1 /* 2 * fs/dcache.c 3 * 4 * Complete reimplementation 5 * (C) 1997 Thomas Schoebel-Theuer, 6 * with heavy changes by Linus Torvalds 7 */ 8 9 /* 10 * Notes on the allocation strategy: 11 * 12 * The dcache is a master of the icache - whenever a dcache entry 13 * exists, the inode will always exist. "iput()" is done either when 14 * the dcache entry is deleted or garbage collected. 15 */ 16 17 #include <linux/ratelimit.h> 18 #include <linux/string.h> 19 #include <linux/mm.h> 20 #include <linux/fs.h> 21 #include <linux/fsnotify.h> 22 #include <linux/slab.h> 23 #include <linux/init.h> 24 #include <linux/hash.h> 25 #include <linux/cache.h> 26 #include <linux/export.h> 27 #include <linux/security.h> 28 #include <linux/seqlock.h> 29 #include <linux/memblock.h> 30 #include <linux/bit_spinlock.h> 31 #include <linux/rculist_bl.h> 32 #include <linux/list_lru.h> 33 #include "internal.h" 34 #include "mount.h" 35 36 /* 37 * Usage: 38 * dcache->d_inode->i_lock protects: 39 * - i_dentry, d_u.d_alias, d_inode of aliases 40 * dcache_hash_bucket lock protects: 41 * - the dcache hash table 42 * s_roots bl list spinlock protects: 43 * - the s_roots list (see __d_drop) 44 * dentry->d_sb->s_dentry_lru_lock protects: 45 * - the dcache lru lists and counters 46 * d_lock protects: 47 * - d_flags 48 * - d_name 49 * - d_lru 50 * - d_count 51 * - d_unhashed() 52 * - d_parent and d_subdirs 53 * - childrens' d_child and d_parent 54 * - d_u.d_alias, d_inode 55 * 56 * Ordering: 57 * dentry->d_inode->i_lock 58 * dentry->d_lock 59 * dentry->d_sb->s_dentry_lru_lock 60 * dcache_hash_bucket lock 61 * s_roots lock 62 * 63 * If there is an ancestor relationship: 64 * dentry->d_parent->...->d_parent->d_lock 65 * ... 66 * dentry->d_parent->d_lock 67 * dentry->d_lock 68 * 69 * If no ancestor relationship: 70 * arbitrary, since it's serialized on rename_lock 71 */ 72 int sysctl_vfs_cache_pressure __read_mostly = 100; 73 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure); 74 75 __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock); 76 77 EXPORT_SYMBOL(rename_lock); 78 79 static struct kmem_cache *dentry_cache __read_mostly; 80 81 const struct qstr empty_name = QSTR_INIT("", 0); 82 EXPORT_SYMBOL(empty_name); 83 const struct qstr slash_name = QSTR_INIT("/", 1); 84 EXPORT_SYMBOL(slash_name); 85 86 /* 87 * This is the single most critical data structure when it comes 88 * to the dcache: the hashtable for lookups. Somebody should try 89 * to make this good - I've just made it work. 90 * 91 * This hash-function tries to avoid losing too many bits of hash 92 * information, yet avoid using a prime hash-size or similar. 93 */ 94 95 static unsigned int d_hash_shift __read_mostly; 96 97 static struct hlist_bl_head *dentry_hashtable __read_mostly; 98 99 static inline struct hlist_bl_head *d_hash(unsigned int hash) 100 { 101 return dentry_hashtable + (hash >> d_hash_shift); 102 } 103 104 #define IN_LOOKUP_SHIFT 10 105 static struct hlist_bl_head in_lookup_hashtable[1 << IN_LOOKUP_SHIFT]; 106 107 static inline struct hlist_bl_head *in_lookup_hash(const struct dentry *parent, 108 unsigned int hash) 109 { 110 hash += (unsigned long) parent / L1_CACHE_BYTES; 111 return in_lookup_hashtable + hash_32(hash, IN_LOOKUP_SHIFT); 112 } 113 114 115 /* Statistics gathering. */ 116 struct dentry_stat_t dentry_stat = { 117 .age_limit = 45, 118 }; 119 120 static DEFINE_PER_CPU(long, nr_dentry); 121 static DEFINE_PER_CPU(long, nr_dentry_unused); 122 123 #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS) 124 125 /* 126 * Here we resort to our own counters instead of using generic per-cpu counters 127 * for consistency with what the vfs inode code does. We are expected to harvest 128 * better code and performance by having our own specialized counters. 129 * 130 * Please note that the loop is done over all possible CPUs, not over all online 131 * CPUs. The reason for this is that we don't want to play games with CPUs going 132 * on and off. If one of them goes off, we will just keep their counters. 133 * 134 * glommer: See cffbc8a for details, and if you ever intend to change this, 135 * please update all vfs counters to match. 136 */ 137 static long get_nr_dentry(void) 138 { 139 int i; 140 long sum = 0; 141 for_each_possible_cpu(i) 142 sum += per_cpu(nr_dentry, i); 143 return sum < 0 ? 0 : sum; 144 } 145 146 static long get_nr_dentry_unused(void) 147 { 148 int i; 149 long sum = 0; 150 for_each_possible_cpu(i) 151 sum += per_cpu(nr_dentry_unused, i); 152 return sum < 0 ? 0 : sum; 153 } 154 155 int proc_nr_dentry(struct ctl_table *table, int write, void __user *buffer, 156 size_t *lenp, loff_t *ppos) 157 { 158 dentry_stat.nr_dentry = get_nr_dentry(); 159 dentry_stat.nr_unused = get_nr_dentry_unused(); 160 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos); 161 } 162 #endif 163 164 /* 165 * Compare 2 name strings, return 0 if they match, otherwise non-zero. 166 * The strings are both count bytes long, and count is non-zero. 167 */ 168 #ifdef CONFIG_DCACHE_WORD_ACCESS 169 170 #include <asm/word-at-a-time.h> 171 /* 172 * NOTE! 'cs' and 'scount' come from a dentry, so it has a 173 * aligned allocation for this particular component. We don't 174 * strictly need the load_unaligned_zeropad() safety, but it 175 * doesn't hurt either. 176 * 177 * In contrast, 'ct' and 'tcount' can be from a pathname, and do 178 * need the careful unaligned handling. 179 */ 180 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount) 181 { 182 unsigned long a,b,mask; 183 184 for (;;) { 185 a = read_word_at_a_time(cs); 186 b = load_unaligned_zeropad(ct); 187 if (tcount < sizeof(unsigned long)) 188 break; 189 if (unlikely(a != b)) 190 return 1; 191 cs += sizeof(unsigned long); 192 ct += sizeof(unsigned long); 193 tcount -= sizeof(unsigned long); 194 if (!tcount) 195 return 0; 196 } 197 mask = bytemask_from_count(tcount); 198 return unlikely(!!((a ^ b) & mask)); 199 } 200 201 #else 202 203 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount) 204 { 205 do { 206 if (*cs != *ct) 207 return 1; 208 cs++; 209 ct++; 210 tcount--; 211 } while (tcount); 212 return 0; 213 } 214 215 #endif 216 217 static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount) 218 { 219 /* 220 * Be careful about RCU walk racing with rename: 221 * use 'READ_ONCE' to fetch the name pointer. 222 * 223 * NOTE! Even if a rename will mean that the length 224 * was not loaded atomically, we don't care. The 225 * RCU walk will check the sequence count eventually, 226 * and catch it. And we won't overrun the buffer, 227 * because we're reading the name pointer atomically, 228 * and a dentry name is guaranteed to be properly 229 * terminated with a NUL byte. 230 * 231 * End result: even if 'len' is wrong, we'll exit 232 * early because the data cannot match (there can 233 * be no NUL in the ct/tcount data) 234 */ 235 const unsigned char *cs = READ_ONCE(dentry->d_name.name); 236 237 return dentry_string_cmp(cs, ct, tcount); 238 } 239 240 struct external_name { 241 union { 242 atomic_t count; 243 struct rcu_head head; 244 } u; 245 unsigned char name[]; 246 }; 247 248 static inline struct external_name *external_name(struct dentry *dentry) 249 { 250 return container_of(dentry->d_name.name, struct external_name, name[0]); 251 } 252 253 static void __d_free(struct rcu_head *head) 254 { 255 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu); 256 257 kmem_cache_free(dentry_cache, dentry); 258 } 259 260 static void __d_free_external(struct rcu_head *head) 261 { 262 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu); 263 kfree(external_name(dentry)); 264 kmem_cache_free(dentry_cache, dentry); 265 } 266 267 static inline int dname_external(const struct dentry *dentry) 268 { 269 return dentry->d_name.name != dentry->d_iname; 270 } 271 272 void take_dentry_name_snapshot(struct name_snapshot *name, struct dentry *dentry) 273 { 274 spin_lock(&dentry->d_lock); 275 if (unlikely(dname_external(dentry))) { 276 struct external_name *p = external_name(dentry); 277 atomic_inc(&p->u.count); 278 spin_unlock(&dentry->d_lock); 279 name->name = p->name; 280 } else { 281 memcpy(name->inline_name, dentry->d_iname, 282 dentry->d_name.len + 1); 283 spin_unlock(&dentry->d_lock); 284 name->name = name->inline_name; 285 } 286 } 287 EXPORT_SYMBOL(take_dentry_name_snapshot); 288 289 void release_dentry_name_snapshot(struct name_snapshot *name) 290 { 291 if (unlikely(name->name != name->inline_name)) { 292 struct external_name *p; 293 p = container_of(name->name, struct external_name, name[0]); 294 if (unlikely(atomic_dec_and_test(&p->u.count))) 295 kfree_rcu(p, u.head); 296 } 297 } 298 EXPORT_SYMBOL(release_dentry_name_snapshot); 299 300 static inline void __d_set_inode_and_type(struct dentry *dentry, 301 struct inode *inode, 302 unsigned type_flags) 303 { 304 unsigned flags; 305 306 dentry->d_inode = inode; 307 flags = READ_ONCE(dentry->d_flags); 308 flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU); 309 flags |= type_flags; 310 WRITE_ONCE(dentry->d_flags, flags); 311 } 312 313 static inline void __d_clear_type_and_inode(struct dentry *dentry) 314 { 315 unsigned flags = READ_ONCE(dentry->d_flags); 316 317 flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU); 318 WRITE_ONCE(dentry->d_flags, flags); 319 dentry->d_inode = NULL; 320 } 321 322 static void dentry_free(struct dentry *dentry) 323 { 324 WARN_ON(!hlist_unhashed(&dentry->d_u.d_alias)); 325 if (unlikely(dname_external(dentry))) { 326 struct external_name *p = external_name(dentry); 327 if (likely(atomic_dec_and_test(&p->u.count))) { 328 call_rcu(&dentry->d_u.d_rcu, __d_free_external); 329 return; 330 } 331 } 332 /* if dentry was never visible to RCU, immediate free is OK */ 333 if (!(dentry->d_flags & DCACHE_RCUACCESS)) 334 __d_free(&dentry->d_u.d_rcu); 335 else 336 call_rcu(&dentry->d_u.d_rcu, __d_free); 337 } 338 339 /* 340 * Release the dentry's inode, using the filesystem 341 * d_iput() operation if defined. 342 */ 343 static void dentry_unlink_inode(struct dentry * dentry) 344 __releases(dentry->d_lock) 345 __releases(dentry->d_inode->i_lock) 346 { 347 struct inode *inode = dentry->d_inode; 348 349 raw_write_seqcount_begin(&dentry->d_seq); 350 __d_clear_type_and_inode(dentry); 351 hlist_del_init(&dentry->d_u.d_alias); 352 raw_write_seqcount_end(&dentry->d_seq); 353 spin_unlock(&dentry->d_lock); 354 spin_unlock(&inode->i_lock); 355 if (!inode->i_nlink) 356 fsnotify_inoderemove(inode); 357 if (dentry->d_op && dentry->d_op->d_iput) 358 dentry->d_op->d_iput(dentry, inode); 359 else 360 iput(inode); 361 } 362 363 /* 364 * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry 365 * is in use - which includes both the "real" per-superblock 366 * LRU list _and_ the DCACHE_SHRINK_LIST use. 367 * 368 * The DCACHE_SHRINK_LIST bit is set whenever the dentry is 369 * on the shrink list (ie not on the superblock LRU list). 370 * 371 * The per-cpu "nr_dentry_unused" counters are updated with 372 * the DCACHE_LRU_LIST bit. 373 * 374 * These helper functions make sure we always follow the 375 * rules. d_lock must be held by the caller. 