xref: /openbmc/linux/fs/dcache.c (revision 615f2e5c531bc57d5a190f321d697988e950ae4d)
1 /*
2  * fs/dcache.c
3  *
4  * Complete reimplementation
5  * (C) 1997 Thomas Schoebel-Theuer,
6  * with heavy changes by Linus Torvalds
7  */
8 
9 /*
10  * Notes on the allocation strategy:
11  *
12  * The dcache is a master of the icache - whenever a dcache entry
13  * exists, the inode will always exist. "iput()" is done either when
14  * the dcache entry is deleted or garbage collected.
15  */
16 
17 #include <linux/syscalls.h>
18 #include <linux/string.h>
19 #include <linux/mm.h>
20 #include <linux/fs.h>
21 #include <linux/fsnotify.h>
22 #include <linux/slab.h>
23 #include <linux/init.h>
24 #include <linux/hash.h>
25 #include <linux/cache.h>
26 #include <linux/export.h>
27 #include <linux/mount.h>
28 #include <linux/file.h>
29 #include <asm/uaccess.h>
30 #include <linux/security.h>
31 #include <linux/seqlock.h>
32 #include <linux/swap.h>
33 #include <linux/bootmem.h>
34 #include <linux/fs_struct.h>
35 #include <linux/hardirq.h>
36 #include <linux/bit_spinlock.h>
37 #include <linux/rculist_bl.h>
38 #include <linux/prefetch.h>
39 #include <linux/ratelimit.h>
40 #include "internal.h"
41 #include "mount.h"
42 
43 /*
44  * Usage:
45  * dcache->d_inode->i_lock protects:
46  *   - i_dentry, d_alias, d_inode of aliases
47  * dcache_hash_bucket lock protects:
48  *   - the dcache hash table
49  * s_anon bl list spinlock protects:
50  *   - the s_anon list (see __d_drop)
51  * dcache_lru_lock protects:
52  *   - the dcache lru lists and counters
53  * d_lock protects:
54  *   - d_flags
55  *   - d_name
56  *   - d_lru
57  *   - d_count
58  *   - d_unhashed()
59  *   - d_parent and d_subdirs
60  *   - childrens' d_child and d_parent
61  *   - d_alias, d_inode
62  *
63  * Ordering:
64  * dentry->d_inode->i_lock
65  *   dentry->d_lock
66  *     dcache_lru_lock
67  *     dcache_hash_bucket lock
68  *     s_anon lock
69  *
70  * If there is an ancestor relationship:
71  * dentry->d_parent->...->d_parent->d_lock
72  *   ...
73  *     dentry->d_parent->d_lock
74  *       dentry->d_lock
75  *
76  * If no ancestor relationship:
77  * if (dentry1 < dentry2)
78  *   dentry1->d_lock
79  *     dentry2->d_lock
80  */
81 int sysctl_vfs_cache_pressure __read_mostly = 100;
82 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
83 
84 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(dcache_lru_lock);
85 __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
86 
87 EXPORT_SYMBOL(rename_lock);
88 
89 static struct kmem_cache *dentry_cache __read_mostly;
90 
91 /*
92  * This is the single most critical data structure when it comes
93  * to the dcache: the hashtable for lookups. Somebody should try
94  * to make this good - I've just made it work.
95  *
96  * This hash-function tries to avoid losing too many bits of hash
97  * information, yet avoid using a prime hash-size or similar.
98  */
99 #define D_HASHBITS     d_hash_shift
100 #define D_HASHMASK     d_hash_mask
101 
102 static unsigned int d_hash_mask __read_mostly;
103 static unsigned int d_hash_shift __read_mostly;
104 
105 static struct hlist_bl_head *dentry_hashtable __read_mostly;
106 
107 static inline struct hlist_bl_head *d_hash(const struct dentry *parent,
108 					unsigned int hash)
109 {
110 	hash += (unsigned long) parent / L1_CACHE_BYTES;
111 	hash = hash + (hash >> D_HASHBITS);
112 	return dentry_hashtable + (hash & D_HASHMASK);
113 }
114 
115 /* Statistics gathering. */
116 struct dentry_stat_t dentry_stat = {
117 	.age_limit = 45,
118 };
119 
120 static DEFINE_PER_CPU(unsigned int, nr_dentry);
121 
122 #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
123 static int get_nr_dentry(void)
124 {
125 	int i;
126 	int sum = 0;
127 	for_each_possible_cpu(i)
128 		sum += per_cpu(nr_dentry, i);
129 	return sum < 0 ? 0 : sum;
130 }
131 
132 int proc_nr_dentry(ctl_table *table, int write, void __user *buffer,
133 		   size_t *lenp, loff_t *ppos)
134 {
135 	dentry_stat.nr_dentry = get_nr_dentry();
136 	return proc_dointvec(table, write, buffer, lenp, ppos);
137 }
138 #endif
139 
140 /*
141  * Compare 2 name strings, return 0 if they match, otherwise non-zero.
142  * The strings are both count bytes long, and count is non-zero.
143  */
144 #ifdef CONFIG_DCACHE_WORD_ACCESS
145 
146 #include <asm/word-at-a-time.h>
147 /*
148  * NOTE! 'cs' and 'scount' come from a dentry, so it has a
149  * aligned allocation for this particular component. We don't
150  * strictly need the load_unaligned_zeropad() safety, but it
151  * doesn't hurt either.
152  *
153  * In contrast, 'ct' and 'tcount' can be from a pathname, and do
154  * need the careful unaligned handling.
155  */
156 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
157 {
158 	unsigned long a,b,mask;
159 
160 	for (;;) {
161 		a = *(unsigned long *)cs;
162 		b = load_unaligned_zeropad(ct);
163 		if (tcount < sizeof(unsigned long))
164 			break;
165 		if (unlikely(a != b))
166 			return 1;
167 		cs += sizeof(unsigned long);
168 		ct += sizeof(unsigned long);
169 		tcount -= sizeof(unsigned long);
170 		if (!tcount)
171 			return 0;
172 	}
173 	mask = ~(~0ul << tcount*8);
174 	return unlikely(!!((a ^ b) & mask));
175 }
176 
177 #else
178 
179 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
180 {
181 	do {
182 		if (*cs != *ct)
183 			return 1;
184 		cs++;
185 		ct++;
186 		tcount--;
187 	} while (tcount);
188 	return 0;
189 }
190 
191 #endif
192 
193 static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount)
194 {
195 	const unsigned char *cs;
196 	/*
197 	 * Be careful about RCU walk racing with rename:
198 	 * use ACCESS_ONCE to fetch the name pointer.
199 	 *
200 	 * NOTE! Even if a rename will mean that the length
201 	 * was not loaded atomically, we don't care. The
202 	 * RCU walk will check the sequence count eventually,
203 	 * and catch it. And we won't overrun the buffer,
204 	 * because we're reading the name pointer atomically,
205 	 * and a dentry name is guaranteed to be properly
206 	 * terminated with a NUL byte.
207 	 *
208 	 * End result: even if 'len' is wrong, we'll exit
209 	 * early because the data cannot match (there can
210 	 * be no NUL in the ct/tcount data)
211 	 */
212 	cs = ACCESS_ONCE(dentry->d_name.name);
213 	smp_read_barrier_depends();
214 	return dentry_string_cmp(cs, ct, tcount);
215 }
216 
217 static void __d_free(struct rcu_head *head)
218 {
219 	struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
220 
221 	WARN_ON(!hlist_unhashed(&dentry->d_alias));
222 	if (dname_external(dentry))
223 		kfree(dentry->d_name.name);
224 	kmem_cache_free(dentry_cache, dentry);
225 }
226 
227 /*
228  * no locks, please.
229  */
230 static void d_free(struct dentry *dentry)
231 {
232 	BUG_ON(dentry->d_count);
233 	this_cpu_dec(nr_dentry);
234 	if (dentry->d_op && dentry->d_op->d_release)
235 		dentry->d_op->d_release(dentry);
236 
237 	/* if dentry was never visible to RCU, immediate free is OK */
238 	if (!(dentry->d_flags & DCACHE_RCUACCESS))
239 		__d_free(&dentry->d_u.d_rcu);
240 	else
241 		call_rcu(&dentry->d_u.d_rcu, __d_free);
242 }
243 
244 /**
245  * dentry_rcuwalk_barrier - invalidate in-progress rcu-walk lookups
246  * @dentry: the target dentry
247  * After this call, in-progress rcu-walk path lookup will fail. This
248  * should be called after unhashing, and after changing d_inode (if
249  * the dentry has not already been unhashed).
250  */
251 static inline void dentry_rcuwalk_barrier(struct dentry *dentry)
252 {
253 	assert_spin_locked(&dentry->d_lock);
254 	/* Go through a barrier */
255 	write_seqcount_barrier(&dentry->d_seq);
256 }
257 
258 /*
259  * Release the dentry's inode, using the filesystem
260  * d_iput() operation if defined. Dentry has no refcount
261  * and is unhashed.
262  */
263 static void dentry_iput(struct dentry * dentry)
264 	__releases(dentry->d_lock)
265 	__releases(dentry->d_inode->i_lock)
266 {
267 	struct inode *inode = dentry->d_inode;
268 	if (inode) {
269 		dentry->d_inode = NULL;
270 		hlist_del_init(&dentry->d_alias);
271 		spin_unlock(&dentry->d_lock);
272 		spin_unlock(&inode->i_lock);
273 		if (!inode->i_nlink)
274 			fsnotify_inoderemove(inode);
275 		if (dentry->d_op && dentry->d_op->d_iput)
276 			dentry->d_op->d_iput(dentry, inode);
277 		else
278 			iput(inode);
279 	} else {
280 		spin_unlock(&dentry->d_lock);
281 	}
282 }
283 
284 /*
285  * Release the dentry's inode, using the filesystem
286  * d_iput() operation if defined. dentry remains in-use.
287  */
288 static void dentry_unlink_inode(struct dentry * dentry)
289 	__releases(dentry->d_lock)
290 	__releases(dentry->d_inode->i_lock)
291 {
292 	struct inode *inode = dentry->d_inode;
293 	dentry->d_inode = NULL;
294 	hlist_del_init(&dentry->d_alias);
295 	dentry_rcuwalk_barrier(dentry);
296 	spin_unlock(&dentry->d_lock);
297 	spin_unlock(&inode->i_lock);
298 	if (!inode->i_nlink)
299 		fsnotify_inoderemove(inode);
300 	if (dentry->d_op && dentry->d_op->d_iput)
301 		dentry->d_op->d_iput(dentry, inode);
302 	else
303 		iput(inode);
304 }
305 
306 /*
307  * dentry_lru_(add|del|prune|move_tail) must be called with d_lock held.
308  */
309 static void dentry_lru_add(struct dentry *dentry)
310 {
311 	if (list_empty(&dentry->d_lru)) {
312 		spin_lock(&dcache_lru_lock);
313 		list_add(&dentry->d_lru, &dentry->d_sb->s_dentry_lru);
314 		dentry->d_sb->s_nr_dentry_unused++;
315 		dentry_stat.nr_unused++;
316 		spin_unlock(&dcache_lru_lock);
317 	}
318 }
319 
320 static void __dentry_lru_del(struct dentry *dentry)
321 {
322 	list_del_init(&dentry->d_lru);
323 	dentry->d_flags &= ~DCACHE_SHRINK_LIST;
324 	dentry->d_sb->s_nr_dentry_unused--;
325 	dentry_stat.nr_unused--;
326 }
327 
328 /*
329  * Remove a dentry with references from the LRU.
330  */
331 static void dentry_lru_del(struct dentry *dentry)
332 {
333 	if (!list_empty(&dentry->d_lru)) {
334 		spin_lock(&dcache_lru_lock);
335 		__dentry_lru_del(dentry);
336 		spin_unlock(&dcache_lru_lock);
337 	}
338 }
339 
340 /*
341  * Remove a dentry that is unreferenced and about to be pruned
342  * (unhashed and destroyed) from the LRU, and inform the file system.
343  * This wrapper should be called _prior_ to unhashing a victim dentry.
344  */
345 static void dentry_lru_prune(struct dentry *dentry)
346 {
347 	if (!list_empty(&dentry->d_lru)) {
348 		if (dentry->d_flags & DCACHE_OP_PRUNE)
349 			dentry->d_op->d_prune(dentry);
350 
351 		spin_lock(&dcache_lru_lock);
352 		__dentry_lru_del(dentry);
353 		spin_unlock(&dcache_lru_lock);
354 	}
355 }
356 
357 static void dentry_lru_move_list(struct dentry *dentry, struct list_head *list)
358 {
359 	spin_lock(&dcache_lru_lock);
360 	if (list_empty(&dentry->d_lru)) {
361 		list_add_tail(&dentry->d_lru, list);
362 		dentry->d_sb->s_nr_dentry_unused++;
363 		dentry_stat.nr_unused++;
364 	} else {
365 		list_move_tail(&dentry->d_lru, list);
366 	}
367 	spin_unlock(&dcache_lru_lock);
368 }
369 
370 /**
371  * d_kill - kill dentry and return parent
372  * @dentry: dentry to kill
373  * @parent: parent dentry
374  *
375  * The dentry must already be unhashed and removed from the LRU.
376  *
377  * If this is the root of the dentry tree, return NULL.
378  *
379  * dentry->d_lock and parent->d_lock must be held by caller, and are dropped by
380  * d_kill.
381  */
382 static struct dentry *d_kill(struct dentry *dentry, struct dentry *parent)
383 	__releases(dentry->d_lock)
384 	__releases(parent->d_lock)
385 	__releases(dentry->d_inode->i_lock)
386 {
387 	list_del(&dentry->d_u.d_child);
388 	/*
389 	 * Inform try_to_ascend() that we are no longer attached to the
390 	 * dentry tree
391 	 */
392 	dentry->d_flags |= DCACHE_DENTRY_KILLED;
393 	if (parent)
394 		spin_unlock(&parent->d_lock);
395 	dentry_iput(dentry);
396 	/*
397 	 * dentry_iput drops the locks, at which point nobody (except
398 	 * transient RCU lookups) can reach this dentry.
