always get this right (gcc generally doesn't). 752 * Real recursion would eat up our stack space. 753 */ 754 755 /* 756 * dput - release a dentry 757 * @dentry: dentry to release 758 * 759 * Release a dentry. This will drop the usage count and if appropriate 760 * call the dentry unlink method as well as removing it from the queues and 761 * releasing its resources. If the parent dentries were scheduled for release 762 * they too may now get deleted. 763 */ 764 void dput(struct dentry *dentry) 765 { 766 if (unlikely(!dentry)) 767 return; 768 769 repeat: 770 might_sleep(); 771 772 rcu_read_lock(); 773 if (likely(fast_dput(dentry))) { 774 rcu_read_unlock(); 775 return; 776 } 777 778 /* Slow case: now with the dentry lock held */ 779 rcu_read_unlock(); 780 781 WARN_ON(d_in_lookup(dentry)); 782 783 /* Unreachable? Get rid of it */ 784 if (unlikely(d_unhashed(dentry))) 785 goto kill_it; 786 787 if (unlikely(dentry->d_flags & DCACHE_DISCONNECTED)) 788 goto kill_it; 789 790 if (unlikely(dentry->d_flags & DCACHE_OP_DELETE)) { 791 if (dentry->d_op->d_delete(dentry)) 792 goto kill_it; 793 } 794 795 if (!(dentry->d_flags & DCACHE_REFERENCED)) 796 dentry->d_flags |= DCACHE_REFERENCED; 797 dentry_lru_add(dentry); 798 799 dentry->d_lockref.count--; 800 spin_unlock(&dentry->d_lock); 801 return; 802 803 kill_it: 804 dentry = dentry_kill(dentry); 805 if (dentry) { 806 cond_resched(); 807 goto repeat; 808 } 809 } 810 EXPORT_SYMBOL(dput); 811 812 813 /* This must be called with d_lock held */ 814 static inline void __dget_dlock(struct dentry *dentry) 815 { 816 dentry->d_lockref.count++; 817 } 818 819 static inline void __dget(struct dentry *dentry) 820 { 821 lockref_get(&dentry->d_lockref); 822 } 823 824 struct dentry *dget_parent(struct dentry *dentry) 825 { 826 int gotref; 827 struct dentry *ret; 828 829 /* 830 * Do optimistic parent lookup without any 831 * locking. 832 */ 833 rcu_read_lock(); 834 ret = ACCESS_ONCE(dentry->d_parent); 835 gotref = lockref_get_not_zero(&ret->d_lockref); 836 rcu_read_unlock(); 837 if (likely(gotref)) { 838 if (likely(ret == ACCESS_ONCE(dentry->d_parent))) 839 return ret; 840 dput(ret); 841 } 842 843 repeat: 844 /* 845 * Don't need rcu_dereference because we re-check it was correct under 846 * the lock. 847 */ 848 rcu_read_lock(); 849 ret = dentry->d_parent; 850 spin_lock(&ret->d_lock); 851 if (unlikely(ret != dentry->d_parent)) { 852 spin_unlock(&ret->d_lock); 853 rcu_read_unlock(); 854 goto repeat; 855 } 856 rcu_read_unlock(); 857 BUG_ON(!ret->d_lockref.count); 858 ret->d_lockref.count++; 859 spin_unlock(&ret->d_lock); 860 return ret; 861 } 862 EXPORT_SYMBOL(dget_parent); 863 864 /** 865 * d_find_alias - grab a hashed alias of inode 866 * @inode: inode in question 867 * 868 * If inode has a hashed alias, or is a directory and has any alias, 869 * acquire the reference to alias and return it. Otherwise return NULL. 870 * Notice that if inode is a directory there can be only one alias and 871 * it can be unhashed only if it has no children, or if it is the root 872 * of a filesystem, or if the directory was renamed and d_revalidate 873 * was the first vfs operation to notice. 874 * 875 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer 876 * any other hashed alias over that one. 877 */ 878 static struct dentry *__d_find_alias(struct inode *inode) 879 { 880 struct dentry *alias, *discon_alias; 881 882 again: 883 discon_alias = NULL; 884 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) { 885 spin_lock(&alias->d_lock); 886 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) { 887 if (IS_ROOT(alias) && 888 (alias->d_flags & DCACHE_DISCONNECTED)) { 889 discon_alias = alias; 890 } else { 891 __dget_dlock(alias); 892 spin_unlock(&alias->d_lock); 893 return alias; 894 } 895 } 896 spin_unlock(&alias->d_lock); 897 } 898 if (discon_alias) { 899 alias = discon_alias; 900 spin_lock(&alias->d_lock); 901 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) { 902 __dget_dlock(alias); 903 spin_unlock(&alias->d_lock); 904 return alias; 905 } 906 spin_unlock(&alias->d_lock); 907 goto again; 908 } 909 return NULL; 910 } 911 912 struct dentry *d_find_alias(struct inode *inode) 913 { 914 struct dentry *de = NULL; 915 916 if (!hlist_empty(&inode->i_dentry)) { 917 spin_lock(&inode->i_lock); 918 de = __d_find_alias(inode); 919 spin_unlock(&inode->i_lock); 920 } 921 return de; 922 } 923 EXPORT_SYMBOL(d_find_alias); 924 925 /* 926 * Try to kill dentries associated with this inode. 927 * WARNING: you must own a reference to inode. 928 */ 929 void d_prune_aliases(struct inode *inode) 930 { 931 struct dentry *dentry; 932 restart: 933 spin_lock(&inode->i_lock); 934 hlist_for_each_entry(dentry, &inode->i_dentry, d_u.d_alias) { 935 spin_lock(&dentry->d_lock); 936 if (!dentry->d_lockref.count) { 937 struct dentry *parent = lock_parent(dentry); 938 if (likely(!dentry->d_lockref.count)) { 939 __dentry_kill(dentry); 940 dput(parent); 941 goto restart; 942 } 943 if (parent) 944 spin_unlock(&parent->d_lock); 945 } 946 spin_unlock(&dentry->d_lock); 947 } 948 spin_unlock(&inode->i_lock); 949 } 950 EXPORT_SYMBOL(d_prune_aliases); 951 952 static void shrink_dentry_list(struct list_head *list) 953 { 954 struct dentry *dentry, *parent; 955 956 while (!list_empty(list)) { 957 struct inode *inode; 958 dentry = list_entry(list->prev, struct dentry, d_lru); 959 spin_lock(&dentry->d_lock); 960 parent = lock_parent(dentry); 961 962 /* 963 * The dispose list is isolated and dentries are not accounted 964 * to the LRU here, so we can simply remove it from the list 965 * here regardless of whether it is referenced or not. 966 */ 967 d_shrink_del(dentry); 968 969 /* 970 * We found an inuse dentry which was not removed from 971 * the LRU because of laziness during lookup. Do not free it. 972 */ 973 if (dentry->d_lockref.count > 0) { 974 spin_unlock(&dentry->d_lock); 975 if (parent) 976 spin_unlock(&parent->d_lock); 977 continue; 978 } 979 980 981 if (unlikely(dentry->d_flags & DCACHE_DENTRY_KILLED)) { 982 bool can_free = dentry->d_flags & DCACHE_MAY_FREE; 983 spin_unlock(&dentry->d_lock); 984 if (parent) 985 spin_unlock(&parent->d_lock); 986 if (can_free) 987 dentry_free(dentry); 988 continue; 989 } 990 991 inode = dentry->d_inode; 992 if (inode && unlikely(!spin_trylock(&inode->i_lock))) { 993 d_shrink_add(dentry, list); 994 spin_unlock(&dentry->d_lock); 995 if (parent) 996 spin_unlock(&parent->d_lock); 997 continue; 998 } 999 1000 __dentry_kill(dentry); 1001 1002 /* 1003 * We need to prune ancestors too. This is necessary to prevent 1004 * quadratic behavior of shrink_dcache_parent(), but is also 1005 * expected to be beneficial in reducing dentry cache 1006 * fragmentation. 1007 */ 1008 dentry = parent; 1009 while (dentry && !lockref_put_or_lock(&dentry->d_lockref)) { 1010 parent = lock_parent(dentry); 1011 if (dentry->d_lockref.count != 1) { 1012 dentry->d_lockref.count--; 1013 spin_unlock(&dentry->d_lock); 1014 if (parent) 1015 spin_unlock(&parent->d_lock); 1016 break; 1017 } 1018 inode = dentry->d_inode; /* can't be NULL */ 1019 if (unlikely(!spin_trylock(&inode->i_lock))) { 1020 spin_unlock(&dentry->d_lock); 1021 if (parent) 1022 spin_unlock(&parent->d_lock); 1023 cpu_relax(); 1024 continue; 1025 } 1026 __dentry_kill(dentry); 1027 dentry = parent; 1028 } 1029 } 1030 } 1031 1032 static enum lru_status dentry_lru_isolate(struct list_head *item, 1033 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg) 1034 { 1035 struct list_head *freeable = arg; 1036 struct dentry *dentry = container_of(item, struct dentry, d_lru); 1037 1038 1039 /* 1040 * we are inverting the lru lock/dentry->d_lock here, 1041 * so use a trylock. If we fail to get the lock, just skip 1042 * it 1043 */ 1044 if (!spin_trylock(&dentry->d_lock)) 1045 return LRU_SKIP; 1046 1047 /* 1048 * Referenced dentries are still in use. If they have active 1049 * counts, just remove them from the LRU. Otherwise give them 1050 * another pass through the LRU. 1051 */ 1052 if (dentry->d_lockref.count) { 1053 d_lru_isolate(lru, dentry); 1054 spin_unlock(&dentry->d_lock); 1055 return LRU_REMOVED; 1056 } 1057 1058 if (dentry->d_flags & DCACHE_REFERENCED) { 1059 dentry->d_flags &= ~DCACHE_REFERENCED; 1060 spin_unlock(&dentry->d_lock); 1061 1062 /* 1063 * The list move itself will be made by the common LRU code. At 1064 * this point, we've dropped the dentry->d_lock but keep the 1065 * lru lock. This is safe to do, since every list movement is 1066 * protected by the lru lock even if both locks are held. 1067 * 1068 * This is guaranteed by the fact that all LRU management 1069 * functions are intermediated by the LRU API calls like 1070 * list_lru_add and list_lru_del. List movement in this file 1071 * only ever occur through this functions or through callbacks 1072 * like this one, that are called from the LRU API. 1073 * 1074 * The only exceptions to this are functions like 1075 * shrink_dentry_list, and code that first checks for the 1076 * DCACHE_SHRINK_LIST flag. Those are guaranteed to be 1077 * operating only with stack provided lists after they are 1078 * properly isolated from the main list. It is thus, always a 1079 * local access. 1080 */ 1081 return LRU_ROTATE; 1082 } 1083 1084 d_lru_shrink_move(lru, dentry, freeable); 1085 spin_unlock(&dentry->d_lock); 1086 1087 return LRU_REMOVED; 1088 } 1089 1090 /** 1091 * prune_dcache_sb - shrink the dcache 1092 * @sb: superblock 1093 * @sc: shrink control, passed to list_lru_shrink_walk() 1094 * 1095 * Attempt to shrink the superblock dcache LRU by @sc->nr_to_scan entries. This 1096 * is done when we need more memory and called from the superblock shrinker 1097 * function. 1098 * 1099 * This function may fail to free any resources if all the dentries are in 1100 * use. 1101 */ 1102 long prune_dcache_sb(struct super_block *sb, struct shrink_control *sc) 1103 { 1104 LIST_HEAD(dispose); 1105 long freed; 1106 1107 freed = list_lru_shrink_walk(&sb->s_dentry_lru, sc, 1108 dentry_lru_isolate, &dispose); 1109 shrink_dentry_list(&dispose); 1110 return freed; 1111 } 1112 1113 static enum lru_status dentry_lru_isolate_shrink(struct list_head *item, 1114 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg) 1115 { 1116 struct list_head *freeable = arg; 1117 struct dentry *dentry = container_of(item, struct dentry, d_lru); 1118 1119 /* 1120 * we are inverting the lru lock/dentry->d_lock here, 1121 * so use a trylock. If we fail to get the lock, just skip 1122 * it 1123 */ 1124 if (!spin_trylock(&dentry->d_lock)) 1125 return LRU_SKIP; 1126 1127 d_lru_shrink_move(lru, dentry, freeable); 1128 spin_unlock(&dentry->d_lock); 1129 1130 return LRU_REMOVED; 1131 } 1132 1133 1134 /** 1135 * shrink_dcache_sb - shrink dcache for a superblock 1136 * @sb: superblock 1137 * 1138 * Shrink the dcache for the specified super block. This is used to free 1139 * the dcache before unmounting a file system. 