1 /* 2 * fs/dcache.c 3 * 4 * Complete reimplementation 5 * (C) 1997 Thomas Schoebel-Theuer, 6 * with heavy changes by Linus Torvalds 7 */ 8 9 /* 10 * Notes on the allocation strategy: 11 * 12 * The dcache is a master of the icache - whenever a dcache entry 13 * exists, the inode will always exist. "iput()" is done either when 14 * the dcache entry is deleted or garbage collected. 15 */ 16 17 #include <linux/syscalls.h> 18 #include <linux/string.h> 19 #include <linux/mm.h> 20 #include <linux/fs.h> 21 #include <linux/fsnotify.h> 22 #include <linux/slab.h> 23 #include <linux/init.h> 24 #include <linux/hash.h> 25 #include <linux/cache.h> 26 #include <linux/export.h> 27 #include <linux/mount.h> 28 #include <linux/file.h> 29 #include <asm/uaccess.h> 30 #include <linux/security.h> 31 #include <linux/seqlock.h> 32 #include <linux/swap.h> 33 #include <linux/bootmem.h> 34 #include <linux/fs_struct.h> 35 #include <linux/hardirq.h> 36 #include <linux/bit_spinlock.h> 37 #include <linux/rculist_bl.h> 38 #include <linux/prefetch.h> 39 #include <linux/ratelimit.h> 40 #include "internal.h" 41 #include "mount.h" 42 43 /* 44 * Usage: 45 * dcache->d_inode->i_lock protects: 46 * - i_dentry, d_alias, d_inode of aliases 47 * dcache_hash_bucket lock protects: 48 * - the dcache hash table 49 * s_anon bl list spinlock protects: 50 * - the s_anon list (see __d_drop) 51 * dcache_lru_lock protects: 52 * - the dcache lru lists and counters 53 * d_lock protects: 54 * - d_flags 55 * - d_name 56 * - d_lru 57 * - d_count 58 * - d_unhashed() 59 * - d_parent and d_subdirs 60 * - childrens' d_child and d_parent 61 * - d_alias, d_inode 62 * 63 * Ordering: 64 * dentry->d_inode->i_lock 65 * dentry->d_lock 66 * dcache_lru_lock 67 * dcache_hash_bucket lock 68 * s_anon lock 69 * 70 * If there is an ancestor relationship: 71 * dentry->d_parent->...->d_parent->d_lock 72 * ... 73 * dentry->d_parent->d_lock 74 * dentry->d_lock 75 * 76 * If no ancestor relationship: 77 * if (dentry1 < dentry2) 78 * dentry1->d_lock 79 * dentry2->d_lock 80 */ 81 int sysctl_vfs_cache_pressure __read_mostly = 100; 82 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure); 83 84 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(dcache_lru_lock); 85 __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock); 86 87 EXPORT_SYMBOL(rename_lock); 88 89 static struct kmem_cache *dentry_cache __read_mostly; 90 91 /* 92 * This is the single most critical data structure when it comes 93 * to the dcache: the hashtable for lookups. Somebody should try 94 * to make this good - I've just made it work. 95 * 96 * This hash-function tries to avoid losing too many bits of hash 97 * information, yet avoid using a prime hash-size or similar. 98 */ 99 #define D_HASHBITS d_hash_shift 100 #define D_HASHMASK d_hash_mask 101 102 static unsigned int d_hash_mask __read_mostly; 103 static unsigned int d_hash_shift __read_mostly; 104 105 static struct hlist_bl_head *dentry_hashtable __read_mostly; 106 107 static inline struct hlist_bl_head *d_hash(const struct dentry *parent, 108 unsigned int hash) 109 { 110 hash += (unsigned long) parent / L1_CACHE_BYTES; 111 hash = hash + (hash >> D_HASHBITS); 112 return dentry_hashtable + (hash & D_HASHMASK); 113 } 114 115 /* Statistics gathering. */ 116 struct dentry_stat_t dentry_stat = { 117 .age_limit = 45, 118 }; 119 120 static DEFINE_PER_CPU(unsigned int, nr_dentry); 121 122 #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS) 123 static int get_nr_dentry(void) 124 { 125 int i; 126 int sum = 0; 127 for_each_possible_cpu(i) 128 sum += per_cpu(nr_dentry, i); 129 return sum < 0 ? 0 : sum; 130 } 131 132 int proc_nr_dentry(ctl_table *table, int write, void __user *buffer, 133 size_t *lenp, loff_t *ppos) 134 { 135 dentry_stat.nr_dentry = get_nr_dentry(); 136 return proc_dointvec(table, write, buffer, lenp, ppos); 137 } 138 #endif 139 140 /* 141 * Compare 2 name strings, return 0 if they match, otherwise non-zero. 142 * The strings are both count bytes long, and count is non-zero. 143 */ 144 #ifdef CONFIG_DCACHE_WORD_ACCESS 145 146 #include <asm/word-at-a-time.h> 147 /* 148 * NOTE! 'cs' and 'scount' come from a dentry, so it has a 149 * aligned allocation for this particular component. We don't 150 * strictly need the load_unaligned_zeropad() safety, but it 151 * doesn't hurt either. 152 * 153 * In contrast, 'ct' and 'tcount' can be from a pathname, and do 154 * need the careful unaligned handling. 155 */ 156 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount) 157 { 158 unsigned long a,b,mask; 159 160 for (;;) { 161 a = *(unsigned long *)cs; 162 b = load_unaligned_zeropad(ct); 163 if (tcount < sizeof(unsigned long)) 164 break; 165 if (unlikely(a != b)) 166 return 1; 167 cs += sizeof(unsigned long); 168 ct += sizeof(unsigned long); 169 tcount -= sizeof(unsigned long); 170 if (!tcount) 171 return 0; 172 } 173 mask = ~(~0ul << tcount*8); 174 return unlikely(!!((a ^ b) & mask)); 175 } 176 177 #else 178 179 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount) 180 { 181 do { 182 if (*cs != *ct) 183 return 1; 184 cs++; 185 ct++; 186 tcount--; 187 } while (tcount); 188 return 0; 189 } 190 191 #endif 192 193 static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount) 194 { 195 const unsigned char *cs; 196 /* 197 * Be careful about RCU walk racing with rename: 198 * use ACCESS_ONCE to fetch the name pointer. 199 * 200 * NOTE! Even if a rename will mean that the length 201 * was not loaded atomically, we don't care. The 202 * RCU walk will check the sequence count eventually, 203 * and catch it. And we won't overrun the buffer, 204 * because we're reading the name pointer atomically, 205 * and a dentry name is guaranteed to be properly 206 * terminated with a NUL byte. 207 * 208 * End result: even if 'len' is wrong, we'll exit 209 * early because the data cannot match (there can 210 * be no NUL in the ct/tcount data) 211 */ 212 cs = ACCESS_ONCE(dentry->d_name.name); 213 smp_read_barrier_depends(); 214 return dentry_string_cmp(cs, ct, tcount); 215 } 216 217 static void __d_free(struct rcu_head *head) 218 { 219 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu); 220 221 WARN_ON(!hlist_unhashed(&dentry->d_alias)); 222 if (dname_external(dentry)) 223 kfree(dentry->d_name.name); 224 kmem_cache_free(dentry_cache, dentry); 225 } 226 227 /* 228 * no locks, please. 229 */ 230 static void d_free(struct dentry *dentry) 231 { 232 BUG_ON(dentry->d_count); 233 this_cpu_dec(nr_dentry); 234 if (dentry->d_op && dentry->d_op->d_release) 235 dentry->d_op->d_release(dentry); 236 237 /* if dentry was never visible to RCU, immediate free is OK */ 238 if (!(dentry->d_flags & DCACHE_RCUACCESS)) 239 __d_free(&dentry->d_u.d_rcu); 240 else 241 call_rcu(&dentry->d_u.d_rcu, __d_free); 242 } 243 244 /** 245 * dentry_rcuwalk_barrier - invalidate in-progress rcu-walk lookups 246 * @dentry: the target dentry 247 * After this call, in-progress rcu-walk path lookup will fail. This 248 * should be called after unhashing, and after changing d_inode (if 249 * the dentry has not already been unhashed). 250 */ 251 static inline void dentry_rcuwalk_barrier(struct dentry *dentry) 252 { 253 assert_spin_locked(&dentry->d_lock); 254 /* Go through a barrier */ 255 write_seqcount_barrier(&dentry->d_seq); 256 } 257 258 /* 259 * Release the dentry's inode, using the filesystem 260 * d_iput() operation if defined. Dentry has no refcount 261 * and is unhashed. 262 */ 263 static void dentry_iput(struct dentry * dentry) 264 __releases(dentry->d_lock) 265 __releases(dentry->d_inode->i_lock) 266 { 267 struct inode *inode = dentry->d_inode; 268 if (inode) { 269 dentry->d_inode = NULL; 270 hlist_del_init(&dentry->d_alias); 271 spin_unlock(&dentry->d_lock); 272 spin_unlock(&inode->i_lock); 273 if (!inode->i_nlink) 274 fsnotify_inoderemove(inode); 275 if (dentry->d_op && dentry->d_op->d_iput) 276 dentry->d_op->d_iput(dentry, inode); 277 else 278 iput(inode); 279 } else { 280 spin_unlock(&dentry->d_lock); 281 } 282 } 283 284 /* 285 * Release the dentry's inode, using the filesystem 286 * d_iput() operation if defined. dentry remains in-use. 287 */ 288 static void dentry_unlink_inode(struct dentry * dentry) 289 __releases(dentry->d_lock) 290 __releases(dentry->d_inode->i_lock) 291 { 292 struct inode *inode = dentry->d_inode; 293 dentry->d_inode = NULL; 294 hlist_del_init(&dentry->d_alias); 295 dentry_rcuwalk_barrier(dentry); 296 spin_unlock(&dentry->d_lock); 297 spin_unlock(&inode->i_lock); 298 if (!inode->i_nlink) 299 fsnotify_inoderemove(inode); 300 if (dentry->d_op && dentry->d_op->d_iput) 301 dentry->d_op->d_iput(dentry, inode); 302 else 303 iput(inode); 304 } 305 306 /* 307 * dentry_lru_(add|del|prune|move_tail) must be called with d_lock held. 308 */ 309 static void dentry_lru_add(struct dentry *dentry) 310 { 311 if (list_empty(&dentry->d_lru)) { 312 spin_lock(&dcache_lru_lock); 313 list_add(&dentry->d_lru, &dentry->d_sb->s_dentry_lru); 314 dentry->d_sb->s_nr_dentry_unused++; 315 dentry_stat.nr_unused++; 316 spin_unlock(&dcache_lru_lock); 317 } 318 } 319 320 static void __dentry_lru_del(struct dentry *dentry) 321 { 322 list_del_init(&dentry->d_lru); 323 dentry->d_flags &= ~DCACHE_SHRINK_LIST; 324 dentry->d_sb->s_nr_dentry_unused--; 325 dentry_stat.nr_unused--; 326 } 327 328 /* 329 * Remove a dentry with references from the LRU. 330 */ 331 static void dentry_lru_del(struct dentry *dentry) 332 { 333 if (!list_empty(&dentry->d_lru)) { 334 spin_lock(&dcache_lru_lock); 335 __dentry_lru_del(dentry); 336 spin_unlock(&dcache_lru_lock); 337 } 338 } 339 340 /* 341 * Remove a dentry that is unreferenced and about to be pruned 342 * (unhashed and destroyed) from the LRU, and inform the file system. 343 * This wrapper should be called _prior_ to unhashing a victim dentry. 344 */ 345 static void dentry_lru_prune(struct dentry *dentry) 346 { 347 if (!list_empty(&dentry->d_lru)) { 348 if (dentry->d_flags & DCACHE_OP_PRUNE) 349 dentry->d_op->d_prune(dentry); 350 351 spin_lock(&dcache_lru_lock); 352 __dentry_lru_del(dentry); 353 spin_unlock(&dcache_lru_lock); 354 } 355 } 356 357 static void dentry_lru_move_list(struct dentry *dentry, struct list_head *list) 358 { 359 spin_lock(&dcache_lru_lock); 360 if (list_empty(&dentry->d_lru)) { 361 list_add_tail(&dentry->d_lru, list); 362 dentry->d_sb->s_nr_dentry_unused++; 363 dentry_stat.nr_unused++; 364 } else { 365 list_move_tail(&dentry->d_lru, list); 366 } 367 spin_unlock(&dcache_lru_lock); 368 } 369 370 /** 371 * d_kill - kill dentry and return parent 372 * @dentry: dentry to kill 373 * @parent: parent dentry 374 * 375 * The dentry must already be unhashed and removed from the LRU. 376 * 377 * If this is the root of the dentry tree, return NULL. 378 * 379 * dentry->d_lock and parent->d_lock must be held by caller, and are dropped by 380 * d_kill. 381 */ 382 static struct dentry *d_kill(struct dentry *dentry, struct dentry *parent) 383 __releases(dentry->d_lock) 384 __releases(parent->d_lock) 385 __releases(dentry->d_inode->i_lock) 386 { 387 list_del(&dentry->d_u.d_child); 388 /* 389 * Inform try_to_ascend() that we are no longer attached to the 390 * dentry tree 391 */ 392 dentry->d_flags |= DCACHE_DENTRY_KILLED; 393 if (parent) 394 spin_unlock(&parent->d_lock); 395 dentry_iput(dentry); 396 /* 397 * dentry_iput drops the locks, at which point nobody (except 398 * transient RCU lookups) can reach this dentry. 