399 	 */
400 	d_free(dentry);
401 	return parent;
402 }
403 
404 /*
405  * Unhash a dentry without inserting an RCU walk barrier or checking that
406  * dentry->d_lock is locked.  The caller must take care of that, if
407  * appropriate.
408  */
409 static void __d_shrink(struct dentry *dentry)
410 {
411 	if (!d_unhashed(dentry)) {
412 		struct hlist_bl_head *b;
413 		if (unlikely(dentry->d_flags & DCACHE_DISCONNECTED))
414 			b = &dentry->d_sb->s_anon;
415 		else
416 			b = d_hash(dentry->d_parent, dentry->d_name.hash);
417 
418 		hlist_bl_lock(b);
419 		__hlist_bl_del(&dentry->d_hash);
420 		dentry->d_hash.pprev = NULL;
421 		hlist_bl_unlock(b);
422 	}
423 }
424 
425 /**
426  * d_drop - drop a dentry
427  * @dentry: dentry to drop
428  *
429  * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
430  * be found through a VFS lookup any more. Note that this is different from
431  * deleting the dentry - d_delete will try to mark the dentry negative if
432  * possible, giving a successful _negative_ lookup, while d_drop will
433  * just make the cache lookup fail.
434  *
435  * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
436  * reason (NFS timeouts or autofs deletes).
437  *
438  * __d_drop requires dentry->d_lock.
439  */
440 void __d_drop(struct dentry *dentry)
441 {
442 	if (!d_unhashed(dentry)) {
443 		__d_shrink(dentry);
444 		dentry_rcuwalk_barrier(dentry);
445 	}
446 }
447 EXPORT_SYMBOL(__d_drop);
448 
449 void d_drop(struct dentry *dentry)
450 {
451 	spin_lock(&dentry->d_lock);
452 	__d_drop(dentry);
453 	spin_unlock(&dentry->d_lock);
454 }
455 EXPORT_SYMBOL(d_drop);
456 
457 /*
458  * Finish off a dentry we've decided to kill.
459  * dentry->d_lock must be held, returns with it unlocked.
460  * If ref is non-zero, then decrement the refcount too.
461  * Returns dentry requiring refcount drop, or NULL if we're done.
462  */
463 static inline struct dentry *dentry_kill(struct dentry *dentry, int ref)
464 	__releases(dentry->d_lock)
465 {
466 	struct inode *inode;
467 	struct dentry *parent;
468 
469 	inode = dentry->d_inode;
470 	if (inode && !spin_trylock(&inode->i_lock)) {
471 relock:
472 		spin_unlock(&dentry->d_lock);
473 		cpu_relax();
474 		return dentry; /* try again with same dentry */
475 	}
476 	if (IS_ROOT(dentry))
477 		parent = NULL;
478 	else
479 		parent = dentry->d_parent;
480 	if (parent && !spin_trylock(&parent->d_lock)) {
481 		if (inode)
482 			spin_unlock(&inode->i_lock);
483 		goto relock;
484 	}
485 
486 	if (ref)
487 		dentry->d_count--;
488 	/*
489 	 * if dentry was on the d_lru list delete it from there.
490 	 * inform the fs via d_prune that this dentry is about to be
491 	 * unhashed and destroyed.
492 	 */
493 	dentry_lru_prune(dentry);
494 	/* if it was on the hash then remove it */
495 	__d_drop(dentry);
496 	return d_kill(dentry, parent);
497 }
498 
499 /*
500  * This is dput
501  *
502  * This is complicated by the fact that we do not want to put
503  * dentries that are no longer on any hash chain on the unused
504  * list: we'd much rather just get rid of them immediately.
505  *
506  * However, that implies that we have to traverse the dentry
507  * tree upwards to the parents which might _also_ now be
508  * scheduled for deletion (it may have been only waiting for
509  * its last child to go away).
510  *
511  * This tail recursion is done by hand as we don't want to depend
512  * on the compiler to always get this right (gcc generally doesn't).
513  * Real recursion would eat up our stack space.
514  */
515 
516 /*
517  * dput - release a dentry
518  * @dentry: dentry to release
519  *
520  * Release a dentry. This will drop the usage count and if appropriate
521  * call the dentry unlink method as well as removing it from the queues and
522  * releasing its resources. If the parent dentries were scheduled for release
523  * they too may now get deleted.
524  */
525 void dput(struct dentry *dentry)
526 {
527 	if (!dentry)
528 		return;
529 
530 repeat:
531 	if (dentry->d_count == 1)
532 		might_sleep();
533 	spin_lock(&dentry->d_lock);
534 	BUG_ON(!dentry->d_count);
535 	if (dentry->d_count > 1) {
536 		dentry->d_count--;
537 		spin_unlock(&dentry->d_lock);
538 		return;
539 	}
540 
541 	if (dentry->d_flags & DCACHE_OP_DELETE) {
542 		if (dentry->d_op->d_delete(dentry))
543 			goto kill_it;
544 	}
545 
546 	/* Unreachable? Get rid of it */
547  	if (d_unhashed(dentry))
548 		goto kill_it;
549 
550 	dentry->d_flags |= DCACHE_REFERENCED;
551 	dentry_lru_add(dentry);
552 
553 	dentry->d_count--;
554 	spin_unlock(&dentry->d_lock);
555 	return;
556 
557 kill_it:
558 	dentry = dentry_kill(dentry, 1);
559 	if (dentry)
560 		goto repeat;
561 }
562 EXPORT_SYMBOL(dput);
563 
564 /**
565  * d_invalidate - invalidate a dentry
566  * @dentry: dentry to invalidate
567  *
568  * Try to invalidate the dentry if it turns out to be
569  * possible. If there are other dentries that can be
570  * reached through this one we can't delete it and we
571  * return -EBUSY. On success we return 0.
572  *
573  * no dcache lock.
574  */
575 
576 int d_invalidate(struct dentry * dentry)
577 {
578 	/*
579 	 * If it's already been dropped, return OK.
580 	 */
581 	spin_lock(&dentry->d_lock);
582 	if (d_unhashed(dentry)) {
583 		spin_unlock(&dentry->d_lock);
584 		return 0;
585 	}
586 	/*
587 	 * Check whether to do a partial shrink_dcache
588 	 * to get rid of unused child entries.
589 	 */
590 	if (!list_empty(&dentry->d_subdirs)) {
591 		spin_unlock(&dentry->d_lock);
592 		shrink_dcache_parent(dentry);
593 		spin_lock(&dentry->d_lock);
594 	}
595 
596 	/*
597 	 * Somebody else still using it?
598 	 *
599 	 * If it's a directory, we can't drop it
600 	 * for fear of somebody re-populating it
601 	 * with children (even though dropping it
602 	 * would make it unreachable from the root,
603 	 * we might still populate it if it was a
604 	 * working directory or similar).
605 	 * We also need to leave mountpoints alone,
606 	 * directory or not.
607 	 */
608 	if (dentry->d_count > 1 && dentry->d_inode) {
609 		if (S_ISDIR(dentry->d_inode->i_mode) || d_mountpoint(dentry)) {
610 			spin_unlock(&dentry->d_lock);
611 			return -EBUSY;
612 		}
613 	}
614 
615 	__d_drop(dentry);
616 	spin_unlock(&dentry->d_lock);
617 	return 0;
618 }
619 EXPORT_SYMBOL(d_invalidate);
620 
621 /* This must be called with d_lock held */
622 static inline void __dget_dlock(struct dentry *dentry)
623 {
624 	dentry->d_count++;
625 }
626 
627 static inline void __dget(struct dentry *dentry)
628 {
629 	spin_lock(&dentry->d_lock);
630 	__dget_dlock(dentry);
631 	spin_unlock(&dentry->d_lock);
632 }
633 
634 struct dentry *dget_parent(struct dentry *dentry)
635 {
636 	struct dentry *ret;
637 
638 repeat:
639 	/*
640 	 * Don't need rcu_dereference because we re-check it was correct under
641 	 * the lock.
642 	 */
643 	rcu_read_lock();
644 	ret = dentry->d_parent;
645 	spin_lock(&ret->d_lock);
646 	if (unlikely(ret != dentry->d_parent)) {
647 		spin_unlock(&ret->d_lock);
648 		rcu_read_unlock();
649 		goto repeat;
650 	}
651 	rcu_read_unlock();
652 	BUG_ON(!ret->d_count);
653 	ret->d_count++;
654 	spin_unlock(&ret->d_lock);
655 	return ret;
656 }
657 EXPORT_SYMBOL(dget_parent);
658 
659 /**
660  * d_find_alias - grab a hashed alias of inode
661  * @inode: inode in question
662  * @want_discon:  flag, used by d_splice_alias, to request
663  *          that only a DISCONNECTED alias be returned.
664  *
665  * If inode has a hashed alias, or is a directory and has any alias,
666  * acquire the reference to alias and return it. Otherwise return NULL.
667  * Notice that if inode is a directory there can be only one alias and
668  * it can be unhashed only if it has no children, or if it is the root
669  * of a filesystem.
670  *
671  * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
672  * any other hashed alias over that one unless @want_discon is set,
673  * in which case only return an IS_ROOT, DCACHE_DISCONNECTED alias.
674  */
675 static struct dentry *__d_find_alias(struct inode *inode, int want_discon)
676 {
677 	struct dentry *alias, *discon_alias;
678 	struct hlist_node *p;
679 
680 again:
681 	discon_alias = NULL;
682 	hlist_for_each_entry(alias, p, &inode->i_dentry, d_alias) {
683 		spin_lock(&alias->d_lock);
684  		if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
685 			if (IS_ROOT(alias) &&
686 			    (alias->d_flags & DCACHE_DISCONNECTED)) {
687 				discon_alias = alias;
688 			} else if (!want_discon) {
689 				__dget_dlock(alias);
690 				spin_unlock(&alias->d_lock);
691 				return alias;
692 			}
693 		}
694 		spin_unlock(&alias->d_lock);
695 	}
696 	if (discon_alias) {
697 		alias = discon_alias;
698 		spin_lock(&alias->d_lock);
699 		if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
700 			if (IS_ROOT(alias) &&
701 			    (alias->d_flags & DCACHE_DISCONNECTED)) {
702 				__dget_dlock(alias);
703 				spin_unlock(&alias->d_lock);
704 				return alias;
705 			}
706 		}
707 		spin_unlock(&alias->d_lock);
708 		goto again;
709 	}
710 	return NULL;
711 }
712 
713 struct dentry *d_find_alias(struct inode *inode)
714 {
715 	struct dentry *de = NULL;
716 
717 	if (!hlist_empty(&inode->i_dentry)) {
718 		spin_lock(&inode->i_lock);
719 		de = __d_find_alias(inode, 0);
720 		spin_unlock(&inode->i_lock);
721 	}
722 	return de;
723 }
724 EXPORT_SYMBOL(d_find_alias);
725 
726 /*
727  *	Try to kill dentries associated with this inode.
728  * WARNING: you must own a reference to inode.
729  */
730 void d_prune_aliases(struct inode *inode)
731 {
732 	struct dentry *dentry;
733 	struct hlist_node *p;
734 restart:
735 	spin_lock(&inode->i_lock);
736 	hlist_for_each_entry(dentry, p, &inode->i_dentry, d_alias) {
737 		spin_lock(&dentry->d_lock);
738 		if (!dentry->d_count) {
739 			__dget_dlock(dentry);
740 			__d_drop(dentry);
741 			spin_unlock(&dentry->d_lock);
742 			spin_unlock(&inode->i_lock);
743 			dput(dentry);
744 			goto restart;
745 		}
746 		spin_unlock(&dentry->d_lock);
747 	}
748 	spin_unlock(&inode->i_lock);
749 }
750 EXPORT_SYMBOL(d_prune_aliases);
751 
752 /*
753  * Try to throw away a dentry - free the inode, dput the parent.
754  * Requires dentry->d_lock is held, and dentry->d_count == 0.
755  * Releases dentry->d_lock.
756  *
757  * This may fail if locks cannot be acquired no problem, just try again.
758  */
759 static void try_prune_one_dentry(struct dentry *dentry)
760 	__releases(dentry->d_lock)
761 {
762 	struct dentry *parent;
763 
764 	parent = dentry_kill(dentry, 0);
765 	/*
766 	 * If dentry_kill returns NULL, we have nothing more to do.
767 	 * if it returns the same dentry, trylocks failed. In either
768 	 * case, just loop again.
769 	 *
770 	 * Otherwise, we need to prune ancestors too. This is necessary
771 	 * to prevent quadratic behavior of shrink_dcache_parent(), but
772 	 * is also expected to be beneficial in reducing dentry cache
773 	 * fragmentation.
774 	 */
775 	if (!parent)
776 		return;
777 	if (parent == dentry)
778 		return;
779 
780 	/* Prune ancestors. */
781 	dentry = parent;
782 	while (dentry) {
783 		spin_lock(&dentry->d_lock);
784 		if (dentry->d_count > 1) {
785 			dentry->d_count--;
786 			spin_unlock(&dentry->d_lock);
787 			return;
788 		}
789 		dentry = dentry_kill(dentry, 1);
790 	}
791 }
792 
793 static void shrink_dentry_list(struct list_head *list)
794 {
795 	struct dentry *dentry;
796 
797 	rcu_read_lock();
798 	for (;;) {
799 		dentry = list_entry_rcu(list->prev, struct dentry, d_lru);
800 		if (&dentry->d_lru == list)
801 			break; /* empty */
802 		spin_lock(&dentry->d_lock);
803 		if (dentry != list_entry(list->prev, struct dentry, d_lru)) {
804 			spin_unlock(&dentry->d_lock);
805 			continue;
806 		}
807 
808 		/*
809 		 * We found an inuse dentry which was not removed from
810 		 * the LRU because of laziness during lookup.  Do not free
811 		 * it - just keep it off the LRU list.