376 */ 377 #define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x)) 378 static void d_lru_add(struct dentry *dentry) 379 { 380 D_FLAG_VERIFY(dentry, 0); 381 dentry->d_flags |= DCACHE_LRU_LIST; 382 this_cpu_inc(nr_dentry_unused); 383 WARN_ON_ONCE(!list_lru_add(&dentry->d_sb->s_dentry_lru, &dentry->d_lru)); 384 } 385 386 static void d_lru_del(struct dentry *dentry) 387 { 388 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST); 389 dentry->d_flags &= ~DCACHE_LRU_LIST; 390 this_cpu_dec(nr_dentry_unused); 391 WARN_ON_ONCE(!list_lru_del(&dentry->d_sb->s_dentry_lru, &dentry->d_lru)); 392 } 393 394 static void d_shrink_del(struct dentry *dentry) 395 { 396 D_FLAG_VERIFY(dentry, DCACHE_SHRINK_LIST | DCACHE_LRU_LIST); 397 list_del_init(&dentry->d_lru); 398 dentry->d_flags &= ~(DCACHE_SHRINK_LIST | DCACHE_LRU_LIST); 399 this_cpu_dec(nr_dentry_unused); 400 } 401 402 static void d_shrink_add(struct dentry *dentry, struct list_head *list) 403 { 404 D_FLAG_VERIFY(dentry, 0); 405 list_add(&dentry->d_lru, list); 406 dentry->d_flags |= DCACHE_SHRINK_LIST | DCACHE_LRU_LIST; 407 this_cpu_inc(nr_dentry_unused); 408 } 409 410 /* 411 * These can only be called under the global LRU lock, ie during the 412 * callback for freeing the LRU list. "isolate" removes it from the 413 * LRU lists entirely, while shrink_move moves it to the indicated 414 * private list. 415 */ 416 static void d_lru_isolate(struct list_lru_one *lru, struct dentry *dentry) 417 { 418 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST); 419 dentry->d_flags &= ~DCACHE_LRU_LIST; 420 this_cpu_dec(nr_dentry_unused); 421 list_lru_isolate(lru, &dentry->d_lru); 422 } 423 424 static void d_lru_shrink_move(struct list_lru_one *lru, struct dentry *dentry, 425 struct list_head *list) 426 { 427 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST); 428 dentry->d_flags |= DCACHE_SHRINK_LIST; 429 list_lru_isolate_move(lru, &dentry->d_lru, list); 430 } 431 432 /** 433 * d_drop - drop a dentry 434 * @dentry: dentry to drop 435 * 436 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't 437 * be found through a VFS lookup any more. Note that this is different from 438 * deleting the dentry - d_delete will try to mark the dentry negative if 439 * possible, giving a successful _negative_ lookup, while d_drop will 440 * just make the cache lookup fail. 441 * 442 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some 443 * reason (NFS timeouts or autofs deletes). 444 * 445 * __d_drop requires dentry->d_lock 446 * ___d_drop doesn't mark dentry as "unhashed" 447 * (dentry->d_hash.pprev will be LIST_POISON2, not NULL). 448 */ 449 static void ___d_drop(struct dentry *dentry) 450 { 451 struct hlist_bl_head *b; 452 /* 453 * Hashed dentries are normally on the dentry hashtable, 454 * with the exception of those newly allocated by 455 * d_obtain_root, which are always IS_ROOT: 456 */ 457 if (unlikely(IS_ROOT(dentry))) 458 b = &dentry->d_sb->s_roots; 459 else 460 b = d_hash(dentry->d_name.hash); 461 462 hlist_bl_lock(b); 463 __hlist_bl_del(&dentry->d_hash); 464 hlist_bl_unlock(b); 465 } 466 467 void __d_drop(struct dentry *dentry) 468 { 469 if (!d_unhashed(dentry)) { 470 ___d_drop(dentry); 471 dentry->d_hash.pprev = NULL; 472 write_seqcount_invalidate(&dentry->d_seq); 473 } 474 } 475 EXPORT_SYMBOL(__d_drop); 476 477 void d_drop(struct dentry *dentry) 478 { 479 spin_lock(&dentry->d_lock); 480 __d_drop(dentry); 481 spin_unlock(&dentry->d_lock); 482 } 483 EXPORT_SYMBOL(d_drop); 484 485 static inline void dentry_unlist(struct dentry *dentry, struct dentry *parent) 486 { 487 struct dentry *next; 488 /* 489 * Inform d_walk() and shrink_dentry_list() that we are no longer 490 * attached to the dentry tree 491 */ 492 dentry->d_flags |= DCACHE_DENTRY_KILLED; 493 if (unlikely(list_empty(&dentry->d_child))) 494 return; 495 __list_del_entry(&dentry->d_child); 496 /* 497 * Cursors can move around the list of children. While we'd been 498 * a normal list member, it didn't matter - ->d_child.next would've 499 * been updated. However, from now on it won't be and for the 500 * things like d_walk() it might end up with a nasty surprise. 501 * Normally d_walk() doesn't care about cursors moving around - 502 * ->d_lock on parent prevents that and since a cursor has no children 503 * of its own, we get through it without ever unlocking the parent. 504 * There is one exception, though - if we ascend from a child that 505 * gets killed as soon as we unlock it, the next sibling is found 506 * using the value left in its ->d_child.next. And if _that_ 507 * pointed to a cursor, and cursor got moved (e.g. by lseek()) 508 * before d_walk() regains parent->d_lock, we'll end up skipping 509 * everything the cursor had been moved past. 510 * 511 * Solution: make sure that the pointer left behind in ->d_child.next 512 * points to something that won't be moving around. I.e. skip the 513 * cursors. 514 */ 515 while (dentry->d_child.next != &parent->d_subdirs) { 516 next = list_entry(dentry->d_child.next, struct dentry, d_child); 517 if (likely(!(next->d_flags & DCACHE_DENTRY_CURSOR))) 518 break; 519 dentry->d_child.next = next->d_child.next; 520 } 521 } 522 523 static void __dentry_kill(struct dentry *dentry) 524 { 525 struct dentry *parent = NULL; 526 bool can_free = true; 527 if (!IS_ROOT(dentry)) 528 parent = dentry->d_parent; 529 530 /* 531 * The dentry is now unrecoverably dead to the world. 532 */ 533 lockref_mark_dead(&dentry->d_lockref); 534 535 /* 536 * inform the fs via d_prune that this dentry is about to be 537 * unhashed and destroyed. 538 */ 539 if (dentry->d_flags & DCACHE_OP_PRUNE) 540 dentry->d_op->d_prune(dentry); 541 542 if (dentry->d_flags & DCACHE_LRU_LIST) { 543 if (!(dentry->d_flags & DCACHE_SHRINK_LIST)) 544 d_lru_del(dentry); 545 } 546 /* if it was on the hash then remove it */ 547 __d_drop(dentry); 548 dentry_unlist(dentry, parent); 549 if (parent) 550 spin_unlock(&parent->d_lock); 551 if (dentry->d_inode) 552 dentry_unlink_inode(dentry); 553 else 554 spin_unlock(&dentry->d_lock); 555 this_cpu_dec(nr_dentry); 556 if (dentry->d_op && dentry->d_op->d_release) 557 dentry->d_op->d_release(dentry); 558 559 spin_lock(&dentry->d_lock); 560 if (dentry->d_flags & DCACHE_SHRINK_LIST) { 561 dentry->d_flags |= DCACHE_MAY_FREE; 562 can_free = false; 563 } 564 spin_unlock(&dentry->d_lock); 565 if (likely(can_free)) 566 dentry_free(dentry); 567 cond_resched(); 568 } 569 570 static struct dentry *__lock_parent(struct dentry *dentry) 571 { 572 struct dentry *parent; 573 rcu_read_lock(); 574 spin_unlock(&dentry->d_lock); 575 again: 576 parent = READ_ONCE(dentry->d_parent); 577 spin_lock(&parent->d_lock); 578 /* 579 * We can't blindly lock dentry until we are sure 580 * that we won't violate the locking order. 581 * Any changes of dentry->d_parent must have 582 * been done with parent->d_lock held, so 583 * spin_lock() above is enough of a barrier 584 * for checking if it's still our child. 585 */ 586 if (unlikely(parent != dentry->d_parent)) { 587 spin_unlock(&parent->d_lock); 588 goto again; 589 } 590 rcu_read_unlock(); 591 if (parent != dentry) 592 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED); 593 else 594 parent = NULL; 595 return parent; 596 } 597 598 static inline struct dentry *lock_parent(struct dentry *dentry) 599 { 600 struct dentry *parent = dentry->d_parent; 601 if (IS_ROOT(dentry)) 602 return NULL; 603 if (likely(spin_trylock(&parent->d_lock))) 604 return parent; 605 return __lock_parent(dentry); 606 } 607 608 static inline bool retain_dentry(struct dentry *dentry) 609 { 610 WARN_ON(d_in_lookup(dentry)); 611 612 /* Unreachable? Get rid of it */ 613 if (unlikely(d_unhashed(dentry))) 614 return false; 615 616 if (unlikely(dentry->d_flags & DCACHE_DISCONNECTED)) 617 return false; 618 619 if (unlikely(dentry->d_flags & DCACHE_OP_DELETE)) { 620 if (dentry->d_op->d_delete(dentry)) 621 return false; 622 } 623 /* retain; LRU fodder */ 624 dentry->d_lockref.count--; 625 if (unlikely(!(dentry->d_flags & DCACHE_LRU_LIST))) 626 d_lru_add(dentry); 627 else if (unlikely(!(dentry->d_flags & DCACHE_REFERENCED))) 628 dentry->d_flags |= DCACHE_REFERENCED; 629 return true; 630 } 631 632 /* 633 * Finish off a dentry we've decided to kill. 634 * dentry->d_lock must be held, returns with it unlocked. 635 * Returns dentry requiring refcount drop, or NULL if we're done. 636 */ 637 static struct dentry *dentry_kill(struct dentry *dentry) 638 __releases(dentry->d_lock) 639 { 640 struct inode *inode = dentry->d_inode; 641 struct dentry *parent = NULL; 642 643 if (inode && unlikely(!spin_trylock(&inode->i_lock))) 644 goto slow_positive; 645 646 if (!IS_ROOT(dentry)) { 647 parent = dentry->d_parent; 648 if (unlikely(!spin_trylock(&parent->d_lock))) { 649 parent = __lock_parent(dentry); 650 if (likely(inode || !dentry->d_inode)) 651 goto got_locks; 652 /* negative that became positive */ 653 if (parent) 654 spin_unlock(&parent->d_lock); 655 inode = dentry->d_inode; 656 goto slow_positive; 657 } 658 } 659 __dentry_kill(dentry); 660 return parent; 661 662 slow_positive: 663 spin_unlock(&dentry->d_lock); 664 spin_lock(&inode->i_lock); 665 spin_lock(&dentry->d_lock); 666 parent = lock_parent(dentry); 667 got_locks: 668 if (unlikely(dentry->d_lockref.count != 1)) { 669 dentry->d_lockref.count--; 670 } else if (likely(!retain_dentry(dentry))) { 671 __dentry_kill(dentry); 672 return parent; 673 } 674 /* we are keeping it, after all */ 675 if (inode) 676 spin_unlock(&inode->i_lock); 677 if (parent) 678 spin_unlock(&parent->d_lock); 679 spin_unlock(&dentry->d_lock); 680 return NULL; 681 } 682 683 /* 684 * Try to do a lockless dput(), and return whether that was successful. 685 * 686 * If unsuccessful, we return false, having already taken the dentry lock. 687 * 688 * The caller needs to hold the RCU read lock, so that the dentry is 689 * guaranteed to stay around even if the refcount goes down to zero! 690 */ 691 static inline bool fast_dput(struct dentry *dentry) 692 { 693 int ret; 694 unsigned int d_flags; 695 696 /* 697 * If we have a d_op->d_delete() operation, we sould not 698 * let the dentry count go to zero, so use "put_or_lock". 699 */ 700 if (unlikely(dentry->d_flags & DCACHE_OP_DELETE)) 701 return lockref_put_or_lock(&dentry->d_lockref); 702 703 /* 704 * .. otherwise, we can try to just decrement the 705 * lockref optimistically. 706 */ 707 ret = lockref_put_return(&dentry->d_lockref); 708 709 /* 710 * If the lockref_put_return() failed due to the lock being held 711 * by somebody else, the fast path has failed. We will need to 712 * get the lock, and then check the count again. 713 */ 714 if (unlikely(ret < 0)) { 715 spin_lock(&dentry->d_lock); 716 if (dentry->d_lockref.count > 1) { 717 dentry->d_lockref.count--; 718 spin_unlock(&dentry->d_lock); 719 return true; 720 } 721 return false; 722 } 723 724 /* 725 * If we weren't the last ref, we're done. 726 */ 727 if (ret) 728 return true; 729 730 /* 731 * Careful, careful. The reference count went down 732 * to zero, but we don't hold the dentry lock, so 733 * somebody else could get it again, and do another 734 * dput(), and we need to not race with that. 735 * 736 * However, there is a very special and common case 737 * where we don't care, because there is nothing to 738 * do: the dentry is still hashed, it does not have 739 * a 'delete' op, and it's referenced and already on 740 * the LRU list. 741 * 742 * NOTE! Since we aren't locked, these values are 743 * not "stable". However, it is sufficient that at 744 * some point after we dropped the reference the 745 * dentry was hashed and the flags had the proper 746 * value. Other dentry users may have re-gotten 747 * a reference to the dentry and change that, but 748 * our work is done - we can leave the dentry 749 * around with a zero refcount. 