1 /* 2 * fs/dcache.c 3 * 4 * Complete reimplementation 5 * (C) 1997 Thomas Schoebel-Theuer, 6 * with heavy changes by Linus Torvalds 7 */ 8 9 /* 10 * Notes on the allocation strategy: 11 * 12 * The dcache is a master of the icache - whenever a dcache entry 13 * exists, the inode will always exist. "iput()" is done either when 14 * the dcache entry is deleted or garbage collected. 15 */ 16 17 #include <linux/syscalls.h> 18 #include <linux/string.h> 19 #include <linux/mm.h> 20 #include <linux/fs.h> 21 #include <linux/fsnotify.h> 22 #include <linux/slab.h> 23 #include <linux/init.h> 24 #include <linux/hash.h> 25 #include <linux/cache.h> 26 #include <linux/export.h> 27 #include <linux/mount.h> 28 #include <linux/file.h> 29 #include <asm/uaccess.h> 30 #include <linux/security.h> 31 #include <linux/seqlock.h> 32 #include <linux/swap.h> 33 #include <linux/bootmem.h> 34 #include <linux/fs_struct.h> 35 #include <linux/hardirq.h> 36 #include <linux/bit_spinlock.h> 37 #include <linux/rculist_bl.h> 38 #include <linux/prefetch.h> 39 #include <linux/ratelimit.h> 40 #include <linux/list_lru.h> 41 #include <linux/kasan.h> 42 43 #include "internal.h" 44 #include "mount.h" 45 46 /* 47 * Usage: 48 * dcache->d_inode->i_lock protects: 49 * - i_dentry, d_u.d_alias, d_inode of aliases 50 * dcache_hash_bucket lock protects: 51 * - the dcache hash table 52 * s_anon bl list spinlock protects: 53 * - the s_anon list (see __d_drop) 54 * dentry->d_sb->s_dentry_lru_lock protects: 55 * - the dcache lru lists and counters 56 * d_lock protects: 57 * - d_flags 58 * - d_name 59 * - d_lru 60 * - d_count 61 * - d_unhashed() 62 * - d_parent and d_subdirs 63 * - childrens' d_child and d_parent 64 * - d_u.d_alias, d_inode 65 * 66 * Ordering: 67 * dentry->d_inode->i_lock 68 * dentry->d_lock 69 * dentry->d_sb->s_dentry_lru_lock 70 * dcache_hash_bucket lock 71 * s_anon lock 72 * 73 * If there is an ancestor relationship: 74 * dentry->d_parent->...->d_parent->d_lock 75 * ... 76 * dentry->d_parent->d_lock 77 * dentry->d_lock 78 * 79 * If no ancestor relationship: 80 * if (dentry1 < dentry2) 81 * dentry1->d_lock 82 * dentry2->d_lock 83 */ 84 int sysctl_vfs_cache_pressure __read_mostly = 100; 85 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure); 86 87 __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock); 88 89 EXPORT_SYMBOL(rename_lock); 90 91 static struct kmem_cache *dentry_cache __read_mostly; 92 93 /* 94 * This is the single most critical data structure when it comes 95 * to the dcache: the hashtable for lookups. Somebody should try 96 * to make this good - I've just made it work. 97 * 98 * This hash-function tries to avoid losing too many bits of hash 99 * information, yet avoid using a prime hash-size or similar. 100 */ 101 102 static unsigned int d_hash_mask __read_mostly; 103 static unsigned int d_hash_shift __read_mostly; 104 105 static struct hlist_bl_head *dentry_hashtable __read_mostly; 106 107 static inline struct hlist_bl_head *d_hash(const struct dentry *parent, 108 unsigned int hash) 109 { 110 hash += (unsigned long) parent / L1_CACHE_BYTES; 111 return dentry_hashtable + hash_32(hash, d_hash_shift); 112 } 113 114 #define IN_LOOKUP_SHIFT 10 115 static struct hlist_bl_head in_lookup_hashtable[1 << IN_LOOKUP_SHIFT]; 116 117 static inline struct hlist_bl_head *in_lookup_hash(const struct dentry *parent, 118 unsigned int hash) 119 { 120 hash += (unsigned long) parent / L1_CACHE_BYTES; 121 return in_lookup_hashtable + hash_32(hash, IN_LOOKUP_SHIFT); 122 } 123 124 125 /* Statistics gathering. */ 126 struct dentry_stat_t dentry_stat = { 127 .age_limit = 45, 128 }; 129 130 static DEFINE_PER_CPU(long, nr_dentry); 131 static DEFINE_PER_CPU(long, nr_dentry_unused); 132 133 #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS) 134 135 /* 136 * Here we resort to our own counters instead of using generic per-cpu counters 137 * for consistency with what the vfs inode code does. We are expected to harvest 138 * better code and performance by having our own specialized counters. 139 * 140 * Please note that the loop is done over all possible CPUs, not over all online 141 * CPUs. The reason for this is that we don't want to play games with CPUs going 142 * on and off. If one of them goes off, we will just keep their counters. 143 * 144 * glommer: See cffbc8a for details, and if you ever intend to change this, 145 * please update all vfs counters to match. 146 */ 147 static long get_nr_dentry(void) 148 { 149 int i; 150 long sum = 0; 151 for_each_possible_cpu(i) 152 sum += per_cpu(nr_dentry, i); 153 return sum < 0 ? 0 : sum; 154 } 155 156 static long get_nr_dentry_unused(void) 157 { 158 int i; 159 long sum = 0; 160 for_each_possible_cpu(i) 161 sum += per_cpu(nr_dentry_unused, i); 162 return sum < 0 ? 0 : sum; 163 } 164 165 int proc_nr_dentry(struct ctl_table *table, int write, void __user *buffer, 166 size_t *lenp, loff_t *ppos) 167 { 168 dentry_stat.nr_dentry = get_nr_dentry(); 169 dentry_stat.nr_unused = get_nr_dentry_unused(); 170 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos); 171 } 172 #endif 173 174 /* 175 * Compare 2 name strings, return 0 if they match, otherwise non-zero. 176 * The strings are both count bytes long, and count is non-zero. 177 */ 178 #ifdef CONFIG_DCACHE_WORD_ACCESS 179 180 #include <asm/word-at-a-time.h> 181 /* 182 * NOTE! 'cs' and 'scount' come from a dentry, so it has a 183 * aligned allocation for this particular component. We don't 184 * strictly need the load_unaligned_zeropad() safety, but it 185 * doesn't hurt either. 186 * 187 * In contrast, 'ct' and 'tcount' can be from a pathname, and do 188 * need the careful unaligned handling. 189 */ 190 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount) 191 { 192 unsigned long a,b,mask; 193 194 for (;;) { 195 a = *(unsigned long *)cs; 196 b = load_unaligned_zeropad(ct); 197 if (tcount < sizeof(unsigned long)) 198 break; 199 if (unlikely(a != b)) 200 return 1; 201 cs += sizeof(unsigned long); 202 ct += sizeof(unsigned long); 203 tcount -= sizeof(unsigned long); 204 if (!tcount) 205 return 0; 206 } 207 mask = bytemask_from_count(tcount); 208 return unlikely(!!((a ^ b) & mask)); 209 } 210 211 #else 212 213 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount) 214 { 215 do { 216 if (*cs != *ct) 217 return 1; 218 cs++; 219 ct++; 220 tcount--; 221 } while (tcount); 222 return 0; 223 } 224 225 #endif 226 227 static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount) 228 { 229 const unsigned char *cs; 230 /* 231 * Be careful about RCU walk racing with rename: 232 * use ACCESS_ONCE to fetch the name pointer. 233 * 234 * NOTE! Even if a rename will mean that the length 235 * was not loaded atomically, we don't care. The 236 * RCU walk will check the sequence count eventually, 237 * and catch it. And we won't overrun the buffer, 238 * because we're reading the name pointer atomically, 239 * and a dentry name is guaranteed to be properly 240 * terminated with a NUL byte. 241 * 242 * End result: even if 'len' is wrong, we'll exit 243 * early because the data cannot match (there can 244 * be no NUL in the ct/tcount data) 245 */ 246 cs = ACCESS_ONCE(dentry->d_name.name); 247 smp_read_barrier_depends(); 248 return dentry_string_cmp(cs, ct, tcount); 249 } 250 251 struct external_name { 252 union { 253 atomic_t count; 254 struct rcu_head head; 255 } u; 256 unsigned char name[]; 257 }; 258 259 static inline struct external_name *external_name(struct dentry *dentry) 260 { 261 return container_of(dentry->d_name.name, struct external_name, name[0]); 262 } 263 264 static void __d_free(struct rcu_head *head) 265 { 266 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu); 267 268 kmem_cache_free(dentry_cache, dentry); 269 } 270 271 static void __d_free_external(struct rcu_head *head) 272 { 273 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu); 274 kfree(external_name(dentry)); 275 kmem_cache_free(dentry_cache, dentry); 276 } 277 278 static inline int dname_external(const struct dentry *dentry) 279 { 280 return dentry->d_name.name != dentry->d_iname; 281 } 282 283 static inline void __d_set_inode_and_type(struct dentry *dentry, 284 struct inode *inode, 285 unsigned type_flags) 286 { 287 unsigned flags; 288 289 dentry->d_inode = inode; 290 flags = READ_ONCE(dentry->d_flags); 291 flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU); 292 flags |= type_flags; 293 WRITE_ONCE(dentry->d_flags, flags); 294 } 295 296 static inline void __d_clear_type_and_inode(struct dentry *dentry) 297 { 298 unsigned flags = READ_ONCE(dentry->d_flags); 299 300 flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU); 301 WRITE_ONCE(dentry->d_flags, flags); 302 dentry->d_inode = NULL; 303 } 304 305 static void dentry_free(struct dentry *dentry) 306 { 307 WARN_ON(!hlist_unhashed(&dentry->d_u.d_alias)); 308 if (unlikely(dname_external(dentry))) { 309 struct external_name *p = external_name(dentry); 310 if (likely(atomic_dec_and_test(&p->u.count))) { 311 call_rcu(&dentry->d_u.d_rcu, __d_free_external); 312 return; 313 } 314 } 315 /* if dentry was never visible to RCU, immediate free is OK */ 316 if (!(dentry->d_flags & DCACHE_RCUACCESS)) 317 __d_free(&dentry->d_u.d_rcu); 318 else 319 call_rcu(&dentry->d_u.d_rcu, __d_free); 320 } 321 322 /** 323 * dentry_rcuwalk_invalidate - invalidate in-progress rcu-walk lookups 324 * @dentry: the target dentry 325 * After this call, in-progress rcu-walk path lookup will fail. This 326 * should be called after unhashing, and after changing d_inode (if 327 * the dentry has not already been unhashed). 328 */ 329 static inline void dentry_rcuwalk_invalidate(struct dentry *dentry) 330 { 331 lockdep_assert_held(&dentry->d_lock); 332 /* Go through am invalidation barrier */ 333 write_seqcount_invalidate(&dentry->d_seq); 334 } 335 336 /* 337 * Release the dentry's inode, using the filesystem 338 * d_iput() operation if defined. Dentry has no refcount 339 * and is unhashed. 340 */ 341 static void dentry_iput(struct dentry * dentry) 342 __releases(dentry->d_lock) 343 __releases(dentry->d_inode->i_lock) 344 { 345 struct inode *inode = dentry->d_inode; 346 if (inode) { 347 __d_clear_type_and_inode(dentry); 348 hlist_del_init(&dentry->d_u.d_alias); 349 spin_unlock(&dentry->d_lock); 350 spin_unlock(&inode->i_lock); 351 if (!inode->i_nlink) 352 fsnotify_inoderemove(inode); 353 if (dentry->d_op && dentry->d_op->d_iput) 354 dentry->d_op->d_iput(dentry, inode); 355 else 356 iput(inode); 357 } else { 358 spin_unlock(&dentry->d_lock); 359 } 360 } 361 362 /* 363 * Release the dentry's inode, using the filesystem 364 * d_iput() operation if defined. dentry remains in-use. 365 */ 366 static void dentry_unlink_inode(struct dentry * dentry) 367 __releases(dentry->d_lock) 368 __releases(dentry->d_inode->i_lock) 369 { 370 struct inode *inode = dentry->d_inode; 371 372 raw_write_seqcount_begin(&dentry->d_seq); 373 __d_clear_type_and_inode(dentry); 374 hlist_del_init(&dentry->d_u.d_alias); 375 raw_write_seqcount_end(&dentry->d_seq); 376 spin_unlock(&dentry->d_lock); 377 spin_unlock(&inode->i_lock); 378 if (!inode->i_nlink) 379 fsnotify_inoderemove(inode); 380 if (dentry->d_op && dentry->d_op->d_iput) 381 dentry->d_op->d_iput(dentry, inode); 382 else 383 iput(inode); 384 } 385 386 /* 387 * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry 388 * is in use - which includes both the "real" per-superblock 389 * LRU list _and_ the DCACHE_SHRINK_LIST use. 390 * 391 * The DCACHE_SHRINK_LIST bit is set whenever the dentry is 392 * on the shrink list (ie not on the superblock LRU list). 393 * 394 * The per-cpu "nr_dentry_unused" counters are updated with 395 * the DCACHE_LRU_LIST bit. 396 * 397 * These helper functions make sure we always follow the 398 * rules. d_lock must be held by the caller. 399 */ 400 #define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x)) 401 static void d_lru_add(struct dentry *dentry) 402 { 403 D_FLAG_VERIFY(dentry, 0); 404 dentry->d_flags |= DCACHE_LRU_LIST; 405 this_cpu_inc(nr_dentry_unused); 406 WARN_ON_ONCE(!list_lru_add(&dentry->d_sb->s_dentry_lru, &dentry->d_lru)); 407 } 408 409 static void d_lru_del(struct dentry *dentry) 410 { 411 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST); 412 dentry->d_flags &= ~DCACHE_LRU_LIST; 413 this_cpu_dec(nr_dentry_unused); 414 WARN_ON_ONCE(!list_lru_del(&dentry->d_sb->s_dentry_lru, &dentry->d_lru)); 415 } 416 417 static void d_shrink_del(struct dentry *dentry) 418 { 419 D_FLAG_VERIFY(dentry, DCACHE_SHRINK_LIST | DCACHE_LRU_LIST); 420 list_del_init(&dentry->d_lru); 421 dentry->d_flags &= ~(DCACHE_SHRINK_LIST | DCACHE_LRU_LIST); 422 this_cpu_dec(nr_dentry_unused); 423 } 424 425 static void d_shrink_add(struct dentry *dentry, struct list_head *list) 426 { 427 D_FLAG_VERIFY(dentry, 0); 428 list_add(&dentry->d_lru, list); 429 dentry->d_flags |= DCACHE_SHRINK_LIST | DCACHE_LRU_LIST; 430 this_cpu_inc(nr_dentry_unused); 431 } 432 433 /* 434 * These can only be called under the global LRU lock, ie during the 435 * callback for freeing the LRU list. "isolate" removes it from the 436 * LRU lists entirely, while shrink_move moves it to the indicated 437 * private list. 438 */ 439 static void d_lru_isolate(struct list_lru_one *lru, struct dentry *dentry) 440 { 441 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST); 442 dentry->d_flags &= ~DCACHE_LRU_LIST; 443 this_cpu_dec(nr_dentry_unused); 444 list_lru_isolate(lru, &dentry->d_lru); 445 } 446 447 static void d_lru_shrink_move(struct list_lru_one *lru, struct dentry *dentry, 448 struct list_head *list) 449 { 450 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST); 451 dentry->d_flags |= DCACHE_SHRINK_LIST; 452 list_lru_isolate_move(lru, &dentry->d_lru, list); 453 } 454 455 /* 456 * dentry_lru_(add|del)_list) must be called with d_lock held. 457 */ 458 static void dentry_lru_add(struct dentry *dentry) 459 { 460 if (unlikely(!