1140 */ 1141 void shrink_dcache_sb(struct super_block *sb) 1142 { 1143 long freed; 1144 1145 do { 1146 LIST_HEAD(dispose); 1147 1148 freed = list_lru_walk(&sb->s_dentry_lru, 1149 dentry_lru_isolate_shrink, &dispose, UINT_MAX); 1150 1151 this_cpu_sub(nr_dentry_unused, freed); 1152 shrink_dentry_list(&dispose); 1153 } while (freed > 0); 1154 } 1155 EXPORT_SYMBOL(shrink_dcache_sb); 1156 1157 /** 1158 * enum d_walk_ret - action to talke during tree walk 1159 * @D_WALK_CONTINUE: contrinue walk 1160 * @D_WALK_QUIT: quit walk 1161 * @D_WALK_NORETRY: quit when retry is needed 1162 * @D_WALK_SKIP: skip this dentry and its children 1163 */ 1164 enum d_walk_ret { 1165 D_WALK_CONTINUE, 1166 D_WALK_QUIT, 1167 D_WALK_NORETRY, 1168 D_WALK_SKIP, 1169 }; 1170 1171 /** 1172 * d_walk - walk the dentry tree 1173 * @parent: start of walk 1174 * @data: data passed to @enter() and @finish() 1175 * @enter: callback when first entering the dentry 1176 * @finish: callback when successfully finished the walk 1177 * 1178 * The @enter() and @finish() callbacks are called with d_lock held. 1179 */ 1180 static void d_walk(struct dentry *parent, void *data, 1181 enum d_walk_ret (*enter)(void *, struct dentry *), 1182 void (*finish)(void *)) 1183 { 1184 struct dentry *this_parent; 1185 struct list_head *next; 1186 unsigned seq = 0; 1187 enum d_walk_ret ret; 1188 bool retry = true; 1189 1190 again: 1191 read_seqbegin_or_lock(&rename_lock, &seq); 1192 this_parent = parent; 1193 spin_lock(&this_parent->d_lock); 1194 1195 ret = enter(data, this_parent); 1196 switch (ret) { 1197 case D_WALK_CONTINUE: 1198 break; 1199 case D_WALK_QUIT: 1200 case D_WALK_SKIP: 1201 goto out_unlock; 1202 case D_WALK_NORETRY: 1203 retry = false; 1204 break; 1205 } 1206 repeat: 1207 next = this_parent->d_subdirs.next; 1208 resume: 1209 while (next != &this_parent->d_subdirs) { 1210 struct list_head *tmp = next; 1211 struct dentry *dentry = list_entry(tmp, struct dentry, d_child); 1212 next = tmp->next; 1213 1214 if (unlikely(dentry->d_flags & DCACHE_DENTRY_CURSOR)) 1215 continue; 1216 1217 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED); 1218 1219 ret = enter(data, dentry); 1220 switch (ret) { 1221 case D_WALK_CONTINUE: 1222 break; 1223 case D_WALK_QUIT: 1224 spin_unlock(&dentry->d_lock); 1225 goto out_unlock; 1226 case D_WALK_NORETRY: 1227 retry = false; 1228 break; 1229 case D_WALK_SKIP: 1230 spin_unlock(&dentry->d_lock); 1231 continue; 1232 } 1233 1234 if (!list_empty(&dentry->d_subdirs)) { 1235 spin_unlock(&this_parent->d_lock); 1236 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_); 1237 this_parent = dentry; 1238 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_); 1239 goto repeat; 1240 } 1241 spin_unlock(&dentry->d_lock); 1242 } 1243 /* 1244 * All done at this level ... ascend and resume the search. 1245 */ 1246 rcu_read_lock(); 1247 ascend: 1248 if (this_parent != parent) { 1249 struct dentry *child = this_parent; 1250 this_parent = child->d_parent; 1251 1252 spin_unlock(&child->d_lock); 1253 spin_lock(&this_parent->d_lock); 1254 1255 /* might go back up the wrong parent if we have had a rename. */ 1256 if (need_seqretry(&rename_lock, seq)) 1257 goto rename_retry; 1258 /* go into the first sibling still alive */ 1259 do { 1260 next = child->d_child.next; 1261 if (next == &this_parent->d_subdirs) 1262 goto ascend; 1263 child = list_entry(next, struct dentry, d_child); 1264 } while (unlikely(child->d_flags & DCACHE_DENTRY_KILLED)); 1265 rcu_read_unlock(); 1266 goto resume; 1267 } 1268 if (need_seqretry(&rename_lock, seq)) 1269 goto rename_retry; 1270 rcu_read_unlock(); 1271 if (finish) 1272 finish(data); 1273 1274 out_unlock: 1275 spin_unlock(&this_parent->d_lock); 1276 done_seqretry(&rename_lock, seq); 1277 return; 1278 1279 rename_retry: 1280 spin_unlock(&this_parent->d_lock); 1281 rcu_read_unlock(); 1282 BUG_ON(seq & 1); 1283 if (!retry) 1284 return; 1285 seq = 1; 1286 goto again; 1287 } 1288 1289 /* 1290 * Search for at least 1 mount point in the dentry's subdirs. 1291 * We descend to the next level whenever the d_subdirs 1292 * list is non-empty and continue searching. 1293 */ 1294 1295 static enum d_walk_ret check_mount(void *data, struct dentry *dentry) 1296 { 1297 int *ret = data; 1298 if (d_mountpoint(dentry)) { 1299 *ret = 1; 1300 return D_WALK_QUIT; 1301 } 1302 return D_WALK_CONTINUE; 1303 } 1304 1305 /** 1306 * have_submounts - check for mounts over a dentry 1307 * @parent: dentry to check. 1308 * 1309 * Return true if the parent or its subdirectories contain 1310 * a mount point 1311 */ 1312 int have_submounts(struct dentry *parent) 1313 { 1314 int ret = 0; 1315 1316 d_walk(parent, &ret, check_mount, NULL); 1317 1318 return ret; 1319 } 1320 EXPORT_SYMBOL(have_submounts); 1321 1322 /* 1323 * Called by mount code to set a mountpoint and check if the mountpoint is 1324 * reachable (e.g. NFS can unhash a directory dentry and then the complete 1325 * subtree can become unreachable). 1326 * 1327 * Only one of d_invalidate() and d_set_mounted() must succeed. For 1328 * this reason take rename_lock and d_lock on dentry and ancestors. 1329 */ 1330 int d_set_mounted(struct dentry *dentry) 1331 { 1332 struct dentry *p; 1333 int ret = -ENOENT; 1334 write_seqlock(&rename_lock); 1335 for (p = dentry->d_parent; !IS_ROOT(p); p = p->d_parent) { 1336 /* Need exclusion wrt. d_invalidate() */ 1337 spin_lock(&p->d_lock); 1338 if (unlikely(d_unhashed(p))) { 1339 spin_unlock(&p->d_lock); 1340 goto out; 1341 } 1342 spin_unlock(&p->d_lock); 1343 } 1344 spin_lock(&dentry->d_lock); 1345 if (!d_unlinked(dentry)) { 1346 dentry->d_flags |= DCACHE_MOUNTED; 1347 ret = 0; 1348 } 1349 spin_unlock(&dentry->d_lock); 1350 out: 1351 write_sequnlock(&rename_lock); 1352 return ret; 1353 } 1354 1355 /* 1356 * Search the dentry child list of the specified parent, 1357 * and move any unused dentries to the end of the unused 1358 * list for prune_dcache(). We descend to the next level 1359 * whenever the d_subdirs list is non-empty and continue 1360 * searching. 1361 * 1362 * It returns zero iff there are no unused children, 1363 * otherwise it returns the number of children moved to 1364 * the end of the unused list. This may not be the total 1365 * number of unused children, because select_parent can 1366 * drop the lock and return early due to latency 1367 * constraints. 1368 */ 1369 1370 struct select_data { 1371 struct dentry *start; 1372 struct list_head dispose; 1373 int found; 1374 }; 1375 1376 static enum d_walk_ret select_collect(void *_data, struct dentry *dentry) 1377 { 1378 struct select_data *data = _data; 1379 enum d_walk_ret ret = D_WALK_CONTINUE; 1380 1381 if (data->start == dentry) 1382 goto out; 1383 1384 if (dentry->d_flags & DCACHE_SHRINK_LIST) { 1385 data->found++; 1386 } else { 1387 if (dentry->d_flags & DCACHE_LRU_LIST) 1388 d_lru_del(dentry); 1389 if (!dentry->d_lockref.count) { 1390 d_shrink_add(dentry, &data->dispose); 1391 data->found++; 1392 } 1393 } 1394 /* 1395 * We can return to the caller if we have found some (this 1396 * ensures forward progress). We'll be coming back to find 1397 * the rest. 1398 */ 1399 if (!list_empty(&data->dispose)) 1400 ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY; 1401 out: 1402 return ret; 1403 } 1404 1405 /** 1406 * shrink_dcache_parent - prune dcache 1407 * @parent: parent of entries to prune 1408 * 1409 * Prune the dcache to remove unused children of the parent dentry. 1410 */ 1411 void shrink_dcache_parent(struct dentry *parent) 1412 { 1413 for (;;) { 1414 struct select_data data; 1415 1416 INIT_LIST_HEAD(&data.dispose); 1417 data.start = parent; 1418 data.found = 0; 1419 1420 d_walk(parent, &data, select_collect, NULL); 1421 if (!data.found) 1422 break; 1423 1424 shrink_dentry_list(&data.dispose); 1425 cond_resched(); 1426 } 1427 } 1428 EXPORT_SYMBOL(shrink_dcache_parent); 1429 1430 static enum d_walk_ret umount_check(void *_data, struct dentry *dentry) 1431 { 1432 /* it has busy descendents; complain about those instead */ 1433 if (!list_empty(&dentry->d_subdirs)) 1434 return D_WALK_CONTINUE; 1435 1436 /* root with refcount 1 is fine */ 1437 if (dentry == _data && dentry->d_lockref.count == 1) 1438 return D_WALK_CONTINUE; 1439 1440 printk(KERN_ERR "BUG: Dentry %p{i=%lx,n=%pd} " 1441 " still in use (%d) [unmount of %s %s]\n", 1442 dentry, 1443 dentry->d_inode ? 1444 dentry->d_inode->i_ino : 0UL, 1445 dentry, 1446 dentry->d_lockref.count, 1447 dentry->d_sb->s_type->name, 1448 dentry->d_sb->s_id); 1449 WARN_ON(1); 1450 return D_WALK_CONTINUE; 1451 } 1452 1453 static void do_one_tree(struct dentry *dentry) 1454 { 1455 shrink_dcache_parent(dentry); 1456 d_walk(dentry, dentry, umount_check, NULL); 1457 d_drop(dentry); 1458 dput(dentry); 1459 } 1460 1461 /* 1462 * destroy the dentries attached to a superblock on unmounting 1463 */ 1464 void shrink_dcache_for_umount(struct super_block *sb) 1465 { 1466 struct dentry *dentry; 1467 1468 WARN(down_read_trylock(&sb->s_umount), "s_umount should've been locked"); 1469 1470 dentry = sb->s_root; 1471 sb->s_root = NULL; 1472 do_one_tree(dentry); 1473 1474 while (!hlist_bl_empty(&sb->s_anon)) { 1475 dentry = dget(hlist_bl_entry(hlist_bl_first(&sb->s_anon), struct dentry, d_hash)); 1476 do_one_tree(dentry); 1477 } 1478 } 1479 1480 struct detach_data { 1481 struct select_data select; 1482 struct dentry *mountpoint; 1483 }; 1484 static enum d_walk_ret detach_and_collect(void *_data, struct dentry *dentry) 1485 { 1486 struct detach_data *data = _data; 1487 1488 if (d_mountpoint(dentry)) { 1489 __dget_dlock(dentry); 1490 data->mountpoint = dentry; 1491 return D_WALK_QUIT; 1492 } 1493 1494 return select_collect(&data->select, dentry); 1495 } 1496 1497 static void check_and_drop(void *_data) 1498 { 1499 struct detach_data *data = _data; 1500 1501 if (!data->mountpoint && !data->select.found) 1502 __d_drop(data->select.start); 1503 } 1504 1505 /** 1506 * d_invalidate - detach submounts, prune dcache, and drop 1507 * @dentry: dentry to invalidate (aka detach, prune and drop) 1508 * 1509 * no dcache lock. 1510 * 1511 * The final d_drop is done as an atomic operation relative to 1512 * rename_lock ensuring there are no races with d_set_mounted. This 1513 * ensures there are no unhashed dentries on the path to a mountpoint. 