750 */ 751 smp_rmb(); 752 d_flags = READ_ONCE(dentry->d_flags); 753 d_flags &= DCACHE_REFERENCED | DCACHE_LRU_LIST | DCACHE_DISCONNECTED; 754 755 /* Nothing to do? Dropping the reference was all we needed? */ 756 if (d_flags == (DCACHE_REFERENCED | DCACHE_LRU_LIST) && !d_unhashed(dentry)) 757 return true; 758 759 /* 760 * Not the fast normal case? Get the lock. We've already decremented 761 * the refcount, but we'll need to re-check the situation after 762 * getting the lock. 763 */ 764 spin_lock(&dentry->d_lock); 765 766 /* 767 * Did somebody else grab a reference to it in the meantime, and 768 * we're no longer the last user after all? Alternatively, somebody 769 * else could have killed it and marked it dead. Either way, we 770 * don't need to do anything else. 771 */ 772 if (dentry->d_lockref.count) { 773 spin_unlock(&dentry->d_lock); 774 return true; 775 } 776 777 /* 778 * Re-get the reference we optimistically dropped. We hold the 779 * lock, and we just tested that it was zero, so we can just 780 * set it to 1. 781 */ 782 dentry->d_lockref.count = 1; 783 return false; 784 } 785 786 787 /* 788 * This is dput 789 * 790 * This is complicated by the fact that we do not want to put 791 * dentries that are no longer on any hash chain on the unused 792 * list: we'd much rather just get rid of them immediately. 793 * 794 * However, that implies that we have to traverse the dentry 795 * tree upwards to the parents which might _also_ now be 796 * scheduled for deletion (it may have been only waiting for 797 * its last child to go away). 798 * 799 * This tail recursion is done by hand as we don't want to depend 800 * on the compiler to always get this right (gcc generally doesn't). 801 * Real recursion would eat up our stack space. 802 */ 803 804 /* 805 * dput - release a dentry 806 * @dentry: dentry to release 807 * 808 * Release a dentry. This will drop the usage count and if appropriate 809 * call the dentry unlink method as well as removing it from the queues and 810 * releasing its resources. If the parent dentries were scheduled for release 811 * they too may now get deleted. 812 */ 813 void dput(struct dentry *dentry) 814 { 815 while (dentry) { 816 might_sleep(); 817 818 rcu_read_lock(); 819 if (likely(fast_dput(dentry))) { 820 rcu_read_unlock(); 821 return; 822 } 823 824 /* Slow case: now with the dentry lock held */ 825 rcu_read_unlock(); 826 827 if (likely(retain_dentry(dentry))) { 828 spin_unlock(&dentry->d_lock); 829 return; 830 } 831 832 dentry = dentry_kill(dentry); 833 } 834 } 835 EXPORT_SYMBOL(dput); 836 837 838 /* This must be called with d_lock held */ 839 static inline void __dget_dlock(struct dentry *dentry) 840 { 841 dentry->d_lockref.count++; 842 } 843 844 static inline void __dget(struct dentry *dentry) 845 { 846 lockref_get(&dentry->d_lockref); 847 } 848 849 struct dentry *dget_parent(struct dentry *dentry) 850 { 851 int gotref; 852 struct dentry *ret; 853 854 /* 855 * Do optimistic parent lookup without any 856 * locking. 857 */ 858 rcu_read_lock(); 859 ret = READ_ONCE(dentry->d_parent); 860 gotref = lockref_get_not_zero(&ret->d_lockref); 861 rcu_read_unlock(); 862 if (likely(gotref)) { 863 if (likely(ret == READ_ONCE(dentry->d_parent))) 864 return ret; 865 dput(ret); 866 } 867 868 repeat: 869 /* 870 * Don't need rcu_dereference because we re-check it was correct under 871 * the lock. 872 */ 873 rcu_read_lock(); 874 ret = dentry->d_parent; 875 spin_lock(&ret->d_lock); 876 if (unlikely(ret != dentry->d_parent)) { 877 spin_unlock(&ret->d_lock); 878 rcu_read_unlock(); 879 goto repeat; 880 } 881 rcu_read_unlock(); 882 BUG_ON(!ret->d_lockref.count); 883 ret->d_lockref.count++; 884 spin_unlock(&ret->d_lock); 885 return ret; 886 } 887 EXPORT_SYMBOL(dget_parent); 888 889 static struct dentry * __d_find_any_alias(struct inode *inode) 890 { 891 struct dentry *alias; 892 893 if (hlist_empty(&inode->i_dentry)) 894 return NULL; 895 alias = hlist_entry(inode->i_dentry.first, struct dentry, d_u.d_alias); 896 __dget(alias); 897 return alias; 898 } 899 900 /** 901 * d_find_any_alias - find any alias for a given inode 902 * @inode: inode to find an alias for 903 * 904 * If any aliases exist for the given inode, take and return a 905 * reference for one of them. If no aliases exist, return %NULL. 906 */ 907 struct dentry *d_find_any_alias(struct inode *inode) 908 { 909 struct dentry *de; 910 911 spin_lock(&inode->i_lock); 912 de = __d_find_any_alias(inode); 913 spin_unlock(&inode->i_lock); 914 return de; 915 } 916 EXPORT_SYMBOL(d_find_any_alias); 917 918 /** 919 * d_find_alias - grab a hashed alias of inode 920 * @inode: inode in question 921 * 922 * If inode has a hashed alias, or is a directory and has any alias, 923 * acquire the reference to alias and return it. Otherwise return NULL. 924 * Notice that if inode is a directory there can be only one alias and 925 * it can be unhashed only if it has no children, or if it is the root 926 * of a filesystem, or if the directory was renamed and d_revalidate 927 * was the first vfs operation to notice. 928 * 929 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer 930 * any other hashed alias over that one. 931 */ 932 static struct dentry *__d_find_alias(struct inode *inode) 933 { 934 struct dentry *alias; 935 936 if (S_ISDIR(inode->i_mode)) 937 return __d_find_any_alias(inode); 938 939 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) { 940 spin_lock(&alias->d_lock); 941 if (!d_unhashed(alias)) { 942 __dget_dlock(alias); 943 spin_unlock(&alias->d_lock); 944 return alias; 945 } 946 spin_unlock(&alias->d_lock); 947 } 948 return NULL; 949 } 950 951 struct dentry *d_find_alias(struct inode *inode) 952 { 953 struct dentry *de = NULL; 954 955 if (!hlist_empty(&inode->i_dentry)) { 956 spin_lock(&inode->i_lock); 957 de = __d_find_alias(inode); 958 spin_unlock(&inode->i_lock); 959 } 960 return de; 961 } 962 EXPORT_SYMBOL(d_find_alias); 963 964 /* 965 * Try to kill dentries associated with this inode. 966 * WARNING: you must own a reference to inode. 967 */ 968 void d_prune_aliases(struct inode *inode) 969 { 970 struct dentry *dentry; 971 restart: 972 spin_lock(&inode->i_lock); 973 hlist_for_each_entry(dentry, &inode->i_dentry, d_u.d_alias) { 974 spin_lock(&dentry->d_lock); 975 if (!dentry->d_lockref.count) { 976 struct dentry *parent = lock_parent(dentry); 977 if (likely(!dentry->d_lockref.count)) { 978 __dentry_kill(dentry); 979 dput(parent); 980 goto restart; 981 } 982 if (parent) 983 spin_unlock(&parent->d_lock); 984 } 985 spin_unlock(&dentry->d_lock); 986 } 987 spin_unlock(&inode->i_lock); 988 } 989 EXPORT_SYMBOL(d_prune_aliases); 990 991 /* 992 * Lock a dentry from shrink list. 993 * Called under rcu_read_lock() and dentry->d_lock; the former 994 * guarantees that nothing we access will be freed under us. 995 * Note that dentry is *not* protected from concurrent dentry_kill(), 996 * d_delete(), etc. 997 * 998 * Return false if dentry has been disrupted or grabbed, leaving 999 * the caller to kick it off-list. Otherwise, return true and have 1000 * that dentry's inode and parent both locked. 1001 */ 1002 static bool shrink_lock_dentry(struct dentry *dentry) 1003 { 1004 struct inode *inode; 1005 struct dentry *parent; 1006 1007 if (dentry->d_lockref.count) 1008 return false; 1009 1010 inode = dentry->d_inode; 1011 if (inode && unlikely(!spin_trylock(&inode->i_lock))) { 1012 spin_unlock(&dentry->d_lock); 1013 spin_lock(&inode->i_lock); 1014 spin_lock(&dentry->d_lock); 1015 if (unlikely(dentry->d_lockref.count)) 1016 goto out; 1017 /* changed inode means that somebody had grabbed it */ 1018 if (unlikely(inode != dentry->d_inode)) 1019 goto out; 1020 } 1021 1022 parent = dentry->d_parent; 1023 if (IS_ROOT(dentry) || likely(spin_trylock(&parent->d_lock))) 1024 return true; 1025 1026 spin_unlock(&dentry->d_lock); 1027 spin_lock(&parent->d_lock); 1028 if (unlikely(parent != dentry->d_parent)) { 1029 spin_unlock(&parent->d_lock); 1030 spin_lock(&dentry->d_lock); 1031 goto out; 1032 } 1033 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED); 1034 if (likely(!dentry->d_lockref.count)) 1035 return true; 1036 spin_unlock(&parent->d_lock); 1037 out: 1038 if (inode) 1039 spin_unlock(&inode->i_lock); 1040 return false; 1041 } 1042 1043 static void shrink_dentry_list(struct list_head *list) 1044 { 1045 while (!list_empty(list)) { 1046 struct dentry *dentry, *parent; 1047 1048 dentry = list_entry(list->prev, struct dentry, d_lru); 1049 spin_lock(&dentry->d_lock); 1050 rcu_read_lock(); 1051 if (!shrink_lock_dentry(dentry)) { 1052 bool can_free = false; 1053 rcu_read_unlock(); 1054 d_shrink_del(dentry); 1055 if (dentry->d_lockref.count < 0) 1056 can_free = dentry->d_flags & DCACHE_MAY_FREE; 1057 spin_unlock(&dentry->d_lock); 1058 if (can_free) 1059 dentry_free(dentry); 1060 continue; 1061 } 1062 rcu_read_unlock(); 1063 d_shrink_del(dentry); 1064 parent = dentry->d_parent; 1065 __dentry_kill(dentry); 1066 if (parent == dentry) 1067 continue; 1068 /* 1069 * We need to prune ancestors too. This is necessary to prevent 1070 * quadratic behavior of shrink_dcache_parent(), but is also 1071 * expected to be beneficial in reducing dentry cache 1072 * fragmentation. 1073 */ 1074 dentry = parent; 1075 while (dentry && !lockref_put_or_lock(&dentry->d_lockref)) 1076 dentry = dentry_kill(dentry); 1077 } 1078 } 1079 1080 static enum lru_status dentry_lru_isolate(struct list_head *item, 1081 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg) 1082 { 1083 struct list_head *freeable = arg; 1084 struct dentry *dentry = container_of(item, struct dentry, d_lru); 1085 1086 1087 /* 1088 * we are inverting the lru lock/dentry->d_lock here, 1089 * so use a trylock. If we fail to get the lock, just skip 1090 * it 1091 */ 1092 if (!spin_trylock(&dentry->d_lock)) 1093 return LRU_SKIP; 1094 1095 /* 1096 * Referenced dentries are still in use. If they have active 1097 * counts, just remove them from the LRU. Otherwise give them 1098 * another pass through the LRU. 1099 */ 1100 if (dentry->d_lockref.count) { 1101 d_lru_isolate(lru, dentry); 1102 spin_unlock(&dentry->d_lock); 1103 return LRU_REMOVED; 1104 } 1105 1106 if (dentry->d_flags & DCACHE_REFERENCED) { 1107 dentry->d_flags &= ~DCACHE_REFERENCED; 1108 spin_unlock(&dentry->d_lock); 1109 1110 /* 1111 * The list move itself will be made by the common LRU code. At 1112 * this point, we've dropped the dentry->d_lock but keep the 1113 * lru lock. This is safe to do, since every list movement is 1114 * protected by the lru lock even if both locks are held. 1115 * 1116 * This is guaranteed by the fact that all LRU management 1117 * functions are intermediated by the LRU API calls like 1118 * list_lru_add and list_lru_del. List movement in this file 1119 * only ever occur through this functions or through callbacks 1120 * like this one, that are called from the LRU API. 1121 * 1122 * The only exceptions to this are functions like 1123 * shrink_dentry_list, and code that first checks for the 1124 * DCACHE_SHRINK_LIST flag. Those are guaranteed to be 1125 * operating only with stack provided lists after they are 1126 * properly isolated from the main list. It is thus, always a 1127 * local access. 1128 */ 1129 return LRU_ROTATE; 1130 } 1131 1132 d_lru_shrink_move(lru, dentry, freeable); 1133 spin_unlock(&dentry->d_lock); 1134 1135 return LRU_REMOVED; 1136 } 1137 1138 /** 1139 * prune_dcache_sb - shrink the dcache 1140 * @sb: superblock 1141 * @sc: shrink control, passed to list_lru_shrink_walk() 1142 * 1143 * Attempt to shrink the superblock dcache LRU by @sc->nr_to_scan entries. This 1144 * is done when we need more memory and called from the superblock shrinker 1145 * function. 