xref: /openbmc/linux/fs/dcache.c (revision 568b9de4)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * fs/dcache.c
4  *
5  * Complete reimplementation
6  * (C) 1997 Thomas Schoebel-Theuer,
7  * with heavy changes by Linus Torvalds
8  */
9 
10 /*
11  * Notes on the allocation strategy:
12  *
13  * The dcache is a master of the icache - whenever a dcache entry
14  * exists, the inode will always exist. "iput()" is done either when
15  * the dcache entry is deleted or garbage collected.
16  */
17 
18 #include <linux/ratelimit.h>
19 #include <linux/string.h>
20 #include <linux/mm.h>
21 #include <linux/fs.h>
22 #include <linux/fscrypt.h>
23 #include <linux/fsnotify.h>
24 #include <linux/slab.h>
25 #include <linux/init.h>
26 #include <linux/hash.h>
27 #include <linux/cache.h>
28 #include <linux/export.h>
29 #include <linux/security.h>
30 #include <linux/seqlock.h>
31 #include <linux/memblock.h>
32 #include <linux/bit_spinlock.h>
33 #include <linux/rculist_bl.h>
34 #include <linux/list_lru.h>
35 #include "internal.h"
36 #include "mount.h"
37 
38 /*
39  * Usage:
40  * dcache->d_inode->i_lock protects:
41  *   - i_dentry, d_u.d_alias, d_inode of aliases
42  * dcache_hash_bucket lock protects:
43  *   - the dcache hash table
44  * s_roots bl list spinlock protects:
45  *   - the s_roots list (see __d_drop)
46  * dentry->d_sb->s_dentry_lru_lock protects:
47  *   - the dcache lru lists and counters
48  * d_lock protects:
49  *   - d_flags
50  *   - d_name
51  *   - d_lru
52  *   - d_count
53  *   - d_unhashed()
54  *   - d_parent and d_subdirs
55  *   - childrens' d_child and d_parent
56  *   - d_u.d_alias, d_inode
57  *
58  * Ordering:
59  * dentry->d_inode->i_lock
60  *   dentry->d_lock
61  *     dentry->d_sb->s_dentry_lru_lock
62  *     dcache_hash_bucket lock
63  *     s_roots lock
64  *
65  * If there is an ancestor relationship:
66  * dentry->d_parent->...->d_parent->d_lock
67  *   ...
68  *     dentry->d_parent->d_lock
69  *       dentry->d_lock
70  *
71  * If no ancestor relationship:
72  * arbitrary, since it's serialized on rename_lock
73  */
74 int sysctl_vfs_cache_pressure __read_mostly = 100;
75 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
76 
77 __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
78 
79 EXPORT_SYMBOL(rename_lock);
80 
81 static struct kmem_cache *dentry_cache __read_mostly;
82 
83 const struct qstr empty_name = QSTR_INIT("", 0);
84 EXPORT_SYMBOL(empty_name);
85 const struct qstr slash_name = QSTR_INIT("/", 1);
86 EXPORT_SYMBOL(slash_name);
87 
88 /*
89  * This is the single most critical data structure when it comes
90  * to the dcache: the hashtable for lookups. Somebody should try
91  * to make this good - I've just made it work.
92  *
93  * This hash-function tries to avoid losing too many bits of hash
94  * information, yet avoid using a prime hash-size or similar.
95  */
96 
97 static unsigned int d_hash_shift __read_mostly;
98 
99 static struct hlist_bl_head *dentry_hashtable __read_mostly;
100 
101 static inline struct hlist_bl_head *d_hash(unsigned int hash)
102 {
103 	return dentry_hashtable + (hash >> d_hash_shift);
104 }
105 
106 #define IN_LOOKUP_SHIFT 10
107 static struct hlist_bl_head in_lookup_hashtable[1 << IN_LOOKUP_SHIFT];
108 
109 static inline struct hlist_bl_head *in_lookup_hash(const struct dentry *parent,
110 					unsigned int hash)
111 {
112 	hash += (unsigned long) parent / L1_CACHE_BYTES;
113 	return in_lookup_hashtable + hash_32(hash, IN_LOOKUP_SHIFT);
114 }
115 
116 
117 /* Statistics gathering. */
118 struct dentry_stat_t dentry_stat = {
119 	.age_limit = 45,
120 };
121 
122 static DEFINE_PER_CPU(long, nr_dentry);
123 static DEFINE_PER_CPU(long, nr_dentry_unused);
124 static DEFINE_PER_CPU(long, nr_dentry_negative);
125 
126 #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
127 
128 /*
129  * Here we resort to our own counters instead of using generic per-cpu counters
130  * for consistency with what the vfs inode code does. We are expected to harvest
131  * better code and performance by having our own specialized counters.
132  *
133  * Please note that the loop is done over all possible CPUs, not over all online
134  * CPUs. The reason for this is that we don't want to play games with CPUs going
135  * on and off. If one of them goes off, we will just keep their counters.
136  *
137  * glommer: See cffbc8a for details, and if you ever intend to change this,
138  * please update all vfs counters to match.
139  */
140 static long get_nr_dentry(void)
141 {
142 	int i;
143 	long sum = 0;
144 	for_each_possible_cpu(i)
145 		sum += per_cpu(nr_dentry, i);
146 	return sum < 0 ? 0 : sum;
147 }
148 
149 static long get_nr_dentry_unused(void)
150 {
151 	int i;
152 	long sum = 0;
153 	for_each_possible_cpu(i)
154 		sum += per_cpu(nr_dentry_unused, i);
155 	return sum < 0 ? 0 : sum;
156 }
157 
158 static long get_nr_dentry_negative(void)
159 {
160 	int i;
161 	long sum = 0;
162 
163 	for_each_possible_cpu(i)
164 		sum += per_cpu(nr_dentry_negative, i);
165 	return sum < 0 ? 0 : sum;
166 }
167 
168 int proc_nr_dentry(struct ctl_table *table, int write, void __user *buffer,
169 		   size_t *lenp, loff_t *ppos)
170 {
171 	dentry_stat.nr_dentry = get_nr_dentry();
172 	dentry_stat.nr_unused = get_nr_dentry_unused();
173 	dentry_stat.nr_negative = get_nr_dentry_negative();
174 	return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
175 }
176 #endif
177 
178 /*
179  * Compare 2 name strings, return 0 if they match, otherwise non-zero.
180  * The strings are both count bytes long, and count is non-zero.
181  */
182 #ifdef CONFIG_DCACHE_WORD_ACCESS
183 
184 #include <asm/word-at-a-time.h>
185 /*
186  * NOTE! 'cs' and 'scount' come from a dentry, so it has a
187  * aligned allocation for this particular component. We don't
188  * strictly need the load_unaligned_zeropad() safety, but it
189  * doesn't hurt either.
190  *
191  * In contrast, 'ct' and 'tcount' can be from a pathname, and do
192  * need the careful unaligned handling.
193  */
194 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
195 {
196 	unsigned long a,b,mask;
197 
198 	for (;;) {
199 		a = read_word_at_a_time(cs);
200 		b = load_unaligned_zeropad(ct);
201 		if (tcount < sizeof(unsigned long))
202 			break;
203 		if (unlikely(a != b))
204 			return 1;
205 		cs += sizeof(unsigned long);
206 		ct += sizeof(unsigned long);
207 		tcount -= sizeof(unsigned long);
208 		if (!tcount)
209 			return 0;
210 	}
211 	mask = bytemask_from_count(tcount);
212 	return unlikely(!!((a ^ b) & mask));
213 }
214 
215 #else
216 
217 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
218 {
219 	do {
220 		if (*cs != *ct)
221 			return 1;
222 		cs++;
223 		ct++;
224 		tcount--;
225 	} while (tcount);
226 	return 0;
227 }
228 
229 #endif
230 
231 static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount)
232 {
233 	/*
234 	 * Be careful about RCU walk racing with rename:
235 	 * use 'READ_ONCE' to fetch the name pointer.
236 	 *
237 	 * NOTE! Even if a rename will mean that the length
238 	 * was not loaded atomically, we don't care. The
239 	 * RCU walk will check the sequence count eventually,
240 	 * and catch it. And we won't overrun the buffer,
241 	 * because we're reading the name pointer atomically,
242 	 * and a dentry name is guaranteed to be properly
243 	 * terminated with a NUL byte.
244 	 *
245 	 * End result: even if 'len' is wrong, we'll exit
246 	 * early because the data cannot match (there can
247 	 * be no NUL in the ct/tcount data)
248 	 */
249 	const unsigned char *cs = READ_ONCE(dentry->d_name.name);
250 
251 	return dentry_string_cmp(cs, ct, tcount);
252 }
253 
254 struct external_name {
255 	union {
256 		atomic_t count;
257 		struct rcu_head head;
258 	} u;
259 	unsigned char name[];
260 };
261 
262 static inline struct external_name *external_name(struct dentry *dentry)
263 {
264 	return container_of(dentry->d_name.name, struct external_name, name[0]);
265 }
266 
267 static void __d_free(struct rcu_head *head)
268 {
269 	struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
270 
271 	kmem_cache_free(dentry_cache, dentry);
272 }
273 
274 static void __d_free_external(struct rcu_head *head)
275 {
276 	struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
277 	kfree(external_name(dentry));
278 	kmem_cache_free(dentry_cache, dentry);
279 }
280 
281 static inline int dname_external(const struct dentry *dentry)
282 {
283 	return dentry->d_name.name != dentry->d_iname;
284 }
285 
286 void take_dentry_name_snapshot(struct name_snapshot *name, struct dentry *dentry)
287 {
288 	spin_lock(&dentry->d_lock);
289 	name->name = dentry->d_name;
290 	if (unlikely(dname_external(dentry))) {
291 		atomic_inc(&external_name(dentry)->u.count);
292 	} else {
293 		memcpy(name->inline_name, dentry->d_iname,
294 		       dentry->d_name.len + 1);
295 		name->name.name = name->inline_name;
296 	}
297 	spin_unlock(&dentry->d_lock);
298 }
299 EXPORT_SYMBOL(take_dentry_name_snapshot);
300 
301 void release_dentry_name_snapshot(struct name_snapshot *name)
302 {
303 	if (unlikely(name->name.name != name->inline_name)) {
304 		struct external_name *p;
305 		p = container_of(name->name.name, struct external_name, name[0]);
306 		if (unlikely(atomic_dec_and_test(&p->u.count)))
307 			kfree_rcu(p, u.head);
308 	}
309 }
310 EXPORT_SYMBOL(release_dentry_name_snapshot);
311 
312 static inline void __d_set_inode_and_type(struct dentry *dentry,
313 					  struct inode *inode,
314 					  unsigned type_flags)
315 {
316 	unsigned flags;
317 
318 	dentry->d_inode = inode;
319 	flags = READ_ONCE(dentry->d_flags);
320 	flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU);
321 	flags |= type_flags;
322 	WRITE_ONCE(dentry->d_flags, flags);
323 }
324 
325 static inline void __d_clear_type_and_inode(struct dentry *dentry)
326 {
327 	unsigned flags = READ_ONCE(dentry->d_flags);
328 
329 	flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU);
330 	WRITE_ONCE(dentry->d_flags, flags);
331 	dentry->d_inode = NULL;
332 	if (dentry->d_flags & DCACHE_LRU_LIST)
333 		this_cpu_inc(nr_dentry_negative);
334 }
335 
336 static void dentry_free(struct dentry *dentry)
337 {
338 	WARN_ON(!hlist_unhashed(&dentry->d_u.d_alias));
339 	if (unlikely(dname_external(dentry))) {
340 		struct external_name *p = external_name(dentry);
341 		if (likely(atomic_dec_and_test(&p->u.count))) {
342 			call_rcu(&dentry->d_u.d_rcu, __d_free_external);
343 			return;
344 		}
345 	}
346 	/* if dentry was never visible to RCU, immediate free is OK */
347 	if (dentry->d_flags & DCACHE_NORCU)
348 		__d_free(&dentry->d_u.d_rcu);
349 	else
350 		call_rcu(&dentry->d_u.d_rcu, __d_free);
351 }
352 
353 /*
354  * Release the dentry's inode, using the filesystem
355  * d_iput() operation if defined.
356  */
357 static void dentry_unlink_inode(struct dentry * dentry)
358 	__releases(dentry->d_lock)
359 	__releases(dentry->d_inode->i_lock)
360 {
361 	struct inode *inode = dentry->d_inode;
362 
363 	raw_write_seqcount_begin(&dentry->d_seq);
364 	__d_clear_type_and_inode(dentry);
365 	hlist_del_init(&dentry->d_u.d_alias);
366 	raw_write_seqcount_end(&dentry->d_seq);
367 	spin_unlock(&dentry->d_lock);
368 	spin_unlock(&inode->i_lock);
369 	if (!inode->i_nlink)
370 		fsnotify_inoderemove(inode);
371 	if (dentry->d_op && dentry->d_op->d_iput)
372 		dentry->d_op->d_iput(dentry, inode);
373 	else
374 		iput(inode);
375 }
376 
377 /*
378  * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry
379  * is in use - which includes both the "real" per-superblock
380  * LRU list _and_ the DCACHE_SHRINK_LIST use.
381  *
382  * The DCACHE_SHRINK_LIST bit is set whenever the dentry is
383  * on the shrink list (ie not on the superblock LRU list).
384  *
385  * The per-cpu "nr_dentry_unused" counters are updated with
386  * the DCACHE_LRU_LIST bit.
387  *
388  * The per-cpu "nr_dentry_negative" counters are only updated
389  * when deleted from or added to the per-superblock LRU list, not
390  * from/to the shrink list. That is to avoid an unneeded dec/inc
391  * pair when moving from LRU to shrink list in select_collect().
392  *
393  * These helper functions make sure we always follow the
394  * rules. d_lock must be held by the caller.
395  */
396 #define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x))
397 static void d_lru_add(struct dentry *dentry)
398 {
399 	D_FLAG_VERIFY(dentry, 0);
400 	dentry->d_flags |= DCACHE_LRU_LIST;
401 	this_cpu_inc(nr_dentry_unused);
402 	if (d_is_negative(dentry))
403 		this_cpu_inc(nr_dentry_negative);
404 	WARN_ON_ONCE(!list_lru_add(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
405 }
406 
407 static void d_lru_del(struct dentry *dentry)
408 {
409 	D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
410 	dentry->d_flags &= ~DCACHE_LRU_LIST;
411 	this_cpu_dec(nr_dentry_unused);
412 	if (d_is_negative(dentry))
413 		this_cpu_dec(nr_dentry_negative);
414 	WARN_ON_ONCE(!list_lru_del(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
415 }
416 
417 static void d_shrink_del(struct dentry *dentry)
418 {
419 	D_FLAG_VERIFY(dentry, DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
420 	list_del_init(&dentry->d_lru);
421 	dentry->d_flags &= ~(DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
422 	this_cpu_dec(nr_dentry_unused);
423 }
424 
425 static void d_shrink_add(struct dentry *dentry, struct list_head *list)
426 {
427 	D_FLAG_VERIFY(dentry, 0);
428 	list_add(&dentry->d_lru, list);
429 	dentry->d_flags |= DCACHE_SHRINK_LIST | DCACHE_LRU_LIST;
430 	this_cpu_inc(nr_dentry_unused);
431 }
432 
433 /*
434  * These can only be called under the global LRU lock, ie during the
435  * callback for freeing the LRU list. "isolate" removes it from the
436  * LRU lists entirely, while shrink_move moves it to the indicated
437  * private list.