(dentry->d_flags & DCACHE_LRU_LIST))) 461 d_lru_add(dentry); 462 } 463 464 /** 465 * d_drop - drop a dentry 466 * @dentry: dentry to drop 467 * 468 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't 469 * be found through a VFS lookup any more. Note that this is different from 470 * deleting the dentry - d_delete will try to mark the dentry negative if 471 * possible, giving a successful _negative_ lookup, while d_drop will 472 * just make the cache lookup fail. 473 * 474 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some 475 * reason (NFS timeouts or autofs deletes). 476 * 477 * __d_drop requires dentry->d_lock. 478 */ 479 void __d_drop(struct dentry *dentry) 480 { 481 if (!d_unhashed(dentry)) { 482 struct hlist_bl_head *b; 483 /* 484 * Hashed dentries are normally on the dentry hashtable, 485 * with the exception of those newly allocated by 486 * d_obtain_alias, which are always IS_ROOT: 487 */ 488 if (unlikely(IS_ROOT(dentry))) 489 b = &dentry->d_sb->s_anon; 490 else 491 b = d_hash(dentry->d_parent, dentry->d_name.hash); 492 493 hlist_bl_lock(b); 494 __hlist_bl_del(&dentry->d_hash); 495 dentry->d_hash.pprev = NULL; 496 hlist_bl_unlock(b); 497 dentry_rcuwalk_invalidate(dentry); 498 } 499 } 500 EXPORT_SYMBOL(__d_drop); 501 502 void d_drop(struct dentry *dentry) 503 { 504 spin_lock(&dentry->d_lock); 505 __d_drop(dentry); 506 spin_unlock(&dentry->d_lock); 507 } 508 EXPORT_SYMBOL(d_drop); 509 510 static void __dentry_kill(struct dentry *dentry) 511 { 512 struct dentry *parent = NULL; 513 bool can_free = true; 514 if (!IS_ROOT(dentry)) 515 parent = dentry->d_parent; 516 517 /* 518 * The dentry is now unrecoverably dead to the world. 519 */ 520 lockref_mark_dead(&dentry->d_lockref); 521 522 /* 523 * inform the fs via d_prune that this dentry is about to be 524 * unhashed and destroyed. 525 */ 526 if (dentry->d_flags & DCACHE_OP_PRUNE) 527 dentry->d_op->d_prune(dentry); 528 529 if (dentry->d_flags & DCACHE_LRU_LIST) { 530 if (!(dentry->d_flags & DCACHE_SHRINK_LIST)) 531 d_lru_del(dentry); 532 } 533 /* if it was on the hash then remove it */ 534 __d_drop(dentry); 535 __list_del_entry(&dentry->d_child); 536 /* 537 * Inform d_walk() that we are no longer attached to the 538 * dentry tree 539 */ 540 dentry->d_flags |= DCACHE_DENTRY_KILLED; 541 if (parent) 542 spin_unlock(&parent->d_lock); 543 dentry_iput(dentry); 544 /* 545 * dentry_iput drops the locks, at which point nobody (except 546 * transient RCU lookups) can reach this dentry. 547 */ 548 BUG_ON(dentry->d_lockref.count > 0); 549 this_cpu_dec(nr_dentry); 550 if (dentry->d_op && dentry->d_op->d_release) 551 dentry->d_op->d_release(dentry); 552 553 spin_lock(&dentry->d_lock); 554 if (dentry->d_flags & DCACHE_SHRINK_LIST) { 555 dentry->d_flags |= DCACHE_MAY_FREE; 556 can_free = false; 557 } 558 spin_unlock(&dentry->d_lock); 559 if (likely(can_free)) 560 dentry_free(dentry); 561 } 562 563 /* 564 * Finish off a dentry we've decided to kill. 565 * dentry->d_lock must be held, returns with it unlocked. 566 * If ref is non-zero, then decrement the refcount too. 567 * Returns dentry requiring refcount drop, or NULL if we're done. 568 */ 569 static struct dentry *dentry_kill(struct dentry *dentry) 570 __releases(dentry->d_lock) 571 { 572 struct inode *inode = dentry->d_inode; 573 struct dentry *parent = NULL; 574 575 if (inode && unlikely(!spin_trylock(&inode->i_lock))) 576 goto failed; 577 578 if (!IS_ROOT(dentry)) { 579 parent = dentry->d_parent; 580 if (unlikely(!spin_trylock(&parent->d_lock))) { 581 if (inode) 582 spin_unlock(&inode->i_lock); 583 goto failed; 584 } 585 } 586 587 __dentry_kill(dentry); 588 return parent; 589 590 failed: 591 spin_unlock(&dentry->d_lock); 592 cpu_relax(); 593 return dentry; /* try again with same dentry */ 594 } 595 596 static inline struct dentry *lock_parent(struct dentry *dentry) 597 { 598 struct dentry *parent = dentry->d_parent; 599 if (IS_ROOT(dentry)) 600 return NULL; 601 if (unlikely(dentry->d_lockref.count < 0)) 602 return NULL; 603 if (likely(spin_trylock(&parent->d_lock))) 604 return parent; 605 rcu_read_lock(); 606 spin_unlock(&dentry->d_lock); 607 again: 608 parent = ACCESS_ONCE(dentry->d_parent); 609 spin_lock(&parent->d_lock); 610 /* 611 * We can't blindly lock dentry until we are sure 612 * that we won't violate the locking order. 613 * Any changes of dentry->d_parent must have 614 * been done with parent->d_lock held, so 615 * spin_lock() above is enough of a barrier 616 * for checking if it's still our child. 617 */ 618 if (unlikely(parent != dentry->d_parent)) { 619 spin_unlock(&parent->d_lock); 620 goto again; 621 } 622 rcu_read_unlock(); 623 if (parent != dentry) 624 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED); 625 else 626 parent = NULL; 627 return parent; 628 } 629 630 /* 631 * Try to do a lockless dput(), and return whether that was successful. 632 * 633 * If unsuccessful, we return false, having already taken the dentry lock. 634 * 635 * The caller needs to hold the RCU read lock, so that the dentry is 636 * guaranteed to stay around even if the refcount goes down to zero! 637 */ 638 static inline bool fast_dput(struct dentry *dentry) 639 { 640 int ret; 641 unsigned int d_flags; 642 643 /* 644 * If we have a d_op->d_delete() operation, we sould not 645 * let the dentry count go to zero, so use "put_or_lock". 646 */ 647 if (unlikely(dentry->d_flags & DCACHE_OP_DELETE)) 648 return lockref_put_or_lock(&dentry->d_lockref); 649 650 /* 651 * .. otherwise, we can try to just decrement the 652 * lockref optimistically. 653 */ 654 ret = lockref_put_return(&dentry->d_lockref); 655 656 /* 657 * If the lockref_put_return() failed due to the lock being held 658 * by somebody else, the fast path has failed. We will need to 659 * get the lock, and then check the count again. 660 */ 661 if (unlikely(ret < 0)) { 662 spin_lock(&dentry->d_lock); 663 if (dentry->d_lockref.count > 1) { 664 dentry->d_lockref.count--; 665 spin_unlock(&dentry->d_lock); 666 return 1; 667 } 668 return 0; 669 } 670 671 /* 672 * If we weren't the last ref, we're done. 673 */ 674 if (ret) 675 return 1; 676 677 /* 678 * Careful, careful. The reference count went down 679 * to zero, but we don't hold the dentry lock, so 680 * somebody else could get it again, and do another 681 * dput(), and we need to not race with that. 682 * 683 * However, there is a very special and common case 684 * where we don't care, because there is nothing to 685 * do: the dentry is still hashed, it does not have 686 * a 'delete' op, and it's referenced and already on 687 * the LRU list. 688 * 689 * NOTE! Since we aren't locked, these values are 690 * not "stable". However, it is sufficient that at 691 * some point after we dropped the reference the 692 * dentry was hashed and the flags had the proper 693 * value. Other dentry users may have re-gotten 694 * a reference to the dentry and change that, but 695 * our work is done - we can leave the dentry 696 * around with a zero refcount. 697 */ 698 smp_rmb(); 699 d_flags = ACCESS_ONCE(dentry->d_flags); 700 d_flags &= DCACHE_REFERENCED | DCACHE_LRU_LIST | DCACHE_DISCONNECTED; 701 702 /* Nothing to do? Dropping the reference was all we needed? */ 703 if (d_flags == (DCACHE_REFERENCED | DCACHE_LRU_LIST) && !d_unhashed(dentry)) 704 return 1; 705 706 /* 707 * Not the fast normal case? Get the lock. We've already decremented 708 * the refcount, but we'll need to re-check the situation after 709 * getting the lock. 710 */ 711 spin_lock(&dentry->d_lock); 712 713 /* 714 * Did somebody else grab a reference to it in the meantime, and 715 * we're no longer the last user after all? Alternatively, somebody 716 * else could have killed it and marked it dead. Either way, we 717 * don't need to do anything else. 718 */ 719 if (dentry->d_lockref.count) { 720 spin_unlock(&dentry->d_lock); 721 return 1; 722 } 723 724 /* 725 * Re-get the reference we optimistically dropped. We hold the 726 * lock, and we just tested that it was zero, so we can just 727 * set it to 1. 728 */ 729 dentry->d_lockref.count = 1; 730 return 0; 731 } 732 733 734 /* 735 * This is dput 736 * 737 * This is complicated by the fact that we do not want to put 738 * dentries that are no longer on any hash chain on the unused 739 * list: we'd much rather just get rid of them immediately. 740 * 741 * However, that implies that we have to traverse the dentry 742 * tree upwards to the parents which might _also_ now be 743 * scheduled for deletion (it may have been only waiting for 744 * its last child to go away). 745 * 746 * This tail recursion is done by hand as we don't want to depend 747 * on the compiler to always get this right (gcc generally doesn't). 748 * Real recursion would eat up our stack space. 749 */ 750 751 /* 752 * dput - release a dentry 753 * @dentry: dentry to release 754 * 755 * Release a dentry. This will drop the usage count and if appropriate 756 * call the dentry unlink method as well as removing it from the queues and 757 * releasing its resources. If the parent dentries were scheduled for release 758 * they too may now get deleted. 759 */ 760 void dput(struct dentry *dentry) 761 { 762 if (unlikely(!dentry)) 763 return; 764 765 repeat: 766 rcu_read_lock(); 767 if (likely(fast_dput(dentry))) { 768 rcu_read_unlock(); 769 return; 770 } 771 772 /* Slow case: now with the dentry lock held */ 773 rcu_read_unlock(); 774 775 WARN_ON(d_in_lookup(dentry)); 776 777 /* Unreachable? Get rid of it */ 778 if (unlikely(d_unhashed(dentry))) 779 goto kill_it; 780 781 if (unlikely(dentry->d_flags & DCACHE_DISCONNECTED)) 782 goto kill_it; 783 784 if (unlikely(dentry->d_flags & DCACHE_OP_DELETE)) { 785 if (dentry->d_op->d_delete(dentry)) 786 goto kill_it; 787 } 788 789 if (!(dentry->d_flags & DCACHE_REFERENCED)) 790 dentry->d_flags |= DCACHE_REFERENCED; 791 dentry_lru_add(dentry); 792 793 dentry->d_lockref.count--; 794 spin_unlock(&dentry->d_lock); 795 return; 796 797 kill_it: 798 dentry = dentry_kill(dentry); 799 if (dentry) 800 goto repeat; 801 } 802 EXPORT_SYMBOL(dput); 803 804 805 /* This must be called with d_lock held */ 806 static inline void __dget_dlock(struct dentry *dentry) 807 { 808 dentry->d_lockref.count++; 809 } 810 811 static inline void __dget(struct dentry *dentry) 812 { 813 lockref_get(&dentry->d_lockref); 814 } 815 816 struct dentry *dget_parent(struct dentry *dentry) 817 { 818 int gotref; 819 struct dentry *ret; 820 821 /* 822 * Do optimistic parent lookup without any 823 * locking. 824 */ 825 rcu_read_lock(); 826 ret = ACCESS_ONCE(dentry->d_parent); 827 gotref = lockref_get_not_zero(&ret->d_lockref); 828 rcu_read_unlock(); 829 if (likely(gotref)) { 830 if (likely(ret == ACCESS_ONCE(dentry->d_parent))) 831 return ret; 832 dput(ret); 833 } 834 835 repeat: 836 /* 837 * Don't need rcu_dereference because we re-check it was correct under 838 * the lock. 839 */ 840 rcu_read_lock(); 841 ret = dentry->d_parent; 842 spin_lock(&ret->d_lock); 843 if (unlikely(ret != dentry->d_parent)) { 844 spin_unlock(&ret->d_lock); 845 rcu_read_unlock(); 846 goto repeat; 847 } 848 rcu_read_unlock(); 849 BUG_ON(!ret->d_lockref.count); 850 ret->d_lockref.count++; 851 spin_unlock(&ret->d_lock); 852 return ret; 853 } 854 EXPORT_SYMBOL(dget_parent); 855 856 /** 857 * d_find_alias - grab a hashed alias of inode 858 * @inode: inode in question 859 * 860 * If inode has a hashed alias, or is a directory and has any alias, 861 * acquire the reference to alias and return it. Otherwise return NULL. 862 * Notice that if inode is a directory there can be only one alias and 863 * it can be unhashed only if it has no children, or if it is the root 864 * of a filesystem, or if the directory was renamed and d_revalidate 865 * was the first vfs operation to notice. 866 * 867 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer 868 * any other hashed alias over that one. 869 */ 870 static struct dentry *__d_find_alias(struct inode *inode) 871 { 872 struct dentry *alias, *discon_alias; 873 874 again: 875 discon_alias = NULL; 876 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) { 877 spin_lock(&alias->d_lock); 878 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) { 879 if (IS_ROOT(alias) && 880 (alias->d_flags & DCACHE_DISCONNECTED)) { 881 discon_alias = alias; 882 } else { 883 __dget_dlock(alias); 884 spin_unlock(&alias->d_lock); 885 return alias; 886 } 887 } 888 spin_unlock(&alias->d_lock); 889 } 890 if (discon_alias) { 891 alias = discon_alias; 892 spin_lock(&alias->d_lock); 893 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) { 894 __dget_dlock(alias); 895 spin_unlock(&alias->d_lock); 896 return alias; 897 } 898 spin_unlock(&alias->d_lock); 899 goto again; 900 } 901 return NULL; 902 } 903 904 struct dentry *d_find_alias(struct inode *inode) 905 { 906 struct dentry *de = NULL; 907 908 if (!hlist_empty(&inode->i_dentry)) { 909 spin_lock(&inode->i_lock); 910 de = __d_find_alias(inode); 911 spin_unlock(&inode->i_lock); 912 } 913 return de; 914 } 915 EXPORT_SYMBOL(d_find_alias); 916 917 /* 918 * Try to kill dentries associated with this inode. 919 * WARNING: you must own a reference to inode. 