399 */ 400 d_free(dentry); 401 return parent; 402 } 403 404 /* 405 * Unhash a dentry without inserting an RCU walk barrier or checking that 406 * dentry->d_lock is locked. The caller must take care of that, if 407 * appropriate. 408 */ 409 static void __d_shrink(struct dentry *dentry) 410 { 411 if (!d_unhashed(dentry)) { 412 struct hlist_bl_head *b; 413 if (unlikely(dentry->d_flags & DCACHE_DISCONNECTED)) 414 b = &dentry->d_sb->s_anon; 415 else 416 b = d_hash(dentry->d_parent, dentry->d_name.hash); 417 418 hlist_bl_lock(b); 419 __hlist_bl_del(&dentry->d_hash); 420 dentry->d_hash.pprev = NULL; 421 hlist_bl_unlock(b); 422 } 423 } 424 425 /** 426 * d_drop - drop a dentry 427 * @dentry: dentry to drop 428 * 429 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't 430 * be found through a VFS lookup any more. Note that this is different from 431 * deleting the dentry - d_delete will try to mark the dentry negative if 432 * possible, giving a successful _negative_ lookup, while d_drop will 433 * just make the cache lookup fail. 434 * 435 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some 436 * reason (NFS timeouts or autofs deletes). 437 * 438 * __d_drop requires dentry->d_lock. 439 */ 440 void __d_drop(struct dentry *dentry) 441 { 442 if (!d_unhashed(dentry)) { 443 __d_shrink(dentry); 444 dentry_rcuwalk_barrier(dentry); 445 } 446 } 447 EXPORT_SYMBOL(__d_drop); 448 449 void d_drop(struct dentry *dentry) 450 { 451 spin_lock(&dentry->d_lock); 452 __d_drop(dentry); 453 spin_unlock(&dentry->d_lock); 454 } 455 EXPORT_SYMBOL(d_drop); 456 457 /* 458 * Finish off a dentry we've decided to kill. 459 * dentry->d_lock must be held, returns with it unlocked. 460 * If ref is non-zero, then decrement the refcount too. 461 * Returns dentry requiring refcount drop, or NULL if we're done. 462 */ 463 static inline struct dentry *dentry_kill(struct dentry *dentry, int ref) 464 __releases(dentry->d_lock) 465 { 466 struct inode *inode; 467 struct dentry *parent; 468 469 inode = dentry->d_inode; 470 if (inode && !spin_trylock(&inode->i_lock)) { 471 relock: 472 spin_unlock(&dentry->d_lock); 473 cpu_relax(); 474 return dentry; /* try again with same dentry */ 475 } 476 if (IS_ROOT(dentry)) 477 parent = NULL; 478 else 479 parent = dentry->d_parent; 480 if (parent && !spin_trylock(&parent->d_lock)) { 481 if (inode) 482 spin_unlock(&inode->i_lock); 483 goto relock; 484 } 485 486 if (ref) 487 dentry->d_count--; 488 /* 489 * if dentry was on the d_lru list delete it from there. 490 * inform the fs via d_prune that this dentry is about to be 491 * unhashed and destroyed. 492 */ 493 dentry_lru_prune(dentry); 494 /* if it was on the hash then remove it */ 495 __d_drop(dentry); 496 return d_kill(dentry, parent); 497 } 498 499 /* 500 * This is dput 501 * 502 * This is complicated by the fact that we do not want to put 503 * dentries that are no longer on any hash chain on the unused 504 * list: we'd much rather just get rid of them immediately. 505 * 506 * However, that implies that we have to traverse the dentry 507 * tree upwards to the parents which might _also_ now be 508 * scheduled for deletion (it may have been only waiting for 509 * its last child to go away). 510 * 511 * This tail recursion is done by hand as we don't want to depend 512 * on the compiler to always get this right (gcc generally doesn't). 513 * Real recursion would eat up our stack space. 514 */ 515 516 /* 517 * dput - release a dentry 518 * @dentry: dentry to release 519 * 520 * Release a dentry. This will drop the usage count and if appropriate 521 * call the dentry unlink method as well as removing it from the queues and 522 * releasing its resources. If the parent dentries were scheduled for release 523 * they too may now get deleted. 524 */ 525 void dput(struct dentry *dentry) 526 { 527 if (!dentry) 528 return; 529 530 repeat: 531 if (dentry->d_count == 1) 532 might_sleep(); 533 spin_lock(&dentry->d_lock); 534 BUG_ON(!dentry->d_count); 535 if (dentry->d_count > 1) { 536 dentry->d_count--; 537 spin_unlock(&dentry->d_lock); 538 return; 539 } 540 541 if (dentry->d_flags & DCACHE_OP_DELETE) { 542 if (dentry->d_op->d_delete(dentry)) 543 goto kill_it; 544 } 545 546 /* Unreachable? Get rid of it */ 547 if (d_unhashed(dentry)) 548 goto kill_it; 549 550 dentry->d_flags |= DCACHE_REFERENCED; 551 dentry_lru_add(dentry); 552 553 dentry->d_count--; 554 spin_unlock(&dentry->d_lock); 555 return; 556 557 kill_it: 558 dentry = dentry_kill(dentry, 1); 559 if (dentry) 560 goto repeat; 561 } 562 EXPORT_SYMBOL(dput); 563 564 /** 565 * d_invalidate - invalidate a dentry 566 * @dentry: dentry to invalidate 567 * 568 * Try to invalidate the dentry if it turns out to be 569 * possible. If there are other dentries that can be 570 * reached through this one we can't delete it and we 571 * return -EBUSY. On success we return 0. 572 * 573 * no dcache lock. 574 */ 575 576 int d_invalidate(struct dentry * dentry) 577 { 578 /* 579 * If it's already been dropped, return OK. 580 */ 581 spin_lock(&dentry->d_lock); 582 if (d_unhashed(dentry)) { 583 spin_unlock(&dentry->d_lock); 584 return 0; 585 } 586 /* 587 * Check whether to do a partial shrink_dcache 588 * to get rid of unused child entries. 589 */ 590 if (!list_empty(&dentry->d_subdirs)) { 591 spin_unlock(&dentry->d_lock); 592 shrink_dcache_parent(dentry); 593 spin_lock(&dentry->d_lock); 594 } 595 596 /* 597 * Somebody else still using it? 598 * 599 * If it's a directory, we can't drop it 600 * for fear of somebody re-populating it 601 * with children (even though dropping it 602 * would make it unreachable from the root, 603 * we might still populate it if it was a 604 * working directory or similar). 605 * We also need to leave mountpoints alone, 606 * directory or not. 607 */ 608 if (dentry->d_count > 1 && dentry->d_inode) { 609 if (S_ISDIR(dentry->d_inode->i_mode) || d_mountpoint(dentry)) { 610 spin_unlock(&dentry->d_lock); 611 return -EBUSY; 612 } 613 } 614 615 __d_drop(dentry); 616 spin_unlock(&dentry->d_lock); 617 return 0; 618 } 619 EXPORT_SYMBOL(d_invalidate); 620 621 /* This must be called with d_lock held */ 622 static inline void __dget_dlock(struct dentry *dentry) 623 { 624 dentry->d_count++; 625 } 626 627 static inline void __dget(struct dentry *dentry) 628 { 629 spin_lock(&dentry->d_lock); 630 __dget_dlock(dentry); 631 spin_unlock(&dentry->d_lock); 632 } 633 634 struct dentry *dget_parent(struct dentry *dentry) 635 { 636 struct dentry *ret; 637 638 repeat: 639 /* 640 * Don't need rcu_dereference because we re-check it was correct under 641 * the lock. 642 */ 643 rcu_read_lock(); 644 ret = dentry->d_parent; 645 spin_lock(&ret->d_lock); 646 if (unlikely(ret != dentry->d_parent)) { 647 spin_unlock(&ret->d_lock); 648 rcu_read_unlock(); 649 goto repeat; 650 } 651 rcu_read_unlock(); 652 BUG_ON(!ret->d_count); 653 ret->d_count++; 654 spin_unlock(&ret->d_lock); 655 return ret; 656 } 657 EXPORT_SYMBOL(dget_parent); 658 659 /** 660 * d_find_alias - grab a hashed alias of inode 661 * @inode: inode in question 662 * @want_discon: flag, used by d_splice_alias, to request 663 * that only a DISCONNECTED alias be returned. 664 * 665 * If inode has a hashed alias, or is a directory and has any alias, 666 * acquire the reference to alias and return it. Otherwise return NULL. 667 * Notice that if inode is a directory there can be only one alias and 668 * it can be unhashed only if it has no children, or if it is the root 669 * of a filesystem. 670 * 671 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer 672 * any other hashed alias over that one unless @want_discon is set, 673 * in which case only return an IS_ROOT, DCACHE_DISCONNECTED alias. 674 */ 675 static struct dentry *__d_find_alias(struct inode *inode, int want_discon) 676 { 677 struct dentry *alias, *discon_alias; 678 struct hlist_node *p; 679 680 again: 681 discon_alias = NULL; 682 hlist_for_each_entry(alias, p, &inode->i_dentry, d_alias) { 683 spin_lock(&alias->d_lock); 684 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) { 685 if (IS_ROOT(alias) && 686 (alias->d_flags & DCACHE_DISCONNECTED)) { 687 discon_alias = alias; 688 } else if (!want_discon) { 689 __dget_dlock(alias); 690 spin_unlock(&alias->d_lock); 691 return alias; 692 } 693 } 694 spin_unlock(&alias->d_lock); 695 } 696 if (discon_alias) { 697 alias = discon_alias; 698 spin_lock(&alias->d_lock); 699 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) { 700 if (IS_ROOT(alias) && 701 (alias->d_flags & DCACHE_DISCONNECTED)) { 702 __dget_dlock(alias); 703 spin_unlock(&alias->d_lock); 704 return alias; 705 } 706 } 707 spin_unlock(&alias->d_lock); 708 goto again; 709 } 710 return NULL; 711 } 712 713 struct dentry *d_find_alias(struct inode *inode) 714 { 715 struct dentry *de = NULL; 716 717 if (!hlist_empty(&inode->i_dentry)) { 718 spin_lock(&inode->i_lock); 719 de = __d_find_alias(inode, 0); 720 spin_unlock(&inode->i_lock); 721 } 722 return de; 723 } 724 EXPORT_SYMBOL(d_find_alias); 725 726 /* 727 * Try to kill dentries associated with this inode. 728 * WARNING: you must own a reference to inode. 729 */ 730 void d_prune_aliases(struct inode *inode) 731 { 732 struct dentry *dentry; 733 struct hlist_node *p; 734 restart: 735 spin_lock(&inode->i_lock); 736 hlist_for_each_entry(dentry, p, &inode->i_dentry, d_alias) { 737 spin_lock(&dentry->d_lock); 738 if (!dentry->d_count) { 739 __dget_dlock(dentry); 740 __d_drop(dentry); 741 spin_unlock(&dentry->d_lock); 742 spin_unlock(&inode->i_lock); 743 dput(dentry); 744 goto restart; 745 } 746 spin_unlock(&dentry->d_lock); 747 } 748 spin_unlock(&inode->i_lock); 749 } 750 EXPORT_SYMBOL(d_prune_aliases); 751 752 /* 753 * Try to throw away a dentry - free the inode, dput the parent. 754 * Requires dentry->d_lock is held, and dentry->d_count == 0. 755 * Releases dentry->d_lock. 756 * 757 * This may fail if locks cannot be acquired no problem, just try again. 758 */ 759 static void try_prune_one_dentry(struct dentry *dentry) 760 __releases(dentry->d_lock) 761 { 762 struct dentry *parent; 763 764 parent = dentry_kill(dentry, 0); 765 /* 766 * If dentry_kill returns NULL, we have nothing more to do. 767 * if it returns the same dentry, trylocks failed. In either 768 * case, just loop again. 769 * 770 * Otherwise, we need to prune ancestors too. This is necessary 771 * to prevent quadratic behavior of shrink_dcache_parent(), but 772 * is also expected to be beneficial in reducing dentry cache 773 * fragmentation. 774 */ 775 if (!parent) 776 return; 777 if (parent == dentry) 778 return; 779 780 /* Prune ancestors. */ 781 dentry = parent; 782 while (dentry) { 783 spin_lock(&dentry->d_lock); 784 if (dentry->d_count > 1) { 785 dentry->d_count--; 786 spin_unlock(&dentry->d_lock); 787 return; 788 } 789 dentry = dentry_kill(dentry, 1); 790 } 791 } 792 793 static void shrink_dentry_list(struct list_head *list) 794 { 795 struct dentry *dentry; 796 797 rcu_read_lock(); 798 for (;;) { 799 dentry = list_entry_rcu(list->prev, struct dentry, d_lru); 800 if (&dentry->d_lru == list) 801 break; /* empty */ 802 spin_lock(&dentry->d_lock); 803 if (dentry != list_entry(list->prev, struct dentry, d_lru)) { 804 spin_unlock(&dentry->d_lock); 805 continue; 806 } 807 808 /* 809 * We found an inuse dentry which was not removed from 810 * the LRU because of laziness during lookup. Do not free 811 * it - just keep it off the LRU list. 812 */ 813 if (dentry->d_count) { 814 dentry_lru_del(dentry); 815 spin_unlock(&dentry->d_lock); 816 continue; 817 } 818 819 rcu_read_unlock(); 820 821 try_prune_one_dentry(dentry); 822 823 rcu_read_lock(); 824 } 825 rcu_read_unlock(); 826 } 827 828 /** 829 * prune_dcache_sb - shrink the dcache 830 * @sb: superblock 831 * @count: number of entries to try to free 832 * 833 * Attempt to shrink the superblock dcache LRU by @count entries. This is 834 * done when we need more memory an called from the superblock shrinker 835 * function. 