1514 */ 1515 void d_invalidate(struct dentry *dentry) 1516 { 1517 /* 1518 * If it's already been dropped, return OK. 1519 */ 1520 spin_lock(&dentry->d_lock); 1521 if (d_unhashed(dentry)) { 1522 spin_unlock(&dentry->d_lock); 1523 return; 1524 } 1525 spin_unlock(&dentry->d_lock); 1526 1527 /* Negative dentries can be dropped without further checks */ 1528 if (!dentry->d_inode) { 1529 d_drop(dentry); 1530 return; 1531 } 1532 1533 for (;;) { 1534 struct detach_data data; 1535 1536 data.mountpoint = NULL; 1537 INIT_LIST_HEAD(&data.select.dispose); 1538 data.select.start = dentry; 1539 data.select.found = 0; 1540 1541 d_walk(dentry, &data, detach_and_collect, check_and_drop); 1542 1543 if (data.select.found) 1544 shrink_dentry_list(&data.select.dispose); 1545 1546 if (data.mountpoint) { 1547 detach_mounts(data.mountpoint); 1548 dput(data.mountpoint); 1549 } 1550 1551 if (!data.mountpoint && !data.select.found) 1552 break; 1553 1554 cond_resched(); 1555 } 1556 } 1557 EXPORT_SYMBOL(d_invalidate); 1558 1559 /** 1560 * __d_alloc - allocate a dcache entry 1561 * @sb: filesystem it will belong to 1562 * @name: qstr of the name 1563 * 1564 * Allocates a dentry. It returns %NULL if there is insufficient memory 1565 * available. On a success the dentry is returned. The name passed in is 1566 * copied and the copy passed in may be reused after this call. 1567 */ 1568 1569 struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name) 1570 { 1571 struct dentry *dentry; 1572 char *dname; 1573 int err; 1574 1575 dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL); 1576 if (!dentry) 1577 return NULL; 1578 1579 /* 1580 * We guarantee that the inline name is always NUL-terminated. 1581 * This way the memcpy() done by the name switching in rename 1582 * will still always have a NUL at the end, even if we might 1583 * be overwriting an internal NUL character 1584 */ 1585 dentry->d_iname[DNAME_INLINE_LEN-1] = 0; 1586 if (unlikely(!name)) { 1587 static const struct qstr anon = QSTR_INIT("/", 1); 1588 name = &anon; 1589 dname = dentry->d_iname; 1590 } else if (name->len > DNAME_INLINE_LEN-1) { 1591 size_t size = offsetof(struct external_name, name[1]); 1592 struct external_name *p = kmalloc(size + name->len, 1593 GFP_KERNEL_ACCOUNT); 1594 if (!p) { 1595 kmem_cache_free(dentry_cache, dentry); 1596 return NULL; 1597 } 1598 atomic_set(&p->u.count, 1); 1599 dname = p->name; 1600 if (IS_ENABLED(CONFIG_DCACHE_WORD_ACCESS)) 1601 kasan_unpoison_shadow(dname, 1602 round_up(name->len + 1, sizeof(unsigned long))); 1603 } else { 1604 dname = dentry->d_iname; 1605 } 1606 1607 dentry->d_name.len = name->len; 1608 dentry->d_name.hash = name->hash; 1609 memcpy(dname, name->name, name->len); 1610 dname[name->len] = 0; 1611 1612 /* Make sure we always see the terminating NUL character */ 1613 smp_wmb(); 1614 dentry->d_name.name = dname; 1615 1616 dentry->d_lockref.count = 1; 1617 dentry->d_flags = 0; 1618 spin_lock_init(&dentry->d_lock); 1619 seqcount_init(&dentry->d_seq); 1620 dentry->d_inode = NULL; 1621 dentry->d_parent = dentry; 1622 dentry->d_sb = sb; 1623 dentry->d_op = NULL; 1624 dentry->d_fsdata = NULL; 1625 INIT_HLIST_BL_NODE(&dentry->d_hash); 1626 INIT_LIST_HEAD(&dentry->d_lru); 1627 INIT_LIST_HEAD(&dentry->d_subdirs); 1628 INIT_HLIST_NODE(&dentry->d_u.d_alias); 1629 INIT_LIST_HEAD(&dentry->d_child); 1630 d_set_d_op(dentry, dentry->d_sb->s_d_op); 1631 1632 if (dentry->d_op && dentry->d_op->d_init) { 1633 err = dentry->d_op->d_init(dentry); 1634 if (err) { 1635 if (dname_external(dentry)) 1636 kfree(external_name(dentry)); 1637 kmem_cache_free(dentry_cache, dentry); 1638 return NULL; 1639 } 1640 } 1641 1642 this_cpu_inc(nr_dentry); 1643 1644 return dentry; 1645 } 1646 1647 /** 1648 * d_alloc - allocate a dcache entry 1649 * @parent: parent of entry to allocate 1650 * @name: qstr of the name 1651 * 1652 * Allocates a dentry. It returns %NULL if there is insufficient memory 1653 * available. On a success the dentry is returned. The name passed in is 1654 * copied and the copy passed in may be reused after this call. 1655 */ 1656 struct dentry *d_alloc(struct dentry * parent, const struct qstr *name) 1657 { 1658 struct dentry *dentry = __d_alloc(parent->d_sb, name); 1659 if (!dentry) 1660 return NULL; 1661 dentry->d_flags |= DCACHE_RCUACCESS; 1662 spin_lock(&parent->d_lock); 1663 /* 1664 * don't need child lock because it is not subject 1665 * to concurrency here 1666 */ 1667 __dget_dlock(parent); 1668 dentry->d_parent = parent; 1669 list_add(&dentry->d_child, &parent->d_subdirs); 1670 spin_unlock(&parent->d_lock); 1671 1672 return dentry; 1673 } 1674 EXPORT_SYMBOL(d_alloc); 1675 1676 struct dentry *d_alloc_cursor(struct dentry * parent) 1677 { 1678 struct dentry *dentry = __d_alloc(parent->d_sb, NULL); 1679 if (dentry) { 1680 dentry->d_flags |= DCACHE_RCUACCESS | DCACHE_DENTRY_CURSOR; 1681 dentry->d_parent = dget(parent); 1682 } 1683 return dentry; 1684 } 1685 1686 /** 1687 * d_alloc_pseudo - allocate a dentry (for lookup-less filesystems) 1688 * @sb: the superblock 1689 * @name: qstr of the name 1690 * 1691 * For a filesystem that just pins its dentries in memory and never 1692 * performs lookups at all, return an unhashed IS_ROOT dentry. 1693 */ 1694 struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name) 1695 { 1696 return __d_alloc(sb, name); 1697 } 1698 EXPORT_SYMBOL(d_alloc_pseudo); 1699 1700 struct dentry *d_alloc_name(struct dentry *parent, const char *name) 1701 { 1702 struct qstr q; 1703 1704 q.name = name; 1705 q.hash_len = hashlen_string(parent, name); 1706 return d_alloc(parent, &q); 1707 } 1708 EXPORT_SYMBOL(d_alloc_name); 1709 1710 void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op) 1711 { 1712 WARN_ON_ONCE(dentry->d_op); 1713 WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH | 1714 DCACHE_OP_COMPARE | 1715 DCACHE_OP_REVALIDATE | 1716 DCACHE_OP_WEAK_REVALIDATE | 1717 DCACHE_OP_DELETE | 1718 DCACHE_OP_REAL)); 1719 dentry->d_op = op; 1720 if (!op) 1721 return; 1722 if (op->d_hash) 1723 dentry->d_flags |= DCACHE_OP_HASH; 1724 if (op->d_compare) 1725 dentry->d_flags |= DCACHE_OP_COMPARE; 1726 if (op->d_revalidate) 1727 dentry->d_flags |= DCACHE_OP_REVALIDATE; 1728 if (op->d_weak_revalidate) 1729 dentry->d_flags |= DCACHE_OP_WEAK_REVALIDATE; 1730 if (op->d_delete) 1731 dentry->d_flags |= DCACHE_OP_DELETE; 1732 if (op->d_prune) 1733 dentry->d_flags |= DCACHE_OP_PRUNE; 1734 if (op->d_real) 1735 dentry->d_flags |= DCACHE_OP_REAL; 1736 1737 } 1738 EXPORT_SYMBOL(d_set_d_op); 1739 1740 1741 /* 1742 * d_set_fallthru - Mark a dentry as falling through to a lower layer 1743 * @dentry - The dentry to mark 1744 * 1745 * Mark a dentry as falling through to the lower layer (as set with 1746 * d_pin_lower()). This flag may be recorded on the medium. 1747 */ 1748 void d_set_fallthru(struct dentry *dentry) 1749 { 1750 spin_lock(&dentry->d_lock); 1751 dentry->d_flags |= DCACHE_FALLTHRU; 1752 spin_unlock(&dentry->d_lock); 1753 } 1754 EXPORT_SYMBOL(d_set_fallthru); 1755 1756 static unsigned d_flags_for_inode(struct inode *inode) 1757 { 1758 unsigned add_flags = DCACHE_REGULAR_TYPE; 1759 1760 if (!inode) 1761 return DCACHE_MISS_TYPE; 1762 1763 if (S_ISDIR(inode->i_mode)) { 1764 add_flags = DCACHE_DIRECTORY_TYPE; 1765 if (unlikely(!(inode->i_opflags & IOP_LOOKUP))) { 1766 if (unlikely(!inode->i_op->lookup)) 1767 add_flags = DCACHE_AUTODIR_TYPE; 1768 else 1769 inode->i_opflags |= IOP_LOOKUP; 1770 } 1771 goto type_determined; 1772 } 1773 1774 if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) { 1775 if (unlikely(inode->i_op->get_link)) { 1776 add_flags = DCACHE_SYMLINK_TYPE; 1777 goto type_determined; 1778 } 1779 inode->i_opflags |= IOP_NOFOLLOW; 1780 } 1781 1782 if (unlikely(!S_ISREG(inode->i_mode))) 1783 add_flags = DCACHE_SPECIAL_TYPE; 1784 1785 type_determined: 1786 if (unlikely(IS_AUTOMOUNT(inode))) 1787 add_flags |= DCACHE_NEED_AUTOMOUNT; 1788 return add_flags; 1789 } 1790 1791 static void __d_instantiate(struct dentry *dentry, struct inode *inode) 1792 { 1793 unsigned add_flags = d_flags_for_inode(inode); 1794 WARN_ON(d_in_lookup(dentry)); 1795 1796 spin_lock(&dentry->d_lock); 1797 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry); 1798 raw_write_seqcount_begin(&dentry->d_seq); 1799 __d_set_inode_and_type(dentry, inode, add_flags); 1800 raw_write_seqcount_end(&dentry->d_seq); 1801 fsnotify_update_flags(dentry); 1802 spin_unlock(&dentry->d_lock); 1803 } 1804 1805 /** 1806 * d_instantiate - fill in inode information for a dentry 1807 * @entry: dentry to complete 1808 * @inode: inode to attach to this dentry 1809 * 1810 * Fill in inode information in the entry. 1811 * 1812 * This turns negative dentries into productive full members 1813 * of society. 1814 * 1815 * NOTE! This assumes that the inode count has been incremented 1816 * (or otherwise set) by the caller to indicate that it is now 1817 * in use by the dcache. 1818 */ 1819 1820 void d_instantiate(struct dentry *entry, struct inode * inode) 1821 { 1822 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias)); 1823 if (inode) { 1824 security_d_instantiate(entry, inode); 1825 spin_lock(&inode->i_lock); 1826 __d_instantiate(entry, inode); 1827 spin_unlock(&inode->i_lock); 1828 } 1829 } 1830 EXPORT_SYMBOL(d_instantiate); 1831 1832 /** 1833 * d_instantiate_no_diralias - instantiate a non-aliased dentry 1834 * @entry: dentry to complete 1835 * @inode: inode to attach to this dentry 1836 * 1837 * Fill in inode information in the entry. If a directory alias is found, then 1838 * return an error (and drop inode). Together with d_materialise_unique() this 1839 * guarantees that a directory inode may never have more than one alias. 