438  */
439 static void d_lru_isolate(struct list_lru_one *lru, struct dentry *dentry)
440 {
441 	D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
442 	dentry->d_flags &= ~DCACHE_LRU_LIST;
443 	this_cpu_dec(nr_dentry_unused);
444 	if (d_is_negative(dentry))
445 		this_cpu_dec(nr_dentry_negative);
446 	list_lru_isolate(lru, &dentry->d_lru);
447 }
448 
449 static void d_lru_shrink_move(struct list_lru_one *lru, struct dentry *dentry,
450 			      struct list_head *list)
451 {
452 	D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
453 	dentry->d_flags |= DCACHE_SHRINK_LIST;
454 	if (d_is_negative(dentry))
455 		this_cpu_dec(nr_dentry_negative);
456 	list_lru_isolate_move(lru, &dentry->d_lru, list);
457 }
458 
459 /**
460  * d_drop - drop a dentry
461  * @dentry: dentry to drop
462  *
463  * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
464  * be found through a VFS lookup any more. Note that this is different from
465  * deleting the dentry - d_delete will try to mark the dentry negative if
466  * possible, giving a successful _negative_ lookup, while d_drop will
467  * just make the cache lookup fail.
468  *
469  * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
470  * reason (NFS timeouts or autofs deletes).
471  *
472  * __d_drop requires dentry->d_lock
473  * ___d_drop doesn't mark dentry as "unhashed"
474  *   (dentry->d_hash.pprev will be LIST_POISON2, not NULL).
475  */
476 static void ___d_drop(struct dentry *dentry)
477 {
478 	struct hlist_bl_head *b;
479 	/*
480 	 * Hashed dentries are normally on the dentry hashtable,
481 	 * with the exception of those newly allocated by
482 	 * d_obtain_root, which are always IS_ROOT:
483 	 */
484 	if (unlikely(IS_ROOT(dentry)))
485 		b = &dentry->d_sb->s_roots;
486 	else
487 		b = d_hash(dentry->d_name.hash);
488 
489 	hlist_bl_lock(b);
490 	__hlist_bl_del(&dentry->d_hash);
491 	hlist_bl_unlock(b);
492 }
493 
494 void __d_drop(struct dentry *dentry)
495 {
496 	if (!d_unhashed(dentry)) {
497 		___d_drop(dentry);
498 		dentry->d_hash.pprev = NULL;
499 		write_seqcount_invalidate(&dentry->d_seq);
500 	}
501 }
502 EXPORT_SYMBOL(__d_drop);
503 
504 void d_drop(struct dentry *dentry)
505 {
506 	spin_lock(&dentry->d_lock);
507 	__d_drop(dentry);
508 	spin_unlock(&dentry->d_lock);
509 }
510 EXPORT_SYMBOL(d_drop);
511 
512 static inline void dentry_unlist(struct dentry *dentry, struct dentry *parent)
513 {
514 	struct dentry *next;
515 	/*
516 	 * Inform d_walk() and shrink_dentry_list() that we are no longer
517 	 * attached to the dentry tree
518 	 */
519 	dentry->d_flags |= DCACHE_DENTRY_KILLED;
520 	if (unlikely(list_empty(&dentry->d_child)))
521 		return;
522 	__list_del_entry(&dentry->d_child);
523 	/*
524 	 * Cursors can move around the list of children.  While we'd been
525 	 * a normal list member, it didn't matter - ->d_child.next would've
526 	 * been updated.  However, from now on it won't be and for the
527 	 * things like d_walk() it might end up with a nasty surprise.
528 	 * Normally d_walk() doesn't care about cursors moving around -
529 	 * ->d_lock on parent prevents that and since a cursor has no children
530 	 * of its own, we get through it without ever unlocking the parent.
531 	 * There is one exception, though - if we ascend from a child that
532 	 * gets killed as soon as we unlock it, the next sibling is found
533 	 * using the value left in its ->d_child.next.  And if _that_
534 	 * pointed to a cursor, and cursor got moved (e.g. by lseek())
535 	 * before d_walk() regains parent->d_lock, we'll end up skipping
536 	 * everything the cursor had been moved past.
537 	 *
538 	 * Solution: make sure that the pointer left behind in ->d_child.next
539 	 * points to something that won't be moving around.  I.e. skip the
540 	 * cursors.
541 	 */
542 	while (dentry->d_child.next != &parent->d_subdirs) {
543 		next = list_entry(dentry->d_child.next, struct dentry, d_child);
544 		if (likely(!(next->d_flags & DCACHE_DENTRY_CURSOR)))
545 			break;
546 		dentry->d_child.next = next->d_child.next;
547 	}
548 }
549 
550 static void __dentry_kill(struct dentry *dentry)
551 {
552 	struct dentry *parent = NULL;
553 	bool can_free = true;
554 	if (!IS_ROOT(dentry))
555 		parent = dentry->d_parent;
556 
557 	/*
558 	 * The dentry is now unrecoverably dead to the world.
559 	 */
560 	lockref_mark_dead(&dentry->d_lockref);
561 
562 	/*
563 	 * inform the fs via d_prune that this dentry is about to be
564 	 * unhashed and destroyed.
565 	 */
566 	if (dentry->d_flags & DCACHE_OP_PRUNE)
567 		dentry->d_op->d_prune(dentry);
568 
569 	if (dentry->d_flags & DCACHE_LRU_LIST) {
570 		if (!(dentry->d_flags & DCACHE_SHRINK_LIST))
571 			d_lru_del(dentry);
572 	}
573 	/* if it was on the hash then remove it */
574 	__d_drop(dentry);
575 	dentry_unlist(dentry, parent);
576 	if (parent)
577 		spin_unlock(&parent->d_lock);
578 	if (dentry->d_inode)
579 		dentry_unlink_inode(dentry);
580 	else
581 		spin_unlock(&dentry->d_lock);
582 	this_cpu_dec(nr_dentry);
583 	if (dentry->d_op && dentry->d_op->d_release)
584 		dentry->d_op->d_release(dentry);
585 
586 	spin_lock(&dentry->d_lock);
587 	if (dentry->d_flags & DCACHE_SHRINK_LIST) {
588 		dentry->d_flags |= DCACHE_MAY_FREE;
589 		can_free = false;
590 	}
591 	spin_unlock(&dentry->d_lock);
592 	if (likely(can_free))
593 		dentry_free(dentry);
594 	cond_resched();
595 }
596 
597 static struct dentry *__lock_parent(struct dentry *dentry)
598 {
599 	struct dentry *parent;
600 	rcu_read_lock();
601 	spin_unlock(&dentry->d_lock);
602 again:
603 	parent = READ_ONCE(dentry->d_parent);
604 	spin_lock(&parent->d_lock);
605 	/*
606 	 * We can't blindly lock dentry until we are sure
607 	 * that we won't violate the locking order.
608 	 * Any changes of dentry->d_parent must have
609 	 * been done with parent->d_lock held, so
610 	 * spin_lock() above is enough of a barrier
611 	 * for checking if it's still our child.
612 	 */
613 	if (unlikely(parent != dentry->d_parent)) {
614 		spin_unlock(&parent->d_lock);
615 		goto again;
616 	}
617 	rcu_read_unlock();
618 	if (parent != dentry)
619 		spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
620 	else
621 		parent = NULL;
622 	return parent;
623 }
624 
625 static inline struct dentry *lock_parent(struct dentry *dentry)
626 {
627 	struct dentry *parent = dentry->d_parent;
628 	if (IS_ROOT(dentry))
629 		return NULL;
630 	if (likely(spin_trylock(&parent->d_lock)))
631 		return parent;
632 	return __lock_parent(dentry);
633 }
634 
635 static inline bool retain_dentry(struct dentry *dentry)
636 {
637 	WARN_ON(d_in_lookup(dentry));
638 
639 	/* Unreachable? Get rid of it */
640 	if (unlikely(d_unhashed(dentry)))
641 		return false;
642 
643 	if (unlikely(dentry->d_flags & DCACHE_DISCONNECTED))
644 		return false;
645 
646 	if (unlikely(dentry->d_flags & DCACHE_OP_DELETE)) {
647 		if (dentry->d_op->d_delete(dentry))
648 			return false;
649 	}
650 	/* retain; LRU fodder */
651 	dentry->d_lockref.count--;
652 	if (unlikely(!(dentry->d_flags & DCACHE_LRU_LIST)))
653 		d_lru_add(dentry);
654 	else if (unlikely(!(dentry->d_flags & DCACHE_REFERENCED)))
655 		dentry->d_flags |= DCACHE_REFERENCED;
656 	return true;
657 }
658 
659 /*
660  * Finish off a dentry we've decided to kill.
661  * dentry->d_lock must be held, returns with it unlocked.
662  * Returns dentry requiring refcount drop, or NULL if we're done.
663  */
664 static struct dentry *dentry_kill(struct dentry *dentry)
665 	__releases(dentry->d_lock)
666 {
667 	struct inode *inode = dentry->d_inode;
668 	struct dentry *parent = NULL;
669 
670 	if (inode && unlikely(!spin_trylock(&inode->i_lock)))
671 		goto slow_positive;
672 
673 	if (!IS_ROOT(dentry)) {
674 		parent = dentry->d_parent;
675 		if (unlikely(!spin_trylock(&parent->d_lock))) {
676 			parent = __lock_parent(dentry);
677 			if (likely(inode || !dentry->d_inode))
678 				goto got_locks;
679 			/* negative that became positive */
680 			if (parent)
681 				spin_unlock(&parent->d_lock);
682 			inode = dentry->d_inode;
683 			goto slow_positive;
684 		}
685 	}
686 	__dentry_kill(dentry);
687 	return parent;
688 
689 slow_positive:
690 	spin_unlock(&dentry->d_lock);
691 	spin_lock(&inode->i_lock);
692 	spin_lock(&dentry->d_lock);
693 	parent = lock_parent(dentry);
694 got_locks:
695 	if (unlikely(dentry->d_lockref.count != 1)) {
696 		dentry->d_lockref.count--;
697 	} else if (likely(!retain_dentry(dentry))) {
698 		__dentry_kill(dentry);
699 		return parent;
700 	}
701 	/* we are keeping it, after all */
702 	if (inode)
703 		spin_unlock(&inode->i_lock);
704 	if (parent)
705 		spin_unlock(&parent->d_lock);
706 	spin_unlock(&dentry->d_lock);
707 	return NULL;
708 }
709 
710 /*
711  * Try to do a lockless dput(), and return whether that was successful.
712  *
713  * If unsuccessful, we return false, having already taken the dentry lock.
714  *
715  * The caller needs to hold the RCU read lock, so that the dentry is
716  * guaranteed to stay around even if the refcount goes down to zero!
717  */
718 static inline bool fast_dput(struct dentry *dentry)
719 {
720 	int ret;
721 	unsigned int d_flags;
722 
723 	/*
724 	 * If we have a d_op->d_delete() operation, we sould not
725 	 * let the dentry count go to zero, so use "put_or_lock".
726 	 */
727 	if (unlikely(dentry->d_flags & DCACHE_OP_DELETE))
728 		return lockref_put_or_lock(&dentry->d_lockref);
729 
730 	/*
731 	 * .. otherwise, we can try to just decrement the
732 	 * lockref optimistically.
733 	 */
734 	ret = lockref_put_return(&dentry->d_lockref);
735 
736 	/*
737 	 * If the lockref_put_return() failed due to the lock being held
738 	 * by somebody else, the fast path has failed. We will need to
739 	 * get the lock, and then check the count again.
740 	 */
741 	if (unlikely(ret < 0)) {
742 		spin_lock(&dentry->d_lock);
743 		if (dentry->d_lockref.count > 1) {
744 			dentry->d_lockref.count--;
745 			spin_unlock(&dentry->d_lock);
746 			return true;
747 		}
748 		return false;
749 	}
750 
751 	/*
752 	 * If we weren't the last ref, we're done.
753 	 */
754 	if (ret)
755 		return true;
756 
757 	/*
758 	 * Careful, careful. The reference count went down
759 	 * to zero, but we don't hold the dentry lock, so
760 	 * somebody else could get it again, and do another
761 	 * dput(), and we need to not race with that.
762 	 *
763 	 * However, there is a very special and common case
764 	 * where we don't care, because there is nothing to
765 	 * do: the dentry is still hashed, it does not have
766 	 * a 'delete' op, and it's referenced and already on
767 	 * the LRU list.
768 	 *
769 	 * NOTE! Since we aren't locked, these values are
770 	 * not "stable". However, it is sufficient that at
771 	 * some point after we dropped the reference the
772 	 * dentry was hashed and the flags had the proper
773 	 * value. Other dentry users may have re-gotten
774 	 * a reference to the dentry and change that, but
775 	 * our work is done - we can leave the dentry
776 	 * around with a zero refcount.
777 	 */
778 	smp_rmb();
779 	d_flags = READ_ONCE(dentry->d_flags);
780 	d_flags &= DCACHE_REFERENCED | DCACHE_LRU_LIST | DCACHE_DISCONNECTED;
781 
782 	/* Nothing to do? Dropping the reference was all we needed? */
783 	if (d_flags == (DCACHE_REFERENCED | DCACHE_LRU_LIST) && !d_unhashed(dentry))
784 		return true;
785 
786 	/*
787 	 * Not the fast normal case? Get the lock. We've already decremented
788 	 * the refcount, but we'll need to re-check the situation after
789 	 * getting the lock.
790 	 */
791 	spin_lock(&dentry->d_lock);
792 
793 	/*
794 	 * Did somebody else grab a reference to it in the meantime, and
795 	 * we're no longer the last user after all? Alternatively, somebody
796 	 * else could have killed it and marked it dead. Either way, we
797 	 * don't need to do anything else.
798 	 */
799 	if (dentry->d_lockref.count) {
800 		spin_unlock(&dentry->d_lock);
801 		return true;
802 	}
803 
804 	/*
805 	 * Re-get the reference we optimistically dropped. We hold the
806 	 * lock, and we just tested that it was zero, so we can just
807 	 * set it to 1.