836 * 837 * This function may fail to free any resources if all the dentries are in 838 * use. 839 */ 840 void prune_dcache_sb(struct super_block *sb, int count) 841 { 842 struct dentry *dentry; 843 LIST_HEAD(referenced); 844 LIST_HEAD(tmp); 845 846 relock: 847 spin_lock(&dcache_lru_lock); 848 while (!list_empty(&sb->s_dentry_lru)) { 849 dentry = list_entry(sb->s_dentry_lru.prev, 850 struct dentry, d_lru); 851 BUG_ON(dentry->d_sb != sb); 852 853 if (!spin_trylock(&dentry->d_lock)) { 854 spin_unlock(&dcache_lru_lock); 855 cpu_relax(); 856 goto relock; 857 } 858 859 if (dentry->d_flags & DCACHE_REFERENCED) { 860 dentry->d_flags &= ~DCACHE_REFERENCED; 861 list_move(&dentry->d_lru, &referenced); 862 spin_unlock(&dentry->d_lock); 863 } else { 864 list_move_tail(&dentry->d_lru, &tmp); 865 dentry->d_flags |= DCACHE_SHRINK_LIST; 866 spin_unlock(&dentry->d_lock); 867 if (!--count) 868 break; 869 } 870 cond_resched_lock(&dcache_lru_lock); 871 } 872 if (!list_empty(&referenced)) 873 list_splice(&referenced, &sb->s_dentry_lru); 874 spin_unlock(&dcache_lru_lock); 875 876 shrink_dentry_list(&tmp); 877 } 878 879 /** 880 * shrink_dcache_sb - shrink dcache for a superblock 881 * @sb: superblock 882 * 883 * Shrink the dcache for the specified super block. This is used to free 884 * the dcache before unmounting a file system. 885 */ 886 void shrink_dcache_sb(struct super_block *sb) 887 { 888 LIST_HEAD(tmp); 889 890 spin_lock(&dcache_lru_lock); 891 while (!list_empty(&sb->s_dentry_lru)) { 892 list_splice_init(&sb->s_dentry_lru, &tmp); 893 spin_unlock(&dcache_lru_lock); 894 shrink_dentry_list(&tmp); 895 spin_lock(&dcache_lru_lock); 896 } 897 spin_unlock(&dcache_lru_lock); 898 } 899 EXPORT_SYMBOL(shrink_dcache_sb); 900 901 /* 902 * destroy a single subtree of dentries for unmount 903 * - see the comments on shrink_dcache_for_umount() for a description of the 904 * locking 905 */ 906 static void shrink_dcache_for_umount_subtree(struct dentry *dentry) 907 { 908 struct dentry *parent; 909 910 BUG_ON(!IS_ROOT(dentry)); 911 912 for (;;) { 913 /* descend to the first leaf in the current subtree */ 914 while (!list_empty(&dentry->d_subdirs)) 915 dentry = list_entry(dentry->d_subdirs.next, 916 struct dentry, d_u.d_child); 917 918 /* consume the dentries from this leaf up through its parents 919 * until we find one with children or run out altogether */ 920 do { 921 struct inode *inode; 922 923 /* 924 * remove the dentry from the lru, and inform 925 * the fs that this dentry is about to be 926 * unhashed and destroyed. 927 */ 928 dentry_lru_prune(dentry); 929 __d_shrink(dentry); 930 931 if (dentry->d_count != 0) { 932 printk(KERN_ERR 933 "BUG: Dentry %p{i=%lx,n=%s}" 934 " still in use (%d)" 935 " [unmount of %s %s]\n", 936 dentry, 937 dentry->d_inode ? 938 dentry->d_inode->i_ino : 0UL, 939 dentry->d_name.name, 940 dentry->d_count, 941 dentry->d_sb->s_type->name, 942 dentry->d_sb->s_id); 943 BUG(); 944 } 945 946 if (IS_ROOT(dentry)) { 947 parent = NULL; 948 list_del(&dentry->d_u.d_child); 949 } else { 950 parent = dentry->d_parent; 951 parent->d_count--; 952 list_del(&dentry->d_u.d_child); 953 } 954 955 inode = dentry->d_inode; 956 if (inode) { 957 dentry->d_inode = NULL; 958 hlist_del_init(&dentry->d_alias); 959 if (dentry->d_op && dentry->d_op->d_iput) 960 dentry->d_op->d_iput(dentry, inode); 961 else 962 iput(inode); 963 } 964 965 d_free(dentry); 966 967 /* finished when we fall off the top of the tree, 968 * otherwise we ascend to the parent and move to the 969 * next sibling if there is one */ 970 if (!parent) 971 return; 972 dentry = parent; 973 } while (list_empty(&dentry->d_subdirs)); 974 975 dentry = list_entry(dentry->d_subdirs.next, 976 struct dentry, d_u.d_child); 977 } 978 } 979 980 /* 981 * destroy the dentries attached to a superblock on unmounting 982 * - we don't need to use dentry->d_lock because: 983 * - the superblock is detached from all mountings and open files, so the 984 * dentry trees will not be rearranged by the VFS 985 * - s_umount is write-locked, so the memory pressure shrinker will ignore 986 * any dentries belonging to this superblock that it comes across 987 * - the filesystem itself is no longer permitted to rearrange the dentries 988 * in this superblock 989 */ 990 void shrink_dcache_for_umount(struct super_block *sb) 991 { 992 struct dentry *dentry; 993 994 if (down_read_trylock(&sb->s_umount)) 995 BUG(); 996 997 dentry = sb->s_root; 998 sb->s_root = NULL; 999 dentry->d_count--; 1000 shrink_dcache_for_umount_subtree(dentry); 1001 1002 while (!hlist_bl_empty(&sb->s_anon)) { 1003 dentry = hlist_bl_entry(hlist_bl_first(&sb->s_anon), struct dentry, d_hash); 1004 shrink_dcache_for_umount_subtree(dentry); 1005 } 1006 } 1007 1008 /* 1009 * This tries to ascend one level of parenthood, but 1010 * we can race with renaming, so we need to re-check 1011 * the parenthood after dropping the lock and check 1012 * that the sequence number still matches. 1013 */ 1014 static struct dentry *try_to_ascend(struct dentry *old, int locked, unsigned seq) 1015 { 1016 struct dentry *new = old->d_parent; 1017 1018 rcu_read_lock(); 1019 spin_unlock(&old->d_lock); 1020 spin_lock(&new->d_lock); 1021 1022 /* 1023 * might go back up the wrong parent if we have had a rename 1024 * or deletion 1025 */ 1026 if (new != old->d_parent || 1027 (old->d_flags & DCACHE_DENTRY_KILLED) || 1028 (!locked && read_seqretry(&rename_lock, seq))) { 1029 spin_unlock(&new->d_lock); 1030 new = NULL; 1031 } 1032 rcu_read_unlock(); 1033 return new; 1034 } 1035 1036 1037 /* 1038 * Search for at least 1 mount point in the dentry's subdirs. 1039 * We descend to the next level whenever the d_subdirs 1040 * list is non-empty and continue searching. 1041 */ 1042 1043 /** 1044 * have_submounts - check for mounts over a dentry 1045 * @parent: dentry to check. 1046 * 1047 * Return true if the parent or its subdirectories contain 1048 * a mount point 1049 */ 1050 int have_submounts(struct dentry *parent) 1051 { 1052 struct dentry *this_parent; 1053 struct list_head *next; 1054 unsigned seq; 1055 int locked = 0; 1056 1057 seq = read_seqbegin(&rename_lock); 1058 again: 1059 this_parent = parent; 1060 1061 if (d_mountpoint(parent)) 1062 goto positive; 1063 spin_lock(&this_parent->d_lock); 1064 repeat: 1065 next = this_parent->d_subdirs.next; 1066 resume: 1067 while (next != &this_parent->d_subdirs) { 1068 struct list_head *tmp = next; 1069 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child); 1070 next = tmp->next; 1071 1072 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED); 1073 /* Have we found a mount point ? */ 1074 if (d_mountpoint(dentry)) { 1075 spin_unlock(&dentry->d_lock); 1076 spin_unlock(&this_parent->d_lock); 1077 goto positive; 1078 } 1079 if (!list_empty(&dentry->d_subdirs)) { 1080 spin_unlock(&this_parent->d_lock); 1081 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_); 1082 this_parent = dentry; 1083 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_); 1084 goto repeat; 1085 } 1086 spin_unlock(&dentry->d_lock); 1087 } 1088 /* 1089 * All done at this level ... ascend and resume the search. 1090 */ 1091 if (this_parent != parent) { 1092 struct dentry *child = this_parent; 1093 this_parent = try_to_ascend(this_parent, locked, seq); 1094 if (!this_parent) 1095 goto rename_retry; 1096 next = child->d_u.d_child.next; 1097 goto resume; 1098 } 1099 spin_unlock(&this_parent->d_lock); 1100 if (!locked && read_seqretry(&rename_lock, seq)) 1101 goto rename_retry; 1102 if (locked) 1103 write_sequnlock(&rename_lock); 1104 return 0; /* No mount points found in tree */ 1105 positive: 1106 if (!locked && read_seqretry(&rename_lock, seq)) 1107 goto rename_retry; 1108 if (locked) 1109 write_sequnlock(&rename_lock); 1110 return 1; 1111 1112 rename_retry: 1113 if (locked) 1114 goto again; 1115 locked = 1; 1116 write_seqlock(&rename_lock); 1117 goto again; 1118 } 1119 EXPORT_SYMBOL(have_submounts); 1120 1121 /* 1122 * Search the dentry child list of the specified parent, 1123 * and move any unused dentries to the end of the unused 1124 * list for prune_dcache(). We descend to the next level 1125 * whenever the d_subdirs list is non-empty and continue 1126 * searching. 1127 * 1128 * It returns zero iff there are no unused children, 1129 * otherwise it returns the number of children moved to 1130 * the end of the unused list. This may not be the total 1131 * number of unused children, because select_parent can 1132 * drop the lock and return early due to latency 1133 * constraints. 1134 */ 1135 static int select_parent(struct dentry *parent, struct list_head *dispose) 1136 { 1137 struct dentry *this_parent; 1138 struct list_head *next; 1139 unsigned seq; 1140 int found = 0; 1141 int locked = 0; 1142 1143 seq = read_seqbegin(&rename_lock); 1144 again: 1145 this_parent = parent; 1146 spin_lock(&this_parent->d_lock); 1147 repeat: 1148 next = this_parent->d_subdirs.next; 1149 resume: 1150 while (next != &this_parent->d_subdirs) { 1151 struct list_head *tmp = next; 1152 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child); 1153 next = tmp->next; 1154 1155 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED); 1156 1157 /* 1158 * move only zero ref count dentries to the dispose list. 1159 * 1160 * Those which are presently on the shrink list, being processed 1161 * by shrink_dentry_list(), shouldn't be moved. Otherwise the 1162 * loop in shrink_dcache_parent() might not make any progress 1163 * and loop forever. 1164 */ 1165 if (dentry->d_count) { 1166 dentry_lru_del(dentry); 1167 } else if (!(dentry->d_flags & DCACHE_SHRINK_LIST)) { 1168 dentry_lru_move_list(dentry, dispose); 1169 dentry->d_flags |= DCACHE_SHRINK_LIST; 1170 found++; 1171 } 1172 /* 1173 * We can return to the caller if we have found some (this 1174 * ensures forward progress). We'll be coming back to find 1175 * the rest. 1176 */ 1177 if (found && need_resched()) { 1178 spin_unlock(&dentry->d_lock); 1179 goto out; 1180 } 1181 1182 /* 1183 * Descend a level if the d_subdirs list is non-empty. 1184 */ 1185 if (!list_empty(&dentry->d_subdirs)) { 1186 spin_unlock(&this_parent->d_lock); 1187 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_); 1188 this_parent = dentry; 1189 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_); 1190 goto repeat; 1191 } 1192 1193 spin_unlock(&dentry->d_lock); 1194 } 1195 /* 1196 * All done at this level ... ascend and resume the search. 