xref: /openbmc/linux/fs/dcache.c (revision 63dc02bd)
1 /*
2  * fs/dcache.c
3  *
4  * Complete reimplementation
5  * (C) 1997 Thomas Schoebel-Theuer,
6  * with heavy changes by Linus Torvalds
7  */
8 
9 /*
10  * Notes on the allocation strategy:
11  *
12  * The dcache is a master of the icache - whenever a dcache entry
13  * exists, the inode will always exist. "iput()" is done either when
14  * the dcache entry is deleted or garbage collected.
15  */
16 
17 #include <linux/syscalls.h>
18 #include <linux/string.h>
19 #include <linux/mm.h>
20 #include <linux/fs.h>
21 #include <linux/fsnotify.h>
22 #include <linux/slab.h>
23 #include <linux/init.h>
24 #include <linux/hash.h>
25 #include <linux/cache.h>
26 #include <linux/export.h>
27 #include <linux/mount.h>
28 #include <linux/file.h>
29 #include <asm/uaccess.h>
30 #include <linux/security.h>
31 #include <linux/seqlock.h>
32 #include <linux/swap.h>
33 #include <linux/bootmem.h>
34 #include <linux/fs_struct.h>
35 #include <linux/hardirq.h>
36 #include <linux/bit_spinlock.h>
37 #include <linux/rculist_bl.h>
38 #include <linux/prefetch.h>
39 #include <linux/ratelimit.h>
40 #include "internal.h"
41 #include "mount.h"
42 
43 /*
44  * Usage:
45  * dcache->d_inode->i_lock protects:
46  *   - i_dentry, d_alias, d_inode of aliases
47  * dcache_hash_bucket lock protects:
48  *   - the dcache hash table
49  * s_anon bl list spinlock protects:
50  *   - the s_anon list (see __d_drop)
51  * dcache_lru_lock protects:
52  *   - the dcache lru lists and counters
53  * d_lock protects:
54  *   - d_flags
55  *   - d_name
56  *   - d_lru
57  *   - d_count
58  *   - d_unhashed()
59  *   - d_parent and d_subdirs
60  *   - childrens' d_child and d_parent
61  *   - d_alias, d_inode
62  *
63  * Ordering:
64  * dentry->d_inode->i_lock
65  *   dentry->d_lock
66  *     dcache_lru_lock
67  *     dcache_hash_bucket lock
68  *     s_anon lock
69  *
70  * If there is an ancestor relationship:
71  * dentry->d_parent->...->d_parent->d_lock
72  *   ...
73  *     dentry->d_parent->d_lock
74  *       dentry->d_lock
75  *
76  * If no ancestor relationship:
77  * if (dentry1 < dentry2)
78  *   dentry1->d_lock
79  *     dentry2->d_lock
80  */
81 int sysctl_vfs_cache_pressure __read_mostly = 100;
82 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
83 
84 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(dcache_lru_lock);
85 __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
86 
87 EXPORT_SYMBOL(rename_lock);
88 
89 static struct kmem_cache *dentry_cache __read_mostly;
90 
91 /*
92  * This is the single most critical data structure when it comes
93  * to the dcache: the hashtable for lookups. Somebody should try
94  * to make this good - I've just made it work.
95  *
96  * This hash-function tries to avoid losing too many bits of hash
97  * information, yet avoid using a prime hash-size or similar.
98  */
99 #define D_HASHBITS     d_hash_shift
100 #define D_HASHMASK     d_hash_mask
101 
102 static unsigned int d_hash_mask __read_mostly;
103 static unsigned int d_hash_shift __read_mostly;
104 
105 static struct hlist_bl_head *dentry_hashtable __read_mostly;
106 
107 static inline struct hlist_bl_head *d_hash(const struct dentry *parent,
108 					unsigned int hash)
109 {
110 	hash += (unsigned long) parent / L1_CACHE_BYTES;
111 	hash = hash + (hash >> D_HASHBITS);
112 	return dentry_hashtable + (hash & D_HASHMASK);
113 }
114 
115 /* Statistics gathering. */
116 struct dentry_stat_t dentry_stat = {
117 	.age_limit = 45,
118 };
119 
120 static DEFINE_PER_CPU(unsigned int, nr_dentry);
121 
122 #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
123 static int get_nr_dentry(void)
124 {
125 	int i;
126 	int sum = 0;
127 	for_each_possible_cpu(i)
128 		sum += per_cpu(nr_dentry, i);
129 	return sum < 0 ? 0 : sum;
130 }
131 
132 int proc_nr_dentry(ctl_table *table, int write, void __user *buffer,
133 		   size_t *lenp, loff_t *ppos)
134 {
135 	dentry_stat.nr_dentry = get_nr_dentry();
136 	return proc_dointvec(table, write, buffer, lenp, ppos);
137 }
138 #endif
139 
140 /*
141  * Compare 2 name strings, return 0 if they match, otherwise non-zero.
142  * The strings are both count bytes long, and count is non-zero.
143  */
144 #ifdef CONFIG_DCACHE_WORD_ACCESS
145 
146 #include <asm/word-at-a-time.h>
147 /*
148  * NOTE! 'cs' and 'scount' come from a dentry, so it has a
149  * aligned allocation for this particular component. We don't
150  * strictly need the load_unaligned_zeropad() safety, but it
151  * doesn't hurt either.
152  *
153  * In contrast, 'ct' and 'tcount' can be from a pathname, and do
154  * need the careful unaligned handling.
155  */
156 static inline int dentry_cmp(const unsigned char *cs, size_t scount,
157 				const unsigned char *ct, size_t tcount)
158 {
159 	unsigned long a,b,mask;
160 
161 	if (unlikely(scount != tcount))
162 		return 1;
163 
164 	for (;;) {
165 		a = load_unaligned_zeropad(cs);
166 		b = load_unaligned_zeropad(ct);
167 		if (tcount < sizeof(unsigned long))
168 			break;
169 		if (unlikely(a != b))
170 			return 1;
171 		cs += sizeof(unsigned long);
172 		ct += sizeof(unsigned long);
173 		tcount -= sizeof(unsigned long);
174 		if (!tcount)
175 			return 0;
176 	}
177 	mask = ~(~0ul << tcount*8);
178 	return unlikely(!!((a ^ b) & mask));
179 }
180 
181 #else
182 
183 static inline int dentry_cmp(const unsigned char *cs, size_t scount,
184 				const unsigned char *ct, size_t tcount)
185 {
186 	if (scount != tcount)
187 		return 1;
188 
189 	do {
190 		if (*cs != *ct)
191 			return 1;
192 		cs++;
193 		ct++;
194 		tcount--;
195 	} while (tcount);
196 	return 0;
197 }
198 
199 #endif
200 
201 static void __d_free(struct rcu_head *head)
202 {
203 	struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
204 
205 	WARN_ON(!list_empty(&dentry->d_alias));
206 	if (dname_external(dentry))
207 		kfree(dentry->d_name.name);
208 	kmem_cache_free(dentry_cache, dentry);
209 }
210 
211 /*
212  * no locks, please.
213  */
214 static void d_free(struct dentry *dentry)
215 {
216 	BUG_ON(dentry->d_count);
217 	this_cpu_dec(nr_dentry);
218 	if (dentry->d_op && dentry->d_op->d_release)
219 		dentry->d_op->d_release(dentry);
220 
221 	/* if dentry was never visible to RCU, immediate free is OK */
222 	if (!(dentry->d_flags & DCACHE_RCUACCESS))
223 		__d_free(&dentry->d_u.d_rcu);
224 	else
225 		call_rcu(&dentry->d_u.d_rcu, __d_free);
226 }
227 
228 /**
229  * dentry_rcuwalk_barrier - invalidate in-progress rcu-walk lookups
230  * @dentry: the target dentry
231  * After this call, in-progress rcu-walk path lookup will fail. This
232  * should be called after unhashing, and after changing d_inode (if
233  * the dentry has not already been unhashed).
234  */
235 static inline void dentry_rcuwalk_barrier(struct dentry *dentry)
236 {
237 	assert_spin_locked(&dentry->d_lock);
238 	/* Go through a barrier */
239 	write_seqcount_barrier(&dentry->d_seq);
240 }
241 
242 /*
243  * Release the dentry's inode, using the filesystem
244  * d_iput() operation if defined. Dentry has no refcount
245  * and is unhashed.
246  */
247 static void dentry_iput(struct dentry * dentry)
248 	__releases(dentry->d_lock)
249 	__releases(dentry->d_inode->i_lock)
250 {
251 	struct inode *inode = dentry->d_inode;
252 	if (inode) {
253 		dentry->d_inode = NULL;
254 		list_del_init(&dentry->d_alias);
255 		spin_unlock(&dentry->d_lock);
256 		spin_unlock(&inode->i_lock);
257 		if (!inode->i_nlink)
258 			fsnotify_inoderemove(inode);
259 		if (dentry->d_op && dentry->d_op->d_iput)
260 			dentry->d_op->d_iput(dentry, inode);
261 		else
262 			iput(inode);
263 	} else {
264 		spin_unlock(&dentry->d_lock);
265 	}
266 }
267 
268 /*
269  * Release the dentry's inode, using the filesystem
270  * d_iput() operation if defined. dentry remains in-use.
271  */
272 static void dentry_unlink_inode(struct dentry * dentry)
273 	__releases(dentry->d_lock)
274 	__releases(dentry->d_inode->i_lock)
275 {
276 	struct inode *inode = dentry->d_inode;
277 	dentry->d_inode = NULL;
278 	list_del_init(&dentry->d_alias);
279 	dentry_rcuwalk_barrier(dentry);
280 	spin_unlock(&dentry->d_lock);
281 	spin_unlock(&inode->i_lock);
282 	if (!inode->i_nlink)
283 		fsnotify_inoderemove(inode);
284 	if (dentry->d_op && dentry->d_op->d_iput)
285 		dentry->d_op->d_iput(dentry, inode);
286 	else
287 		iput(inode);
288 }
289 
290 /*
291  * dentry_lru_(add|del|prune|move_tail) must be called with d_lock held.
292  */
293 static void dentry_lru_add(struct dentry *dentry)
294 {
295 	if (list_empty(&dentry->d_lru)) {
296 		spin_lock(&dcache_lru_lock);
297 		list_add(&dentry->d_lru, &dentry->d_sb->s_dentry_lru);
298 		dentry->d_sb->s_nr_dentry_unused++;
299 		dentry_stat.nr_unused++;
300 		spin_unlock(&dcache_lru_lock);
301 	}
302 }
303 
304 static void __dentry_lru_del(struct dentry *dentry)
305 {
306 	list_del_init(&dentry->d_lru);
307 	dentry->d_flags &= ~DCACHE_SHRINK_LIST;
308 	dentry->d_sb->s_nr_dentry_unused--;
309 	dentry_stat.nr_unused--;
310 }
311 
312 /*
313  * Remove a dentry with references from the LRU.
314  */
315 static void dentry_lru_del(struct dentry *dentry)
316 {
317 	if (!list_empty(&dentry->d_lru)) {
318 		spin_lock(&dcache_lru_lock);
319 		__dentry_lru_del(dentry);
320 		spin_unlock(&dcache_lru_lock);
321 	}
322 }
323 
324 /*
325  * Remove a dentry that is unreferenced and about to be pruned
326  * (unhashed and destroyed) from the LRU, and inform the file system.
327  * This wrapper should be called _prior_ to unhashing a victim dentry.
328  */
329 static void dentry_lru_prune(struct dentry *dentry)
330 {
331 	if (!list_empty(&dentry->d_lru)) {
332 		if (dentry->d_flags & DCACHE_OP_PRUNE)
333 			dentry->d_op->d_prune(dentry);
334 
335 		spin_lock(&dcache_lru_lock);
336 		__dentry_lru_del(dentry);
337 		spin_unlock(&dcache_lru_lock);
338 	}
339 }
340 
341 static void dentry_lru_move_list(struct dentry *dentry, struct list_head *list)
342 {
343 	spin_lock(&dcache_lru_lock);
344 	if (list_empty(&dentry->d_lru)) {
345 		list_add_tail(&dentry->d_lru, list);
346 		dentry->d_sb->s_nr_dentry_unused++;
347 		dentry_stat.nr_unused++;
348 	} else {
349 		list_move_tail(&dentry->d_lru, list);
350 	}
351 	spin_unlock(&dcache_lru_lock);
352 }
353 
354 /**
355  * d_kill - kill dentry and return parent
356  * @dentry: dentry to kill
357  * @parent: parent dentry
358  *
359  * The dentry must already be unhashed and removed from the LRU.
360  *
361  * If this is the root of the dentry tree, return NULL.
362  *
363  * dentry->d_lock and parent->d_lock must be held by caller, and are dropped by
364  * d_kill.
365  */
366 static struct dentry *d_kill(struct dentry *dentry, struct dentry *parent)
367 	__releases(dentry->d_lock)
368 	__releases(parent->d_lock)
369 	__releases(dentry->d_inode->i_lock)
370 {
371 	list_del(&dentry->d_u.d_child);
372 	/*
373 	 * Inform try_to_ascend() that we are no longer attached to the
374 	 * dentry tree
375 	 */
376 	dentry->d_flags |= DCACHE_DISCONNECTED;
377 	if (parent)
378 		spin_unlock(&parent->d_lock);
379 	dentry_iput(dentry);
380 	/*
381 	 * dentry_iput drops the locks, at which point nobody (except
382 	 * transient RCU lookups) can reach this dentry.
383 	 */
384 	d_free(dentry);
385 	return parent;
386 }
387 
388 /*
389  * Unhash a dentry without inserting an RCU walk barrier or checking that
390  * dentry->d_lock is locked.  The caller must take care of that, if
391  * appropriate.