1840 */ 1841 int d_instantiate_no_diralias(struct dentry *entry, struct inode *inode) 1842 { 1843 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias)); 1844 1845 security_d_instantiate(entry, inode); 1846 spin_lock(&inode->i_lock); 1847 if (S_ISDIR(inode->i_mode) && !hlist_empty(&inode->i_dentry)) { 1848 spin_unlock(&inode->i_lock); 1849 iput(inode); 1850 return -EBUSY; 1851 } 1852 __d_instantiate(entry, inode); 1853 spin_unlock(&inode->i_lock); 1854 1855 return 0; 1856 } 1857 EXPORT_SYMBOL(d_instantiate_no_diralias); 1858 1859 struct dentry *d_make_root(struct inode *root_inode) 1860 { 1861 struct dentry *res = NULL; 1862 1863 if (root_inode) { 1864 res = __d_alloc(root_inode->i_sb, NULL); 1865 if (res) 1866 d_instantiate(res, root_inode); 1867 else 1868 iput(root_inode); 1869 } 1870 return res; 1871 } 1872 EXPORT_SYMBOL(d_make_root); 1873 1874 static struct dentry * __d_find_any_alias(struct inode *inode) 1875 { 1876 struct dentry *alias; 1877 1878 if (hlist_empty(&inode->i_dentry)) 1879 return NULL; 1880 alias = hlist_entry(inode->i_dentry.first, struct dentry, d_u.d_alias); 1881 __dget(alias); 1882 return alias; 1883 } 1884 1885 /** 1886 * d_find_any_alias - find any alias for a given inode 1887 * @inode: inode to find an alias for 1888 * 1889 * If any aliases exist for the given inode, take and return a 1890 * reference for one of them. If no aliases exist, return %NULL. 1891 */ 1892 struct dentry *d_find_any_alias(struct inode *inode) 1893 { 1894 struct dentry *de; 1895 1896 spin_lock(&inode->i_lock); 1897 de = __d_find_any_alias(inode); 1898 spin_unlock(&inode->i_lock); 1899 return de; 1900 } 1901 EXPORT_SYMBOL(d_find_any_alias); 1902 1903 static struct dentry *__d_obtain_alias(struct inode *inode, int disconnected) 1904 { 1905 struct dentry *tmp; 1906 struct dentry *res; 1907 unsigned add_flags; 1908 1909 if (!inode) 1910 return ERR_PTR(-ESTALE); 1911 if (IS_ERR(inode)) 1912 return ERR_CAST(inode); 1913 1914 res = d_find_any_alias(inode); 1915 if (res) 1916 goto out_iput; 1917 1918 tmp = __d_alloc(inode->i_sb, NULL); 1919 if (!tmp) { 1920 res = ERR_PTR(-ENOMEM); 1921 goto out_iput; 1922 } 1923 1924 security_d_instantiate(tmp, inode); 1925 spin_lock(&inode->i_lock); 1926 res = __d_find_any_alias(inode); 1927 if (res) { 1928 spin_unlock(&inode->i_lock); 1929 dput(tmp); 1930 goto out_iput; 1931 } 1932 1933 /* attach a disconnected dentry */ 1934 add_flags = d_flags_for_inode(inode); 1935 1936 if (disconnected) 1937 add_flags |= DCACHE_DISCONNECTED; 1938 1939 spin_lock(&tmp->d_lock); 1940 __d_set_inode_and_type(tmp, inode, add_flags); 1941 hlist_add_head(&tmp->d_u.d_alias, &inode->i_dentry); 1942 hlist_bl_lock(&tmp->d_sb->s_anon); 1943 hlist_bl_add_head(&tmp->d_hash, &tmp->d_sb->s_anon); 1944 hlist_bl_unlock(&tmp->d_sb->s_anon); 1945 spin_unlock(&tmp->d_lock); 1946 spin_unlock(&inode->i_lock); 1947 1948 return tmp; 1949 1950 out_iput: 1951 iput(inode); 1952 return res; 1953 } 1954 1955 /** 1956 * d_obtain_alias - find or allocate a DISCONNECTED dentry for a given inode 1957 * @inode: inode to allocate the dentry for 1958 * 1959 * Obtain a dentry for an inode resulting from NFS filehandle conversion or 1960 * similar open by handle operations. The returned dentry may be anonymous, 1961 * or may have a full name (if the inode was already in the cache). 1962 * 1963 * When called on a directory inode, we must ensure that the inode only ever 1964 * has one dentry. If a dentry is found, that is returned instead of 1965 * allocating a new one. 1966 * 1967 * On successful return, the reference to the inode has been transferred 1968 * to the dentry. In case of an error the reference on the inode is released. 1969 * To make it easier to use in export operations a %NULL or IS_ERR inode may 1970 * be passed in and the error will be propagated to the return value, 1971 * with a %NULL @inode replaced by ERR_PTR(-ESTALE). 1972 */ 1973 struct dentry *d_obtain_alias(struct inode *inode) 1974 { 1975 return __d_obtain_alias(inode, 1); 1976 } 1977 EXPORT_SYMBOL(d_obtain_alias); 1978 1979 /** 1980 * d_obtain_root - find or allocate a dentry for a given inode 1981 * @inode: inode to allocate the dentry for 1982 * 1983 * Obtain an IS_ROOT dentry for the root of a filesystem. 1984 * 1985 * We must ensure that directory inodes only ever have one dentry. If a 1986 * dentry is found, that is returned instead of allocating a new one. 1987 * 1988 * On successful return, the reference to the inode has been transferred 1989 * to the dentry. In case of an error the reference on the inode is 1990 * released. A %NULL or IS_ERR inode may be passed in and will be the 1991 * error will be propagate to the return value, with a %NULL @inode 1992 * replaced by ERR_PTR(-ESTALE). 1993 */ 1994 struct dentry *d_obtain_root(struct inode *inode) 1995 { 1996 return __d_obtain_alias(inode, 0); 1997 } 1998 EXPORT_SYMBOL(d_obtain_root); 1999 2000 /** 2001 * d_add_ci - lookup or allocate new dentry with case-exact name 2002 * @inode: the inode case-insensitive lookup has found 2003 * @dentry: the negative dentry that was passed to the parent's lookup func 2004 * @name: the case-exact name to be associated with the returned dentry 2005 * 2006 * This is to avoid filling the dcache with case-insensitive names to the 2007 * same inode, only the actual correct case is stored in the dcache for 2008 * case-insensitive filesystems. 2009 * 2010 * For a case-insensitive lookup match and if the the case-exact dentry 2011 * already exists in in the dcache, use it and return it. 2012 * 2013 * If no entry exists with the exact case name, allocate new dentry with 2014 * the exact case, and return the spliced entry. 2015 */ 2016 struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode, 2017 struct qstr *name) 2018 { 2019 struct dentry *found, *res; 2020 2021 /* 2022 * First check if a dentry matching the name already exists, 2023 * if not go ahead and create it now. 2024 */ 2025 found = d_hash_and_lookup(dentry->d_parent, name); 2026 if (found) { 2027 iput(inode); 2028 return found; 2029 } 2030 if (d_in_lookup(dentry)) { 2031 found = d_alloc_parallel(dentry->d_parent, name, 2032 dentry->d_wait); 2033 if (IS_ERR(found) || !d_in_lookup(found)) { 2034 iput(inode); 2035 return found; 2036 } 2037 } else { 2038 found = d_alloc(dentry->d_parent, name); 2039 if (!found) { 2040 iput(inode); 2041 return ERR_PTR(-ENOMEM); 2042 } 2043 } 2044 res = d_splice_alias(inode, found); 2045 if (res) { 2046 dput(found); 2047 return res; 2048 } 2049 return found; 2050 } 2051 EXPORT_SYMBOL(d_add_ci); 2052 2053 2054 static inline bool d_same_name(const struct dentry *dentry, 2055 const struct dentry *parent, 2056 const struct qstr *name) 2057 { 2058 if (likely(!(parent->d_flags & DCACHE_OP_COMPARE))) { 2059 if (dentry->d_name.len != name->len) 2060 return false; 2061 return dentry_cmp(dentry, name->name, name->len) == 0; 2062 } 2063 return parent->d_op->d_compare(parent, dentry, 2064 dentry->d_name.len, dentry->d_name.name, 2065 name) == 0; 2066 } 2067 2068 /** 2069 * __d_lookup_rcu - search for a dentry (racy, store-free) 2070 * @parent: parent dentry 2071 * @name: qstr of name we wish to find 2072 * @seqp: returns d_seq value at the point where the dentry was found 2073 * Returns: dentry, or NULL 2074 * 2075 * __d_lookup_rcu is the dcache lookup function for rcu-walk name 2076 * resolution (store-free path walking) design described in 2077 * Documentation/filesystems/path-lookup.txt. 2078 * 2079 * This is not to be used outside core vfs. 2080 * 2081 * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock 2082 * held, and rcu_read_lock held. The returned dentry must not be stored into 2083 * without taking d_lock and checking d_seq sequence count against @seq 2084 * returned here. 2085 * 2086 * A refcount may be taken on the found dentry with the d_rcu_to_refcount 2087 * function. 2088 * 2089 * Alternatively, __d_lookup_rcu may be called again to look up the child of 2090 * the returned dentry, so long as its parent's seqlock is checked after the 2091 * child is looked up. Thus, an interlocking stepping of sequence lock checks 2092 * is formed, giving integrity down the path walk. 2093 * 2094 * NOTE! The caller *has* to check the resulting dentry against the sequence 2095 * number we've returned before using any of the resulting dentry state! 2096 */ 2097 struct dentry *__d_lookup_rcu(const struct dentry *parent, 2098 const struct qstr *name, 2099 unsigned *seqp) 2100 { 2101 u64 hashlen = name->hash_len; 2102 const unsigned char *str = name->name; 2103 struct hlist_bl_head *b = d_hash(hashlen_hash(hashlen)); 2104 struct hlist_bl_node *node; 2105 struct dentry *dentry; 2106 2107 /* 2108 * Note: There is significant duplication with __d_lookup_rcu which is 2109 * required to prevent single threaded performance regressions 2110 * especially on architectures where smp_rmb (in seqcounts) are costly. 2111 * Keep the two functions in sync. 2112 */ 2113 2114 /* 2115 * The hash list is protected using RCU. 2116 * 2117 * Carefully use d_seq when comparing a candidate dentry, to avoid 2118 * races with d_move(). 2119 * 2120 * It is possible that concurrent renames can mess up our list 2121 * walk here and result in missing our dentry, resulting in the 2122 * false-negative result. d_lookup() protects against concurrent 2123 * renames using rename_lock seqlock. 2124 * 2125 * See Documentation/filesystems/path-lookup.txt for more details. 2126 */ 2127 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) { 2128 unsigned seq; 2129 2130 seqretry: 2131 /* 2132 * The dentry sequence count protects us from concurrent 2133 * renames, and thus protects parent and name fields. 2134 * 2135 * The caller must perform a seqcount check in order 2136 * to do anything useful with the returned dentry. 2137 * 2138 * NOTE! We do a "raw" seqcount_begin here. That means that 2139 * we don't wait for the sequence count to stabilize if it 2140 * is in the middle of a sequence change. If we do the slow 2141 * dentry compare, we will do seqretries until it is stable, 2142 * and if we end up with a successful lookup, we actually 2143 * want to exit RCU lookup anyway. 2144 * 2145 * Note that raw_seqcount_begin still *does* smp_rmb(), so 2146 * we are still guaranteed NUL-termination of ->d_name.name. 2147 */ 2148 seq = raw_seqcount_begin(&dentry->d_seq); 2149 if (dentry->d_parent != parent) 2150 continue; 2151 if (d_unhashed(dentry)) 2152 continue; 2153 2154 if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) { 2155 int tlen; 2156 const char *tname; 2157 if (dentry->d_name.hash != hashlen_hash(hashlen)) 2158 continue; 2159 tlen = dentry->d_name.len; 2160 tname = dentry->d_name.name; 2161 /* we want a consistent (name,len) pair */ 2162 if (read_seqcount_retry(&dentry->d_seq, seq)) { 2163 cpu_relax(); 2164 goto seqretry; 2165 } 2166 if (parent->d_op->d_compare(parent, dentry, 2167 tlen, tname, name) != 0) 2168 continue; 2169 } else { 2170 if (dentry->d_name.hash_len != hashlen) 2171 continue; 2172 if (dentry_cmp(dentry, str, hashlen_len(hashlen)) != 0) 2173 continue; 2174 } 2175 *seqp = seq; 2176 return dentry; 2177 } 2178 return NULL; 2179 } 2180 2181 /** 2182 * d_lookup - search for a dentry 2183 * @parent: parent dentry 2184 * @name: qstr of name we wish to find 2185 * Returns: dentry, or NULL 2186 * 2187 * d_lookup searches the children of the parent dentry for the name in 2188 * question. If the dentry is found its reference count is incremented and the 2189 * dentry is returned. The caller must use dput to free the entry when it has 2190 * finished using it. %NULL is returned if the dentry does not exist. 