1146 * 1147 * This function may fail to free any resources if all the dentries are in 1148 * use. 1149 */ 1150 long prune_dcache_sb(struct super_block *sb, struct shrink_control *sc) 1151 { 1152 LIST_HEAD(dispose); 1153 long freed; 1154 1155 freed = list_lru_shrink_walk(&sb->s_dentry_lru, sc, 1156 dentry_lru_isolate, &dispose); 1157 shrink_dentry_list(&dispose); 1158 return freed; 1159 } 1160 1161 static enum lru_status dentry_lru_isolate_shrink(struct list_head *item, 1162 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg) 1163 { 1164 struct list_head *freeable = arg; 1165 struct dentry *dentry = container_of(item, struct dentry, d_lru); 1166 1167 /* 1168 * we are inverting the lru lock/dentry->d_lock here, 1169 * so use a trylock. If we fail to get the lock, just skip 1170 * it 1171 */ 1172 if (!spin_trylock(&dentry->d_lock)) 1173 return LRU_SKIP; 1174 1175 d_lru_shrink_move(lru, dentry, freeable); 1176 spin_unlock(&dentry->d_lock); 1177 1178 return LRU_REMOVED; 1179 } 1180 1181 1182 /** 1183 * shrink_dcache_sb - shrink dcache for a superblock 1184 * @sb: superblock 1185 * 1186 * Shrink the dcache for the specified super block. This is used to free 1187 * the dcache before unmounting a file system. 1188 */ 1189 void shrink_dcache_sb(struct super_block *sb) 1190 { 1191 long freed; 1192 1193 do { 1194 LIST_HEAD(dispose); 1195 1196 freed = list_lru_walk(&sb->s_dentry_lru, 1197 dentry_lru_isolate_shrink, &dispose, 1024); 1198 1199 this_cpu_sub(nr_dentry_unused, freed); 1200 shrink_dentry_list(&dispose); 1201 } while (list_lru_count(&sb->s_dentry_lru) > 0); 1202 } 1203 EXPORT_SYMBOL(shrink_dcache_sb); 1204 1205 /** 1206 * enum d_walk_ret - action to talke during tree walk 1207 * @D_WALK_CONTINUE: contrinue walk 1208 * @D_WALK_QUIT: quit walk 1209 * @D_WALK_NORETRY: quit when retry is needed 1210 * @D_WALK_SKIP: skip this dentry and its children 1211 */ 1212 enum d_walk_ret { 1213 D_WALK_CONTINUE, 1214 D_WALK_QUIT, 1215 D_WALK_NORETRY, 1216 D_WALK_SKIP, 1217 }; 1218 1219 /** 1220 * d_walk - walk the dentry tree 1221 * @parent: start of walk 1222 * @data: data passed to @enter() and @finish() 1223 * @enter: callback when first entering the dentry 1224 * 1225 * The @enter() callbacks are called with d_lock held. 1226 */ 1227 static void d_walk(struct dentry *parent, void *data, 1228 enum d_walk_ret (*enter)(void *, struct dentry *)) 1229 { 1230 struct dentry *this_parent; 1231 struct list_head *next; 1232 unsigned seq = 0; 1233 enum d_walk_ret ret; 1234 bool retry = true; 1235 1236 again: 1237 read_seqbegin_or_lock(&rename_lock, &seq); 1238 this_parent = parent; 1239 spin_lock(&this_parent->d_lock); 1240 1241 ret = enter(data, this_parent); 1242 switch (ret) { 1243 case D_WALK_CONTINUE: 1244 break; 1245 case D_WALK_QUIT: 1246 case D_WALK_SKIP: 1247 goto out_unlock; 1248 case D_WALK_NORETRY: 1249 retry = false; 1250 break; 1251 } 1252 repeat: 1253 next = this_parent->d_subdirs.next; 1254 resume: 1255 while (next != &this_parent->d_subdirs) { 1256 struct list_head *tmp = next; 1257 struct dentry *dentry = list_entry(tmp, struct dentry, d_child); 1258 next = tmp->next; 1259 1260 if (unlikely(dentry->d_flags & DCACHE_DENTRY_CURSOR)) 1261 continue; 1262 1263 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED); 1264 1265 ret = enter(data, dentry); 1266 switch (ret) { 1267 case D_WALK_CONTINUE: 1268 break; 1269 case D_WALK_QUIT: 1270 spin_unlock(&dentry->d_lock); 1271 goto out_unlock; 1272 case D_WALK_NORETRY: 1273 retry = false; 1274 break; 1275 case D_WALK_SKIP: 1276 spin_unlock(&dentry->d_lock); 1277 continue; 1278 } 1279 1280 if (!list_empty(&dentry->d_subdirs)) { 1281 spin_unlock(&this_parent->d_lock); 1282 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_); 1283 this_parent = dentry; 1284 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_); 1285 goto repeat; 1286 } 1287 spin_unlock(&dentry->d_lock); 1288 } 1289 /* 1290 * All done at this level ... ascend and resume the search. 1291 */ 1292 rcu_read_lock(); 1293 ascend: 1294 if (this_parent != parent) { 1295 struct dentry *child = this_parent; 1296 this_parent = child->d_parent; 1297 1298 spin_unlock(&child->d_lock); 1299 spin_lock(&this_parent->d_lock); 1300 1301 /* might go back up the wrong parent if we have had a rename. */ 1302 if (need_seqretry(&rename_lock, seq)) 1303 goto rename_retry; 1304 /* go into the first sibling still alive */ 1305 do { 1306 next = child->d_child.next; 1307 if (next == &this_parent->d_subdirs) 1308 goto ascend; 1309 child = list_entry(next, struct dentry, d_child); 1310 } while (unlikely(child->d_flags & DCACHE_DENTRY_KILLED)); 1311 rcu_read_unlock(); 1312 goto resume; 1313 } 1314 if (need_seqretry(&rename_lock, seq)) 1315 goto rename_retry; 1316 rcu_read_unlock(); 1317 1318 out_unlock: 1319 spin_unlock(&this_parent->d_lock); 1320 done_seqretry(&rename_lock, seq); 1321 return; 1322 1323 rename_retry: 1324 spin_unlock(&this_parent->d_lock); 1325 rcu_read_unlock(); 1326 BUG_ON(seq & 1); 1327 if (!retry) 1328 return; 1329 seq = 1; 1330 goto again; 1331 } 1332 1333 struct check_mount { 1334 struct vfsmount *mnt; 1335 unsigned int mounted; 1336 }; 1337 1338 static enum d_walk_ret path_check_mount(void *data, struct dentry *dentry) 1339 { 1340 struct check_mount *info = data; 1341 struct path path = { .mnt = info->mnt, .dentry = dentry }; 1342 1343 if (likely(!d_mountpoint(dentry))) 1344 return D_WALK_CONTINUE; 1345 if (__path_is_mountpoint(&path)) { 1346 info->mounted = 1; 1347 return D_WALK_QUIT; 1348 } 1349 return D_WALK_CONTINUE; 1350 } 1351 1352 /** 1353 * path_has_submounts - check for mounts over a dentry in the 1354 * current namespace. 1355 * @parent: path to check. 1356 * 1357 * Return true if the parent or its subdirectories contain 1358 * a mount point in the current namespace. 1359 */ 1360 int path_has_submounts(const struct path *parent) 1361 { 1362 struct check_mount data = { .mnt = parent->mnt, .mounted = 0 }; 1363 1364 read_seqlock_excl(&mount_lock); 1365 d_walk(parent->dentry, &data, path_check_mount); 1366 read_sequnlock_excl(&mount_lock); 1367 1368 return data.mounted; 1369 } 1370 EXPORT_SYMBOL(path_has_submounts); 1371 1372 /* 1373 * Called by mount code to set a mountpoint and check if the mountpoint is 1374 * reachable (e.g. NFS can unhash a directory dentry and then the complete 1375 * subtree can become unreachable). 1376 * 1377 * Only one of d_invalidate() and d_set_mounted() must succeed. For 1378 * this reason take rename_lock and d_lock on dentry and ancestors. 1379 */ 1380 int d_set_mounted(struct dentry *dentry) 1381 { 1382 struct dentry *p; 1383 int ret = -ENOENT; 1384 write_seqlock(&rename_lock); 1385 for (p = dentry->d_parent; !IS_ROOT(p); p = p->d_parent) { 1386 /* Need exclusion wrt. d_invalidate() */ 1387 spin_lock(&p->d_lock); 1388 if (unlikely(d_unhashed(p))) { 1389 spin_unlock(&p->d_lock); 1390 goto out; 1391 } 1392 spin_unlock(&p->d_lock); 1393 } 1394 spin_lock(&dentry->d_lock); 1395 if (!d_unlinked(dentry)) { 1396 ret = -EBUSY; 1397 if (!d_mountpoint(dentry)) { 1398 dentry->d_flags |= DCACHE_MOUNTED; 1399 ret = 0; 1400 } 1401 } 1402 spin_unlock(&dentry->d_lock); 1403 out: 1404 write_sequnlock(&rename_lock); 1405 return ret; 1406 } 1407 1408 /* 1409 * Search the dentry child list of the specified parent, 1410 * and move any unused dentries to the end of the unused 1411 * list for prune_dcache(). We descend to the next level 1412 * whenever the d_subdirs list is non-empty and continue 1413 * searching. 1414 * 1415 * It returns zero iff there are no unused children, 1416 * otherwise it returns the number of children moved to 1417 * the end of the unused list. This may not be the total 1418 * number of unused children, because select_parent can 1419 * drop the lock and return early due to latency 1420 * constraints. 1421 */ 1422 1423 struct select_data { 1424 struct dentry *start; 1425 struct list_head dispose; 1426 int found; 1427 }; 1428 1429 static enum d_walk_ret select_collect(void *_data, struct dentry *dentry) 1430 { 1431 struct select_data *data = _data; 1432 enum d_walk_ret ret = D_WALK_CONTINUE; 1433 1434 if (data->start == dentry) 1435 goto out; 1436 1437 if (dentry->d_flags & DCACHE_SHRINK_LIST) { 1438 data->found++; 1439 } else { 1440 if (dentry->d_flags & DCACHE_LRU_LIST) 1441 d_lru_del(dentry); 1442 if (!dentry->d_lockref.count) { 1443 d_shrink_add(dentry, &data->dispose); 1444 data->found++; 1445 } 1446 } 1447 /* 1448 * We can return to the caller if we have found some (this 1449 * ensures forward progress). We'll be coming back to find 1450 * the rest. 1451 */ 1452 if (!list_empty(&data->dispose)) 1453 ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY; 1454 out: 1455 return ret; 1456 } 1457 1458 /** 1459 * shrink_dcache_parent - prune dcache 1460 * @parent: parent of entries to prune 1461 * 1462 * Prune the dcache to remove unused children of the parent dentry. 1463 */ 1464 void shrink_dcache_parent(struct dentry *parent) 1465 { 1466 for (;;) { 1467 struct select_data data; 1468 1469 INIT_LIST_HEAD(&data.dispose); 1470 data.start = parent; 1471 data.found = 0; 1472 1473 d_walk(parent, &data, select_collect); 1474 1475 if (!list_empty(&data.dispose)) { 1476 shrink_dentry_list(&data.dispose); 1477 continue; 1478 } 1479 1480 cond_resched(); 1481 if (!data.found) 1482 break; 1483 } 1484 } 1485 EXPORT_SYMBOL(shrink_dcache_parent); 1486 1487 static enum d_walk_ret umount_check(void *_data, struct dentry *dentry) 1488 { 1489 /* it has busy descendents; complain about those instead */ 1490 if (!list_empty(&dentry->d_subdirs)) 1491 return D_WALK_CONTINUE; 1492 1493 /* root with refcount 1 is fine */ 1494 if (dentry == _data && dentry->d_lockref.count == 1) 1495 return D_WALK_CONTINUE; 1496 1497 printk(KERN_ERR "BUG: Dentry %p{i=%lx,n=%pd} " 1498 " still in use (%d) [unmount of %s %s]\n", 1499 dentry, 1500 dentry->d_inode ? 1501 dentry->d_inode->i_ino : 0UL, 1502 dentry, 1503 dentry->d_lockref.count, 1504 dentry->d_sb->s_type->name, 1505 dentry->d_sb->s_id); 1506 WARN_ON(1); 1507 return D_WALK_CONTINUE; 1508 } 1509 1510 static void do_one_tree(struct dentry *dentry) 1511 { 1512 shrink_dcache_parent(dentry); 1513 d_walk(dentry, dentry, umount_check); 1514 d_drop(dentry); 1515 dput(dentry); 1516 } 1517 1518 /* 1519 * destroy the dentries attached to a superblock on unmounting 1520 */ 1521 void shrink_dcache_for_umount(struct super_block *sb) 1522 { 1523 struct dentry *dentry; 1524 1525 WARN(down_read_trylock(&sb->s_umount), "s_umount should've been locked"); 1526 1527 dentry = sb->s_root; 1528 sb->s_root = NULL; 1529 do_one_tree(dentry); 1530 1531 while (!hlist_bl_empty(&sb->s_roots)) { 1532 dentry = dget(hlist_bl_entry(hlist_bl_first(&sb->s_roots), struct dentry, d_hash)); 1533 do_one_tree(dentry); 1534 } 1535 } 1536 1537 static enum d_walk_ret find_submount(void *_data, struct dentry *dentry) 1538 { 1539 struct dentry **victim = _data; 1540 if (d_mountpoint(dentry)) { 1541 __dget_dlock(dentry); 1542 *victim = dentry; 1543 return D_WALK_QUIT; 1544 } 1545 return D_WALK_CONTINUE; 1546 } 1547 1548 /** 1549 * d_invalidate - detach submounts, prune dcache, and drop 1550 * @dentry: dentry to invalidate (aka detach, prune and drop) 1551 */ 1552 void d_invalidate(struct dentry *dentry) 1553 { 1554 bool had_submounts = false; 1555 spin_lock(&dentry->d_lock); 1556 if (d_unhashed(dentry)) { 1557 spin_unlock(&dentry->d_lock); 1558 return; 1559 } 1560 __d_drop(dentry); 1561 spin_unlock(&dentry->d_lock); 1562 1563 /* Negative dentries can be dropped without further checks */ 1564 if (!dentry->d_inode) 1565 return; 1566 1567 shrink_dcache_parent(dentry); 1568 for (;;) { 1569 struct dentry *victim = NULL; 1570 d_walk(dentry, &victim, find_submount); 1571 if (!victim) { 1572 if (had_submounts) 1573 shrink_dcache_parent(dentry); 1574 return; 1575 } 1576 had_submounts = true; 1577 detach_mounts(victim); 1578 dput(victim); 1579 } 1580 } 1581 EXPORT_SYMBOL(d_invalidate); 1582 1583 /** 1584 * __d_alloc - allocate a dcache entry 1585 * @sb: filesystem it will belong to 1586 * @name: qstr of the name 1587 * 1588 * Allocates a dentry. It returns %NULL if there is insufficient memory 1589 * available. On a success the dentry is returned. The name passed in is 1590 * copied and the copy passed in may be reused after this call. 1591 */ 1592 1593 struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name) 1594 { 1595 struct dentry *dentry; 1596 char *dname; 1597 int err; 1598 1599 dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL); 1600 if (!dentry) 1601 return NULL; 1602 1603 /* 1604 * We guarantee that the inline name is always NUL-terminated. 