392  */
393 static void __d_shrink(struct dentry *dentry)
394 {
395 	if (!d_unhashed(dentry)) {
396 		struct hlist_bl_head *b;
397 		if (unlikely(dentry->d_flags & DCACHE_DISCONNECTED))
398 			b = &dentry->d_sb->s_anon;
399 		else
400 			b = d_hash(dentry->d_parent, dentry->d_name.hash);
401 
402 		hlist_bl_lock(b);
403 		__hlist_bl_del(&dentry->d_hash);
404 		dentry->d_hash.pprev = NULL;
405 		hlist_bl_unlock(b);
406 	}
407 }
408 
409 /**
410  * d_drop - drop a dentry
411  * @dentry: dentry to drop
412  *
413  * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
414  * be found through a VFS lookup any more. Note that this is different from
415  * deleting the dentry - d_delete will try to mark the dentry negative if
416  * possible, giving a successful _negative_ lookup, while d_drop will
417  * just make the cache lookup fail.
418  *
419  * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
420  * reason (NFS timeouts or autofs deletes).
421  *
422  * __d_drop requires dentry->d_lock.
423  */
424 void __d_drop(struct dentry *dentry)
425 {
426 	if (!d_unhashed(dentry)) {
427 		__d_shrink(dentry);
428 		dentry_rcuwalk_barrier(dentry);
429 	}
430 }
431 EXPORT_SYMBOL(__d_drop);
432 
433 void d_drop(struct dentry *dentry)
434 {
435 	spin_lock(&dentry->d_lock);
436 	__d_drop(dentry);
437 	spin_unlock(&dentry->d_lock);
438 }
439 EXPORT_SYMBOL(d_drop);
440 
441 /*
442  * d_clear_need_lookup - drop a dentry from cache and clear the need lookup flag
443  * @dentry: dentry to drop
444  *
445  * This is called when we do a lookup on a placeholder dentry that needed to be
446  * looked up.  The dentry should have been hashed in order for it to be found by
447  * the lookup code, but now needs to be unhashed while we do the actual lookup
448  * and clear the DCACHE_NEED_LOOKUP flag.
449  */
450 void d_clear_need_lookup(struct dentry *dentry)
451 {
452 	spin_lock(&dentry->d_lock);
453 	__d_drop(dentry);
454 	dentry->d_flags &= ~DCACHE_NEED_LOOKUP;
455 	spin_unlock(&dentry->d_lock);
456 }
457 EXPORT_SYMBOL(d_clear_need_lookup);
458 
459 /*
460  * Finish off a dentry we've decided to kill.
461  * dentry->d_lock must be held, returns with it unlocked.
462  * If ref is non-zero, then decrement the refcount too.
463  * Returns dentry requiring refcount drop, or NULL if we're done.
464  */
465 static inline struct dentry *dentry_kill(struct dentry *dentry, int ref)
466 	__releases(dentry->d_lock)
467 {
468 	struct inode *inode;
469 	struct dentry *parent;
470 
471 	inode = dentry->d_inode;
472 	if (inode && !spin_trylock(&inode->i_lock)) {
473 relock:
474 		spin_unlock(&dentry->d_lock);
475 		cpu_relax();
476 		return dentry; /* try again with same dentry */
477 	}
478 	if (IS_ROOT(dentry))
479 		parent = NULL;
480 	else
481 		parent = dentry->d_parent;
482 	if (parent && !spin_trylock(&parent->d_lock)) {
483 		if (inode)
484 			spin_unlock(&inode->i_lock);
485 		goto relock;
486 	}
487 
488 	if (ref)
489 		dentry->d_count--;
490 	/*
491 	 * if dentry was on the d_lru list delete it from there.
492 	 * inform the fs via d_prune that this dentry is about to be
493 	 * unhashed and destroyed.
494 	 */
495 	dentry_lru_prune(dentry);
496 	/* if it was on the hash then remove it */
497 	__d_drop(dentry);
498 	return d_kill(dentry, parent);
499 }
500 
501 /*
502  * This is dput
503  *
504  * This is complicated by the fact that we do not want to put
505  * dentries that are no longer on any hash chain on the unused
506  * list: we'd much rather just get rid of them immediately.
507  *
508  * However, that implies that we have to traverse the dentry
509  * tree upwards to the parents which might _also_ now be
510  * scheduled for deletion (it may have been only waiting for
511  * its last child to go away).
512  *
513  * This tail recursion is done by hand as we don't want to depend
514  * on the compiler to always get this right (gcc generally doesn't).
515  * Real recursion would eat up our stack space.
516  */
517 
518 /*
519  * dput - release a dentry
520  * @dentry: dentry to release
521  *
522  * Release a dentry. This will drop the usage count and if appropriate
523  * call the dentry unlink method as well as removing it from the queues and
524  * releasing its resources. If the parent dentries were scheduled for release
525  * they too may now get deleted.
526  */
527 void dput(struct dentry *dentry)
528 {
529 	if (!dentry)
530 		return;
531 
532 repeat:
533 	if (dentry->d_count == 1)
534 		might_sleep();
535 	spin_lock(&dentry->d_lock);
536 	BUG_ON(!dentry->d_count);
537 	if (dentry->d_count > 1) {
538 		dentry->d_count--;
539 		spin_unlock(&dentry->d_lock);
540 		return;
541 	}
542 
543 	if (dentry->d_flags & DCACHE_OP_DELETE) {
544 		if (dentry->d_op->d_delete(dentry))
545 			goto kill_it;
546 	}
547 
548 	/* Unreachable? Get rid of it */
549  	if (d_unhashed(dentry))
550 		goto kill_it;
551 
552 	/*
553 	 * If this dentry needs lookup, don't set the referenced flag so that it
554 	 * is more likely to be cleaned up by the dcache shrinker in case of
555 	 * memory pressure.
556 	 */
557 	if (!d_need_lookup(dentry))
558 		dentry->d_flags |= DCACHE_REFERENCED;
559 	dentry_lru_add(dentry);
560 
561 	dentry->d_count--;
562 	spin_unlock(&dentry->d_lock);
563 	return;
564 
565 kill_it:
566 	dentry = dentry_kill(dentry, 1);
567 	if (dentry)
568 		goto repeat;
569 }
570 EXPORT_SYMBOL(dput);
571 
572 /**
573  * d_invalidate - invalidate a dentry
574  * @dentry: dentry to invalidate
575  *
576  * Try to invalidate the dentry if it turns out to be
577  * possible. If there are other dentries that can be
578  * reached through this one we can't delete it and we
579  * return -EBUSY. On success we return 0.
580  *
581  * no dcache lock.
582  */
583 
584 int d_invalidate(struct dentry * dentry)
585 {
586 	/*
587 	 * If it's already been dropped, return OK.
588 	 */
589 	spin_lock(&dentry->d_lock);
590 	if (d_unhashed(dentry)) {
591 		spin_unlock(&dentry->d_lock);
592 		return 0;
593 	}
594 	/*
595 	 * Check whether to do a partial shrink_dcache
596 	 * to get rid of unused child entries.
597 	 */
598 	if (!list_empty(&dentry->d_subdirs)) {
599 		spin_unlock(&dentry->d_lock);
600 		shrink_dcache_parent(dentry);
601 		spin_lock(&dentry->d_lock);
602 	}
603 
604 	/*
605 	 * Somebody else still using it?
606 	 *
607 	 * If it's a directory, we can't drop it
608 	 * for fear of somebody re-populating it
609 	 * with children (even though dropping it
610 	 * would make it unreachable from the root,
611 	 * we might still populate it if it was a
612 	 * working directory or similar).
613 	 * We also need to leave mountpoints alone,
614 	 * directory or not.
615 	 */
616 	if (dentry->d_count > 1 && dentry->d_inode) {
617 		if (S_ISDIR(dentry->d_inode->i_mode) || d_mountpoint(dentry)) {
618 			spin_unlock(&dentry->d_lock);
619 			return -EBUSY;
620 		}
621 	}
622 
623 	__d_drop(dentry);
624 	spin_unlock(&dentry->d_lock);
625 	return 0;
626 }
627 EXPORT_SYMBOL(d_invalidate);
628 
629 /* This must be called with d_lock held */
630 static inline void __dget_dlock(struct dentry *dentry)
631 {
632 	dentry->d_count++;
633 }
634 
635 static inline void __dget(struct dentry *dentry)
636 {
637 	spin_lock(&dentry->d_lock);
638 	__dget_dlock(dentry);
639 	spin_unlock(&dentry->d_lock);
640 }
641 
642 struct dentry *dget_parent(struct dentry *dentry)
643 {
644 	struct dentry *ret;
645 
646 repeat:
647 	/*
648 	 * Don't need rcu_dereference because we re-check it was correct under
649 	 * the lock.
650 	 */
651 	rcu_read_lock();
652 	ret = dentry->d_parent;
653 	spin_lock(&ret->d_lock);
654 	if (unlikely(ret != dentry->d_parent)) {
655 		spin_unlock(&ret->d_lock);
656 		rcu_read_unlock();
657 		goto repeat;
658 	}
659 	rcu_read_unlock();
660 	BUG_ON(!ret->d_count);
661 	ret->d_count++;
662 	spin_unlock(&ret->d_lock);
663 	return ret;
664 }
665 EXPORT_SYMBOL(dget_parent);
666 
667 /**
668  * d_find_alias - grab a hashed alias of inode
669  * @inode: inode in question
670  * @want_discon:  flag, used by d_splice_alias, to request
671  *          that only a DISCONNECTED alias be returned.
672  *
673  * If inode has a hashed alias, or is a directory and has any alias,
674  * acquire the reference to alias and return it. Otherwise return NULL.
675  * Notice that if inode is a directory there can be only one alias and
676  * it can be unhashed only if it has no children, or if it is the root
677  * of a filesystem.
678  *
679  * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
680  * any other hashed alias over that one unless @want_discon is set,
681  * in which case only return an IS_ROOT, DCACHE_DISCONNECTED alias.
682  */
683 static struct dentry *__d_find_alias(struct inode *inode, int want_discon)
684 {
685 	struct dentry *alias, *discon_alias;
686 
687 again:
688 	discon_alias = NULL;
689 	list_for_each_entry(alias, &inode->i_dentry, d_alias) {
690 		spin_lock(&alias->d_lock);
691  		if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
692 			if (IS_ROOT(alias) &&
693 			    (alias->d_flags & DCACHE_DISCONNECTED)) {
694 				discon_alias = alias;
695 			} else if (!want_discon) {
696 				__dget_dlock(alias);
697 				spin_unlock(&alias->d_lock);
698 				return alias;
699 			}
700 		}
701 		spin_unlock(&alias->d_lock);
702 	}
703 	if (discon_alias) {
704 		alias = discon_alias;
705 		spin_lock(&alias->d_lock);
706 		if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
707 			if (IS_ROOT(alias) &&
708 			    (alias->d_flags & DCACHE_DISCONNECTED)) {
709 				__dget_dlock(alias);
710 				spin_unlock(&alias->d_lock);
711 				return alias;
712 			}
713 		}
714 		spin_unlock(&alias->d_lock);
715 		goto again;
716 	}
717 	return NULL;
718 }
719 
720 struct dentry *d_find_alias(struct inode *inode)
721 {
722 	struct dentry *de = NULL;
723 
724 	if (!list_empty(&inode->i_dentry)) {
725 		spin_lock(&inode->i_lock);
726 		de = __d_find_alias(inode, 0);
727 		spin_unlock(&inode->i_lock);
728 	}
729 	return de;
730 }
731 EXPORT_SYMBOL(d_find_alias);
732 
733 /*
734  *	Try to kill dentries associated with this inode.
735  * WARNING: you must own a reference to inode.
736  */
737 void d_prune_aliases(struct inode *inode)
738 {
739 	struct dentry *dentry;
740 restart:
741 	spin_lock(&inode->i_lock);
742 	list_for_each_entry(dentry, &inode->i_dentry, d_alias) {
743 		spin_lock(&dentry->d_lock);
744 		if (!dentry->d_count) {
745 			__dget_dlock(dentry);
746 			__d_drop(dentry);
747 			spin_unlock(&dentry->d_lock);
748 			spin_unlock(&inode->i_lock);
749 			dput(dentry);
750 			goto restart;
751 		}
752 		spin_unlock(&dentry->d_lock);
753 	}
754 	spin_unlock(&inode->i_lock);
755 }
756 EXPORT_SYMBOL(d_prune_aliases);
757 
758 /*
759  * Try to throw away a dentry - free the inode, dput the parent.
760  * Requires dentry->d_lock is held, and dentry->d_count == 0.
761  * Releases dentry->d_lock.
762  *
763  * This may fail if locks cannot be acquired no problem, just try again.
764  */
765 static void try_prune_one_dentry(struct dentry *dentry)
766 	__releases(dentry->d_lock)
767 {
768 	struct dentry *parent;
769 
770 	parent = dentry_kill(dentry, 0);
771 	/*
772 	 * If dentry_kill returns NULL, we have nothing more to do.
773 	 * if it returns the same dentry, trylocks failed. In either
774 	 * case, just loop again.
775 	 *
776 	 * Otherwise, we need to prune ancestors too. This is necessary
777 	 * to prevent quadratic behavior of shrink_dcache_parent(), but
778 	 * is also expected to be beneficial in reducing dentry cache
779 	 * fragmentation.