2191 */ 2192 struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name) 2193 { 2194 struct dentry *dentry; 2195 unsigned seq; 2196 2197 do { 2198 seq = read_seqbegin(&rename_lock); 2199 dentry = __d_lookup(parent, name); 2200 if (dentry) 2201 break; 2202 } while (read_seqretry(&rename_lock, seq)); 2203 return dentry; 2204 } 2205 EXPORT_SYMBOL(d_lookup); 2206 2207 /** 2208 * __d_lookup - search for a dentry (racy) 2209 * @parent: parent dentry 2210 * @name: qstr of name we wish to find 2211 * Returns: dentry, or NULL 2212 * 2213 * __d_lookup is like d_lookup, however it may (rarely) return a 2214 * false-negative result due to unrelated rename activity. 2215 * 2216 * __d_lookup is slightly faster by avoiding rename_lock read seqlock, 2217 * however it must be used carefully, eg. with a following d_lookup in 2218 * the case of failure. 2219 * 2220 * __d_lookup callers must be commented. 2221 */ 2222 struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name) 2223 { 2224 unsigned int hash = name->hash; 2225 struct hlist_bl_head *b = d_hash(hash); 2226 struct hlist_bl_node *node; 2227 struct dentry *found = NULL; 2228 struct dentry *dentry; 2229 2230 /* 2231 * Note: There is significant duplication with __d_lookup_rcu which is 2232 * required to prevent single threaded performance regressions 2233 * especially on architectures where smp_rmb (in seqcounts) are costly. 2234 * Keep the two functions in sync. 2235 */ 2236 2237 /* 2238 * The hash list is protected using RCU. 2239 * 2240 * Take d_lock when comparing a candidate dentry, to avoid races 2241 * with d_move(). 2242 * 2243 * It is possible that concurrent renames can mess up our list 2244 * walk here and result in missing our dentry, resulting in the 2245 * false-negative result. d_lookup() protects against concurrent 2246 * renames using rename_lock seqlock. 2247 * 2248 * See Documentation/filesystems/path-lookup.txt for more details. 2249 */ 2250 rcu_read_lock(); 2251 2252 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) { 2253 2254 if (dentry->d_name.hash != hash) 2255 continue; 2256 2257 spin_lock(&dentry->d_lock); 2258 if (dentry->d_parent != parent) 2259 goto next; 2260 if (d_unhashed(dentry)) 2261 goto next; 2262 2263 if (!d_same_name(dentry, parent, name)) 2264 goto next; 2265 2266 dentry->d_lockref.count++; 2267 found = dentry; 2268 spin_unlock(&dentry->d_lock); 2269 break; 2270 next: 2271 spin_unlock(&dentry->d_lock); 2272 } 2273 rcu_read_unlock(); 2274 2275 return found; 2276 } 2277 2278 /** 2279 * d_hash_and_lookup - hash the qstr then search for a dentry 2280 * @dir: Directory to search in 2281 * @name: qstr of name we wish to find 2282 * 2283 * On lookup failure NULL is returned; on bad name - ERR_PTR(-error) 2284 */ 2285 struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name) 2286 { 2287 /* 2288 * Check for a fs-specific hash function. Note that we must 2289 * calculate the standard hash first, as the d_op->d_hash() 2290 * routine may choose to leave the hash value unchanged. 2291 */ 2292 name->hash = full_name_hash(dir, name->name, name->len); 2293 if (dir->d_flags & DCACHE_OP_HASH) { 2294 int err = dir->d_op->d_hash(dir, name); 2295 if (unlikely(err < 0)) 2296 return ERR_PTR(err); 2297 } 2298 return d_lookup(dir, name); 2299 } 2300 EXPORT_SYMBOL(d_hash_and_lookup); 2301 2302 /* 2303 * When a file is deleted, we have two options: 2304 * - turn this dentry into a negative dentry 2305 * - unhash this dentry and free it. 2306 * 2307 * Usually, we want to just turn this into 2308 * a negative dentry, but if anybody else is 2309 * currently using the dentry or the inode 2310 * we can't do that and we fall back on removing 2311 * it from the hash queues and waiting for 2312 * it to be deleted later when it has no users 2313 */ 2314 2315 /** 2316 * d_delete - delete a dentry 2317 * @dentry: The dentry to delete 2318 * 2319 * Turn the dentry into a negative dentry if possible, otherwise 2320 * remove it from the hash queues so it can be deleted later 2321 */ 2322 2323 void d_delete(struct dentry * dentry) 2324 { 2325 struct inode *inode; 2326 int isdir = 0; 2327 /* 2328 * Are we the only user? 2329 */ 2330 again: 2331 spin_lock(&dentry->d_lock); 2332 inode = dentry->d_inode; 2333 isdir = S_ISDIR(inode->i_mode); 2334 if (dentry->d_lockref.count == 1) { 2335 if (!spin_trylock(&inode->i_lock)) { 2336 spin_unlock(&dentry->d_lock); 2337 cpu_relax(); 2338 goto again; 2339 } 2340 dentry->d_flags &= ~DCACHE_CANT_MOUNT; 2341 dentry_unlink_inode(dentry); 2342 fsnotify_nameremove(dentry, isdir); 2343 return; 2344 } 2345 2346 if (!d_unhashed(dentry)) 2347 __d_drop(dentry); 2348 2349 spin_unlock(&dentry->d_lock); 2350 2351 fsnotify_nameremove(dentry, isdir); 2352 } 2353 EXPORT_SYMBOL(d_delete); 2354 2355 static void __d_rehash(struct dentry * entry, struct hlist_bl_head *b) 2356 { 2357 BUG_ON(!d_unhashed(entry)); 2358 hlist_bl_lock(b); 2359 hlist_bl_add_head_rcu(&entry->d_hash, b); 2360 hlist_bl_unlock(b); 2361 } 2362 2363 static void _d_rehash(struct dentry * entry) 2364 { 2365 __d_rehash(entry, d_hash(entry->d_name.hash)); 2366 } 2367 2368 /** 2369 * d_rehash - add an entry back to the hash 2370 * @entry: dentry to add to the hash 2371 * 2372 * Adds a dentry to the hash according to its name. 2373 */ 2374 2375 void d_rehash(struct dentry * entry) 2376 { 2377 spin_lock(&entry->d_lock); 2378 _d_rehash(entry); 2379 spin_unlock(&entry->d_lock); 2380 } 2381 EXPORT_SYMBOL(d_rehash); 2382 2383 static inline unsigned start_dir_add(struct inode *dir) 2384 { 2385 2386 for (;;) { 2387 unsigned n = dir->i_dir_seq; 2388 if (!(n & 1) && cmpxchg(&dir->i_dir_seq, n, n + 1) == n) 2389 return n; 2390 cpu_relax(); 2391 } 2392 } 2393 2394 static inline void end_dir_add(struct inode *dir, unsigned n) 2395 { 2396 smp_store_release(&dir->i_dir_seq, n + 2); 2397 } 2398 2399 static void d_wait_lookup(struct dentry *dentry) 2400 { 2401 if (d_in_lookup(dentry)) { 2402 DECLARE_WAITQUEUE(wait, current); 2403 add_wait_queue(dentry->d_wait, &wait); 2404 do { 2405 set_current_state(TASK_UNINTERRUPTIBLE); 2406 spin_unlock(&dentry->d_lock); 2407 schedule(); 2408 spin_lock(&dentry->d_lock); 2409 } while (d_in_lookup(dentry)); 2410 } 2411 } 2412 2413 struct dentry *d_alloc_parallel(struct dentry *parent, 2414 const struct qstr *name, 2415 wait_queue_head_t *wq) 2416 { 2417 unsigned int hash = name->hash; 2418 struct hlist_bl_head *b = in_lookup_hash(parent, hash); 2419 struct hlist_bl_node *node; 2420 struct dentry *new = d_alloc(parent, name); 2421 struct dentry *dentry; 2422 unsigned seq, r_seq, d_seq; 2423 2424 if (unlikely(!new)) 2425 return ERR_PTR(-ENOMEM); 2426 2427 retry: 2428 rcu_read_lock(); 2429 seq = smp_load_acquire(&parent->d_inode->i_dir_seq) & ~1; 2430 r_seq = read_seqbegin(&rename_lock); 2431 dentry = __d_lookup_rcu(parent, name, &d_seq); 2432 if (unlikely(dentry)) { 2433 if (!lockref_get_not_dead(&dentry->d_lockref)) { 2434 rcu_read_unlock(); 2435 goto retry; 2436 } 2437 if (read_seqcount_retry(&dentry->d_seq, d_seq)) { 2438 rcu_read_unlock(); 2439 dput(dentry); 2440 goto retry; 2441 } 2442 rcu_read_unlock(); 2443 dput(new); 2444 return dentry; 2445 } 2446 if (unlikely(read_seqretry(&rename_lock, r_seq))) { 2447 rcu_read_unlock(); 2448 goto retry; 2449 } 2450 hlist_bl_lock(b); 2451 if (unlikely(parent->d_inode->i_dir_seq != seq)) { 2452 hlist_bl_unlock(b); 2453 rcu_read_unlock(); 2454 goto retry; 2455 } 2456 /* 2457 * No changes for the parent since the beginning of d_lookup(). 2458 * Since all removals from the chain happen with hlist_bl_lock(), 2459 * any potential in-lookup matches are going to stay here until 2460 * we unlock the chain. All fields are stable in everything 2461 * we encounter. 2462 */ 2463 hlist_bl_for_each_entry(dentry, node, b, d_u.d_in_lookup_hash) { 2464 if (dentry->d_name.hash != hash) 2465 continue; 2466 if (dentry->d_parent != parent) 2467 continue; 2468 if (!d_same_name(dentry, parent, name)) 2469 continue; 2470 hlist_bl_unlock(b); 2471 /* now we can try to grab a reference */ 2472 if (!lockref_get_not_dead(&dentry->d_lockref)) { 2473 rcu_read_unlock(); 2474 goto retry; 2475 } 2476 2477 rcu_read_unlock(); 2478 /* 2479 * somebody is likely to be still doing lookup for it; 2480 * wait for them to finish 2481 */ 2482 spin_lock(&dentry->d_lock); 2483 d_wait_lookup(dentry); 2484 /* 2485 * it's not in-lookup anymore; in principle we should repeat 2486 * everything from dcache lookup, but it's likely to be what 2487 * d_lookup() would've found anyway. If it is, just return it; 2488 * otherwise we really have to repeat the whole thing. 2489 */ 2490 if (unlikely(dentry->d_name.hash != hash)) 2491 goto mismatch; 2492 if (unlikely(dentry->d_parent != parent)) 2493 goto mismatch; 2494 if (unlikely(d_unhashed(dentry))) 2495 goto mismatch; 2496 if (unlikely(!d_same_name(dentry, parent, name))) 2497 goto mismatch; 2498 /* OK, it *is* a hashed match; return it */ 2499 spin_unlock(&dentry->d_lock); 2500 dput(new); 2501 return dentry; 2502 } 2503 rcu_read_unlock(); 2504 /* we can't take ->d_lock here; it's OK, though. */ 2505 new->d_flags |= DCACHE_PAR_LOOKUP; 2506 new->d_wait = wq; 2507 hlist_bl_add_head_rcu(&new->d_u.d_in_lookup_hash, b); 2508 hlist_bl_unlock(b); 2509 return new; 2510 mismatch: 2511 spin_unlock(&dentry->d_lock); 2512 dput(dentry); 2513 goto retry; 2514 } 2515 EXPORT_SYMBOL(d_alloc_parallel); 2516 2517 void __d_lookup_done(struct dentry *dentry) 2518 { 2519 struct hlist_bl_head *b = in_lookup_hash(dentry->d_parent, 2520 dentry->d_name.hash); 2521 hlist_bl_lock(b); 2522 dentry->d_flags &= ~DCACHE_PAR_LOOKUP; 2523 __hlist_bl_del(&dentry->d_u.d_in_lookup_hash); 2524 wake_up_all(dentry->d_wait); 2525 dentry->d_wait = NULL; 2526 hlist_bl_unlock(b); 2527 INIT_HLIST_NODE(&dentry->d_u.d_alias); 2528 INIT_LIST_HEAD(&dentry->d_lru); 2529 } 2530 EXPORT_SYMBOL(__d_lookup_done); 2531 2532 /* inode->i_lock held if inode is non-NULL */ 2533 2534 static inline void __d_add(struct dentry *dentry, struct inode *inode) 2535 { 2536 struct inode *dir = NULL; 2537 unsigned n; 2538 spin_lock(&dentry->d_lock); 2539 if (unlikely(d_in_lookup(dentry))) { 2540 dir = dentry->d_parent->d_inode; 2541 n = start_dir_add(dir); 2542 __d_lookup_done(dentry); 2543 } 2544 if (inode) { 2545 unsigned add_flags = d_flags_for_inode(inode); 2546 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry); 2547 raw_write_seqcount_begin(&dentry->d_seq); 2548 __d_set_inode_and_type(dentry, inode, add_flags); 2549 raw_write_seqcount_end(&dentry->d_seq); 2550 fsnotify_update_flags(dentry); 2551 } 2552 _d_rehash(dentry); 2553 if (dir) 2554 end_dir_add(dir, n); 2555 spin_unlock(&dentry->d_lock); 2556 if (inode) 2557 spin_unlock(&inode->i_lock); 2558 } 2559 2560 /** 2561 * d_add - add dentry to hash queues 2562 * @entry: dentry to add 2563 * @inode: The inode to attach to this dentry 2564 * 2565 * This adds the entry to the hash queues and initializes @inode. 