1197 */ 1198 if (this_parent != parent) { 1199 struct dentry *child = this_parent; 1200 this_parent = try_to_ascend(this_parent, locked, seq); 1201 if (!this_parent) 1202 goto rename_retry; 1203 next = child->d_u.d_child.next; 1204 goto resume; 1205 } 1206 out: 1207 spin_unlock(&this_parent->d_lock); 1208 if (!locked && read_seqretry(&rename_lock, seq)) 1209 goto rename_retry; 1210 if (locked) 1211 write_sequnlock(&rename_lock); 1212 return found; 1213 1214 rename_retry: 1215 if (found) 1216 return found; 1217 if (locked) 1218 goto again; 1219 locked = 1; 1220 write_seqlock(&rename_lock); 1221 goto again; 1222 } 1223 1224 /** 1225 * shrink_dcache_parent - prune dcache 1226 * @parent: parent of entries to prune 1227 * 1228 * Prune the dcache to remove unused children of the parent dentry. 1229 */ 1230 void shrink_dcache_parent(struct dentry * parent) 1231 { 1232 LIST_HEAD(dispose); 1233 int found; 1234 1235 while ((found = select_parent(parent, &dispose)) != 0) 1236 shrink_dentry_list(&dispose); 1237 } 1238 EXPORT_SYMBOL(shrink_dcache_parent); 1239 1240 /** 1241 * __d_alloc - allocate a dcache entry 1242 * @sb: filesystem it will belong to 1243 * @name: qstr of the name 1244 * 1245 * Allocates a dentry. It returns %NULL if there is insufficient memory 1246 * available. On a success the dentry is returned. The name passed in is 1247 * copied and the copy passed in may be reused after this call. 1248 */ 1249 1250 struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name) 1251 { 1252 struct dentry *dentry; 1253 char *dname; 1254 1255 dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL); 1256 if (!dentry) 1257 return NULL; 1258 1259 /* 1260 * We guarantee that the inline name is always NUL-terminated. 1261 * This way the memcpy() done by the name switching in rename 1262 * will still always have a NUL at the end, even if we might 1263 * be overwriting an internal NUL character 1264 */ 1265 dentry->d_iname[DNAME_INLINE_LEN-1] = 0; 1266 if (name->len > DNAME_INLINE_LEN-1) { 1267 dname = kmalloc(name->len + 1, GFP_KERNEL); 1268 if (!dname) { 1269 kmem_cache_free(dentry_cache, dentry); 1270 return NULL; 1271 } 1272 } else { 1273 dname = dentry->d_iname; 1274 } 1275 1276 dentry->d_name.len = name->len; 1277 dentry->d_name.hash = name->hash; 1278 memcpy(dname, name->name, name->len); 1279 dname[name->len] = 0; 1280 1281 /* Make sure we always see the terminating NUL character */ 1282 smp_wmb(); 1283 dentry->d_name.name = dname; 1284 1285 dentry->d_count = 1; 1286 dentry->d_flags = 0; 1287 spin_lock_init(&dentry->d_lock); 1288 seqcount_init(&dentry->d_seq); 1289 dentry->d_inode = NULL; 1290 dentry->d_parent = dentry; 1291 dentry->d_sb = sb; 1292 dentry->d_op = NULL; 1293 dentry->d_fsdata = NULL; 1294 INIT_HLIST_BL_NODE(&dentry->d_hash); 1295 INIT_LIST_HEAD(&dentry->d_lru); 1296 INIT_LIST_HEAD(&dentry->d_subdirs); 1297 INIT_HLIST_NODE(&dentry->d_alias); 1298 INIT_LIST_HEAD(&dentry->d_u.d_child); 1299 d_set_d_op(dentry, dentry->d_sb->s_d_op); 1300 1301 this_cpu_inc(nr_dentry); 1302 1303 return dentry; 1304 } 1305 1306 /** 1307 * d_alloc - allocate a dcache entry 1308 * @parent: parent of entry to allocate 1309 * @name: qstr of the name 1310 * 1311 * Allocates a dentry. It returns %NULL if there is insufficient memory 1312 * available. On a success the dentry is returned. The name passed in is 1313 * copied and the copy passed in may be reused after this call. 1314 */ 1315 struct dentry *d_alloc(struct dentry * parent, const struct qstr *name) 1316 { 1317 struct dentry *dentry = __d_alloc(parent->d_sb, name); 1318 if (!dentry) 1319 return NULL; 1320 1321 spin_lock(&parent->d_lock); 1322 /* 1323 * don't need child lock because it is not subject 1324 * to concurrency here 1325 */ 1326 __dget_dlock(parent); 1327 dentry->d_parent = parent; 1328 list_add(&dentry->d_u.d_child, &parent->d_subdirs); 1329 spin_unlock(&parent->d_lock); 1330 1331 return dentry; 1332 } 1333 EXPORT_SYMBOL(d_alloc); 1334 1335 struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name) 1336 { 1337 struct dentry *dentry = __d_alloc(sb, name); 1338 if (dentry) 1339 dentry->d_flags |= DCACHE_DISCONNECTED; 1340 return dentry; 1341 } 1342 EXPORT_SYMBOL(d_alloc_pseudo); 1343 1344 struct dentry *d_alloc_name(struct dentry *parent, const char *name) 1345 { 1346 struct qstr q; 1347 1348 q.name = name; 1349 q.len = strlen(name); 1350 q.hash = full_name_hash(q.name, q.len); 1351 return d_alloc(parent, &q); 1352 } 1353 EXPORT_SYMBOL(d_alloc_name); 1354 1355 void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op) 1356 { 1357 WARN_ON_ONCE(dentry->d_op); 1358 WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH | 1359 DCACHE_OP_COMPARE | 1360 DCACHE_OP_REVALIDATE | 1361 DCACHE_OP_WEAK_REVALIDATE | 1362 DCACHE_OP_DELETE )); 1363 dentry->d_op = op; 1364 if (!op) 1365 return; 1366 if (op->d_hash) 1367 dentry->d_flags |= DCACHE_OP_HASH; 1368 if (op->d_compare) 1369 dentry->d_flags |= DCACHE_OP_COMPARE; 1370 if (op->d_revalidate) 1371 dentry->d_flags |= DCACHE_OP_REVALIDATE; 1372 if (op->d_weak_revalidate) 1373 dentry->d_flags |= DCACHE_OP_WEAK_REVALIDATE; 1374 if (op->d_delete) 1375 dentry->d_flags |= DCACHE_OP_DELETE; 1376 if (op->d_prune) 1377 dentry->d_flags |= DCACHE_OP_PRUNE; 1378 1379 } 1380 EXPORT_SYMBOL(d_set_d_op); 1381 1382 static void __d_instantiate(struct dentry *dentry, struct inode *inode) 1383 { 1384 spin_lock(&dentry->d_lock); 1385 if (inode) { 1386 if (unlikely(IS_AUTOMOUNT(inode))) 1387 dentry->d_flags |= DCACHE_NEED_AUTOMOUNT; 1388 hlist_add_head(&dentry->d_alias, &inode->i_dentry); 1389 } 1390 dentry->d_inode = inode; 1391 dentry_rcuwalk_barrier(dentry); 1392 spin_unlock(&dentry->d_lock); 1393 fsnotify_d_instantiate(dentry, inode); 1394 } 1395 1396 /** 1397 * d_instantiate - fill in inode information for a dentry 1398 * @entry: dentry to complete 1399 * @inode: inode to attach to this dentry 1400 * 1401 * Fill in inode information in the entry. 1402 * 1403 * This turns negative dentries into productive full members 1404 * of society. 1405 * 1406 * NOTE! This assumes that the inode count has been incremented 1407 * (or otherwise set) by the caller to indicate that it is now 1408 * in use by the dcache. 1409 */ 1410 1411 void d_instantiate(struct dentry *entry, struct inode * inode) 1412 { 1413 BUG_ON(!hlist_unhashed(&entry->d_alias)); 1414 if (inode) 1415 spin_lock(&inode->i_lock); 1416 __d_instantiate(entry, inode); 1417 if (inode) 1418 spin_unlock(&inode->i_lock); 1419 security_d_instantiate(entry, inode); 1420 } 1421 EXPORT_SYMBOL(d_instantiate); 1422 1423 /** 1424 * d_instantiate_unique - instantiate a non-aliased dentry 1425 * @entry: dentry to instantiate 1426 * @inode: inode to attach to this dentry 1427 * 1428 * Fill in inode information in the entry. On success, it returns NULL. 1429 * If an unhashed alias of "entry" already exists, then we return the 1430 * aliased dentry instead and drop one reference to inode. 1431 * 1432 * Note that in order to avoid conflicts with rename() etc, the caller 1433 * had better be holding the parent directory semaphore. 1434 * 1435 * This also assumes that the inode count has been incremented 1436 * (or otherwise set) by the caller to indicate that it is now 1437 * in use by the dcache. 1438 */ 1439 static struct dentry *__d_instantiate_unique(struct dentry *entry, 1440 struct inode *inode) 1441 { 1442 struct dentry *alias; 1443 int len = entry->d_name.len; 1444 const char *name = entry->d_name.name; 1445 unsigned int hash = entry->d_name.hash; 1446 struct hlist_node *p; 1447 1448 if (!inode) { 1449 __d_instantiate(entry, NULL); 1450 return NULL; 1451 } 1452 1453 hlist_for_each_entry(alias, p, &inode->i_dentry, d_alias) { 1454 /* 1455 * Don't need alias->d_lock here, because aliases with 1456 * d_parent == entry->d_parent are not subject to name or 1457 * parent changes, because the parent inode i_mutex is held. 1458 */ 1459 if (alias->d_name.hash != hash) 1460 continue; 1461 if (alias->d_parent != entry->d_parent) 1462 continue; 1463 if (alias->d_name.len != len) 1464 continue; 1465 if (dentry_cmp(alias, name, len)) 1466 continue; 1467 __dget(alias); 1468 return alias; 1469 } 1470 1471 __d_instantiate(entry, inode); 1472 return NULL; 1473 } 1474 1475 struct dentry *d_instantiate_unique(struct dentry *entry, struct inode *inode) 1476 { 1477 struct dentry *result; 1478 1479 BUG_ON(!hlist_unhashed(&entry->d_alias)); 1480 1481 if (inode) 1482 spin_lock(&inode->i_lock); 1483 result = __d_instantiate_unique(entry, inode); 1484 if (inode) 1485 spin_unlock(&inode->i_lock); 1486 1487 if (!result) { 1488 security_d_instantiate(entry, inode); 1489 return NULL; 1490 } 1491 1492 BUG_ON(!d_unhashed(result)); 1493 iput(inode); 1494 return result; 1495 } 1496 1497 EXPORT_SYMBOL(d_instantiate_unique); 1498 1499 struct dentry *d_make_root(struct inode *root_inode) 1500 { 1501 struct dentry *res = NULL; 1502 1503 if (root_inode) { 1504 static const struct qstr name = QSTR_INIT("/", 1); 1505 1506 res = __d_alloc(root_inode->i_sb, &name); 1507 if (res) 1508 d_instantiate(res, root_inode); 1509 else 1510 iput(root_inode); 1511 } 1512 return res; 1513 } 1514 EXPORT_SYMBOL(d_make_root); 1515 1516 static struct dentry * __d_find_any_alias(struct inode *inode) 1517 { 1518 struct dentry *alias; 1519 1520 if (hlist_empty(&inode->i_dentry)) 1521 return NULL; 1522 alias = hlist_entry(inode->i_dentry.first, struct dentry, d_alias); 1523 __dget(alias); 1524 return alias; 1525 } 1526 1527 /** 1528 * d_find_any_alias - find any alias for a given inode 1529 * @inode: inode to find an alias for 1530 * 1531 * If any aliases exist for the given inode, take and return a 1532 * reference for one of them. If no aliases exist, return %NULL. 1533 */ 1534 struct dentry *d_find_any_alias(struct inode *inode) 1535 { 1536 struct dentry *de; 1537 1538 spin_lock(&inode->i_lock); 1539 de = __d_find_any_alias(inode); 1540 spin_unlock(&inode->i_lock); 1541 return de; 1542 } 1543 EXPORT_SYMBOL(d_find_any_alias); 1544 1545 /** 1546 * d_obtain_alias - find or allocate a dentry for a given inode 1547 * @inode: inode to allocate the dentry for 1548 * 1549 * Obtain a dentry for an inode resulting from NFS filehandle conversion or 1550 * similar open by handle operations. The returned dentry may be anonymous, 1551 * or may have a full name (if the inode was already in the cache). 1552 * 1553 * When called on a directory inode, we must ensure that the inode only ever 1554 * has one dentry. If a dentry is found, that is returned instead of 1555 * allocating a new one. 1556 * 1557 * On successful return, the reference to the inode has been transferred 1558 * to the dentry. In case of an error the reference on the inode is released. 1559 * To make it easier to use in export operations a %NULL or IS_ERR inode may 1560 * be passed in and will be the error will be propagate to the return value, 1561 * with a %NULL @inode replaced by ERR_PTR(-ESTALE). 