780 	 */
781 	if (!parent)
782 		return;
783 	if (parent == dentry)
784 		return;
785 
786 	/* Prune ancestors. */
787 	dentry = parent;
788 	while (dentry) {
789 		spin_lock(&dentry->d_lock);
790 		if (dentry->d_count > 1) {
791 			dentry->d_count--;
792 			spin_unlock(&dentry->d_lock);
793 			return;
794 		}
795 		dentry = dentry_kill(dentry, 1);
796 	}
797 }
798 
799 static void shrink_dentry_list(struct list_head *list)
800 {
801 	struct dentry *dentry;
802 
803 	rcu_read_lock();
804 	for (;;) {
805 		dentry = list_entry_rcu(list->prev, struct dentry, d_lru);
806 		if (&dentry->d_lru == list)
807 			break; /* empty */
808 		spin_lock(&dentry->d_lock);
809 		if (dentry != list_entry(list->prev, struct dentry, d_lru)) {
810 			spin_unlock(&dentry->d_lock);
811 			continue;
812 		}
813 
814 		/*
815 		 * We found an inuse dentry which was not removed from
816 		 * the LRU because of laziness during lookup.  Do not free
817 		 * it - just keep it off the LRU list.
818 		 */
819 		if (dentry->d_count) {
820 			dentry_lru_del(dentry);
821 			spin_unlock(&dentry->d_lock);
822 			continue;
823 		}
824 
825 		rcu_read_unlock();
826 
827 		try_prune_one_dentry(dentry);
828 
829 		rcu_read_lock();
830 	}
831 	rcu_read_unlock();
832 }
833 
834 /**
835  * prune_dcache_sb - shrink the dcache
836  * @sb: superblock
837  * @count: number of entries to try to free
838  *
839  * Attempt to shrink the superblock dcache LRU by @count entries. This is
840  * done when we need more memory an called from the superblock shrinker
841  * function.
842  *
843  * This function may fail to free any resources if all the dentries are in
844  * use.
845  */
846 void prune_dcache_sb(struct super_block *sb, int count)
847 {
848 	struct dentry *dentry;
849 	LIST_HEAD(referenced);
850 	LIST_HEAD(tmp);
851 
852 relock:
853 	spin_lock(&dcache_lru_lock);
854 	while (!list_empty(&sb->s_dentry_lru)) {
855 		dentry = list_entry(sb->s_dentry_lru.prev,
856 				struct dentry, d_lru);
857 		BUG_ON(dentry->d_sb != sb);
858 
859 		if (!spin_trylock(&dentry->d_lock)) {
860 			spin_unlock(&dcache_lru_lock);
861 			cpu_relax();
862 			goto relock;
863 		}
864 
865 		if (dentry->d_flags & DCACHE_REFERENCED) {
866 			dentry->d_flags &= ~DCACHE_REFERENCED;
867 			list_move(&dentry->d_lru, &referenced);
868 			spin_unlock(&dentry->d_lock);
869 		} else {
870 			list_move_tail(&dentry->d_lru, &tmp);
871 			dentry->d_flags |= DCACHE_SHRINK_LIST;
872 			spin_unlock(&dentry->d_lock);
873 			if (!--count)
874 				break;
875 		}
876 		cond_resched_lock(&dcache_lru_lock);
877 	}
878 	if (!list_empty(&referenced))
879 		list_splice(&referenced, &sb->s_dentry_lru);
880 	spin_unlock(&dcache_lru_lock);
881 
882 	shrink_dentry_list(&tmp);
883 }
884 
885 /**
886  * shrink_dcache_sb - shrink dcache for a superblock
887  * @sb: superblock
888  *
889  * Shrink the dcache for the specified super block. This is used to free
890  * the dcache before unmounting a file system.
891  */
892 void shrink_dcache_sb(struct super_block *sb)
893 {
894 	LIST_HEAD(tmp);
895 
896 	spin_lock(&dcache_lru_lock);
897 	while (!list_empty(&sb->s_dentry_lru)) {
898 		list_splice_init(&sb->s_dentry_lru, &tmp);
899 		spin_unlock(&dcache_lru_lock);
900 		shrink_dentry_list(&tmp);
901 		spin_lock(&dcache_lru_lock);
902 	}
903 	spin_unlock(&dcache_lru_lock);
904 }
905 EXPORT_SYMBOL(shrink_dcache_sb);
906 
907 /*
908  * destroy a single subtree of dentries for unmount
909  * - see the comments on shrink_dcache_for_umount() for a description of the
910  *   locking
911  */
912 static void shrink_dcache_for_umount_subtree(struct dentry *dentry)
913 {
914 	struct dentry *parent;
915 
916 	BUG_ON(!IS_ROOT(dentry));
917 
918 	for (;;) {
919 		/* descend to the first leaf in the current subtree */
920 		while (!list_empty(&dentry->d_subdirs))
921 			dentry = list_entry(dentry->d_subdirs.next,
922 					    struct dentry, d_u.d_child);
923 
924 		/* consume the dentries from this leaf up through its parents
925 		 * until we find one with children or run out altogether */
926 		do {
927 			struct inode *inode;
928 
929 			/*
930 			 * remove the dentry from the lru, and inform
931 			 * the fs that this dentry is about to be
932 			 * unhashed and destroyed.
933 			 */
934 			dentry_lru_prune(dentry);
935 			__d_shrink(dentry);
936 
937 			if (dentry->d_count != 0) {
938 				printk(KERN_ERR
939 				       "BUG: Dentry %p{i=%lx,n=%s}"
940 				       " still in use (%d)"
941 				       " [unmount of %s %s]\n",
942 				       dentry,
943 				       dentry->d_inode ?
944 				       dentry->d_inode->i_ino : 0UL,
945 				       dentry->d_name.name,
946 				       dentry->d_count,
947 				       dentry->d_sb->s_type->name,
948 				       dentry->d_sb->s_id);
949 				BUG();
950 			}
951 
952 			if (IS_ROOT(dentry)) {
953 				parent = NULL;
954 				list_del(&dentry->d_u.d_child);
955 			} else {
956 				parent = dentry->d_parent;
957 				parent->d_count--;
958 				list_del(&dentry->d_u.d_child);
959 			}
960 
961 			inode = dentry->d_inode;
962 			if (inode) {
963 				dentry->d_inode = NULL;
964 				list_del_init(&dentry->d_alias);
965 				if (dentry->d_op && dentry->d_op->d_iput)
966 					dentry->d_op->d_iput(dentry, inode);
967 				else
968 					iput(inode);
969 			}
970 
971 			d_free(dentry);
972 
973 			/* finished when we fall off the top of the tree,
974 			 * otherwise we ascend to the parent and move to the
975 			 * next sibling if there is one */
976 			if (!parent)
977 				return;
978 			dentry = parent;
979 		} while (list_empty(&dentry->d_subdirs));
980 
981 		dentry = list_entry(dentry->d_subdirs.next,
982 				    struct dentry, d_u.d_child);
983 	}
984 }
985 
986 /*
987  * destroy the dentries attached to a superblock on unmounting
988  * - we don't need to use dentry->d_lock because:
989  *   - the superblock is detached from all mountings and open files, so the
990  *     dentry trees will not be rearranged by the VFS
991  *   - s_umount is write-locked, so the memory pressure shrinker will ignore
992  *     any dentries belonging to this superblock that it comes across
993  *   - the filesystem itself is no longer permitted to rearrange the dentries
994  *     in this superblock
995  */
996 void shrink_dcache_for_umount(struct super_block *sb)
997 {
998 	struct dentry *dentry;
999 
1000 	if (down_read_trylock(&sb->s_umount))
1001 		BUG();
1002 
1003 	dentry = sb->s_root;
1004 	sb->s_root = NULL;
1005 	dentry->d_count--;
1006 	shrink_dcache_for_umount_subtree(dentry);
1007 
1008 	while (!hlist_bl_empty(&sb->s_anon)) {
1009 		dentry = hlist_bl_entry(hlist_bl_first(&sb->s_anon), struct dentry, d_hash);
1010 		shrink_dcache_for_umount_subtree(dentry);
1011 	}
1012 }
1013 
1014 /*
1015  * This tries to ascend one level of parenthood, but
1016  * we can race with renaming, so we need to re-check
1017  * the parenthood after dropping the lock and check
1018  * that the sequence number still matches.
1019  */
1020 static struct dentry *try_to_ascend(struct dentry *old, int locked, unsigned seq)
1021 {
1022 	struct dentry *new = old->d_parent;
1023 
1024 	rcu_read_lock();
1025 	spin_unlock(&old->d_lock);
1026 	spin_lock(&new->d_lock);
1027 
1028 	/*
1029 	 * might go back up the wrong parent if we have had a rename
1030 	 * or deletion
1031 	 */
1032 	if (new != old->d_parent ||
1033 		 (old->d_flags & DCACHE_DISCONNECTED) ||
1034 		 (!locked && read_seqretry(&rename_lock, seq))) {
1035 		spin_unlock(&new->d_lock);
1036 		new = NULL;
1037 	}
1038 	rcu_read_unlock();
1039 	return new;
1040 }
1041 
1042 
1043 /*
1044  * Search for at least 1 mount point in the dentry's subdirs.
1045  * We descend to the next level whenever the d_subdirs
1046  * list is non-empty and continue searching.
1047  */
1048 
1049 /**
1050  * have_submounts - check for mounts over a dentry
1051  * @parent: dentry to check.
1052  *
1053  * Return true if the parent or its subdirectories contain
1054  * a mount point
1055  */
1056 int have_submounts(struct dentry *parent)
1057 {
1058 	struct dentry *this_parent;
1059 	struct list_head *next;
1060 	unsigned seq;
1061 	int locked = 0;
1062 
1063 	seq = read_seqbegin(&rename_lock);
1064 again:
1065 	this_parent = parent;
1066 
1067 	if (d_mountpoint(parent))
1068 		goto positive;
1069 	spin_lock(&this_parent->d_lock);
1070 repeat:
1071 	next = this_parent->d_subdirs.next;
1072 resume:
1073 	while (next != &this_parent->d_subdirs) {
1074 		struct list_head *tmp = next;
1075 		struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
1076 		next = tmp->next;
1077 
1078 		spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1079 		/* Have we found a mount point ? */
1080 		if (d_mountpoint(dentry)) {
1081 			spin_unlock(&dentry->d_lock);
1082 			spin_unlock(&this_parent->d_lock);
1083 			goto positive;
1084 		}
1085 		if (!list_empty(&dentry->d_subdirs)) {
1086 			spin_unlock(&this_parent->d_lock);
1087 			spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1088 			this_parent = dentry;
1089 			spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1090 			goto repeat;
1091 		}
1092 		spin_unlock(&dentry->d_lock);
1093 	}
1094 	/*
1095 	 * All done at this level ... ascend and resume the search.
1096 	 */
1097 	if (this_parent != parent) {
1098 		struct dentry *child = this_parent;
1099 		this_parent = try_to_ascend(this_parent, locked, seq);
1100 		if (!this_parent)
1101 			goto rename_retry;
1102 		next = child->d_u.d_child.next;
1103 		goto resume;
1104 	}
1105 	spin_unlock(&this_parent->d_lock);
1106 	if (!locked && read_seqretry(&rename_lock, seq))
1107 		goto rename_retry;
1108 	if (locked)
1109 		write_sequnlock(&rename_lock);
1110 	return 0; /* No mount points found in tree */
1111 positive:
1112 	if (!locked && read_seqretry(&rename_lock, seq))
1113 		goto rename_retry;
1114 	if (locked)
1115 		write_sequnlock(&rename_lock);
1116 	return 1;
1117 
1118 rename_retry:
1119 	locked = 1;
1120 	write_seqlock(&rename_lock);
1121 	goto again;
1122 }
1123 EXPORT_SYMBOL(have_submounts);
1124 
1125 /*
1126  * Search the dentry child list for the specified parent,
1127  * and move any unused dentries to the end of the unused
1128  * list for prune_dcache(). We descend to the next level
1129  * whenever the d_subdirs list is non-empty and continue
1130  * searching.
1131  *
1132  * It returns zero iff there are no unused children,
1133  * otherwise  it returns the number of children moved to
1134  * the end of the unused list. This may not be the total
1135  * number of unused children, because select_parent can
1136  * drop the lock and return early due to latency
1137  * constraints.
1138  */
1139 static int select_parent(struct dentry *parent, struct list_head *dispose)
1140 {
1141 	struct dentry *this_parent;
1142 	struct list_head *next;
1143 	unsigned seq;
1144 	int found = 0;
1145 	int locked = 0;
1146 
1147 	seq = read_seqbegin(&rename_lock);
1148 again:
1149 	this_parent = parent;
1150 	spin_lock(&this_parent->d_lock);
1151 repeat:
1152 	next = this_parent->d_subdirs.next;
1153 resume:
1154 	while (next != &this_parent->d_subdirs) {
1155 		struct list_head *tmp = next;
1156 		struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
1157 		next = tmp->next;
1158 
1159 		spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1160 
1161 		/*
1162 		 * move only zero ref count dentries to the dispose list.
1163 		 *
1164 		 * Those which are presently on the shrink list, being processed
1165 		 * by shrink_dentry_list(), shouldn't be moved.  Otherwise the
1166 		 * loop in shrink_dcache_parent() might not make any progress
1167 		 * and loop forever.
1168 		 */
1169 		if (dentry->d_count) {
1170 			dentry_lru_del(dentry);
1171 		} else if (!(dentry->d_flags & DCACHE_SHRINK_LIST)) {
1172 			dentry_lru_move_list(dentry, dispose);
1173 			dentry->d_flags |= DCACHE_SHRINK_LIST;
1174 			found++;
1175 		}
1176 		/*
1177 		 * We can return to the caller if we have found some (this
1178 		 * ensures forward progress). We'll be coming back to find
1179 		 * the rest.
1180 		 */
1181 		if (found && need_resched()) {
1182 			spin_unlock(&dentry->d_lock);
1183 			goto out;
1184 		}
1185 
1186 		/*
1187 		 * Descend a level if the d_subdirs list is non-empty.