2566 * The entry was actually filled in earlier during d_alloc(). 2567 */ 2568 2569 void d_add(struct dentry *entry, struct inode *inode) 2570 { 2571 if (inode) { 2572 security_d_instantiate(entry, inode); 2573 spin_lock(&inode->i_lock); 2574 } 2575 __d_add(entry, inode); 2576 } 2577 EXPORT_SYMBOL(d_add); 2578 2579 /** 2580 * d_exact_alias - find and hash an exact unhashed alias 2581 * @entry: dentry to add 2582 * @inode: The inode to go with this dentry 2583 * 2584 * If an unhashed dentry with the same name/parent and desired 2585 * inode already exists, hash and return it. Otherwise, return 2586 * NULL. 2587 * 2588 * Parent directory should be locked. 2589 */ 2590 struct dentry *d_exact_alias(struct dentry *entry, struct inode *inode) 2591 { 2592 struct dentry *alias; 2593 unsigned int hash = entry->d_name.hash; 2594 2595 spin_lock(&inode->i_lock); 2596 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) { 2597 /* 2598 * Don't need alias->d_lock here, because aliases with 2599 * d_parent == entry->d_parent are not subject to name or 2600 * parent changes, because the parent inode i_mutex is held. 2601 */ 2602 if (alias->d_name.hash != hash) 2603 continue; 2604 if (alias->d_parent != entry->d_parent) 2605 continue; 2606 if (!d_same_name(alias, entry->d_parent, &entry->d_name)) 2607 continue; 2608 spin_lock(&alias->d_lock); 2609 if (!d_unhashed(alias)) { 2610 spin_unlock(&alias->d_lock); 2611 alias = NULL; 2612 } else { 2613 __dget_dlock(alias); 2614 _d_rehash(alias); 2615 spin_unlock(&alias->d_lock); 2616 } 2617 spin_unlock(&inode->i_lock); 2618 return alias; 2619 } 2620 spin_unlock(&inode->i_lock); 2621 return NULL; 2622 } 2623 EXPORT_SYMBOL(d_exact_alias); 2624 2625 /** 2626 * dentry_update_name_case - update case insensitive dentry with a new name 2627 * @dentry: dentry to be updated 2628 * @name: new name 2629 * 2630 * Update a case insensitive dentry with new case of name. 2631 * 2632 * dentry must have been returned by d_lookup with name @name. Old and new 2633 * name lengths must match (ie. no d_compare which allows mismatched name 2634 * lengths). 2635 * 2636 * Parent inode i_mutex must be held over d_lookup and into this call (to 2637 * keep renames and concurrent inserts, and readdir(2) away). 2638 */ 2639 void dentry_update_name_case(struct dentry *dentry, struct qstr *name) 2640 { 2641 BUG_ON(!inode_is_locked(dentry->d_parent->d_inode)); 2642 BUG_ON(dentry->d_name.len != name->len); /* d_lookup gives this */ 2643 2644 spin_lock(&dentry->d_lock); 2645 write_seqcount_begin(&dentry->d_seq); 2646 memcpy((unsigned char *)dentry->d_name.name, name->name, name->len); 2647 write_seqcount_end(&dentry->d_seq); 2648 spin_unlock(&dentry->d_lock); 2649 } 2650 EXPORT_SYMBOL(dentry_update_name_case); 2651 2652 static void swap_names(struct dentry *dentry, struct dentry *target) 2653 { 2654 if (unlikely(dname_external(target))) { 2655 if (unlikely(dname_external(dentry))) { 2656 /* 2657 * Both external: swap the pointers 2658 */ 2659 swap(target->d_name.name, dentry->d_name.name); 2660 } else { 2661 /* 2662 * dentry:internal, target:external. Steal target's 2663 * storage and make target internal. 2664 */ 2665 memcpy(target->d_iname, dentry->d_name.name, 2666 dentry->d_name.len + 1); 2667 dentry->d_name.name = target->d_name.name; 2668 target->d_name.name = target->d_iname; 2669 } 2670 } else { 2671 if (unlikely(dname_external(dentry))) { 2672 /* 2673 * dentry:external, target:internal. Give dentry's 2674 * storage to target and make dentry internal 2675 */ 2676 memcpy(dentry->d_iname, target->d_name.name, 2677 target->d_name.len + 1); 2678 target->d_name.name = dentry->d_name.name; 2679 dentry->d_name.name = dentry->d_iname; 2680 } else { 2681 /* 2682 * Both are internal. 2683 */ 2684 unsigned int i; 2685 BUILD_BUG_ON(!IS_ALIGNED(DNAME_INLINE_LEN, sizeof(long))); 2686 kmemcheck_mark_initialized(dentry->d_iname, DNAME_INLINE_LEN); 2687 kmemcheck_mark_initialized(target->d_iname, DNAME_INLINE_LEN); 2688 for (i = 0; i < DNAME_INLINE_LEN / sizeof(long); i++) { 2689 swap(((long *) &dentry->d_iname)[i], 2690 ((long *) &target->d_iname)[i]); 2691 } 2692 } 2693 } 2694 swap(dentry->d_name.hash_len, target->d_name.hash_len); 2695 } 2696 2697 static void copy_name(struct dentry *dentry, struct dentry *target) 2698 { 2699 struct external_name *old_name = NULL; 2700 if (unlikely(dname_external(dentry))) 2701 old_name = external_name(dentry); 2702 if (unlikely(dname_external(target))) { 2703 atomic_inc(&external_name(target)->u.count); 2704 dentry->d_name = target->d_name; 2705 } else { 2706 memcpy(dentry->d_iname, target->d_name.name, 2707 target->d_name.len + 1); 2708 dentry->d_name.name = dentry->d_iname; 2709 dentry->d_name.hash_len = target->d_name.hash_len; 2710 } 2711 if (old_name && likely(atomic_dec_and_test(&old_name->u.count))) 2712 kfree_rcu(old_name, u.head); 2713 } 2714 2715 static void dentry_lock_for_move(struct dentry *dentry, struct dentry *target) 2716 { 2717 /* 2718 * XXXX: do we really need to take target->d_lock? 2719 */ 2720 if (IS_ROOT(dentry) || dentry->d_parent == target->d_parent) 2721 spin_lock(&target->d_parent->d_lock); 2722 else { 2723 if (d_ancestor(dentry->d_parent, target->d_parent)) { 2724 spin_lock(&dentry->d_parent->d_lock); 2725 spin_lock_nested(&target->d_parent->d_lock, 2726 DENTRY_D_LOCK_NESTED); 2727 } else { 2728 spin_lock(&target->d_parent->d_lock); 2729 spin_lock_nested(&dentry->d_parent->d_lock, 2730 DENTRY_D_LOCK_NESTED); 2731 } 2732 } 2733 if (target < dentry) { 2734 spin_lock_nested(&target->d_lock, 2); 2735 spin_lock_nested(&dentry->d_lock, 3); 2736 } else { 2737 spin_lock_nested(&dentry->d_lock, 2); 2738 spin_lock_nested(&target->d_lock, 3); 2739 } 2740 } 2741 2742 static void dentry_unlock_for_move(struct dentry *dentry, struct dentry *target) 2743 { 2744 if (target->d_parent != dentry->d_parent) 2745 spin_unlock(&dentry->d_parent->d_lock); 2746 if (target->d_parent != target) 2747 spin_unlock(&target->d_parent->d_lock); 2748 spin_unlock(&target->d_lock); 2749 spin_unlock(&dentry->d_lock); 2750 } 2751 2752 /* 2753 * When switching names, the actual string doesn't strictly have to 2754 * be preserved in the target - because we're dropping the target 2755 * anyway. As such, we can just do a simple memcpy() to copy over 2756 * the new name before we switch, unless we are going to rehash 2757 * it. Note that if we *do* unhash the target, we are not allowed 2758 * to rehash it without giving it a new name/hash key - whether 2759 * we swap or overwrite the names here, resulting name won't match 2760 * the reality in filesystem; it's only there for d_path() purposes. 2761 * Note that all of this is happening under rename_lock, so the 2762 * any hash lookup seeing it in the middle of manipulations will 2763 * be discarded anyway. So we do not care what happens to the hash 2764 * key in that case. 2765 */ 2766 /* 2767 * __d_move - move a dentry 2768 * @dentry: entry to move 2769 * @target: new dentry 2770 * @exchange: exchange the two dentries 2771 * 2772 * Update the dcache to reflect the move of a file name. Negative 2773 * dcache entries should not be moved in this way. Caller must hold 2774 * rename_lock, the i_mutex of the source and target directories, 2775 * and the sb->s_vfs_rename_mutex if they differ. See lock_rename(). 2776 */ 2777 static void __d_move(struct dentry *dentry, struct dentry *target, 2778 bool exchange) 2779 { 2780 struct inode *dir = NULL; 2781 unsigned n; 2782 if (!dentry->d_inode) 2783 printk(KERN_WARNING "VFS: moving negative dcache entry\n"); 2784 2785 BUG_ON(d_ancestor(dentry, target)); 2786 BUG_ON(d_ancestor(target, dentry)); 2787 2788 dentry_lock_for_move(dentry, target); 2789 if (unlikely(d_in_lookup(target))) { 2790 dir = target->d_parent->d_inode; 2791 n = start_dir_add(dir); 2792 __d_lookup_done(target); 2793 } 2794 2795 write_seqcount_begin(&dentry->d_seq); 2796 write_seqcount_begin_nested(&target->d_seq, DENTRY_D_LOCK_NESTED); 2797 2798 /* __d_drop does write_seqcount_barrier, but they're OK to nest. */ 2799 2800 /* 2801 * Move the dentry to the target hash queue. Don't bother checking 2802 * for the same hash queue because of how unlikely it is. 2803 */ 2804 __d_drop(dentry); 2805 __d_rehash(dentry, d_hash(target->d_name.hash)); 2806 2807 /* 2808 * Unhash the target (d_delete() is not usable here). If exchanging 2809 * the two dentries, then rehash onto the other's hash queue. 2810 */ 2811 __d_drop(target); 2812 if (exchange) { 2813 __d_rehash(target, d_hash(dentry->d_name.hash)); 2814 } 2815 2816 /* Switch the names.. */ 2817 if (exchange) 2818 swap_names(dentry, target); 2819 else 2820 copy_name(dentry, target); 2821 2822 /* ... and switch them in the tree */ 2823 if (IS_ROOT(dentry)) { 2824 /* splicing a tree */ 2825 dentry->d_flags |= DCACHE_RCUACCESS; 2826 dentry->d_parent = target->d_parent; 2827 target->d_parent = target; 2828 list_del_init(&target->d_child); 2829 list_move(&dentry->d_child, &dentry->d_parent->d_subdirs); 2830 } else { 2831 /* swapping two dentries */ 2832 swap(dentry->d_parent, target->d_parent); 2833 list_move(&target->d_child, &target->d_parent->d_subdirs); 2834 list_move(&dentry->d_child, &dentry->d_parent->d_subdirs); 2835 if (exchange) 2836 fsnotify_update_flags(target); 2837 fsnotify_update_flags(dentry); 2838 } 2839 2840 write_seqcount_end(&target->d_seq); 2841 write_seqcount_end(&dentry->d_seq); 2842 2843 if (dir) 2844 end_dir_add(dir, n); 2845 dentry_unlock_for_move(dentry, target); 2846 } 2847 2848 /* 2849 * d_move - move a dentry 2850 * @dentry: entry to move 2851 * @target: new dentry 2852 * 2853 * Update the dcache to reflect the move of a file name. Negative 2854 * dcache entries should not be moved in this way. See the locking 2855 * requirements for __d_move. 2856 */ 2857 void d_move(struct dentry *dentry, struct dentry *target) 2858 { 2859 write_seqlock(&rename_lock); 2860 __d_move(dentry, target, false); 2861 write_sequnlock(&rename_lock); 2862 } 2863 EXPORT_SYMBOL(d_move); 2864 2865 /* 2866 * d_exchange - exchange two dentries 2867 * @dentry1: first dentry 2868 * @dentry2: second dentry 2869 */ 2870 void d_exchange(struct dentry *dentry1, struct dentry *dentry2) 2871 { 2872 write_seqlock(&rename_lock); 2873 2874 WARN_ON(!dentry1->d_inode); 2875 WARN_ON(!dentry2->d_inode); 2876 WARN_ON(IS_ROOT(dentry1)); 2877 WARN_ON(IS_ROOT(dentry2)); 2878 2879 __d_move(dentry1, dentry2, true); 2880 2881 write_sequnlock(&rename_lock); 2882 } 2883 2884 /** 2885 * d_ancestor - search for an ancestor 2886 * @p1: ancestor dentry 2887 * @p2: child dentry 2888 * 2889 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is 2890 * an ancestor of p2, else NULL. 2891 */ 2892 struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2) 2893 { 2894 struct dentry *p; 2895 2896 for (p = p2; !IS_ROOT(p); p = p->d_parent) { 2897 if (p->d_parent == p1) 2898 return p; 2899 } 2900 return NULL; 2901 } 2902 2903 /* 2904 * This helper attempts to cope with remotely renamed directories 2905 * 2906 * It assumes that the caller is already holding 2907 * dentry->d_parent->d_inode->i_mutex, and rename_lock 2908 * 2909 * Note: If ever the locking in lock_rename() changes, then please 2910 * remember to update this too... 2911 */ 2912 static int __d_unalias(struct inode *inode, 2913 struct dentry *dentry, struct dentry *alias) 2914 { 2915 struct mutex *m1 = NULL; 2916 struct rw_semaphore *m2 = NULL; 2917 int ret = -ESTALE; 2918 2919 /* If alias and dentry share a parent, then no extra locks required */ 2920 if (alias->d_parent == dentry->d_parent) 2921 goto out_unalias; 2922 2923 /* See lock_rename() */ 2924 if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex)) 2925 goto out_err; 2926 m1 = &dentry->d_sb->s_vfs_rename_mutex; 2927 if (!inode_trylock_shared(alias->d_parent->d_inode)) 2928 goto out_err; 2929 m2 = &alias->d_parent->d_inode->i_rwsem; 2930 out_unalias: 2931 __d_move(alias, dentry, false); 2932 ret = 0; 2933 out_err: 2934 if (m2) 2935 up_read(m2); 2936 if (m1) 2937 mutex_unlock(m1); 2938 return ret; 2939 } 2940 2941 /** 2942 * d_splice_alias - splice a disconnected dentry into the tree if one exists 2943 * @inode: the inode which may have a disconnected dentry 2944 * @dentry: a negative dentry which we want to point to the inode. 