920 */ 921 void d_prune_aliases(struct inode *inode) 922 { 923 struct dentry *dentry; 924 restart: 925 spin_lock(&inode->i_lock); 926 hlist_for_each_entry(dentry, &inode->i_dentry, d_u.d_alias) { 927 spin_lock(&dentry->d_lock); 928 if (!dentry->d_lockref.count) { 929 struct dentry *parent = lock_parent(dentry); 930 if (likely(!dentry->d_lockref.count)) { 931 __dentry_kill(dentry); 932 dput(parent); 933 goto restart; 934 } 935 if (parent) 936 spin_unlock(&parent->d_lock); 937 } 938 spin_unlock(&dentry->d_lock); 939 } 940 spin_unlock(&inode->i_lock); 941 } 942 EXPORT_SYMBOL(d_prune_aliases); 943 944 static void shrink_dentry_list(struct list_head *list) 945 { 946 struct dentry *dentry, *parent; 947 948 while (!list_empty(list)) { 949 struct inode *inode; 950 dentry = list_entry(list->prev, struct dentry, d_lru); 951 spin_lock(&dentry->d_lock); 952 parent = lock_parent(dentry); 953 954 /* 955 * The dispose list is isolated and dentries are not accounted 956 * to the LRU here, so we can simply remove it from the list 957 * here regardless of whether it is referenced or not. 958 */ 959 d_shrink_del(dentry); 960 961 /* 962 * We found an inuse dentry which was not removed from 963 * the LRU because of laziness during lookup. Do not free it. 964 */ 965 if (dentry->d_lockref.count > 0) { 966 spin_unlock(&dentry->d_lock); 967 if (parent) 968 spin_unlock(&parent->d_lock); 969 continue; 970 } 971 972 973 if (unlikely(dentry->d_flags & DCACHE_DENTRY_KILLED)) { 974 bool can_free = dentry->d_flags & DCACHE_MAY_FREE; 975 spin_unlock(&dentry->d_lock); 976 if (parent) 977 spin_unlock(&parent->d_lock); 978 if (can_free) 979 dentry_free(dentry); 980 continue; 981 } 982 983 inode = dentry->d_inode; 984 if (inode && unlikely(!spin_trylock(&inode->i_lock))) { 985 d_shrink_add(dentry, list); 986 spin_unlock(&dentry->d_lock); 987 if (parent) 988 spin_unlock(&parent->d_lock); 989 continue; 990 } 991 992 __dentry_kill(dentry); 993 994 /* 995 * We need to prune ancestors too. This is necessary to prevent 996 * quadratic behavior of shrink_dcache_parent(), but is also 997 * expected to be beneficial in reducing dentry cache 998 * fragmentation. 999 */ 1000 dentry = parent; 1001 while (dentry && !lockref_put_or_lock(&dentry->d_lockref)) { 1002 parent = lock_parent(dentry); 1003 if (dentry->d_lockref.count != 1) { 1004 dentry->d_lockref.count--; 1005 spin_unlock(&dentry->d_lock); 1006 if (parent) 1007 spin_unlock(&parent->d_lock); 1008 break; 1009 } 1010 inode = dentry->d_inode; /* can't be NULL */ 1011 if (unlikely(!spin_trylock(&inode->i_lock))) { 1012 spin_unlock(&dentry->d_lock); 1013 if (parent) 1014 spin_unlock(&parent->d_lock); 1015 cpu_relax(); 1016 continue; 1017 } 1018 __dentry_kill(dentry); 1019 dentry = parent; 1020 } 1021 } 1022 } 1023 1024 static enum lru_status dentry_lru_isolate(struct list_head *item, 1025 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg) 1026 { 1027 struct list_head *freeable = arg; 1028 struct dentry *dentry = container_of(item, struct dentry, d_lru); 1029 1030 1031 /* 1032 * we are inverting the lru lock/dentry->d_lock here, 1033 * so use a trylock. If we fail to get the lock, just skip 1034 * it 1035 */ 1036 if (!spin_trylock(&dentry->d_lock)) 1037 return LRU_SKIP; 1038 1039 /* 1040 * Referenced dentries are still in use. If they have active 1041 * counts, just remove them from the LRU. Otherwise give them 1042 * another pass through the LRU. 1043 */ 1044 if (dentry->d_lockref.count) { 1045 d_lru_isolate(lru, dentry); 1046 spin_unlock(&dentry->d_lock); 1047 return LRU_REMOVED; 1048 } 1049 1050 if (dentry->d_flags & DCACHE_REFERENCED) { 1051 dentry->d_flags &= ~DCACHE_REFERENCED; 1052 spin_unlock(&dentry->d_lock); 1053 1054 /* 1055 * The list move itself will be made by the common LRU code. At 1056 * this point, we've dropped the dentry->d_lock but keep the 1057 * lru lock. This is safe to do, since every list movement is 1058 * protected by the lru lock even if both locks are held. 1059 * 1060 * This is guaranteed by the fact that all LRU management 1061 * functions are intermediated by the LRU API calls like 1062 * list_lru_add and list_lru_del. List movement in this file 1063 * only ever occur through this functions or through callbacks 1064 * like this one, that are called from the LRU API. 1065 * 1066 * The only exceptions to this are functions like 1067 * shrink_dentry_list, and code that first checks for the 1068 * DCACHE_SHRINK_LIST flag. Those are guaranteed to be 1069 * operating only with stack provided lists after they are 1070 * properly isolated from the main list. It is thus, always a 1071 * local access. 1072 */ 1073 return LRU_ROTATE; 1074 } 1075 1076 d_lru_shrink_move(lru, dentry, freeable); 1077 spin_unlock(&dentry->d_lock); 1078 1079 return LRU_REMOVED; 1080 } 1081 1082 /** 1083 * prune_dcache_sb - shrink the dcache 1084 * @sb: superblock 1085 * @sc: shrink control, passed to list_lru_shrink_walk() 1086 * 1087 * Attempt to shrink the superblock dcache LRU by @sc->nr_to_scan entries. This 1088 * is done when we need more memory and called from the superblock shrinker 1089 * function. 1090 * 1091 * This function may fail to free any resources if all the dentries are in 1092 * use. 1093 */ 1094 long prune_dcache_sb(struct super_block *sb, struct shrink_control *sc) 1095 { 1096 LIST_HEAD(dispose); 1097 long freed; 1098 1099 freed = list_lru_shrink_walk(&sb->s_dentry_lru, sc, 1100 dentry_lru_isolate, &dispose); 1101 shrink_dentry_list(&dispose); 1102 return freed; 1103 } 1104 1105 static enum lru_status dentry_lru_isolate_shrink(struct list_head *item, 1106 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg) 1107 { 1108 struct list_head *freeable = arg; 1109 struct dentry *dentry = container_of(item, struct dentry, d_lru); 1110 1111 /* 1112 * we are inverting the lru lock/dentry->d_lock here, 1113 * so use a trylock. If we fail to get the lock, just skip 1114 * it 1115 */ 1116 if (!spin_trylock(&dentry->d_lock)) 1117 return LRU_SKIP; 1118 1119 d_lru_shrink_move(lru, dentry, freeable); 1120 spin_unlock(&dentry->d_lock); 1121 1122 return LRU_REMOVED; 1123 } 1124 1125 1126 /** 1127 * shrink_dcache_sb - shrink dcache for a superblock 1128 * @sb: superblock 1129 * 1130 * Shrink the dcache for the specified super block. This is used to free 1131 * the dcache before unmounting a file system. 1132 */ 1133 void shrink_dcache_sb(struct super_block *sb) 1134 { 1135 long freed; 1136 1137 do { 1138 LIST_HEAD(dispose); 1139 1140 freed = list_lru_walk(&sb->s_dentry_lru, 1141 dentry_lru_isolate_shrink, &dispose, UINT_MAX); 1142 1143 this_cpu_sub(nr_dentry_unused, freed); 1144 shrink_dentry_list(&dispose); 1145 } while (freed > 0); 1146 } 1147 EXPORT_SYMBOL(shrink_dcache_sb); 1148 1149 /** 1150 * enum d_walk_ret - action to talke during tree walk 1151 * @D_WALK_CONTINUE: contrinue walk 1152 * @D_WALK_QUIT: quit walk 1153 * @D_WALK_NORETRY: quit when retry is needed 1154 * @D_WALK_SKIP: skip this dentry and its children 1155 */ 1156 enum d_walk_ret { 1157 D_WALK_CONTINUE, 1158 D_WALK_QUIT, 1159 D_WALK_NORETRY, 1160 D_WALK_SKIP, 1161 }; 1162 1163 /** 1164 * d_walk - walk the dentry tree 1165 * @parent: start of walk 1166 * @data: data passed to @enter() and @finish() 1167 * @enter: callback when first entering the dentry 1168 * @finish: callback when successfully finished the walk 1169 * 1170 * The @enter() and @finish() callbacks are called with d_lock held. 1171 */ 1172 static void d_walk(struct dentry *parent, void *data, 1173 enum d_walk_ret (*enter)(void *, struct dentry *), 1174 void (*finish)(void *)) 1175 { 1176 struct dentry *this_parent; 1177 struct list_head *next; 1178 unsigned seq = 0; 1179 enum d_walk_ret ret; 1180 bool retry = true; 1181 1182 again: 1183 read_seqbegin_or_lock(&rename_lock, &seq); 1184 this_parent = parent; 1185 spin_lock(&this_parent->d_lock); 1186 1187 ret = enter(data, this_parent); 1188 switch (ret) { 1189 case D_WALK_CONTINUE: 1190 break; 1191 case D_WALK_QUIT: 1192 case D_WALK_SKIP: 1193 goto out_unlock; 1194 case D_WALK_NORETRY: 1195 retry = false; 1196 break; 1197 } 1198 repeat: 1199 next = this_parent->d_subdirs.next; 1200 resume: 1201 while (next != &this_parent->d_subdirs) { 1202 struct list_head *tmp = next; 1203 struct dentry *dentry = list_entry(tmp, struct dentry, d_child); 1204 next = tmp->next; 1205 1206 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED); 1207 1208 ret = enter(data, dentry); 1209 switch (ret) { 1210 case D_WALK_CONTINUE: 1211 break; 1212 case D_WALK_QUIT: 1213 spin_unlock(&dentry->d_lock); 1214 goto out_unlock; 1215 case D_WALK_NORETRY: 1216 retry = false; 1217 break; 1218 case D_WALK_SKIP: 1219 spin_unlock(&dentry->d_lock); 1220 continue; 1221 } 1222 1223 if (!list_empty(&dentry->d_subdirs)) { 1224 spin_unlock(&this_parent->d_lock); 1225 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_); 1226 this_parent = dentry; 1227 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_); 1228 goto repeat; 1229 } 1230 spin_unlock(&dentry->d_lock); 1231 } 1232 /* 1233 * All done at this level ... ascend and resume the search. 1234 */ 1235 rcu_read_lock(); 1236 ascend: 1237 if (this_parent != parent) { 1238 struct dentry *child = this_parent; 1239 this_parent = child->d_parent; 1240 1241 spin_unlock(&child->d_lock); 1242 spin_lock(&this_parent->d_lock); 1243 1244 /* might go back up the wrong parent if we have had a rename. */ 1245 if (need_seqretry(&rename_lock, seq)) 1246 goto rename_retry; 1247 /* go into the first sibling still alive */ 1248 do { 1249 next = child->d_child.next; 1250 if (next == &this_parent->d_subdirs) 1251 goto ascend; 1252 child = list_entry(next, struct dentry, d_child); 1253 } while (unlikely(child->d_flags & DCACHE_DENTRY_KILLED)); 1254 rcu_read_unlock(); 1255 goto resume; 1256 } 1257 if (need_seqretry(&rename_lock, seq)) 1258 goto rename_retry; 1259 rcu_read_unlock(); 1260 if (finish) 1261 finish(data); 1262 1263 out_unlock: 1264 spin_unlock(&this_parent->d_lock); 1265 done_seqretry(&rename_lock, seq); 1266 return; 1267 1268 rename_retry: 1269 spin_unlock(&this_parent->d_lock); 1270 rcu_read_unlock(); 1271 BUG_ON(seq & 1); 1272 if (!retry) 1273 return; 1274 seq = 1; 1275 goto again; 1276 } 1277 1278 /* 1279 * Search for at least 1 mount point in the dentry's subdirs. 1280 * We descend to the next level whenever the d_subdirs 1281 * list is non-empty and continue searching. 1282 */ 1283 1284 static enum d_walk_ret check_mount(void *data, struct dentry *dentry) 1285 { 1286 int *ret = data; 1287 if (d_mountpoint(dentry)) { 1288 *ret = 1; 1289 return D_WALK_QUIT; 1290 } 1291 return D_WALK_CONTINUE; 1292 } 1293 1294 /** 1295 * have_submounts - check for mounts over a dentry 1296 * @parent: dentry to check. 1297 * 1298 * Return true if the parent or its subdirectories contain 1299 * a mount point 1300 */ 1301 int have_submounts(struct dentry *parent) 1302 { 1303 int ret = 0; 1304 1305 d_walk(parent, &ret, check_mount, NULL); 1306 1307 return ret; 1308 } 1309 EXPORT_SYMBOL(have_submounts); 1310 1311 /* 1312 * Called by mount code to set a mountpoint and check if the mountpoint is 1313 * reachable (e.g. NFS can unhash a directory dentry and then the complete 1314 * subtree can become unreachable). 1315 * 1316 * Only one of d_invalidate() and d_set_mounted() must succeed. For 1317 * this reason take rename_lock and d_lock on dentry and ancestors. 1318 */ 1319 int d_set_mounted(struct dentry *dentry) 1320 { 1321 struct dentry *p; 1322 int ret = -ENOENT; 1323 write_seqlock(&rename_lock); 1324 for (p = dentry->d_parent; !IS_ROOT(p); p = p->d_parent) { 1325 /* Need exclusion wrt. d_invalidate() */ 1326 spin_lock(&p->d_lock); 1327 if (unlikely(d_unhashed(p))) { 1328 spin_unlock(&p->d_lock); 1329 goto out; 1330 } 1331 spin_unlock(&p->d_lock); 1332 } 1333 spin_lock(&dentry->d_lock); 1334 if (!d_unlinked(dentry)) { 1335 dentry->d_flags |= DCACHE_MOUNTED; 1336 ret = 0; 1337 } 1338 spin_unlock(&dentry->d_lock); 1339 out: 1340 write_sequnlock(&rename_lock); 1341 return ret; 1342 } 1343 1344 /* 1345 * Search the dentry child list of the specified parent, 1346 * and move any unused dentries to the end of the unused 1347 * list for prune_dcache(). We descend to the next level 1348 * whenever the d_subdirs list is non-empty and continue 1349 * searching. 1350 * 1351 * It returns zero iff there are no unused children, 1352 * otherwise it returns the number of children moved to 1353 * the end of the unused list. This may not be the total 1354 * number of unused children, because select_parent can 1355 * drop the lock and return early due to latency 1356 * constraints. 1357 */ 1358 1359 struct select_data { 1360 struct dentry *start; 1361 struct list_head dispose; 1362 int found; 1363 }; 1364 1365 static enum d_walk_ret select_collect(void *_data, struct dentry *dentry) 1366 { 1367 struct select_data *data = _data; 1368 enum d_walk_ret ret = D_WALK_CONTINUE; 1369 1370 if (data->start == dentry) 1371 goto out; 1372 1373 if (dentry->d_flags & DCACHE_SHRINK_LIST) { 1374 data->found++; 1375 } else { 1376 if (dentry->d_flags & DCACHE_LRU_LIST) 1377 d_lru_del(dentry); 1378 if (!dentry->d_lockref.count) { 1379 d_shrink_add(dentry, &data->dispose); 1380 data->found++; 1381 } 1382 } 1383 /* 1384 * We can return to the caller if we have found some (this 1385 * ensures forward progress). We'll be coming back to find 1386 * the rest. 1387 */ 1388 if (!list_empty(&data->dispose)) 1389 ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY; 1390 out: 1391 return ret; 1392 } 1393 1394 /** 1395 * shrink_dcache_parent - prune dcache 1396 * @parent: parent of entries to prune 1397 * 1398 * Prune the dcache to remove unused children of the parent dentry. 