1188 		 */
1189 		if (!list_empty(&dentry->d_subdirs)) {
1190 			spin_unlock(&this_parent->d_lock);
1191 			spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1192 			this_parent = dentry;
1193 			spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1194 			goto repeat;
1195 		}
1196 
1197 		spin_unlock(&dentry->d_lock);
1198 	}
1199 	/*
1200 	 * All done at this level ... ascend and resume the search.
1201 	 */
1202 	if (this_parent != parent) {
1203 		struct dentry *child = this_parent;
1204 		this_parent = try_to_ascend(this_parent, locked, seq);
1205 		if (!this_parent)
1206 			goto rename_retry;
1207 		next = child->d_u.d_child.next;
1208 		goto resume;
1209 	}
1210 out:
1211 	spin_unlock(&this_parent->d_lock);
1212 	if (!locked && read_seqretry(&rename_lock, seq))
1213 		goto rename_retry;
1214 	if (locked)
1215 		write_sequnlock(&rename_lock);
1216 	return found;
1217 
1218 rename_retry:
1219 	if (found)
1220 		return found;
1221 	locked = 1;
1222 	write_seqlock(&rename_lock);
1223 	goto again;
1224 }
1225 
1226 /**
1227  * shrink_dcache_parent - prune dcache
1228  * @parent: parent of entries to prune
1229  *
1230  * Prune the dcache to remove unused children of the parent dentry.
1231  */
1232 void shrink_dcache_parent(struct dentry * parent)
1233 {
1234 	LIST_HEAD(dispose);
1235 	int found;
1236 
1237 	while ((found = select_parent(parent, &dispose)) != 0)
1238 		shrink_dentry_list(&dispose);
1239 }
1240 EXPORT_SYMBOL(shrink_dcache_parent);
1241 
1242 /**
1243  * __d_alloc	-	allocate a dcache entry
1244  * @sb: filesystem it will belong to
1245  * @name: qstr of the name
1246  *
1247  * Allocates a dentry. It returns %NULL if there is insufficient memory
1248  * available. On a success the dentry is returned. The name passed in is
1249  * copied and the copy passed in may be reused after this call.
1250  */
1251 
1252 struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name)
1253 {
1254 	struct dentry *dentry;
1255 	char *dname;
1256 
1257 	dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
1258 	if (!dentry)
1259 		return NULL;
1260 
1261 	if (name->len > DNAME_INLINE_LEN-1) {
1262 		dname = kmalloc(name->len + 1, GFP_KERNEL);
1263 		if (!dname) {
1264 			kmem_cache_free(dentry_cache, dentry);
1265 			return NULL;
1266 		}
1267 	} else  {
1268 		dname = dentry->d_iname;
1269 	}
1270 	dentry->d_name.name = dname;
1271 
1272 	dentry->d_name.len = name->len;
1273 	dentry->d_name.hash = name->hash;
1274 	memcpy(dname, name->name, name->len);
1275 	dname[name->len] = 0;
1276 
1277 	dentry->d_count = 1;
1278 	dentry->d_flags = 0;
1279 	spin_lock_init(&dentry->d_lock);
1280 	seqcount_init(&dentry->d_seq);
1281 	dentry->d_inode = NULL;
1282 	dentry->d_parent = dentry;
1283 	dentry->d_sb = sb;
1284 	dentry->d_op = NULL;
1285 	dentry->d_fsdata = NULL;
1286 	INIT_HLIST_BL_NODE(&dentry->d_hash);
1287 	INIT_LIST_HEAD(&dentry->d_lru);
1288 	INIT_LIST_HEAD(&dentry->d_subdirs);
1289 	INIT_LIST_HEAD(&dentry->d_alias);
1290 	INIT_LIST_HEAD(&dentry->d_u.d_child);
1291 	d_set_d_op(dentry, dentry->d_sb->s_d_op);
1292 
1293 	this_cpu_inc(nr_dentry);
1294 
1295 	return dentry;
1296 }
1297 
1298 /**
1299  * d_alloc	-	allocate a dcache entry
1300  * @parent: parent of entry to allocate
1301  * @name: qstr of the name
1302  *
1303  * Allocates a dentry. It returns %NULL if there is insufficient memory
1304  * available. On a success the dentry is returned. The name passed in is
1305  * copied and the copy passed in may be reused after this call.
1306  */
1307 struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1308 {
1309 	struct dentry *dentry = __d_alloc(parent->d_sb, name);
1310 	if (!dentry)
1311 		return NULL;
1312 
1313 	spin_lock(&parent->d_lock);
1314 	/*
1315 	 * don't need child lock because it is not subject
1316 	 * to concurrency here
1317 	 */
1318 	__dget_dlock(parent);
1319 	dentry->d_parent = parent;
1320 	list_add(&dentry->d_u.d_child, &parent->d_subdirs);
1321 	spin_unlock(&parent->d_lock);
1322 
1323 	return dentry;
1324 }
1325 EXPORT_SYMBOL(d_alloc);
1326 
1327 struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
1328 {
1329 	struct dentry *dentry = __d_alloc(sb, name);
1330 	if (dentry)
1331 		dentry->d_flags |= DCACHE_DISCONNECTED;
1332 	return dentry;
1333 }
1334 EXPORT_SYMBOL(d_alloc_pseudo);
1335 
1336 struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1337 {
1338 	struct qstr q;
1339 
1340 	q.name = name;
1341 	q.len = strlen(name);
1342 	q.hash = full_name_hash(q.name, q.len);
1343 	return d_alloc(parent, &q);
1344 }
1345 EXPORT_SYMBOL(d_alloc_name);
1346 
1347 void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1348 {
1349 	WARN_ON_ONCE(dentry->d_op);
1350 	WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH	|
1351 				DCACHE_OP_COMPARE	|
1352 				DCACHE_OP_REVALIDATE	|
1353 				DCACHE_OP_DELETE ));
1354 	dentry->d_op = op;
1355 	if (!op)
1356 		return;
1357 	if (op->d_hash)
1358 		dentry->d_flags |= DCACHE_OP_HASH;
1359 	if (op->d_compare)
1360 		dentry->d_flags |= DCACHE_OP_COMPARE;
1361 	if (op->d_revalidate)
1362 		dentry->d_flags |= DCACHE_OP_REVALIDATE;
1363 	if (op->d_delete)
1364 		dentry->d_flags |= DCACHE_OP_DELETE;
1365 	if (op->d_prune)
1366 		dentry->d_flags |= DCACHE_OP_PRUNE;
1367 
1368 }
1369 EXPORT_SYMBOL(d_set_d_op);
1370 
1371 static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1372 {
1373 	spin_lock(&dentry->d_lock);
1374 	if (inode) {
1375 		if (unlikely(IS_AUTOMOUNT(inode)))
1376 			dentry->d_flags |= DCACHE_NEED_AUTOMOUNT;
1377 		list_add(&dentry->d_alias, &inode->i_dentry);
1378 	}
1379 	dentry->d_inode = inode;
1380 	dentry_rcuwalk_barrier(dentry);
1381 	spin_unlock(&dentry->d_lock);
1382 	fsnotify_d_instantiate(dentry, inode);
1383 }
1384 
1385 /**
1386  * d_instantiate - fill in inode information for a dentry
1387  * @entry: dentry to complete
1388  * @inode: inode to attach to this dentry
1389  *
1390  * Fill in inode information in the entry.
1391  *
1392  * This turns negative dentries into productive full members
1393  * of society.
1394  *
1395  * NOTE! This assumes that the inode count has been incremented
1396  * (or otherwise set) by the caller to indicate that it is now
1397  * in use by the dcache.
1398  */
1399 
1400 void d_instantiate(struct dentry *entry, struct inode * inode)
1401 {
1402 	BUG_ON(!list_empty(&entry->d_alias));
1403 	if (inode)
1404 		spin_lock(&inode->i_lock);
1405 	__d_instantiate(entry, inode);
1406 	if (inode)
1407 		spin_unlock(&inode->i_lock);
1408 	security_d_instantiate(entry, inode);
1409 }
1410 EXPORT_SYMBOL(d_instantiate);
1411 
1412 /**
1413  * d_instantiate_unique - instantiate a non-aliased dentry
1414  * @entry: dentry to instantiate
1415  * @inode: inode to attach to this dentry
1416  *
1417  * Fill in inode information in the entry. On success, it returns NULL.
1418  * If an unhashed alias of "entry" already exists, then we return the
1419  * aliased dentry instead and drop one reference to inode.
1420  *
1421  * Note that in order to avoid conflicts with rename() etc, the caller
1422  * had better be holding the parent directory semaphore.
1423  *
1424  * This also assumes that the inode count has been incremented
1425  * (or otherwise set) by the caller to indicate that it is now
1426  * in use by the dcache.
1427  */
1428 static struct dentry *__d_instantiate_unique(struct dentry *entry,
1429 					     struct inode *inode)
1430 {
1431 	struct dentry *alias;
1432 	int len = entry->d_name.len;
1433 	const char *name = entry->d_name.name;
1434 	unsigned int hash = entry->d_name.hash;
1435 
1436 	if (!inode) {
1437 		__d_instantiate(entry, NULL);
1438 		return NULL;
1439 	}
1440 
1441 	list_for_each_entry(alias, &inode->i_dentry, d_alias) {
1442 		struct qstr *qstr = &alias->d_name;
1443 
1444 		/*
1445 		 * Don't need alias->d_lock here, because aliases with
1446 		 * d_parent == entry->d_parent are not subject to name or
1447 		 * parent changes, because the parent inode i_mutex is held.
1448 		 */
1449 		if (qstr->hash != hash)
1450 			continue;
1451 		if (alias->d_parent != entry->d_parent)
1452 			continue;
1453 		if (dentry_cmp(qstr->name, qstr->len, name, len))
1454 			continue;
1455 		__dget(alias);
1456 		return alias;
1457 	}
1458 
1459 	__d_instantiate(entry, inode);
1460 	return NULL;
1461 }
1462 
1463 struct dentry *d_instantiate_unique(struct dentry *entry, struct inode *inode)
1464 {
1465 	struct dentry *result;
1466 
1467 	BUG_ON(!list_empty(&entry->d_alias));
1468 
1469 	if (inode)
1470 		spin_lock(&inode->i_lock);
1471 	result = __d_instantiate_unique(entry, inode);
1472 	if (inode)
1473 		spin_unlock(&inode->i_lock);
1474 
1475 	if (!result) {
1476 		security_d_instantiate(entry, inode);
1477 		return NULL;
1478 	}
1479 
1480 	BUG_ON(!d_unhashed(result));
1481 	iput(inode);
1482 	return result;
1483 }
1484 
1485 EXPORT_SYMBOL(d_instantiate_unique);
1486 
1487 struct dentry *d_make_root(struct inode *root_inode)
1488 {
1489 	struct dentry *res = NULL;
1490 
1491 	if (root_inode) {
1492 		static const struct qstr name = { .name = "/", .len = 1 };
1493 
1494 		res = __d_alloc(root_inode->i_sb, &name);
1495 		if (res)
1496 			d_instantiate(res, root_inode);
1497 		else
1498 			iput(root_inode);
1499 	}
1500 	return res;
1501 }
1502 EXPORT_SYMBOL(d_make_root);
1503 
1504 static struct dentry * __d_find_any_alias(struct inode *inode)
1505 {
1506 	struct dentry *alias;
1507 
1508 	if (list_empty(&inode->i_dentry))
1509 		return NULL;
1510 	alias = list_first_entry(&inode->i_dentry, struct dentry, d_alias);
1511 	__dget(alias);
1512 	return alias;
1513 }
1514 
1515 /**
1516  * d_find_any_alias - find any alias for a given inode
1517  * @inode: inode to find an alias for
1518  *
1519  * If any aliases exist for the given inode, take and return a
1520  * reference for one of them.  If no aliases exist, return %NULL.
1521  */
1522 struct dentry *d_find_any_alias(struct inode *inode)
1523 {
1524 	struct dentry *de;
1525 
1526 	spin_lock(&inode->i_lock);
1527 	de = __d_find_any_alias(inode);
1528 	spin_unlock(&inode->i_lock);
1529 	return de;
1530 }
1531 EXPORT_SYMBOL(d_find_any_alias);
1532 
1533 /**
1534  * d_obtain_alias - find or allocate a dentry for a given inode
1535  * @inode: inode to allocate the dentry for
1536  *
1537  * Obtain a dentry for an inode resulting from NFS filehandle conversion or
1538  * similar open by handle operations.  The returned dentry may be anonymous,
1539  * or may have a full name (if the inode was already in the cache).
1540  *
1541  * When called on a directory inode, we must ensure that the inode only ever
1542  * has one dentry.  If a dentry is found, that is returned instead of
1543  * allocating a new one.
1544  *
1545  * On successful return, the reference to the inode has been transferred
1546  * to the dentry.  In case of an error the reference on the inode is released.