812 		 */
813 		if (dentry->d_count) {
814 			dentry_lru_del(dentry);
815 			spin_unlock(&dentry->d_lock);
816 			continue;
817 		}
818 
819 		rcu_read_unlock();
820 
821 		try_prune_one_dentry(dentry);
822 
823 		rcu_read_lock();
824 	}
825 	rcu_read_unlock();
826 }
827 
828 /**
829  * prune_dcache_sb - shrink the dcache
830  * @sb: superblock
831  * @count: number of entries to try to free
832  *
833  * Attempt to shrink the superblock dcache LRU by @count entries. This is
834  * done when we need more memory an called from the superblock shrinker
835  * function.
836  *
837  * This function may fail to free any resources if all the dentries are in
838  * use.
839  */
840 void prune_dcache_sb(struct super_block *sb, int count)
841 {
842 	struct dentry *dentry;
843 	LIST_HEAD(referenced);
844 	LIST_HEAD(tmp);
845 
846 relock:
847 	spin_lock(&dcache_lru_lock);
848 	while (!list_empty(&sb->s_dentry_lru)) {
849 		dentry = list_entry(sb->s_dentry_lru.prev,
850 				struct dentry, d_lru);
851 		BUG_ON(dentry->d_sb != sb);
852 
853 		if (!spin_trylock(&dentry->d_lock)) {
854 			spin_unlock(&dcache_lru_lock);
855 			cpu_relax();
856 			goto relock;
857 		}
858 
859 		if (dentry->d_flags & DCACHE_REFERENCED) {
860 			dentry->d_flags &= ~DCACHE_REFERENCED;
861 			list_move(&dentry->d_lru, &referenced);
862 			spin_unlock(&dentry->d_lock);
863 		} else {
864 			list_move_tail(&dentry->d_lru, &tmp);
865 			dentry->d_flags |= DCACHE_SHRINK_LIST;
866 			spin_unlock(&dentry->d_lock);
867 			if (!--count)
868 				break;
869 		}
870 		cond_resched_lock(&dcache_lru_lock);
871 	}
872 	if (!list_empty(&referenced))
873 		list_splice(&referenced, &sb->s_dentry_lru);
874 	spin_unlock(&dcache_lru_lock);
875 
876 	shrink_dentry_list(&tmp);
877 }
878 
879 /**
880  * shrink_dcache_sb - shrink dcache for a superblock
881  * @sb: superblock
882  *
883  * Shrink the dcache for the specified super block. This is used to free
884  * the dcache before unmounting a file system.
885  */
886 void shrink_dcache_sb(struct super_block *sb)
887 {
888 	LIST_HEAD(tmp);
889 
890 	spin_lock(&dcache_lru_lock);
891 	while (!list_empty(&sb->s_dentry_lru)) {
892 		list_splice_init(&sb->s_dentry_lru, &tmp);
893 		spin_unlock(&dcache_lru_lock);
894 		shrink_dentry_list(&tmp);
895 		spin_lock(&dcache_lru_lock);
896 	}
897 	spin_unlock(&dcache_lru_lock);
898 }
899 EXPORT_SYMBOL(shrink_dcache_sb);
900 
901 /*
902  * destroy a single subtree of dentries for unmount
903  * - see the comments on shrink_dcache_for_umount() for a description of the
904  *   locking
905  */
906 static void shrink_dcache_for_umount_subtree(struct dentry *dentry)
907 {
908 	struct dentry *parent;
909 
910 	BUG_ON(!IS_ROOT(dentry));
911 
912 	for (;;) {
913 		/* descend to the first leaf in the current subtree */
914 		while (!list_empty(&dentry->d_subdirs))
915 			dentry = list_entry(dentry->d_subdirs.next,
916 					    struct dentry, d_u.d_child);
917 
918 		/* consume the dentries from this leaf up through its parents
919 		 * until we find one with children or run out altogether */
920 		do {
921 			struct inode *inode;
922 
923 			/*
924 			 * remove the dentry from the lru, and inform
925 			 * the fs that this dentry is about to be
926 			 * unhashed and destroyed.
927 			 */
928 			dentry_lru_prune(dentry);
929 			__d_shrink(dentry);
930 
931 			if (dentry->d_count != 0) {
932 				printk(KERN_ERR
933 				       "BUG: Dentry %p{i=%lx,n=%s}"
934 				       " still in use (%d)"
935 				       " [unmount of %s %s]\n",
936 				       dentry,
937 				       dentry->d_inode ?
938 				       dentry->d_inode->i_ino : 0UL,
939 				       dentry->d_name.name,
940 				       dentry->d_count,
941 				       dentry->d_sb->s_type->name,
942 				       dentry->d_sb->s_id);
943 				BUG();
944 			}
945 
946 			if (IS_ROOT(dentry)) {
947 				parent = NULL;
948 				list_del(&dentry->d_u.d_child);
949 			} else {
950 				parent = dentry->d_parent;
951 				parent->d_count--;
952 				list_del(&dentry->d_u.d_child);
953 			}
954 
955 			inode = dentry->d_inode;
956 			if (inode) {
957 				dentry->d_inode = NULL;
958 				hlist_del_init(&dentry->d_alias);
959 				if (dentry->d_op && dentry->d_op->d_iput)
960 					dentry->d_op->d_iput(dentry, inode);
961 				else
962 					iput(inode);
963 			}
964 
965 			d_free(dentry);
966 
967 			/* finished when we fall off the top of the tree,
968 			 * otherwise we ascend to the parent and move to the
969 			 * next sibling if there is one */
970 			if (!parent)
971 				return;
972 			dentry = parent;
973 		} while (list_empty(&dentry->d_subdirs));
974 
975 		dentry = list_entry(dentry->d_subdirs.next,
976 				    struct dentry, d_u.d_child);
977 	}
978 }
979 
980 /*
981  * destroy the dentries attached to a superblock on unmounting
982  * - we don't need to use dentry->d_lock because:
983  *   - the superblock is detached from all mountings and open files, so the
984  *     dentry trees will not be rearranged by the VFS
985  *   - s_umount is write-locked, so the memory pressure shrinker will ignore
986  *     any dentries belonging to this superblock that it comes across
987  *   - the filesystem itself is no longer permitted to rearrange the dentries
988  *     in this superblock
989  */
990 void shrink_dcache_for_umount(struct super_block *sb)
991 {
992 	struct dentry *dentry;
993 
994 	if (down_read_trylock(&sb->s_umount))
995 		BUG();
996 
997 	dentry = sb->s_root;
998 	sb->s_root = NULL;
999 	dentry->d_count--;
1000 	shrink_dcache_for_umount_subtree(dentry);
1001 
1002 	while (!hlist_bl_empty(&sb->s_anon)) {
1003 		dentry = hlist_bl_entry(hlist_bl_first(&sb->s_anon), struct dentry, d_hash);
1004 		shrink_dcache_for_umount_subtree(dentry);
1005 	}
1006 }
1007 
1008 /*
1009  * This tries to ascend one level of parenthood, but
1010  * we can race with renaming, so we need to re-check
1011  * the parenthood after dropping the lock and check
1012  * that the sequence number still matches.
1013  */
1014 static struct dentry *try_to_ascend(struct dentry *old, int locked, unsigned seq)
1015 {
1016 	struct dentry *new = old->d_parent;
1017 
1018 	rcu_read_lock();
1019 	spin_unlock(&old->d_lock);
1020 	spin_lock(&new->d_lock);
1021 
1022 	/*
1023 	 * might go back up the wrong parent if we have had a rename
1024 	 * or deletion
1025 	 */
1026 	if (new != old->d_parent ||
1027 		 (old->d_flags & DCACHE_DENTRY_KILLED) ||
1028 		 (!locked && read_seqretry(&rename_lock, seq))) {
1029 		spin_unlock(&new->d_lock);
1030 		new = NULL;
1031 	}
1032 	rcu_read_unlock();
1033 	return new;
1034 }
1035 
1036 
1037 /*
1038  * Search for at least 1 mount point in the dentry's subdirs.
1039  * We descend to the next level whenever the d_subdirs
1040  * list is non-empty and continue searching.
1041  */
1042 
1043 /**
1044  * have_submounts - check for mounts over a dentry
1045  * @parent: dentry to check.
1046  *
1047  * Return true if the parent or its subdirectories contain
1048  * a mount point
1049  */
1050 int have_submounts(struct dentry *parent)
1051 {
1052 	struct dentry *this_parent;
1053 	struct list_head *next;
1054 	unsigned seq;
1055 	int locked = 0;
1056 
1057 	seq = read_seqbegin(&rename_lock);
1058 again:
1059 	this_parent = parent;
1060 
1061 	if (d_mountpoint(parent))
1062 		goto positive;
1063 	spin_lock(&this_parent->d_lock);
1064 repeat:
1065 	next = this_parent->d_subdirs.next;
1066 resume:
1067 	while (next != &this_parent->d_subdirs) {
1068 		struct list_head *tmp = next;
1069 		struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
1070 		next = tmp->next;
1071 
1072 		spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1073 		/* Have we found a mount point ? */
1074 		if (d_mountpoint(dentry)) {
1075 			spin_unlock(&dentry->d_lock);
1076 			spin_unlock(&this_parent->d_lock);
1077 			goto positive;
1078 		}
1079 		if (!list_empty(&dentry->d_subdirs)) {
1080 			spin_unlock(&this_parent->d_lock);
1081 			spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1082 			this_parent = dentry;
1083 			spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1084 			goto repeat;
1085 		}
1086 		spin_unlock(&dentry->d_lock);
1087 	}
1088 	/*
1089 	 * All done at this level ... ascend and resume the search.
1090 	 */
1091 	if (this_parent != parent) {
1092 		struct dentry *child = this_parent;
1093 		this_parent = try_to_ascend(this_parent, locked, seq);
1094 		if (!this_parent)
1095 			goto rename_retry;
1096 		next = child->d_u.d_child.next;
1097 		goto resume;
1098 	}
1099 	spin_unlock(&this_parent->d_lock);
1100 	if (!locked && read_seqretry(&rename_lock, seq))
1101 		goto rename_retry;
1102 	if (locked)
1103 		write_sequnlock(&rename_lock);
1104 	return 0; /* No mount points found in tree */
1105 positive:
1106 	if (!locked && read_seqretry(&rename_lock, seq))
1107 		goto rename_retry;
1108 	if (locked)
1109 		write_sequnlock(&rename_lock);
1110 	return 1;
1111 
1112 rename_retry:
1113 	if (locked)
1114 		goto again;
1115 	locked = 1;
1116 	write_seqlock(&rename_lock);
1117 	goto again;
1118 }
1119 EXPORT_SYMBOL(have_submounts);
1120 
1121 /*
1122  * Search the dentry child list of the specified parent,
1123  * and move any unused dentries to the end of the unused
1124  * list for prune_dcache(). We descend to the next level
1125  * whenever the d_subdirs list is non-empty and continue
1126  * searching.
1127  *
1128  * It returns zero iff there are no unused children,
1129  * otherwise  it returns the number of children moved to
1130  * the end of the unused list. This may not be the total
1131  * number of unused children, because select_parent can
1132  * drop the lock and return early due to latency
1133  * constraints.
1134  */
1135 static int select_parent(struct dentry *parent, struct list_head *dispose)
1136 {
1137 	struct dentry *this_parent;
1138 	struct list_head *next;
1139 	unsigned seq;
1140 	int found = 0;
1141 	int locked = 0;
1142 
1143 	seq = read_seqbegin(&rename_lock);
1144 again:
1145 	this_parent = parent;
1146 	spin_lock(&this_parent->d_lock);
1147 repeat:
1148 	next = this_parent->d_subdirs.next;
1149 resume:
1150 	while (next != &this_parent->d_subdirs) {
1151 		struct list_head *tmp = next;
1152 		struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
1153 		next = tmp->next;
1154 
1155 		spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1156 
1157 		/*
1158 		 * move only zero ref count dentries to the dispose list.
1159 		 *
1160 		 * Those which are presently on the shrink list, being processed
1161 		 * by shrink_dentry_list(), shouldn't be moved.  Otherwise the
1162 		 * loop in shrink_dcache_parent() might not make any progress
1163 		 * and loop forever.
1164 		 */
1165 		if (dentry->d_count) {
1166 			dentry_lru_del(dentry);
1167 		} else if (!(dentry->d_flags & DCACHE_SHRINK_LIST)) {
1168 			dentry_lru_move_list(dentry, dispose);
1169 			dentry->d_flags |= DCACHE_SHRINK_LIST;
1170 			found++;
1171 		}
1172 		/*
1173 		 * We can return to the caller if we have found some (this
1174 		 * ensures forward progress). We'll be coming back to find
1175 		 * the rest.
1176 		 */
1177 		if (found && need_resched()) {
1178 			spin_unlock(&dentry->d_lock);
1179 			goto out;
1180 		}
1181 
1182 		/*
1183 		 * Descend a level if the d_subdirs list is non-empty.
1184 		 */
1185 		if (!list_empty(&dentry->d_subdirs)) {
1186 			spin_unlock(&this_parent->d_lock);
1187 			spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1188 			this_parent = dentry;
1189 			spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1190 			goto repeat;
1191 		}
1192 
1193 		spin_unlock(&dentry->d_lock);
1194 	}
1195 	/*
1196 	 * All done at this level ... ascend and resume the search.