1562 */ 1563 struct dentry *d_obtain_alias(struct inode *inode) 1564 { 1565 static const struct qstr anonstring = QSTR_INIT("/", 1); 1566 struct dentry *tmp; 1567 struct dentry *res; 1568 1569 if (!inode) 1570 return ERR_PTR(-ESTALE); 1571 if (IS_ERR(inode)) 1572 return ERR_CAST(inode); 1573 1574 res = d_find_any_alias(inode); 1575 if (res) 1576 goto out_iput; 1577 1578 tmp = __d_alloc(inode->i_sb, &anonstring); 1579 if (!tmp) { 1580 res = ERR_PTR(-ENOMEM); 1581 goto out_iput; 1582 } 1583 1584 spin_lock(&inode->i_lock); 1585 res = __d_find_any_alias(inode); 1586 if (res) { 1587 spin_unlock(&inode->i_lock); 1588 dput(tmp); 1589 goto out_iput; 1590 } 1591 1592 /* attach a disconnected dentry */ 1593 spin_lock(&tmp->d_lock); 1594 tmp->d_inode = inode; 1595 tmp->d_flags |= DCACHE_DISCONNECTED; 1596 hlist_add_head(&tmp->d_alias, &inode->i_dentry); 1597 hlist_bl_lock(&tmp->d_sb->s_anon); 1598 hlist_bl_add_head(&tmp->d_hash, &tmp->d_sb->s_anon); 1599 hlist_bl_unlock(&tmp->d_sb->s_anon); 1600 spin_unlock(&tmp->d_lock); 1601 spin_unlock(&inode->i_lock); 1602 security_d_instantiate(tmp, inode); 1603 1604 return tmp; 1605 1606 out_iput: 1607 if (res && !IS_ERR(res)) 1608 security_d_instantiate(res, inode); 1609 iput(inode); 1610 return res; 1611 } 1612 EXPORT_SYMBOL(d_obtain_alias); 1613 1614 /** 1615 * d_splice_alias - splice a disconnected dentry into the tree if one exists 1616 * @inode: the inode which may have a disconnected dentry 1617 * @dentry: a negative dentry which we want to point to the inode. 1618 * 1619 * If inode is a directory and has a 'disconnected' dentry (i.e. IS_ROOT and 1620 * DCACHE_DISCONNECTED), then d_move that in place of the given dentry 1621 * and return it, else simply d_add the inode to the dentry and return NULL. 1622 * 1623 * This is needed in the lookup routine of any filesystem that is exportable 1624 * (via knfsd) so that we can build dcache paths to directories effectively. 1625 * 1626 * If a dentry was found and moved, then it is returned. Otherwise NULL 1627 * is returned. This matches the expected return value of ->lookup. 1628 * 1629 */ 1630 struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry) 1631 { 1632 struct dentry *new = NULL; 1633 1634 if (IS_ERR(inode)) 1635 return ERR_CAST(inode); 1636 1637 if (inode && S_ISDIR(inode->i_mode)) { 1638 spin_lock(&inode->i_lock); 1639 new = __d_find_alias(inode, 1); 1640 if (new) { 1641 BUG_ON(!(new->d_flags & DCACHE_DISCONNECTED)); 1642 spin_unlock(&inode->i_lock); 1643 security_d_instantiate(new, inode); 1644 d_move(new, dentry); 1645 iput(inode); 1646 } else { 1647 /* already taking inode->i_lock, so d_add() by hand */ 1648 __d_instantiate(dentry, inode); 1649 spin_unlock(&inode->i_lock); 1650 security_d_instantiate(dentry, inode); 1651 d_rehash(dentry); 1652 } 1653 } else 1654 d_add(dentry, inode); 1655 return new; 1656 } 1657 EXPORT_SYMBOL(d_splice_alias); 1658 1659 /** 1660 * d_add_ci - lookup or allocate new dentry with case-exact name 1661 * @inode: the inode case-insensitive lookup has found 1662 * @dentry: the negative dentry that was passed to the parent's lookup func 1663 * @name: the case-exact name to be associated with the returned dentry 1664 * 1665 * This is to avoid filling the dcache with case-insensitive names to the 1666 * same inode, only the actual correct case is stored in the dcache for 1667 * case-insensitive filesystems. 1668 * 1669 * For a case-insensitive lookup match and if the the case-exact dentry 1670 * already exists in in the dcache, use it and return it. 1671 * 1672 * If no entry exists with the exact case name, allocate new dentry with 1673 * the exact case, and return the spliced entry. 1674 */ 1675 struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode, 1676 struct qstr *name) 1677 { 1678 struct dentry *found; 1679 struct dentry *new; 1680 1681 /* 1682 * First check if a dentry matching the name already exists, 1683 * if not go ahead and create it now. 1684 */ 1685 found = d_hash_and_lookup(dentry->d_parent, name); 1686 if (unlikely(IS_ERR(found))) 1687 goto err_out; 1688 if (!found) { 1689 new = d_alloc(dentry->d_parent, name); 1690 if (!new) { 1691 found = ERR_PTR(-ENOMEM); 1692 goto err_out; 1693 } 1694 1695 found = d_splice_alias(inode, new); 1696 if (found) { 1697 dput(new); 1698 return found; 1699 } 1700 return new; 1701 } 1702 1703 /* 1704 * If a matching dentry exists, and it's not negative use it. 1705 * 1706 * Decrement the reference count to balance the iget() done 1707 * earlier on. 1708 */ 1709 if (found->d_inode) { 1710 if (unlikely(found->d_inode != inode)) { 1711 /* This can't happen because bad inodes are unhashed. */ 1712 BUG_ON(!is_bad_inode(inode)); 1713 BUG_ON(!is_bad_inode(found->d_inode)); 1714 } 1715 iput(inode); 1716 return found; 1717 } 1718 1719 /* 1720 * Negative dentry: instantiate it unless the inode is a directory and 1721 * already has a dentry. 1722 */ 1723 new = d_splice_alias(inode, found); 1724 if (new) { 1725 dput(found); 1726 found = new; 1727 } 1728 return found; 1729 1730 err_out: 1731 iput(inode); 1732 return found; 1733 } 1734 EXPORT_SYMBOL(d_add_ci); 1735 1736 /* 1737 * Do the slow-case of the dentry name compare. 1738 * 1739 * Unlike the dentry_cmp() function, we need to atomically 1740 * load the name, length and inode information, so that the 1741 * filesystem can rely on them, and can use the 'name' and 1742 * 'len' information without worrying about walking off the 1743 * end of memory etc. 1744 * 1745 * Thus the read_seqcount_retry() and the "duplicate" info 1746 * in arguments (the low-level filesystem should not look 1747 * at the dentry inode or name contents directly, since 1748 * rename can change them while we're in RCU mode). 1749 */ 1750 enum slow_d_compare { 1751 D_COMP_OK, 1752 D_COMP_NOMATCH, 1753 D_COMP_SEQRETRY, 1754 }; 1755 1756 static noinline enum slow_d_compare slow_dentry_cmp( 1757 const struct dentry *parent, 1758 struct inode *inode, 1759 struct dentry *dentry, 1760 unsigned int seq, 1761 const struct qstr *name) 1762 { 1763 int tlen = dentry->d_name.len; 1764 const char *tname = dentry->d_name.name; 1765 struct inode *i = dentry->d_inode; 1766 1767 if (read_seqcount_retry(&dentry->d_seq, seq)) { 1768 cpu_relax(); 1769 return D_COMP_SEQRETRY; 1770 } 1771 if (parent->d_op->d_compare(parent, inode, 1772 dentry, i, 1773 tlen, tname, name)) 1774 return D_COMP_NOMATCH; 1775 return D_COMP_OK; 1776 } 1777 1778 /** 1779 * __d_lookup_rcu - search for a dentry (racy, store-free) 1780 * @parent: parent dentry 1781 * @name: qstr of name we wish to find 1782 * @seqp: returns d_seq value at the point where the dentry was found 1783 * @inode: returns dentry->d_inode when the inode was found valid. 1784 * Returns: dentry, or NULL 1785 * 1786 * __d_lookup_rcu is the dcache lookup function for rcu-walk name 1787 * resolution (store-free path walking) design described in 1788 * Documentation/filesystems/path-lookup.txt. 1789 * 1790 * This is not to be used outside core vfs. 1791 * 1792 * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock 1793 * held, and rcu_read_lock held. The returned dentry must not be stored into 1794 * without taking d_lock and checking d_seq sequence count against @seq 1795 * returned here. 1796 * 1797 * A refcount may be taken on the found dentry with the __d_rcu_to_refcount 1798 * function. 1799 * 1800 * Alternatively, __d_lookup_rcu may be called again to look up the child of 1801 * the returned dentry, so long as its parent's seqlock is checked after the 1802 * child is looked up. Thus, an interlocking stepping of sequence lock checks 1803 * is formed, giving integrity down the path walk. 1804 * 1805 * NOTE! The caller *has* to check the resulting dentry against the sequence 1806 * number we've returned before using any of the resulting dentry state! 1807 */ 1808 struct dentry *__d_lookup_rcu(const struct dentry *parent, 1809 const struct qstr *name, 1810 unsigned *seqp, struct inode *inode) 1811 { 1812 u64 hashlen = name->hash_len; 1813 const unsigned char *str = name->name; 1814 struct hlist_bl_head *b = d_hash(parent, hashlen_hash(hashlen)); 1815 struct hlist_bl_node *node; 1816 struct dentry *dentry; 1817 1818 /* 1819 * Note: There is significant duplication with __d_lookup_rcu which is 1820 * required to prevent single threaded performance regressions 1821 * especially on architectures where smp_rmb (in seqcounts) are costly. 1822 * Keep the two functions in sync. 1823 */ 1824 1825 /* 1826 * The hash list is protected using RCU. 1827 * 1828 * Carefully use d_seq when comparing a candidate dentry, to avoid 1829 * races with d_move(). 1830 * 1831 * It is possible that concurrent renames can mess up our list 1832 * walk here and result in missing our dentry, resulting in the 1833 * false-negative result. d_lookup() protects against concurrent 1834 * renames using rename_lock seqlock. 1835 * 1836 * See Documentation/filesystems/path-lookup.txt for more details. 1837 */ 1838 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) { 1839 unsigned seq; 1840 1841 seqretry: 1842 /* 1843 * The dentry sequence count protects us from concurrent 1844 * renames, and thus protects inode, parent and name fields. 1845 * 1846 * The caller must perform a seqcount check in order 1847 * to do anything useful with the returned dentry, 1848 * including using the 'd_inode' pointer. 1849 * 1850 * NOTE! We do a "raw" seqcount_begin here. That means that 1851 * we don't wait for the sequence count to stabilize if it 1852 * is in the middle of a sequence change. If we do the slow 1853 * dentry compare, we will do seqretries until it is stable, 1854 * and if we end up with a successful lookup, we actually 1855 * want to exit RCU lookup anyway. 1856 */ 1857 seq = raw_seqcount_begin(&dentry->d_seq); 1858 if (dentry->d_parent != parent) 1859 continue; 1860 if (d_unhashed(dentry)) 1861 continue; 1862 *seqp = seq; 1863 1864 if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) { 1865 if (dentry->d_name.hash != hashlen_hash(hashlen)) 1866 continue; 1867 switch (slow_dentry_cmp(parent, inode, dentry, seq, name)) { 1868 case D_COMP_OK: 1869 return dentry; 1870 case D_COMP_NOMATCH: 1871 continue; 1872 default: 1873 goto seqretry; 1874 } 1875 } 1876 1877 if (dentry->d_name.hash_len != hashlen) 1878 continue; 1879 if (!dentry_cmp(dentry, str, hashlen_len(hashlen))) 1880 return dentry; 1881 } 1882 return NULL; 1883 } 1884 1885 /** 1886 * d_lookup - search for a dentry 1887 * @parent: parent dentry 1888 * @name: qstr of name we wish to find 1889 * Returns: dentry, or NULL 1890 * 1891 * d_lookup searches the children of the parent dentry for the name in 1892 * question. If the dentry is found its reference count is incremented and the 1893 * dentry is returned. The caller must use dput to free the entry when it has 1894 * finished using it. %NULL is returned if the dentry does not exist. 1895 */ 1896 struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name) 1897 { 1898 struct dentry *dentry; 1899 unsigned seq; 1900 1901 do { 1902 seq = read_seqbegin(&rename_lock); 1903 dentry = __d_lookup(parent, name); 1904 if (dentry) 1905 break; 1906 } while (read_seqretry(&rename_lock, seq)); 1907 return dentry; 1908 } 1909 EXPORT_SYMBOL(d_lookup); 1910 1911 /** 1912 * __d_lookup - search for a dentry (racy) 1913 * @parent: parent dentry 1914 * @name: qstr of name we wish to find 1915 * Returns: dentry, or NULL 1916 * 1917 * __d_lookup is like d_lookup, however it may (rarely) return a 1918 * false-negative result due to unrelated rename activity. 1919 * 1920 * __d_lookup is slightly faster by avoiding rename_lock read seqlock, 1921 * however it must be used carefully, eg. with a following d_lookup in 1922 * the case of failure. 1923 * 1924 * __d_lookup callers must be commented. 