2945 * 2946 * If inode is a directory and has an IS_ROOT alias, then d_move that in 2947 * place of the given dentry and return it, else simply d_add the inode 2948 * to the dentry and return NULL. 2949 * 2950 * If a non-IS_ROOT directory is found, the filesystem is corrupt, and 2951 * we should error out: directories can't have multiple aliases. 2952 * 2953 * This is needed in the lookup routine of any filesystem that is exportable 2954 * (via knfsd) so that we can build dcache paths to directories effectively. 2955 * 2956 * If a dentry was found and moved, then it is returned. Otherwise NULL 2957 * is returned. This matches the expected return value of ->lookup. 2958 * 2959 * Cluster filesystems may call this function with a negative, hashed dentry. 2960 * In that case, we know that the inode will be a regular file, and also this 2961 * will only occur during atomic_open. So we need to check for the dentry 2962 * being already hashed only in the final case. 2963 */ 2964 struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry) 2965 { 2966 if (IS_ERR(inode)) 2967 return ERR_CAST(inode); 2968 2969 BUG_ON(!d_unhashed(dentry)); 2970 2971 if (!inode) 2972 goto out; 2973 2974 security_d_instantiate(dentry, inode); 2975 spin_lock(&inode->i_lock); 2976 if (S_ISDIR(inode->i_mode)) { 2977 struct dentry *new = __d_find_any_alias(inode); 2978 if (unlikely(new)) { 2979 /* The reference to new ensures it remains an alias */ 2980 spin_unlock(&inode->i_lock); 2981 write_seqlock(&rename_lock); 2982 if (unlikely(d_ancestor(new, dentry))) { 2983 write_sequnlock(&rename_lock); 2984 dput(new); 2985 new = ERR_PTR(-ELOOP); 2986 pr_warn_ratelimited( 2987 "VFS: Lookup of '%s' in %s %s" 2988 " would have caused loop\n", 2989 dentry->d_name.name, 2990 inode->i_sb->s_type->name, 2991 inode->i_sb->s_id); 2992 } else if (!IS_ROOT(new)) { 2993 int err = __d_unalias(inode, dentry, new); 2994 write_sequnlock(&rename_lock); 2995 if (err) { 2996 dput(new); 2997 new = ERR_PTR(err); 2998 } 2999 } else { 3000 __d_move(new, dentry, false); 3001 write_sequnlock(&rename_lock); 3002 } 3003 iput(inode); 3004 return new; 3005 } 3006 } 3007 out: 3008 __d_add(dentry, inode); 3009 return NULL; 3010 } 3011 EXPORT_SYMBOL(d_splice_alias); 3012 3013 static int prepend(char **buffer, int *buflen, const char *str, int namelen) 3014 { 3015 *buflen -= namelen; 3016 if (*buflen < 0) 3017 return -ENAMETOOLONG; 3018 *buffer -= namelen; 3019 memcpy(*buffer, str, namelen); 3020 return 0; 3021 } 3022 3023 /** 3024 * prepend_name - prepend a pathname in front of current buffer pointer 3025 * @buffer: buffer pointer 3026 * @buflen: allocated length of the buffer 3027 * @name: name string and length qstr structure 3028 * 3029 * With RCU path tracing, it may race with d_move(). Use ACCESS_ONCE() to 3030 * make sure that either the old or the new name pointer and length are 3031 * fetched. However, there may be mismatch between length and pointer. 3032 * The length cannot be trusted, we need to copy it byte-by-byte until 3033 * the length is reached or a null byte is found. It also prepends "/" at 3034 * the beginning of the name. The sequence number check at the caller will 3035 * retry it again when a d_move() does happen. So any garbage in the buffer 3036 * due to mismatched pointer and length will be discarded. 3037 * 3038 * Data dependency barrier is needed to make sure that we see that terminating 3039 * NUL. Alpha strikes again, film at 11... 3040 */ 3041 static int prepend_name(char **buffer, int *buflen, struct qstr *name) 3042 { 3043 const char *dname = ACCESS_ONCE(name->name); 3044 u32 dlen = ACCESS_ONCE(name->len); 3045 char *p; 3046 3047 smp_read_barrier_depends(); 3048 3049 *buflen -= dlen + 1; 3050 if (*buflen < 0) 3051 return -ENAMETOOLONG; 3052 p = *buffer -= dlen + 1; 3053 *p++ = '/'; 3054 while (dlen--) { 3055 char c = *dname++; 3056 if (!c) 3057 break; 3058 *p++ = c; 3059 } 3060 return 0; 3061 } 3062 3063 /** 3064 * prepend_path - Prepend path string to a buffer 3065 * @path: the dentry/vfsmount to report 3066 * @root: root vfsmnt/dentry 3067 * @buffer: pointer to the end of the buffer 3068 * @buflen: pointer to buffer length 3069 * 3070 * The function will first try to write out the pathname without taking any 3071 * lock other than the RCU read lock to make sure that dentries won't go away. 3072 * It only checks the sequence number of the global rename_lock as any change 3073 * in the dentry's d_seq will be preceded by changes in the rename_lock 3074 * sequence number. If the sequence number had been changed, it will restart 3075 * the whole pathname back-tracing sequence again by taking the rename_lock. 3076 * In this case, there is no need to take the RCU read lock as the recursive 3077 * parent pointer references will keep the dentry chain alive as long as no 3078 * rename operation is performed. 3079 */ 3080 static int prepend_path(const struct path *path, 3081 const struct path *root, 3082 char **buffer, int *buflen) 3083 { 3084 struct dentry *dentry; 3085 struct vfsmount *vfsmnt; 3086 struct mount *mnt; 3087 int error = 0; 3088 unsigned seq, m_seq = 0; 3089 char *bptr; 3090 int blen; 3091 3092 rcu_read_lock(); 3093 restart_mnt: 3094 read_seqbegin_or_lock(&mount_lock, &m_seq); 3095 seq = 0; 3096 rcu_read_lock(); 3097 restart: 3098 bptr = *buffer; 3099 blen = *buflen; 3100 error = 0; 3101 dentry = path->dentry; 3102 vfsmnt = path->mnt; 3103 mnt = real_mount(vfsmnt); 3104 read_seqbegin_or_lock(&rename_lock, &seq); 3105 while (dentry != root->dentry || vfsmnt != root->mnt) { 3106 struct dentry * parent; 3107 3108 if (dentry == vfsmnt->mnt_root || IS_ROOT(dentry)) { 3109 struct mount *parent = ACCESS_ONCE(mnt->mnt_parent); 3110 /* Escaped? */ 3111 if (dentry != vfsmnt->mnt_root) { 3112 bptr = *buffer; 3113 blen = *buflen; 3114 error = 3; 3115 break; 3116 } 3117 /* Global root? */ 3118 if (mnt != parent) { 3119 dentry = ACCESS_ONCE(mnt->mnt_mountpoint); 3120 mnt = parent; 3121 vfsmnt = &mnt->mnt; 3122 continue; 3123 } 3124 if (!error) 3125 error = is_mounted(vfsmnt) ? 1 : 2; 3126 break; 3127 } 3128 parent = dentry->d_parent; 3129 prefetch(parent); 3130 error = prepend_name(&bptr, &blen, &dentry->d_name); 3131 if (error) 3132 break; 3133 3134 dentry = parent; 3135 } 3136 if (!(seq & 1)) 3137 rcu_read_unlock(); 3138 if (need_seqretry(&rename_lock, seq)) { 3139 seq = 1; 3140 goto restart; 3141 } 3142 done_seqretry(&rename_lock, seq); 3143 3144 if (!(m_seq & 1)) 3145 rcu_read_unlock(); 3146 if (need_seqretry(&mount_lock, m_seq)) { 3147 m_seq = 1; 3148 goto restart_mnt; 3149 } 3150 done_seqretry(&mount_lock, m_seq); 3151 3152 if (error >= 0 && bptr == *buffer) { 3153 if (--blen < 0) 3154 error = -ENAMETOOLONG; 3155 else 3156 *--bptr = '/'; 3157 } 3158 *buffer = bptr; 3159 *buflen = blen; 3160 return error; 3161 } 3162 3163 /** 3164 * __d_path - return the path of a dentry 3165 * @path: the dentry/vfsmount to report 3166 * @root: root vfsmnt/dentry 3167 * @buf: buffer to return value in 3168 * @buflen: buffer length 3169 * 3170 * Convert a dentry into an ASCII path name. 3171 * 3172 * Returns a pointer into the buffer or an error code if the 3173 * path was too long. 3174 * 3175 * "buflen" should be positive. 3176 * 3177 * If the path is not reachable from the supplied root, return %NULL. 3178 */ 3179 char *__d_path(const struct path *path, 3180 const struct path *root, 3181 char *buf, int buflen) 3182 { 3183 char *res = buf + buflen; 3184 int error; 3185 3186 prepend(&res, &buflen, "\0", 1); 3187 error = prepend_path(path, root, &res, &buflen); 3188 3189 if (error < 0) 3190 return ERR_PTR(error); 3191 if (error > 0) 3192 return NULL; 3193 return res; 3194 } 3195 3196 char *d_absolute_path(const struct path *path, 3197 char *buf, int buflen) 3198 { 3199 struct path root = {}; 3200 char *res = buf + buflen; 3201 int error; 3202 3203 prepend(&res, &buflen, "\0", 1); 3204 error = prepend_path(path, &root, &res, &buflen); 3205 3206 if (error > 1) 3207 error = -EINVAL; 3208 if (error < 0) 3209 return ERR_PTR(error); 3210 return res; 3211 } 3212 3213 /* 3214 * same as __d_path but appends "(deleted)" for unlinked files. 3215 */ 3216 static int path_with_deleted(const struct path *path, 3217 const struct path *root, 3218 char **buf, int *buflen) 3219 { 3220 prepend(buf, buflen, "\0", 1); 3221 if (d_unlinked(path->dentry)) { 3222 int error = prepend(buf, buflen, " (deleted)", 10); 3223 if (error) 3224 return error; 3225 } 3226 3227 return prepend_path(path, root, buf, buflen); 3228 } 3229 3230 static int prepend_unreachable(char **buffer, int *buflen) 3231 { 3232 return prepend(buffer, buflen, "(unreachable)", 13); 3233 } 3234 3235 static void get_fs_root_rcu(struct fs_struct *fs, struct path *root) 3236 { 3237 unsigned seq; 3238 3239 do { 3240 seq = read_seqcount_begin(&fs->seq); 3241 *root = fs->root; 3242 } while (read_seqcount_retry(&fs->seq, seq)); 3243 } 3244 3245 /** 3246 * d_path - return the path of a dentry 3247 * @path: path to report 3248 * @buf: buffer to return value in 3249 * @buflen: buffer length 3250 * 3251 * Convert a dentry into an ASCII path name. If the entry has been deleted 3252 * the string " (deleted)" is appended. Note that this is ambiguous. 