808 	 */
809 	dentry->d_lockref.count = 1;
810 	return false;
811 }
812 
813 
814 /*
815  * This is dput
816  *
817  * This is complicated by the fact that we do not want to put
818  * dentries that are no longer on any hash chain on the unused
819  * list: we'd much rather just get rid of them immediately.
820  *
821  * However, that implies that we have to traverse the dentry
822  * tree upwards to the parents which might _also_ now be
823  * scheduled for deletion (it may have been only waiting for
824  * its last child to go away).
825  *
826  * This tail recursion is done by hand as we don't want to depend
827  * on the compiler to always get this right (gcc generally doesn't).
828  * Real recursion would eat up our stack space.
829  */
830 
831 /*
832  * dput - release a dentry
833  * @dentry: dentry to release
834  *
835  * Release a dentry. This will drop the usage count and if appropriate
836  * call the dentry unlink method as well as removing it from the queues and
837  * releasing its resources. If the parent dentries were scheduled for release
838  * they too may now get deleted.
839  */
840 void dput(struct dentry *dentry)
841 {
842 	while (dentry) {
843 		might_sleep();
844 
845 		rcu_read_lock();
846 		if (likely(fast_dput(dentry))) {
847 			rcu_read_unlock();
848 			return;
849 		}
850 
851 		/* Slow case: now with the dentry lock held */
852 		rcu_read_unlock();
853 
854 		if (likely(retain_dentry(dentry))) {
855 			spin_unlock(&dentry->d_lock);
856 			return;
857 		}
858 
859 		dentry = dentry_kill(dentry);
860 	}
861 }
862 EXPORT_SYMBOL(dput);
863 
864 static void __dput_to_list(struct dentry *dentry, struct list_head *list)
865 __must_hold(&dentry->d_lock)
866 {
867 	if (dentry->d_flags & DCACHE_SHRINK_LIST) {
868 		/* let the owner of the list it's on deal with it */
869 		--dentry->d_lockref.count;
870 	} else {
871 		if (dentry->d_flags & DCACHE_LRU_LIST)
872 			d_lru_del(dentry);
873 		if (!--dentry->d_lockref.count)
874 			d_shrink_add(dentry, list);
875 	}
876 }
877 
878 void dput_to_list(struct dentry *dentry, struct list_head *list)
879 {
880 	rcu_read_lock();
881 	if (likely(fast_dput(dentry))) {
882 		rcu_read_unlock();
883 		return;
884 	}
885 	rcu_read_unlock();
886 	if (!retain_dentry(dentry))
887 		__dput_to_list(dentry, list);
888 	spin_unlock(&dentry->d_lock);
889 }
890 
891 /* This must be called with d_lock held */
892 static inline void __dget_dlock(struct dentry *dentry)
893 {
894 	dentry->d_lockref.count++;
895 }
896 
897 static inline void __dget(struct dentry *dentry)
898 {
899 	lockref_get(&dentry->d_lockref);
900 }
901 
902 struct dentry *dget_parent(struct dentry *dentry)
903 {
904 	int gotref;
905 	struct dentry *ret;
906 
907 	/*
908 	 * Do optimistic parent lookup without any
909 	 * locking.
910 	 */
911 	rcu_read_lock();
912 	ret = READ_ONCE(dentry->d_parent);
913 	gotref = lockref_get_not_zero(&ret->d_lockref);
914 	rcu_read_unlock();
915 	if (likely(gotref)) {
916 		if (likely(ret == READ_ONCE(dentry->d_parent)))
917 			return ret;
918 		dput(ret);
919 	}
920 
921 repeat:
922 	/*
923 	 * Don't need rcu_dereference because we re-check it was correct under
924 	 * the lock.
925 	 */
926 	rcu_read_lock();
927 	ret = dentry->d_parent;
928 	spin_lock(&ret->d_lock);
929 	if (unlikely(ret != dentry->d_parent)) {
930 		spin_unlock(&ret->d_lock);
931 		rcu_read_unlock();
932 		goto repeat;
933 	}
934 	rcu_read_unlock();
935 	BUG_ON(!ret->d_lockref.count);
936 	ret->d_lockref.count++;
937 	spin_unlock(&ret->d_lock);
938 	return ret;
939 }
940 EXPORT_SYMBOL(dget_parent);
941 
942 static struct dentry * __d_find_any_alias(struct inode *inode)
943 {
944 	struct dentry *alias;
945 
946 	if (hlist_empty(&inode->i_dentry))
947 		return NULL;
948 	alias = hlist_entry(inode->i_dentry.first, struct dentry, d_u.d_alias);
949 	__dget(alias);
950 	return alias;
951 }
952 
953 /**
954  * d_find_any_alias - find any alias for a given inode
955  * @inode: inode to find an alias for
956  *
957  * If any aliases exist for the given inode, take and return a
958  * reference for one of them.  If no aliases exist, return %NULL.
959  */
960 struct dentry *d_find_any_alias(struct inode *inode)
961 {
962 	struct dentry *de;
963 
964 	spin_lock(&inode->i_lock);
965 	de = __d_find_any_alias(inode);
966 	spin_unlock(&inode->i_lock);
967 	return de;
968 }
969 EXPORT_SYMBOL(d_find_any_alias);
970 
971 /**
972  * d_find_alias - grab a hashed alias of inode
973  * @inode: inode in question
974  *
975  * If inode has a hashed alias, or is a directory and has any alias,
976  * acquire the reference to alias and return it. Otherwise return NULL.
977  * Notice that if inode is a directory there can be only one alias and
978  * it can be unhashed only if it has no children, or if it is the root
979  * of a filesystem, or if the directory was renamed and d_revalidate
980  * was the first vfs operation to notice.
981  *
982  * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
983  * any other hashed alias over that one.
984  */
985 static struct dentry *__d_find_alias(struct inode *inode)
986 {
987 	struct dentry *alias;
988 
989 	if (S_ISDIR(inode->i_mode))
990 		return __d_find_any_alias(inode);
991 
992 	hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
993 		spin_lock(&alias->d_lock);
994  		if (!d_unhashed(alias)) {
995 			__dget_dlock(alias);
996 			spin_unlock(&alias->d_lock);
997 			return alias;
998 		}
999 		spin_unlock(&alias->d_lock);
1000 	}
1001 	return NULL;
1002 }
1003 
1004 struct dentry *d_find_alias(struct inode *inode)
1005 {
1006 	struct dentry *de = NULL;
1007 
1008 	if (!hlist_empty(&inode->i_dentry)) {
1009 		spin_lock(&inode->i_lock);
1010 		de = __d_find_alias(inode);
1011 		spin_unlock(&inode->i_lock);
1012 	}
1013 	return de;
1014 }
1015 EXPORT_SYMBOL(d_find_alias);
1016 
1017 /*
1018  *	Try to kill dentries associated with this inode.
1019  * WARNING: you must own a reference to inode.
1020  */
1021 void d_prune_aliases(struct inode *inode)
1022 {
1023 	struct dentry *dentry;
1024 restart:
1025 	spin_lock(&inode->i_lock);
1026 	hlist_for_each_entry(dentry, &inode->i_dentry, d_u.d_alias) {
1027 		spin_lock(&dentry->d_lock);
1028 		if (!dentry->d_lockref.count) {
1029 			struct dentry *parent = lock_parent(dentry);
1030 			if (likely(!dentry->d_lockref.count)) {
1031 				__dentry_kill(dentry);
1032 				dput(parent);
1033 				goto restart;
1034 			}
1035 			if (parent)
1036 				spin_unlock(&parent->d_lock);
1037 		}
1038 		spin_unlock(&dentry->d_lock);
1039 	}
1040 	spin_unlock(&inode->i_lock);
1041 }
1042 EXPORT_SYMBOL(d_prune_aliases);
1043 
1044 /*
1045  * Lock a dentry from shrink list.
1046  * Called under rcu_read_lock() and dentry->d_lock; the former
1047  * guarantees that nothing we access will be freed under us.
1048  * Note that dentry is *not* protected from concurrent dentry_kill(),
1049  * d_delete(), etc.
1050  *
1051  * Return false if dentry has been disrupted or grabbed, leaving
1052  * the caller to kick it off-list.  Otherwise, return true and have
1053  * that dentry's inode and parent both locked.
1054  */
1055 static bool shrink_lock_dentry(struct dentry *dentry)
1056 {
1057 	struct inode *inode;
1058 	struct dentry *parent;
1059 
1060 	if (dentry->d_lockref.count)
1061 		return false;
1062 
1063 	inode = dentry->d_inode;
1064 	if (inode && unlikely(!spin_trylock(&inode->i_lock))) {
1065 		spin_unlock(&dentry->d_lock);
1066 		spin_lock(&inode->i_lock);
1067 		spin_lock(&dentry->d_lock);
1068 		if (unlikely(dentry->d_lockref.count))
1069 			goto out;
1070 		/* changed inode means that somebody had grabbed it */
1071 		if (unlikely(inode != dentry->d_inode))
1072 			goto out;
1073 	}
1074 
1075 	parent = dentry->d_parent;
1076 	if (IS_ROOT(dentry) || likely(spin_trylock(&parent->d_lock)))
1077 		return true;
1078 
1079 	spin_unlock(&dentry->d_lock);
1080 	spin_lock(&parent->d_lock);
1081 	if (unlikely(parent != dentry->d_parent)) {
1082 		spin_unlock(&parent->d_lock);
1083 		spin_lock(&dentry->d_lock);
1084 		goto out;
1085 	}
1086 	spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1087 	if (likely(!dentry->d_lockref.count))
1088 		return true;
1089 	spin_unlock(&parent->d_lock);
1090 out:
1091 	if (inode)
1092 		spin_unlock(&inode->i_lock);
1093 	return false;
1094 }
1095 
1096 void shrink_dentry_list(struct list_head *list)
1097 {
1098 	while (!list_empty(list)) {
1099 		struct dentry *dentry, *parent;
1100 
1101 		dentry = list_entry(list->prev, struct dentry, d_lru);
1102 		spin_lock(&dentry->d_lock);
1103 		rcu_read_lock();
1104 		if (!shrink_lock_dentry(dentry)) {
1105 			bool can_free = false;
1106 			rcu_read_unlock();
1107 			d_shrink_del(dentry);
1108 			if (dentry->d_lockref.count < 0)
1109 				can_free = dentry->d_flags & DCACHE_MAY_FREE;
1110 			spin_unlock(&dentry->d_lock);
1111 			if (can_free)
1112 				dentry_free(dentry);
1113 			continue;
1114 		}
1115 		rcu_read_unlock();
1116 		d_shrink_del(dentry);
1117 		parent = dentry->d_parent;
1118 		if (parent != dentry)
1119 			__dput_to_list(parent, list);
1120 		__dentry_kill(dentry);
1121 	}
1122 }
1123 
1124 static enum lru_status dentry_lru_isolate(struct list_head *item,
1125 		struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
1126 {
1127 	struct list_head *freeable = arg;
1128 	struct dentry	*dentry = container_of(item, struct dentry, d_lru);
1129 
1130 
1131 	/*
1132 	 * we are inverting the lru lock/dentry->d_lock here,
1133 	 * so use a trylock. If we fail to get the lock, just skip
1134 	 * it
1135 	 */
1136 	if (!spin_trylock(&dentry->d_lock))
1137 		return LRU_SKIP;
1138 
1139 	/*
1140 	 * Referenced dentries are still in use. If they have active
1141 	 * counts, just remove them from the LRU. Otherwise give them
1142 	 * another pass through the LRU.
1143 	 */
1144 	if (dentry->d_lockref.count) {
1145 		d_lru_isolate(lru, dentry);
1146 		spin_unlock(&dentry->d_lock);
1147 		return LRU_REMOVED;
1148 	}
1149 
1150 	if (dentry->d_flags & DCACHE_REFERENCED) {
1151 		dentry->d_flags &= ~DCACHE_REFERENCED;
1152 		spin_unlock(&dentry->d_lock);
1153 
1154 		/*
1155 		 * The list move itself will be made by the common LRU code. At
1156 		 * this point, we've dropped the dentry->d_lock but keep the
1157 		 * lru lock. This is safe to do, since every list movement is
1158 		 * protected by the lru lock even if both locks are held.
1159 		 *
1160 		 * This is guaranteed by the fact that all LRU management
1161 		 * functions are intermediated by the LRU API calls like
1162 		 * list_lru_add and list_lru_del. List movement in this file
1163 		 * only ever occur through this functions or through callbacks
1164 		 * like this one, that are called from the LRU API.
1165 		 *
1166 		 * The only exceptions to this are functions like
1167 		 * shrink_dentry_list, and code that first checks for the
1168 		 * DCACHE_SHRINK_LIST flag.  Those are guaranteed to be
1169 		 * operating only with stack provided lists after they are
1170 		 * properly isolated from the main list.  It is thus, always a
1171 		 * local access.
1172 		 */
1173 		return LRU_ROTATE;
1174 	}
1175 
1176 	d_lru_shrink_move(lru, dentry, freeable);
1177 	spin_unlock(&dentry->d_lock);
1178 
1179 	return LRU_REMOVED;
1180 }
1181 
1182 /**
1183  * prune_dcache_sb - shrink the dcache
1184  * @sb: superblock
1185  * @sc: shrink control, passed to list_lru_shrink_walk()
1186  *
1187  * Attempt to shrink the superblock dcache LRU by @sc->nr_to_scan entries. This
1188  * is done when we need more memory and called from the superblock shrinker
1189  * function.
1190  *
1191  * This function may fail to free any resources if all the dentries are in
1192  * use.
1193  */
1194 long prune_dcache_sb(struct super_block *sb, struct shrink_control *sc)
1195 {
1196 	LIST_HEAD(dispose);
1197 	long freed;
1198 
1199 	freed = list_lru_shrink_walk(&sb->s_dentry_lru, sc,
1200 				     dentry_lru_isolate, &dispose);
1201 	shrink_dentry_list(&dispose);
1202 	return freed;
1203 }
1204 
1205 static enum lru_status dentry_lru_isolate_shrink(struct list_head *item,
1206 		struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
1207 {
1208 	struct list_head *freeable = arg;
1209 	struct dentry	*dentry = container_of(item, struct dentry, d_lru);
1210 
1211 	/*
1212 	 * we are inverting the lru lock/dentry->d_lock here,
1213 	 * so use a trylock. If we fail to get the lock, just skip
1214 	 * it
1215 	 */
1216 	if (!spin_trylock(&dentry->d_lock))
1217 		return LRU_SKIP;
1218 
1219 	d_lru_shrink_move(lru, dentry, freeable);
1220 	spin_unlock(&dentry->d_lock);
1221 
1222 	return LRU_REMOVED;
1223 }
1224 
1225 
1226 /**
1227  * shrink_dcache_sb - shrink dcache for a superblock
1228  * @sb: superblock
1229  *
1230  * Shrink the dcache for the specified super block. This is used to free
1231  * the dcache before unmounting a file system.