1547  * To make it easier to use in export operations a %NULL or IS_ERR inode may
1548  * be passed in and will be the error will be propagate to the return value,
1549  * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
1550  */
1551 struct dentry *d_obtain_alias(struct inode *inode)
1552 {
1553 	static const struct qstr anonstring = { .name = "" };
1554 	struct dentry *tmp;
1555 	struct dentry *res;
1556 
1557 	if (!inode)
1558 		return ERR_PTR(-ESTALE);
1559 	if (IS_ERR(inode))
1560 		return ERR_CAST(inode);
1561 
1562 	res = d_find_any_alias(inode);
1563 	if (res)
1564 		goto out_iput;
1565 
1566 	tmp = __d_alloc(inode->i_sb, &anonstring);
1567 	if (!tmp) {
1568 		res = ERR_PTR(-ENOMEM);
1569 		goto out_iput;
1570 	}
1571 
1572 	spin_lock(&inode->i_lock);
1573 	res = __d_find_any_alias(inode);
1574 	if (res) {
1575 		spin_unlock(&inode->i_lock);
1576 		dput(tmp);
1577 		goto out_iput;
1578 	}
1579 
1580 	/* attach a disconnected dentry */
1581 	spin_lock(&tmp->d_lock);
1582 	tmp->d_inode = inode;
1583 	tmp->d_flags |= DCACHE_DISCONNECTED;
1584 	list_add(&tmp->d_alias, &inode->i_dentry);
1585 	hlist_bl_lock(&tmp->d_sb->s_anon);
1586 	hlist_bl_add_head(&tmp->d_hash, &tmp->d_sb->s_anon);
1587 	hlist_bl_unlock(&tmp->d_sb->s_anon);
1588 	spin_unlock(&tmp->d_lock);
1589 	spin_unlock(&inode->i_lock);
1590 	security_d_instantiate(tmp, inode);
1591 
1592 	return tmp;
1593 
1594  out_iput:
1595 	if (res && !IS_ERR(res))
1596 		security_d_instantiate(res, inode);
1597 	iput(inode);
1598 	return res;
1599 }
1600 EXPORT_SYMBOL(d_obtain_alias);
1601 
1602 /**
1603  * d_splice_alias - splice a disconnected dentry into the tree if one exists
1604  * @inode:  the inode which may have a disconnected dentry
1605  * @dentry: a negative dentry which we want to point to the inode.
1606  *
1607  * If inode is a directory and has a 'disconnected' dentry (i.e. IS_ROOT and
1608  * DCACHE_DISCONNECTED), then d_move that in place of the given dentry
1609  * and return it, else simply d_add the inode to the dentry and return NULL.
1610  *
1611  * This is needed in the lookup routine of any filesystem that is exportable
1612  * (via knfsd) so that we can build dcache paths to directories effectively.
1613  *
1614  * If a dentry was found and moved, then it is returned.  Otherwise NULL
1615  * is returned.  This matches the expected return value of ->lookup.
1616  *
1617  */
1618 struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
1619 {
1620 	struct dentry *new = NULL;
1621 
1622 	if (IS_ERR(inode))
1623 		return ERR_CAST(inode);
1624 
1625 	if (inode && S_ISDIR(inode->i_mode)) {
1626 		spin_lock(&inode->i_lock);
1627 		new = __d_find_alias(inode, 1);
1628 		if (new) {
1629 			BUG_ON(!(new->d_flags & DCACHE_DISCONNECTED));
1630 			spin_unlock(&inode->i_lock);
1631 			security_d_instantiate(new, inode);
1632 			d_move(new, dentry);
1633 			iput(inode);
1634 		} else {
1635 			/* already taking inode->i_lock, so d_add() by hand */
1636 			__d_instantiate(dentry, inode);
1637 			spin_unlock(&inode->i_lock);
1638 			security_d_instantiate(dentry, inode);
1639 			d_rehash(dentry);
1640 		}
1641 	} else
1642 		d_add(dentry, inode);
1643 	return new;
1644 }
1645 EXPORT_SYMBOL(d_splice_alias);
1646 
1647 /**
1648  * d_add_ci - lookup or allocate new dentry with case-exact name
1649  * @inode:  the inode case-insensitive lookup has found
1650  * @dentry: the negative dentry that was passed to the parent's lookup func
1651  * @name:   the case-exact name to be associated with the returned dentry
1652  *
1653  * This is to avoid filling the dcache with case-insensitive names to the
1654  * same inode, only the actual correct case is stored in the dcache for
1655  * case-insensitive filesystems.
1656  *
1657  * For a case-insensitive lookup match and if the the case-exact dentry
1658  * already exists in in the dcache, use it and return it.
1659  *
1660  * If no entry exists with the exact case name, allocate new dentry with
1661  * the exact case, and return the spliced entry.
1662  */
1663 struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
1664 			struct qstr *name)
1665 {
1666 	int error;
1667 	struct dentry *found;
1668 	struct dentry *new;
1669 
1670 	/*
1671 	 * First check if a dentry matching the name already exists,
1672 	 * if not go ahead and create it now.
1673 	 */
1674 	found = d_hash_and_lookup(dentry->d_parent, name);
1675 	if (!found) {
1676 		new = d_alloc(dentry->d_parent, name);
1677 		if (!new) {
1678 			error = -ENOMEM;
1679 			goto err_out;
1680 		}
1681 
1682 		found = d_splice_alias(inode, new);
1683 		if (found) {
1684 			dput(new);
1685 			return found;
1686 		}
1687 		return new;
1688 	}
1689 
1690 	/*
1691 	 * If a matching dentry exists, and it's not negative use it.
1692 	 *
1693 	 * Decrement the reference count to balance the iget() done
1694 	 * earlier on.
1695 	 */
1696 	if (found->d_inode) {
1697 		if (unlikely(found->d_inode != inode)) {
1698 			/* This can't happen because bad inodes are unhashed. */
1699 			BUG_ON(!is_bad_inode(inode));
1700 			BUG_ON(!is_bad_inode(found->d_inode));
1701 		}
1702 		iput(inode);
1703 		return found;
1704 	}
1705 
1706 	/*
1707 	 * We are going to instantiate this dentry, unhash it and clear the
1708 	 * lookup flag so we can do that.
1709 	 */
1710 	if (unlikely(d_need_lookup(found)))
1711 		d_clear_need_lookup(found);
1712 
1713 	/*
1714 	 * Negative dentry: instantiate it unless the inode is a directory and
1715 	 * already has a dentry.
1716 	 */
1717 	new = d_splice_alias(inode, found);
1718 	if (new) {
1719 		dput(found);
1720 		found = new;
1721 	}
1722 	return found;
1723 
1724 err_out:
1725 	iput(inode);
1726 	return ERR_PTR(error);
1727 }
1728 EXPORT_SYMBOL(d_add_ci);
1729 
1730 /**
1731  * __d_lookup_rcu - search for a dentry (racy, store-free)
1732  * @parent: parent dentry
1733  * @name: qstr of name we wish to find
1734  * @seqp: returns d_seq value at the point where the dentry was found
1735  * @inode: returns dentry->d_inode when the inode was found valid.
1736  * Returns: dentry, or NULL
1737  *
1738  * __d_lookup_rcu is the dcache lookup function for rcu-walk name
1739  * resolution (store-free path walking) design described in
1740  * Documentation/filesystems/path-lookup.txt.
1741  *
1742  * This is not to be used outside core vfs.
1743  *
1744  * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
1745  * held, and rcu_read_lock held. The returned dentry must not be stored into
1746  * without taking d_lock and checking d_seq sequence count against @seq
1747  * returned here.
1748  *
1749  * A refcount may be taken on the found dentry with the __d_rcu_to_refcount
1750  * function.
1751  *
1752  * Alternatively, __d_lookup_rcu may be called again to look up the child of
1753  * the returned dentry, so long as its parent's seqlock is checked after the
1754  * child is looked up. Thus, an interlocking stepping of sequence lock checks
1755  * is formed, giving integrity down the path walk.
1756  */
1757 struct dentry *__d_lookup_rcu(const struct dentry *parent,
1758 				const struct qstr *name,
1759 				unsigned *seqp, struct inode **inode)
1760 {
1761 	unsigned int len = name->len;
1762 	unsigned int hash = name->hash;
1763 	const unsigned char *str = name->name;
1764 	struct hlist_bl_head *b = d_hash(parent, hash);
1765 	struct hlist_bl_node *node;
1766 	struct dentry *dentry;
1767 
1768 	/*
1769 	 * Note: There is significant duplication with __d_lookup_rcu which is
1770 	 * required to prevent single threaded performance regressions
1771 	 * especially on architectures where smp_rmb (in seqcounts) are costly.
1772 	 * Keep the two functions in sync.
1773 	 */
1774 
1775 	/*
1776 	 * The hash list is protected using RCU.
1777 	 *
1778 	 * Carefully use d_seq when comparing a candidate dentry, to avoid
1779 	 * races with d_move().
1780 	 *
1781 	 * It is possible that concurrent renames can mess up our list
1782 	 * walk here and result in missing our dentry, resulting in the
1783 	 * false-negative result. d_lookup() protects against concurrent
1784 	 * renames using rename_lock seqlock.
1785 	 *
1786 	 * See Documentation/filesystems/path-lookup.txt for more details.
1787 	 */
1788 	hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
1789 		unsigned seq;
1790 		struct inode *i;
1791 		const char *tname;
1792 		int tlen;
1793 
1794 		if (dentry->d_name.hash != hash)
1795 			continue;
1796 
1797 seqretry:
1798 		seq = read_seqcount_begin(&dentry->d_seq);
1799 		if (dentry->d_parent != parent)
1800 			continue;
1801 		if (d_unhashed(dentry))
1802 			continue;
1803 		tlen = dentry->d_name.len;
1804 		tname = dentry->d_name.name;
1805 		i = dentry->d_inode;
1806 		prefetch(tname);
1807 		/*
1808 		 * This seqcount check is required to ensure name and
1809 		 * len are loaded atomically, so as not to walk off the
1810 		 * edge of memory when walking. If we could load this
1811 		 * atomically some other way, we could drop this check.
1812 		 */
1813 		if (read_seqcount_retry(&dentry->d_seq, seq))
1814 			goto seqretry;
1815 		if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) {
1816 			if (parent->d_op->d_compare(parent, *inode,
1817 						dentry, i,
1818 						tlen, tname, name))
1819 				continue;
1820 		} else {
1821 			if (dentry_cmp(tname, tlen, str, len))
1822 				continue;
1823 		}
1824 		/*
1825 		 * No extra seqcount check is required after the name
1826 		 * compare. The caller must perform a seqcount check in
1827 		 * order to do anything useful with the returned dentry
1828 		 * anyway.
1829 		 */
1830 		*seqp = seq;
1831 		*inode = i;
1832 		return dentry;
1833 	}
1834 	return NULL;
1835 }
1836 
1837 /**
1838  * d_lookup - search for a dentry
1839  * @parent: parent dentry
1840  * @name: qstr of name we wish to find
1841  * Returns: dentry, or NULL
1842  *
1843  * d_lookup searches the children of the parent dentry for the name in
1844  * question. If the dentry is found its reference count is incremented and the
1845  * dentry is returned. The caller must use dput to free the entry when it has
1846  * finished using it. %NULL is returned if the dentry does not exist.
1847  */
1848 struct dentry *d_lookup(struct dentry *parent, struct qstr *name)
1849 {
1850 	struct dentry *dentry;
1851 	unsigned seq;
1852 
1853         do {
1854                 seq = read_seqbegin(&rename_lock);
1855                 dentry = __d_lookup(parent, name);
1856                 if (dentry)
1857 			break;
1858 	} while (read_seqretry(&rename_lock, seq));
1859 	return dentry;
1860 }
1861 EXPORT_SYMBOL(d_lookup);
1862 
1863 /**
1864  * __d_lookup - search for a dentry (racy)
1865  * @parent: parent dentry
1866  * @name: qstr of name we wish to find
1867  * Returns: dentry, or NULL
1868  *
1869  * __d_lookup is like d_lookup, however it may (rarely) return a
1870  * false-negative result due to unrelated rename activity.
1871  *
1872  * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
1873  * however it must be used carefully, eg. with a following d_lookup in
1874  * the case of failure.
1875  *
1876  * __d_lookup callers must be commented.
1877  */
1878 struct dentry *__d_lookup(struct dentry *parent, struct qstr *name)
1879 {
1880 	unsigned int len = name->len;
1881 	unsigned int hash = name->hash;
1882 	const unsigned char *str = name->name;
1883 	struct hlist_bl_head *b = d_hash(parent, hash);
1884 	struct hlist_bl_node *node;
1885 	struct dentry *found = NULL;
1886 	struct dentry *dentry;
1887 
1888 	/*
1889 	 * Note: There is significant duplication with __d_lookup_rcu which is
1890 	 * required to prevent single threaded performance regressions
1891 	 * especially on architectures where smp_rmb (in seqcounts) are costly.
1892 	 * Keep the two functions in sync.
1893 	 */
1894 
1895 	/*
1896 	 * The hash list is protected using RCU.
1897 	 *
1898 	 * Take d_lock when comparing a candidate dentry, to avoid races
1899 	 * with d_move().
1900 	 *
1901 	 * It is possible that concurrent renames can mess up our list
1902 	 * walk here and result in missing our dentry, resulting in the
1903 	 * false-negative result. d_lookup() protects against concurrent
1904 	 * renames using rename_lock seqlock.
1905 	 *
1906 	 * See Documentation/filesystems/path-lookup.txt for more details.
1907 	 */
1908 	rcu_read_lock();
1909 
1910 	hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
1911 		const char *tname;
1912 		int tlen;
1913 
1914 		if (dentry->d_name.hash != hash)
1915 			continue;
1916 
1917 		spin_lock(&dentry->d_lock);
1918 		if (dentry->d_parent != parent)
1919 			goto next;
1920 		if (d_unhashed(dentry))
1921 			goto next;
1922 
1923 		/*
1924 		 * It is safe to compare names since d_move() cannot
1925 		 * change the qstr (protected by d_lock).
1926 		 */
1927 		tlen = dentry->d_name.len;
1928 		tname = dentry->d_name.name;
1929 		if (parent->d_flags & DCACHE_OP_COMPARE) {
1930 			if (parent->d_op->d_compare(parent, parent->d_inode,
1931 						dentry, dentry->d_inode,
1932 						tlen, tname, name))
1933 				goto next;
1934 		} else {
1935 			if (dentry_cmp(tname, tlen, str, len))
1936 				goto next;
1937 		}
1938 
1939 		dentry->d_count++;
1940 		found = dentry;
1941 		spin_unlock(&dentry->d_lock);
1942 		break;
1943 next:
1944 		spin_unlock(&dentry->d_lock);
1945  	}
1946  	rcu_read_unlock();
1947 
1948  	return found;
1949 }
1950 
1951 /**
1952  * d_hash_and_lookup - hash the qstr then search for a dentry
1953  * @dir: Directory to search in
1954  * @name: qstr of name we wish to find
1955  *
1956  * On hash failure or on lookup failure NULL is returned.