1925 */ 1926 struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name) 1927 { 1928 unsigned int len = name->len; 1929 unsigned int hash = name->hash; 1930 const unsigned char *str = name->name; 1931 struct hlist_bl_head *b = d_hash(parent, hash); 1932 struct hlist_bl_node *node; 1933 struct dentry *found = NULL; 1934 struct dentry *dentry; 1935 1936 /* 1937 * Note: There is significant duplication with __d_lookup_rcu which is 1938 * required to prevent single threaded performance regressions 1939 * especially on architectures where smp_rmb (in seqcounts) are costly. 1940 * Keep the two functions in sync. 1941 */ 1942 1943 /* 1944 * The hash list is protected using RCU. 1945 * 1946 * Take d_lock when comparing a candidate dentry, to avoid races 1947 * with d_move(). 1948 * 1949 * It is possible that concurrent renames can mess up our list 1950 * walk here and result in missing our dentry, resulting in the 1951 * false-negative result. d_lookup() protects against concurrent 1952 * renames using rename_lock seqlock. 1953 * 1954 * See Documentation/filesystems/path-lookup.txt for more details. 1955 */ 1956 rcu_read_lock(); 1957 1958 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) { 1959 1960 if (dentry->d_name.hash != hash) 1961 continue; 1962 1963 spin_lock(&dentry->d_lock); 1964 if (dentry->d_parent != parent) 1965 goto next; 1966 if (d_unhashed(dentry)) 1967 goto next; 1968 1969 /* 1970 * It is safe to compare names since d_move() cannot 1971 * change the qstr (protected by d_lock). 1972 */ 1973 if (parent->d_flags & DCACHE_OP_COMPARE) { 1974 int tlen = dentry->d_name.len; 1975 const char *tname = dentry->d_name.name; 1976 if (parent->d_op->d_compare(parent, parent->d_inode, 1977 dentry, dentry->d_inode, 1978 tlen, tname, name)) 1979 goto next; 1980 } else { 1981 if (dentry->d_name.len != len) 1982 goto next; 1983 if (dentry_cmp(dentry, str, len)) 1984 goto next; 1985 } 1986 1987 dentry->d_count++; 1988 found = dentry; 1989 spin_unlock(&dentry->d_lock); 1990 break; 1991 next: 1992 spin_unlock(&dentry->d_lock); 1993 } 1994 rcu_read_unlock(); 1995 1996 return found; 1997 } 1998 1999 /** 2000 * d_hash_and_lookup - hash the qstr then search for a dentry 2001 * @dir: Directory to search in 2002 * @name: qstr of name we wish to find 2003 * 2004 * On lookup failure NULL is returned; on bad name - ERR_PTR(-error) 2005 */ 2006 struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name) 2007 { 2008 /* 2009 * Check for a fs-specific hash function. Note that we must 2010 * calculate the standard hash first, as the d_op->d_hash() 2011 * routine may choose to leave the hash value unchanged. 2012 */ 2013 name->hash = full_name_hash(name->name, name->len); 2014 if (dir->d_flags & DCACHE_OP_HASH) { 2015 int err = dir->d_op->d_hash(dir, dir->d_inode, name); 2016 if (unlikely(err < 0)) 2017 return ERR_PTR(err); 2018 } 2019 return d_lookup(dir, name); 2020 } 2021 EXPORT_SYMBOL(d_hash_and_lookup); 2022 2023 /** 2024 * d_validate - verify dentry provided from insecure source (deprecated) 2025 * @dentry: The dentry alleged to be valid child of @dparent 2026 * @dparent: The parent dentry (known to be valid) 2027 * 2028 * An insecure source has sent us a dentry, here we verify it and dget() it. 2029 * This is used by ncpfs in its readdir implementation. 2030 * Zero is returned in the dentry is invalid. 2031 * 2032 * This function is slow for big directories, and deprecated, do not use it. 2033 */ 2034 int d_validate(struct dentry *dentry, struct dentry *dparent) 2035 { 2036 struct dentry *child; 2037 2038 spin_lock(&dparent->d_lock); 2039 list_for_each_entry(child, &dparent->d_subdirs, d_u.d_child) { 2040 if (dentry == child) { 2041 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED); 2042 __dget_dlock(dentry); 2043 spin_unlock(&dentry->d_lock); 2044 spin_unlock(&dparent->d_lock); 2045 return 1; 2046 } 2047 } 2048 spin_unlock(&dparent->d_lock); 2049 2050 return 0; 2051 } 2052 EXPORT_SYMBOL(d_validate); 2053 2054 /* 2055 * When a file is deleted, we have two options: 2056 * - turn this dentry into a negative dentry 2057 * - unhash this dentry and free it. 2058 * 2059 * Usually, we want to just turn this into 2060 * a negative dentry, but if anybody else is 2061 * currently using the dentry or the inode 2062 * we can't do that and we fall back on removing 2063 * it from the hash queues and waiting for 2064 * it to be deleted later when it has no users 2065 */ 2066 2067 /** 2068 * d_delete - delete a dentry 2069 * @dentry: The dentry to delete 2070 * 2071 * Turn the dentry into a negative dentry if possible, otherwise 2072 * remove it from the hash queues so it can be deleted later 2073 */ 2074 2075 void d_delete(struct dentry * dentry) 2076 { 2077 struct inode *inode; 2078 int isdir = 0; 2079 /* 2080 * Are we the only user? 2081 */ 2082 again: 2083 spin_lock(&dentry->d_lock); 2084 inode = dentry->d_inode; 2085 isdir = S_ISDIR(inode->i_mode); 2086 if (dentry->d_count == 1) { 2087 if (!spin_trylock(&inode->i_lock)) { 2088 spin_unlock(&dentry->d_lock); 2089 cpu_relax(); 2090 goto again; 2091 } 2092 dentry->d_flags &= ~DCACHE_CANT_MOUNT; 2093 dentry_unlink_inode(dentry); 2094 fsnotify_nameremove(dentry, isdir); 2095 return; 2096 } 2097 2098 if (!d_unhashed(dentry)) 2099 __d_drop(dentry); 2100 2101 spin_unlock(&dentry->d_lock); 2102 2103 fsnotify_nameremove(dentry, isdir); 2104 } 2105 EXPORT_SYMBOL(d_delete); 2106 2107 static void __d_rehash(struct dentry * entry, struct hlist_bl_head *b) 2108 { 2109 BUG_ON(!d_unhashed(entry)); 2110 hlist_bl_lock(b); 2111 entry->d_flags |= DCACHE_RCUACCESS; 2112 hlist_bl_add_head_rcu(&entry->d_hash, b); 2113 hlist_bl_unlock(b); 2114 } 2115 2116 static void _d_rehash(struct dentry * entry) 2117 { 2118 __d_rehash(entry, d_hash(entry->d_parent, entry->d_name.hash)); 2119 } 2120 2121 /** 2122 * d_rehash - add an entry back to the hash 2123 * @entry: dentry to add to the hash 2124 * 2125 * Adds a dentry to the hash according to its name. 2126 */ 2127 2128 void d_rehash(struct dentry * entry) 2129 { 2130 spin_lock(&entry->d_lock); 2131 _d_rehash(entry); 2132 spin_unlock(&entry->d_lock); 2133 } 2134 EXPORT_SYMBOL(d_rehash); 2135 2136 /** 2137 * dentry_update_name_case - update case insensitive dentry with a new name 2138 * @dentry: dentry to be updated 2139 * @name: new name 2140 * 2141 * Update a case insensitive dentry with new case of name. 2142 * 2143 * dentry must have been returned by d_lookup with name @name. Old and new 2144 * name lengths must match (ie. no d_compare which allows mismatched name 2145 * lengths). 2146 * 2147 * Parent inode i_mutex must be held over d_lookup and into this call (to 2148 * keep renames and concurrent inserts, and readdir(2) away). 2149 */ 2150 void dentry_update_name_case(struct dentry *dentry, struct qstr *name) 2151 { 2152 BUG_ON(!mutex_is_locked(&dentry->d_parent->d_inode->i_mutex)); 2153 BUG_ON(dentry->d_name.len != name->len); /* d_lookup gives this */ 2154 2155 spin_lock(&dentry->d_lock); 2156 write_seqcount_begin(&dentry->d_seq); 2157 memcpy((unsigned char *)dentry->d_name.name, name->name, name->len); 2158 write_seqcount_end(&dentry->d_seq); 2159 spin_unlock(&dentry->d_lock); 2160 } 2161 EXPORT_SYMBOL(dentry_update_name_case); 2162 2163 static void switch_names(struct dentry *dentry, struct dentry *target) 2164 { 2165 if (dname_external(target)) { 2166 if (dname_external(dentry)) { 2167 /* 2168 * Both external: swap the pointers 2169 */ 2170 swap(target->d_name.name, dentry->d_name.name); 2171 } else { 2172 /* 2173 * dentry:internal, target:external. Steal target's 2174 * storage and make target internal. 2175 */ 2176 memcpy(target->d_iname, dentry->d_name.name, 2177 dentry->d_name.len + 1); 2178 dentry->d_name.name = target->d_name.name; 2179 target->d_name.name = target->d_iname; 2180 } 2181 } else { 2182 if (dname_external(dentry)) { 2183 /* 2184 * dentry:external, target:internal. Give dentry's 2185 * storage to target and make dentry internal 2186 */ 2187 memcpy(dentry->d_iname, target->d_name.name, 2188 target->d_name.len + 1); 2189 target->d_name.name = dentry->d_name.name; 2190 dentry->d_name.name = dentry->d_iname; 2191 } else { 2192 /* 2193 * Both are internal. Just copy target to dentry 2194 */ 2195 memcpy(dentry->d_iname, target->d_name.name, 2196 target->d_name.len + 1); 2197 dentry->d_name.len = target->d_name.len; 2198 return; 2199 } 2200 } 2201 swap(dentry->d_name.len, target->d_name.len); 2202 } 2203 2204 static void dentry_lock_for_move(struct dentry *dentry, struct dentry *target) 2205 { 2206 /* 2207 * XXXX: do we really need to take target->d_lock? 2208 */ 2209 if (IS_ROOT(dentry) || dentry->d_parent == target->d_parent) 2210 spin_lock(&target->d_parent->d_lock); 2211 else { 2212 if (d_ancestor(dentry->d_parent, target->d_parent)) { 2213 spin_lock(&dentry->d_parent->d_lock); 2214 spin_lock_nested(&target->d_parent->d_lock, 2215 DENTRY_D_LOCK_NESTED); 2216 } else { 2217 spin_lock(&target->d_parent->d_lock); 2218 spin_lock_nested(&dentry->d_parent->d_lock, 2219 DENTRY_D_LOCK_NESTED); 2220 } 2221 } 2222 if (target < dentry) { 2223 spin_lock_nested(&target->d_lock, 2); 2224 spin_lock_nested(&dentry->d_lock, 3); 2225 } else { 2226 spin_lock_nested(&dentry->d_lock, 2); 2227 spin_lock_nested(&target->d_lock, 3); 2228 } 2229 } 2230 2231 static void dentry_unlock_parents_for_move(struct dentry *dentry, 2232 struct dentry *target) 2233 { 2234 if (target->d_parent != dentry->d_parent) 2235 spin_unlock(&dentry->d_parent->d_lock); 2236 if (target->d_parent != target) 2237 spin_unlock(&target->d_parent->d_lock); 2238 } 2239 2240 /* 2241 * When switching names, the actual string doesn't strictly have to 2242 * be preserved in the target - because we're dropping the target 2243 * anyway. As such, we can just do a simple memcpy() to copy over 2244 * the new name before we switch. 2245 * 2246 * Note that we have to be a lot more careful about getting the hash 2247 * switched - we have to switch the hash value properly even if it 2248 * then no longer matches the actual (corrupted) string of the target. 2249 * The hash value has to match the hash queue that the dentry is on.. 2250 */ 2251 /* 2252 * __d_move - move a dentry 2253 * @dentry: entry to move 2254 * @target: new dentry 2255 * 2256 * Update the dcache to reflect the move of a file name. Negative 2257 * dcache entries should not be moved in this way. Caller must hold 2258 * rename_lock, the i_mutex of the source and target directories, 2259 * and the sb->s_vfs_rename_mutex if they differ. See lock_rename(). 