1232  */
1233 void shrink_dcache_sb(struct super_block *sb)
1234 {
1235 	do {
1236 		LIST_HEAD(dispose);
1237 
1238 		list_lru_walk(&sb->s_dentry_lru,
1239 			dentry_lru_isolate_shrink, &dispose, 1024);
1240 		shrink_dentry_list(&dispose);
1241 	} while (list_lru_count(&sb->s_dentry_lru) > 0);
1242 }
1243 EXPORT_SYMBOL(shrink_dcache_sb);
1244 
1245 /**
1246  * enum d_walk_ret - action to talke during tree walk
1247  * @D_WALK_CONTINUE:	contrinue walk
1248  * @D_WALK_QUIT:	quit walk
1249  * @D_WALK_NORETRY:	quit when retry is needed
1250  * @D_WALK_SKIP:	skip this dentry and its children
1251  */
1252 enum d_walk_ret {
1253 	D_WALK_CONTINUE,
1254 	D_WALK_QUIT,
1255 	D_WALK_NORETRY,
1256 	D_WALK_SKIP,
1257 };
1258 
1259 /**
1260  * d_walk - walk the dentry tree
1261  * @parent:	start of walk
1262  * @data:	data passed to @enter() and @finish()
1263  * @enter:	callback when first entering the dentry
1264  *
1265  * The @enter() callbacks are called with d_lock held.
1266  */
1267 static void d_walk(struct dentry *parent, void *data,
1268 		   enum d_walk_ret (*enter)(void *, struct dentry *))
1269 {
1270 	struct dentry *this_parent;
1271 	struct list_head *next;
1272 	unsigned seq = 0;
1273 	enum d_walk_ret ret;
1274 	bool retry = true;
1275 
1276 again:
1277 	read_seqbegin_or_lock(&rename_lock, &seq);
1278 	this_parent = parent;
1279 	spin_lock(&this_parent->d_lock);
1280 
1281 	ret = enter(data, this_parent);
1282 	switch (ret) {
1283 	case D_WALK_CONTINUE:
1284 		break;
1285 	case D_WALK_QUIT:
1286 	case D_WALK_SKIP:
1287 		goto out_unlock;
1288 	case D_WALK_NORETRY:
1289 		retry = false;
1290 		break;
1291 	}
1292 repeat:
1293 	next = this_parent->d_subdirs.next;
1294 resume:
1295 	while (next != &this_parent->d_subdirs) {
1296 		struct list_head *tmp = next;
1297 		struct dentry *dentry = list_entry(tmp, struct dentry, d_child);
1298 		next = tmp->next;
1299 
1300 		if (unlikely(dentry->d_flags & DCACHE_DENTRY_CURSOR))
1301 			continue;
1302 
1303 		spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1304 
1305 		ret = enter(data, dentry);
1306 		switch (ret) {
1307 		case D_WALK_CONTINUE:
1308 			break;
1309 		case D_WALK_QUIT:
1310 			spin_unlock(&dentry->d_lock);
1311 			goto out_unlock;
1312 		case D_WALK_NORETRY:
1313 			retry = false;
1314 			break;
1315 		case D_WALK_SKIP:
1316 			spin_unlock(&dentry->d_lock);
1317 			continue;
1318 		}
1319 
1320 		if (!list_empty(&dentry->d_subdirs)) {
1321 			spin_unlock(&this_parent->d_lock);
1322 			spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1323 			this_parent = dentry;
1324 			spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1325 			goto repeat;
1326 		}
1327 		spin_unlock(&dentry->d_lock);
1328 	}
1329 	/*
1330 	 * All done at this level ... ascend and resume the search.
1331 	 */
1332 	rcu_read_lock();
1333 ascend:
1334 	if (this_parent != parent) {
1335 		struct dentry *child = this_parent;
1336 		this_parent = child->d_parent;
1337 
1338 		spin_unlock(&child->d_lock);
1339 		spin_lock(&this_parent->d_lock);
1340 
1341 		/* might go back up the wrong parent if we have had a rename. */
1342 		if (need_seqretry(&rename_lock, seq))
1343 			goto rename_retry;
1344 		/* go into the first sibling still alive */
1345 		do {
1346 			next = child->d_child.next;
1347 			if (next == &this_parent->d_subdirs)
1348 				goto ascend;
1349 			child = list_entry(next, struct dentry, d_child);
1350 		} while (unlikely(child->d_flags & DCACHE_DENTRY_KILLED));
1351 		rcu_read_unlock();
1352 		goto resume;
1353 	}
1354 	if (need_seqretry(&rename_lock, seq))
1355 		goto rename_retry;
1356 	rcu_read_unlock();
1357 
1358 out_unlock:
1359 	spin_unlock(&this_parent->d_lock);
1360 	done_seqretry(&rename_lock, seq);
1361 	return;
1362 
1363 rename_retry:
1364 	spin_unlock(&this_parent->d_lock);
1365 	rcu_read_unlock();
1366 	BUG_ON(seq & 1);
1367 	if (!retry)
1368 		return;
1369 	seq = 1;
1370 	goto again;
1371 }
1372 
1373 struct check_mount {
1374 	struct vfsmount *mnt;
1375 	unsigned int mounted;
1376 };
1377 
1378 static enum d_walk_ret path_check_mount(void *data, struct dentry *dentry)
1379 {
1380 	struct check_mount *info = data;
1381 	struct path path = { .mnt = info->mnt, .dentry = dentry };
1382 
1383 	if (likely(!d_mountpoint(dentry)))
1384 		return D_WALK_CONTINUE;
1385 	if (__path_is_mountpoint(&path)) {
1386 		info->mounted = 1;
1387 		return D_WALK_QUIT;
1388 	}
1389 	return D_WALK_CONTINUE;
1390 }
1391 
1392 /**
1393  * path_has_submounts - check for mounts over a dentry in the
1394  *                      current namespace.
1395  * @parent: path to check.
1396  *
1397  * Return true if the parent or its subdirectories contain
1398  * a mount point in the current namespace.
1399  */
1400 int path_has_submounts(const struct path *parent)
1401 {
1402 	struct check_mount data = { .mnt = parent->mnt, .mounted = 0 };
1403 
1404 	read_seqlock_excl(&mount_lock);
1405 	d_walk(parent->dentry, &data, path_check_mount);
1406 	read_sequnlock_excl(&mount_lock);
1407 
1408 	return data.mounted;
1409 }
1410 EXPORT_SYMBOL(path_has_submounts);
1411 
1412 /*
1413  * Called by mount code to set a mountpoint and check if the mountpoint is
1414  * reachable (e.g. NFS can unhash a directory dentry and then the complete
1415  * subtree can become unreachable).
1416  *
1417  * Only one of d_invalidate() and d_set_mounted() must succeed.  For
1418  * this reason take rename_lock and d_lock on dentry and ancestors.
1419  */
1420 int d_set_mounted(struct dentry *dentry)
1421 {
1422 	struct dentry *p;
1423 	int ret = -ENOENT;
1424 	write_seqlock(&rename_lock);
1425 	for (p = dentry->d_parent; !IS_ROOT(p); p = p->d_parent) {
1426 		/* Need exclusion wrt. d_invalidate() */
1427 		spin_lock(&p->d_lock);
1428 		if (unlikely(d_unhashed(p))) {
1429 			spin_unlock(&p->d_lock);
1430 			goto out;
1431 		}
1432 		spin_unlock(&p->d_lock);
1433 	}
1434 	spin_lock(&dentry->d_lock);
1435 	if (!d_unlinked(dentry)) {
1436 		ret = -EBUSY;
1437 		if (!d_mountpoint(dentry)) {
1438 			dentry->d_flags |= DCACHE_MOUNTED;
1439 			ret = 0;
1440 		}
1441 	}
1442  	spin_unlock(&dentry->d_lock);
1443 out:
1444 	write_sequnlock(&rename_lock);
1445 	return ret;
1446 }
1447 
1448 /*
1449  * Search the dentry child list of the specified parent,
1450  * and move any unused dentries to the end of the unused
1451  * list for prune_dcache(). We descend to the next level
1452  * whenever the d_subdirs list is non-empty and continue
1453  * searching.
1454  *
1455  * It returns zero iff there are no unused children,
1456  * otherwise  it returns the number of children moved to
1457  * the end of the unused list. This may not be the total
1458  * number of unused children, because select_parent can
1459  * drop the lock and return early due to latency
1460  * constraints.
1461  */
1462 
1463 struct select_data {
1464 	struct dentry *start;
1465 	union {
1466 		long found;
1467 		struct dentry *victim;
1468 	};
1469 	struct list_head dispose;
1470 };
1471 
1472 static enum d_walk_ret select_collect(void *_data, struct dentry *dentry)
1473 {
1474 	struct select_data *data = _data;
1475 	enum d_walk_ret ret = D_WALK_CONTINUE;
1476 
1477 	if (data->start == dentry)
1478 		goto out;
1479 
1480 	if (dentry->d_flags & DCACHE_SHRINK_LIST) {
1481 		data->found++;
1482 	} else {
1483 		if (dentry->d_flags & DCACHE_LRU_LIST)
1484 			d_lru_del(dentry);
1485 		if (!dentry->d_lockref.count) {
1486 			d_shrink_add(dentry, &data->dispose);
1487 			data->found++;
1488 		}
1489 	}
1490 	/*
1491 	 * We can return to the caller if we have found some (this
1492 	 * ensures forward progress). We'll be coming back to find
1493 	 * the rest.
1494 	 */
1495 	if (!list_empty(&data->dispose))
1496 		ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY;
1497 out:
1498 	return ret;
1499 }
1500 
1501 static enum d_walk_ret select_collect2(void *_data, struct dentry *dentry)
1502 {
1503 	struct select_data *data = _data;
1504 	enum d_walk_ret ret = D_WALK_CONTINUE;
1505 
1506 	if (data->start == dentry)
1507 		goto out;
1508 
1509 	if (dentry->d_flags & DCACHE_SHRINK_LIST) {
1510 		if (!dentry->d_lockref.count) {
1511 			rcu_read_lock();
1512 			data->victim = dentry;
1513 			return D_WALK_QUIT;
1514 		}
1515 	} else {
1516 		if (dentry->d_flags & DCACHE_LRU_LIST)
1517 			d_lru_del(dentry);
1518 		if (!dentry->d_lockref.count)
1519 			d_shrink_add(dentry, &data->dispose);
1520 	}
1521 	/*
1522 	 * We can return to the caller if we have found some (this
1523 	 * ensures forward progress). We'll be coming back to find
1524 	 * the rest.
1525 	 */
1526 	if (!list_empty(&data->dispose))
1527 		ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY;
1528 out:
1529 	return ret;
1530 }
1531 
1532 /**
1533  * shrink_dcache_parent - prune dcache
1534  * @parent: parent of entries to prune
1535  *
1536  * Prune the dcache to remove unused children of the parent dentry.
1537  */
1538 void shrink_dcache_parent(struct dentry *parent)
1539 {
1540 	for (;;) {
1541 		struct select_data data = {.start = parent};
1542 
1543 		INIT_LIST_HEAD(&data.dispose);
1544 		d_walk(parent, &data, select_collect);
1545 
1546 		if (!list_empty(&data.dispose)) {
1547 			shrink_dentry_list(&data.dispose);
1548 			continue;
1549 		}
1550 
1551 		cond_resched();
1552 		if (!data.found)
1553 			break;
1554 		data.victim = NULL;
1555 		d_walk(parent, &data, select_collect2);
1556 		if (data.victim) {
1557 			struct dentry *parent;
1558 			spin_lock(&data.victim->d_lock);
1559 			if (!shrink_lock_dentry(data.victim)) {
1560 				spin_unlock(&data.victim->d_lock);
1561 				rcu_read_unlock();
1562 			} else {
1563 				rcu_read_unlock();
1564 				parent = data.victim->d_parent;
1565 				if (parent != data.victim)
1566 					__dput_to_list(parent, &data.dispose);
1567 				__dentry_kill(data.victim);
1568 			}
1569 		}
1570 		if (!list_empty(&data.dispose))
1571 			shrink_dentry_list(&data.dispose);
1572 	}
1573 }
1574 EXPORT_SYMBOL(shrink_dcache_parent);
1575 
1576 static enum d_walk_ret umount_check(void *_data, struct dentry *dentry)
1577 {
1578 	/* it has busy descendents; complain about those instead */
1579 	if (!list_empty(&dentry->d_subdirs))
1580 		return D_WALK_CONTINUE;
1581 
1582 	/* root with refcount 1 is fine */
1583 	if (dentry == _data && dentry->d_lockref.count == 1)
1584 		return D_WALK_CONTINUE;
1585 
1586 	printk(KERN_ERR "BUG: Dentry %p{i=%lx,n=%pd} "
1587 			" still in use (%d) [unmount of %s %s]\n",
1588 		       dentry,
1589 		       dentry->d_inode ?