1957  */
1958 struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
1959 {
1960 	struct dentry *dentry = NULL;
1961 
1962 	/*
1963 	 * Check for a fs-specific hash function. Note that we must
1964 	 * calculate the standard hash first, as the d_op->d_hash()
1965 	 * routine may choose to leave the hash value unchanged.
1966 	 */
1967 	name->hash = full_name_hash(name->name, name->len);
1968 	if (dir->d_flags & DCACHE_OP_HASH) {
1969 		if (dir->d_op->d_hash(dir, dir->d_inode, name) < 0)
1970 			goto out;
1971 	}
1972 	dentry = d_lookup(dir, name);
1973 out:
1974 	return dentry;
1975 }
1976 
1977 /**
1978  * d_validate - verify dentry provided from insecure source (deprecated)
1979  * @dentry: The dentry alleged to be valid child of @dparent
1980  * @dparent: The parent dentry (known to be valid)
1981  *
1982  * An insecure source has sent us a dentry, here we verify it and dget() it.
1983  * This is used by ncpfs in its readdir implementation.
1984  * Zero is returned in the dentry is invalid.
1985  *
1986  * This function is slow for big directories, and deprecated, do not use it.
1987  */
1988 int d_validate(struct dentry *dentry, struct dentry *dparent)
1989 {
1990 	struct dentry *child;
1991 
1992 	spin_lock(&dparent->d_lock);
1993 	list_for_each_entry(child, &dparent->d_subdirs, d_u.d_child) {
1994 		if (dentry == child) {
1995 			spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1996 			__dget_dlock(dentry);
1997 			spin_unlock(&dentry->d_lock);
1998 			spin_unlock(&dparent->d_lock);
1999 			return 1;
2000 		}
2001 	}
2002 	spin_unlock(&dparent->d_lock);
2003 
2004 	return 0;
2005 }
2006 EXPORT_SYMBOL(d_validate);
2007 
2008 /*
2009  * When a file is deleted, we have two options:
2010  * - turn this dentry into a negative dentry
2011  * - unhash this dentry and free it.
2012  *
2013  * Usually, we want to just turn this into
2014  * a negative dentry, but if anybody else is
2015  * currently using the dentry or the inode
2016  * we can't do that and we fall back on removing
2017  * it from the hash queues and waiting for
2018  * it to be deleted later when it has no users
2019  */
2020 
2021 /**
2022  * d_delete - delete a dentry
2023  * @dentry: The dentry to delete
2024  *
2025  * Turn the dentry into a negative dentry if possible, otherwise
2026  * remove it from the hash queues so it can be deleted later
2027  */
2028 
2029 void d_delete(struct dentry * dentry)
2030 {
2031 	struct inode *inode;
2032 	int isdir = 0;
2033 	/*
2034 	 * Are we the only user?
2035 	 */
2036 again:
2037 	spin_lock(&dentry->d_lock);
2038 	inode = dentry->d_inode;
2039 	isdir = S_ISDIR(inode->i_mode);
2040 	if (dentry->d_count == 1) {
2041 		if (inode && !spin_trylock(&inode->i_lock)) {
2042 			spin_unlock(&dentry->d_lock);
2043 			cpu_relax();
2044 			goto again;
2045 		}
2046 		dentry->d_flags &= ~DCACHE_CANT_MOUNT;
2047 		dentry_unlink_inode(dentry);
2048 		fsnotify_nameremove(dentry, isdir);
2049 		return;
2050 	}
2051 
2052 	if (!d_unhashed(dentry))
2053 		__d_drop(dentry);
2054 
2055 	spin_unlock(&dentry->d_lock);
2056 
2057 	fsnotify_nameremove(dentry, isdir);
2058 }
2059 EXPORT_SYMBOL(d_delete);
2060 
2061 static void __d_rehash(struct dentry * entry, struct hlist_bl_head *b)
2062 {
2063 	BUG_ON(!d_unhashed(entry));
2064 	hlist_bl_lock(b);
2065 	entry->d_flags |= DCACHE_RCUACCESS;
2066 	hlist_bl_add_head_rcu(&entry->d_hash, b);
2067 	hlist_bl_unlock(b);
2068 }
2069 
2070 static void _d_rehash(struct dentry * entry)
2071 {
2072 	__d_rehash(entry, d_hash(entry->d_parent, entry->d_name.hash));
2073 }
2074 
2075 /**
2076  * d_rehash	- add an entry back to the hash
2077  * @entry: dentry to add to the hash
2078  *
2079  * Adds a dentry to the hash according to its name.
2080  */
2081 
2082 void d_rehash(struct dentry * entry)
2083 {
2084 	spin_lock(&entry->d_lock);
2085 	_d_rehash(entry);
2086 	spin_unlock(&entry->d_lock);
2087 }
2088 EXPORT_SYMBOL(d_rehash);
2089 
2090 /**
2091  * dentry_update_name_case - update case insensitive dentry with a new name
2092  * @dentry: dentry to be updated
2093  * @name: new name
2094  *
2095  * Update a case insensitive dentry with new case of name.
2096  *
2097  * dentry must have been returned by d_lookup with name @name. Old and new
2098  * name lengths must match (ie. no d_compare which allows mismatched name
2099  * lengths).
2100  *
2101  * Parent inode i_mutex must be held over d_lookup and into this call (to
2102  * keep renames and concurrent inserts, and readdir(2) away).
2103  */
2104 void dentry_update_name_case(struct dentry *dentry, struct qstr *name)
2105 {
2106 	BUG_ON(!mutex_is_locked(&dentry->d_parent->d_inode->i_mutex));
2107 	BUG_ON(dentry->d_name.len != name->len); /* d_lookup gives this */
2108 
2109 	spin_lock(&dentry->d_lock);
2110 	write_seqcount_begin(&dentry->d_seq);
2111 	memcpy((unsigned char *)dentry->d_name.name, name->name, name->len);
2112 	write_seqcount_end(&dentry->d_seq);
2113 	spin_unlock(&dentry->d_lock);
2114 }
2115 EXPORT_SYMBOL(dentry_update_name_case);
2116 
2117 static void switch_names(struct dentry *dentry, struct dentry *target)
2118 {
2119 	if (dname_external(target)) {
2120 		if (dname_external(dentry)) {
2121 			/*
2122 			 * Both external: swap the pointers
2123 			 */
2124 			swap(target->d_name.name, dentry->d_name.name);
2125 		} else {
2126 			/*
2127 			 * dentry:internal, target:external.  Steal target's
2128 			 * storage and make target internal.
2129 			 */
2130 			memcpy(target->d_iname, dentry->d_name.name,
2131 					dentry->d_name.len + 1);
2132 			dentry->d_name.name = target->d_name.name;
2133 			target->d_name.name = target->d_iname;
2134 		}
2135 	} else {
2136 		if (dname_external(dentry)) {
2137 			/*
2138 			 * dentry:external, target:internal.  Give dentry's
2139 			 * storage to target and make dentry internal
2140 			 */
2141 			memcpy(dentry->d_iname, target->d_name.name,
2142 					target->d_name.len + 1);
2143 			target->d_name.name = dentry->d_name.name;
2144 			dentry->d_name.name = dentry->d_iname;
2145 		} else {
2146 			/*
2147 			 * Both are internal.  Just copy target to dentry
2148 			 */
2149 			memcpy(dentry->d_iname, target->d_name.name,
2150 					target->d_name.len + 1);
2151 			dentry->d_name.len = target->d_name.len;
2152 			return;
2153 		}
2154 	}
2155 	swap(dentry->d_name.len, target->d_name.len);
2156 }
2157 
2158 static void dentry_lock_for_move(struct dentry *dentry, struct dentry *target)
2159 {
2160 	/*
2161 	 * XXXX: do we really need to take target->d_lock?
2162 	 */
2163 	if (IS_ROOT(dentry) || dentry->d_parent == target->d_parent)
2164 		spin_lock(&target->d_parent->d_lock);
2165 	else {
2166 		if (d_ancestor(dentry->d_parent, target->d_parent)) {
2167 			spin_lock(&dentry->d_parent->d_lock);
2168 			spin_lock_nested(&target->d_parent->d_lock,
2169 						DENTRY_D_LOCK_NESTED);
2170 		} else {
2171 			spin_lock(&target->d_parent->d_lock);
2172 			spin_lock_nested(&dentry->d_parent->d_lock,
2173 						DENTRY_D_LOCK_NESTED);
2174 		}
2175 	}
2176 	if (target < dentry) {
2177 		spin_lock_nested(&target->d_lock, 2);
2178 		spin_lock_nested(&dentry->d_lock, 3);
2179 	} else {
2180 		spin_lock_nested(&dentry->d_lock, 2);
2181 		spin_lock_nested(&target->d_lock, 3);
2182 	}
2183 }
2184 
2185 static void dentry_unlock_parents_for_move(struct dentry *dentry,
2186 					struct dentry *target)
2187 {
2188 	if (target->d_parent != dentry->d_parent)
2189 		spin_unlock(&dentry->d_parent->d_lock);
2190 	if (target->d_parent != target)
2191 		spin_unlock(&target->d_parent->d_lock);
2192 }
2193 
2194 /*
2195  * When switching names, the actual string doesn't strictly have to
2196  * be preserved in the target - because we're dropping the target
2197  * anyway. As such, we can just do a simple memcpy() to copy over
2198  * the new name before we switch.
2199  *
2200  * Note that we have to be a lot more careful about getting the hash
2201  * switched - we have to switch the hash value properly even if it
2202  * then no longer matches the actual (corrupted) string of the target.
2203  * The hash value has to match the hash queue that the dentry is on..
2204  */
2205 /*
2206  * __d_move - move a dentry
2207  * @dentry: entry to move
2208  * @target: new dentry
2209  *
2210  * Update the dcache to reflect the move of a file name. Negative
2211  * dcache entries should not be moved in this way. Caller must hold
2212  * rename_lock, the i_mutex of the source and target directories,
2213  * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
2214  */
2215 static void __d_move(struct dentry * dentry, struct dentry * target)
2216 {
2217 	if (!dentry->d_inode)
2218 		printk(KERN_WARNING "VFS: moving negative dcache entry\n");
2219 
2220 	BUG_ON(d_ancestor(dentry, target));
2221 	BUG_ON(d_ancestor(target, dentry));
2222 
2223 	dentry_lock_for_move(dentry, target);
2224 
2225 	write_seqcount_begin(&dentry->d_seq);
2226 	write_seqcount_begin(&target->d_seq);
2227 
2228 	/* __d_drop does write_seqcount_barrier, but they're OK to nest. */
2229 
2230 	/*
2231 	 * Move the dentry to the target hash queue. Don't bother checking
2232 	 * for the same hash queue because of how unlikely it is.
2233 	 */
2234 	__d_drop(dentry);
2235 	__d_rehash(dentry, d_hash(target->d_parent, target->d_name.hash));
2236 
2237 	/* Unhash the target: dput() will then get rid of it */
2238 	__d_drop(target);
2239 
2240 	list_del(&dentry->d_u.d_child);
2241 	list_del(&target->d_u.d_child);
2242 
2243 	/* Switch the names.. */
2244 	switch_names(dentry, target);
2245 	swap(dentry->d_name.hash, target->d_name.hash);
2246 
2247 	/* ... and switch the parents */
2248 	if (IS_ROOT(dentry)) {
2249 		dentry->d_parent = target->d_parent;
2250 		target->d_parent = target;
2251 		INIT_LIST_HEAD(&target->d_u.d_child);
2252 	} else {
2253 		swap(dentry->d_parent, target->d_parent);
2254 
2255 		/* And add them back to the (new) parent lists */
2256 		list_add(&target->d_u.d_child, &target->d_parent->d_subdirs);
2257 	}
2258 
2259 	list_add(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs);
2260 
2261 	write_seqcount_end(&target->d_seq);
2262 	write_seqcount_end(&dentry->d_seq);
2263 
2264 	dentry_unlock_parents_for_move(dentry, target);
2265 	spin_unlock(&target->d_lock);
2266 	fsnotify_d_move(dentry);
2267 	spin_unlock(&dentry->d_lock);
2268 }
2269 
2270 /*
2271  * d_move - move a dentry
2272  * @dentry: entry to move
2273  * @target: new dentry
2274  *
2275  * Update the dcache to reflect the move of a file name. Negative
2276  * dcache entries should not be moved in this way. See the locking
2277  * requirements for __d_move.
2278  */
2279 void d_move(struct dentry *dentry, struct dentry *target)
2280 {
2281 	write_seqlock(&rename_lock);
2282 	__d_move(dentry, target);
2283 	write_sequnlock(&rename_lock);
2284 }
2285 EXPORT_SYMBOL(d_move);
2286 
2287 /**
2288  * d_ancestor - search for an ancestor
2289  * @p1: ancestor dentry
2290  * @p2: child dentry
2291  *
2292  * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2293  * an ancestor of p2, else NULL.
2294  */
2295 struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
2296 {
2297 	struct dentry *p;
2298 
2299 	for (p = p2; !IS_ROOT(p); p = p->d_parent) {
2300 		if (p->d_parent == p1)
2301 			return p;
2302 	}
2303 	return NULL;
2304 }
2305 
2306 /*
2307  * This helper attempts to cope with remotely renamed directories
2308  *
2309  * It assumes that the caller is already holding
2310  * dentry->d_parent->d_inode->i_mutex, inode->i_lock and rename_lock
2311  *
2312  * Note: If ever the locking in lock_rename() changes, then please
2313  * remember to update this too...