1399 */ 1400 void shrink_dcache_parent(struct dentry *parent) 1401 { 1402 for (;;) { 1403 struct select_data data; 1404 1405 INIT_LIST_HEAD(&data.dispose); 1406 data.start = parent; 1407 data.found = 0; 1408 1409 d_walk(parent, &data, select_collect, NULL); 1410 if (!data.found) 1411 break; 1412 1413 shrink_dentry_list(&data.dispose); 1414 cond_resched(); 1415 } 1416 } 1417 EXPORT_SYMBOL(shrink_dcache_parent); 1418 1419 static enum d_walk_ret umount_check(void *_data, struct dentry *dentry) 1420 { 1421 /* it has busy descendents; complain about those instead */ 1422 if (!list_empty(&dentry->d_subdirs)) 1423 return D_WALK_CONTINUE; 1424 1425 /* root with refcount 1 is fine */ 1426 if (dentry == _data && dentry->d_lockref.count == 1) 1427 return D_WALK_CONTINUE; 1428 1429 printk(KERN_ERR "BUG: Dentry %p{i=%lx,n=%pd} " 1430 " still in use (%d) [unmount of %s %s]\n", 1431 dentry, 1432 dentry->d_inode ? 1433 dentry->d_inode->i_ino : 0UL, 1434 dentry, 1435 dentry->d_lockref.count, 1436 dentry->d_sb->s_type->name, 1437 dentry->d_sb->s_id); 1438 WARN_ON(1); 1439 return D_WALK_CONTINUE; 1440 } 1441 1442 static void do_one_tree(struct dentry *dentry) 1443 { 1444 shrink_dcache_parent(dentry); 1445 d_walk(dentry, dentry, umount_check, NULL); 1446 d_drop(dentry); 1447 dput(dentry); 1448 } 1449 1450 /* 1451 * destroy the dentries attached to a superblock on unmounting 1452 */ 1453 void shrink_dcache_for_umount(struct super_block *sb) 1454 { 1455 struct dentry *dentry; 1456 1457 WARN(down_read_trylock(&sb->s_umount), "s_umount should've been locked"); 1458 1459 dentry = sb->s_root; 1460 sb->s_root = NULL; 1461 do_one_tree(dentry); 1462 1463 while (!hlist_bl_empty(&sb->s_anon)) { 1464 dentry = dget(hlist_bl_entry(hlist_bl_first(&sb->s_anon), struct dentry, d_hash)); 1465 do_one_tree(dentry); 1466 } 1467 } 1468 1469 struct detach_data { 1470 struct select_data select; 1471 struct dentry *mountpoint; 1472 }; 1473 static enum d_walk_ret detach_and_collect(void *_data, struct dentry *dentry) 1474 { 1475 struct detach_data *data = _data; 1476 1477 if (d_mountpoint(dentry)) { 1478 __dget_dlock(dentry); 1479 data->mountpoint = dentry; 1480 return D_WALK_QUIT; 1481 } 1482 1483 return select_collect(&data->select, dentry); 1484 } 1485 1486 static void check_and_drop(void *_data) 1487 { 1488 struct detach_data *data = _data; 1489 1490 if (!data->mountpoint && !data->select.found) 1491 __d_drop(data->select.start); 1492 } 1493 1494 /** 1495 * d_invalidate - detach submounts, prune dcache, and drop 1496 * @dentry: dentry to invalidate (aka detach, prune and drop) 1497 * 1498 * no dcache lock. 1499 * 1500 * The final d_drop is done as an atomic operation relative to 1501 * rename_lock ensuring there are no races with d_set_mounted. This 1502 * ensures there are no unhashed dentries on the path to a mountpoint. 1503 */ 1504 void d_invalidate(struct dentry *dentry) 1505 { 1506 /* 1507 * If it's already been dropped, return OK. 1508 */ 1509 spin_lock(&dentry->d_lock); 1510 if (d_unhashed(dentry)) { 1511 spin_unlock(&dentry->d_lock); 1512 return; 1513 } 1514 spin_unlock(&dentry->d_lock); 1515 1516 /* Negative dentries can be dropped without further checks */ 1517 if (!dentry->d_inode) { 1518 d_drop(dentry); 1519 return; 1520 } 1521 1522 for (;;) { 1523 struct detach_data data; 1524 1525 data.mountpoint = NULL; 1526 INIT_LIST_HEAD(&data.select.dispose); 1527 data.select.start = dentry; 1528 data.select.found = 0; 1529 1530 d_walk(dentry, &data, detach_and_collect, check_and_drop); 1531 1532 if (data.select.found) 1533 shrink_dentry_list(&data.select.dispose); 1534 1535 if (data.mountpoint) { 1536 detach_mounts(data.mountpoint); 1537 dput(data.mountpoint); 1538 } 1539 1540 if (!data.mountpoint && !data.select.found) 1541 break; 1542 1543 cond_resched(); 1544 } 1545 } 1546 EXPORT_SYMBOL(d_invalidate); 1547 1548 /** 1549 * __d_alloc - allocate a dcache entry 1550 * @sb: filesystem it will belong to 1551 * @name: qstr of the name 1552 * 1553 * Allocates a dentry. It returns %NULL if there is insufficient memory 1554 * available. On a success the dentry is returned. The name passed in is 1555 * copied and the copy passed in may be reused after this call. 1556 */ 1557 1558 struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name) 1559 { 1560 struct dentry *dentry; 1561 char *dname; 1562 1563 dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL); 1564 if (!dentry) 1565 return NULL; 1566 1567 /* 1568 * We guarantee that the inline name is always NUL-terminated. 1569 * This way the memcpy() done by the name switching in rename 1570 * will still always have a NUL at the end, even if we might 1571 * be overwriting an internal NUL character 1572 */ 1573 dentry->d_iname[DNAME_INLINE_LEN-1] = 0; 1574 if (unlikely(!name)) { 1575 static const struct qstr anon = QSTR_INIT("/", 1); 1576 name = &anon; 1577 dname = dentry->d_iname; 1578 } else if (name->len > DNAME_INLINE_LEN-1) { 1579 size_t size = offsetof(struct external_name, name[1]); 1580 struct external_name *p = kmalloc(size + name->len, 1581 GFP_KERNEL_ACCOUNT); 1582 if (!p) { 1583 kmem_cache_free(dentry_cache, dentry); 1584 return NULL; 1585 } 1586 atomic_set(&p->u.count, 1); 1587 dname = p->name; 1588 if (IS_ENABLED(CONFIG_DCACHE_WORD_ACCESS)) 1589 kasan_unpoison_shadow(dname, 1590 round_up(name->len + 1, sizeof(unsigned long))); 1591 } else { 1592 dname = dentry->d_iname; 1593 } 1594 1595 dentry->d_name.len = name->len; 1596 dentry->d_name.hash = name->hash; 1597 memcpy(dname, name->name, name->len); 1598 dname[name->len] = 0; 1599 1600 /* Make sure we always see the terminating NUL character */ 1601 smp_wmb(); 1602 dentry->d_name.name = dname; 1603 1604 dentry->d_lockref.count = 1; 1605 dentry->d_flags = 0; 1606 spin_lock_init(&dentry->d_lock); 1607 seqcount_init(&dentry->d_seq); 1608 dentry->d_inode = NULL; 1609 dentry->d_parent = dentry; 1610 dentry->d_sb = sb; 1611 dentry->d_op = NULL; 1612 dentry->d_fsdata = NULL; 1613 INIT_HLIST_BL_NODE(&dentry->d_hash); 1614 INIT_LIST_HEAD(&dentry->d_lru); 1615 INIT_LIST_HEAD(&dentry->d_subdirs); 1616 INIT_HLIST_NODE(&dentry->d_u.d_alias); 1617 INIT_LIST_HEAD(&dentry->d_child); 1618 d_set_d_op(dentry, dentry->d_sb->s_d_op); 1619 1620 this_cpu_inc(nr_dentry); 1621 1622 return dentry; 1623 } 1624 1625 /** 1626 * d_alloc - allocate a dcache entry 1627 * @parent: parent of entry to allocate 1628 * @name: qstr of the name 1629 * 1630 * Allocates a dentry. It returns %NULL if there is insufficient memory 1631 * available. On a success the dentry is returned. The name passed in is 1632 * copied and the copy passed in may be reused after this call. 1633 */ 1634 struct dentry *d_alloc(struct dentry * parent, const struct qstr *name) 1635 { 1636 struct dentry *dentry = __d_alloc(parent->d_sb, name); 1637 if (!dentry) 1638 return NULL; 1639 dentry->d_flags |= DCACHE_RCUACCESS; 1640 spin_lock(&parent->d_lock); 1641 /* 1642 * don't need child lock because it is not subject 1643 * to concurrency here 1644 */ 1645 __dget_dlock(parent); 1646 dentry->d_parent = parent; 1647 list_add(&dentry->d_child, &parent->d_subdirs); 1648 spin_unlock(&parent->d_lock); 1649 1650 return dentry; 1651 } 1652 EXPORT_SYMBOL(d_alloc); 1653 1654 /** 1655 * d_alloc_pseudo - allocate a dentry (for lookup-less filesystems) 1656 * @sb: the superblock 1657 * @name: qstr of the name 1658 * 1659 * For a filesystem that just pins its dentries in memory and never 1660 * performs lookups at all, return an unhashed IS_ROOT dentry. 1661 */ 1662 struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name) 1663 { 1664 return __d_alloc(sb, name); 1665 } 1666 EXPORT_SYMBOL(d_alloc_pseudo); 1667 1668 struct dentry *d_alloc_name(struct dentry *parent, const char *name) 1669 { 1670 struct qstr q; 1671 1672 q.name = name; 1673 q.hash_len = hashlen_string(name); 1674 return d_alloc(parent, &q); 1675 } 1676 EXPORT_SYMBOL(d_alloc_name); 1677 1678 void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op) 1679 { 1680 WARN_ON_ONCE(dentry->d_op); 1681 WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH | 1682 DCACHE_OP_COMPARE | 1683 DCACHE_OP_REVALIDATE | 1684 DCACHE_OP_WEAK_REVALIDATE | 1685 DCACHE_OP_DELETE | 1686 DCACHE_OP_SELECT_INODE | 1687 DCACHE_OP_REAL)); 1688 dentry->d_op = op; 1689 if (!op) 1690 return; 1691 if (op->d_hash) 1692 dentry->d_flags |= DCACHE_OP_HASH; 1693 if (op->d_compare) 1694 dentry->d_flags |= DCACHE_OP_COMPARE; 1695 if (op->d_revalidate) 1696 dentry->d_flags |= DCACHE_OP_REVALIDATE; 1697 if (op->d_weak_revalidate) 1698 dentry->d_flags |= DCACHE_OP_WEAK_REVALIDATE; 1699 if (op->d_delete) 1700 dentry->d_flags |= DCACHE_OP_DELETE; 1701 if (op->d_prune) 1702 dentry->d_flags |= DCACHE_OP_PRUNE; 1703 if (op->d_select_inode) 1704 dentry->d_flags |= DCACHE_OP_SELECT_INODE; 1705 if (op->d_real) 1706 dentry->d_flags |= DCACHE_OP_REAL; 1707 1708 } 1709 EXPORT_SYMBOL(d_set_d_op); 1710 1711 1712 /* 1713 * d_set_fallthru - Mark a dentry as falling through to a lower layer 1714 * @dentry - The dentry to mark 1715 * 1716 * Mark a dentry as falling through to the lower layer (as set with 1717 * d_pin_lower()). This flag may be recorded on the medium. 1718 */ 1719 void d_set_fallthru(struct dentry *dentry) 1720 { 1721 spin_lock(&dentry->d_lock); 1722 dentry->d_flags |= DCACHE_FALLTHRU; 1723 spin_unlock(&dentry->d_lock); 1724 } 1725 EXPORT_SYMBOL(d_set_fallthru); 1726 1727 static unsigned d_flags_for_inode(struct inode *inode) 1728 { 1729 unsigned add_flags = DCACHE_REGULAR_TYPE; 1730 1731 if (!inode) 1732 return DCACHE_MISS_TYPE; 1733 1734 if (S_ISDIR(inode->i_mode)) { 1735 add_flags = DCACHE_DIRECTORY_TYPE; 1736 if (unlikely(!(inode->i_opflags & IOP_LOOKUP))) { 1737 if (unlikely(!inode->i_op->lookup)) 1738 add_flags = DCACHE_AUTODIR_TYPE; 1739 else 1740 inode->i_opflags |= IOP_LOOKUP; 1741 } 1742 goto type_determined; 1743 } 1744 1745 if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) { 1746 if (unlikely(inode->i_op->get_link)) { 1747 add_flags = DCACHE_SYMLINK_TYPE; 1748 goto type_determined; 1749 } 1750 inode->i_opflags |= IOP_NOFOLLOW; 1751 } 1752 1753 if (unlikely(!S_ISREG(inode->i_mode))) 1754 add_flags = DCACHE_SPECIAL_TYPE; 1755 1756 type_determined: 1757 if (unlikely(IS_AUTOMOUNT(inode))) 1758 add_flags |= DCACHE_NEED_AUTOMOUNT; 1759 return add_flags; 1760 } 1761 1762 static void __d_instantiate(struct dentry *dentry, struct inode *inode) 1763 { 1764 unsigned add_flags = d_flags_for_inode(inode); 1765 WARN_ON(d_in_lookup(dentry)); 1766 1767 spin_lock(&dentry->d_lock); 1768 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry); 1769 raw_write_seqcount_begin(&dentry->d_seq); 1770 __d_set_inode_and_type(dentry, inode, add_flags); 1771 raw_write_seqcount_end(&dentry->d_seq); 1772 __fsnotify_d_instantiate(dentry); 1773 spin_unlock(&dentry->d_lock); 1774 } 1775 1776 /** 1777 * d_instantiate - fill in inode information for a dentry 1778 * @entry: dentry to complete 1779 * @inode: inode to attach to this dentry 1780 * 1781 * Fill in inode information in the entry. 1782 * 1783 * This turns negative dentries into productive full members 1784 * of society. 1785 * 1786 * NOTE! This assumes that the inode count has been incremented 1787 * (or otherwise set) by the caller to indicate that it is now 1788 * in use by the dcache. 1789 */ 1790 1791 void d_instantiate(struct dentry *entry, struct inode * inode) 1792 { 1793 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias)); 1794 if (inode) { 1795 security_d_instantiate(entry, inode); 1796 spin_lock(&inode->i_lock); 1797 __d_instantiate(entry, inode); 1798 spin_unlock(&inode->i_lock); 1799 } 1800 } 1801 EXPORT_SYMBOL(d_instantiate); 1802 1803 /** 1804 * d_instantiate_no_diralias - instantiate a non-aliased dentry 1805 * @entry: dentry to complete 1806 * @inode: inode to attach to this dentry 1807 * 1808 * Fill in inode information in the entry. If a directory alias is found, then 1809 * return an error (and drop inode). Together with d_materialise_unique() this 1810 * guarantees that a directory inode may never have more than one alias. 1811 */ 1812 int d_instantiate_no_diralias(struct dentry *entry, struct inode *inode) 1813 { 1814 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias)); 1815 1816 security_d_instantiate(entry, inode); 1817 spin_lock(&inode->i_lock); 1818 if (S_ISDIR(inode->i_mode) && !hlist_empty(&inode->i_dentry)) { 1819 spin_unlock(&inode->i_lock); 1820 iput(inode); 1821 return -EBUSY; 1822 } 1823 __d_instantiate(entry, inode); 1824 spin_unlock(&inode->i_lock); 1825 1826 return 0; 1827 } 1828 EXPORT_SYMBOL(d_instantiate_no_diralias); 1829 1830 struct dentry *d_make_root(struct inode *root_inode) 1831 { 1832 struct dentry *res = NULL; 1833 1834 if (root_inode) { 1835 res = __d_alloc(root_inode->i_sb, NULL); 1836 if (res) 1837 d_instantiate(res, root_inode); 1838 else 1839 iput(root_inode); 1840 } 1841 return res; 1842 } 1843 EXPORT_SYMBOL(d_make_root); 1844 1845 static struct dentry * __d_find_any_alias(struct inode *inode) 1846 { 1847 struct dentry *alias; 1848 1849 if (hlist_empty(&inode->i_dentry)) 1850 return NULL; 1851 alias = hlist_entry(inode->i_dentry.first, struct dentry, d_u.d_alias); 1852 __dget(alias); 1853 return alias; 1854 } 1855 1856 /** 1857 * d_find_any_alias - find any alias for a given inode 1858 * @inode: inode to find an alias for 1859 * 1860 * If any aliases exist for the given inode, take and return a 1861 * reference for one of them. If no aliases exist, return %NULL. 1862 */ 1863 struct dentry *d_find_any_alias(struct inode *inode) 1864 { 1865 struct dentry *de; 1866 1867 spin_lock(&inode->i_lock); 1868 de = __d_find_any_alias(inode); 1869 spin_unlock(&inode->i_lock); 1870 return de; 1871 } 1872 EXPORT_SYMBOL(d_find_any_alias); 1873 1874 static struct dentry *__d_obtain_alias(struct inode *inode, int disconnected) 1875 { 1876 struct dentry *tmp; 1877 struct dentry *res; 1878 unsigned add_flags; 1879 1880 if (!inode) 1881 return ERR_PTR(-ESTALE); 1882 if (IS_ERR(inode)) 1883 return ERR_CAST(inode); 1884 1885 res = d_find_any_alias(inode); 1886 if (res) 1887 goto out_iput; 1888 1889 tmp = __d_alloc(inode->i_sb, NULL); 1890 if (!tmp) { 1891 res = ERR_PTR(-ENOMEM); 1892 goto out_iput; 1893 } 1894 1895 security_d_instantiate(tmp, inode); 1896 spin_lock(&inode->i_lock); 1897 res = __d_find_any_alias(inode); 1898 if (res) { 1899 spin_unlock(&inode->i_lock); 1900 dput(tmp); 1901 goto out_iput; 1902 } 1903 1904 /* attach a disconnected dentry */ 1905 add_flags = d_flags_for_inode(inode); 1906 1907 if (disconnected) 1908 add_flags |= DCACHE_DISCONNECTED; 1909 1910 spin_lock(&tmp->d_lock); 1911 __d_set_inode_and_type(tmp, inode, add_flags); 1912 hlist_add_head(&tmp->d_u.d_alias, &inode->i_dentry); 1913 hlist_bl_lock(&tmp->d_sb->s_anon); 1914 hlist_bl_add_head(&tmp->d_hash, &tmp->d_sb->s_anon); 1915 hlist_bl_unlock(&tmp->d_sb->s_anon); 1916 spin_unlock(&tmp->d_lock); 1917 spin_unlock(&inode->i_lock); 1918 1919 return tmp; 1920 1921 out_iput: 1922 iput(inode); 1923 return res; 1924 } 1925 1926 /** 1927 * d_obtain_alias - find or allocate a DISCONNECTED dentry for a given inode 1928 * @inode: inode to allocate the dentry for 1929 * 1930 * Obtain a dentry for an inode resulting from NFS filehandle conversion or 1931 * similar open by handle operations. The returned dentry may be anonymous, 1932 * or may have a full name (if the inode was already in the cache). 