1590 		       dentry->d_inode->i_ino : 0UL,
1591 		       dentry,
1592 		       dentry->d_lockref.count,
1593 		       dentry->d_sb->s_type->name,
1594 		       dentry->d_sb->s_id);
1595 	WARN_ON(1);
1596 	return D_WALK_CONTINUE;
1597 }
1598 
1599 static void do_one_tree(struct dentry *dentry)
1600 {
1601 	shrink_dcache_parent(dentry);
1602 	d_walk(dentry, dentry, umount_check);
1603 	d_drop(dentry);
1604 	dput(dentry);
1605 }
1606 
1607 /*
1608  * destroy the dentries attached to a superblock on unmounting
1609  */
1610 void shrink_dcache_for_umount(struct super_block *sb)
1611 {
1612 	struct dentry *dentry;
1613 
1614 	WARN(down_read_trylock(&sb->s_umount), "s_umount should've been locked");
1615 
1616 	dentry = sb->s_root;
1617 	sb->s_root = NULL;
1618 	do_one_tree(dentry);
1619 
1620 	while (!hlist_bl_empty(&sb->s_roots)) {
1621 		dentry = dget(hlist_bl_entry(hlist_bl_first(&sb->s_roots), struct dentry, d_hash));
1622 		do_one_tree(dentry);
1623 	}
1624 }
1625 
1626 static enum d_walk_ret find_submount(void *_data, struct dentry *dentry)
1627 {
1628 	struct dentry **victim = _data;
1629 	if (d_mountpoint(dentry)) {
1630 		__dget_dlock(dentry);
1631 		*victim = dentry;
1632 		return D_WALK_QUIT;
1633 	}
1634 	return D_WALK_CONTINUE;
1635 }
1636 
1637 /**
1638  * d_invalidate - detach submounts, prune dcache, and drop
1639  * @dentry: dentry to invalidate (aka detach, prune and drop)
1640  */
1641 void d_invalidate(struct dentry *dentry)
1642 {
1643 	bool had_submounts = false;
1644 	spin_lock(&dentry->d_lock);
1645 	if (d_unhashed(dentry)) {
1646 		spin_unlock(&dentry->d_lock);
1647 		return;
1648 	}
1649 	__d_drop(dentry);
1650 	spin_unlock(&dentry->d_lock);
1651 
1652 	/* Negative dentries can be dropped without further checks */
1653 	if (!dentry->d_inode)
1654 		return;
1655 
1656 	shrink_dcache_parent(dentry);
1657 	for (;;) {
1658 		struct dentry *victim = NULL;
1659 		d_walk(dentry, &victim, find_submount);
1660 		if (!victim) {
1661 			if (had_submounts)
1662 				shrink_dcache_parent(dentry);
1663 			return;
1664 		}
1665 		had_submounts = true;
1666 		detach_mounts(victim);
1667 		dput(victim);
1668 	}
1669 }
1670 EXPORT_SYMBOL(d_invalidate);
1671 
1672 /**
1673  * __d_alloc	-	allocate a dcache entry
1674  * @sb: filesystem it will belong to
1675  * @name: qstr of the name
1676  *
1677  * Allocates a dentry. It returns %NULL if there is insufficient memory
1678  * available. On a success the dentry is returned. The name passed in is
1679  * copied and the copy passed in may be reused after this call.
1680  */
1681 
1682 struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name)
1683 {
1684 	struct dentry *dentry;
1685 	char *dname;
1686 	int err;
1687 
1688 	dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
1689 	if (!dentry)
1690 		return NULL;
1691 
1692 	/*
1693 	 * We guarantee that the inline name is always NUL-terminated.
1694 	 * This way the memcpy() done by the name switching in rename
1695 	 * will still always have a NUL at the end, even if we might
1696 	 * be overwriting an internal NUL character
1697 	 */
1698 	dentry->d_iname[DNAME_INLINE_LEN-1] = 0;
1699 	if (unlikely(!name)) {
1700 		name = &slash_name;
1701 		dname = dentry->d_iname;
1702 	} else if (name->len > DNAME_INLINE_LEN-1) {
1703 		size_t size = offsetof(struct external_name, name[1]);
1704 		struct external_name *p = kmalloc(size + name->len,
1705 						  GFP_KERNEL_ACCOUNT |
1706 						  __GFP_RECLAIMABLE);
1707 		if (!p) {
1708 			kmem_cache_free(dentry_cache, dentry);
1709 			return NULL;
1710 		}
1711 		atomic_set(&p->u.count, 1);
1712 		dname = p->name;
1713 	} else  {
1714 		dname = dentry->d_iname;
1715 	}
1716 
1717 	dentry->d_name.len = name->len;
1718 	dentry->d_name.hash = name->hash;
1719 	memcpy(dname, name->name, name->len);
1720 	dname[name->len] = 0;
1721 
1722 	/* Make sure we always see the terminating NUL character */
1723 	smp_store_release(&dentry->d_name.name, dname); /* ^^^ */
1724 
1725 	dentry->d_lockref.count = 1;
1726 	dentry->d_flags = 0;
1727 	spin_lock_init(&dentry->d_lock);
1728 	seqcount_init(&dentry->d_seq);
1729 	dentry->d_inode = NULL;
1730 	dentry->d_parent = dentry;
1731 	dentry->d_sb = sb;
1732 	dentry->d_op = NULL;
1733 	dentry->d_fsdata = NULL;
1734 	INIT_HLIST_BL_NODE(&dentry->d_hash);
1735 	INIT_LIST_HEAD(&dentry->d_lru);
1736 	INIT_LIST_HEAD(&dentry->d_subdirs);
1737 	INIT_HLIST_NODE(&dentry->d_u.d_alias);
1738 	INIT_LIST_HEAD(&dentry->d_child);
1739 	d_set_d_op(dentry, dentry->d_sb->s_d_op);
1740 
1741 	if (dentry->d_op && dentry->d_op->d_init) {
1742 		err = dentry->d_op->d_init(dentry);
1743 		if (err) {
1744 			if (dname_external(dentry))
1745 				kfree(external_name(dentry));
1746 			kmem_cache_free(dentry_cache, dentry);
1747 			return NULL;
1748 		}
1749 	}
1750 
1751 	this_cpu_inc(nr_dentry);
1752 
1753 	return dentry;
1754 }
1755 
1756 /**
1757  * d_alloc	-	allocate a dcache entry
1758  * @parent: parent of entry to allocate
1759  * @name: qstr of the name
1760  *
1761  * Allocates a dentry. It returns %NULL if there is insufficient memory
1762  * available. On a success the dentry is returned. The name passed in is
1763  * copied and the copy passed in may be reused after this call.
1764  */
1765 struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1766 {
1767 	struct dentry *dentry = __d_alloc(parent->d_sb, name);
1768 	if (!dentry)
1769 		return NULL;
1770 	spin_lock(&parent->d_lock);
1771 	/*
1772 	 * don't need child lock because it is not subject
1773 	 * to concurrency here
1774 	 */
1775 	__dget_dlock(parent);
1776 	dentry->d_parent = parent;
1777 	list_add(&dentry->d_child, &parent->d_subdirs);
1778 	spin_unlock(&parent->d_lock);
1779 
1780 	return dentry;
1781 }
1782 EXPORT_SYMBOL(d_alloc);
1783 
1784 struct dentry *d_alloc_anon(struct super_block *sb)
1785 {
1786 	return __d_alloc(sb, NULL);
1787 }
1788 EXPORT_SYMBOL(d_alloc_anon);
1789 
1790 struct dentry *d_alloc_cursor(struct dentry * parent)
1791 {
1792 	struct dentry *dentry = d_alloc_anon(parent->d_sb);
1793 	if (dentry) {
1794 		dentry->d_flags |= DCACHE_DENTRY_CURSOR;
1795 		dentry->d_parent = dget(parent);
1796 	}
1797 	return dentry;
1798 }
1799 
1800 /**
1801  * d_alloc_pseudo - allocate a dentry (for lookup-less filesystems)
1802  * @sb: the superblock
1803  * @name: qstr of the name
1804  *
1805  * For a filesystem that just pins its dentries in memory and never
1806  * performs lookups at all, return an unhashed IS_ROOT dentry.
1807  * This is used for pipes, sockets et.al. - the stuff that should
1808  * never be anyone's children or parents.  Unlike all other
1809  * dentries, these will not have RCU delay between dropping the
1810  * last reference and freeing them.
1811  *
1812  * The only user is alloc_file_pseudo() and that's what should
1813  * be considered a public interface.  Don't use directly.
1814  */
1815 struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
1816 {
1817 	struct dentry *dentry = __d_alloc(sb, name);
1818 	if (likely(dentry))
1819 		dentry->d_flags |= DCACHE_NORCU;
1820 	return dentry;
1821 }
1822 
1823 struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1824 {
1825 	struct qstr q;
1826 
1827 	q.name = name;
1828 	q.hash_len = hashlen_string(parent, name);
1829 	return d_alloc(parent, &q);
1830 }
1831 EXPORT_SYMBOL(d_alloc_name);
1832 
1833 void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1834 {
1835 	WARN_ON_ONCE(dentry->d_op);
1836 	WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH	|
1837 				DCACHE_OP_COMPARE	|
1838 				DCACHE_OP_REVALIDATE	|
1839 				DCACHE_OP_WEAK_REVALIDATE	|
1840 				DCACHE_OP_DELETE	|
1841 				DCACHE_OP_REAL));
1842 	dentry->d_op = op;
1843 	if (!op)
1844 		return;
1845 	if (op->d_hash)
1846 		dentry->d_flags |= DCACHE_OP_HASH;
1847 	if (op->d_compare)
1848 		dentry->d_flags |= DCACHE_OP_COMPARE;
1849 	if (op->d_revalidate)
1850 		dentry->d_flags |= DCACHE_OP_REVALIDATE;
1851 	if (op->d_weak_revalidate)
1852 		dentry->d_flags |= DCACHE_OP_WEAK_REVALIDATE;
1853 	if (op->d_delete)
1854 		dentry->d_flags |= DCACHE_OP_DELETE;
1855 	if (op->d_prune)
1856 		dentry->d_flags |= DCACHE_OP_PRUNE;
1857 	if (op->d_real)
1858 		dentry->d_flags |= DCACHE_OP_REAL;
1859 
1860 }
1861 EXPORT_SYMBOL(d_set_d_op);
1862 
1863 
1864 /*
1865  * d_set_fallthru - Mark a dentry as falling through to a lower layer
1866  * @dentry - The dentry to mark
1867  *
1868  * Mark a dentry as falling through to the lower layer (as set with
1869  * d_pin_lower()).  This flag may be recorded on the medium.
1870  */
1871 void d_set_fallthru(struct dentry *dentry)
1872 {
1873 	spin_lock(&dentry->d_lock);
1874 	dentry->d_flags |= DCACHE_FALLTHRU;
1875 	spin_unlock(&dentry->d_lock);
1876 }
1877 EXPORT_SYMBOL(d_set_fallthru);
1878 
1879 static unsigned d_flags_for_inode(struct inode *inode)
1880 {
1881 	unsigned add_flags = DCACHE_REGULAR_TYPE;
1882 
1883 	if (!inode)
1884 		return DCACHE_MISS_TYPE;
1885 
1886 	if (S_ISDIR(inode->i_mode)) {
1887 		add_flags = DCACHE_DIRECTORY_TYPE;
1888 		if (unlikely(!(inode->i_opflags & IOP_LOOKUP))) {
1889 			if (unlikely(!inode->i_op->lookup))
1890 				add_flags = DCACHE_AUTODIR_TYPE;
1891 			else
1892 				inode->i_opflags |= IOP_LOOKUP;
1893 		}
1894 		goto type_determined;
1895 	}
1896 
1897 	if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) {
1898 		if (unlikely(inode->i_op->get_link)) {
1899 			add_flags = DCACHE_SYMLINK_TYPE;
1900 			goto type_determined;
1901 		}
1902 		inode->i_opflags |= IOP_NOFOLLOW;
1903 	}
1904 
1905 	if (unlikely(!S_ISREG(inode->i_mode)))
1906 		add_flags = DCACHE_SPECIAL_TYPE;
1907 
1908 type_determined:
1909 	if (unlikely(IS_AUTOMOUNT(inode)))
1910 		add_flags |= DCACHE_NEED_AUTOMOUNT;
1911 	return add_flags;
1912 }
1913 
1914 static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1915 {
1916 	unsigned add_flags = d_flags_for_inode(inode);
1917 	WARN_ON(d_in_lookup(dentry));
1918 
1919 	spin_lock(&dentry->d_lock);
1920 	/*
1921 	 * Decrement negative dentry count if it was in the LRU list.
1922 	 */
1923 	if (dentry->d_flags & DCACHE_LRU_LIST)
1924 		this_cpu_dec(nr_dentry_negative);
1925 	hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
1926 	raw_write_seqcount_begin(&dentry->d_seq);
1927 	__d_set_inode_and_type(dentry, inode, add_flags);
1928 	raw_write_seqcount_end(&dentry->d_seq);
1929 	fsnotify_update_flags(dentry);
1930 	spin_unlock(&dentry->d_lock);
1931 }
1932 
1933 /**
1934  * d_instantiate - fill in inode information for a dentry
1935  * @entry: dentry to complete
1936  * @inode: inode to attach to this dentry
1937  *
1938  * Fill in inode information in the entry.
1939  *
1940  * This turns negative dentries into productive full members
1941  * of society.
1942  *
1943  * NOTE! This assumes that the inode count has been incremented
1944  * (or otherwise set) by the caller to indicate that it is now
1945  * in use by the dcache.
1946  */
1947 
1948 void d_instantiate(struct dentry *entry, struct inode * inode)
1949 {
1950 	BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
1951 	if (inode) {
1952 		security_d_instantiate(entry, inode);
1953 		spin_lock(&inode->i_lock);
1954 		__d_instantiate(entry, inode);
1955 		spin_unlock(&inode->i_lock);
1956 	}
1957 }
1958 EXPORT_SYMBOL(d_instantiate);
1959 
1960 /*
1961  * This should be equivalent to d_instantiate() + unlock_new_inode(),
1962  * with lockdep-related part of unlock_new_inode() done before
1963  * anything else.  Use that instead of open-coding d_instantiate()/
1964  * unlock_new_inode() combinations.