3253 * 3254 * Returns a pointer into the buffer or an error code if the path was 3255 * too long. Note: Callers should use the returned pointer, not the passed 3256 * in buffer, to use the name! The implementation often starts at an offset 3257 * into the buffer, and may leave 0 bytes at the start. 3258 * 3259 * "buflen" should be positive. 3260 */ 3261 char *d_path(const struct path *path, char *buf, int buflen) 3262 { 3263 char *res = buf + buflen; 3264 struct path root; 3265 int error; 3266 3267 /* 3268 * We have various synthetic filesystems that never get mounted. On 3269 * these filesystems dentries are never used for lookup purposes, and 3270 * thus don't need to be hashed. They also don't need a name until a 3271 * user wants to identify the object in /proc/pid/fd/. The little hack 3272 * below allows us to generate a name for these objects on demand: 3273 * 3274 * Some pseudo inodes are mountable. When they are mounted 3275 * path->dentry == path->mnt->mnt_root. In that case don't call d_dname 3276 * and instead have d_path return the mounted path. 3277 */ 3278 if (path->dentry->d_op && path->dentry->d_op->d_dname && 3279 (!IS_ROOT(path->dentry) || path->dentry != path->mnt->mnt_root)) 3280 return path->dentry->d_op->d_dname(path->dentry, buf, buflen); 3281 3282 rcu_read_lock(); 3283 get_fs_root_rcu(current->fs, &root); 3284 error = path_with_deleted(path, &root, &res, &buflen); 3285 rcu_read_unlock(); 3286 3287 if (error < 0) 3288 res = ERR_PTR(error); 3289 return res; 3290 } 3291 EXPORT_SYMBOL(d_path); 3292 3293 /* 3294 * Helper function for dentry_operations.d_dname() members 3295 */ 3296 char *dynamic_dname(struct dentry *dentry, char *buffer, int buflen, 3297 const char *fmt, ...) 3298 { 3299 va_list args; 3300 char temp[64]; 3301 int sz; 3302 3303 va_start(args, fmt); 3304 sz = vsnprintf(temp, sizeof(temp), fmt, args) + 1; 3305 va_end(args); 3306 3307 if (sz > sizeof(temp) || sz > buflen) 3308 return ERR_PTR(-ENAMETOOLONG); 3309 3310 buffer += buflen - sz; 3311 return memcpy(buffer, temp, sz); 3312 } 3313 3314 char *simple_dname(struct dentry *dentry, char *buffer, int buflen) 3315 { 3316 char *end = buffer + buflen; 3317 /* these dentries are never renamed, so d_lock is not needed */ 3318 if (prepend(&end, &buflen, " (deleted)", 11) || 3319 prepend(&end, &buflen, dentry->d_name.name, dentry->d_name.len) || 3320 prepend(&end, &buflen, "/", 1)) 3321 end = ERR_PTR(-ENAMETOOLONG); 3322 return end; 3323 } 3324 EXPORT_SYMBOL(simple_dname); 3325 3326 /* 3327 * Write full pathname from the root of the filesystem into the buffer. 3328 */ 3329 static char *__dentry_path(struct dentry *d, char *buf, int buflen) 3330 { 3331 struct dentry *dentry; 3332 char *end, *retval; 3333 int len, seq = 0; 3334 int error = 0; 3335 3336 if (buflen < 2) 3337 goto Elong; 3338 3339 rcu_read_lock(); 3340 restart: 3341 dentry = d; 3342 end = buf + buflen; 3343 len = buflen; 3344 prepend(&end, &len, "\0", 1); 3345 /* Get '/' right */ 3346 retval = end-1; 3347 *retval = '/'; 3348 read_seqbegin_or_lock(&rename_lock, &seq); 3349 while (!IS_ROOT(dentry)) { 3350 struct dentry *parent = dentry->d_parent; 3351 3352 prefetch(parent); 3353 error = prepend_name(&end, &len, &dentry->d_name); 3354 if (error) 3355 break; 3356 3357 retval = end; 3358 dentry = parent; 3359 } 3360 if (!(seq & 1)) 3361 rcu_read_unlock(); 3362 if (need_seqretry(&rename_lock, seq)) { 3363 seq = 1; 3364 goto restart; 3365 } 3366 done_seqretry(&rename_lock, seq); 3367 if (error) 3368 goto Elong; 3369 return retval; 3370 Elong: 3371 return ERR_PTR(-ENAMETOOLONG); 3372 } 3373 3374 char *dentry_path_raw(struct dentry *dentry, char *buf, int buflen) 3375 { 3376 return __dentry_path(dentry, buf, buflen); 3377 } 3378 EXPORT_SYMBOL(dentry_path_raw); 3379 3380 char *dentry_path(struct dentry *dentry, char *buf, int buflen) 3381 { 3382 char *p = NULL; 3383 char *retval; 3384 3385 if (d_unlinked(dentry)) { 3386 p = buf + buflen; 3387 if (prepend(&p, &buflen, "//deleted", 10) != 0) 3388 goto Elong; 3389 buflen++; 3390 } 3391 retval = __dentry_path(dentry, buf, buflen); 3392 if (!IS_ERR(retval) && p) 3393 *p = '/'; /* restore '/' overriden with '\0' */ 3394 return retval; 3395 Elong: 3396 return ERR_PTR(-ENAMETOOLONG); 3397 } 3398 3399 static void get_fs_root_and_pwd_rcu(struct fs_struct *fs, struct path *root, 3400 struct path *pwd) 3401 { 3402 unsigned seq; 3403 3404 do { 3405 seq = read_seqcount_begin(&fs->seq); 3406 *root = fs->root; 3407 *pwd = fs->pwd; 3408 } while (read_seqcount_retry(&fs->seq, seq)); 3409 } 3410 3411 /* 3412 * NOTE! The user-level library version returns a 3413 * character pointer. The kernel system call just 3414 * returns the length of the buffer filled (which 3415 * includes the ending '\0' character), or a negative 3416 * error value. So libc would do something like 3417 * 3418 * char *getcwd(char * buf, size_t size) 3419 * { 3420 * int retval; 3421 * 3422 * retval = sys_getcwd(buf, size); 3423 * if (retval >= 0) 3424 * return buf; 3425 * errno = -retval; 3426 * return NULL; 3427 * } 3428 */ 3429 SYSCALL_DEFINE2(getcwd, char __user *, buf, unsigned long, size) 3430 { 3431 int error; 3432 struct path pwd, root; 3433 char *page = __getname(); 3434 3435 if (!page) 3436 return -ENOMEM; 3437 3438 rcu_read_lock(); 3439 get_fs_root_and_pwd_rcu(current->fs, &root, &pwd); 3440 3441 error = -ENOENT; 3442 if (!d_unlinked(pwd.dentry)) { 3443 unsigned long len; 3444 char *cwd = page + PATH_MAX; 3445 int buflen = PATH_MAX; 3446 3447 prepend(&cwd, &buflen, "\0", 1); 3448 error = prepend_path(&pwd, &root, &cwd, &buflen); 3449 rcu_read_unlock(); 3450 3451 if (error < 0) 3452 goto out; 3453 3454 /* Unreachable from current root */ 3455 if (error > 0) { 3456 error = prepend_unreachable(&cwd, &buflen); 3457 if (error) 3458 goto out; 3459 } 3460 3461 error = -ERANGE; 3462 len = PATH_MAX + page - cwd; 3463 if (len <= size) { 3464 error = len; 3465 if (copy_to_user(buf, cwd, len)) 3466 error = -EFAULT; 3467 } 3468 } else { 3469 rcu_read_unlock(); 3470 } 3471 3472 out: 3473 __putname(page); 3474 return error; 3475 } 3476 3477 /* 3478 * Test whether new_dentry is a subdirectory of old_dentry. 3479 * 3480 * Trivially implemented using the dcache structure 3481 */ 3482 3483 /** 3484 * is_subdir - is new dentry a subdirectory of old_dentry 3485 * @new_dentry: new dentry 3486 * @old_dentry: old dentry 3487 * 3488 * Returns true if new_dentry is a subdirectory of the parent (at any depth). 3489 * Returns false otherwise. 3490 * Caller must ensure that "new_dentry" is pinned before calling is_subdir() 3491 */ 3492 3493 bool is_subdir(struct dentry *new_dentry, struct dentry *old_dentry) 3494 { 3495 bool result; 3496 unsigned seq; 3497 3498 if (new_dentry == old_dentry) 3499 return true; 3500 3501 do { 3502 /* for restarting inner loop in case of seq retry */ 3503 seq = read_seqbegin(&rename_lock); 3504 /* 3505 * Need rcu_readlock to protect against the d_parent trashing 3506 * due to d_move 3507 */ 3508 rcu_read_lock(); 3509 if (d_ancestor(old_dentry, new_dentry)) 3510 result = true; 3511 else 3512 result = false; 3513 rcu_read_unlock(); 3514 } while (read_seqretry(&rename_lock, seq)); 3515 3516 return result; 3517 } 3518 3519 static enum d_walk_ret d_genocide_kill(void *data, struct dentry *dentry) 3520 { 3521 struct dentry *root = data; 3522 if (dentry != root) { 3523 if (d_unhashed(dentry) || !dentry->d_inode) 3524 return D_WALK_SKIP; 3525 3526 if (!(dentry->d_flags & DCACHE_GENOCIDE)) { 3527 dentry->d_flags |= DCACHE_GENOCIDE; 3528 dentry->d_lockref.count--; 3529 } 3530 } 3531 return D_WALK_CONTINUE; 3532 } 3533 3534 void d_genocide(struct dentry *parent) 3535 { 3536 d_walk(parent, parent, d_genocide_kill, NULL); 3537 } 3538 3539 void d_tmpfile(struct dentry *dentry, struct inode *inode) 3540 { 3541 inode_dec_link_count(inode); 3542 BUG_ON(dentry->d_name.name != dentry->d_iname || 3543 !hlist_unhashed(&dentry->d_u.d_alias) || 3544 !d_unlinked(dentry)); 3545 spin_lock(&dentry->d_parent->d_lock); 3546 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED); 3547 dentry->d_name.len = sprintf(dentry->d_iname, "#%llu", 3548 (unsigned long long)inode->i_ino); 3549 spin_unlock(&dentry->d_lock); 3550 spin_unlock(&dentry->d_parent->d_lock); 3551 d_instantiate(dentry, inode); 3552 } 3553 EXPORT_SYMBOL(d_tmpfile); 3554 3555 static __initdata unsigned long dhash_entries; 3556 static int __init set_dhash_entries(char *str) 3557 { 3558 if (!str) 3559 return 0; 3560 dhash_entries = simple_strtoul(str, &str, 0); 3561 return 1; 3562 } 3563 __setup("dhash_entries=", set_dhash_entries); 3564 3565 static void __init dcache_init_early(void) 3566 { 3567 unsigned int loop; 3568 3569 /* If hashes are distributed across NUMA nodes, defer 3570 * hash allocation until vmalloc space is available. 3571 */ 3572 if (hashdist) 3573 return; 3574 3575 dentry_hashtable = 3576 alloc_large_system_hash("Dentry cache", 3577 sizeof(struct hlist_bl_head), 3578 dhash_entries, 3579 13, 3580 HASH_EARLY, 3581 &d_hash_shift, 3582 &d_hash_mask, 3583 0, 3584 0); 3585 3586 for (loop = 0; loop < (1U << d_hash_shift); loop++) 3587 INIT_HLIST_BL_HEAD(dentry_hashtable + loop); 3588 } 3589 3590 static void __init dcache_init(void) 3591 { 3592 unsigned int loop; 3593 3594 /* 3595 * A constructor could be added for stable state like the lists, 3596 * but it is probably not worth it because of the cache nature 3597 * of the dcache. 3598 */ 3599 dentry_cache = KMEM_CACHE(dentry, 3600 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD|SLAB_ACCOUNT); 3601 3602 /* Hash may have been set up in dcache_init_early */ 3603 if (!hashdist) 3604 return; 3605 3606 dentry_hashtable = 3607 alloc_large_system_hash("Dentry cache", 3608 sizeof(struct hlist_bl_head), 3609 dhash_entries, 3610 13, 3611 0, 3612 &d_hash_shift, 3613 &d_hash_mask, 3614 0, 3615 0); 3616 3617 for (loop = 0; loop < (1U << d_hash_shift); loop++) 3618 INIT_HLIST_BL_HEAD(dentry_hashtable + loop); 3619 } 3620 3621 /* SLAB cache for __getname() consumers */ 3622 struct kmem_cache *names_cachep __read_mostly; 3623 EXPORT_SYMBOL(names_cachep); 3624 3625 EXPORT_SYMBOL(d_genocide); 3626 3627 void __init vfs_caches_init_early(void) 3628 { 3629 dcache_init_early(); 3630 inode_init_early(); 3631 } 3632 3633 void __init vfs_caches_init(void) 3634 { 3635 names_cachep = kmem_cache_create("names_cache", PATH_MAX, 0, 3636 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL); 3637 3638 dcache_init(); 3639 inode_init(); 3640 files_init(); 3641 files_maxfiles_init(); 3642 mnt_init(); 3643 bdev_cache_init(); 3644 chrdev_init(); 3645 } 3646