1933 * 1934 * When called on a directory inode, we must ensure that the inode only ever 1935 * has one dentry. If a dentry is found, that is returned instead of 1936 * allocating a new one. 1937 * 1938 * On successful return, the reference to the inode has been transferred 1939 * to the dentry. In case of an error the reference on the inode is released. 1940 * To make it easier to use in export operations a %NULL or IS_ERR inode may 1941 * be passed in and the error will be propagated to the return value, 1942 * with a %NULL @inode replaced by ERR_PTR(-ESTALE). 1943 */ 1944 struct dentry *d_obtain_alias(struct inode *inode) 1945 { 1946 return __d_obtain_alias(inode, 1); 1947 } 1948 EXPORT_SYMBOL(d_obtain_alias); 1949 1950 /** 1951 * d_obtain_root - find or allocate a dentry for a given inode 1952 * @inode: inode to allocate the dentry for 1953 * 1954 * Obtain an IS_ROOT dentry for the root of a filesystem. 1955 * 1956 * We must ensure that directory inodes only ever have one dentry. If a 1957 * dentry is found, that is returned instead of allocating a new one. 1958 * 1959 * On successful return, the reference to the inode has been transferred 1960 * to the dentry. In case of an error the reference on the inode is 1961 * released. A %NULL or IS_ERR inode may be passed in and will be the 1962 * error will be propagate to the return value, with a %NULL @inode 1963 * replaced by ERR_PTR(-ESTALE). 1964 */ 1965 struct dentry *d_obtain_root(struct inode *inode) 1966 { 1967 return __d_obtain_alias(inode, 0); 1968 } 1969 EXPORT_SYMBOL(d_obtain_root); 1970 1971 /** 1972 * d_add_ci - lookup or allocate new dentry with case-exact name 1973 * @inode: the inode case-insensitive lookup has found 1974 * @dentry: the negative dentry that was passed to the parent's lookup func 1975 * @name: the case-exact name to be associated with the returned dentry 1976 * 1977 * This is to avoid filling the dcache with case-insensitive names to the 1978 * same inode, only the actual correct case is stored in the dcache for 1979 * case-insensitive filesystems. 1980 * 1981 * For a case-insensitive lookup match and if the the case-exact dentry 1982 * already exists in in the dcache, use it and return it. 1983 * 1984 * If no entry exists with the exact case name, allocate new dentry with 1985 * the exact case, and return the spliced entry. 1986 */ 1987 struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode, 1988 struct qstr *name) 1989 { 1990 struct dentry *found, *res; 1991 1992 /* 1993 * First check if a dentry matching the name already exists, 1994 * if not go ahead and create it now. 1995 */ 1996 found = d_hash_and_lookup(dentry->d_parent, name); 1997 if (found) { 1998 iput(inode); 1999 return found; 2000 } 2001 if (d_in_lookup(dentry)) { 2002 found = d_alloc_parallel(dentry->d_parent, name, 2003 dentry->d_wait); 2004 if (IS_ERR(found) || !d_in_lookup(found)) { 2005 iput(inode); 2006 return found; 2007 } 2008 } else { 2009 found = d_alloc(dentry->d_parent, name); 2010 if (!found) { 2011 iput(inode); 2012 return ERR_PTR(-ENOMEM); 2013 } 2014 } 2015 res = d_splice_alias(inode, found); 2016 if (res) { 2017 dput(found); 2018 return res; 2019 } 2020 return found; 2021 } 2022 EXPORT_SYMBOL(d_add_ci); 2023 2024 /* 2025 * Do the slow-case of the dentry name compare. 2026 * 2027 * Unlike the dentry_cmp() function, we need to atomically 2028 * load the name and length information, so that the 2029 * filesystem can rely on them, and can use the 'name' and 2030 * 'len' information without worrying about walking off the 2031 * end of memory etc. 2032 * 2033 * Thus the read_seqcount_retry() and the "duplicate" info 2034 * in arguments (the low-level filesystem should not look 2035 * at the dentry inode or name contents directly, since 2036 * rename can change them while we're in RCU mode). 2037 */ 2038 enum slow_d_compare { 2039 D_COMP_OK, 2040 D_COMP_NOMATCH, 2041 D_COMP_SEQRETRY, 2042 }; 2043 2044 static noinline enum slow_d_compare slow_dentry_cmp( 2045 const struct dentry *parent, 2046 struct dentry *dentry, 2047 unsigned int seq, 2048 const struct qstr *name) 2049 { 2050 int tlen = dentry->d_name.len; 2051 const char *tname = dentry->d_name.name; 2052 2053 if (read_seqcount_retry(&dentry->d_seq, seq)) { 2054 cpu_relax(); 2055 return D_COMP_SEQRETRY; 2056 } 2057 if (parent->d_op->d_compare(parent, dentry, tlen, tname, name)) 2058 return D_COMP_NOMATCH; 2059 return D_COMP_OK; 2060 } 2061 2062 /** 2063 * __d_lookup_rcu - search for a dentry (racy, store-free) 2064 * @parent: parent dentry 2065 * @name: qstr of name we wish to find 2066 * @seqp: returns d_seq value at the point where the dentry was found 2067 * Returns: dentry, or NULL 2068 * 2069 * __d_lookup_rcu is the dcache lookup function for rcu-walk name 2070 * resolution (store-free path walking) design described in 2071 * Documentation/filesystems/path-lookup.txt. 2072 * 2073 * This is not to be used outside core vfs. 2074 * 2075 * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock 2076 * held, and rcu_read_lock held. The returned dentry must not be stored into 2077 * without taking d_lock and checking d_seq sequence count against @seq 2078 * returned here. 2079 * 2080 * A refcount may be taken on the found dentry with the d_rcu_to_refcount 2081 * function. 2082 * 2083 * Alternatively, __d_lookup_rcu may be called again to look up the child of 2084 * the returned dentry, so long as its parent's seqlock is checked after the 2085 * child is looked up. Thus, an interlocking stepping of sequence lock checks 2086 * is formed, giving integrity down the path walk. 2087 * 2088 * NOTE! The caller *has* to check the resulting dentry against the sequence 2089 * number we've returned before using any of the resulting dentry state! 2090 */ 2091 struct dentry *__d_lookup_rcu(const struct dentry *parent, 2092 const struct qstr *name, 2093 unsigned *seqp) 2094 { 2095 u64 hashlen = name->hash_len; 2096 const unsigned char *str = name->name; 2097 struct hlist_bl_head *b = d_hash(parent, hashlen_hash(hashlen)); 2098 struct hlist_bl_node *node; 2099 struct dentry *dentry; 2100 2101 /* 2102 * Note: There is significant duplication with __d_lookup_rcu which is 2103 * required to prevent single threaded performance regressions 2104 * especially on architectures where smp_rmb (in seqcounts) are costly. 2105 * Keep the two functions in sync. 2106 */ 2107 2108 /* 2109 * The hash list is protected using RCU. 2110 * 2111 * Carefully use d_seq when comparing a candidate dentry, to avoid 2112 * races with d_move(). 2113 * 2114 * It is possible that concurrent renames can mess up our list 2115 * walk here and result in missing our dentry, resulting in the 2116 * false-negative result. d_lookup() protects against concurrent 2117 * renames using rename_lock seqlock. 2118 * 2119 * See Documentation/filesystems/path-lookup.txt for more details. 2120 */ 2121 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) { 2122 unsigned seq; 2123 2124 seqretry: 2125 /* 2126 * The dentry sequence count protects us from concurrent 2127 * renames, and thus protects parent and name fields. 2128 * 2129 * The caller must perform a seqcount check in order 2130 * to do anything useful with the returned dentry. 2131 * 2132 * NOTE! We do a "raw" seqcount_begin here. That means that 2133 * we don't wait for the sequence count to stabilize if it 2134 * is in the middle of a sequence change. If we do the slow 2135 * dentry compare, we will do seqretries until it is stable, 2136 * and if we end up with a successful lookup, we actually 2137 * want to exit RCU lookup anyway. 2138 */ 2139 seq = raw_seqcount_begin(&dentry->d_seq); 2140 if (dentry->d_parent != parent) 2141 continue; 2142 if (d_unhashed(dentry)) 2143 continue; 2144 2145 if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) { 2146 if (dentry->d_name.hash != hashlen_hash(hashlen)) 2147 continue; 2148 *seqp = seq; 2149 switch (slow_dentry_cmp(parent, dentry, seq, name)) { 2150 case D_COMP_OK: 2151 return dentry; 2152 case D_COMP_NOMATCH: 2153 continue; 2154 default: 2155 goto seqretry; 2156 } 2157 } 2158 2159 if (dentry->d_name.hash_len != hashlen) 2160 continue; 2161 *seqp = seq; 2162 if (!dentry_cmp(dentry, str, hashlen_len(hashlen))) 2163 return dentry; 2164 } 2165 return NULL; 2166 } 2167 2168 /** 2169 * d_lookup - search for a dentry 2170 * @parent: parent dentry 2171 * @name: qstr of name we wish to find 2172 * Returns: dentry, or NULL 2173 * 2174 * d_lookup searches the children of the parent dentry for the name in 2175 * question. If the dentry is found its reference count is incremented and the 2176 * dentry is returned. The caller must use dput to free the entry when it has 2177 * finished using it. %NULL is returned if the dentry does not exist. 2178 */ 2179 struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name) 2180 { 2181 struct dentry *dentry; 2182 unsigned seq; 2183 2184 do { 2185 seq = read_seqbegin(&rename_lock); 2186 dentry = __d_lookup(parent, name); 2187 if (dentry) 2188 break; 2189 } while (read_seqretry(&rename_lock, seq)); 2190 return dentry; 2191 } 2192 EXPORT_SYMBOL(d_lookup); 2193 2194 /** 2195 * __d_lookup - search for a dentry (racy) 2196 * @parent: parent dentry 2197 * @name: qstr of name we wish to find 2198 * Returns: dentry, or NULL 2199 * 2200 * __d_lookup is like d_lookup, however it may (rarely) return a 2201 * false-negative result due to unrelated rename activity. 2202 * 2203 * __d_lookup is slightly faster by avoiding rename_lock read seqlock, 2204 * however it must be used carefully, eg. with a following d_lookup in 2205 * the case of failure. 2206 * 2207 * __d_lookup callers must be commented. 2208 */ 2209 struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name) 2210 { 2211 unsigned int len = name->len; 2212 unsigned int hash = name->hash; 2213 const unsigned char *str = name->name; 2214 struct hlist_bl_head *b = d_hash(parent, hash); 2215 struct hlist_bl_node *node; 2216 struct dentry *found = NULL; 2217 struct dentry *dentry; 2218 2219 /* 2220 * Note: There is significant duplication with __d_lookup_rcu which is 2221 * required to prevent single threaded performance regressions 2222 * especially on architectures where smp_rmb (in seqcounts) are costly. 2223 * Keep the two functions in sync. 2224 */ 2225 2226 /* 2227 * The hash list is protected using RCU. 2228 * 2229 * Take d_lock when comparing a candidate dentry, to avoid races 2230 * with d_move(). 2231 * 2232 * It is possible that concurrent renames can mess up our list 2233 * walk here and result in missing our dentry, resulting in the 2234 * false-negative result. d_lookup() protects against concurrent 2235 * renames using rename_lock seqlock. 2236 * 2237 * See Documentation/filesystems/path-lookup.txt for more details. 2238 */ 2239 rcu_read_lock(); 2240 2241 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) { 2242 2243 if (dentry->d_name.hash != hash) 2244 continue; 2245 2246 spin_lock(&dentry->d_lock); 2247 if (dentry->d_parent != parent) 2248 goto next; 2249 if (d_unhashed(dentry)) 2250 goto next; 2251 2252 /* 2253 * It is safe to compare names since d_move() cannot 2254 * change the qstr (protected by d_lock). 2255 */ 2256 if (parent->d_flags & DCACHE_OP_COMPARE) { 2257 int tlen = dentry->d_name.len; 2258 const char *tname = dentry->d_name.name; 2259 if (parent->d_op->d_compare(parent, dentry, tlen, tname, name)) 2260 goto next; 2261 } else { 2262 if (dentry->d_name.len != len) 2263 goto next; 2264 if (dentry_cmp(dentry, str, len)) 2265 goto next; 2266 } 2267 2268 dentry->d_lockref.count++; 2269 found = dentry; 2270 spin_unlock(&dentry->d_lock); 2271 break; 2272 next: 2273 spin_unlock(&dentry->d_lock); 2274 } 2275 rcu_read_unlock(); 2276 2277 return found; 2278 } 2279 2280 /** 2281 * d_hash_and_lookup - hash the qstr then search for a dentry 2282 * @dir: Directory to search in 2283 * @name: qstr of name we wish to find 2284 * 2285 * On lookup failure NULL is returned; on bad name - ERR_PTR(-error) 2286 */ 2287 struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name) 2288 { 2289 /* 2290 * Check for a fs-specific hash function. Note that we must 2291 * calculate the standard hash first, as the d_op->d_hash() 2292 * routine may choose to leave the hash value unchanged. 