1197 	 */
1198 	if (this_parent != parent) {
1199 		struct dentry *child = this_parent;
1200 		this_parent = try_to_ascend(this_parent, locked, seq);
1201 		if (!this_parent)
1202 			goto rename_retry;
1203 		next = child->d_u.d_child.next;
1204 		goto resume;
1205 	}
1206 out:
1207 	spin_unlock(&this_parent->d_lock);
1208 	if (!locked && read_seqretry(&rename_lock, seq))
1209 		goto rename_retry;
1210 	if (locked)
1211 		write_sequnlock(&rename_lock);
1212 	return found;
1213 
1214 rename_retry:
1215 	if (found)
1216 		return found;
1217 	if (locked)
1218 		goto again;
1219 	locked = 1;
1220 	write_seqlock(&rename_lock);
1221 	goto again;
1222 }
1223 
1224 /**
1225  * shrink_dcache_parent - prune dcache
1226  * @parent: parent of entries to prune
1227  *
1228  * Prune the dcache to remove unused children of the parent dentry.
1229  */
1230 void shrink_dcache_parent(struct dentry * parent)
1231 {
1232 	LIST_HEAD(dispose);
1233 	int found;
1234 
1235 	while ((found = select_parent(parent, &dispose)) != 0)
1236 		shrink_dentry_list(&dispose);
1237 }
1238 EXPORT_SYMBOL(shrink_dcache_parent);
1239 
1240 /**
1241  * __d_alloc	-	allocate a dcache entry
1242  * @sb: filesystem it will belong to
1243  * @name: qstr of the name
1244  *
1245  * Allocates a dentry. It returns %NULL if there is insufficient memory
1246  * available. On a success the dentry is returned. The name passed in is
1247  * copied and the copy passed in may be reused after this call.
1248  */
1249 
1250 struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name)
1251 {
1252 	struct dentry *dentry;
1253 	char *dname;
1254 
1255 	dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
1256 	if (!dentry)
1257 		return NULL;
1258 
1259 	/*
1260 	 * We guarantee that the inline name is always NUL-terminated.
1261 	 * This way the memcpy() done by the name switching in rename
1262 	 * will still always have a NUL at the end, even if we might
1263 	 * be overwriting an internal NUL character
1264 	 */
1265 	dentry->d_iname[DNAME_INLINE_LEN-1] = 0;
1266 	if (name->len > DNAME_INLINE_LEN-1) {
1267 		dname = kmalloc(name->len + 1, GFP_KERNEL);
1268 		if (!dname) {
1269 			kmem_cache_free(dentry_cache, dentry);
1270 			return NULL;
1271 		}
1272 	} else  {
1273 		dname = dentry->d_iname;
1274 	}
1275 
1276 	dentry->d_name.len = name->len;
1277 	dentry->d_name.hash = name->hash;
1278 	memcpy(dname, name->name, name->len);
1279 	dname[name->len] = 0;
1280 
1281 	/* Make sure we always see the terminating NUL character */
1282 	smp_wmb();
1283 	dentry->d_name.name = dname;
1284 
1285 	dentry->d_count = 1;
1286 	dentry->d_flags = 0;
1287 	spin_lock_init(&dentry->d_lock);
1288 	seqcount_init(&dentry->d_seq);
1289 	dentry->d_inode = NULL;
1290 	dentry->d_parent = dentry;
1291 	dentry->d_sb = sb;
1292 	dentry->d_op = NULL;
1293 	dentry->d_fsdata = NULL;
1294 	INIT_HLIST_BL_NODE(&dentry->d_hash);
1295 	INIT_LIST_HEAD(&dentry->d_lru);
1296 	INIT_LIST_HEAD(&dentry->d_subdirs);
1297 	INIT_HLIST_NODE(&dentry->d_alias);
1298 	INIT_LIST_HEAD(&dentry->d_u.d_child);
1299 	d_set_d_op(dentry, dentry->d_sb->s_d_op);
1300 
1301 	this_cpu_inc(nr_dentry);
1302 
1303 	return dentry;
1304 }
1305 
1306 /**
1307  * d_alloc	-	allocate a dcache entry
1308  * @parent: parent of entry to allocate
1309  * @name: qstr of the name
1310  *
1311  * Allocates a dentry. It returns %NULL if there is insufficient memory
1312  * available. On a success the dentry is returned. The name passed in is
1313  * copied and the copy passed in may be reused after this call.
1314  */
1315 struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1316 {
1317 	struct dentry *dentry = __d_alloc(parent->d_sb, name);
1318 	if (!dentry)
1319 		return NULL;
1320 
1321 	spin_lock(&parent->d_lock);
1322 	/*
1323 	 * don't need child lock because it is not subject
1324 	 * to concurrency here
1325 	 */
1326 	__dget_dlock(parent);
1327 	dentry->d_parent = parent;
1328 	list_add(&dentry->d_u.d_child, &parent->d_subdirs);
1329 	spin_unlock(&parent->d_lock);
1330 
1331 	return dentry;
1332 }
1333 EXPORT_SYMBOL(d_alloc);
1334 
1335 struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
1336 {
1337 	struct dentry *dentry = __d_alloc(sb, name);
1338 	if (dentry)
1339 		dentry->d_flags |= DCACHE_DISCONNECTED;
1340 	return dentry;
1341 }
1342 EXPORT_SYMBOL(d_alloc_pseudo);
1343 
1344 struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1345 {
1346 	struct qstr q;
1347 
1348 	q.name = name;
1349 	q.len = strlen(name);
1350 	q.hash = full_name_hash(q.name, q.len);
1351 	return d_alloc(parent, &q);
1352 }
1353 EXPORT_SYMBOL(d_alloc_name);
1354 
1355 void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1356 {
1357 	WARN_ON_ONCE(dentry->d_op);
1358 	WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH	|
1359 				DCACHE_OP_COMPARE	|
1360 				DCACHE_OP_REVALIDATE	|
1361 				DCACHE_OP_WEAK_REVALIDATE	|
1362 				DCACHE_OP_DELETE ));
1363 	dentry->d_op = op;
1364 	if (!op)
1365 		return;
1366 	if (op->d_hash)
1367 		dentry->d_flags |= DCACHE_OP_HASH;
1368 	if (op->d_compare)
1369 		dentry->d_flags |= DCACHE_OP_COMPARE;
1370 	if (op->d_revalidate)
1371 		dentry->d_flags |= DCACHE_OP_REVALIDATE;
1372 	if (op->d_weak_revalidate)
1373 		dentry->d_flags |= DCACHE_OP_WEAK_REVALIDATE;
1374 	if (op->d_delete)
1375 		dentry->d_flags |= DCACHE_OP_DELETE;
1376 	if (op->d_prune)
1377 		dentry->d_flags |= DCACHE_OP_PRUNE;
1378 
1379 }
1380 EXPORT_SYMBOL(d_set_d_op);
1381 
1382 static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1383 {
1384 	spin_lock(&dentry->d_lock);
1385 	if (inode) {
1386 		if (unlikely(IS_AUTOMOUNT(inode)))
1387 			dentry->d_flags |= DCACHE_NEED_AUTOMOUNT;
1388 		hlist_add_head(&dentry->d_alias, &inode->i_dentry);
1389 	}
1390 	dentry->d_inode = inode;
1391 	dentry_rcuwalk_barrier(dentry);
1392 	spin_unlock(&dentry->d_lock);
1393 	fsnotify_d_instantiate(dentry, inode);
1394 }
1395 
1396 /**
1397  * d_instantiate - fill in inode information for a dentry
1398  * @entry: dentry to complete
1399  * @inode: inode to attach to this dentry
1400  *
1401  * Fill in inode information in the entry.
1402  *
1403  * This turns negative dentries into productive full members
1404  * of society.
1405  *
1406  * NOTE! This assumes that the inode count has been incremented
1407  * (or otherwise set) by the caller to indicate that it is now
1408  * in use by the dcache.
1409  */
1410 
1411 void d_instantiate(struct dentry *entry, struct inode * inode)
1412 {
1413 	BUG_ON(!hlist_unhashed(&entry->d_alias));
1414 	if (inode)
1415 		spin_lock(&inode->i_lock);
1416 	__d_instantiate(entry, inode);
1417 	if (inode)
1418 		spin_unlock(&inode->i_lock);
1419 	security_d_instantiate(entry, inode);
1420 }
1421 EXPORT_SYMBOL(d_instantiate);
1422 
1423 /**
1424  * d_instantiate_unique - instantiate a non-aliased dentry
1425  * @entry: dentry to instantiate
1426  * @inode: inode to attach to this dentry
1427  *
1428  * Fill in inode information in the entry. On success, it returns NULL.
1429  * If an unhashed alias of "entry" already exists, then we return the
1430  * aliased dentry instead and drop one reference to inode.
1431  *
1432  * Note that in order to avoid conflicts with rename() etc, the caller
1433  * had better be holding the parent directory semaphore.
1434  *
1435  * This also assumes that the inode count has been incremented
1436  * (or otherwise set) by the caller to indicate that it is now
1437  * in use by the dcache.
1438  */
1439 static struct dentry *__d_instantiate_unique(struct dentry *entry,
1440 					     struct inode *inode)
1441 {
1442 	struct dentry *alias;
1443 	int len = entry->d_name.len;
1444 	const char *name = entry->d_name.name;
1445 	unsigned int hash = entry->d_name.hash;
1446 	struct hlist_node *p;
1447 
1448 	if (!inode) {
1449 		__d_instantiate(entry, NULL);
1450 		return NULL;
1451 	}
1452 
1453 	hlist_for_each_entry(alias, p, &inode->i_dentry, d_alias) {
1454 		/*
1455 		 * Don't need alias->d_lock here, because aliases with
1456 		 * d_parent == entry->d_parent are not subject to name or
1457 		 * parent changes, because the parent inode i_mutex is held.
1458 		 */
1459 		if (alias->d_name.hash != hash)
1460 			continue;
1461 		if (alias->d_parent != entry->d_parent)
1462 			continue;
1463 		if (alias->d_name.len != len)
1464 			continue;
1465 		if (dentry_cmp(alias, name, len))
1466 			continue;
1467 		__dget(alias);
1468 		return alias;
1469 	}
1470 
1471 	__d_instantiate(entry, inode);
1472 	return NULL;
1473 }
1474 
1475 struct dentry *d_instantiate_unique(struct dentry *entry, struct inode *inode)
1476 {
1477 	struct dentry *result;
1478 
1479 	BUG_ON(!hlist_unhashed(&entry->d_alias));
1480 
1481 	if (inode)
1482 		spin_lock(&inode->i_lock);
1483 	result = __d_instantiate_unique(entry, inode);
1484 	if (inode)
1485 		spin_unlock(&inode->i_lock);
1486 
1487 	if (!result) {
1488 		security_d_instantiate(entry, inode);
1489 		return NULL;
1490 	}
1491 
1492 	BUG_ON(!d_unhashed(result));
1493 	iput(inode);
1494 	return result;
1495 }
1496 
1497 EXPORT_SYMBOL(d_instantiate_unique);
1498 
1499 struct dentry *d_make_root(struct inode *root_inode)
1500 {
1501 	struct dentry *res = NULL;
1502 
1503 	if (root_inode) {
1504 		static const struct qstr name = QSTR_INIT("/", 1);
1505 
1506 		res = __d_alloc(root_inode->i_sb, &name);
1507 		if (res)
1508 			d_instantiate(res, root_inode);
1509 		else
1510 			iput(root_inode);
1511 	}
1512 	return res;
1513 }
1514 EXPORT_SYMBOL(d_make_root);
1515 
1516 static struct dentry * __d_find_any_alias(struct inode *inode)
1517 {
1518 	struct dentry *alias;
1519 
1520 	if (hlist_empty(&inode->i_dentry))
1521 		return NULL;
1522 	alias = hlist_entry(inode->i_dentry.first, struct dentry, d_alias);
1523 	__dget(alias);
1524 	return alias;
1525 }
1526 
1527 /**
1528  * d_find_any_alias - find any alias for a given inode
1529  * @inode: inode to find an alias for
1530  *
1531  * If any aliases exist for the given inode, take and return a
1532  * reference for one of them.  If no aliases exist, return %NULL.
1533  */
1534 struct dentry *d_find_any_alias(struct inode *inode)
1535 {
1536 	struct dentry *de;
1537 
1538 	spin_lock(&inode->i_lock);
1539 	de = __d_find_any_alias(inode);
1540 	spin_unlock(&inode->i_lock);
1541 	return de;
1542 }
1543 EXPORT_SYMBOL(d_find_any_alias);
1544 
1545 /**
1546  * d_obtain_alias - find or allocate a dentry for a given inode
1547  * @inode: inode to allocate the dentry for
1548  *
1549  * Obtain a dentry for an inode resulting from NFS filehandle conversion or
1550  * similar open by handle operations.  The returned dentry may be anonymous,
1551  * or may have a full name (if the inode was already in the cache).
1552  *
1553  * When called on a directory inode, we must ensure that the inode only ever
1554  * has one dentry.  If a dentry is found, that is returned instead of
1555  * allocating a new one.
1556  *
1557  * On successful return, the reference to the inode has been transferred
1558  * to the dentry.  In case of an error the reference on the inode is released.