2314  */
2315 static struct dentry *__d_unalias(struct inode *inode,
2316 		struct dentry *dentry, struct dentry *alias)
2317 {
2318 	struct mutex *m1 = NULL, *m2 = NULL;
2319 	struct dentry *ret;
2320 
2321 	/* If alias and dentry share a parent, then no extra locks required */
2322 	if (alias->d_parent == dentry->d_parent)
2323 		goto out_unalias;
2324 
2325 	/* See lock_rename() */
2326 	ret = ERR_PTR(-EBUSY);
2327 	if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
2328 		goto out_err;
2329 	m1 = &dentry->d_sb->s_vfs_rename_mutex;
2330 	if (!mutex_trylock(&alias->d_parent->d_inode->i_mutex))
2331 		goto out_err;
2332 	m2 = &alias->d_parent->d_inode->i_mutex;
2333 out_unalias:
2334 	__d_move(alias, dentry);
2335 	ret = alias;
2336 out_err:
2337 	spin_unlock(&inode->i_lock);
2338 	if (m2)
2339 		mutex_unlock(m2);
2340 	if (m1)
2341 		mutex_unlock(m1);
2342 	return ret;
2343 }
2344 
2345 /*
2346  * Prepare an anonymous dentry for life in the superblock's dentry tree as a
2347  * named dentry in place of the dentry to be replaced.
2348  * returns with anon->d_lock held!
2349  */
2350 static void __d_materialise_dentry(struct dentry *dentry, struct dentry *anon)
2351 {
2352 	struct dentry *dparent, *aparent;
2353 
2354 	dentry_lock_for_move(anon, dentry);
2355 
2356 	write_seqcount_begin(&dentry->d_seq);
2357 	write_seqcount_begin(&anon->d_seq);
2358 
2359 	dparent = dentry->d_parent;
2360 	aparent = anon->d_parent;
2361 
2362 	switch_names(dentry, anon);
2363 	swap(dentry->d_name.hash, anon->d_name.hash);
2364 
2365 	dentry->d_parent = (aparent == anon) ? dentry : aparent;
2366 	list_del(&dentry->d_u.d_child);
2367 	if (!IS_ROOT(dentry))
2368 		list_add(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs);
2369 	else
2370 		INIT_LIST_HEAD(&dentry->d_u.d_child);
2371 
2372 	anon->d_parent = (dparent == dentry) ? anon : dparent;
2373 	list_del(&anon->d_u.d_child);
2374 	if (!IS_ROOT(anon))
2375 		list_add(&anon->d_u.d_child, &anon->d_parent->d_subdirs);
2376 	else
2377 		INIT_LIST_HEAD(&anon->d_u.d_child);
2378 
2379 	write_seqcount_end(&dentry->d_seq);
2380 	write_seqcount_end(&anon->d_seq);
2381 
2382 	dentry_unlock_parents_for_move(anon, dentry);
2383 	spin_unlock(&dentry->d_lock);
2384 
2385 	/* anon->d_lock still locked, returns locked */
2386 	anon->d_flags &= ~DCACHE_DISCONNECTED;
2387 }
2388 
2389 /**
2390  * d_materialise_unique - introduce an inode into the tree
2391  * @dentry: candidate dentry
2392  * @inode: inode to bind to the dentry, to which aliases may be attached
2393  *
2394  * Introduces an dentry into the tree, substituting an extant disconnected
2395  * root directory alias in its place if there is one. Caller must hold the
2396  * i_mutex of the parent directory.
2397  */
2398 struct dentry *d_materialise_unique(struct dentry *dentry, struct inode *inode)
2399 {
2400 	struct dentry *actual;
2401 
2402 	BUG_ON(!d_unhashed(dentry));
2403 
2404 	if (!inode) {
2405 		actual = dentry;
2406 		__d_instantiate(dentry, NULL);
2407 		d_rehash(actual);
2408 		goto out_nolock;
2409 	}
2410 
2411 	spin_lock(&inode->i_lock);
2412 
2413 	if (S_ISDIR(inode->i_mode)) {
2414 		struct dentry *alias;
2415 
2416 		/* Does an aliased dentry already exist? */
2417 		alias = __d_find_alias(inode, 0);
2418 		if (alias) {
2419 			actual = alias;
2420 			write_seqlock(&rename_lock);
2421 
2422 			if (d_ancestor(alias, dentry)) {
2423 				/* Check for loops */
2424 				actual = ERR_PTR(-ELOOP);
2425 				spin_unlock(&inode->i_lock);
2426 			} else if (IS_ROOT(alias)) {
2427 				/* Is this an anonymous mountpoint that we
2428 				 * could splice into our tree? */
2429 				__d_materialise_dentry(dentry, alias);
2430 				write_sequnlock(&rename_lock);
2431 				__d_drop(alias);
2432 				goto found;
2433 			} else {
2434 				/* Nope, but we must(!) avoid directory
2435 				 * aliasing. This drops inode->i_lock */
2436 				actual = __d_unalias(inode, dentry, alias);
2437 			}
2438 			write_sequnlock(&rename_lock);
2439 			if (IS_ERR(actual)) {
2440 				if (PTR_ERR(actual) == -ELOOP)
2441 					pr_warn_ratelimited(
2442 						"VFS: Lookup of '%s' in %s %s"
2443 						" would have caused loop\n",
2444 						dentry->d_name.name,
2445 						inode->i_sb->s_type->name,
2446 						inode->i_sb->s_id);
2447 				dput(alias);
2448 			}
2449 			goto out_nolock;
2450 		}
2451 	}
2452 
2453 	/* Add a unique reference */
2454 	actual = __d_instantiate_unique(dentry, inode);
2455 	if (!actual)
2456 		actual = dentry;
2457 	else
2458 		BUG_ON(!d_unhashed(actual));
2459 
2460 	spin_lock(&actual->d_lock);
2461 found:
2462 	_d_rehash(actual);
2463 	spin_unlock(&actual->d_lock);
2464 	spin_unlock(&inode->i_lock);
2465 out_nolock:
2466 	if (actual == dentry) {
2467 		security_d_instantiate(dentry, inode);
2468 		return NULL;
2469 	}
2470 
2471 	iput(inode);
2472 	return actual;
2473 }
2474 EXPORT_SYMBOL_GPL(d_materialise_unique);
2475 
2476 static int prepend(char **buffer, int *buflen, const char *str, int namelen)
2477 {
2478 	*buflen -= namelen;
2479 	if (*buflen < 0)
2480 		return -ENAMETOOLONG;
2481 	*buffer -= namelen;
2482 	memcpy(*buffer, str, namelen);
2483 	return 0;
2484 }
2485 
2486 static int prepend_name(char **buffer, int *buflen, struct qstr *name)
2487 {
2488 	return prepend(buffer, buflen, name->name, name->len);
2489 }
2490 
2491 /**
2492  * prepend_path - Prepend path string to a buffer
2493  * @path: the dentry/vfsmount to report
2494  * @root: root vfsmnt/dentry
2495  * @buffer: pointer to the end of the buffer
2496  * @buflen: pointer to buffer length
2497  *
2498  * Caller holds the rename_lock.
2499  */
2500 static int prepend_path(const struct path *path,
2501 			const struct path *root,
2502 			char **buffer, int *buflen)
2503 {
2504 	struct dentry *dentry = path->dentry;
2505 	struct vfsmount *vfsmnt = path->mnt;
2506 	struct mount *mnt = real_mount(vfsmnt);
2507 	bool slash = false;
2508 	int error = 0;
2509 
2510 	br_read_lock(vfsmount_lock);
2511 	while (dentry != root->dentry || vfsmnt != root->mnt) {
2512 		struct dentry * parent;
2513 
2514 		if (dentry == vfsmnt->mnt_root || IS_ROOT(dentry)) {
2515 			/* Global root? */
2516 			if (!mnt_has_parent(mnt))
2517 				goto global_root;
2518 			dentry = mnt->mnt_mountpoint;
2519 			mnt = mnt->mnt_parent;
2520 			vfsmnt = &mnt->mnt;
2521 			continue;
2522 		}
2523 		parent = dentry->d_parent;
2524 		prefetch(parent);
2525 		spin_lock(&dentry->d_lock);
2526 		error = prepend_name(buffer, buflen, &dentry->d_name);
2527 		spin_unlock(&dentry->d_lock);
2528 		if (!error)
2529 			error = prepend(buffer, buflen, "/", 1);
2530 		if (error)
2531 			break;
2532 
2533 		slash = true;
2534 		dentry = parent;
2535 	}
2536 
2537 	if (!error && !slash)
2538 		error = prepend(buffer, buflen, "/", 1);
2539 
2540 out:
2541 	br_read_unlock(vfsmount_lock);
2542 	return error;
2543 
2544 global_root:
2545 	/*
2546 	 * Filesystems needing to implement special "root names"
2547 	 * should do so with ->d_dname()
2548 	 */
2549 	if (IS_ROOT(dentry) &&
2550 	    (dentry->d_name.len != 1 || dentry->d_name.name[0] != '/')) {
2551 		WARN(1, "Root dentry has weird name <%.*s>\n",
2552 		     (int) dentry->d_name.len, dentry->d_name.name);
2553 	}
2554 	if (!slash)
2555 		error = prepend(buffer, buflen, "/", 1);
2556 	if (!error)
2557 		error = real_mount(vfsmnt)->mnt_ns ? 1 : 2;
2558 	goto out;
2559 }
2560 
2561 /**
2562  * __d_path - return the path of a dentry
2563  * @path: the dentry/vfsmount to report
2564  * @root: root vfsmnt/dentry
2565  * @buf: buffer to return value in
2566  * @buflen: buffer length
2567  *
2568  * Convert a dentry into an ASCII path name.
2569  *
2570  * Returns a pointer into the buffer or an error code if the
2571  * path was too long.
2572  *
2573  * "buflen" should be positive.
2574  *
2575  * If the path is not reachable from the supplied root, return %NULL.
2576  */
2577 char *__d_path(const struct path *path,
2578 	       const struct path *root,
2579 	       char *buf, int buflen)
2580 {
2581 	char *res = buf + buflen;
2582 	int error;
2583 
2584 	prepend(&res, &buflen, "\0", 1);
2585 	write_seqlock(&rename_lock);
2586 	error = prepend_path(path, root, &res, &buflen);
2587 	write_sequnlock(&rename_lock);
2588 
2589 	if (error < 0)
2590 		return ERR_PTR(error);
2591 	if (error > 0)
2592 		return NULL;
2593 	return res;
2594 }
2595 
2596 char *d_absolute_path(const struct path *path,
2597 	       char *buf, int buflen)
2598 {
2599 	struct path root = {};
2600 	char *res = buf + buflen;
2601 	int error;
2602 
2603 	prepend(&res, &buflen, "\0", 1);
2604 	write_seqlock(&rename_lock);
2605 	error = prepend_path(path, &root, &res, &buflen);
2606 	write_sequnlock(&rename_lock);
2607 
2608 	if (error > 1)
2609 		error = -EINVAL;
2610 	if (error < 0)
2611 		return ERR_PTR(error);
2612 	return res;
2613 }
2614 
2615 /*
2616  * same as __d_path but appends "(deleted)" for unlinked files.
2617  */
2618 static int path_with_deleted(const struct path *path,
2619 			     const struct path *root,
2620 			     char **buf, int *buflen)
2621 {
2622 	prepend(buf, buflen, "\0", 1);
2623 	if (d_unlinked(path->dentry)) {
2624 		int error = prepend(buf, buflen, " (deleted)", 10);
2625 		if (error)
2626 			return error;
2627 	}
2628 
2629 	return prepend_path(path, root, buf, buflen);
2630 }
2631 
2632 static int prepend_unreachable(char **buffer, int *buflen)
2633 {
2634 	return prepend(buffer, buflen, "(unreachable)", 13);
2635 }
2636 
2637 /**
2638  * d_path - return the path of a dentry
2639  * @path: path to report
2640  * @buf: buffer to return value in
2641  * @buflen: buffer length
2642  *
2643  * Convert a dentry into an ASCII path name. If the entry has been deleted
2644  * the string " (deleted)" is appended. Note that this is ambiguous.
2645  *
2646  * Returns a pointer into the buffer or an error code if the path was
2647  * too long. Note: Callers should use the returned pointer, not the passed
2648  * in buffer, to use the name! The implementation often starts at an offset
2649  * into the buffer, and may leave 0 bytes at the start.
2650  *
2651  * "buflen" should be positive.
2652  */
2653 char *d_path(const struct path *path, char *buf, int buflen)
2654 {
2655 	char *res = buf + buflen;
2656 	struct path root;
2657 	int error;
2658 
2659 	/*
2660 	 * We have various synthetic filesystems that never get mounted.  On
2661 	 * these filesystems dentries are never used for lookup purposes, and
2662 	 * thus don't need to be hashed.  They also don't need a name until a
2663 	 * user wants to identify the object in /proc/pid/fd/.  The little hack
2664 	 * below allows us to generate a name for these objects on demand:
2665 	 */
2666 	if (path->dentry->d_op && path->dentry->d_op->d_dname)
2667 		return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
2668 
2669 	get_fs_root(current->fs, &root);
2670 	write_seqlock(&rename_lock);
2671 	error = path_with_deleted(path, &root, &res, &buflen);
2672 	if (error < 0)
2673 		res = ERR_PTR(error);
2674 	write_sequnlock(&rename_lock);
2675 	path_put(&root);
2676 	return res;
2677 }
2678 EXPORT_SYMBOL(d_path);
2679 
2680 /**
2681  * d_path_with_unreachable - return the path of a dentry
2682  * @path: path to report
2683  * @buf: buffer to return value in
2684  * @buflen: buffer length
2685  *
2686  * The difference from d_path() is that this prepends "(unreachable)"
2687  * to paths which are unreachable from the current process' root.