2293 */ 2294 name->hash = full_name_hash(name->name, name->len); 2295 if (dir->d_flags & DCACHE_OP_HASH) { 2296 int err = dir->d_op->d_hash(dir, name); 2297 if (unlikely(err < 0)) 2298 return ERR_PTR(err); 2299 } 2300 return d_lookup(dir, name); 2301 } 2302 EXPORT_SYMBOL(d_hash_and_lookup); 2303 2304 /* 2305 * When a file is deleted, we have two options: 2306 * - turn this dentry into a negative dentry 2307 * - unhash this dentry and free it. 2308 * 2309 * Usually, we want to just turn this into 2310 * a negative dentry, but if anybody else is 2311 * currently using the dentry or the inode 2312 * we can't do that and we fall back on removing 2313 * it from the hash queues and waiting for 2314 * it to be deleted later when it has no users 2315 */ 2316 2317 /** 2318 * d_delete - delete a dentry 2319 * @dentry: The dentry to delete 2320 * 2321 * Turn the dentry into a negative dentry if possible, otherwise 2322 * remove it from the hash queues so it can be deleted later 2323 */ 2324 2325 void d_delete(struct dentry * dentry) 2326 { 2327 struct inode *inode; 2328 int isdir = 0; 2329 /* 2330 * Are we the only user? 2331 */ 2332 again: 2333 spin_lock(&dentry->d_lock); 2334 inode = dentry->d_inode; 2335 isdir = S_ISDIR(inode->i_mode); 2336 if (dentry->d_lockref.count == 1) { 2337 if (!spin_trylock(&inode->i_lock)) { 2338 spin_unlock(&dentry->d_lock); 2339 cpu_relax(); 2340 goto again; 2341 } 2342 dentry->d_flags &= ~DCACHE_CANT_MOUNT; 2343 dentry_unlink_inode(dentry); 2344 fsnotify_nameremove(dentry, isdir); 2345 return; 2346 } 2347 2348 if (!d_unhashed(dentry)) 2349 __d_drop(dentry); 2350 2351 spin_unlock(&dentry->d_lock); 2352 2353 fsnotify_nameremove(dentry, isdir); 2354 } 2355 EXPORT_SYMBOL(d_delete); 2356 2357 static void __d_rehash(struct dentry * entry, struct hlist_bl_head *b) 2358 { 2359 BUG_ON(!d_unhashed(entry)); 2360 hlist_bl_lock(b); 2361 hlist_bl_add_head_rcu(&entry->d_hash, b); 2362 hlist_bl_unlock(b); 2363 } 2364 2365 static void _d_rehash(struct dentry * entry) 2366 { 2367 __d_rehash(entry, d_hash(entry->d_parent, entry->d_name.hash)); 2368 } 2369 2370 /** 2371 * d_rehash - add an entry back to the hash 2372 * @entry: dentry to add to the hash 2373 * 2374 * Adds a dentry to the hash according to its name. 2375 */ 2376 2377 void d_rehash(struct dentry * entry) 2378 { 2379 spin_lock(&entry->d_lock); 2380 _d_rehash(entry); 2381 spin_unlock(&entry->d_lock); 2382 } 2383 EXPORT_SYMBOL(d_rehash); 2384 2385 static inline unsigned start_dir_add(struct inode *dir) 2386 { 2387 2388 for (;;) { 2389 unsigned n = dir->i_dir_seq; 2390 if (!(n & 1) && cmpxchg(&dir->i_dir_seq, n, n + 1) == n) 2391 return n; 2392 cpu_relax(); 2393 } 2394 } 2395 2396 static inline void end_dir_add(struct inode *dir, unsigned n) 2397 { 2398 smp_store_release(&dir->i_dir_seq, n + 2); 2399 } 2400 2401 static void d_wait_lookup(struct dentry *dentry) 2402 { 2403 if (d_in_lookup(dentry)) { 2404 DECLARE_WAITQUEUE(wait, current); 2405 add_wait_queue(dentry->d_wait, &wait); 2406 do { 2407 set_current_state(TASK_UNINTERRUPTIBLE); 2408 spin_unlock(&dentry->d_lock); 2409 schedule(); 2410 spin_lock(&dentry->d_lock); 2411 } while (d_in_lookup(dentry)); 2412 } 2413 } 2414 2415 struct dentry *d_alloc_parallel(struct dentry *parent, 2416 const struct qstr *name, 2417 wait_queue_head_t *wq) 2418 { 2419 unsigned int len = name->len; 2420 unsigned int hash = name->hash; 2421 const unsigned char *str = name->name; 2422 struct hlist_bl_head *b = in_lookup_hash(parent, hash); 2423 struct hlist_bl_node *node; 2424 struct dentry *new = d_alloc(parent, name); 2425 struct dentry *dentry; 2426 unsigned seq, r_seq, d_seq; 2427 2428 if (unlikely(!new)) 2429 return ERR_PTR(-ENOMEM); 2430 2431 retry: 2432 rcu_read_lock(); 2433 seq = smp_load_acquire(&parent->d_inode->i_dir_seq) & ~1; 2434 r_seq = read_seqbegin(&rename_lock); 2435 dentry = __d_lookup_rcu(parent, name, &d_seq); 2436 if (unlikely(dentry)) { 2437 if (!lockref_get_not_dead(&dentry->d_lockref)) { 2438 rcu_read_unlock(); 2439 goto retry; 2440 } 2441 if (read_seqcount_retry(&dentry->d_seq, d_seq)) { 2442 rcu_read_unlock(); 2443 dput(dentry); 2444 goto retry; 2445 } 2446 rcu_read_unlock(); 2447 dput(new); 2448 return dentry; 2449 } 2450 if (unlikely(read_seqretry(&rename_lock, r_seq))) { 2451 rcu_read_unlock(); 2452 goto retry; 2453 } 2454 hlist_bl_lock(b); 2455 if (unlikely(parent->d_inode->i_dir_seq != seq)) { 2456 hlist_bl_unlock(b); 2457 rcu_read_unlock(); 2458 goto retry; 2459 } 2460 rcu_read_unlock(); 2461 /* 2462 * No changes for the parent since the beginning of d_lookup(). 2463 * Since all removals from the chain happen with hlist_bl_lock(), 2464 * any potential in-lookup matches are going to stay here until 2465 * we unlock the chain. All fields are stable in everything 2466 * we encounter. 2467 */ 2468 hlist_bl_for_each_entry(dentry, node, b, d_u.d_in_lookup_hash) { 2469 if (dentry->d_name.hash != hash) 2470 continue; 2471 if (dentry->d_parent != parent) 2472 continue; 2473 if (d_unhashed(dentry)) 2474 continue; 2475 if (parent->d_flags & DCACHE_OP_COMPARE) { 2476 int tlen = dentry->d_name.len; 2477 const char *tname = dentry->d_name.name; 2478 if (parent->d_op->d_compare(parent, dentry, tlen, tname, name)) 2479 continue; 2480 } else { 2481 if (dentry->d_name.len != len) 2482 continue; 2483 if (dentry_cmp(dentry, str, len)) 2484 continue; 2485 } 2486 dget(dentry); 2487 hlist_bl_unlock(b); 2488 /* somebody is doing lookup for it right now; wait for it */ 2489 spin_lock(&dentry->d_lock); 2490 d_wait_lookup(dentry); 2491 /* 2492 * it's not in-lookup anymore; in principle we should repeat 2493 * everything from dcache lookup, but it's likely to be what 2494 * d_lookup() would've found anyway. If it is, just return it; 2495 * otherwise we really have to repeat the whole thing. 2496 */ 2497 if (unlikely(dentry->d_name.hash != hash)) 2498 goto mismatch; 2499 if (unlikely(dentry->d_parent != parent)) 2500 goto mismatch; 2501 if (unlikely(d_unhashed(dentry))) 2502 goto mismatch; 2503 if (parent->d_flags & DCACHE_OP_COMPARE) { 2504 int tlen = dentry->d_name.len; 2505 const char *tname = dentry->d_name.name; 2506 if (parent->d_op->d_compare(parent, dentry, tlen, tname, name)) 2507 goto mismatch; 2508 } else { 2509 if (unlikely(dentry->d_name.len != len)) 2510 goto mismatch; 2511 if (unlikely(dentry_cmp(dentry, str, len))) 2512 goto mismatch; 2513 } 2514 /* OK, it *is* a hashed match; return it */ 2515 spin_unlock(&dentry->d_lock); 2516 dput(new); 2517 return dentry; 2518 } 2519 /* we can't take ->d_lock here; it's OK, though. */ 2520 new->d_flags |= DCACHE_PAR_LOOKUP; 2521 new->d_wait = wq; 2522 hlist_bl_add_head_rcu(&new->d_u.d_in_lookup_hash, b); 2523 hlist_bl_unlock(b); 2524 return new; 2525 mismatch: 2526 spin_unlock(&dentry->d_lock); 2527 dput(dentry); 2528 goto retry; 2529 } 2530 EXPORT_SYMBOL(d_alloc_parallel); 2531 2532 void __d_lookup_done(struct dentry *dentry) 2533 { 2534 struct hlist_bl_head *b = in_lookup_hash(dentry->d_parent, 2535 dentry->d_name.hash); 2536 hlist_bl_lock(b); 2537 dentry->d_flags &= ~DCACHE_PAR_LOOKUP; 2538 __hlist_bl_del(&dentry->d_u.d_in_lookup_hash); 2539 wake_up_all(dentry->d_wait); 2540 dentry->d_wait = NULL; 2541 hlist_bl_unlock(b); 2542 INIT_HLIST_NODE(&dentry->d_u.d_alias); 2543 INIT_LIST_HEAD(&dentry->d_lru); 2544 } 2545 EXPORT_SYMBOL(__d_lookup_done); 2546 2547 /* inode->i_lock held if inode is non-NULL */ 2548 2549 static inline void __d_add(struct dentry *dentry, struct inode *inode) 2550 { 2551 struct inode *dir = NULL; 2552 unsigned n; 2553 spin_lock(&dentry->d_lock); 2554 if (unlikely(d_in_lookup(dentry))) { 2555 dir = dentry->d_parent->d_inode; 2556 n = start_dir_add(dir); 2557 __d_lookup_done(dentry); 2558 } 2559 if (inode) { 2560 unsigned add_flags = d_flags_for_inode(inode); 2561 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry); 2562 raw_write_seqcount_begin(&dentry->d_seq); 2563 __d_set_inode_and_type(dentry, inode, add_flags); 2564 raw_write_seqcount_end(&dentry->d_seq); 2565 __fsnotify_d_instantiate(dentry); 2566 } 2567 _d_rehash(dentry); 2568 if (dir) 2569 end_dir_add(dir, n); 2570 spin_unlock(&dentry->d_lock); 2571 if (inode) 2572 spin_unlock(&inode->i_lock); 2573 } 2574 2575 /** 2576 * d_add - add dentry to hash queues 2577 * @entry: dentry to add 2578 * @inode: The inode to attach to this dentry 2579 * 2580 * This adds the entry to the hash queues and initializes @inode. 2581 * The entry was actually filled in earlier during d_alloc(). 2582 */ 2583 2584 void d_add(struct dentry *entry, struct inode *inode) 2585 { 2586 if (inode) { 2587 security_d_instantiate(entry, inode); 2588 spin_lock(&inode->i_lock); 2589 } 2590 __d_add(entry, inode); 2591 } 2592 EXPORT_SYMBOL(d_add); 2593 2594 /** 2595 * d_exact_alias - find and hash an exact unhashed alias 2596 * @entry: dentry to add 2597 * @inode: The inode to go with this dentry 2598 * 2599 * If an unhashed dentry with the same name/parent and desired 2600 * inode already exists, hash and return it. Otherwise, return 2601 * NULL. 2602 * 2603 * Parent directory should be locked. 2604 */ 2605 struct dentry *d_exact_alias(struct dentry *entry, struct inode *inode) 2606 { 2607 struct dentry *alias; 2608 int len = entry->d_name.len; 2609 const char *name = entry->d_name.name; 2610 unsigned int hash = entry->d_name.hash; 2611 2612 spin_lock(&inode->i_lock); 2613 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) { 2614 /* 2615 * Don't need alias->d_lock here, because aliases with 2616 * d_parent == entry->d_parent are not subject to name or 2617 * parent changes, because the parent inode i_mutex is held. 2618 */ 2619 if (alias->d_name.hash != hash) 2620 continue; 2621 if (alias->d_parent != entry->d_parent) 2622 continue; 2623 if (alias->d_name.len != len) 2624 continue; 2625 if (dentry_cmp(alias, name, len)) 2626 continue; 2627 spin_lock(&alias->d_lock); 2628 if (!d_unhashed(alias)) { 2629 spin_unlock(&alias->d_lock); 2630 alias = NULL; 2631 } else { 2632 __dget_dlock(alias); 2633 _d_rehash(alias); 2634 spin_unlock(&alias->d_lock); 2635 } 2636 spin_unlock(&inode->i_lock); 2637 return alias; 2638 } 2639 spin_unlock(&inode->i_lock); 2640 return NULL; 2641 } 2642 EXPORT_SYMBOL(d_exact_alias); 2643 2644 /** 2645 * dentry_update_name_case - update case insensitive dentry with a new name 2646 * @dentry: dentry to be updated 2647 * @name: new name 2648 * 2649 * Update a case insensitive dentry with new case of name. 2650 * 2651 * dentry must have been returned by d_lookup with name @name. Old and new 2652 * name lengths must match (ie. no d_compare which allows mismatched name 2653 * lengths). 2654 * 2655 * Parent inode i_mutex must be held over d_lookup and into this call (to 2656 * keep renames and concurrent inserts, and readdir(2) away). 2657 */ 2658 void dentry_update_name_case(struct dentry *dentry, struct qstr *name) 2659 { 2660 BUG_ON(!inode_is_locked(dentry->d_parent->d_inode)); 2661 BUG_ON(dentry->d_name.len != name->len); /* d_lookup gives this */ 2662 2663 spin_lock(&dentry->d_lock); 2664 write_seqcount_begin(&dentry->d_seq); 2665 memcpy((unsigned char *)dentry->d_name.name, name->name, name->len); 2666 write_seqcount_end(&dentry->d_seq); 2667 spin_unlock(&dentry->d_lock); 2668 } 2669 EXPORT_SYMBOL(dentry_update_name_case); 2670 2671 static void swap_names(struct dentry *dentry, struct dentry *target) 2672 { 2673 if (unlikely(dname_external(target))) { 2674 if (unlikely(dname_external(dentry))) { 2675 /* 2676 * Both external: swap the pointers 2677 */ 2678 swap(target->d_name.name, dentry->d_name.name); 2679 } else { 2680 /* 2681 * dentry:internal, target:external. Steal target's 2682 * storage and make target internal. 2683 */ 2684 memcpy(target->d_iname, dentry->d_name.name, 2685 dentry->d_name.len + 1); 2686 dentry->d_name.name = target->d_name.name; 2687 target->d_name.name = target->d_iname; 2688 } 2689 } else { 2690 if (unlikely(dname_external(dentry))) { 2691 /* 2692 * dentry:external, target:internal. Give dentry's 2693 * storage to target and make dentry internal 2694 */ 2695 memcpy(dentry->d_iname, target->d_name.name, 2696 target->d_name.len + 1); 2697 target->d_name.name = dentry->d_name.name; 2698 dentry->d_name.name = dentry->d_iname; 2699 } else { 2700 /* 2701 * Both are internal. 