1559  * To make it easier to use in export operations a %NULL or IS_ERR inode may
1560  * be passed in and will be the error will be propagate to the return value,
1561  * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
1562  */
1563 struct dentry *d_obtain_alias(struct inode *inode)
1564 {
1565 	static const struct qstr anonstring = QSTR_INIT("/", 1);
1566 	struct dentry *tmp;
1567 	struct dentry *res;
1568 
1569 	if (!inode)
1570 		return ERR_PTR(-ESTALE);
1571 	if (IS_ERR(inode))
1572 		return ERR_CAST(inode);
1573 
1574 	res = d_find_any_alias(inode);
1575 	if (res)
1576 		goto out_iput;
1577 
1578 	tmp = __d_alloc(inode->i_sb, &anonstring);
1579 	if (!tmp) {
1580 		res = ERR_PTR(-ENOMEM);
1581 		goto out_iput;
1582 	}
1583 
1584 	spin_lock(&inode->i_lock);
1585 	res = __d_find_any_alias(inode);
1586 	if (res) {
1587 		spin_unlock(&inode->i_lock);
1588 		dput(tmp);
1589 		goto out_iput;
1590 	}
1591 
1592 	/* attach a disconnected dentry */
1593 	spin_lock(&tmp->d_lock);
1594 	tmp->d_inode = inode;
1595 	tmp->d_flags |= DCACHE_DISCONNECTED;
1596 	hlist_add_head(&tmp->d_alias, &inode->i_dentry);
1597 	hlist_bl_lock(&tmp->d_sb->s_anon);
1598 	hlist_bl_add_head(&tmp->d_hash, &tmp->d_sb->s_anon);
1599 	hlist_bl_unlock(&tmp->d_sb->s_anon);
1600 	spin_unlock(&tmp->d_lock);
1601 	spin_unlock(&inode->i_lock);
1602 	security_d_instantiate(tmp, inode);
1603 
1604 	return tmp;
1605 
1606  out_iput:
1607 	if (res && !IS_ERR(res))
1608 		security_d_instantiate(res, inode);
1609 	iput(inode);
1610 	return res;
1611 }
1612 EXPORT_SYMBOL(d_obtain_alias);
1613 
1614 /**
1615  * d_splice_alias - splice a disconnected dentry into the tree if one exists
1616  * @inode:  the inode which may have a disconnected dentry
1617  * @dentry: a negative dentry which we want to point to the inode.
1618  *
1619  * If inode is a directory and has a 'disconnected' dentry (i.e. IS_ROOT and
1620  * DCACHE_DISCONNECTED), then d_move that in place of the given dentry
1621  * and return it, else simply d_add the inode to the dentry and return NULL.
1622  *
1623  * This is needed in the lookup routine of any filesystem that is exportable
1624  * (via knfsd) so that we can build dcache paths to directories effectively.
1625  *
1626  * If a dentry was found and moved, then it is returned.  Otherwise NULL
1627  * is returned.  This matches the expected return value of ->lookup.
1628  *
1629  */
1630 struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
1631 {
1632 	struct dentry *new = NULL;
1633 
1634 	if (IS_ERR(inode))
1635 		return ERR_CAST(inode);
1636 
1637 	if (inode && S_ISDIR(inode->i_mode)) {
1638 		spin_lock(&inode->i_lock);
1639 		new = __d_find_alias(inode, 1);
1640 		if (new) {
1641 			BUG_ON(!(new->d_flags & DCACHE_DISCONNECTED));
1642 			spin_unlock(&inode->i_lock);
1643 			security_d_instantiate(new, inode);
1644 			d_move(new, dentry);
1645 			iput(inode);
1646 		} else {
1647 			/* already taking inode->i_lock, so d_add() by hand */
1648 			__d_instantiate(dentry, inode);
1649 			spin_unlock(&inode->i_lock);
1650 			security_d_instantiate(dentry, inode);
1651 			d_rehash(dentry);
1652 		}
1653 	} else
1654 		d_add(dentry, inode);
1655 	return new;
1656 }
1657 EXPORT_SYMBOL(d_splice_alias);
1658 
1659 /**
1660  * d_add_ci - lookup or allocate new dentry with case-exact name
1661  * @inode:  the inode case-insensitive lookup has found
1662  * @dentry: the negative dentry that was passed to the parent's lookup func
1663  * @name:   the case-exact name to be associated with the returned dentry
1664  *
1665  * This is to avoid filling the dcache with case-insensitive names to the
1666  * same inode, only the actual correct case is stored in the dcache for
1667  * case-insensitive filesystems.
1668  *
1669  * For a case-insensitive lookup match and if the the case-exact dentry
1670  * already exists in in the dcache, use it and return it.
1671  *
1672  * If no entry exists with the exact case name, allocate new dentry with
1673  * the exact case, and return the spliced entry.
1674  */
1675 struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
1676 			struct qstr *name)
1677 {
1678 	struct dentry *found;
1679 	struct dentry *new;
1680 
1681 	/*
1682 	 * First check if a dentry matching the name already exists,
1683 	 * if not go ahead and create it now.
1684 	 */
1685 	found = d_hash_and_lookup(dentry->d_parent, name);
1686 	if (unlikely(IS_ERR(found)))
1687 		goto err_out;
1688 	if (!found) {
1689 		new = d_alloc(dentry->d_parent, name);
1690 		if (!new) {
1691 			found = ERR_PTR(-ENOMEM);
1692 			goto err_out;
1693 		}
1694 
1695 		found = d_splice_alias(inode, new);
1696 		if (found) {
1697 			dput(new);
1698 			return found;
1699 		}
1700 		return new;
1701 	}
1702 
1703 	/*
1704 	 * If a matching dentry exists, and it's not negative use it.
1705 	 *
1706 	 * Decrement the reference count to balance the iget() done
1707 	 * earlier on.
1708 	 */
1709 	if (found->d_inode) {
1710 		if (unlikely(found->d_inode != inode)) {
1711 			/* This can't happen because bad inodes are unhashed. */
1712 			BUG_ON(!is_bad_inode(inode));
1713 			BUG_ON(!is_bad_inode(found->d_inode));
1714 		}
1715 		iput(inode);
1716 		return found;
1717 	}
1718 
1719 	/*
1720 	 * Negative dentry: instantiate it unless the inode is a directory and
1721 	 * already has a dentry.
1722 	 */
1723 	new = d_splice_alias(inode, found);
1724 	if (new) {
1725 		dput(found);
1726 		found = new;
1727 	}
1728 	return found;
1729 
1730 err_out:
1731 	iput(inode);
1732 	return found;
1733 }
1734 EXPORT_SYMBOL(d_add_ci);
1735 
1736 /*
1737  * Do the slow-case of the dentry name compare.
1738  *
1739  * Unlike the dentry_cmp() function, we need to atomically
1740  * load the name, length and inode information, so that the
1741  * filesystem can rely on them, and can use the 'name' and
1742  * 'len' information without worrying about walking off the
1743  * end of memory etc.
1744  *
1745  * Thus the read_seqcount_retry() and the "duplicate" info
1746  * in arguments (the low-level filesystem should not look
1747  * at the dentry inode or name contents directly, since
1748  * rename can change them while we're in RCU mode).
1749  */
1750 enum slow_d_compare {
1751 	D_COMP_OK,
1752 	D_COMP_NOMATCH,
1753 	D_COMP_SEQRETRY,
1754 };
1755 
1756 static noinline enum slow_d_compare slow_dentry_cmp(
1757 		const struct dentry *parent,
1758 		struct inode *inode,
1759 		struct dentry *dentry,
1760 		unsigned int seq,
1761 		const struct qstr *name)
1762 {
1763 	int tlen = dentry->d_name.len;
1764 	const char *tname = dentry->d_name.name;
1765 	struct inode *i = dentry->d_inode;
1766 
1767 	if (read_seqcount_retry(&dentry->d_seq, seq)) {
1768 		cpu_relax();
1769 		return D_COMP_SEQRETRY;
1770 	}
1771 	if (parent->d_op->d_compare(parent, inode,
1772 				dentry, i,
1773 				tlen, tname, name))
1774 		return D_COMP_NOMATCH;
1775 	return D_COMP_OK;
1776 }
1777 
1778 /**
1779  * __d_lookup_rcu - search for a dentry (racy, store-free)
1780  * @parent: parent dentry
1781  * @name: qstr of name we wish to find
1782  * @seqp: returns d_seq value at the point where the dentry was found
1783  * @inode: returns dentry->d_inode when the inode was found valid.
1784  * Returns: dentry, or NULL
1785  *
1786  * __d_lookup_rcu is the dcache lookup function for rcu-walk name
1787  * resolution (store-free path walking) design described in
1788  * Documentation/filesystems/path-lookup.txt.
1789  *
1790  * This is not to be used outside core vfs.
1791  *
1792  * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
1793  * held, and rcu_read_lock held. The returned dentry must not be stored into
1794  * without taking d_lock and checking d_seq sequence count against @seq
1795  * returned here.
1796  *
1797  * A refcount may be taken on the found dentry with the __d_rcu_to_refcount
1798  * function.
1799  *
1800  * Alternatively, __d_lookup_rcu may be called again to look up the child of
1801  * the returned dentry, so long as its parent's seqlock is checked after the
1802  * child is looked up. Thus, an interlocking stepping of sequence lock checks
1803  * is formed, giving integrity down the path walk.
1804  *
1805  * NOTE! The caller *has* to check the resulting dentry against the sequence
1806  * number we've returned before using any of the resulting dentry state!
1807  */
1808 struct dentry *__d_lookup_rcu(const struct dentry *parent,
1809 				const struct qstr *name,
1810 				unsigned *seqp, struct inode *inode)
1811 {
1812 	u64 hashlen = name->hash_len;
1813 	const unsigned char *str = name->name;
1814 	struct hlist_bl_head *b = d_hash(parent, hashlen_hash(hashlen));
1815 	struct hlist_bl_node *node;
1816 	struct dentry *dentry;
1817 
1818 	/*
1819 	 * Note: There is significant duplication with __d_lookup_rcu which is
1820 	 * required to prevent single threaded performance regressions
1821 	 * especially on architectures where smp_rmb (in seqcounts) are costly.
1822 	 * Keep the two functions in sync.
1823 	 */
1824 
1825 	/*
1826 	 * The hash list is protected using RCU.
1827 	 *
1828 	 * Carefully use d_seq when comparing a candidate dentry, to avoid
1829 	 * races with d_move().
1830 	 *
1831 	 * It is possible that concurrent renames can mess up our list
1832 	 * walk here and result in missing our dentry, resulting in the
1833 	 * false-negative result. d_lookup() protects against concurrent
1834 	 * renames using rename_lock seqlock.
1835 	 *
1836 	 * See Documentation/filesystems/path-lookup.txt for more details.
1837 	 */
1838 	hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
1839 		unsigned seq;
1840 
1841 seqretry:
1842 		/*
1843 		 * The dentry sequence count protects us from concurrent
1844 		 * renames, and thus protects inode, parent and name fields.
1845 		 *
1846 		 * The caller must perform a seqcount check in order
1847 		 * to do anything useful with the returned dentry,
1848 		 * including using the 'd_inode' pointer.
1849 		 *
1850 		 * NOTE! We do a "raw" seqcount_begin here. That means that
1851 		 * we don't wait for the sequence count to stabilize if it
1852 		 * is in the middle of a sequence change. If we do the slow
1853 		 * dentry compare, we will do seqretries until it is stable,
1854 		 * and if we end up with a successful lookup, we actually
1855 		 * want to exit RCU lookup anyway.
1856 		 */
1857 		seq = raw_seqcount_begin(&dentry->d_seq);
1858 		if (dentry->d_parent != parent)
1859 			continue;
1860 		if (d_unhashed(dentry))
1861 			continue;
1862 		*seqp = seq;
1863 
1864 		if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) {
1865 			if (dentry->d_name.hash != hashlen_hash(hashlen))
1866 				continue;
1867 			switch (slow_dentry_cmp(parent, inode, dentry, seq, name)) {
1868 			case D_COMP_OK:
1869 				return dentry;
1870 			case D_COMP_NOMATCH:
1871 				continue;
1872 			default:
1873 				goto seqretry;
1874 			}
1875 		}
1876 
1877 		if (dentry->d_name.hash_len != hashlen)
1878 			continue;
1879 		if (!dentry_cmp(dentry, str, hashlen_len(hashlen)))
1880 			return dentry;
1881 	}
1882 	return NULL;
1883 }
1884 
1885 /**
1886  * d_lookup - search for a dentry
1887  * @parent: parent dentry
1888  * @name: qstr of name we wish to find
1889  * Returns: dentry, or NULL
1890  *
1891  * d_lookup searches the children of the parent dentry for the name in
1892  * question. If the dentry is found its reference count is incremented and the
1893  * dentry is returned. The caller must use dput to free the entry when it has
1894  * finished using it. %NULL is returned if the dentry does not exist.
1895  */
1896 struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name)
1897 {
1898 	struct dentry *dentry;
1899 	unsigned seq;
1900 
1901         do {
1902                 seq = read_seqbegin(&rename_lock);
1903                 dentry = __d_lookup(parent, name);
1904                 if (dentry)
1905 			break;
1906 	} while (read_seqretry(&rename_lock, seq));
1907 	return dentry;
1908 }
1909 EXPORT_SYMBOL(d_lookup);
1910 
1911 /**
1912  * __d_lookup - search for a dentry (racy)
1913  * @parent: parent dentry
1914  * @name: qstr of name we wish to find
1915  * Returns: dentry, or NULL
1916  *
1917  * __d_lookup is like d_lookup, however it may (rarely) return a
1918  * false-negative result due to unrelated rename activity.
1919  *
1920  * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
1921  * however it must be used carefully, eg. with a following d_lookup in
1922  * the case of failure.
1923  *
1924  * __d_lookup callers must be commented.
1925  */
1926 struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name)
1927 {
1928 	unsigned int len = name->len;
1929 	unsigned int hash = name->hash;
1930 	const unsigned char *str = name->name;
1931 	struct hlist_bl_head *b = d_hash(parent, hash);
1932 	struct hlist_bl_node *node;
1933 	struct dentry *found = NULL;
1934 	struct dentry *dentry;
1935 
1936 	/*
1937 	 * Note: There is significant duplication with __d_lookup_rcu which is
1938 	 * required to prevent single threaded performance regressions
1939 	 * especially on architectures where smp_rmb (in seqcounts) are costly.
1940 	 * Keep the two functions in sync.
1941 	 */
1942 
1943 	/*
1944 	 * The hash list is protected using RCU.