2688  */
2689 char *d_path_with_unreachable(const struct path *path, char *buf, int buflen)
2690 {
2691 	char *res = buf + buflen;
2692 	struct path root;
2693 	int error;
2694 
2695 	if (path->dentry->d_op && path->dentry->d_op->d_dname)
2696 		return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
2697 
2698 	get_fs_root(current->fs, &root);
2699 	write_seqlock(&rename_lock);
2700 	error = path_with_deleted(path, &root, &res, &buflen);
2701 	if (error > 0)
2702 		error = prepend_unreachable(&res, &buflen);
2703 	write_sequnlock(&rename_lock);
2704 	path_put(&root);
2705 	if (error)
2706 		res =  ERR_PTR(error);
2707 
2708 	return res;
2709 }
2710 
2711 /*
2712  * Helper function for dentry_operations.d_dname() members
2713  */
2714 char *dynamic_dname(struct dentry *dentry, char *buffer, int buflen,
2715 			const char *fmt, ...)
2716 {
2717 	va_list args;
2718 	char temp[64];
2719 	int sz;
2720 
2721 	va_start(args, fmt);
2722 	sz = vsnprintf(temp, sizeof(temp), fmt, args) + 1;
2723 	va_end(args);
2724 
2725 	if (sz > sizeof(temp) || sz > buflen)
2726 		return ERR_PTR(-ENAMETOOLONG);
2727 
2728 	buffer += buflen - sz;
2729 	return memcpy(buffer, temp, sz);
2730 }
2731 
2732 /*
2733  * Write full pathname from the root of the filesystem into the buffer.
2734  */
2735 static char *__dentry_path(struct dentry *dentry, char *buf, int buflen)
2736 {
2737 	char *end = buf + buflen;
2738 	char *retval;
2739 
2740 	prepend(&end, &buflen, "\0", 1);
2741 	if (buflen < 1)
2742 		goto Elong;
2743 	/* Get '/' right */
2744 	retval = end-1;
2745 	*retval = '/';
2746 
2747 	while (!IS_ROOT(dentry)) {
2748 		struct dentry *parent = dentry->d_parent;
2749 		int error;
2750 
2751 		prefetch(parent);
2752 		spin_lock(&dentry->d_lock);
2753 		error = prepend_name(&end, &buflen, &dentry->d_name);
2754 		spin_unlock(&dentry->d_lock);
2755 		if (error != 0 || prepend(&end, &buflen, "/", 1) != 0)
2756 			goto Elong;
2757 
2758 		retval = end;
2759 		dentry = parent;
2760 	}
2761 	return retval;
2762 Elong:
2763 	return ERR_PTR(-ENAMETOOLONG);
2764 }
2765 
2766 char *dentry_path_raw(struct dentry *dentry, char *buf, int buflen)
2767 {
2768 	char *retval;
2769 
2770 	write_seqlock(&rename_lock);
2771 	retval = __dentry_path(dentry, buf, buflen);
2772 	write_sequnlock(&rename_lock);
2773 
2774 	return retval;
2775 }
2776 EXPORT_SYMBOL(dentry_path_raw);
2777 
2778 char *dentry_path(struct dentry *dentry, char *buf, int buflen)
2779 {
2780 	char *p = NULL;
2781 	char *retval;
2782 
2783 	write_seqlock(&rename_lock);
2784 	if (d_unlinked(dentry)) {
2785 		p = buf + buflen;
2786 		if (prepend(&p, &buflen, "//deleted", 10) != 0)
2787 			goto Elong;
2788 		buflen++;
2789 	}
2790 	retval = __dentry_path(dentry, buf, buflen);
2791 	write_sequnlock(&rename_lock);
2792 	if (!IS_ERR(retval) && p)
2793 		*p = '/';	/* restore '/' overriden with '\0' */
2794 	return retval;
2795 Elong:
2796 	return ERR_PTR(-ENAMETOOLONG);
2797 }
2798 
2799 /*
2800  * NOTE! The user-level library version returns a
2801  * character pointer. The kernel system call just
2802  * returns the length of the buffer filled (which
2803  * includes the ending '\0' character), or a negative
2804  * error value. So libc would do something like
2805  *
2806  *	char *getcwd(char * buf, size_t size)
2807  *	{
2808  *		int retval;
2809  *
2810  *		retval = sys_getcwd(buf, size);
2811  *		if (retval >= 0)
2812  *			return buf;
2813  *		errno = -retval;
2814  *		return NULL;
2815  *	}
2816  */
2817 SYSCALL_DEFINE2(getcwd, char __user *, buf, unsigned long, size)
2818 {
2819 	int error;
2820 	struct path pwd, root;
2821 	char *page = (char *) __get_free_page(GFP_USER);
2822 
2823 	if (!page)
2824 		return -ENOMEM;
2825 
2826 	get_fs_root_and_pwd(current->fs, &root, &pwd);
2827 
2828 	error = -ENOENT;
2829 	write_seqlock(&rename_lock);
2830 	if (!d_unlinked(pwd.dentry)) {
2831 		unsigned long len;
2832 		char *cwd = page + PAGE_SIZE;
2833 		int buflen = PAGE_SIZE;
2834 
2835 		prepend(&cwd, &buflen, "\0", 1);
2836 		error = prepend_path(&pwd, &root, &cwd, &buflen);
2837 		write_sequnlock(&rename_lock);
2838 
2839 		if (error < 0)
2840 			goto out;
2841 
2842 		/* Unreachable from current root */
2843 		if (error > 0) {
2844 			error = prepend_unreachable(&cwd, &buflen);
2845 			if (error)
2846 				goto out;
2847 		}
2848 
2849 		error = -ERANGE;
2850 		len = PAGE_SIZE + page - cwd;
2851 		if (len <= size) {
2852 			error = len;
2853 			if (copy_to_user(buf, cwd, len))
2854 				error = -EFAULT;
2855 		}
2856 	} else {
2857 		write_sequnlock(&rename_lock);
2858 	}
2859 
2860 out:
2861 	path_put(&pwd);
2862 	path_put(&root);
2863 	free_page((unsigned long) page);
2864 	return error;
2865 }
2866 
2867 /*
2868  * Test whether new_dentry is a subdirectory of old_dentry.
2869  *
2870  * Trivially implemented using the dcache structure
2871  */
2872 
2873 /**
2874  * is_subdir - is new dentry a subdirectory of old_dentry
2875  * @new_dentry: new dentry
2876  * @old_dentry: old dentry
2877  *
2878  * Returns 1 if new_dentry is a subdirectory of the parent (at any depth).
2879  * Returns 0 otherwise.
2880  * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
2881  */
2882 
2883 int is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
2884 {
2885 	int result;
2886 	unsigned seq;
2887 
2888 	if (new_dentry == old_dentry)
2889 		return 1;
2890 
2891 	do {
2892 		/* for restarting inner loop in case of seq retry */
2893 		seq = read_seqbegin(&rename_lock);
2894 		/*
2895 		 * Need rcu_readlock to protect against the d_parent trashing
2896 		 * due to d_move
2897 		 */
2898 		rcu_read_lock();
2899 		if (d_ancestor(old_dentry, new_dentry))
2900 			result = 1;
2901 		else
2902 			result = 0;
2903 		rcu_read_unlock();
2904 	} while (read_seqretry(&rename_lock, seq));
2905 
2906 	return result;
2907 }
2908 
2909 void d_genocide(struct dentry *root)
2910 {
2911 	struct dentry *this_parent;
2912 	struct list_head *next;
2913 	unsigned seq;
2914 	int locked = 0;
2915 
2916 	seq = read_seqbegin(&rename_lock);
2917 again:
2918 	this_parent = root;
2919 	spin_lock(&this_parent->d_lock);
2920 repeat:
2921 	next = this_parent->d_subdirs.next;
2922 resume:
2923 	while (next != &this_parent->d_subdirs) {
2924 		struct list_head *tmp = next;
2925 		struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
2926 		next = tmp->next;
2927 
2928 		spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
2929 		if (d_unhashed(dentry) || !dentry->d_inode) {
2930 			spin_unlock(&dentry->d_lock);
2931 			continue;
2932 		}
2933 		if (!list_empty(&dentry->d_subdirs)) {
2934 			spin_unlock(&this_parent->d_lock);
2935 			spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
2936 			this_parent = dentry;
2937 			spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
2938 			goto repeat;
2939 		}
2940 		if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
2941 			dentry->d_flags |= DCACHE_GENOCIDE;
2942 			dentry->d_count--;
2943 		}
2944 		spin_unlock(&dentry->d_lock);
2945 	}
2946 	if (this_parent != root) {
2947 		struct dentry *child = this_parent;
2948 		if (!(this_parent->d_flags & DCACHE_GENOCIDE)) {
2949 			this_parent->d_flags |= DCACHE_GENOCIDE;
2950 			this_parent->d_count--;
2951 		}
2952 		this_parent = try_to_ascend(this_parent, locked, seq);
2953 		if (!this_parent)
2954 			goto rename_retry;
2955 		next = child->d_u.d_child.next;
2956 		goto resume;
2957 	}
2958 	spin_unlock(&this_parent->d_lock);
2959 	if (!locked && read_seqretry(&rename_lock, seq))
2960 		goto rename_retry;
2961 	if (locked)
2962 		write_sequnlock(&rename_lock);
2963 	return;
2964 
2965 rename_retry:
2966 	locked = 1;
2967 	write_seqlock(&rename_lock);
2968 	goto again;
2969 }
2970 
2971 /**
2972  * find_inode_number - check for dentry with name
2973  * @dir: directory to check
2974  * @name: Name to find.
2975  *
2976  * Check whether a dentry already exists for the given name,
2977  * and return the inode number if it has an inode. Otherwise
2978  * 0 is returned.
2979  *
2980  * This routine is used to post-process directory listings for
2981  * filesystems using synthetic inode numbers, and is necessary
2982  * to keep getcwd() working.
2983  */
2984 
2985 ino_t find_inode_number(struct dentry *dir, struct qstr *name)
2986 {
2987 	struct dentry * dentry;
2988 	ino_t ino = 0;
2989 
2990 	dentry = d_hash_and_lookup(dir, name);
2991 	if (dentry) {
2992 		if (dentry->d_inode)
2993 			ino = dentry->d_inode->i_ino;
2994 		dput(dentry);
2995 	}
2996 	return ino;
2997 }
2998 EXPORT_SYMBOL(find_inode_number);
2999 
3000 static __initdata unsigned long dhash_entries;
3001 static int __init set_dhash_entries(char *str)
3002 {
3003 	if (!str)
3004 		return 0;
3005 	dhash_entries = simple_strtoul(str, &str, 0);
3006 	return 1;
3007 }
3008 __setup("dhash_entries=", set_dhash_entries);
3009 
3010 static void __init dcache_init_early(void)
3011 {
3012 	unsigned int loop;
3013 
3014 	/* If hashes are distributed across NUMA nodes, defer
3015 	 * hash allocation until vmalloc space is available.
3016 	 */
3017 	if (hashdist)
3018 		return;
3019 
3020 	dentry_hashtable =
3021 		alloc_large_system_hash("Dentry cache",
3022 					sizeof(struct hlist_bl_head),
3023 					dhash_entries,
3024 					13,
3025 					HASH_EARLY,
3026 					&d_hash_shift,
3027 					&d_hash_mask,
3028 					0);
3029 
3030 	for (loop = 0; loop < (1U << d_hash_shift); loop++)
3031 		INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
3032 }
3033 
3034 static void __init dcache_init(void)
3035 {
3036 	unsigned int loop;
3037 
3038 	/*
3039 	 * A constructor could be added for stable state like the lists,
3040 	 * but it is probably not worth it because of the cache nature
3041 	 * of the dcache.
3042 	 */
3043 	dentry_cache = KMEM_CACHE(dentry,
3044 		SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD);
3045 
3046 	/* Hash may have been set up in dcache_init_early */
3047 	if (!hashdist)
3048 		return;
3049 
3050 	dentry_hashtable =
3051 		alloc_large_system_hash("Dentry cache",
3052 					sizeof(struct hlist_bl_head),
3053 					dhash_entries,
3054 					13,
3055 					0,
3056 					&d_hash_shift,
3057 					&d_hash_mask,
3058 					0);
3059 
3060 	for (loop = 0; loop < (1U << d_hash_shift); loop++)
3061 		INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
3062 }
3063 
3064 /* SLAB cache for __getname() consumers */
3065 struct kmem_cache *names_cachep __read_mostly;
3066 EXPORT_SYMBOL(names_cachep);
3067 
3068 EXPORT_SYMBOL(d_genocide);
3069 
3070 void __init vfs_caches_init_early(void)
3071 {
3072 	dcache_init_early();
3073 	inode_init_early();
3074 }
3075 
3076 void __init vfs_caches_init(unsigned long mempages)
3077 {
3078 	unsigned long reserve;
3079 
3080 	/* Base hash sizes on available memory, with a reserve equal to
3081            150% of current kernel size */
3082 
3083 	reserve = min((mempages - nr_free_pages()) * 3/2, mempages - 1);
3084 	mempages -= reserve;
3085 
3086 	names_cachep = kmem_cache_create("names_cache", PATH_MAX, 0,
3087 			SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
3088 
3089 	dcache_init();
3090 	inode_init();
3091 	files_init(mempages);
3092 	mnt_init();
3093 	bdev_cache_init();
3094 	chrdev_init();
3095 }
3096