2702 */ 2703 unsigned int i; 2704 BUILD_BUG_ON(!IS_ALIGNED(DNAME_INLINE_LEN, sizeof(long))); 2705 kmemcheck_mark_initialized(dentry->d_iname, DNAME_INLINE_LEN); 2706 kmemcheck_mark_initialized(target->d_iname, DNAME_INLINE_LEN); 2707 for (i = 0; i < DNAME_INLINE_LEN / sizeof(long); i++) { 2708 swap(((long *) &dentry->d_iname)[i], 2709 ((long *) &target->d_iname)[i]); 2710 } 2711 } 2712 } 2713 swap(dentry->d_name.hash_len, target->d_name.hash_len); 2714 } 2715 2716 static void copy_name(struct dentry *dentry, struct dentry *target) 2717 { 2718 struct external_name *old_name = NULL; 2719 if (unlikely(dname_external(dentry))) 2720 old_name = external_name(dentry); 2721 if (unlikely(dname_external(target))) { 2722 atomic_inc(&external_name(target)->u.count); 2723 dentry->d_name = target->d_name; 2724 } else { 2725 memcpy(dentry->d_iname, target->d_name.name, 2726 target->d_name.len + 1); 2727 dentry->d_name.name = dentry->d_iname; 2728 dentry->d_name.hash_len = target->d_name.hash_len; 2729 } 2730 if (old_name && likely(atomic_dec_and_test(&old_name->u.count))) 2731 kfree_rcu(old_name, u.head); 2732 } 2733 2734 static void dentry_lock_for_move(struct dentry *dentry, struct dentry *target) 2735 { 2736 /* 2737 * XXXX: do we really need to take target->d_lock? 2738 */ 2739 if (IS_ROOT(dentry) || dentry->d_parent == target->d_parent) 2740 spin_lock(&target->d_parent->d_lock); 2741 else { 2742 if (d_ancestor(dentry->d_parent, target->d_parent)) { 2743 spin_lock(&dentry->d_parent->d_lock); 2744 spin_lock_nested(&target->d_parent->d_lock, 2745 DENTRY_D_LOCK_NESTED); 2746 } else { 2747 spin_lock(&target->d_parent->d_lock); 2748 spin_lock_nested(&dentry->d_parent->d_lock, 2749 DENTRY_D_LOCK_NESTED); 2750 } 2751 } 2752 if (target < dentry) { 2753 spin_lock_nested(&target->d_lock, 2); 2754 spin_lock_nested(&dentry->d_lock, 3); 2755 } else { 2756 spin_lock_nested(&dentry->d_lock, 2); 2757 spin_lock_nested(&target->d_lock, 3); 2758 } 2759 } 2760 2761 static void dentry_unlock_for_move(struct dentry *dentry, struct dentry *target) 2762 { 2763 if (target->d_parent != dentry->d_parent) 2764 spin_unlock(&dentry->d_parent->d_lock); 2765 if (target->d_parent != target) 2766 spin_unlock(&target->d_parent->d_lock); 2767 spin_unlock(&target->d_lock); 2768 spin_unlock(&dentry->d_lock); 2769 } 2770 2771 /* 2772 * When switching names, the actual string doesn't strictly have to 2773 * be preserved in the target - because we're dropping the target 2774 * anyway. As such, we can just do a simple memcpy() to copy over 2775 * the new name before we switch, unless we are going to rehash 2776 * it. Note that if we *do* unhash the target, we are not allowed 2777 * to rehash it without giving it a new name/hash key - whether 2778 * we swap or overwrite the names here, resulting name won't match 2779 * the reality in filesystem; it's only there for d_path() purposes. 2780 * Note that all of this is happening under rename_lock, so the 2781 * any hash lookup seeing it in the middle of manipulations will 2782 * be discarded anyway. So we do not care what happens to the hash 2783 * key in that case. 2784 */ 2785 /* 2786 * __d_move - move a dentry 2787 * @dentry: entry to move 2788 * @target: new dentry 2789 * @exchange: exchange the two dentries 2790 * 2791 * Update the dcache to reflect the move of a file name. Negative 2792 * dcache entries should not be moved in this way. Caller must hold 2793 * rename_lock, the i_mutex of the source and target directories, 2794 * and the sb->s_vfs_rename_mutex if they differ. See lock_rename(). 2795 */ 2796 static void __d_move(struct dentry *dentry, struct dentry *target, 2797 bool exchange) 2798 { 2799 struct inode *dir = NULL; 2800 unsigned n; 2801 if (!dentry->d_inode) 2802 printk(KERN_WARNING "VFS: moving negative dcache entry\n"); 2803 2804 BUG_ON(d_ancestor(dentry, target)); 2805 BUG_ON(d_ancestor(target, dentry)); 2806 2807 dentry_lock_for_move(dentry, target); 2808 if (unlikely(d_in_lookup(target))) { 2809 dir = target->d_parent->d_inode; 2810 n = start_dir_add(dir); 2811 __d_lookup_done(target); 2812 } 2813 2814 write_seqcount_begin(&dentry->d_seq); 2815 write_seqcount_begin_nested(&target->d_seq, DENTRY_D_LOCK_NESTED); 2816 2817 /* __d_drop does write_seqcount_barrier, but they're OK to nest. */ 2818 2819 /* 2820 * Move the dentry to the target hash queue. Don't bother checking 2821 * for the same hash queue because of how unlikely it is. 2822 */ 2823 __d_drop(dentry); 2824 __d_rehash(dentry, d_hash(target->d_parent, target->d_name.hash)); 2825 2826 /* 2827 * Unhash the target (d_delete() is not usable here). If exchanging 2828 * the two dentries, then rehash onto the other's hash queue. 2829 */ 2830 __d_drop(target); 2831 if (exchange) { 2832 __d_rehash(target, 2833 d_hash(dentry->d_parent, dentry->d_name.hash)); 2834 } 2835 2836 /* Switch the names.. */ 2837 if (exchange) 2838 swap_names(dentry, target); 2839 else 2840 copy_name(dentry, target); 2841 2842 /* ... and switch them in the tree */ 2843 if (IS_ROOT(dentry)) { 2844 /* splicing a tree */ 2845 dentry->d_flags |= DCACHE_RCUACCESS; 2846 dentry->d_parent = target->d_parent; 2847 target->d_parent = target; 2848 list_del_init(&target->d_child); 2849 list_move(&dentry->d_child, &dentry->d_parent->d_subdirs); 2850 } else { 2851 /* swapping two dentries */ 2852 swap(dentry->d_parent, target->d_parent); 2853 list_move(&target->d_child, &target->d_parent->d_subdirs); 2854 list_move(&dentry->d_child, &dentry->d_parent->d_subdirs); 2855 if (exchange) 2856 fsnotify_d_move(target); 2857 fsnotify_d_move(dentry); 2858 } 2859 2860 write_seqcount_end(&target->d_seq); 2861 write_seqcount_end(&dentry->d_seq); 2862 2863 if (dir) 2864 end_dir_add(dir, n); 2865 dentry_unlock_for_move(dentry, target); 2866 } 2867 2868 /* 2869 * d_move - move a dentry 2870 * @dentry: entry to move 2871 * @target: new dentry 2872 * 2873 * Update the dcache to reflect the move of a file name. Negative 2874 * dcache entries should not be moved in this way. See the locking 2875 * requirements for __d_move. 2876 */ 2877 void d_move(struct dentry *dentry, struct dentry *target) 2878 { 2879 write_seqlock(&rename_lock); 2880 __d_move(dentry, target, false); 2881 write_sequnlock(&rename_lock); 2882 } 2883 EXPORT_SYMBOL(d_move); 2884 2885 /* 2886 * d_exchange - exchange two dentries 2887 * @dentry1: first dentry 2888 * @dentry2: second dentry 2889 */ 2890 void d_exchange(struct dentry *dentry1, struct dentry *dentry2) 2891 { 2892 write_seqlock(&rename_lock); 2893 2894 WARN_ON(!dentry1->d_inode); 2895 WARN_ON(!dentry2->d_inode); 2896 WARN_ON(IS_ROOT(dentry1)); 2897 WARN_ON(IS_ROOT(dentry2)); 2898 2899 __d_move(dentry1, dentry2, true); 2900 2901 write_sequnlock(&rename_lock); 2902 } 2903 2904 /** 2905 * d_ancestor - search for an ancestor 2906 * @p1: ancestor dentry 2907 * @p2: child dentry 2908 * 2909 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is 2910 * an ancestor of p2, else NULL. 2911 */ 2912 struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2) 2913 { 2914 struct dentry *p; 2915 2916 for (p = p2; !IS_ROOT(p); p = p->d_parent) { 2917 if (p->d_parent == p1) 2918 return p; 2919 } 2920 return NULL; 2921 } 2922 2923 /* 2924 * This helper attempts to cope with remotely renamed directories 2925 * 2926 * It assumes that the caller is already holding 2927 * dentry->d_parent->d_inode->i_mutex, and rename_lock 2928 * 2929 * Note: If ever the locking in lock_rename() changes, then please 2930 * remember to update this too... 2931 */ 2932 static int __d_unalias(struct inode *inode, 2933 struct dentry *dentry, struct dentry *alias) 2934 { 2935 struct mutex *m1 = NULL; 2936 struct rw_semaphore *m2 = NULL; 2937 int ret = -ESTALE; 2938 2939 /* If alias and dentry share a parent, then no extra locks required */ 2940 if (alias->d_parent == dentry->d_parent) 2941 goto out_unalias; 2942 2943 /* See lock_rename() */ 2944 if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex)) 2945 goto out_err; 2946 m1 = &dentry->d_sb->s_vfs_rename_mutex; 2947 if (!inode_trylock_shared(alias->d_parent->d_inode)) 2948 goto out_err; 2949 m2 = &alias->d_parent->d_inode->i_rwsem; 2950 out_unalias: 2951 __d_move(alias, dentry, false); 2952 ret = 0; 2953 out_err: 2954 if (m2) 2955 up_read(m2); 2956 if (m1) 2957 mutex_unlock(m1); 2958 return ret; 2959 } 2960 2961 /** 2962 * d_splice_alias - splice a disconnected dentry into the tree if one exists 2963 * @inode: the inode which may have a disconnected dentry 2964 * @dentry: a negative dentry which we want to point to the inode. 2965 * 2966 * If inode is a directory and has an IS_ROOT alias, then d_move that in 2967 * place of the given dentry and return it, else simply d_add the inode 2968 * to the dentry and return NULL. 2969 * 2970 * If a non-IS_ROOT directory is found, the filesystem is corrupt, and 2971 * we should error out: directories can't have multiple aliases. 2972 * 2973 * This is needed in the lookup routine of any filesystem that is exportable 2974 * (via knfsd) so that we can build dcache paths to directories effectively. 2975 * 2976 * If a dentry was found and moved, then it is returned. Otherwise NULL 2977 * is returned. This matches the expected return value of ->lookup. 2978 * 2979 * Cluster filesystems may call this function with a negative, hashed dentry. 2980 * In that case, we know that the inode will be a regular file, and also this 2981 * will only occur during atomic_open. So we need to check for the dentry 2982 * being already hashed only in the final case. 2983 */ 2984 struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry) 2985 { 2986 if (IS_ERR(inode)) 2987 return ERR_CAST(inode); 2988 2989 BUG_ON(!d_unhashed(dentry)); 2990 2991 if (!inode) 2992 goto out; 2993 2994 security_d_instantiate(dentry, inode); 2995 spin_lock(&inode->i_lock); 2996 if (S_ISDIR(inode->i_mode)) { 2997 struct dentry *new = __d_find_any_alias(inode); 2998 if (unlikely(new)) { 2999 /* The reference to new ensures it remains an alias */ 3000 spin_unlock(&inode->i_lock); 3001 write_seqlock(&rename_lock); 3002 if (unlikely(d_ancestor(new, dentry))) { 3003 write_sequnlock(&rename_lock); 3004 dput(new); 3005 new = ERR_PTR(-ELOOP); 3006 pr_warn_ratelimited( 3007 "VFS: Lookup of '%s' in %s %s" 3008 " would have caused loop\n", 3009 dentry->d_name.name, 3010 inode->i_sb->s_type->name, 3011 inode->i_sb->s_id); 3012 } else if (!IS_ROOT(new)) { 3013 int err = __d_unalias(inode, dentry, new); 3014 write_sequnlock(&rename_lock); 3015 if (err) { 3016 dput(new); 3017 new = ERR_PTR(err); 3018 } 3019 } else { 3020 __d_move(new, dentry, false); 3021 write_sequnlock(&rename_lock); 3022 } 3023 iput(inode); 3024 return new; 3025 } 3026 } 3027 out: 3028 __d_add(dentry, inode); 3029 return NULL; 3030 } 3031 EXPORT_SYMBOL(d_splice_alias); 3032 3033 static int prepend(char **buffer, int *buflen, const char *str, int namelen) 3034 { 3035 *buflen -= namelen; 3036 if (*buflen < 0) 3037 return -ENAMETOOLONG; 3038 *buffer -= namelen; 3039 memcpy(*buffer, str, namelen); 3040 return 0; 3041 } 3042 3043 /** 3044 * prepend_name - prepend a pathname in front of current buffer pointer 3045 * @buffer: buffer pointer 3046 * @buflen: allocated length of the buffer 3047 * @name: name string and length qstr structure 3048 * 3049 * With RCU path tracing, it may race with d_move(). Use ACCESS_ONCE() to 3050 * make sure that either the old or the new name pointer and length are 3051 * fetched. However, there may be mismatch between length and pointer. 3052 * The length cannot be trusted, we need to copy it byte-by-byte until 3053 * the length is reached or a null byte is found. It also prepends "/" at 3054 * the beginning of the name. The sequence number check at the caller will 3055 * retry it again when a d_move() does happen. So any garbage in the buffer 3056 * due to mismatched pointer and length will be discarded. 3057 * 3058 * Data dependency barrier is needed to make sure that we see that terminating 3059 * NUL. Alpha strikes again, film at 11... 3060 */ 3061 static int prepend_name(char **buffer, int *buflen, struct qstr *name) 3062 { 3063 const char *dname = ACCESS_ONCE(name->name); 3064 u32 dlen = ACCESS_ONCE(name->len); 3065 char *p; 3066 3067 smp_read_barrier_depends(); 3068 3069 *buflen -= dlen + 1; 3070 if (*buflen < 0) 3071 return -ENAMETOOLONG; 3072 p = *buffer -= dlen + 1; 3073 *p++ = '/'; 3074 while (dlen--) { 3075 char c = *dname++; 3076 if (!c) 3077 break; 3078 *p++ = c; 3079 } 3080 return 0; 3081 } 3082 3083 /** 3084 * prepend_path - Prepend path string to a buffer 3085 * @path: the dentry/vfsmount to report 3086 * @root: root vfsmnt/dentry 3087 * @buffer: pointer to the end of the buffer 3088 * @buflen: pointer to buffer length 3089 * 3090 * The function will first try to write out the pathname without taking any 3091 * lock other than the RCU read lock to make sure that dentries won't go away. 3092 * It only checks the sequence number of the global rename_lock as any change 3093 * in the dentry's d_seq will be preceded by changes in the rename_lock 3094 * sequence number. If the sequence number had been changed, it will restart 3095 * the whole pathname back-tracing sequence again by taking the rename_lock. 3096 * In this case, there is no need to take the RCU read lock as the recursive 3097 * parent pointer references will keep the dentry chain alive as long as no 3098 * rename operation is performed. 3099 */ 3100 static int prepend_path(const struct path *path, 3101 const struct path *root, 3102 char **buffer, int *buflen) 3103 { 3104 struct dentry *dentry; 3105 struct vfsmount *vfsmnt; 3106 struct mount *mnt; 3107 int error = 0; 3108 unsigned seq, m_seq = 0; 3109 char *bptr; 3110 int blen; 3111 3112 rcu_read_lock(); 3113 restart_mnt: 3114 read_seqbegin_or_lock(&mount_lock, &m_seq); 3115 seq = 0; 3116 rcu_read_lock(); 3117 restart: 3118 bptr = *buffer; 3119 blen = *buflen; 3120 error = 0; 3121 dentry = path->dentry; 3122 vfsmnt = path->mnt; 3123 mnt = real_mount(vfsmnt); 3124 read_seqbegin_or_lock(&rename_lock, &seq); 3125 while (dentry != root->dentry || vfsmnt != root->mnt) { 3126 struct dentry * parent; 3127 3128 if (dentry == vfsmnt->mnt_root || IS_ROOT(dentry)) { 3129 struct mount *parent = ACCESS_ONCE(mnt->mnt_parent); 3130 /* Escaped? */ 3131 if (dentry != vfsmnt->mnt_root) { 3132 bptr = *buffer; 3133 blen = *buflen; 3134 error = 3; 3135 break; 3136 } 3137 /* Global root? */ 3138 if (mnt != parent) { 3139 dentry = ACCESS_ONCE(mnt->mnt_mountpoint); 3140 mnt = parent; 3141 vfsmnt = &mnt->mnt; 3142 continue; 3143 } 3144 if (!error) 3145 error = is_mounted(vfsmnt) ? 1 : 2; 3146 break; 3147 } 3148 parent = dentry->d_parent; 3149 prefetch(parent); 3150 error = prepend_name(&bptr, &blen, &dentry->d_name); 3151 if (error) 3152 break; 3153 3154 dentry = parent; 3155 } 3156 if (!