2260 */ 2261 static void __d_move(struct dentry * dentry, struct dentry * target) 2262 { 2263 if (!dentry->d_inode) 2264 printk(KERN_WARNING "VFS: moving negative dcache entry\n"); 2265 2266 BUG_ON(d_ancestor(dentry, target)); 2267 BUG_ON(d_ancestor(target, dentry)); 2268 2269 dentry_lock_for_move(dentry, target); 2270 2271 write_seqcount_begin(&dentry->d_seq); 2272 write_seqcount_begin(&target->d_seq); 2273 2274 /* __d_drop does write_seqcount_barrier, but they're OK to nest. */ 2275 2276 /* 2277 * Move the dentry to the target hash queue. Don't bother checking 2278 * for the same hash queue because of how unlikely it is. 2279 */ 2280 __d_drop(dentry); 2281 __d_rehash(dentry, d_hash(target->d_parent, target->d_name.hash)); 2282 2283 /* Unhash the target: dput() will then get rid of it */ 2284 __d_drop(target); 2285 2286 list_del(&dentry->d_u.d_child); 2287 list_del(&target->d_u.d_child); 2288 2289 /* Switch the names.. */ 2290 switch_names(dentry, target); 2291 swap(dentry->d_name.hash, target->d_name.hash); 2292 2293 /* ... and switch the parents */ 2294 if (IS_ROOT(dentry)) { 2295 dentry->d_parent = target->d_parent; 2296 target->d_parent = target; 2297 INIT_LIST_HEAD(&target->d_u.d_child); 2298 } else { 2299 swap(dentry->d_parent, target->d_parent); 2300 2301 /* And add them back to the (new) parent lists */ 2302 list_add(&target->d_u.d_child, &target->d_parent->d_subdirs); 2303 } 2304 2305 list_add(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs); 2306 2307 write_seqcount_end(&target->d_seq); 2308 write_seqcount_end(&dentry->d_seq); 2309 2310 dentry_unlock_parents_for_move(dentry, target); 2311 spin_unlock(&target->d_lock); 2312 fsnotify_d_move(dentry); 2313 spin_unlock(&dentry->d_lock); 2314 } 2315 2316 /* 2317 * d_move - move a dentry 2318 * @dentry: entry to move 2319 * @target: new dentry 2320 * 2321 * Update the dcache to reflect the move of a file name. Negative 2322 * dcache entries should not be moved in this way. See the locking 2323 * requirements for __d_move. 2324 */ 2325 void d_move(struct dentry *dentry, struct dentry *target) 2326 { 2327 write_seqlock(&rename_lock); 2328 __d_move(dentry, target); 2329 write_sequnlock(&rename_lock); 2330 } 2331 EXPORT_SYMBOL(d_move); 2332 2333 /** 2334 * d_ancestor - search for an ancestor 2335 * @p1: ancestor dentry 2336 * @p2: child dentry 2337 * 2338 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is 2339 * an ancestor of p2, else NULL. 2340 */ 2341 struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2) 2342 { 2343 struct dentry *p; 2344 2345 for (p = p2; !IS_ROOT(p); p = p->d_parent) { 2346 if (p->d_parent == p1) 2347 return p; 2348 } 2349 return NULL; 2350 } 2351 2352 /* 2353 * This helper attempts to cope with remotely renamed directories 2354 * 2355 * It assumes that the caller is already holding 2356 * dentry->d_parent->d_inode->i_mutex, inode->i_lock and rename_lock 2357 * 2358 * Note: If ever the locking in lock_rename() changes, then please 2359 * remember to update this too... 2360 */ 2361 static struct dentry *__d_unalias(struct inode *inode, 2362 struct dentry *dentry, struct dentry *alias) 2363 { 2364 struct mutex *m1 = NULL, *m2 = NULL; 2365 struct dentry *ret = ERR_PTR(-EBUSY); 2366 2367 /* If alias and dentry share a parent, then no extra locks required */ 2368 if (alias->d_parent == dentry->d_parent) 2369 goto out_unalias; 2370 2371 /* See lock_rename() */ 2372 if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex)) 2373 goto out_err; 2374 m1 = &dentry->d_sb->s_vfs_rename_mutex; 2375 if (!mutex_trylock(&alias->d_parent->d_inode->i_mutex)) 2376 goto out_err; 2377 m2 = &alias->d_parent->d_inode->i_mutex; 2378 out_unalias: 2379 if (likely(!d_mountpoint(alias))) { 2380 __d_move(alias, dentry); 2381 ret = alias; 2382 } 2383 out_err: 2384 spin_unlock(&inode->i_lock); 2385 if (m2) 2386 mutex_unlock(m2); 2387 if (m1) 2388 mutex_unlock(m1); 2389 return ret; 2390 } 2391 2392 /* 2393 * Prepare an anonymous dentry for life in the superblock's dentry tree as a 2394 * named dentry in place of the dentry to be replaced. 2395 * returns with anon->d_lock held! 2396 */ 2397 static void __d_materialise_dentry(struct dentry *dentry, struct dentry *anon) 2398 { 2399 struct dentry *dparent; 2400 2401 dentry_lock_for_move(anon, dentry); 2402 2403 write_seqcount_begin(&dentry->d_seq); 2404 write_seqcount_begin(&anon->d_seq); 2405 2406 dparent = dentry->d_parent; 2407 2408 switch_names(dentry, anon); 2409 swap(dentry->d_name.hash, anon->d_name.hash); 2410 2411 dentry->d_parent = dentry; 2412 list_del_init(&dentry->d_u.d_child); 2413 anon->d_parent = dparent; 2414 list_del(&anon->d_u.d_child); 2415 list_add(&anon->d_u.d_child, &dparent->d_subdirs); 2416 2417 write_seqcount_end(&dentry->d_seq); 2418 write_seqcount_end(&anon->d_seq); 2419 2420 dentry_unlock_parents_for_move(anon, dentry); 2421 spin_unlock(&dentry->d_lock); 2422 2423 /* anon->d_lock still locked, returns locked */ 2424 anon->d_flags &= ~DCACHE_DISCONNECTED; 2425 } 2426 2427 /** 2428 * d_materialise_unique - introduce an inode into the tree 2429 * @dentry: candidate dentry 2430 * @inode: inode to bind to the dentry, to which aliases may be attached 2431 * 2432 * Introduces an dentry into the tree, substituting an extant disconnected 2433 * root directory alias in its place if there is one. Caller must hold the 2434 * i_mutex of the parent directory. 2435 */ 2436 struct dentry *d_materialise_unique(struct dentry *dentry, struct inode *inode) 2437 { 2438 struct dentry *actual; 2439 2440 BUG_ON(!d_unhashed(dentry)); 2441 2442 if (!inode) { 2443 actual = dentry; 2444 __d_instantiate(dentry, NULL); 2445 d_rehash(actual); 2446 goto out_nolock; 2447 } 2448 2449 spin_lock(&inode->i_lock); 2450 2451 if (S_ISDIR(inode->i_mode)) { 2452 struct dentry *alias; 2453 2454 /* Does an aliased dentry already exist? */ 2455 alias = __d_find_alias(inode, 0); 2456 if (alias) { 2457 actual = alias; 2458 write_seqlock(&rename_lock); 2459 2460 if (d_ancestor(alias, dentry)) { 2461 /* Check for loops */ 2462 actual = ERR_PTR(-ELOOP); 2463 spin_unlock(&inode->i_lock); 2464 } else if (IS_ROOT(alias)) { 2465 /* Is this an anonymous mountpoint that we 2466 * could splice into our tree? */ 2467 __d_materialise_dentry(dentry, alias); 2468 write_sequnlock(&rename_lock); 2469 __d_drop(alias); 2470 goto found; 2471 } else { 2472 /* Nope, but we must(!) avoid directory 2473 * aliasing. This drops inode->i_lock */ 2474 actual = __d_unalias(inode, dentry, alias); 2475 } 2476 write_sequnlock(&rename_lock); 2477 if (IS_ERR(actual)) { 2478 if (PTR_ERR(actual) == -ELOOP) 2479 pr_warn_ratelimited( 2480 "VFS: Lookup of '%s' in %s %s" 2481 " would have caused loop\n", 2482 dentry->d_name.name, 2483 inode->i_sb->s_type->name, 2484 inode->i_sb->s_id); 2485 dput(alias); 2486 } 2487 goto out_nolock; 2488 } 2489 } 2490 2491 /* Add a unique reference */ 2492 actual = __d_instantiate_unique(dentry, inode); 2493 if (!actual) 2494 actual = dentry; 2495 else 2496 BUG_ON(!d_unhashed(actual)); 2497 2498 spin_lock(&actual->d_lock); 2499 found: 2500 _d_rehash(actual); 2501 spin_unlock(&actual->d_lock); 2502 spin_unlock(&inode->i_lock); 2503 out_nolock: 2504 if (actual == dentry) { 2505 security_d_instantiate(dentry, inode); 2506 return NULL; 2507 } 2508 2509 iput(inode); 2510 return actual; 2511 } 2512 EXPORT_SYMBOL_GPL(d_materialise_unique); 2513 2514 static int prepend(char **buffer, int *buflen, const char *str, int namelen) 2515 { 2516 *buflen -= namelen; 2517 if (*buflen < 0) 2518 return -ENAMETOOLONG; 2519 *buffer -= namelen; 2520 memcpy(*buffer, str, namelen); 2521 return 0; 2522 } 2523 2524 static int prepend_name(char **buffer, int *buflen, struct qstr *name) 2525 { 2526 return prepend(buffer, buflen, name->name, name->len); 2527 } 2528 2529 /** 2530 * prepend_path - Prepend path string to a buffer 2531 * @path: the dentry/vfsmount to report 2532 * @root: root vfsmnt/dentry 2533 * @buffer: pointer to the end of the buffer 2534 * @buflen: pointer to buffer length 2535 * 2536 * Caller holds the rename_lock. 2537 */ 2538 static int prepend_path(const struct path *path, 2539 const struct path *root, 2540 char **buffer, int *buflen) 2541 { 2542 struct dentry *dentry = path->dentry; 2543 struct vfsmount *vfsmnt = path->mnt; 2544 struct mount *mnt = real_mount(vfsmnt); 2545 bool slash = false; 2546 int error = 0; 2547 2548 br_read_lock(&vfsmount_lock); 2549 while (dentry != root->dentry || vfsmnt != root->mnt) { 2550 struct dentry * parent; 2551 2552 if (dentry == vfsmnt->mnt_root || IS_ROOT(dentry)) { 2553 /* Global root? */ 2554 if (!mnt_has_parent(mnt)) 2555 goto global_root; 2556 dentry = mnt->mnt_mountpoint; 2557 mnt = mnt->mnt_parent; 2558 vfsmnt = &mnt->mnt; 2559 continue; 2560 } 2561 parent = dentry->d_parent; 2562 prefetch(parent); 2563 spin_lock(&dentry->d_lock); 2564 error = prepend_name(buffer, buflen, &dentry->d_name); 2565 spin_unlock(&dentry->d_lock); 2566 if (!error) 2567 error = prepend(buffer, buflen, "/", 1); 2568 if (error) 2569 break; 2570 2571 slash = true; 2572 dentry = parent; 2573 } 2574 2575 if (!error && !slash) 2576 error = prepend(buffer, buflen, "/", 1); 2577 2578 out: 2579 br_read_unlock(&vfsmount_lock); 2580 return error; 2581 2582 global_root: 2583 /* 2584 * Filesystems needing to implement special "root names" 2585 * should do so with ->d_dname() 2586 */ 2587 if (IS_ROOT(dentry) && 2588 (dentry->d_name.len != 1 || dentry->d_name.name[0] != '/')) { 2589 WARN(1, "Root dentry has weird name <%.*s>\n", 2590 (int) dentry->d_name.len, dentry->d_name.name); 2591 } 2592 if (!slash) 2593 error = prepend(buffer, buflen, "/", 1); 2594 if (!error) 2595 error = is_mounted(vfsmnt) ? 1 : 2; 2596 goto out; 2597 } 2598 2599 /** 2600 * __d_path - return the path of a dentry 2601 * @path: the dentry/vfsmount to report 2602 * @root: root vfsmnt/dentry 2603 * @buf: buffer to return value in 2604 * @buflen: buffer length 2605 * 2606 * Convert a dentry into an ASCII path name. 2607 * 2608 * Returns a pointer into the buffer or an error code if the 2609 * path was too long. 2610 * 2611 * "buflen" should be positive. 2612 * 2613 * If the path is not reachable from the supplied root, return %NULL. 2614 */ 2615 char *__d_path(const struct path *path, 2616 const struct path *root, 2617 char *buf, int buflen) 2618 { 2619 char *res = buf + buflen; 2620 int error; 2621 2622 prepend(&res, &buflen, "\0", 1); 2623 write_seqlock(&rename_lock); 2624 error = prepend_path(path, root, &res, &buflen); 2625 write_sequnlock(&rename_lock); 2626 2627 if (error < 0) 2628 return ERR_PTR(error); 2629 if (error > 0) 2630 return NULL; 2631 return res; 2632 } 2633 2634 char *d_absolute_path(const struct path *path, 2635 char *buf, int buflen) 2636 { 2637 struct path root = {}; 2638 char *res = buf + buflen; 2639 int error; 2640 2641 prepend(&res, &buflen, "\0", 1); 2642 write_seqlock(&rename_lock); 2643 error = prepend_path(path, &root, &res, &buflen); 2644 write_sequnlock(&rename_lock); 2645 2646 if (error > 1) 2647 error = -EINVAL; 2648 if (error < 0) 2649 return ERR_PTR(error); 2650 return res; 2651 } 2652 2653 /* 2654 * same as __d_path but appends "(deleted)" for unlinked files. 2655 */ 2656 static int path_with_deleted(const struct path *path, 2657 const struct path *root, 2658 char **buf, int *buflen) 2659 { 2660 prepend(buf, buflen, "\0", 1); 2661 if (d_unlinked(path->dentry)) { 2662 int error = prepend(buf, buflen, " (deleted)", 10); 2663 if (error) 2664 return error; 2665 } 2666 2667 return prepend_path(path, root, buf, buflen); 2668 } 2669 2670 static int prepend_unreachable(char **buffer, int *buflen) 2671 { 2672 return prepend(buffer, buflen, "(unreachable)", 13); 2673 } 2674 2675 /** 2676 * d_path - return the path of a dentry 2677 * @path: path to report 2678 * @buf: buffer to return value in 2679 * @buflen: buffer length 2680 * 2681 * Convert a dentry into an ASCII path name. If the entry has been deleted 2682 * the string " (deleted)" is appended. Note that this is ambiguous. 