1605 * This way the memcpy() done by the name switching in rename 1606 * will still always have a NUL at the end, even if we might 1607 * be overwriting an internal NUL character 1608 */ 1609 dentry->d_iname[DNAME_INLINE_LEN-1] = 0; 1610 if (unlikely(!name)) { 1611 name = &slash_name; 1612 dname = dentry->d_iname; 1613 } else if (name->len > DNAME_INLINE_LEN-1) { 1614 size_t size = offsetof(struct external_name, name[1]); 1615 struct external_name *p = kmalloc(size + name->len, 1616 GFP_KERNEL_ACCOUNT | 1617 __GFP_RECLAIMABLE); 1618 if (!p) { 1619 kmem_cache_free(dentry_cache, dentry); 1620 return NULL; 1621 } 1622 atomic_set(&p->u.count, 1); 1623 dname = p->name; 1624 } else { 1625 dname = dentry->d_iname; 1626 } 1627 1628 dentry->d_name.len = name->len; 1629 dentry->d_name.hash = name->hash; 1630 memcpy(dname, name->name, name->len); 1631 dname[name->len] = 0; 1632 1633 /* Make sure we always see the terminating NUL character */ 1634 smp_store_release(&dentry->d_name.name, dname); /* ^^^ */ 1635 1636 dentry->d_lockref.count = 1; 1637 dentry->d_flags = 0; 1638 spin_lock_init(&dentry->d_lock); 1639 seqcount_init(&dentry->d_seq); 1640 dentry->d_inode = NULL; 1641 dentry->d_parent = dentry; 1642 dentry->d_sb = sb; 1643 dentry->d_op = NULL; 1644 dentry->d_fsdata = NULL; 1645 INIT_HLIST_BL_NODE(&dentry->d_hash); 1646 INIT_LIST_HEAD(&dentry->d_lru); 1647 INIT_LIST_HEAD(&dentry->d_subdirs); 1648 INIT_HLIST_NODE(&dentry->d_u.d_alias); 1649 INIT_LIST_HEAD(&dentry->d_child); 1650 d_set_d_op(dentry, dentry->d_sb->s_d_op); 1651 1652 if (dentry->d_op && dentry->d_op->d_init) { 1653 err = dentry->d_op->d_init(dentry); 1654 if (err) { 1655 if (dname_external(dentry)) 1656 kfree(external_name(dentry)); 1657 kmem_cache_free(dentry_cache, dentry); 1658 return NULL; 1659 } 1660 } 1661 1662 this_cpu_inc(nr_dentry); 1663 1664 return dentry; 1665 } 1666 1667 /** 1668 * d_alloc - allocate a dcache entry 1669 * @parent: parent of entry to allocate 1670 * @name: qstr of the name 1671 * 1672 * Allocates a dentry. It returns %NULL if there is insufficient memory 1673 * available. On a success the dentry is returned. The name passed in is 1674 * copied and the copy passed in may be reused after this call. 1675 */ 1676 struct dentry *d_alloc(struct dentry * parent, const struct qstr *name) 1677 { 1678 struct dentry *dentry = __d_alloc(parent->d_sb, name); 1679 if (!dentry) 1680 return NULL; 1681 dentry->d_flags |= DCACHE_RCUACCESS; 1682 spin_lock(&parent->d_lock); 1683 /* 1684 * don't need child lock because it is not subject 1685 * to concurrency here 1686 */ 1687 __dget_dlock(parent); 1688 dentry->d_parent = parent; 1689 list_add(&dentry->d_child, &parent->d_subdirs); 1690 spin_unlock(&parent->d_lock); 1691 1692 return dentry; 1693 } 1694 EXPORT_SYMBOL(d_alloc); 1695 1696 struct dentry *d_alloc_anon(struct super_block *sb) 1697 { 1698 return __d_alloc(sb, NULL); 1699 } 1700 EXPORT_SYMBOL(d_alloc_anon); 1701 1702 struct dentry *d_alloc_cursor(struct dentry * parent) 1703 { 1704 struct dentry *dentry = d_alloc_anon(parent->d_sb); 1705 if (dentry) { 1706 dentry->d_flags |= DCACHE_RCUACCESS | DCACHE_DENTRY_CURSOR; 1707 dentry->d_parent = dget(parent); 1708 } 1709 return dentry; 1710 } 1711 1712 /** 1713 * d_alloc_pseudo - allocate a dentry (for lookup-less filesystems) 1714 * @sb: the superblock 1715 * @name: qstr of the name 1716 * 1717 * For a filesystem that just pins its dentries in memory and never 1718 * performs lookups at all, return an unhashed IS_ROOT dentry. 1719 */ 1720 struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name) 1721 { 1722 return __d_alloc(sb, name); 1723 } 1724 EXPORT_SYMBOL(d_alloc_pseudo); 1725 1726 struct dentry *d_alloc_name(struct dentry *parent, const char *name) 1727 { 1728 struct qstr q; 1729 1730 q.name = name; 1731 q.hash_len = hashlen_string(parent, name); 1732 return d_alloc(parent, &q); 1733 } 1734 EXPORT_SYMBOL(d_alloc_name); 1735 1736 void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op) 1737 { 1738 WARN_ON_ONCE(dentry->d_op); 1739 WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH | 1740 DCACHE_OP_COMPARE | 1741 DCACHE_OP_REVALIDATE | 1742 DCACHE_OP_WEAK_REVALIDATE | 1743 DCACHE_OP_DELETE | 1744 DCACHE_OP_REAL)); 1745 dentry->d_op = op; 1746 if (!op) 1747 return; 1748 if (op->d_hash) 1749 dentry->d_flags |= DCACHE_OP_HASH; 1750 if (op->d_compare) 1751 dentry->d_flags |= DCACHE_OP_COMPARE; 1752 if (op->d_revalidate) 1753 dentry->d_flags |= DCACHE_OP_REVALIDATE; 1754 if (op->d_weak_revalidate) 1755 dentry->d_flags |= DCACHE_OP_WEAK_REVALIDATE; 1756 if (op->d_delete) 1757 dentry->d_flags |= DCACHE_OP_DELETE; 1758 if (op->d_prune) 1759 dentry->d_flags |= DCACHE_OP_PRUNE; 1760 if (op->d_real) 1761 dentry->d_flags |= DCACHE_OP_REAL; 1762 1763 } 1764 EXPORT_SYMBOL(d_set_d_op); 1765 1766 1767 /* 1768 * d_set_fallthru - Mark a dentry as falling through to a lower layer 1769 * @dentry - The dentry to mark 1770 * 1771 * Mark a dentry as falling through to the lower layer (as set with 1772 * d_pin_lower()). This flag may be recorded on the medium. 1773 */ 1774 void d_set_fallthru(struct dentry *dentry) 1775 { 1776 spin_lock(&dentry->d_lock); 1777 dentry->d_flags |= DCACHE_FALLTHRU; 1778 spin_unlock(&dentry->d_lock); 1779 } 1780 EXPORT_SYMBOL(d_set_fallthru); 1781 1782 static unsigned d_flags_for_inode(struct inode *inode) 1783 { 1784 unsigned add_flags = DCACHE_REGULAR_TYPE; 1785 1786 if (!inode) 1787 return DCACHE_MISS_TYPE; 1788 1789 if (S_ISDIR(inode->i_mode)) { 1790 add_flags = DCACHE_DIRECTORY_TYPE; 1791 if (unlikely(!(inode->i_opflags & IOP_LOOKUP))) { 1792 if (unlikely(!inode->i_op->lookup)) 1793 add_flags = DCACHE_AUTODIR_TYPE; 1794 else 1795 inode->i_opflags |= IOP_LOOKUP; 1796 } 1797 goto type_determined; 1798 } 1799 1800 if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) { 1801 if (unlikely(inode->i_op->get_link)) { 1802 add_flags = DCACHE_SYMLINK_TYPE; 1803 goto type_determined; 1804 } 1805 inode->i_opflags |= IOP_NOFOLLOW; 1806 } 1807 1808 if (unlikely(!S_ISREG(inode->i_mode))) 1809 add_flags = DCACHE_SPECIAL_TYPE; 1810 1811 type_determined: 1812 if (unlikely(IS_AUTOMOUNT(inode))) 1813 add_flags |= DCACHE_NEED_AUTOMOUNT; 1814 return add_flags; 1815 } 1816 1817 static void __d_instantiate(struct dentry *dentry, struct inode *inode) 1818 { 1819 unsigned add_flags = d_flags_for_inode(inode); 1820 WARN_ON(d_in_lookup(dentry)); 1821 1822 spin_lock(&dentry->d_lock); 1823 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry); 1824 raw_write_seqcount_begin(&dentry->d_seq); 1825 __d_set_inode_and_type(dentry, inode, add_flags); 1826 raw_write_seqcount_end(&dentry->d_seq); 1827 fsnotify_update_flags(dentry); 1828 spin_unlock(&dentry->d_lock); 1829 } 1830 1831 /** 1832 * d_instantiate - fill in inode information for a dentry 1833 * @entry: dentry to complete 1834 * @inode: inode to attach to this dentry 1835 * 1836 * Fill in inode information in the entry. 1837 * 1838 * This turns negative dentries into productive full members 1839 * of society. 1840 * 1841 * NOTE! This assumes that the inode count has been incremented 1842 * (or otherwise set) by the caller to indicate that it is now 1843 * in use by the dcache. 1844 */ 1845 1846 void d_instantiate(struct dentry *entry, struct inode * inode) 1847 { 1848 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias)); 1849 if (inode) { 1850 security_d_instantiate(entry, inode); 1851 spin_lock(&inode->i_lock); 1852 __d_instantiate(entry, inode); 1853 spin_unlock(&inode->i_lock); 1854 } 1855 } 1856 EXPORT_SYMBOL(d_instantiate); 1857 1858 /* 1859 * This should be equivalent to d_instantiate() + unlock_new_inode(), 1860 * with lockdep-related part of unlock_new_inode() done before 1861 * anything else. Use that instead of open-coding d_instantiate()/ 1862 * unlock_new_inode() combinations. 1863 */ 1864 void d_instantiate_new(struct dentry *entry, struct inode *inode) 1865 { 1866 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias)); 1867 BUG_ON(!inode); 1868 lockdep_annotate_inode_mutex_key(inode); 1869 security_d_instantiate(entry, inode); 1870 spin_lock(&inode->i_lock); 1871 __d_instantiate(entry, inode); 1872 WARN_ON(!(inode->i_state & I_NEW)); 1873 inode->i_state &= ~I_NEW & ~I_CREATING; 1874 smp_mb(); 1875 wake_up_bit(&inode->i_state, __I_NEW); 1876 spin_unlock(&inode->i_lock); 1877 } 1878 EXPORT_SYMBOL(d_instantiate_new); 1879 1880 struct dentry *d_make_root(struct inode *root_inode) 1881 { 1882 struct dentry *res = NULL; 1883 1884 if (root_inode) { 1885 res = d_alloc_anon(root_inode->i_sb); 1886 if (res) { 1887 res->d_flags |= DCACHE_RCUACCESS; 1888 d_instantiate(res, root_inode); 1889 } else { 1890 iput(root_inode); 1891 } 1892 } 1893 return res; 1894 } 1895 EXPORT_SYMBOL(d_make_root); 1896 1897 static struct dentry *__d_instantiate_anon(struct dentry *dentry, 1898 struct inode *inode, 1899 bool disconnected) 1900 { 1901 struct dentry *res; 1902 unsigned add_flags; 1903 1904 security_d_instantiate(dentry, inode); 1905 spin_lock(&inode->i_lock); 1906 res = __d_find_any_alias(inode); 1907 if (res) { 1908 spin_unlock(&inode->i_lock); 1909 dput(dentry); 1910 goto out_iput; 1911 } 1912 1913 /* attach a disconnected dentry */ 1914 add_flags = d_flags_for_inode(inode); 1915 1916 if (disconnected) 1917 add_flags |= DCACHE_DISCONNECTED; 1918 1919 spin_lock(&dentry->d_lock); 1920 __d_set_inode_and_type(dentry, inode, add_flags); 1921 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry); 1922 if (!disconnected) { 1923 hlist_bl_lock(&dentry->d_sb->s_roots); 1924 hlist_bl_add_head(&dentry->d_hash, &dentry->d_sb->s_roots); 1925 hlist_bl_unlock(&dentry->d_sb->s_roots); 1926 } 1927 spin_unlock(&dentry->d_lock); 1928 spin_unlock(&inode->i_lock); 1929 1930 return dentry; 1931 1932 out_iput: 1933 iput(inode); 1934 return res; 1935 } 1936 1937 struct dentry *d_instantiate_anon(struct dentry *dentry, struct inode *inode) 1938 { 1939 return __d_instantiate_anon(dentry, inode, true); 1940 } 1941 EXPORT_SYMBOL(d_instantiate_anon); 1942 1943 static struct dentry *__d_obtain_alias(struct inode *inode, bool disconnected) 1944 { 1945 struct dentry *tmp; 1946 struct dentry *res; 1947 1948 if (!inode) 1949 return ERR_PTR(-ESTALE); 1950 if (IS_ERR(inode)) 1951 return ERR_CAST(inode); 1952 1953 res = d_find_any_alias(inode); 1954 if (res) 1955 goto out_iput; 1956 1957 tmp = d_alloc_anon(inode->i_sb); 1958 if (!tmp) { 1959 res = ERR_PTR(-ENOMEM); 1960 goto out_iput; 1961 } 1962 1963 return __d_instantiate_anon(tmp, inode, disconnected); 1964 1965 out_iput: 1966 iput(inode); 1967 return res; 1968 } 1969 1970 /** 1971 * d_obtain_alias - find or allocate a DISCONNECTED dentry for a given inode 1972 * @inode: inode to allocate the dentry for 1973 * 1974 * Obtain a dentry for an inode resulting from NFS filehandle conversion or 1975 * similar open by handle operations. The returned dentry may be anonymous, 1976 * or may have a full name (if the inode was already in the cache). 