(seq & 1)) 3157 rcu_read_unlock(); 3158 if (need_seqretry(&rename_lock, seq)) { 3159 seq = 1; 3160 goto restart; 3161 } 3162 done_seqretry(&rename_lock, seq); 3163 3164 if (!(m_seq & 1)) 3165 rcu_read_unlock(); 3166 if (need_seqretry(&mount_lock, m_seq)) { 3167 m_seq = 1; 3168 goto restart_mnt; 3169 } 3170 done_seqretry(&mount_lock, m_seq); 3171 3172 if (error >= 0 && bptr == *buffer) { 3173 if (--blen < 0) 3174 error = -ENAMETOOLONG; 3175 else 3176 *--bptr = '/'; 3177 } 3178 *buffer = bptr; 3179 *buflen = blen; 3180 return error; 3181 } 3182 3183 /** 3184 * __d_path - return the path of a dentry 3185 * @path: the dentry/vfsmount to report 3186 * @root: root vfsmnt/dentry 3187 * @buf: buffer to return value in 3188 * @buflen: buffer length 3189 * 3190 * Convert a dentry into an ASCII path name. 3191 * 3192 * Returns a pointer into the buffer or an error code if the 3193 * path was too long. 3194 * 3195 * "buflen" should be positive. 3196 * 3197 * If the path is not reachable from the supplied root, return %NULL. 3198 */ 3199 char *__d_path(const struct path *path, 3200 const struct path *root, 3201 char *buf, int buflen) 3202 { 3203 char *res = buf + buflen; 3204 int error; 3205 3206 prepend(&res, &buflen, "\0", 1); 3207 error = prepend_path(path, root, &res, &buflen); 3208 3209 if (error < 0) 3210 return ERR_PTR(error); 3211 if (error > 0) 3212 return NULL; 3213 return res; 3214 } 3215 3216 char *d_absolute_path(const struct path *path, 3217 char *buf, int buflen) 3218 { 3219 struct path root = {}; 3220 char *res = buf + buflen; 3221 int error; 3222 3223 prepend(&res, &buflen, "\0", 1); 3224 error = prepend_path(path, &root, &res, &buflen); 3225 3226 if (error > 1) 3227 error = -EINVAL; 3228 if (error < 0) 3229 return ERR_PTR(error); 3230 return res; 3231 } 3232 3233 /* 3234 * same as __d_path but appends "(deleted)" for unlinked files. 3235 */ 3236 static int path_with_deleted(const struct path *path, 3237 const struct path *root, 3238 char **buf, int *buflen) 3239 { 3240 prepend(buf, buflen, "\0", 1); 3241 if (d_unlinked(path->dentry)) { 3242 int error = prepend(buf, buflen, " (deleted)", 10); 3243 if (error) 3244 return error; 3245 } 3246 3247 return prepend_path(path, root, buf, buflen); 3248 } 3249 3250 static int prepend_unreachable(char **buffer, int *buflen) 3251 { 3252 return prepend(buffer, buflen, "(unreachable)", 13); 3253 } 3254 3255 static void get_fs_root_rcu(struct fs_struct *fs, struct path *root) 3256 { 3257 unsigned seq; 3258 3259 do { 3260 seq = read_seqcount_begin(&fs->seq); 3261 *root = fs->root; 3262 } while (read_seqcount_retry(&fs->seq, seq)); 3263 } 3264 3265 /** 3266 * d_path - return the path of a dentry 3267 * @path: path to report 3268 * @buf: buffer to return value in 3269 * @buflen: buffer length 3270 * 3271 * Convert a dentry into an ASCII path name. If the entry has been deleted 3272 * the string " (deleted)" is appended. Note that this is ambiguous. 3273 * 3274 * Returns a pointer into the buffer or an error code if the path was 3275 * too long. Note: Callers should use the returned pointer, not the passed 3276 * in buffer, to use the name! The implementation often starts at an offset 3277 * into the buffer, and may leave 0 bytes at the start. 3278 * 3279 * "buflen" should be positive. 3280 */ 3281 char *d_path(const struct path *path, char *buf, int buflen) 3282 { 3283 char *res = buf + buflen; 3284 struct path root; 3285 int error; 3286 3287 /* 3288 * We have various synthetic filesystems that never get mounted. On 3289 * these filesystems dentries are never used for lookup purposes, and 3290 * thus don't need to be hashed. They also don't need a name until a 3291 * user wants to identify the object in /proc/pid/fd/. The little hack 3292 * below allows us to generate a name for these objects on demand: 3293 * 3294 * Some pseudo inodes are mountable. When they are mounted 3295 * path->dentry == path->mnt->mnt_root. In that case don't call d_dname 3296 * and instead have d_path return the mounted path. 3297 */ 3298 if (path->dentry->d_op && path->dentry->d_op->d_dname && 3299 (!IS_ROOT(path->dentry) || path->dentry != path->mnt->mnt_root)) 3300 return path->dentry->d_op->d_dname(path->dentry, buf, buflen); 3301 3302 rcu_read_lock(); 3303 get_fs_root_rcu(current->fs, &root); 3304 error = path_with_deleted(path, &root, &res, &buflen); 3305 rcu_read_unlock(); 3306 3307 if (error < 0) 3308 res = ERR_PTR(error); 3309 return res; 3310 } 3311 EXPORT_SYMBOL(d_path); 3312 3313 /* 3314 * Helper function for dentry_operations.d_dname() members 3315 */ 3316 char *dynamic_dname(struct dentry *dentry, char *buffer, int buflen, 3317 const char *fmt, ...) 3318 { 3319 va_list args; 3320 char temp[64]; 3321 int sz; 3322 3323 va_start(args, fmt); 3324 sz = vsnprintf(temp, sizeof(temp), fmt, args) + 1; 3325 va_end(args); 3326 3327 if (sz > sizeof(temp) || sz > buflen) 3328 return ERR_PTR(-ENAMETOOLONG); 3329 3330 buffer += buflen - sz; 3331 return memcpy(buffer, temp, sz); 3332 } 3333 3334 char *simple_dname(struct dentry *dentry, char *buffer, int buflen) 3335 { 3336 char *end = buffer + buflen; 3337 /* these dentries are never renamed, so d_lock is not needed */ 3338 if (prepend(&end, &buflen, " (deleted)", 11) || 3339 prepend(&end, &buflen, dentry->d_name.name, dentry->d_name.len) || 3340 prepend(&end, &buflen, "/", 1)) 3341 end = ERR_PTR(-ENAMETOOLONG); 3342 return end; 3343 } 3344 EXPORT_SYMBOL(simple_dname); 3345 3346 /* 3347 * Write full pathname from the root of the filesystem into the buffer. 3348 */ 3349 static char *__dentry_path(struct dentry *d, char *buf, int buflen) 3350 { 3351 struct dentry *dentry; 3352 char *end, *retval; 3353 int len, seq = 0; 3354 int error = 0; 3355 3356 if (buflen < 2) 3357 goto Elong; 3358 3359 rcu_read_lock(); 3360 restart: 3361 dentry = d; 3362 end = buf + buflen; 3363 len = buflen; 3364 prepend(&end, &len, "\0", 1); 3365 /* Get '/' right */ 3366 retval = end-1; 3367 *retval = '/'; 3368 read_seqbegin_or_lock(&rename_lock, &seq); 3369 while (!IS_ROOT(dentry)) { 3370 struct dentry *parent = dentry->d_parent; 3371 3372 prefetch(parent); 3373 error = prepend_name(&end, &len, &dentry->d_name); 3374 if (error) 3375 break; 3376 3377 retval = end; 3378 dentry = parent; 3379 } 3380 if (!(seq & 1)) 3381 rcu_read_unlock(); 3382 if (need_seqretry(&rename_lock, seq)) { 3383 seq = 1; 3384 goto restart; 3385 } 3386 done_seqretry(&rename_lock, seq); 3387 if (error) 3388 goto Elong; 3389 return retval; 3390 Elong: 3391 return ERR_PTR(-ENAMETOOLONG); 3392 } 3393 3394 char *dentry_path_raw(struct dentry *dentry, char *buf, int buflen) 3395 { 3396 return __dentry_path(dentry, buf, buflen); 3397 } 3398 EXPORT_SYMBOL(dentry_path_raw); 3399 3400 char *dentry_path(struct dentry *dentry, char *buf, int buflen) 3401 { 3402 char *p = NULL; 3403 char *retval; 3404 3405 if (d_unlinked(dentry)) { 3406 p = buf + buflen; 3407 if (prepend(&p, &buflen, "//deleted", 10) != 0) 3408 goto Elong; 3409 buflen++; 3410 } 3411 retval = __dentry_path(dentry, buf, buflen); 3412 if (!IS_ERR(retval) && p) 3413 *p = '/'; /* restore '/' overriden with '\0' */ 3414 return retval; 3415 Elong: 3416 return ERR_PTR(-ENAMETOOLONG); 3417 } 3418 3419 static void get_fs_root_and_pwd_rcu(struct fs_struct *fs, struct path *root, 3420 struct path *pwd) 3421 { 3422 unsigned seq; 3423 3424 do { 3425 seq = read_seqcount_begin(&fs->seq); 3426 *root = fs->root; 3427 *pwd = fs->pwd; 3428 } while (read_seqcount_retry(&fs->seq, seq)); 3429 } 3430 3431 /* 3432 * NOTE! The user-level library version returns a 3433 * character pointer. The kernel system call just 3434 * returns the length of the buffer filled (which 3435 * includes the ending '\0' character), or a negative 3436 * error value. So libc would do something like 3437 * 3438 * char *getcwd(char * buf, size_t size) 3439 * { 3440 * int retval; 3441 * 3442 * retval = sys_getcwd(buf, size); 3443 * if (retval >= 0) 3444 * return buf; 3445 * errno = -retval; 3446 * return NULL; 3447 * } 3448 */ 3449 SYSCALL_DEFINE2(getcwd, char __user *, buf, unsigned long, size) 3450 { 3451 int error; 3452 struct path pwd, root; 3453 char *page = __getname(); 3454 3455 if (!page) 3456 return -ENOMEM; 3457 3458 rcu_read_lock(); 3459 get_fs_root_and_pwd_rcu(current->fs, &root, &pwd); 3460 3461 error = -ENOENT; 3462 if (!d_unlinked(pwd.dentry)) { 3463 unsigned long len; 3464 char *cwd = page + PATH_MAX; 3465 int buflen = PATH_MAX; 3466 3467 prepend(&cwd, &buflen, "\0", 1); 3468 error = prepend_path(&pwd, &root, &cwd, &buflen); 3469 rcu_read_unlock(); 3470 3471 if (error < 0) 3472 goto out; 3473 3474 /* Unreachable from current root */ 3475 if (error > 0) { 3476 error = prepend_unreachable(&cwd, &buflen); 3477 if (error) 3478 goto out; 3479 } 3480 3481 error = -ERANGE; 3482 len = PATH_MAX + page - cwd; 3483 if (len <= size) { 3484 error = len; 3485 if (copy_to_user(buf, cwd, len)) 3486 error = -EFAULT; 3487 } 3488 } else { 3489 rcu_read_unlock(); 3490 } 3491 3492 out: 3493 __putname(page); 3494 return error; 3495 } 3496 3497 /* 3498 * Test whether new_dentry is a subdirectory of old_dentry. 3499 * 3500 * Trivially implemented using the dcache structure 3501 */ 3502 3503 /** 3504 * is_subdir - is new dentry a subdirectory of old_dentry 3505 * @new_dentry: new dentry 3506 * @old_dentry: old dentry 3507 * 3508 * Returns true if new_dentry is a subdirectory of the parent (at any depth). 3509 * Returns false otherwise. 3510 * Caller must ensure that "new_dentry" is pinned before calling is_subdir() 3511 */ 3512 3513 bool is_subdir(struct dentry *new_dentry, struct dentry *old_dentry) 3514 { 3515 bool result; 3516 unsigned seq; 3517 3518 if (new_dentry == old_dentry) 3519 return true; 3520 3521 do { 3522 /* for restarting inner loop in case of seq retry */ 3523 seq = read_seqbegin(&rename_lock); 3524 /* 3525 * Need rcu_readlock to protect against the d_parent trashing 3526 * due to d_move 3527 */ 3528 rcu_read_lock(); 3529 if (d_ancestor(old_dentry, new_dentry)) 3530 result = true; 3531 else 3532 result = false; 3533 rcu_read_unlock(); 3534 } while (read_seqretry(&rename_lock, seq)); 3535 3536 return result; 3537 } 3538 3539 static enum d_walk_ret d_genocide_kill(void *data, struct dentry *dentry) 3540 { 3541 struct dentry *root = data; 3542 if (dentry != root) { 3543 if (d_unhashed(dentry) || !dentry->d_inode) 3544 return D_WALK_SKIP; 3545 3546 if (!(dentry->d_flags & DCACHE_GENOCIDE)) { 3547 dentry->d_flags |= DCACHE_GENOCIDE; 3548 dentry->d_lockref.count--; 3549 } 3550 } 3551 return D_WALK_CONTINUE; 3552 } 3553 3554 void d_genocide(struct dentry *parent) 3555 { 3556 d_walk(parent, parent, d_genocide_kill, NULL); 3557 } 3558 3559 void d_tmpfile(struct dentry *dentry, struct inode *inode) 3560 { 3561 inode_dec_link_count(inode); 3562 BUG_ON(dentry->d_name.name != dentry->d_iname || 3563 !hlist_unhashed(&dentry->d_u.d_alias) || 3564 !d_unlinked(dentry)); 3565 spin_lock(&dentry->d_parent->d_lock); 3566 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED); 3567 dentry->d_name.len = sprintf(dentry->d_iname, "#%llu", 3568 (unsigned long long)inode->i_ino); 3569 spin_unlock(&dentry->d_lock); 3570 spin_unlock(&dentry->d_parent->d_lock); 3571 d_instantiate(dentry, inode); 3572 } 3573 EXPORT_SYMBOL(d_tmpfile); 3574 3575 static __initdata unsigned long dhash_entries; 3576 static int __init set_dhash_entries(char *str) 3577 { 3578 if (!str) 3579 return 0; 3580 dhash_entries = simple_strtoul(str, &str, 0); 3581 return 1; 3582 } 3583 __setup("dhash_entries=", set_dhash_entries); 3584 3585 static void __init dcache_init_early(void) 3586 { 3587 unsigned int loop; 3588 3589 /* If hashes are distributed across NUMA nodes, defer 3590 * hash allocation until vmalloc space is available. 3591 */ 3592 if (hashdist) 3593 return; 3594 3595 dentry_hashtable = 3596 alloc_large_system_hash("Dentry cache", 3597 sizeof(struct hlist_bl_head), 3598 dhash_entries, 3599 13, 3600 HASH_EARLY, 3601 &d_hash_shift, 3602 &d_hash_mask, 3603 0, 3604 0); 3605 3606 for (loop = 0; loop < (1U << d_hash_shift); loop++) 3607 INIT_HLIST_BL_HEAD(dentry_hashtable + loop); 3608 } 3609 3610 static void __init dcache_init(void) 3611 { 3612 unsigned int loop; 3613 3614 /* 3615 * A constructor could be added for stable state like the lists, 3616 * but it is probably not worth it because of the cache nature 3617 * of the dcache. 3618 */ 3619 dentry_cache = KMEM_CACHE(dentry, 3620 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD|SLAB_ACCOUNT); 3621 3622 /* Hash may have been set up in dcache_init_early */ 3623 if (!hashdist) 3624 return; 3625 3626 dentry_hashtable = 3627 alloc_large_system_hash("Dentry cache", 3628 sizeof(struct hlist_bl_head), 3629 dhash_entries, 3630 13, 3631 0, 3632 &d_hash_shift, 3633 &d_hash_mask, 3634 0, 3635 0); 3636 3637 for (loop = 0; loop < (1U << d_hash_shift); loop++) 3638 INIT_HLIST_BL_HEAD(dentry_hashtable + loop); 3639 } 3640 3641 /* SLAB cache for __getname() consumers */ 3642 struct kmem_cache *names_cachep __read_mostly; 3643 EXPORT_SYMBOL(names_cachep); 3644 3645 EXPORT_SYMBOL(d_genocide); 3646 3647 void __init vfs_caches_init_early(void) 3648 { 3649 dcache_init_early(); 3650 inode_init_early(); 3651 } 3652 3653 void __init vfs_caches_init(void) 3654 { 3655 names_cachep = kmem_cache_create("names_cache", PATH_MAX, 0, 3656 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL); 3657 3658 dcache_init(); 3659 inode_init(); 3660 files_init(); 3661 files_maxfiles_init(); 3662 mnt_init(); 3663 bdev_cache_init(); 3664 chrdev_init(); 3665 } 3666