1945 	 *
1946 	 * Take d_lock when comparing a candidate dentry, to avoid races
1947 	 * with d_move().
1948 	 *
1949 	 * It is possible that concurrent renames can mess up our list
1950 	 * walk here and result in missing our dentry, resulting in the
1951 	 * false-negative result. d_lookup() protects against concurrent
1952 	 * renames using rename_lock seqlock.
1953 	 *
1954 	 * See Documentation/filesystems/path-lookup.txt for more details.
1955 	 */
1956 	rcu_read_lock();
1957 
1958 	hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
1959 
1960 		if (dentry->d_name.hash != hash)
1961 			continue;
1962 
1963 		spin_lock(&dentry->d_lock);
1964 		if (dentry->d_parent != parent)
1965 			goto next;
1966 		if (d_unhashed(dentry))
1967 			goto next;
1968 
1969 		/*
1970 		 * It is safe to compare names since d_move() cannot
1971 		 * change the qstr (protected by d_lock).
1972 		 */
1973 		if (parent->d_flags & DCACHE_OP_COMPARE) {
1974 			int tlen = dentry->d_name.len;
1975 			const char *tname = dentry->d_name.name;
1976 			if (parent->d_op->d_compare(parent, parent->d_inode,
1977 						dentry, dentry->d_inode,
1978 						tlen, tname, name))
1979 				goto next;
1980 		} else {
1981 			if (dentry->d_name.len != len)
1982 				goto next;
1983 			if (dentry_cmp(dentry, str, len))
1984 				goto next;
1985 		}
1986 
1987 		dentry->d_count++;
1988 		found = dentry;
1989 		spin_unlock(&dentry->d_lock);
1990 		break;
1991 next:
1992 		spin_unlock(&dentry->d_lock);
1993  	}
1994  	rcu_read_unlock();
1995 
1996  	return found;
1997 }
1998 
1999 /**
2000  * d_hash_and_lookup - hash the qstr then search for a dentry
2001  * @dir: Directory to search in
2002  * @name: qstr of name we wish to find
2003  *
2004  * On lookup failure NULL is returned; on bad name - ERR_PTR(-error)
2005  */
2006 struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
2007 {
2008 	/*
2009 	 * Check for a fs-specific hash function. Note that we must
2010 	 * calculate the standard hash first, as the d_op->d_hash()
2011 	 * routine may choose to leave the hash value unchanged.
2012 	 */
2013 	name->hash = full_name_hash(name->name, name->len);
2014 	if (dir->d_flags & DCACHE_OP_HASH) {
2015 		int err = dir->d_op->d_hash(dir, dir->d_inode, name);
2016 		if (unlikely(err < 0))
2017 			return ERR_PTR(err);
2018 	}
2019 	return d_lookup(dir, name);
2020 }
2021 EXPORT_SYMBOL(d_hash_and_lookup);
2022 
2023 /**
2024  * d_validate - verify dentry provided from insecure source (deprecated)
2025  * @dentry: The dentry alleged to be valid child of @dparent
2026  * @dparent: The parent dentry (known to be valid)
2027  *
2028  * An insecure source has sent us a dentry, here we verify it and dget() it.
2029  * This is used by ncpfs in its readdir implementation.
2030  * Zero is returned in the dentry is invalid.
2031  *
2032  * This function is slow for big directories, and deprecated, do not use it.
2033  */
2034 int d_validate(struct dentry *dentry, struct dentry *dparent)
2035 {
2036 	struct dentry *child;
2037 
2038 	spin_lock(&dparent->d_lock);
2039 	list_for_each_entry(child, &dparent->d_subdirs, d_u.d_child) {
2040 		if (dentry == child) {
2041 			spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
2042 			__dget_dlock(dentry);
2043 			spin_unlock(&dentry->d_lock);
2044 			spin_unlock(&dparent->d_lock);
2045 			return 1;
2046 		}
2047 	}
2048 	spin_unlock(&dparent->d_lock);
2049 
2050 	return 0;
2051 }
2052 EXPORT_SYMBOL(d_validate);
2053 
2054 /*
2055  * When a file is deleted, we have two options:
2056  * - turn this dentry into a negative dentry
2057  * - unhash this dentry and free it.
2058  *
2059  * Usually, we want to just turn this into
2060  * a negative dentry, but if anybody else is
2061  * currently using the dentry or the inode
2062  * we can't do that and we fall back on removing
2063  * it from the hash queues and waiting for
2064  * it to be deleted later when it has no users
2065  */
2066 
2067 /**
2068  * d_delete - delete a dentry
2069  * @dentry: The dentry to delete
2070  *
2071  * Turn the dentry into a negative dentry if possible, otherwise
2072  * remove it from the hash queues so it can be deleted later
2073  */
2074 
2075 void d_delete(struct dentry * dentry)
2076 {
2077 	struct inode *inode;
2078 	int isdir = 0;
2079 	/*
2080 	 * Are we the only user?
2081 	 */
2082 again:
2083 	spin_lock(&dentry->d_lock);
2084 	inode = dentry->d_inode;
2085 	isdir = S_ISDIR(inode->i_mode);
2086 	if (dentry->d_count == 1) {
2087 		if (!spin_trylock(&inode->i_lock)) {
2088 			spin_unlock(&dentry->d_lock);
2089 			cpu_relax();
2090 			goto again;
2091 		}
2092 		dentry->d_flags &= ~DCACHE_CANT_MOUNT;
2093 		dentry_unlink_inode(dentry);
2094 		fsnotify_nameremove(dentry, isdir);
2095 		return;
2096 	}
2097 
2098 	if (!d_unhashed(dentry))
2099 		__d_drop(dentry);
2100 
2101 	spin_unlock(&dentry->d_lock);
2102 
2103 	fsnotify_nameremove(dentry, isdir);
2104 }
2105 EXPORT_SYMBOL(d_delete);
2106 
2107 static void __d_rehash(struct dentry * entry, struct hlist_bl_head *b)
2108 {
2109 	BUG_ON(!d_unhashed(entry));
2110 	hlist_bl_lock(b);
2111 	entry->d_flags |= DCACHE_RCUACCESS;
2112 	hlist_bl_add_head_rcu(&entry->d_hash, b);
2113 	hlist_bl_unlock(b);
2114 }
2115 
2116 static void _d_rehash(struct dentry * entry)
2117 {
2118 	__d_rehash(entry, d_hash(entry->d_parent, entry->d_name.hash));
2119 }
2120 
2121 /**
2122  * d_rehash	- add an entry back to the hash
2123  * @entry: dentry to add to the hash
2124  *
2125  * Adds a dentry to the hash according to its name.
2126  */
2127 
2128 void d_rehash(struct dentry * entry)
2129 {
2130 	spin_lock(&entry->d_lock);
2131 	_d_rehash(entry);
2132 	spin_unlock(&entry->d_lock);
2133 }
2134 EXPORT_SYMBOL(d_rehash);
2135 
2136 /**
2137  * dentry_update_name_case - update case insensitive dentry with a new name
2138  * @dentry: dentry to be updated
2139  * @name: new name
2140  *
2141  * Update a case insensitive dentry with new case of name.
2142  *
2143  * dentry must have been returned by d_lookup with name @name. Old and new
2144  * name lengths must match (ie. no d_compare which allows mismatched name
2145  * lengths).
2146  *
2147  * Parent inode i_mutex must be held over d_lookup and into this call (to
2148  * keep renames and concurrent inserts, and readdir(2) away).
2149  */
2150 void dentry_update_name_case(struct dentry *dentry, struct qstr *name)
2151 {
2152 	BUG_ON(!mutex_is_locked(&dentry->d_parent->d_inode->i_mutex));
2153 	BUG_ON(dentry->d_name.len != name->len); /* d_lookup gives this */
2154 
2155 	spin_lock(&dentry->d_lock);
2156 	write_seqcount_begin(&dentry->d_seq);
2157 	memcpy((unsigned char *)dentry->d_name.name, name->name, name->len);
2158 	write_seqcount_end(&dentry->d_seq);
2159 	spin_unlock(&dentry->d_lock);
2160 }
2161 EXPORT_SYMBOL(dentry_update_name_case);
2162 
2163 static void switch_names(struct dentry *dentry, struct dentry *target)
2164 {
2165 	if (dname_external(target)) {
2166 		if (dname_external(dentry)) {
2167 			/*
2168 			 * Both external: swap the pointers
2169 			 */
2170 			swap(target->d_name.name, dentry->d_name.name);
2171 		} else {
2172 			/*
2173 			 * dentry:internal, target:external.  Steal target's
2174 			 * storage and make target internal.
2175 			 */
2176 			memcpy(target->d_iname, dentry->d_name.name,
2177 					dentry->d_name.len + 1);
2178 			dentry->d_name.name = target->d_name.name;
2179 			target->d_name.name = target->d_iname;
2180 		}
2181 	} else {
2182 		if (dname_external(dentry)) {
2183 			/*
2184 			 * dentry:external, target:internal.  Give dentry's
2185 			 * storage to target and make dentry internal
2186 			 */
2187 			memcpy(dentry->d_iname, target->d_name.name,
2188 					target->d_name.len + 1);
2189 			target->d_name.name = dentry->d_name.name;
2190 			dentry->d_name.name = dentry->d_iname;
2191 		} else {
2192 			/*
2193 			 * Both are internal.  Just copy target to dentry
2194 			 */
2195 			memcpy(dentry->d_iname, target->d_name.name,
2196 					target->d_name.len + 1);
2197 			dentry->d_name.len = target->d_name.len;
2198 			return;
2199 		}
2200 	}
2201 	swap(dentry->d_name.len, target->d_name.len);
2202 }
2203 
2204 static void dentry_lock_for_move(struct dentry *dentry, struct dentry *target)
2205 {
2206 	/*
2207 	 * XXXX: do we really need to take target->d_lock?
2208 	 */
2209 	if (IS_ROOT(dentry) || dentry->d_parent == target->d_parent)
2210 		spin_lock(&target->d_parent->d_lock);
2211 	else {
2212 		if (d_ancestor(dentry->d_parent, target->d_parent)) {
2213 			spin_lock(&dentry->d_parent->d_lock);
2214 			spin_lock_nested(&target->d_parent->d_lock,
2215 						DENTRY_D_LOCK_NESTED);
2216 		} else {
2217 			spin_lock(&target->d_parent->d_lock);
2218 			spin_lock_nested(&dentry->d_parent->d_lock,
2219 						DENTRY_D_LOCK_NESTED);
2220 		}
2221 	}
2222 	if (target < dentry) {
2223 		spin_lock_nested(&target->d_lock, 2);
2224 		spin_lock_nested(&dentry->d_lock, 3);
2225 	} else {
2226 		spin_lock_nested(&dentry->d_lock, 2);
2227 		spin_lock_nested(&target->d_lock, 3);
2228 	}
2229 }
2230 
2231 static void dentry_unlock_parents_for_move(struct dentry *dentry,
2232 					struct dentry *target)
2233 {
2234 	if (target->d_parent != dentry->d_parent)
2235 		spin_unlock(&dentry->d_parent->d_lock);
2236 	if (target->d_parent != target)
2237 		spin_unlock(&target->d_parent->d_lock);
2238 }
2239 
2240 /*
2241  * When switching names, the actual string doesn't strictly have to
2242  * be preserved in the target - because we're dropping the target
2243  * anyway. As such, we can just do a simple memcpy() to copy over
2244  * the new name before we switch.
2245  *
2246  * Note that we have to be a lot more careful about getting the hash
2247  * switched - we have to switch the hash value properly even if it
2248  * then no longer matches the actual (corrupted) string of the target.
2249  * The hash value has to match the hash queue that the dentry is on..
2250  */
2251 /*
2252  * __d_move - move a dentry
2253  * @dentry: entry to move
2254  * @target: new dentry
2255  *
2256  * Update the dcache to reflect the move of a file name. Negative
2257  * dcache entries should not be moved in this way. Caller must hold
2258  * rename_lock, the i_mutex of the source and target directories,
2259  * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
2260  */
2261 static void __d_move(struct dentry * dentry, struct dentry * target)
2262 {
2263 	if (!dentry->d_inode)
2264 		printk(KERN_WARNING "VFS: moving negative dcache entry\n");
2265 
2266 	BUG_ON(d_ancestor(dentry, target));
2267 	BUG_ON(d_ancestor(target, dentry));
2268 
2269 	dentry_lock_for_move(dentry, target);
2270 
2271 	write_seqcount_begin(&dentry->d_seq);
2272 	write_seqcount_begin(&target->d_seq);
2273 
2274 	/* __d_drop does write_seqcount_barrier, but they're OK to nest. */
2275 
2276 	/*
2277 	 * Move the dentry to the target hash queue. Don't bother checking
2278 	 * for the same hash queue because of how unlikely it is.
2279 	 */
2280 	__d_drop(dentry);
2281 	__d_rehash(dentry, d_hash(target->d_parent, target->d_name.hash));
2282 
2283 	/* Unhash the target: dput() will then get rid of it */
2284 	__d_drop(target);
2285 
2286 	list_del(&dentry->d_u.d_child);
2287 	list_del(&target->d_u.d_child);
2288 
2289 	/* Switch the names.. */
2290 	switch_names(dentry, target);
2291 	swap(dentry->d_name.hash, target->d_name.hash);
2292 
2293 	/* ... and switch the parents */
2294 	if (IS_ROOT(dentry)) {
2295 		dentry->d_parent = target->d_parent;
2296 		target->d_parent = target;
2297 		INIT_LIST_HEAD(&target->d_u.d_child);
2298 	} else {
2299 		swap(dentry->d_parent, target->d_parent);
2300 
2301 		/* And add them back to the (new) parent lists */
2302 		list_add(&target->d_u.d_child, &target->d_parent->d_subdirs);
2303 	}
2304 
2305 	list_add(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs);
2306 
2307 	write_seqcount_end(&target->d_seq);
2308 	write_seqcount_end(&dentry->d_seq);
2309 
2310 	dentry_unlock_parents_for_move(dentry, target);
2311 	spin_unlock(&target->d_lock);
2312 	fsnotify_d_move(dentry);
2313 	spin_unlock(&dentry->d_lock);
2314 }
2315 
2316 /*
2317  * d_move - move a dentry
2318  * @dentry: entry to move
2319  * @target: new dentry
2320  *
2321  * Update the dcache to reflect the move of a file name. Negative
2322  * dcache entries should not be moved in this way. See the locking
2323  * requirements for __d_move.