1977 * 1978 * When called on a directory inode, we must ensure that the inode only ever 1979 * has one dentry. If a dentry is found, that is returned instead of 1980 * allocating a new one. 1981 * 1982 * On successful return, the reference to the inode has been transferred 1983 * to the dentry. In case of an error the reference on the inode is released. 1984 * To make it easier to use in export operations a %NULL or IS_ERR inode may 1985 * be passed in and the error will be propagated to the return value, 1986 * with a %NULL @inode replaced by ERR_PTR(-ESTALE). 1987 */ 1988 struct dentry *d_obtain_alias(struct inode *inode) 1989 { 1990 return __d_obtain_alias(inode, true); 1991 } 1992 EXPORT_SYMBOL(d_obtain_alias); 1993 1994 /** 1995 * d_obtain_root - find or allocate a dentry for a given inode 1996 * @inode: inode to allocate the dentry for 1997 * 1998 * Obtain an IS_ROOT dentry for the root of a filesystem. 1999 * 2000 * We must ensure that directory inodes only ever have one dentry. If a 2001 * dentry is found, that is returned instead of allocating a new one. 2002 * 2003 * On successful return, the reference to the inode has been transferred 2004 * to the dentry. In case of an error the reference on the inode is 2005 * released. A %NULL or IS_ERR inode may be passed in and will be the 2006 * error will be propagate to the return value, with a %NULL @inode 2007 * replaced by ERR_PTR(-ESTALE). 2008 */ 2009 struct dentry *d_obtain_root(struct inode *inode) 2010 { 2011 return __d_obtain_alias(inode, false); 2012 } 2013 EXPORT_SYMBOL(d_obtain_root); 2014 2015 /** 2016 * d_add_ci - lookup or allocate new dentry with case-exact name 2017 * @inode: the inode case-insensitive lookup has found 2018 * @dentry: the negative dentry that was passed to the parent's lookup func 2019 * @name: the case-exact name to be associated with the returned dentry 2020 * 2021 * This is to avoid filling the dcache with case-insensitive names to the 2022 * same inode, only the actual correct case is stored in the dcache for 2023 * case-insensitive filesystems. 2024 * 2025 * For a case-insensitive lookup match and if the the case-exact dentry 2026 * already exists in in the dcache, use it and return it. 2027 * 2028 * If no entry exists with the exact case name, allocate new dentry with 2029 * the exact case, and return the spliced entry. 2030 */ 2031 struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode, 2032 struct qstr *name) 2033 { 2034 struct dentry *found, *res; 2035 2036 /* 2037 * First check if a dentry matching the name already exists, 2038 * if not go ahead and create it now. 2039 */ 2040 found = d_hash_and_lookup(dentry->d_parent, name); 2041 if (found) { 2042 iput(inode); 2043 return found; 2044 } 2045 if (d_in_lookup(dentry)) { 2046 found = d_alloc_parallel(dentry->d_parent, name, 2047 dentry->d_wait); 2048 if (IS_ERR(found) || !d_in_lookup(found)) { 2049 iput(inode); 2050 return found; 2051 } 2052 } else { 2053 found = d_alloc(dentry->d_parent, name); 2054 if (!found) { 2055 iput(inode); 2056 return ERR_PTR(-ENOMEM); 2057 } 2058 } 2059 res = d_splice_alias(inode, found); 2060 if (res) { 2061 dput(found); 2062 return res; 2063 } 2064 return found; 2065 } 2066 EXPORT_SYMBOL(d_add_ci); 2067 2068 2069 static inline bool d_same_name(const struct dentry *dentry, 2070 const struct dentry *parent, 2071 const struct qstr *name) 2072 { 2073 if (likely(!(parent->d_flags & DCACHE_OP_COMPARE))) { 2074 if (dentry->d_name.len != name->len) 2075 return false; 2076 return dentry_cmp(dentry, name->name, name->len) == 0; 2077 } 2078 return parent->d_op->d_compare(dentry, 2079 dentry->d_name.len, dentry->d_name.name, 2080 name) == 0; 2081 } 2082 2083 /** 2084 * __d_lookup_rcu - search for a dentry (racy, store-free) 2085 * @parent: parent dentry 2086 * @name: qstr of name we wish to find 2087 * @seqp: returns d_seq value at the point where the dentry was found 2088 * Returns: dentry, or NULL 2089 * 2090 * __d_lookup_rcu is the dcache lookup function for rcu-walk name 2091 * resolution (store-free path walking) design described in 2092 * Documentation/filesystems/path-lookup.txt. 2093 * 2094 * This is not to be used outside core vfs. 2095 * 2096 * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock 2097 * held, and rcu_read_lock held. The returned dentry must not be stored into 2098 * without taking d_lock and checking d_seq sequence count against @seq 2099 * returned here. 2100 * 2101 * A refcount may be taken on the found dentry with the d_rcu_to_refcount 2102 * function. 2103 * 2104 * Alternatively, __d_lookup_rcu may be called again to look up the child of 2105 * the returned dentry, so long as its parent's seqlock is checked after the 2106 * child is looked up. Thus, an interlocking stepping of sequence lock checks 2107 * is formed, giving integrity down the path walk. 2108 * 2109 * NOTE! The caller *has* to check the resulting dentry against the sequence 2110 * number we've returned before using any of the resulting dentry state! 2111 */ 2112 struct dentry *__d_lookup_rcu(const struct dentry *parent, 2113 const struct qstr *name, 2114 unsigned *seqp) 2115 { 2116 u64 hashlen = name->hash_len; 2117 const unsigned char *str = name->name; 2118 struct hlist_bl_head *b = d_hash(hashlen_hash(hashlen)); 2119 struct hlist_bl_node *node; 2120 struct dentry *dentry; 2121 2122 /* 2123 * Note: There is significant duplication with __d_lookup_rcu which is 2124 * required to prevent single threaded performance regressions 2125 * especially on architectures where smp_rmb (in seqcounts) are costly. 2126 * Keep the two functions in sync. 2127 */ 2128 2129 /* 2130 * The hash list is protected using RCU. 2131 * 2132 * Carefully use d_seq when comparing a candidate dentry, to avoid 2133 * races with d_move(). 2134 * 2135 * It is possible that concurrent renames can mess up our list 2136 * walk here and result in missing our dentry, resulting in the 2137 * false-negative result. d_lookup() protects against concurrent 2138 * renames using rename_lock seqlock. 2139 * 2140 * See Documentation/filesystems/path-lookup.txt for more details. 2141 */ 2142 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) { 2143 unsigned seq; 2144 2145 seqretry: 2146 /* 2147 * The dentry sequence count protects us from concurrent 2148 * renames, and thus protects parent and name fields. 2149 * 2150 * The caller must perform a seqcount check in order 2151 * to do anything useful with the returned dentry. 2152 * 2153 * NOTE! We do a "raw" seqcount_begin here. That means that 2154 * we don't wait for the sequence count to stabilize if it 2155 * is in the middle of a sequence change. If we do the slow 2156 * dentry compare, we will do seqretries until it is stable, 2157 * and if we end up with a successful lookup, we actually 2158 * want to exit RCU lookup anyway. 2159 * 2160 * Note that raw_seqcount_begin still *does* smp_rmb(), so 2161 * we are still guaranteed NUL-termination of ->d_name.name. 2162 */ 2163 seq = raw_seqcount_begin(&dentry->d_seq); 2164 if (dentry->d_parent != parent) 2165 continue; 2166 if (d_unhashed(dentry)) 2167 continue; 2168 2169 if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) { 2170 int tlen; 2171 const char *tname; 2172 if (dentry->d_name.hash != hashlen_hash(hashlen)) 2173 continue; 2174 tlen = dentry->d_name.len; 2175 tname = dentry->d_name.name; 2176 /* we want a consistent (name,len) pair */ 2177 if (read_seqcount_retry(&dentry->d_seq, seq)) { 2178 cpu_relax(); 2179 goto seqretry; 2180 } 2181 if (parent->d_op->d_compare(dentry, 2182 tlen, tname, name) != 0) 2183 continue; 2184 } else { 2185 if (dentry->d_name.hash_len != hashlen) 2186 continue; 2187 if (dentry_cmp(dentry, str, hashlen_len(hashlen)) != 0) 2188 continue; 2189 } 2190 *seqp = seq; 2191 return dentry; 2192 } 2193 return NULL; 2194 } 2195 2196 /** 2197 * d_lookup - search for a dentry 2198 * @parent: parent dentry 2199 * @name: qstr of name we wish to find 2200 * Returns: dentry, or NULL 2201 * 2202 * d_lookup searches the children of the parent dentry for the name in 2203 * question. If the dentry is found its reference count is incremented and the 2204 * dentry is returned. The caller must use dput to free the entry when it has 2205 * finished using it. %NULL is returned if the dentry does not exist. 2206 */ 2207 struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name) 2208 { 2209 struct dentry *dentry; 2210 unsigned seq; 2211 2212 do { 2213 seq = read_seqbegin(&rename_lock); 2214 dentry = __d_lookup(parent, name); 2215 if (dentry) 2216 break; 2217 } while (read_seqretry(&rename_lock, seq)); 2218 return dentry; 2219 } 2220 EXPORT_SYMBOL(d_lookup); 2221 2222 /** 2223 * __d_lookup - search for a dentry (racy) 2224 * @parent: parent dentry 2225 * @name: qstr of name we wish to find 2226 * Returns: dentry, or NULL 2227 * 2228 * __d_lookup is like d_lookup, however it may (rarely) return a 2229 * false-negative result due to unrelated rename activity. 2230 * 2231 * __d_lookup is slightly faster by avoiding rename_lock read seqlock, 2232 * however it must be used carefully, eg. with a following d_lookup in 2233 * the case of failure. 2234 * 2235 * __d_lookup callers must be commented. 2236 */ 2237 struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name) 2238 { 2239 unsigned int hash = name->hash; 2240 struct hlist_bl_head *b = d_hash(hash); 2241 struct hlist_bl_node *node; 2242 struct dentry *found = NULL; 2243 struct dentry *dentry; 2244 2245 /* 2246 * Note: There is significant duplication with __d_lookup_rcu which is 2247 * required to prevent single threaded performance regressions 2248 * especially on architectures where smp_rmb (in seqcounts) are costly. 2249 * Keep the two functions in sync. 2250 */ 2251 2252 /* 2253 * The hash list is protected using RCU. 2254 * 2255 * Take d_lock when comparing a candidate dentry, to avoid races 2256 * with d_move(). 2257 * 2258 * It is possible that concurrent renames can mess up our list 2259 * walk here and result in missing our dentry, resulting in the 2260 * false-negative result. d_lookup() protects against concurrent 2261 * renames using rename_lock seqlock. 2262 * 2263 * See Documentation/filesystems/path-lookup.txt for more details. 2264 */ 2265 rcu_read_lock(); 2266 2267 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) { 2268 2269 if (dentry->d_name.hash != hash) 2270 continue; 2271 2272 spin_lock(&dentry->d_lock); 2273 if (dentry->d_parent != parent) 2274 goto next; 2275 if (d_unhashed(dentry)) 2276 goto next; 2277 2278 if (!d_same_name(dentry, parent, name)) 2279 goto next; 2280 2281 dentry->d_lockref.count++; 2282 found = dentry; 2283 spin_unlock(&dentry->d_lock); 2284 break; 2285 next: 2286 spin_unlock(&dentry->d_lock); 2287 } 2288 rcu_read_unlock(); 2289 2290 return found; 2291 } 2292 2293 /** 2294 * d_hash_and_lookup - hash the qstr then search for a dentry 2295 * @dir: Directory to search in 2296 * @name: qstr of name we wish to find 2297 * 2298 * On lookup failure NULL is returned; on bad name - ERR_PTR(-error) 2299 */ 2300 struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name) 2301 { 2302 /* 2303 * Check for a fs-specific hash function. Note that we must 2304 * calculate the standard hash first, as the d_op->d_hash() 2305 * routine may choose to leave the hash value unchanged. 