2683 * 2684 * Returns a pointer into the buffer or an error code if the path was 2685 * too long. Note: Callers should use the returned pointer, not the passed 2686 * in buffer, to use the name! The implementation often starts at an offset 2687 * into the buffer, and may leave 0 bytes at the start. 2688 * 2689 * "buflen" should be positive. 2690 */ 2691 char *d_path(const struct path *path, char *buf, int buflen) 2692 { 2693 char *res = buf + buflen; 2694 struct path root; 2695 int error; 2696 2697 /* 2698 * We have various synthetic filesystems that never get mounted. On 2699 * these filesystems dentries are never used for lookup purposes, and 2700 * thus don't need to be hashed. They also don't need a name until a 2701 * user wants to identify the object in /proc/pid/fd/. The little hack 2702 * below allows us to generate a name for these objects on demand: 2703 */ 2704 if (path->dentry->d_op && path->dentry->d_op->d_dname) 2705 return path->dentry->d_op->d_dname(path->dentry, buf, buflen); 2706 2707 get_fs_root(current->fs, &root); 2708 write_seqlock(&rename_lock); 2709 error = path_with_deleted(path, &root, &res, &buflen); 2710 if (error < 0) 2711 res = ERR_PTR(error); 2712 write_sequnlock(&rename_lock); 2713 path_put(&root); 2714 return res; 2715 } 2716 EXPORT_SYMBOL(d_path); 2717 2718 /* 2719 * Helper function for dentry_operations.d_dname() members 2720 */ 2721 char *dynamic_dname(struct dentry *dentry, char *buffer, int buflen, 2722 const char *fmt, ...) 2723 { 2724 va_list args; 2725 char temp[64]; 2726 int sz; 2727 2728 va_start(args, fmt); 2729 sz = vsnprintf(temp, sizeof(temp), fmt, args) + 1; 2730 va_end(args); 2731 2732 if (sz > sizeof(temp) || sz > buflen) 2733 return ERR_PTR(-ENAMETOOLONG); 2734 2735 buffer += buflen - sz; 2736 return memcpy(buffer, temp, sz); 2737 } 2738 2739 /* 2740 * Write full pathname from the root of the filesystem into the buffer. 2741 */ 2742 static char *__dentry_path(struct dentry *dentry, char *buf, int buflen) 2743 { 2744 char *end = buf + buflen; 2745 char *retval; 2746 2747 prepend(&end, &buflen, "\0", 1); 2748 if (buflen < 1) 2749 goto Elong; 2750 /* Get '/' right */ 2751 retval = end-1; 2752 *retval = '/'; 2753 2754 while (!IS_ROOT(dentry)) { 2755 struct dentry *parent = dentry->d_parent; 2756 int error; 2757 2758 prefetch(parent); 2759 spin_lock(&dentry->d_lock); 2760 error = prepend_name(&end, &buflen, &dentry->d_name); 2761 spin_unlock(&dentry->d_lock); 2762 if (error != 0 || prepend(&end, &buflen, "/", 1) != 0) 2763 goto Elong; 2764 2765 retval = end; 2766 dentry = parent; 2767 } 2768 return retval; 2769 Elong: 2770 return ERR_PTR(-ENAMETOOLONG); 2771 } 2772 2773 char *dentry_path_raw(struct dentry *dentry, char *buf, int buflen) 2774 { 2775 char *retval; 2776 2777 write_seqlock(&rename_lock); 2778 retval = __dentry_path(dentry, buf, buflen); 2779 write_sequnlock(&rename_lock); 2780 2781 return retval; 2782 } 2783 EXPORT_SYMBOL(dentry_path_raw); 2784 2785 char *dentry_path(struct dentry *dentry, char *buf, int buflen) 2786 { 2787 char *p = NULL; 2788 char *retval; 2789 2790 write_seqlock(&rename_lock); 2791 if (d_unlinked(dentry)) { 2792 p = buf + buflen; 2793 if (prepend(&p, &buflen, "//deleted", 10) != 0) 2794 goto Elong; 2795 buflen++; 2796 } 2797 retval = __dentry_path(dentry, buf, buflen); 2798 write_sequnlock(&rename_lock); 2799 if (!IS_ERR(retval) && p) 2800 *p = '/'; /* restore '/' overriden with '\0' */ 2801 return retval; 2802 Elong: 2803 return ERR_PTR(-ENAMETOOLONG); 2804 } 2805 2806 /* 2807 * NOTE! The user-level library version returns a 2808 * character pointer. The kernel system call just 2809 * returns the length of the buffer filled (which 2810 * includes the ending '\0' character), or a negative 2811 * error value. So libc would do something like 2812 * 2813 * char *getcwd(char * buf, size_t size) 2814 * { 2815 * int retval; 2816 * 2817 * retval = sys_getcwd(buf, size); 2818 * if (retval >= 0) 2819 * return buf; 2820 * errno = -retval; 2821 * return NULL; 2822 * } 2823 */ 2824 SYSCALL_DEFINE2(getcwd, char __user *, buf, unsigned long, size) 2825 { 2826 int error; 2827 struct path pwd, root; 2828 char *page = (char *) __get_free_page(GFP_USER); 2829 2830 if (!page) 2831 return -ENOMEM; 2832 2833 get_fs_root_and_pwd(current->fs, &root, &pwd); 2834 2835 error = -ENOENT; 2836 write_seqlock(&rename_lock); 2837 if (!d_unlinked(pwd.dentry)) { 2838 unsigned long len; 2839 char *cwd = page + PAGE_SIZE; 2840 int buflen = PAGE_SIZE; 2841 2842 prepend(&cwd, &buflen, "\0", 1); 2843 error = prepend_path(&pwd, &root, &cwd, &buflen); 2844 write_sequnlock(&rename_lock); 2845 2846 if (error < 0) 2847 goto out; 2848 2849 /* Unreachable from current root */ 2850 if (error > 0) { 2851 error = prepend_unreachable(&cwd, &buflen); 2852 if (error) 2853 goto out; 2854 } 2855 2856 error = -ERANGE; 2857 len = PAGE_SIZE + page - cwd; 2858 if (len <= size) { 2859 error = len; 2860 if (copy_to_user(buf, cwd, len)) 2861 error = -EFAULT; 2862 } 2863 } else { 2864 write_sequnlock(&rename_lock); 2865 } 2866 2867 out: 2868 path_put(&pwd); 2869 path_put(&root); 2870 free_page((unsigned long) page); 2871 return error; 2872 } 2873 2874 /* 2875 * Test whether new_dentry is a subdirectory of old_dentry. 2876 * 2877 * Trivially implemented using the dcache structure 2878 */ 2879 2880 /** 2881 * is_subdir - is new dentry a subdirectory of old_dentry 2882 * @new_dentry: new dentry 2883 * @old_dentry: old dentry 2884 * 2885 * Returns 1 if new_dentry is a subdirectory of the parent (at any depth). 2886 * Returns 0 otherwise. 2887 * Caller must ensure that "new_dentry" is pinned before calling is_subdir() 2888 */ 2889 2890 int is_subdir(struct dentry *new_dentry, struct dentry *old_dentry) 2891 { 2892 int result; 2893 unsigned seq; 2894 2895 if (new_dentry == old_dentry) 2896 return 1; 2897 2898 do { 2899 /* for restarting inner loop in case of seq retry */ 2900 seq = read_seqbegin(&rename_lock); 2901 /* 2902 * Need rcu_readlock to protect against the d_parent trashing 2903 * due to d_move 2904 */ 2905 rcu_read_lock(); 2906 if (d_ancestor(old_dentry, new_dentry)) 2907 result = 1; 2908 else 2909 result = 0; 2910 rcu_read_unlock(); 2911 } while (read_seqretry(&rename_lock, seq)); 2912 2913 return result; 2914 } 2915 2916 void d_genocide(struct dentry *root) 2917 { 2918 struct dentry *this_parent; 2919 struct list_head *next; 2920 unsigned seq; 2921 int locked = 0; 2922 2923 seq = read_seqbegin(&rename_lock); 2924 again: 2925 this_parent = root; 2926 spin_lock(&this_parent->d_lock); 2927 repeat: 2928 next = this_parent->d_subdirs.next; 2929 resume: 2930 while (next != &this_parent->d_subdirs) { 2931 struct list_head *tmp = next; 2932 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child); 2933 next = tmp->next; 2934 2935 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED); 2936 if (d_unhashed(dentry) || !dentry->d_inode) { 2937 spin_unlock(&dentry->d_lock); 2938 continue; 2939 } 2940 if (!list_empty(&dentry->d_subdirs)) { 2941 spin_unlock(&this_parent->d_lock); 2942 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_); 2943 this_parent = dentry; 2944 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_); 2945 goto repeat; 2946 } 2947 if (!(dentry->d_flags & DCACHE_GENOCIDE)) { 2948 dentry->d_flags |= DCACHE_GENOCIDE; 2949 dentry->d_count--; 2950 } 2951 spin_unlock(&dentry->d_lock); 2952 } 2953 if (this_parent != root) { 2954 struct dentry *child = this_parent; 2955 if (!(this_parent->d_flags & DCACHE_GENOCIDE)) { 2956 this_parent->d_flags |= DCACHE_GENOCIDE; 2957 this_parent->d_count--; 2958 } 2959 this_parent = try_to_ascend(this_parent, locked, seq); 2960 if (!this_parent) 2961 goto rename_retry; 2962 next = child->d_u.d_child.next; 2963 goto resume; 2964 } 2965 spin_unlock(&this_parent->d_lock); 2966 if (!locked && read_seqretry(&rename_lock, seq)) 2967 goto rename_retry; 2968 if (locked) 2969 write_sequnlock(&rename_lock); 2970 return; 2971 2972 rename_retry: 2973 if (locked) 2974 goto again; 2975 locked = 1; 2976 write_seqlock(&rename_lock); 2977 goto again; 2978 } 2979 2980 /** 2981 * find_inode_number - check for dentry with name 2982 * @dir: directory to check 2983 * @name: Name to find. 2984 * 2985 * Check whether a dentry already exists for the given name, 2986 * and return the inode number if it has an inode. Otherwise 2987 * 0 is returned. 2988 * 2989 * This routine is used to post-process directory listings for 2990 * filesystems using synthetic inode numbers, and is necessary 2991 * to keep getcwd() working. 2992 */ 2993 2994 ino_t find_inode_number(struct dentry *dir, struct qstr *name) 2995 { 2996 struct dentry * dentry; 2997 ino_t ino = 0; 2998 2999 dentry = d_hash_and_lookup(dir, name); 3000 if (!IS_ERR_OR_NULL(dentry)) { 3001 if (dentry->d_inode) 3002 ino = dentry->d_inode->i_ino; 3003 dput(dentry); 3004 } 3005 return ino; 3006 } 3007 EXPORT_SYMBOL(find_inode_number); 3008 3009 static __initdata unsigned long dhash_entries; 3010 static int __init set_dhash_entries(char *str) 3011 { 3012 if (!str) 3013 return 0; 3014 dhash_entries = simple_strtoul(str, &str, 0); 3015 return 1; 3016 } 3017 __setup("dhash_entries=", set_dhash_entries); 3018 3019 static void __init dcache_init_early(void) 3020 { 3021 unsigned int loop; 3022 3023 /* If hashes are distributed across NUMA nodes, defer 3024 * hash allocation until vmalloc space is available. 3025 */ 3026 if (hashdist) 3027 return; 3028 3029 dentry_hashtable = 3030 alloc_large_system_hash("Dentry cache", 3031 sizeof(struct hlist_bl_head), 3032 dhash_entries, 3033 13, 3034 HASH_EARLY, 3035 &d_hash_shift, 3036 &d_hash_mask, 3037 0, 3038 0); 3039 3040 for (loop = 0; loop < (1U << d_hash_shift); loop++) 3041 INIT_HLIST_BL_HEAD(dentry_hashtable + loop); 3042 } 3043 3044 static void __init dcache_init(void) 3045 { 3046 unsigned int loop; 3047 3048 /* 3049 * A constructor could be added for stable state like the lists, 3050 * but it is probably not worth it because of the cache nature 3051 * of the dcache. 3052 */ 3053 dentry_cache = KMEM_CACHE(dentry, 3054 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD); 3055 3056 /* Hash may have been set up in dcache_init_early */ 3057 if (!hashdist) 3058 return; 3059 3060 dentry_hashtable = 3061 alloc_large_system_hash("Dentry cache", 3062 sizeof(struct hlist_bl_head), 3063 dhash_entries, 3064 13, 3065 0, 3066 &d_hash_shift, 3067 &d_hash_mask, 3068 0, 3069 0); 3070 3071 for (loop = 0; loop < (1U << d_hash_shift); loop++) 3072 INIT_HLIST_BL_HEAD(dentry_hashtable + loop); 3073 } 3074 3075 /* SLAB cache for __getname() consumers */ 3076 struct kmem_cache *names_cachep __read_mostly; 3077 EXPORT_SYMBOL(names_cachep); 3078 3079 EXPORT_SYMBOL(d_genocide); 3080 3081 void __init vfs_caches_init_early(void) 3082 { 3083 dcache_init_early(); 3084 inode_init_early(); 3085 } 3086 3087 void __init vfs_caches_init(unsigned long mempages) 3088 { 3089 unsigned long reserve; 3090 3091 /* Base hash sizes on available memory, with a reserve equal to 3092 150% of current kernel size */ 3093 3094 reserve = min((mempages - nr_free_pages()) * 3/2, mempages - 1); 3095 mempages -= reserve; 3096 3097 names_cachep = kmem_cache_create("names_cache", PATH_MAX, 0, 3098 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL); 3099 3100 dcache_init(); 3101 inode_init(); 3102 files_init(mempages); 3103 mnt_init(); 3104 bdev_cache_init(); 3105 chrdev_init(); 3106 } 3107