2324  */
2325 void d_move(struct dentry *dentry, struct dentry *target)
2326 {
2327 	write_seqlock(&rename_lock);
2328 	__d_move(dentry, target);
2329 	write_sequnlock(&rename_lock);
2330 }
2331 EXPORT_SYMBOL(d_move);
2332 
2333 /**
2334  * d_ancestor - search for an ancestor
2335  * @p1: ancestor dentry
2336  * @p2: child dentry
2337  *
2338  * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2339  * an ancestor of p2, else NULL.
2340  */
2341 struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
2342 {
2343 	struct dentry *p;
2344 
2345 	for (p = p2; !IS_ROOT(p); p = p->d_parent) {
2346 		if (p->d_parent == p1)
2347 			return p;
2348 	}
2349 	return NULL;
2350 }
2351 
2352 /*
2353  * This helper attempts to cope with remotely renamed directories
2354  *
2355  * It assumes that the caller is already holding
2356  * dentry->d_parent->d_inode->i_mutex, inode->i_lock and rename_lock
2357  *
2358  * Note: If ever the locking in lock_rename() changes, then please
2359  * remember to update this too...
2360  */
2361 static struct dentry *__d_unalias(struct inode *inode,
2362 		struct dentry *dentry, struct dentry *alias)
2363 {
2364 	struct mutex *m1 = NULL, *m2 = NULL;
2365 	struct dentry *ret = ERR_PTR(-EBUSY);
2366 
2367 	/* If alias and dentry share a parent, then no extra locks required */
2368 	if (alias->d_parent == dentry->d_parent)
2369 		goto out_unalias;
2370 
2371 	/* See lock_rename() */
2372 	if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
2373 		goto out_err;
2374 	m1 = &dentry->d_sb->s_vfs_rename_mutex;
2375 	if (!mutex_trylock(&alias->d_parent->d_inode->i_mutex))
2376 		goto out_err;
2377 	m2 = &alias->d_parent->d_inode->i_mutex;
2378 out_unalias:
2379 	if (likely(!d_mountpoint(alias))) {
2380 		__d_move(alias, dentry);
2381 		ret = alias;
2382 	}
2383 out_err:
2384 	spin_unlock(&inode->i_lock);
2385 	if (m2)
2386 		mutex_unlock(m2);
2387 	if (m1)
2388 		mutex_unlock(m1);
2389 	return ret;
2390 }
2391 
2392 /*
2393  * Prepare an anonymous dentry for life in the superblock's dentry tree as a
2394  * named dentry in place of the dentry to be replaced.
2395  * returns with anon->d_lock held!
2396  */
2397 static void __d_materialise_dentry(struct dentry *dentry, struct dentry *anon)
2398 {
2399 	struct dentry *dparent;
2400 
2401 	dentry_lock_for_move(anon, dentry);
2402 
2403 	write_seqcount_begin(&dentry->d_seq);
2404 	write_seqcount_begin(&anon->d_seq);
2405 
2406 	dparent = dentry->d_parent;
2407 
2408 	switch_names(dentry, anon);
2409 	swap(dentry->d_name.hash, anon->d_name.hash);
2410 
2411 	dentry->d_parent = dentry;
2412 	list_del_init(&dentry->d_u.d_child);
2413 	anon->d_parent = dparent;
2414 	list_del(&anon->d_u.d_child);
2415 	list_add(&anon->d_u.d_child, &dparent->d_subdirs);
2416 
2417 	write_seqcount_end(&dentry->d_seq);
2418 	write_seqcount_end(&anon->d_seq);
2419 
2420 	dentry_unlock_parents_for_move(anon, dentry);
2421 	spin_unlock(&dentry->d_lock);
2422 
2423 	/* anon->d_lock still locked, returns locked */
2424 	anon->d_flags &= ~DCACHE_DISCONNECTED;
2425 }
2426 
2427 /**
2428  * d_materialise_unique - introduce an inode into the tree
2429  * @dentry: candidate dentry
2430  * @inode: inode to bind to the dentry, to which aliases may be attached
2431  *
2432  * Introduces an dentry into the tree, substituting an extant disconnected
2433  * root directory alias in its place if there is one. Caller must hold the
2434  * i_mutex of the parent directory.
2435  */
2436 struct dentry *d_materialise_unique(struct dentry *dentry, struct inode *inode)
2437 {
2438 	struct dentry *actual;
2439 
2440 	BUG_ON(!d_unhashed(dentry));
2441 
2442 	if (!inode) {
2443 		actual = dentry;
2444 		__d_instantiate(dentry, NULL);
2445 		d_rehash(actual);
2446 		goto out_nolock;
2447 	}
2448 
2449 	spin_lock(&inode->i_lock);
2450 
2451 	if (S_ISDIR(inode->i_mode)) {
2452 		struct dentry *alias;
2453 
2454 		/* Does an aliased dentry already exist? */
2455 		alias = __d_find_alias(inode, 0);
2456 		if (alias) {
2457 			actual = alias;
2458 			write_seqlock(&rename_lock);
2459 
2460 			if (d_ancestor(alias, dentry)) {
2461 				/* Check for loops */
2462 				actual = ERR_PTR(-ELOOP);
2463 				spin_unlock(&inode->i_lock);
2464 			} else if (IS_ROOT(alias)) {
2465 				/* Is this an anonymous mountpoint that we
2466 				 * could splice into our tree? */
2467 				__d_materialise_dentry(dentry, alias);
2468 				write_sequnlock(&rename_lock);
2469 				__d_drop(alias);
2470 				goto found;
2471 			} else {
2472 				/* Nope, but we must(!) avoid directory
2473 				 * aliasing. This drops inode->i_lock */
2474 				actual = __d_unalias(inode, dentry, alias);
2475 			}
2476 			write_sequnlock(&rename_lock);
2477 			if (IS_ERR(actual)) {
2478 				if (PTR_ERR(actual) == -ELOOP)
2479 					pr_warn_ratelimited(
2480 						"VFS: Lookup of '%s' in %s %s"
2481 						" would have caused loop\n",
2482 						dentry->d_name.name,
2483 						inode->i_sb->s_type->name,
2484 						inode->i_sb->s_id);
2485 				dput(alias);
2486 			}
2487 			goto out_nolock;
2488 		}
2489 	}
2490 
2491 	/* Add a unique reference */
2492 	actual = __d_instantiate_unique(dentry, inode);
2493 	if (!actual)
2494 		actual = dentry;
2495 	else
2496 		BUG_ON(!d_unhashed(actual));
2497 
2498 	spin_lock(&actual->d_lock);
2499 found:
2500 	_d_rehash(actual);
2501 	spin_unlock(&actual->d_lock);
2502 	spin_unlock(&inode->i_lock);
2503 out_nolock:
2504 	if (actual == dentry) {
2505 		security_d_instantiate(dentry, inode);
2506 		return NULL;
2507 	}
2508 
2509 	iput(inode);
2510 	return actual;
2511 }
2512 EXPORT_SYMBOL_GPL(d_materialise_unique);
2513 
2514 static int prepend(char **buffer, int *buflen, const char *str, int namelen)
2515 {
2516 	*buflen -= namelen;
2517 	if (*buflen < 0)
2518 		return -ENAMETOOLONG;
2519 	*buffer -= namelen;
2520 	memcpy(*buffer, str, namelen);
2521 	return 0;
2522 }
2523 
2524 static int prepend_name(char **buffer, int *buflen, struct qstr *name)
2525 {
2526 	return prepend(buffer, buflen, name->name, name->len);
2527 }
2528 
2529 /**
2530  * prepend_path - Prepend path string to a buffer
2531  * @path: the dentry/vfsmount to report
2532  * @root: root vfsmnt/dentry
2533  * @buffer: pointer to the end of the buffer
2534  * @buflen: pointer to buffer length
2535  *
2536  * Caller holds the rename_lock.
2537  */
2538 static int prepend_path(const struct path *path,
2539 			const struct path *root,
2540 			char **buffer, int *buflen)
2541 {
2542 	struct dentry *dentry = path->dentry;
2543 	struct vfsmount *vfsmnt = path->mnt;
2544 	struct mount *mnt = real_mount(vfsmnt);
2545 	bool slash = false;
2546 	int error = 0;
2547 
2548 	br_read_lock(&vfsmount_lock);
2549 	while (dentry != root->dentry || vfsmnt != root->mnt) {
2550 		struct dentry * parent;
2551 
2552 		if (dentry == vfsmnt->mnt_root || IS_ROOT(dentry)) {
2553 			/* Global root? */
2554 			if (!mnt_has_parent(mnt))
2555 				goto global_root;
2556 			dentry = mnt->mnt_mountpoint;
2557 			mnt = mnt->mnt_parent;
2558 			vfsmnt = &mnt->mnt;
2559 			continue;
2560 		}
2561 		parent = dentry->d_parent;
2562 		prefetch(parent);
2563 		spin_lock(&dentry->d_lock);
2564 		error = prepend_name(buffer, buflen, &dentry->d_name);
2565 		spin_unlock(&dentry->d_lock);
2566 		if (!error)
2567 			error = prepend(buffer, buflen, "/", 1);
2568 		if (error)
2569 			break;
2570 
2571 		slash = true;
2572 		dentry = parent;
2573 	}
2574 
2575 	if (!error && !slash)
2576 		error = prepend(buffer, buflen, "/", 1);
2577 
2578 out:
2579 	br_read_unlock(&vfsmount_lock);
2580 	return error;
2581 
2582 global_root:
2583 	/*
2584 	 * Filesystems needing to implement special "root names"
2585 	 * should do so with ->d_dname()
2586 	 */
2587 	if (IS_ROOT(dentry) &&
2588 	    (dentry->d_name.len != 1 || dentry->d_name.name[0] != '/')) {
2589 		WARN(1, "Root dentry has weird name <%.*s>\n",
2590 		     (int) dentry->d_name.len, dentry->d_name.name);
2591 	}
2592 	if (!slash)
2593 		error = prepend(buffer, buflen, "/", 1);
2594 	if (!error)
2595 		error = is_mounted(vfsmnt) ? 1 : 2;
2596 	goto out;
2597 }
2598 
2599 /**
2600  * __d_path - return the path of a dentry
2601  * @path: the dentry/vfsmount to report
2602  * @root: root vfsmnt/dentry
2603  * @buf: buffer to return value in
2604  * @buflen: buffer length
2605  *
2606  * Convert a dentry into an ASCII path name.
2607  *
2608  * Returns a pointer into the buffer or an error code if the
2609  * path was too long.
2610  *
2611  * "buflen" should be positive.
2612  *
2613  * If the path is not reachable from the supplied root, return %NULL.
2614  */
2615 char *__d_path(const struct path *path,
2616 	       const struct path *root,
2617 	       char *buf, int buflen)
2618 {
2619 	char *res = buf + buflen;
2620 	int error;
2621 
2622 	prepend(&res, &buflen, "\0", 1);
2623 	write_seqlock(&rename_lock);
2624 	error = prepend_path(path, root, &res, &buflen);
2625 	write_sequnlock(&rename_lock);
2626 
2627 	if (error < 0)
2628 		return ERR_PTR(error);
2629 	if (error > 0)
2630 		return NULL;
2631 	return res;
2632 }
2633 
2634 char *d_absolute_path(const struct path *path,
2635 	       char *buf, int buflen)
2636 {
2637 	struct path root = {};
2638 	char *res = buf + buflen;
2639 	int error;
2640 
2641 	prepend(&res, &buflen, "\0", 1);
2642 	write_seqlock(&rename_lock);
2643 	error = prepend_path(path, &root, &res, &buflen);
2644 	write_sequnlock(&rename_lock);
2645 
2646 	if (error > 1)
2647 		error = -EINVAL;
2648 	if (error < 0)
2649 		return ERR_PTR(error);
2650 	return res;
2651 }
2652 
2653 /*
2654  * same as __d_path but appends "(deleted)" for unlinked files.
2655  */
2656 static int path_with_deleted(const struct path *path,
2657 			     const struct path *root,
2658 			     char **buf, int *buflen)
2659 {
2660 	prepend(buf, buflen, "\0", 1);
2661 	if (d_unlinked(path->dentry)) {
2662 		int error = prepend(buf, buflen, " (deleted)", 10);
2663 		if (error)
2664 			return error;
2665 	}
2666 
2667 	return prepend_path(path, root, buf, buflen);
2668 }
2669 
2670 static int prepend_unreachable(char **buffer, int *buflen)
2671 {
2672 	return prepend(buffer, buflen, "(unreachable)", 13);
2673 }
2674 
2675 /**
2676  * d_path - return the path of a dentry
2677  * @path: path to report
2678  * @buf: buffer to return value in
2679  * @buflen: buffer length
2680  *
2681  * Convert a dentry into an ASCII path name. If the entry has been deleted
2682  * the string " (deleted)" is appended. Note that this is ambiguous.
2683  *
2684  * Returns a pointer into the buffer or an error code if the path was
2685  * too long. Note: Callers should use the returned pointer, not the passed
2686  * in buffer, to use the name! The implementation often starts at an offset
2687  * into the buffer, and may leave 0 bytes at the start.
2688  *
2689  * "buflen" should be positive.