2306 */ 2307 name->hash = full_name_hash(dir, name->name, name->len); 2308 if (dir->d_flags & DCACHE_OP_HASH) { 2309 int err = dir->d_op->d_hash(dir, name); 2310 if (unlikely(err < 0)) 2311 return ERR_PTR(err); 2312 } 2313 return d_lookup(dir, name); 2314 } 2315 EXPORT_SYMBOL(d_hash_and_lookup); 2316 2317 /* 2318 * When a file is deleted, we have two options: 2319 * - turn this dentry into a negative dentry 2320 * - unhash this dentry and free it. 2321 * 2322 * Usually, we want to just turn this into 2323 * a negative dentry, but if anybody else is 2324 * currently using the dentry or the inode 2325 * we can't do that and we fall back on removing 2326 * it from the hash queues and waiting for 2327 * it to be deleted later when it has no users 2328 */ 2329 2330 /** 2331 * d_delete - delete a dentry 2332 * @dentry: The dentry to delete 2333 * 2334 * Turn the dentry into a negative dentry if possible, otherwise 2335 * remove it from the hash queues so it can be deleted later 2336 */ 2337 2338 void d_delete(struct dentry * dentry) 2339 { 2340 struct inode *inode = dentry->d_inode; 2341 int isdir = d_is_dir(dentry); 2342 2343 spin_lock(&inode->i_lock); 2344 spin_lock(&dentry->d_lock); 2345 /* 2346 * Are we the only user? 2347 */ 2348 if (dentry->d_lockref.count == 1) { 2349 dentry->d_flags &= ~DCACHE_CANT_MOUNT; 2350 dentry_unlink_inode(dentry); 2351 } else { 2352 __d_drop(dentry); 2353 spin_unlock(&dentry->d_lock); 2354 spin_unlock(&inode->i_lock); 2355 } 2356 fsnotify_nameremove(dentry, isdir); 2357 } 2358 EXPORT_SYMBOL(d_delete); 2359 2360 static void __d_rehash(struct dentry *entry) 2361 { 2362 struct hlist_bl_head *b = d_hash(entry->d_name.hash); 2363 2364 hlist_bl_lock(b); 2365 hlist_bl_add_head_rcu(&entry->d_hash, b); 2366 hlist_bl_unlock(b); 2367 } 2368 2369 /** 2370 * d_rehash - add an entry back to the hash 2371 * @entry: dentry to add to the hash 2372 * 2373 * Adds a dentry to the hash according to its name. 2374 */ 2375 2376 void d_rehash(struct dentry * entry) 2377 { 2378 spin_lock(&entry->d_lock); 2379 __d_rehash(entry); 2380 spin_unlock(&entry->d_lock); 2381 } 2382 EXPORT_SYMBOL(d_rehash); 2383 2384 static inline unsigned start_dir_add(struct inode *dir) 2385 { 2386 2387 for (;;) { 2388 unsigned n = dir->i_dir_seq; 2389 if (!(n & 1) && cmpxchg(&dir->i_dir_seq, n, n + 1) == n) 2390 return n; 2391 cpu_relax(); 2392 } 2393 } 2394 2395 static inline void end_dir_add(struct inode *dir, unsigned n) 2396 { 2397 smp_store_release(&dir->i_dir_seq, n + 2); 2398 } 2399 2400 static void d_wait_lookup(struct dentry *dentry) 2401 { 2402 if (d_in_lookup(dentry)) { 2403 DECLARE_WAITQUEUE(wait, current); 2404 add_wait_queue(dentry->d_wait, &wait); 2405 do { 2406 set_current_state(TASK_UNINTERRUPTIBLE); 2407 spin_unlock(&dentry->d_lock); 2408 schedule(); 2409 spin_lock(&dentry->d_lock); 2410 } while (d_in_lookup(dentry)); 2411 } 2412 } 2413 2414 struct dentry *d_alloc_parallel(struct dentry *parent, 2415 const struct qstr *name, 2416 wait_queue_head_t *wq) 2417 { 2418 unsigned int hash = name->hash; 2419 struct hlist_bl_head *b = in_lookup_hash(parent, hash); 2420 struct hlist_bl_node *node; 2421 struct dentry *new = d_alloc(parent, name); 2422 struct dentry *dentry; 2423 unsigned seq, r_seq, d_seq; 2424 2425 if (unlikely(!new)) 2426 return ERR_PTR(-ENOMEM); 2427 2428 retry: 2429 rcu_read_lock(); 2430 seq = smp_load_acquire(&parent->d_inode->i_dir_seq); 2431 r_seq = read_seqbegin(&rename_lock); 2432 dentry = __d_lookup_rcu(parent, name, &d_seq); 2433 if (unlikely(dentry)) { 2434 if (!lockref_get_not_dead(&dentry->d_lockref)) { 2435 rcu_read_unlock(); 2436 goto retry; 2437 } 2438 if (read_seqcount_retry(&dentry->d_seq, d_seq)) { 2439 rcu_read_unlock(); 2440 dput(dentry); 2441 goto retry; 2442 } 2443 rcu_read_unlock(); 2444 dput(new); 2445 return dentry; 2446 } 2447 if (unlikely(read_seqretry(&rename_lock, r_seq))) { 2448 rcu_read_unlock(); 2449 goto retry; 2450 } 2451 2452 if (unlikely(seq & 1)) { 2453 rcu_read_unlock(); 2454 goto retry; 2455 } 2456 2457 hlist_bl_lock(b); 2458 if (unlikely(READ_ONCE(parent->d_inode->i_dir_seq) != seq)) { 2459 hlist_bl_unlock(b); 2460 rcu_read_unlock(); 2461 goto retry; 2462 } 2463 /* 2464 * No changes for the parent since the beginning of d_lookup(). 2465 * Since all removals from the chain happen with hlist_bl_lock(), 2466 * any potential in-lookup matches are going to stay here until 2467 * we unlock the chain. All fields are stable in everything 2468 * we encounter. 2469 */ 2470 hlist_bl_for_each_entry(dentry, node, b, d_u.d_in_lookup_hash) { 2471 if (dentry->d_name.hash != hash) 2472 continue; 2473 if (dentry->d_parent != parent) 2474 continue; 2475 if (!d_same_name(dentry, parent, name)) 2476 continue; 2477 hlist_bl_unlock(b); 2478 /* now we can try to grab a reference */ 2479 if (!lockref_get_not_dead(&dentry->d_lockref)) { 2480 rcu_read_unlock(); 2481 goto retry; 2482 } 2483 2484 rcu_read_unlock(); 2485 /* 2486 * somebody is likely to be still doing lookup for it; 2487 * wait for them to finish 2488 */ 2489 spin_lock(&dentry->d_lock); 2490 d_wait_lookup(dentry); 2491 /* 2492 * it's not in-lookup anymore; in principle we should repeat 2493 * everything from dcache lookup, but it's likely to be what 2494 * d_lookup() would've found anyway. If it is, just return it; 2495 * otherwise we really have to repeat the whole thing. 2496 */ 2497 if (unlikely(dentry->d_name.hash != hash)) 2498 goto mismatch; 2499 if (unlikely(dentry->d_parent != parent)) 2500 goto mismatch; 2501 if (unlikely(d_unhashed(dentry))) 2502 goto mismatch; 2503 if (unlikely(!d_same_name(dentry, parent, name))) 2504 goto mismatch; 2505 /* OK, it *is* a hashed match; return it */ 2506 spin_unlock(&dentry->d_lock); 2507 dput(new); 2508 return dentry; 2509 } 2510 rcu_read_unlock(); 2511 /* we can't take ->d_lock here; it's OK, though. */ 2512 new->d_flags |= DCACHE_PAR_LOOKUP; 2513 new->d_wait = wq; 2514 hlist_bl_add_head_rcu(&new->d_u.d_in_lookup_hash, b); 2515 hlist_bl_unlock(b); 2516 return new; 2517 mismatch: 2518 spin_unlock(&dentry->d_lock); 2519 dput(dentry); 2520 goto retry; 2521 } 2522 EXPORT_SYMBOL(d_alloc_parallel); 2523 2524 void __d_lookup_done(struct dentry *dentry) 2525 { 2526 struct hlist_bl_head *b = in_lookup_hash(dentry->d_parent, 2527 dentry->d_name.hash); 2528 hlist_bl_lock(b); 2529 dentry->d_flags &= ~DCACHE_PAR_LOOKUP; 2530 __hlist_bl_del(&dentry->d_u.d_in_lookup_hash); 2531 wake_up_all(dentry->d_wait); 2532 dentry->d_wait = NULL; 2533 hlist_bl_unlock(b); 2534 INIT_HLIST_NODE(&dentry->d_u.d_alias); 2535 INIT_LIST_HEAD(&dentry->d_lru); 2536 } 2537 EXPORT_SYMBOL(__d_lookup_done); 2538 2539 /* inode->i_lock held if inode is non-NULL */ 2540 2541 static inline void __d_add(struct dentry *dentry, struct inode *inode) 2542 { 2543 struct inode *dir = NULL; 2544 unsigned n; 2545 spin_lock(&dentry->d_lock); 2546 if (unlikely(d_in_lookup(dentry))) { 2547 dir = dentry->d_parent->d_inode; 2548 n = start_dir_add(dir); 2549 __d_lookup_done(dentry); 2550 } 2551 if (inode) { 2552 unsigned add_flags = d_flags_for_inode(inode); 2553 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry); 2554 raw_write_seqcount_begin(&dentry->d_seq); 2555 __d_set_inode_and_type(dentry, inode, add_flags); 2556 raw_write_seqcount_end(&dentry->d_seq); 2557 fsnotify_update_flags(dentry); 2558 } 2559 __d_rehash(dentry); 2560 if (dir) 2561 end_dir_add(dir, n); 2562 spin_unlock(&dentry->d_lock); 2563 if (inode) 2564 spin_unlock(&inode->i_lock); 2565 } 2566 2567 /** 2568 * d_add - add dentry to hash queues 2569 * @entry: dentry to add 2570 * @inode: The inode to attach to this dentry 2571 * 2572 * This adds the entry to the hash queues and initializes @inode. 2573 * The entry was actually filled in earlier during d_alloc(). 2574 */ 2575 2576 void d_add(struct dentry *entry, struct inode *inode) 2577 { 2578 if (inode) { 2579 security_d_instantiate(entry, inode); 2580 spin_lock(&inode->i_lock); 2581 } 2582 __d_add(entry, inode); 2583 } 2584 EXPORT_SYMBOL(d_add); 2585 2586 /** 2587 * d_exact_alias - find and hash an exact unhashed alias 2588 * @entry: dentry to add 2589 * @inode: The inode to go with this dentry 2590 * 2591 * If an unhashed dentry with the same name/parent and desired 2592 * inode already exists, hash and return it. Otherwise, return 2593 * NULL. 2594 * 2595 * Parent directory should be locked. 2596 */ 2597 struct dentry *d_exact_alias(struct dentry *entry, struct inode *inode) 2598 { 2599 struct dentry *alias; 2600 unsigned int hash = entry->d_name.hash; 2601 2602 spin_lock(&inode->i_lock); 2603 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) { 2604 /* 2605 * Don't need alias->d_lock here, because aliases with 2606 * d_parent == entry->d_parent are not subject to name or 2607 * parent changes, because the parent inode i_mutex is held. 2608 */ 2609 if (alias->d_name.hash != hash) 2610 continue; 2611 if (alias->d_parent != entry->d_parent) 2612 continue; 2613 if (!d_same_name(alias, entry->d_parent, &entry->d_name)) 2614 continue; 2615 spin_lock(&alias->d_lock); 2616 if (!d_unhashed(alias)) { 2617 spin_unlock(&alias->d_lock); 2618 alias = NULL; 2619 } else { 2620 __dget_dlock(alias); 2621 __d_rehash(alias); 2622 spin_unlock(&alias->d_lock); 2623 } 2624 spin_unlock(&inode->i_lock); 2625 return alias; 2626 } 2627 spin_unlock(&inode->i_lock); 2628 return NULL; 2629 } 2630 EXPORT_SYMBOL(d_exact_alias); 2631 2632 static void swap_names(struct dentry *dentry, struct dentry *target) 2633 { 2634 if (unlikely(dname_external(target))) { 2635 if (unlikely(dname_external(dentry))) { 2636 /* 2637 * Both external: swap the pointers 2638 */ 2639 swap(target->d_name.name, dentry->d_name.name); 2640 } else { 2641 /* 2642 * dentry:internal, target:external. Steal target's 2643 * storage and make target internal. 2644 */ 2645 memcpy(target->d_iname, dentry->d_name.name, 2646 dentry->d_name.len + 1); 2647 dentry->d_name.name = target->d_name.name; 2648 target->d_name.name = target->d_iname; 2649 } 2650 } else { 2651 if (unlikely(dname_external(dentry))) { 2652 /* 2653 * dentry:external, target:internal. Give dentry's 2654 * storage to target and make dentry internal 2655 */ 2656 memcpy(dentry->d_iname, target->d_name.name, 2657 target->d_name.len + 1); 2658 target->d_name.name = dentry->d_name.name; 2659 dentry->d_name.name = dentry->d_iname; 2660 } else { 2661 /* 2662 * Both are internal. 2663 */ 2664 unsigned int i; 2665 BUILD_BUG_ON(!IS_ALIGNED(DNAME_INLINE_LEN, sizeof(long))); 2666 for (i = 0; i < DNAME_INLINE_LEN / sizeof(long); i++) { 2667 swap(((long *) &dentry->d_iname)[i], 2668 ((long *) &target->d_iname)[i]); 2669 } 2670 } 2671 } 2672 swap(dentry->d_name.hash_len, target->d_name.hash_len); 2673 } 2674 2675 static void copy_name(struct dentry *dentry, struct dentry *target) 2676 { 2677 struct external_name *old_name = NULL; 2678 if (unlikely(dname_external(dentry))) 2679 old_name = external_name(dentry); 2680 if (unlikely(dname_external(target))) { 2681 atomic_inc(&external_name(target)->u.count); 2682 dentry->d_name = target->d_name; 2683 } else { 2684 memcpy(dentry->d_iname, target->d_name.name, 2685 target->d_name.len + 1); 2686 dentry->d_name.name = dentry->d_iname; 2687 dentry->d_name.hash_len = target->d_name.hash_len; 2688 } 2689 if (old_name && likely(atomic_dec_and_test(&old_name->u.count))) 2690 kfree_rcu(old_name, u.head); 2691 } 2692 2693 /* 2694 * __d_move - move a dentry 2695 * @dentry: entry to move 2696 * @target: new dentry 2697 * @exchange: exchange the two dentries 2698 * 2699 * Update the dcache to reflect the move of a file name. Negative 2700 * dcache entries should not be moved in this way. Caller must hold 2701 * rename_lock, the i_mutex of the source and target directories, 2702 * and the sb->s_vfs_rename_mutex if they differ. See lock_rename(). 