1965  */
1966 void d_instantiate_new(struct dentry *entry, struct inode *inode)
1967 {
1968 	BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
1969 	BUG_ON(!inode);
1970 	lockdep_annotate_inode_mutex_key(inode);
1971 	security_d_instantiate(entry, inode);
1972 	spin_lock(&inode->i_lock);
1973 	__d_instantiate(entry, inode);
1974 	WARN_ON(!(inode->i_state & I_NEW));
1975 	inode->i_state &= ~I_NEW & ~I_CREATING;
1976 	smp_mb();
1977 	wake_up_bit(&inode->i_state, __I_NEW);
1978 	spin_unlock(&inode->i_lock);
1979 }
1980 EXPORT_SYMBOL(d_instantiate_new);
1981 
1982 struct dentry *d_make_root(struct inode *root_inode)
1983 {
1984 	struct dentry *res = NULL;
1985 
1986 	if (root_inode) {
1987 		res = d_alloc_anon(root_inode->i_sb);
1988 		if (res)
1989 			d_instantiate(res, root_inode);
1990 		else
1991 			iput(root_inode);
1992 	}
1993 	return res;
1994 }
1995 EXPORT_SYMBOL(d_make_root);
1996 
1997 static struct dentry *__d_instantiate_anon(struct dentry *dentry,
1998 					   struct inode *inode,
1999 					   bool disconnected)
2000 {
2001 	struct dentry *res;
2002 	unsigned add_flags;
2003 
2004 	security_d_instantiate(dentry, inode);
2005 	spin_lock(&inode->i_lock);
2006 	res = __d_find_any_alias(inode);
2007 	if (res) {
2008 		spin_unlock(&inode->i_lock);
2009 		dput(dentry);
2010 		goto out_iput;
2011 	}
2012 
2013 	/* attach a disconnected dentry */
2014 	add_flags = d_flags_for_inode(inode);
2015 
2016 	if (disconnected)
2017 		add_flags |= DCACHE_DISCONNECTED;
2018 
2019 	spin_lock(&dentry->d_lock);
2020 	__d_set_inode_and_type(dentry, inode, add_flags);
2021 	hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
2022 	if (!disconnected) {
2023 		hlist_bl_lock(&dentry->d_sb->s_roots);
2024 		hlist_bl_add_head(&dentry->d_hash, &dentry->d_sb->s_roots);
2025 		hlist_bl_unlock(&dentry->d_sb->s_roots);
2026 	}
2027 	spin_unlock(&dentry->d_lock);
2028 	spin_unlock(&inode->i_lock);
2029 
2030 	return dentry;
2031 
2032  out_iput:
2033 	iput(inode);
2034 	return res;
2035 }
2036 
2037 struct dentry *d_instantiate_anon(struct dentry *dentry, struct inode *inode)
2038 {
2039 	return __d_instantiate_anon(dentry, inode, true);
2040 }
2041 EXPORT_SYMBOL(d_instantiate_anon);
2042 
2043 static struct dentry *__d_obtain_alias(struct inode *inode, bool disconnected)
2044 {
2045 	struct dentry *tmp;
2046 	struct dentry *res;
2047 
2048 	if (!inode)
2049 		return ERR_PTR(-ESTALE);
2050 	if (IS_ERR(inode))
2051 		return ERR_CAST(inode);
2052 
2053 	res = d_find_any_alias(inode);
2054 	if (res)
2055 		goto out_iput;
2056 
2057 	tmp = d_alloc_anon(inode->i_sb);
2058 	if (!tmp) {
2059 		res = ERR_PTR(-ENOMEM);
2060 		goto out_iput;
2061 	}
2062 
2063 	return __d_instantiate_anon(tmp, inode, disconnected);
2064 
2065 out_iput:
2066 	iput(inode);
2067 	return res;
2068 }
2069 
2070 /**
2071  * d_obtain_alias - find or allocate a DISCONNECTED dentry for a given inode
2072  * @inode: inode to allocate the dentry for
2073  *
2074  * Obtain a dentry for an inode resulting from NFS filehandle conversion or
2075  * similar open by handle operations.  The returned dentry may be anonymous,
2076  * or may have a full name (if the inode was already in the cache).
2077  *
2078  * When called on a directory inode, we must ensure that the inode only ever
2079  * has one dentry.  If a dentry is found, that is returned instead of
2080  * allocating a new one.
2081  *
2082  * On successful return, the reference to the inode has been transferred
2083  * to the dentry.  In case of an error the reference on the inode is released.
2084  * To make it easier to use in export operations a %NULL or IS_ERR inode may
2085  * be passed in and the error will be propagated to the return value,
2086  * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
2087  */
2088 struct dentry *d_obtain_alias(struct inode *inode)
2089 {
2090 	return __d_obtain_alias(inode, true);
2091 }
2092 EXPORT_SYMBOL(d_obtain_alias);
2093 
2094 /**
2095  * d_obtain_root - find or allocate a dentry for a given inode
2096  * @inode: inode to allocate the dentry for
2097  *
2098  * Obtain an IS_ROOT dentry for the root of a filesystem.
2099  *
2100  * We must ensure that directory inodes only ever have one dentry.  If a
2101  * dentry is found, that is returned instead of allocating a new one.
2102  *
2103  * On successful return, the reference to the inode has been transferred
2104  * to the dentry.  In case of an error the reference on the inode is
2105  * released.  A %NULL or IS_ERR inode may be passed in and will be the
2106  * error will be propagate to the return value, with a %NULL @inode
2107  * replaced by ERR_PTR(-ESTALE).
2108  */
2109 struct dentry *d_obtain_root(struct inode *inode)
2110 {
2111 	return __d_obtain_alias(inode, false);
2112 }
2113 EXPORT_SYMBOL(d_obtain_root);
2114 
2115 /**
2116  * d_add_ci - lookup or allocate new dentry with case-exact name
2117  * @inode:  the inode case-insensitive lookup has found
2118  * @dentry: the negative dentry that was passed to the parent's lookup func
2119  * @name:   the case-exact name to be associated with the returned dentry
2120  *
2121  * This is to avoid filling the dcache with case-insensitive names to the
2122  * same inode, only the actual correct case is stored in the dcache for
2123  * case-insensitive filesystems.
2124  *
2125  * For a case-insensitive lookup match and if the the case-exact dentry
2126  * already exists in in the dcache, use it and return it.
2127  *
2128  * If no entry exists with the exact case name, allocate new dentry with
2129  * the exact case, and return the spliced entry.
2130  */
2131 struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
2132 			struct qstr *name)
2133 {
2134 	struct dentry *found, *res;
2135 
2136 	/*
2137 	 * First check if a dentry matching the name already exists,
2138 	 * if not go ahead and create it now.
2139 	 */
2140 	found = d_hash_and_lookup(dentry->d_parent, name);
2141 	if (found) {
2142 		iput(inode);
2143 		return found;
2144 	}
2145 	if (d_in_lookup(dentry)) {
2146 		found = d_alloc_parallel(dentry->d_parent, name,
2147 					dentry->d_wait);
2148 		if (IS_ERR(found) || !d_in_lookup(found)) {
2149 			iput(inode);
2150 			return found;
2151 		}
2152 	} else {
2153 		found = d_alloc(dentry->d_parent, name);
2154 		if (!found) {
2155 			iput(inode);
2156 			return ERR_PTR(-ENOMEM);
2157 		}
2158 	}
2159 	res = d_splice_alias(inode, found);
2160 	if (res) {
2161 		dput(found);
2162 		return res;
2163 	}
2164 	return found;
2165 }
2166 EXPORT_SYMBOL(d_add_ci);
2167 
2168 
2169 static inline bool d_same_name(const struct dentry *dentry,
2170 				const struct dentry *parent,
2171 				const struct qstr *name)
2172 {
2173 	if (likely(!(parent->d_flags & DCACHE_OP_COMPARE))) {
2174 		if (dentry->d_name.len != name->len)
2175 			return false;
2176 		return dentry_cmp(dentry, name->name, name->len) == 0;
2177 	}
2178 	return parent->d_op->d_compare(dentry,
2179 				       dentry->d_name.len, dentry->d_name.name,
2180 				       name) == 0;
2181 }
2182 
2183 /**
2184  * __d_lookup_rcu - search for a dentry (racy, store-free)
2185  * @parent: parent dentry
2186  * @name: qstr of name we wish to find
2187  * @seqp: returns d_seq value at the point where the dentry was found
2188  * Returns: dentry, or NULL
2189  *
2190  * __d_lookup_rcu is the dcache lookup function for rcu-walk name
2191  * resolution (store-free path walking) design described in
2192  * Documentation/filesystems/path-lookup.txt.
2193  *
2194  * This is not to be used outside core vfs.
2195  *
2196  * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
2197  * held, and rcu_read_lock held. The returned dentry must not be stored into
2198  * without taking d_lock and checking d_seq sequence count against @seq
2199  * returned here.
2200  *
2201  * A refcount may be taken on the found dentry with the d_rcu_to_refcount
2202  * function.
2203  *
2204  * Alternatively, __d_lookup_rcu may be called again to look up the child of
2205  * the returned dentry, so long as its parent's seqlock is checked after the
2206  * child is looked up. Thus, an interlocking stepping of sequence lock checks
2207  * is formed, giving integrity down the path walk.
2208  *
2209  * NOTE! The caller *has* to check the resulting dentry against the sequence
2210  * number we've returned before using any of the resulting dentry state!
2211  */
2212 struct dentry *__d_lookup_rcu(const struct dentry *parent,
2213 				const struct qstr *name,
2214 				unsigned *seqp)
2215 {
2216 	u64 hashlen = name->hash_len;
2217 	const unsigned char *str = name->name;
2218 	struct hlist_bl_head *b = d_hash(hashlen_hash(hashlen));
2219 	struct hlist_bl_node *node;
2220 	struct dentry *dentry;
2221 
2222 	/*
2223 	 * Note: There is significant duplication with __d_lookup_rcu which is
2224 	 * required to prevent single threaded performance regressions
2225 	 * especially on architectures where smp_rmb (in seqcounts) are costly.
2226 	 * Keep the two functions in sync.
2227 	 */
2228 
2229 	/*
2230 	 * The hash list is protected using RCU.
2231 	 *
2232 	 * Carefully use d_seq when comparing a candidate dentry, to avoid
2233 	 * races with d_move().
2234 	 *
2235 	 * It is possible that concurrent renames can mess up our list
2236 	 * walk here and result in missing our dentry, resulting in the
2237 	 * false-negative result. d_lookup() protects against concurrent
2238 	 * renames using rename_lock seqlock.
2239 	 *
2240 	 * See Documentation/filesystems/path-lookup.txt for more details.
2241 	 */
2242 	hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2243 		unsigned seq;
2244 
2245 seqretry:
2246 		/*
2247 		 * The dentry sequence count protects us from concurrent
2248 		 * renames, and thus protects parent and name fields.
2249 		 *
2250 		 * The caller must perform a seqcount check in order
2251 		 * to do anything useful with the returned dentry.
2252 		 *
2253 		 * NOTE! We do a "raw" seqcount_begin here. That means that
2254 		 * we don't wait for the sequence count to stabilize if it
2255 		 * is in the middle of a sequence change. If we do the slow
2256 		 * dentry compare, we will do seqretries until it is stable,
2257 		 * and if we end up with a successful lookup, we actually
2258 		 * want to exit RCU lookup anyway.
2259 		 *
2260 		 * Note that raw_seqcount_begin still *does* smp_rmb(), so
2261 		 * we are still guaranteed NUL-termination of ->d_name.name.
2262 		 */
2263 		seq = raw_seqcount_begin(&dentry->d_seq);
2264 		if (dentry->d_parent != parent)
2265 			continue;
2266 		if (d_unhashed(dentry))
2267 			continue;
2268 
2269 		if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) {
2270 			int tlen;
2271 			const char *tname;
2272 			if (dentry->d_name.hash != hashlen_hash(hashlen))
2273 				continue;
2274 			tlen = dentry->d_name.len;
2275 			tname = dentry->d_name.name;
2276 			/* we want a consistent (name,len) pair */
2277 			if (read_seqcount_retry(&dentry->d_seq, seq)) {
2278 				cpu_relax();
2279 				goto seqretry;
2280 			}
2281 			if (parent->d_op->d_compare(dentry,
2282 						    tlen, tname, name) != 0)
2283 				continue;
2284 		} else {
2285 			if (dentry->d_name.hash_len != hashlen)
2286 				continue;
2287 			if (dentry_cmp(dentry, str, hashlen_len(hashlen)) != 0)
2288 				continue;
2289 		}
2290 		*seqp = seq;
2291 		return dentry;
2292 	}
2293 	return NULL;
2294 }
2295 
2296 /**
2297  * d_lookup - search for a dentry
2298  * @parent: parent dentry
2299  * @name: qstr of name we wish to find
2300  * Returns: dentry, or NULL
2301  *
2302  * d_lookup searches the children of the parent dentry for the name in
2303  * question. If the dentry is found its reference count is incremented and the
2304  * dentry is returned. The caller must use dput to free the entry when it has
2305  * finished using it. %NULL is returned if the dentry does not exist.
2306  */
2307 struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name)
2308 {
2309 	struct dentry *dentry;
2310 	unsigned seq;
2311 
2312 	do {
2313 		seq = read_seqbegin(&rename_lock);
2314 		dentry = __d_lookup(parent, name);
2315 		if (dentry)
2316 			break;
2317 	} while (read_seqretry(&rename_lock, seq));
2318 	return dentry;
2319 }
2320 EXPORT_SYMBOL(d_lookup);
2321 
2322 /**
2323  * __d_lookup - search for a dentry (racy)
2324  * @parent: parent dentry
2325  * @name: qstr of name we wish to find
2326  * Returns: dentry, or NULL
2327  *
2328  * __d_lookup is like d_lookup, however it may (rarely) return a
2329  * false-negative result due to unrelated rename activity.
2330  *
2331  * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
2332  * however it must be used carefully, eg. with a following d_lookup in
2333  * the case of failure.
2334  *
2335  * __d_lookup callers must be commented.
2336  */
2337 struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name)
2338 {
2339 	unsigned int hash = name->hash;
2340 	struct hlist_bl_head *b = d_hash(hash);
2341 	struct hlist_bl_node *node;
2342 	struct dentry *found = NULL;
2343 	struct dentry *dentry;
2344 
2345 	/*
2346 	 * Note: There is significant duplication with __d_lookup_rcu which is
2347 	 * required to prevent single threaded performance regressions
2348 	 * especially on architectures where smp_rmb (in seqcounts) are costly.
2349 	 * Keep the two functions in sync.
2350 	 */
2351 
2352 	/*
2353 	 * The hash list is protected using RCU.
2354 	 *
2355 	 * Take d_lock when comparing a candidate dentry, to avoid races
2356 	 * with d_move().
2357 	 *
2358 	 * It is possible that concurrent renames can mess up our list
2359 	 * walk here and result in missing our dentry, resulting in the
2360 	 * false-negative result. d_lookup() protects against concurrent
2361 	 * renames using rename_lock seqlock.
2362 	 *
2363 	 * See Documentation/filesystems/path-lookup.txt for more details.
2364 	 */
2365 	rcu_read_lock();
2366 
2367 	hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2368 
2369 		if (dentry->d_name.hash != hash)
2370 			continue;
2371 
2372 		spin_lock(&dentry->d_lock);
2373 		if (dentry->d_parent != parent)
2374 			goto next;
2375 		if (d_unhashed(dentry))
2376 			goto next;
2377 
2378 		if (!d_same_name(dentry, parent, name))
2379 			goto next;
2380 
2381 		dentry->d_lockref.count++;
2382 		found = dentry;
2383 		spin_unlock(&dentry->d_lock);
2384 		break;
2385 next:
2386 		spin_unlock(&dentry->d_lock);
2387  	}
2388  	rcu_read_unlock();
2389 
2390  	return found;
2391 }
2392 
2393 /**
2394  * d_hash_and_lookup - hash the qstr then search for a dentry
2395  * @dir: Directory to search in
2396  * @name: qstr of name we wish to find
2397  *
2398  * On lookup failure NULL is returned; on bad name - ERR_PTR(-error)
2399  */
2400 struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
2401 {
2402 	/*
2403 	 * Check for a fs-specific hash function. Note that we must
2404 	 * calculate the standard hash first, as the d_op->d_hash()
2405 	 * routine may choose to leave the hash value unchanged.