2690  */
2691 char *d_path(const struct path *path, char *buf, int buflen)
2692 {
2693 	char *res = buf + buflen;
2694 	struct path root;
2695 	int error;
2696 
2697 	/*
2698 	 * We have various synthetic filesystems that never get mounted.  On
2699 	 * these filesystems dentries are never used for lookup purposes, and
2700 	 * thus don't need to be hashed.  They also don't need a name until a
2701 	 * user wants to identify the object in /proc/pid/fd/.  The little hack
2702 	 * below allows us to generate a name for these objects on demand:
2703 	 */
2704 	if (path->dentry->d_op && path->dentry->d_op->d_dname)
2705 		return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
2706 
2707 	get_fs_root(current->fs, &root);
2708 	write_seqlock(&rename_lock);
2709 	error = path_with_deleted(path, &root, &res, &buflen);
2710 	if (error < 0)
2711 		res = ERR_PTR(error);
2712 	write_sequnlock(&rename_lock);
2713 	path_put(&root);
2714 	return res;
2715 }
2716 EXPORT_SYMBOL(d_path);
2717 
2718 /*
2719  * Helper function for dentry_operations.d_dname() members
2720  */
2721 char *dynamic_dname(struct dentry *dentry, char *buffer, int buflen,
2722 			const char *fmt, ...)
2723 {
2724 	va_list args;
2725 	char temp[64];
2726 	int sz;
2727 
2728 	va_start(args, fmt);
2729 	sz = vsnprintf(temp, sizeof(temp), fmt, args) + 1;
2730 	va_end(args);
2731 
2732 	if (sz > sizeof(temp) || sz > buflen)
2733 		return ERR_PTR(-ENAMETOOLONG);
2734 
2735 	buffer += buflen - sz;
2736 	return memcpy(buffer, temp, sz);
2737 }
2738 
2739 /*
2740  * Write full pathname from the root of the filesystem into the buffer.
2741  */
2742 static char *__dentry_path(struct dentry *dentry, char *buf, int buflen)
2743 {
2744 	char *end = buf + buflen;
2745 	char *retval;
2746 
2747 	prepend(&end, &buflen, "\0", 1);
2748 	if (buflen < 1)
2749 		goto Elong;
2750 	/* Get '/' right */
2751 	retval = end-1;
2752 	*retval = '/';
2753 
2754 	while (!IS_ROOT(dentry)) {
2755 		struct dentry *parent = dentry->d_parent;
2756 		int error;
2757 
2758 		prefetch(parent);
2759 		spin_lock(&dentry->d_lock);
2760 		error = prepend_name(&end, &buflen, &dentry->d_name);
2761 		spin_unlock(&dentry->d_lock);
2762 		if (error != 0 || prepend(&end, &buflen, "/", 1) != 0)
2763 			goto Elong;
2764 
2765 		retval = end;
2766 		dentry = parent;
2767 	}
2768 	return retval;
2769 Elong:
2770 	return ERR_PTR(-ENAMETOOLONG);
2771 }
2772 
2773 char *dentry_path_raw(struct dentry *dentry, char *buf, int buflen)
2774 {
2775 	char *retval;
2776 
2777 	write_seqlock(&rename_lock);
2778 	retval = __dentry_path(dentry, buf, buflen);
2779 	write_sequnlock(&rename_lock);
2780 
2781 	return retval;
2782 }
2783 EXPORT_SYMBOL(dentry_path_raw);
2784 
2785 char *dentry_path(struct dentry *dentry, char *buf, int buflen)
2786 {
2787 	char *p = NULL;
2788 	char *retval;
2789 
2790 	write_seqlock(&rename_lock);
2791 	if (d_unlinked(dentry)) {
2792 		p = buf + buflen;
2793 		if (prepend(&p, &buflen, "//deleted", 10) != 0)
2794 			goto Elong;
2795 		buflen++;
2796 	}
2797 	retval = __dentry_path(dentry, buf, buflen);
2798 	write_sequnlock(&rename_lock);
2799 	if (!IS_ERR(retval) && p)
2800 		*p = '/';	/* restore '/' overriden with '\0' */
2801 	return retval;
2802 Elong:
2803 	return ERR_PTR(-ENAMETOOLONG);
2804 }
2805 
2806 /*
2807  * NOTE! The user-level library version returns a
2808  * character pointer. The kernel system call just
2809  * returns the length of the buffer filled (which
2810  * includes the ending '\0' character), or a negative
2811  * error value. So libc would do something like
2812  *
2813  *	char *getcwd(char * buf, size_t size)
2814  *	{
2815  *		int retval;
2816  *
2817  *		retval = sys_getcwd(buf, size);
2818  *		if (retval >= 0)
2819  *			return buf;
2820  *		errno = -retval;
2821  *		return NULL;
2822  *	}
2823  */
2824 SYSCALL_DEFINE2(getcwd, char __user *, buf, unsigned long, size)
2825 {
2826 	int error;
2827 	struct path pwd, root;
2828 	char *page = (char *) __get_free_page(GFP_USER);
2829 
2830 	if (!page)
2831 		return -ENOMEM;
2832 
2833 	get_fs_root_and_pwd(current->fs, &root, &pwd);
2834 
2835 	error = -ENOENT;
2836 	write_seqlock(&rename_lock);
2837 	if (!d_unlinked(pwd.dentry)) {
2838 		unsigned long len;
2839 		char *cwd = page + PAGE_SIZE;
2840 		int buflen = PAGE_SIZE;
2841 
2842 		prepend(&cwd, &buflen, "\0", 1);
2843 		error = prepend_path(&pwd, &root, &cwd, &buflen);
2844 		write_sequnlock(&rename_lock);
2845 
2846 		if (error < 0)
2847 			goto out;
2848 
2849 		/* Unreachable from current root */
2850 		if (error > 0) {
2851 			error = prepend_unreachable(&cwd, &buflen);
2852 			if (error)
2853 				goto out;
2854 		}
2855 
2856 		error = -ERANGE;
2857 		len = PAGE_SIZE + page - cwd;
2858 		if (len <= size) {
2859 			error = len;
2860 			if (copy_to_user(buf, cwd, len))
2861 				error = -EFAULT;
2862 		}
2863 	} else {
2864 		write_sequnlock(&rename_lock);
2865 	}
2866 
2867 out:
2868 	path_put(&pwd);
2869 	path_put(&root);
2870 	free_page((unsigned long) page);
2871 	return error;
2872 }
2873 
2874 /*
2875  * Test whether new_dentry is a subdirectory of old_dentry.
2876  *
2877  * Trivially implemented using the dcache structure
2878  */
2879 
2880 /**
2881  * is_subdir - is new dentry a subdirectory of old_dentry
2882  * @new_dentry: new dentry
2883  * @old_dentry: old dentry
2884  *
2885  * Returns 1 if new_dentry is a subdirectory of the parent (at any depth).
2886  * Returns 0 otherwise.
2887  * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
2888  */
2889 
2890 int is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
2891 {
2892 	int result;
2893 	unsigned seq;
2894 
2895 	if (new_dentry == old_dentry)
2896 		return 1;
2897 
2898 	do {
2899 		/* for restarting inner loop in case of seq retry */
2900 		seq = read_seqbegin(&rename_lock);
2901 		/*
2902 		 * Need rcu_readlock to protect against the d_parent trashing
2903 		 * due to d_move
2904 		 */
2905 		rcu_read_lock();
2906 		if (d_ancestor(old_dentry, new_dentry))
2907 			result = 1;
2908 		else
2909 			result = 0;
2910 		rcu_read_unlock();
2911 	} while (read_seqretry(&rename_lock, seq));
2912 
2913 	return result;
2914 }
2915 
2916 void d_genocide(struct dentry *root)
2917 {
2918 	struct dentry *this_parent;
2919 	struct list_head *next;
2920 	unsigned seq;
2921 	int locked = 0;
2922 
2923 	seq = read_seqbegin(&rename_lock);
2924 again:
2925 	this_parent = root;
2926 	spin_lock(&this_parent->d_lock);
2927 repeat:
2928 	next = this_parent->d_subdirs.next;
2929 resume:
2930 	while (next != &this_parent->d_subdirs) {
2931 		struct list_head *tmp = next;
2932 		struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
2933 		next = tmp->next;
2934 
2935 		spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
2936 		if (d_unhashed(dentry) || !dentry->d_inode) {
2937 			spin_unlock(&dentry->d_lock);
2938 			continue;
2939 		}
2940 		if (!list_empty(&dentry->d_subdirs)) {
2941 			spin_unlock(&this_parent->d_lock);
2942 			spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
2943 			this_parent = dentry;
2944 			spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
2945 			goto repeat;
2946 		}
2947 		if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
2948 			dentry->d_flags |= DCACHE_GENOCIDE;
2949 			dentry->d_count--;
2950 		}
2951 		spin_unlock(&dentry->d_lock);
2952 	}
2953 	if (this_parent != root) {
2954 		struct dentry *child = this_parent;
2955 		if (!(this_parent->d_flags & DCACHE_GENOCIDE)) {
2956 			this_parent->d_flags |= DCACHE_GENOCIDE;
2957 			this_parent->d_count--;
2958 		}
2959 		this_parent = try_to_ascend(this_parent, locked, seq);
2960 		if (!this_parent)
2961 			goto rename_retry;
2962 		next = child->d_u.d_child.next;
2963 		goto resume;
2964 	}
2965 	spin_unlock(&this_parent->d_lock);
2966 	if (!locked && read_seqretry(&rename_lock, seq))
2967 		goto rename_retry;
2968 	if (locked)
2969 		write_sequnlock(&rename_lock);
2970 	return;
2971 
2972 rename_retry:
2973 	if (locked)
2974 		goto again;
2975 	locked = 1;
2976 	write_seqlock(&rename_lock);
2977 	goto again;
2978 }
2979 
2980 /**
2981  * find_inode_number - check for dentry with name
2982  * @dir: directory to check
2983  * @name: Name to find.
2984  *
2985  * Check whether a dentry already exists for the given name,
2986  * and return the inode number if it has an inode. Otherwise
2987  * 0 is returned.
2988  *
2989  * This routine is used to post-process directory listings for
2990  * filesystems using synthetic inode numbers, and is necessary
2991  * to keep getcwd() working.
2992  */
2993 
2994 ino_t find_inode_number(struct dentry *dir, struct qstr *name)
2995 {
2996 	struct dentry * dentry;
2997 	ino_t ino = 0;
2998 
2999 	dentry = d_hash_and_lookup(dir, name);
3000 	if (!IS_ERR_OR_NULL(dentry)) {
3001 		if (dentry->d_inode)
3002 			ino = dentry->d_inode->i_ino;
3003 		dput(dentry);
3004 	}
3005 	return ino;
3006 }
3007 EXPORT_SYMBOL(find_inode_number);
3008 
3009 static __initdata unsigned long dhash_entries;
3010 static int __init set_dhash_entries(char *str)
3011 {
3012 	if (!str)
3013 		return 0;
3014 	dhash_entries = simple_strtoul(str, &str, 0);
3015 	return 1;
3016 }
3017 __setup("dhash_entries=", set_dhash_entries);
3018 
3019 static void __init dcache_init_early(void)
3020 {
3021 	unsigned int loop;
3022 
3023 	/* If hashes are distributed across NUMA nodes, defer
3024 	 * hash allocation until vmalloc space is available.
3025 	 */
3026 	if (hashdist)
3027 		return;
3028 
3029 	dentry_hashtable =
3030 		alloc_large_system_hash("Dentry cache",
3031 					sizeof(struct hlist_bl_head),
3032 					dhash_entries,
3033 					13,
3034 					HASH_EARLY,
3035 					&d_hash_shift,
3036 					&d_hash_mask,
3037 					0,
3038 					0);
3039 
3040 	for (loop = 0; loop < (1U << d_hash_shift); loop++)
3041 		INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
3042 }
3043 
3044 static void __init dcache_init(void)
3045 {
3046 	unsigned int loop;
3047 
3048 	/*
3049 	 * A constructor could be added for stable state like the lists,
3050 	 * but it is probably not worth it because of the cache nature
3051 	 * of the dcache.
3052 	 */
3053 	dentry_cache = KMEM_CACHE(dentry,
3054 		SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD);
3055 
3056 	/* Hash may have been set up in dcache_init_early */
3057 	if (!hashdist)
3058 		return;
3059 
3060 	dentry_hashtable =
3061 		alloc_large_system_hash("Dentry cache",
3062 					sizeof(struct hlist_bl_head),
3063 					dhash_entries,
3064 					13,
3065 					0,
3066 					&d_hash_shift,
3067 					&d_hash_mask,
3068 					0,
3069 					0);
3070 
3071 	for (loop = 0; loop < (1U << d_hash_shift); loop++)
3072 		INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
3073 }
3074 
3075 /* SLAB cache for __getname() consumers */
3076 struct kmem_cache *names_cachep __read_mostly;
3077 EXPORT_SYMBOL(names_cachep);
3078 
3079 EXPORT_SYMBOL(d_genocide);
3080 
3081 void __init vfs_caches_init_early(void)
3082 {
3083 	dcache_init_early();
3084 	inode_init_early();
3085 }
3086 
3087 void __init vfs_caches_init(unsigned long mempages)
3088 {
3089 	unsigned long reserve;
3090 
3091 	/* Base hash sizes on available memory, with a reserve equal to
3092            150% of current kernel size */
3093 
3094 	reserve = min((mempages - nr_free_pages()) * 3/2, mempages - 1);
3095 	mempages -= reserve;
3096 
3097 	names_cachep = kmem_cache_create("names_cache", PATH_MAX, 0,
3098 			SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
3099 
3100 	dcache_init();
3101 	inode_init();
3102 	files_init(mempages);
3103 	mnt_init();
3104 	bdev_cache_init();
3105 	chrdev_init();
3106 }
3107