2703 */ 2704 static void __d_move(struct dentry *dentry, struct dentry *target, 2705 bool exchange) 2706 { 2707 struct dentry *old_parent, *p; 2708 struct inode *dir = NULL; 2709 unsigned n; 2710 2711 WARN_ON(!dentry->d_inode); 2712 if (WARN_ON(dentry == target)) 2713 return; 2714 2715 BUG_ON(d_ancestor(target, dentry)); 2716 old_parent = dentry->d_parent; 2717 p = d_ancestor(old_parent, target); 2718 if (IS_ROOT(dentry)) { 2719 BUG_ON(p); 2720 spin_lock(&target->d_parent->d_lock); 2721 } else if (!p) { 2722 /* target is not a descendent of dentry->d_parent */ 2723 spin_lock(&target->d_parent->d_lock); 2724 spin_lock_nested(&old_parent->d_lock, DENTRY_D_LOCK_NESTED); 2725 } else { 2726 BUG_ON(p == dentry); 2727 spin_lock(&old_parent->d_lock); 2728 if (p != target) 2729 spin_lock_nested(&target->d_parent->d_lock, 2730 DENTRY_D_LOCK_NESTED); 2731 } 2732 spin_lock_nested(&dentry->d_lock, 2); 2733 spin_lock_nested(&target->d_lock, 3); 2734 2735 if (unlikely(d_in_lookup(target))) { 2736 dir = target->d_parent->d_inode; 2737 n = start_dir_add(dir); 2738 __d_lookup_done(target); 2739 } 2740 2741 write_seqcount_begin(&dentry->d_seq); 2742 write_seqcount_begin_nested(&target->d_seq, DENTRY_D_LOCK_NESTED); 2743 2744 /* unhash both */ 2745 if (!d_unhashed(dentry)) 2746 ___d_drop(dentry); 2747 if (!d_unhashed(target)) 2748 ___d_drop(target); 2749 2750 /* ... and switch them in the tree */ 2751 dentry->d_parent = target->d_parent; 2752 if (!exchange) { 2753 copy_name(dentry, target); 2754 target->d_hash.pprev = NULL; 2755 dentry->d_parent->d_lockref.count++; 2756 if (dentry == old_parent) 2757 dentry->d_flags |= DCACHE_RCUACCESS; 2758 else 2759 WARN_ON(!--old_parent->d_lockref.count); 2760 } else { 2761 target->d_parent = old_parent; 2762 swap_names(dentry, target); 2763 list_move(&target->d_child, &target->d_parent->d_subdirs); 2764 __d_rehash(target); 2765 fsnotify_update_flags(target); 2766 } 2767 list_move(&dentry->d_child, &dentry->d_parent->d_subdirs); 2768 __d_rehash(dentry); 2769 fsnotify_update_flags(dentry); 2770 2771 write_seqcount_end(&target->d_seq); 2772 write_seqcount_end(&dentry->d_seq); 2773 2774 if (dir) 2775 end_dir_add(dir, n); 2776 2777 if (dentry->d_parent != old_parent) 2778 spin_unlock(&dentry->d_parent->d_lock); 2779 if (dentry != old_parent) 2780 spin_unlock(&old_parent->d_lock); 2781 spin_unlock(&target->d_lock); 2782 spin_unlock(&dentry->d_lock); 2783 } 2784 2785 /* 2786 * d_move - move a dentry 2787 * @dentry: entry to move 2788 * @target: new dentry 2789 * 2790 * Update the dcache to reflect the move of a file name. Negative 2791 * dcache entries should not be moved in this way. See the locking 2792 * requirements for __d_move. 2793 */ 2794 void d_move(struct dentry *dentry, struct dentry *target) 2795 { 2796 write_seqlock(&rename_lock); 2797 __d_move(dentry, target, false); 2798 write_sequnlock(&rename_lock); 2799 } 2800 EXPORT_SYMBOL(d_move); 2801 2802 /* 2803 * d_exchange - exchange two dentries 2804 * @dentry1: first dentry 2805 * @dentry2: second dentry 2806 */ 2807 void d_exchange(struct dentry *dentry1, struct dentry *dentry2) 2808 { 2809 write_seqlock(&rename_lock); 2810 2811 WARN_ON(!dentry1->d_inode); 2812 WARN_ON(!dentry2->d_inode); 2813 WARN_ON(IS_ROOT(dentry1)); 2814 WARN_ON(IS_ROOT(dentry2)); 2815 2816 __d_move(dentry1, dentry2, true); 2817 2818 write_sequnlock(&rename_lock); 2819 } 2820 2821 /** 2822 * d_ancestor - search for an ancestor 2823 * @p1: ancestor dentry 2824 * @p2: child dentry 2825 * 2826 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is 2827 * an ancestor of p2, else NULL. 2828 */ 2829 struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2) 2830 { 2831 struct dentry *p; 2832 2833 for (p = p2; !IS_ROOT(p); p = p->d_parent) { 2834 if (p->d_parent == p1) 2835 return p; 2836 } 2837 return NULL; 2838 } 2839 2840 /* 2841 * This helper attempts to cope with remotely renamed directories 2842 * 2843 * It assumes that the caller is already holding 2844 * dentry->d_parent->d_inode->i_mutex, and rename_lock 2845 * 2846 * Note: If ever the locking in lock_rename() changes, then please 2847 * remember to update this too... 2848 */ 2849 static int __d_unalias(struct inode *inode, 2850 struct dentry *dentry, struct dentry *alias) 2851 { 2852 struct mutex *m1 = NULL; 2853 struct rw_semaphore *m2 = NULL; 2854 int ret = -ESTALE; 2855 2856 /* If alias and dentry share a parent, then no extra locks required */ 2857 if (alias->d_parent == dentry->d_parent) 2858 goto out_unalias; 2859 2860 /* See lock_rename() */ 2861 if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex)) 2862 goto out_err; 2863 m1 = &dentry->d_sb->s_vfs_rename_mutex; 2864 if (!inode_trylock_shared(alias->d_parent->d_inode)) 2865 goto out_err; 2866 m2 = &alias->d_parent->d_inode->i_rwsem; 2867 out_unalias: 2868 __d_move(alias, dentry, false); 2869 ret = 0; 2870 out_err: 2871 if (m2) 2872 up_read(m2); 2873 if (m1) 2874 mutex_unlock(m1); 2875 return ret; 2876 } 2877 2878 /** 2879 * d_splice_alias - splice a disconnected dentry into the tree if one exists 2880 * @inode: the inode which may have a disconnected dentry 2881 * @dentry: a negative dentry which we want to point to the inode. 2882 * 2883 * If inode is a directory and has an IS_ROOT alias, then d_move that in 2884 * place of the given dentry and return it, else simply d_add the inode 2885 * to the dentry and return NULL. 2886 * 2887 * If a non-IS_ROOT directory is found, the filesystem is corrupt, and 2888 * we should error out: directories can't have multiple aliases. 2889 * 2890 * This is needed in the lookup routine of any filesystem that is exportable 2891 * (via knfsd) so that we can build dcache paths to directories effectively. 2892 * 2893 * If a dentry was found and moved, then it is returned. Otherwise NULL 2894 * is returned. This matches the expected return value of ->lookup. 2895 * 2896 * Cluster filesystems may call this function with a negative, hashed dentry. 2897 * In that case, we know that the inode will be a regular file, and also this 2898 * will only occur during atomic_open. So we need to check for the dentry 2899 * being already hashed only in the final case. 2900 */ 2901 struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry) 2902 { 2903 if (IS_ERR(inode)) 2904 return ERR_CAST(inode); 2905 2906 BUG_ON(!d_unhashed(dentry)); 2907 2908 if (!inode) 2909 goto out; 2910 2911 security_d_instantiate(dentry, inode); 2912 spin_lock(&inode->i_lock); 2913 if (S_ISDIR(inode->i_mode)) { 2914 struct dentry *new = __d_find_any_alias(inode); 2915 if (unlikely(new)) { 2916 /* The reference to new ensures it remains an alias */ 2917 spin_unlock(&inode->i_lock); 2918 write_seqlock(&rename_lock); 2919 if (unlikely(d_ancestor(new, dentry))) { 2920 write_sequnlock(&rename_lock); 2921 dput(new); 2922 new = ERR_PTR(-ELOOP); 2923 pr_warn_ratelimited( 2924 "VFS: Lookup of '%s' in %s %s" 2925 " would have caused loop\n", 2926 dentry->d_name.name, 2927 inode->i_sb->s_type->name, 2928 inode->i_sb->s_id); 2929 } else if (!IS_ROOT(new)) { 2930 struct dentry *old_parent = dget(new->d_parent); 2931 int err = __d_unalias(inode, dentry, new); 2932 write_sequnlock(&rename_lock); 2933 if (err) { 2934 dput(new); 2935 new = ERR_PTR(err); 2936 } 2937 dput(old_parent); 2938 } else { 2939 __d_move(new, dentry, false); 2940 write_sequnlock(&rename_lock); 2941 } 2942 iput(inode); 2943 return new; 2944 } 2945 } 2946 out: 2947 __d_add(dentry, inode); 2948 return NULL; 2949 } 2950 EXPORT_SYMBOL(d_splice_alias); 2951 2952 /* 2953 * Test whether new_dentry is a subdirectory of old_dentry. 2954 * 2955 * Trivially implemented using the dcache structure 2956 */ 2957 2958 /** 2959 * is_subdir - is new dentry a subdirectory of old_dentry 2960 * @new_dentry: new dentry 2961 * @old_dentry: old dentry 2962 * 2963 * Returns true if new_dentry is a subdirectory of the parent (at any depth). 2964 * Returns false otherwise. 2965 * Caller must ensure that "new_dentry" is pinned before calling is_subdir() 2966 */ 2967 2968 bool is_subdir(struct dentry *new_dentry, struct dentry *old_dentry) 2969 { 2970 bool result; 2971 unsigned seq; 2972 2973 if (new_dentry == old_dentry) 2974 return true; 2975 2976 do { 2977 /* for restarting inner loop in case of seq retry */ 2978 seq = read_seqbegin(&rename_lock); 2979 /* 2980 * Need rcu_readlock to protect against the d_parent trashing 2981 * due to d_move 2982 */ 2983 rcu_read_lock(); 2984 if (d_ancestor(old_dentry, new_dentry)) 2985 result = true; 2986 else 2987 result = false; 2988 rcu_read_unlock(); 2989 } while (read_seqretry(&rename_lock, seq)); 2990 2991 return result; 2992 } 2993 EXPORT_SYMBOL(is_subdir); 2994 2995 static enum d_walk_ret d_genocide_kill(void *data, struct dentry *dentry) 2996 { 2997 struct dentry *root = data; 2998 if (dentry != root) { 2999 if (d_unhashed(dentry) || !dentry->d_inode) 3000 return D_WALK_SKIP; 3001 3002 if (!(dentry->d_flags & DCACHE_GENOCIDE)) { 3003 dentry->d_flags |= DCACHE_GENOCIDE; 3004 dentry->d_lockref.count--; 3005 } 3006 } 3007 return D_WALK_CONTINUE; 3008 } 3009 3010 void d_genocide(struct dentry *parent) 3011 { 3012 d_walk(parent, parent, d_genocide_kill); 3013 } 3014 3015 EXPORT_SYMBOL(d_genocide); 3016 3017 void d_tmpfile(struct dentry *dentry, struct inode *inode) 3018 { 3019 inode_dec_link_count(inode); 3020 BUG_ON(dentry->d_name.name != dentry->d_iname || 3021 !hlist_unhashed(&dentry->d_u.d_alias) || 3022 !d_unlinked(dentry)); 3023 spin_lock(&dentry->d_parent->d_lock); 3024 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED); 3025 dentry->d_name.len = sprintf(dentry->d_iname, "#%llu", 3026 (unsigned long long)inode->i_ino); 3027 spin_unlock(&dentry->d_lock); 3028 spin_unlock(&dentry->d_parent->d_lock); 3029 d_instantiate(dentry, inode); 3030 } 3031 EXPORT_SYMBOL(d_tmpfile); 3032 3033 static __initdata unsigned long dhash_entries; 3034 static int __init set_dhash_entries(char *str) 3035 { 3036 if (!str) 3037 return 0; 3038 dhash_entries = simple_strtoul(str, &str, 0); 3039 return 1; 3040 } 3041 __setup("dhash_entries=", set_dhash_entries); 3042 3043 static void __init dcache_init_early(void) 3044 { 3045 /* If hashes are distributed across NUMA nodes, defer 3046 * hash allocation until vmalloc space is available. 3047 */ 3048 if (hashdist) 3049 return; 3050 3051 dentry_hashtable = 3052 alloc_large_system_hash("Dentry cache", 3053 sizeof(struct hlist_bl_head), 3054 dhash_entries, 3055 13, 3056 HASH_EARLY | HASH_ZERO, 3057 &d_hash_shift, 3058 NULL, 3059 0, 3060 0); 3061 d_hash_shift = 32 - d_hash_shift; 3062 } 3063 3064 static void __init dcache_init(void) 3065 { 3066 /* 3067 * A constructor could be added for stable state like the lists, 3068 * but it is probably not worth it because of the cache nature 3069 * of the dcache. 3070 */ 3071 dentry_cache = KMEM_CACHE_USERCOPY(dentry, 3072 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD|SLAB_ACCOUNT, 3073 d_iname); 3074 3075 /* Hash may have been set up in dcache_init_early */ 3076 if (!hashdist) 3077 return; 3078 3079 dentry_hashtable = 3080 alloc_large_system_hash("Dentry cache", 3081 sizeof(struct hlist_bl_head), 3082 dhash_entries, 3083 13, 3084 HASH_ZERO, 3085 &d_hash_shift, 3086 NULL, 3087 0, 3088 0); 3089 d_hash_shift = 32 - d_hash_shift; 3090 } 3091 3092 /* SLAB cache for __getname() consumers */ 3093 struct kmem_cache *names_cachep __read_mostly; 3094 EXPORT_SYMBOL(names_cachep); 3095 3096 void __init vfs_caches_init_early(void) 3097 { 3098 int i; 3099 3100 for (i = 0; i < ARRAY_SIZE(in_lookup_hashtable); i++) 3101 INIT_HLIST_BL_HEAD(&in_lookup_hashtable[i]); 3102 3103 dcache_init_early(); 3104 inode_init_early(); 3105 } 3106 3107 void __init vfs_caches_init(void) 3108 { 3109 names_cachep = kmem_cache_create_usercopy("names_cache", PATH_MAX, 0, 3110 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 0, PATH_MAX, NULL); 3111 3112 dcache_init(); 3113 inode_init(); 3114 files_init(); 3115 files_maxfiles_init(); 3116 mnt_init(); 3117 bdev_cache_init(); 3118 chrdev_init(); 3119 } 3120