2406 	 */
2407 	name->hash = full_name_hash(dir, name->name, name->len);
2408 	if (dir->d_flags & DCACHE_OP_HASH) {
2409 		int err = dir->d_op->d_hash(dir, name);
2410 		if (unlikely(err < 0))
2411 			return ERR_PTR(err);
2412 	}
2413 	return d_lookup(dir, name);
2414 }
2415 EXPORT_SYMBOL(d_hash_and_lookup);
2416 
2417 /*
2418  * When a file is deleted, we have two options:
2419  * - turn this dentry into a negative dentry
2420  * - unhash this dentry and free it.
2421  *
2422  * Usually, we want to just turn this into
2423  * a negative dentry, but if anybody else is
2424  * currently using the dentry or the inode
2425  * we can't do that and we fall back on removing
2426  * it from the hash queues and waiting for
2427  * it to be deleted later when it has no users
2428  */
2429 
2430 /**
2431  * d_delete - delete a dentry
2432  * @dentry: The dentry to delete
2433  *
2434  * Turn the dentry into a negative dentry if possible, otherwise
2435  * remove it from the hash queues so it can be deleted later
2436  */
2437 
2438 void d_delete(struct dentry * dentry)
2439 {
2440 	struct inode *inode = dentry->d_inode;
2441 
2442 	spin_lock(&inode->i_lock);
2443 	spin_lock(&dentry->d_lock);
2444 	/*
2445 	 * Are we the only user?
2446 	 */
2447 	if (dentry->d_lockref.count == 1) {
2448 		dentry->d_flags &= ~DCACHE_CANT_MOUNT;
2449 		dentry_unlink_inode(dentry);
2450 	} else {
2451 		__d_drop(dentry);
2452 		spin_unlock(&dentry->d_lock);
2453 		spin_unlock(&inode->i_lock);
2454 	}
2455 }
2456 EXPORT_SYMBOL(d_delete);
2457 
2458 static void __d_rehash(struct dentry *entry)
2459 {
2460 	struct hlist_bl_head *b = d_hash(entry->d_name.hash);
2461 
2462 	hlist_bl_lock(b);
2463 	hlist_bl_add_head_rcu(&entry->d_hash, b);
2464 	hlist_bl_unlock(b);
2465 }
2466 
2467 /**
2468  * d_rehash	- add an entry back to the hash
2469  * @entry: dentry to add to the hash
2470  *
2471  * Adds a dentry to the hash according to its name.
2472  */
2473 
2474 void d_rehash(struct dentry * entry)
2475 {
2476 	spin_lock(&entry->d_lock);
2477 	__d_rehash(entry);
2478 	spin_unlock(&entry->d_lock);
2479 }
2480 EXPORT_SYMBOL(d_rehash);
2481 
2482 static inline unsigned start_dir_add(struct inode *dir)
2483 {
2484 
2485 	for (;;) {
2486 		unsigned n = dir->i_dir_seq;
2487 		if (!(n & 1) && cmpxchg(&dir->i_dir_seq, n, n + 1) == n)
2488 			return n;
2489 		cpu_relax();
2490 	}
2491 }
2492 
2493 static inline void end_dir_add(struct inode *dir, unsigned n)
2494 {
2495 	smp_store_release(&dir->i_dir_seq, n + 2);
2496 }
2497 
2498 static void d_wait_lookup(struct dentry *dentry)
2499 {
2500 	if (d_in_lookup(dentry)) {
2501 		DECLARE_WAITQUEUE(wait, current);
2502 		add_wait_queue(dentry->d_wait, &wait);
2503 		do {
2504 			set_current_state(TASK_UNINTERRUPTIBLE);
2505 			spin_unlock(&dentry->d_lock);
2506 			schedule();
2507 			spin_lock(&dentry->d_lock);
2508 		} while (d_in_lookup(dentry));
2509 	}
2510 }
2511 
2512 struct dentry *d_alloc_parallel(struct dentry *parent,
2513 				const struct qstr *name,
2514 				wait_queue_head_t *wq)
2515 {
2516 	unsigned int hash = name->hash;
2517 	struct hlist_bl_head *b = in_lookup_hash(parent, hash);
2518 	struct hlist_bl_node *node;
2519 	struct dentry *new = d_alloc(parent, name);
2520 	struct dentry *dentry;
2521 	unsigned seq, r_seq, d_seq;
2522 
2523 	if (unlikely(!new))
2524 		return ERR_PTR(-ENOMEM);
2525 
2526 retry:
2527 	rcu_read_lock();
2528 	seq = smp_load_acquire(&parent->d_inode->i_dir_seq);
2529 	r_seq = read_seqbegin(&rename_lock);
2530 	dentry = __d_lookup_rcu(parent, name, &d_seq);
2531 	if (unlikely(dentry)) {
2532 		if (!lockref_get_not_dead(&dentry->d_lockref)) {
2533 			rcu_read_unlock();
2534 			goto retry;
2535 		}
2536 		if (read_seqcount_retry(&dentry->d_seq, d_seq)) {
2537 			rcu_read_unlock();
2538 			dput(dentry);
2539 			goto retry;
2540 		}
2541 		rcu_read_unlock();
2542 		dput(new);
2543 		return dentry;
2544 	}
2545 	if (unlikely(read_seqretry(&rename_lock, r_seq))) {
2546 		rcu_read_unlock();
2547 		goto retry;
2548 	}
2549 
2550 	if (unlikely(seq & 1)) {
2551 		rcu_read_unlock();
2552 		goto retry;
2553 	}
2554 
2555 	hlist_bl_lock(b);
2556 	if (unlikely(READ_ONCE(parent->d_inode->i_dir_seq) != seq)) {
2557 		hlist_bl_unlock(b);
2558 		rcu_read_unlock();
2559 		goto retry;
2560 	}
2561 	/*
2562 	 * No changes for the parent since the beginning of d_lookup().
2563 	 * Since all removals from the chain happen with hlist_bl_lock(),
2564 	 * any potential in-lookup matches are going to stay here until
2565 	 * we unlock the chain.  All fields are stable in everything
2566 	 * we encounter.
2567 	 */
2568 	hlist_bl_for_each_entry(dentry, node, b, d_u.d_in_lookup_hash) {
2569 		if (dentry->d_name.hash != hash)
2570 			continue;
2571 		if (dentry->d_parent != parent)
2572 			continue;
2573 		if (!d_same_name(dentry, parent, name))
2574 			continue;
2575 		hlist_bl_unlock(b);
2576 		/* now we can try to grab a reference */
2577 		if (!lockref_get_not_dead(&dentry->d_lockref)) {
2578 			rcu_read_unlock();
2579 			goto retry;
2580 		}
2581 
2582 		rcu_read_unlock();
2583 		/*
2584 		 * somebody is likely to be still doing lookup for it;
2585 		 * wait for them to finish
2586 		 */
2587 		spin_lock(&dentry->d_lock);
2588 		d_wait_lookup(dentry);
2589 		/*
2590 		 * it's not in-lookup anymore; in principle we should repeat
2591 		 * everything from dcache lookup, but it's likely to be what
2592 		 * d_lookup() would've found anyway.  If it is, just return it;
2593 		 * otherwise we really have to repeat the whole thing.
2594 		 */
2595 		if (unlikely(dentry->d_name.hash != hash))
2596 			goto mismatch;
2597 		if (unlikely(dentry->d_parent != parent))
2598 			goto mismatch;
2599 		if (unlikely(d_unhashed(dentry)))
2600 			goto mismatch;
2601 		if (unlikely(!d_same_name(dentry, parent, name)))
2602 			goto mismatch;
2603 		/* OK, it *is* a hashed match; return it */
2604 		spin_unlock(&dentry->d_lock);
2605 		dput(new);
2606 		return dentry;
2607 	}
2608 	rcu_read_unlock();
2609 	/* we can't take ->d_lock here; it's OK, though. */
2610 	new->d_flags |= DCACHE_PAR_LOOKUP;
2611 	new->d_wait = wq;
2612 	hlist_bl_add_head_rcu(&new->d_u.d_in_lookup_hash, b);
2613 	hlist_bl_unlock(b);
2614 	return new;
2615 mismatch:
2616 	spin_unlock(&dentry->d_lock);
2617 	dput(dentry);
2618 	goto retry;
2619 }
2620 EXPORT_SYMBOL(d_alloc_parallel);
2621 
2622 void __d_lookup_done(struct dentry *dentry)
2623 {
2624 	struct hlist_bl_head *b = in_lookup_hash(dentry->d_parent,
2625 						 dentry->d_name.hash);
2626 	hlist_bl_lock(b);
2627 	dentry->d_flags &= ~DCACHE_PAR_LOOKUP;
2628 	__hlist_bl_del(&dentry->d_u.d_in_lookup_hash);
2629 	wake_up_all(dentry->d_wait);
2630 	dentry->d_wait = NULL;
2631 	hlist_bl_unlock(b);
2632 	INIT_HLIST_NODE(&dentry->d_u.d_alias);
2633 	INIT_LIST_HEAD(&dentry->d_lru);
2634 }
2635 EXPORT_SYMBOL(__d_lookup_done);
2636 
2637 /* inode->i_lock held if inode is non-NULL */
2638 
2639 static inline void __d_add(struct dentry *dentry, struct inode *inode)
2640 {
2641 	struct inode *dir = NULL;
2642 	unsigned n;
2643 	spin_lock(&dentry->d_lock);
2644 	if (unlikely(d_in_lookup(dentry))) {
2645 		dir = dentry->d_parent->d_inode;
2646 		n = start_dir_add(dir);
2647 		__d_lookup_done(dentry);
2648 	}
2649 	if (inode) {
2650 		unsigned add_flags = d_flags_for_inode(inode);
2651 		hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
2652 		raw_write_seqcount_begin(&dentry->d_seq);
2653 		__d_set_inode_and_type(dentry, inode, add_flags);
2654 		raw_write_seqcount_end(&dentry->d_seq);
2655 		fsnotify_update_flags(dentry);
2656 	}
2657 	__d_rehash(dentry);
2658 	if (dir)
2659 		end_dir_add(dir, n);
2660 	spin_unlock(&dentry->d_lock);
2661 	if (inode)
2662 		spin_unlock(&inode->i_lock);
2663 }
2664 
2665 /**
2666  * d_add - add dentry to hash queues
2667  * @entry: dentry to add
2668  * @inode: The inode to attach to this dentry
2669  *
2670  * This adds the entry to the hash queues and initializes @inode.
2671  * The entry was actually filled in earlier during d_alloc().
2672  */
2673 
2674 void d_add(struct dentry *entry, struct inode *inode)
2675 {
2676 	if (inode) {
2677 		security_d_instantiate(entry, inode);
2678 		spin_lock(&inode->i_lock);
2679 	}
2680 	__d_add(entry, inode);
2681 }
2682 EXPORT_SYMBOL(d_add);
2683 
2684 /**
2685  * d_exact_alias - find and hash an exact unhashed alias
2686  * @entry: dentry to add
2687  * @inode: The inode to go with this dentry
2688  *
2689  * If an unhashed dentry with the same name/parent and desired
2690  * inode already exists, hash and return it.  Otherwise, return
2691  * NULL.
2692  *
2693  * Parent directory should be locked.
2694  */
2695 struct dentry *d_exact_alias(struct dentry *entry, struct inode *inode)
2696 {
2697 	struct dentry *alias;
2698 	unsigned int hash = entry->d_name.hash;
2699 
2700 	spin_lock(&inode->i_lock);
2701 	hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
2702 		/*
2703 		 * Don't need alias->d_lock here, because aliases with
2704 		 * d_parent == entry->d_parent are not subject to name or
2705 		 * parent changes, because the parent inode i_mutex is held.
2706 		 */
2707 		if (alias->d_name.hash != hash)
2708 			continue;
2709 		if (alias->d_parent != entry->d_parent)
2710 			continue;
2711 		if (!d_same_name(alias, entry->d_parent, &entry->d_name))
2712 			continue;
2713 		spin_lock(&alias->d_lock);
2714 		if (!d_unhashed(alias)) {
2715 			spin_unlock(&alias->d_lock);
2716 			alias = NULL;
2717 		} else {
2718 			__dget_dlock(alias);
2719 			__d_rehash(alias);
2720 			spin_unlock(&alias->d_lock);
2721 		}
2722 		spin_unlock(&inode->i_lock);
2723 		return alias;
2724 	}
2725 	spin_unlock(&inode->i_lock);
2726 	return NULL;
2727 }
2728 EXPORT_SYMBOL(d_exact_alias);
2729 
2730 static void swap_names(struct dentry *dentry, struct dentry *target)
2731 {
2732 	if (unlikely(dname_external(target))) {
2733 		if (unlikely(dname_external(dentry))) {
2734 			/*
2735 			 * Both external: swap the pointers
2736 			 */
2737 			swap(target->d_name.name, dentry->d_name.name);
2738 		} else {
2739 			/*
2740 			 * dentry:internal, target:external.  Steal target's
2741 			 * storage and make target internal.
2742 			 */
2743 			memcpy(target->d_iname, dentry->d_name.name,
2744 					dentry->d_name.len + 1);
2745 			dentry->d_name.name = target->d_name.name;
2746 			target->d_name.name = target->d_iname;
2747 		}
2748 	} else {
2749 		if (unlikely(dname_external(dentry))) {
2750 			/*
2751 			 * dentry:external, target:internal.  Give dentry's
2752 			 * storage to target and make dentry internal
2753 			 */
2754 			memcpy(dentry->d_iname, target->d_name.name,
2755 					target->d_name.len + 1);
2756 			target->d_name.name = dentry->d_name.name;
2757 			dentry->d_name.name = dentry->d_iname;
2758 		} else {
2759 			/*
2760 			 * Both are internal.
2761 			 */
2762 			unsigned int i;
2763 			BUILD_BUG_ON(!IS_ALIGNED(DNAME_INLINE_LEN, sizeof(long)));
2764 			for (i = 0; i < DNAME_INLINE_LEN / sizeof(long); i++) {
2765 				swap(((long *) &dentry->d_iname)[i],
2766 				     ((long *) &target->d_iname)[i]);
2767 			}
2768 		}
2769 	}
2770 	swap(dentry->d_name.hash_len, target->d_name.hash_len);
2771 }
2772 
2773 static void copy_name(struct dentry *dentry, struct dentry *target)
2774 {
2775 	struct external_name *old_name = NULL;
2776 	if (unlikely(dname_external(dentry)))
2777 		old_name = external_name(dentry);
2778 	if (unlikely(dname_external(target))) {
2779 		atomic_inc(&external_name(target)->u.count);
2780 		dentry->d_name = target->d_name;
2781 	} else {
2782 		memcpy(dentry->d_iname, target->d_name.name,
2783 				target->d_name.len + 1);
2784 		dentry->d_name.name = dentry->d_iname;
2785 		dentry->d_name.hash_len = target->d_name.hash_len;
2786 	}
2787 	if (old_name && likely(atomic_dec_and_test(&old_name->u.count)))
2788 		kfree_rcu(old_name, u.head);
2789 }
2790 
2791 /*
2792  * __d_move - move a dentry
2793  * @dentry: entry to move
2794  * @target: new dentry
2795  * @exchange: exchange the two dentries
2796  *
2797  * Update the dcache to reflect the move of a file name. Negative
2798  * dcache entries should not be moved in this way. Caller must hold
2799  * rename_lock, the i_mutex of the source and target directories,
2800  * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
2801  */
2802 static void __d_move(struct dentry *dentry, struct dentry *target,
2803 		     bool exchange)
2804 {
2805 	struct dentry *old_parent, *p;
2806 	struct inode *dir = NULL;
2807 	unsigned n;
2808 
2809 	WARN_ON(!dentry->d_inode);
2810 	if (WARN_ON(dentry == target))
2811 		return;
2812 
2813 	BUG_ON(d_ancestor(target, dentry));
2814 	old_parent = dentry->d_parent;
2815 	p = d_ancestor(old_parent, target);
2816 	if (IS_ROOT(dentry)) {
2817 		BUG_ON(p);
2818 		spin_lock(&target->d_parent->d_lock);
2819 	} else if (!p) {
2820 		/* target is not a descendent of dentry->d_parent */
2821 		spin_lock(&target->d_parent->d_lock);
2822 		spin_lock_nested(&old_parent->d_lock, DENTRY_D_LOCK_NESTED);
2823 	} else {
2824 		BUG_ON(p == dentry);
2825 		spin_lock(&old_parent->d_lock);
2826 		if (p != target)
2827 			spin_lock_nested(&target->d_parent->d_lock,
2828 					DENTRY_D_LOCK_NESTED);
2829 	}
2830 	spin_lock_nested(&dentry->d_lock, 2);
2831 	spin_lock_nested(&target->d_lock, 3);
2832 
2833 	if (unlikely(d_in_lookup(target))) {
2834 		dir = target->d_parent->d_inode;
2835 		n = start_dir_add(dir);
2836 		__d_lookup_done(target);
2837 	}
2838 
2839 	write_seqcount_begin(&dentry->d_seq);
2840 	write_seqcount_begin_nested(&target->d_seq, DENTRY_D_LOCK_NESTED);
2841 
2842 	/* unhash both */
2843 	if (!d_unhashed(dentry))
2844 		___d_drop(dentry);
2845 	if (!d_unhashed(target))
2846 		___d_drop(target);
2847 
2848 	/* ... and switch them in the tree */
2849 	dentry->d_parent = target->d_parent;
2850 	if (!exchange) {
2851 		copy_name(dentry, target);
2852 		target->d_hash.pprev = NULL;
2853 		dentry->d_parent->d_lockref.count++;
2854 		if (dentry != old_parent) /* wasn't IS_ROOT */
2855 			WARN_ON(!--old_parent->d_lockref.count);
2856 	} else {
2857 		target->d_parent = old_parent;
2858 		swap_names(dentry, target);
2859 		list_move(&target->d_child, &target->d_parent->d_subdirs);
2860 		__d_rehash(target);
2861 		fsnotify_update_flags(target);
2862 	}
2863 	list_move(&dentry->d_child, &dentry->d_parent->d_subdirs);
2864 	__d_rehash(dentry);
2865 	fsnotify_update_flags(dentry);
2866 	fscrypt_handle_d_move(dentry);
2867 
2868 	write_seqcount_end(&target->d_seq);
2869 	write_seqcount_end(&dentry->d_seq);
2870 
2871 	if (dir)
2872 		end_dir_add(dir, n);
2873 
2874 	if (dentry->d_parent != old_parent)
2875 		spin_unlock(&dentry->d_parent->d_lock);
2876 	if (dentry != old_parent)
2877 		spin_unlock(&old_parent->d_lock);
2878 	spin_unlock(&target->d_lock);
2879 	spin_unlock(&dentry->d_lock);
2880 }
2881 
2882 /*
2883  * d_move - move a dentry
2884  * @dentry: entry to move
2885  * @target: new dentry
2886  *
2887  * Update the dcache to reflect the move of a file name. Negative
2888  * dcache entries should not be moved in this way. See the locking
2889  * requirements for __d_move.
2890  */
2891 void d_move(struct dentry *dentry, struct dentry *target)
2892 {
2893 	write_seqlock(&rename_lock);
2894 	__d_move(dentry, target, false);
2895 	write_sequnlock(&rename_lock);
2896 }
2897 EXPORT_SYMBOL(d_move);
2898 
2899 /*
2900  * d_exchange - exchange two dentries
2901  * @dentry1: first dentry
2902  * @dentry2: second dentry
2903  */
2904 void d_exchange(struct dentry *dentry1, struct dentry *dentry2)
2905 {
2906 	write_seqlock(&rename_lock);
2907 
2908 	WARN_ON(!dentry1->d_inode);
2909 	WARN_ON(!dentry2->d_inode);
2910 	WARN_ON(IS_ROOT(dentry1));
2911 	WARN_ON(IS_ROOT(dentry2));
2912 
2913 	__d_move(dentry1, dentry2, true);
2914 
2915 	write_sequnlock(&rename_lock);
2916 }
2917 
2918 /**
2919  * d_ancestor - search for an ancestor
2920  * @p1: ancestor dentry
2921  * @p2: child dentry
2922  *
2923  * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2924  * an ancestor of p2, else NULL.
2925  */
2926 struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
2927 {
2928 	struct dentry *p;
2929 
2930 	for (p = p2; !IS_ROOT(p); p = p->d_parent) {
2931 		if (p->d_parent == p1)
2932 			return p;
2933 	}
2934 	return NULL;
2935 }
2936 
2937 /*
2938  * This helper attempts to cope with remotely renamed directories
2939  *
2940  * It assumes that the caller is already holding
2941  * dentry->d_parent->d_inode->i_mutex, and rename_lock
2942  *
2943  * Note: If ever the locking in lock_rename() changes, then please
2944  * remember to update this too...
2945  */
2946 static int __d_unalias(struct inode *inode,
2947 		struct dentry *dentry, struct dentry *alias)
2948 {
2949 	struct mutex *m1 = NULL;
2950 	struct rw_semaphore *m2 = NULL;
2951 	int ret = -ESTALE;
2952 
2953 	/* If alias and dentry share a parent, then no extra locks required */
2954 	if (alias->d_parent == dentry->d_parent)
2955 		goto out_unalias;
2956 
2957 	/* See lock_rename() */
2958 	if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
2959 		goto out_err;
2960 	m1 = &dentry->d_sb->s_vfs_rename_mutex;
2961 	if (!inode_trylock_shared(alias->d_parent->d_inode))
2962 		goto out_err;
2963 	m2 = &alias->d_parent->d_inode->i_rwsem;
2964 out_unalias:
2965 	__d_move(alias, dentry, false);
2966 	ret = 0;
2967 out_err:
2968 	if (m2)
2969 		up_read(m2);
2970 	if (m1)
2971 		mutex_unlock(m1);
2972 	return ret;
2973 }
2974 
2975 /**
2976  * d_splice_alias - splice a disconnected dentry into the tree if one exists
2977  * @inode:  the inode which may have a disconnected dentry
2978  * @dentry: a negative dentry which we want to point to the inode.
2979  *
2980  * If inode is a directory and has an IS_ROOT alias, then d_move that in
2981  * place of the given dentry and return it, else simply d_add the inode
2982  * to the dentry and return NULL.
2983  *
2984  * If a non-IS_ROOT directory is found, the filesystem is corrupt, and
2985  * we should error out: directories can't have multiple aliases.
2986  *
2987  * This is needed in the lookup routine of any filesystem that is exportable
2988  * (via knfsd) so that we can build dcache paths to directories effectively.
2989  *
2990  * If a dentry was found and moved, then it is returned.  Otherwise NULL
2991  * is returned.  This matches the expected return value of ->lookup.
2992  *
2993  * Cluster filesystems may call this function with a negative, hashed dentry.
2994  * In that case, we know that the inode will be a regular file, and also this
2995  * will only occur during atomic_open. So we need to check for the dentry
2996  * being already hashed only in the final case.
2997  */
2998 struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
2999 {
3000 	if (IS_ERR(inode))
3001 		return ERR_CAST(inode);
3002 
3003 	BUG_ON(!d_unhashed(dentry));
3004 
3005 	if (!inode)
3006 		goto out;
3007 
3008 	security_d_instantiate(dentry, inode);
3009 	spin_lock(&inode->i_lock);
3010 	if (S_ISDIR(inode->i_mode)) {
3011 		struct dentry *new = __d_find_any_alias(inode);
3012 		if (unlikely(new)) {
3013 			/* The reference to new ensures it remains an alias */
3014 			spin_unlock(&inode->i_lock);
3015 			write_seqlock(&rename_lock);
3016 			if (unlikely(d_ancestor(new, dentry))) {
3017 				write_sequnlock(&rename_lock);
3018 				dput(new);
3019 				new = ERR_PTR(-ELOOP);
3020 				pr_warn_ratelimited(
3021 					"VFS: Lookup of '%s' in %s %s"
3022 					" would have caused loop\n",
3023 					dentry->d_name.name,
3024 					inode->i_sb->s_type->name,
3025 					inode->i_sb->s_id);
3026 			} else if (!IS_ROOT(new)) {
3027 				struct dentry *old_parent = dget(new->d_parent);
3028 				int err = __d_unalias(inode, dentry, new);
3029 				write_sequnlock(&rename_lock);
3030 				if (err) {
3031 					dput(new);
3032 					new = ERR_PTR(err);
3033 				}
3034 				dput(old_parent);
3035 			} else {
3036 				__d_move(new, dentry, false);
3037 				write_sequnlock(&rename_lock);
3038 			}
3039 			iput(inode);
3040 			return new;
3041 		}
3042 	}
3043 out:
3044 	__d_add(dentry, inode);
3045 	return NULL;
3046 }
3047 EXPORT_SYMBOL(d_splice_alias);
3048 
3049 /*
3050  * Test whether new_dentry is a subdirectory of old_dentry.
3051  *
3052  * Trivially implemented using the dcache structure
3053  */
3054 
3055 /**
3056  * is_subdir - is new dentry a subdirectory of old_dentry
3057  * @new_dentry: new dentry
3058  * @old_dentry: old dentry
3059  *
3060  * Returns true if new_dentry is a subdirectory of the parent (at any depth).
3061  * Returns false otherwise.
3062  * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
3063  */
3064 
3065 bool is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
3066 {
3067 	bool result;
3068 	unsigned seq;
3069 
3070 	if (new_dentry == old_dentry)
3071 		return true;
3072 
3073 	do {
3074 		/* for restarting inner loop in case of seq retry */
3075 		seq = read_seqbegin(&rename_lock);
3076 		/*
3077 		 * Need rcu_readlock to protect against the d_parent trashing
3078 		 * due to d_move
3079 		 */
3080 		rcu_read_lock();
3081 		if (d_ancestor(old_dentry, new_dentry))
3082 			result = true;
3083 		else
3084 			result = false;
3085 		rcu_read_unlock();
3086 	} while (read_seqretry(&rename_lock, seq));
3087 
3088 	return result;
3089 }
3090 EXPORT_SYMBOL(is_subdir);
3091 
3092 static enum d_walk_ret d_genocide_kill(void *data, struct dentry *dentry)
3093 {
3094 	struct dentry *root = data;
3095 	if (dentry != root) {
3096 		if (d_unhashed(dentry) || !dentry->d_inode)
3097 			return D_WALK_SKIP;
3098 
3099 		if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
3100 			dentry->d_flags |= DCACHE_GENOCIDE;
3101 			dentry->d_lockref.count--;
3102 		}
3103 	}
3104 	return D_WALK_CONTINUE;
3105 }
3106 
3107 void d_genocide(struct dentry *parent)
3108 {
3109 	d_walk(parent, parent, d_genocide_kill);
3110 }
3111 
3112 EXPORT_SYMBOL(d_genocide);
3113 
3114 void d_tmpfile(struct dentry *dentry, struct inode *inode)
3115 {
3116 	inode_dec_link_count(inode);
3117 	BUG_ON(dentry->d_name.name != dentry->d_iname ||
3118 		!hlist_unhashed(&dentry->d_u.d_alias) ||
3119 		!d_unlinked(dentry));
3120 	spin_lock(&dentry->d_parent->d_lock);
3121 	spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
3122 	dentry->d_name.len = sprintf(dentry->d_iname, "#%llu",
3123 				(unsigned long long)inode->i_ino);
3124 	spin_unlock(&dentry->d_lock);
3125 	spin_unlock(&dentry->d_parent->d_lock);
3126 	d_instantiate(dentry, inode);
3127 }
3128 EXPORT_SYMBOL(d_tmpfile);
3129 
3130 static __initdata unsigned long dhash_entries;
3131 static int __init set_dhash_entries(char *str)
3132 {
3133 	if (!str)
3134 		return 0;
3135 	dhash_entries = simple_strtoul(str, &str, 0);
3136 	return 1;
3137 }
3138 __setup("dhash_entries=", set_dhash_entries);
3139 
3140 static void __init dcache_init_early(void)
3141 {
3142 	/* If hashes are distributed across NUMA nodes, defer
3143 	 * hash allocation until vmalloc space is available.
3144 	 */
3145 	if (hashdist)
3146 		return;
3147 
3148 	dentry_hashtable =
3149 		alloc_large_system_hash("Dentry cache",
3150 					sizeof(struct hlist_bl_head),
3151 					dhash_entries,
3152 					13,
3153 					HASH_EARLY | HASH_ZERO,
3154 					&d_hash_shift,
3155 					NULL,
3156 					0,
3157 					0);
3158 	d_hash_shift = 32 - d_hash_shift;
3159 }
3160 
3161 static void __init dcache_init(void)
3162 {
3163 	/*
3164 	 * A constructor could be added for stable state like the lists,
3165 	 * but it is probably not worth it because of the cache nature
3166 	 * of the dcache.
3167 	 */
3168 	dentry_cache = KMEM_CACHE_USERCOPY(dentry,
3169 		SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD|SLAB_ACCOUNT,
3170 		d_iname);
3171 
3172 	/* Hash may have been set up in dcache_init_early */
3173 	if (!hashdist)
3174 		return;
3175 
3176 	dentry_hashtable =
3177 		alloc_large_system_hash("Dentry cache",
3178 					sizeof(struct hlist_bl_head),
3179 					dhash_entries,
3180 					13,
3181 					HASH_ZERO,
3182 					&d_hash_shift,
3183 					NULL,
3184 					0,
3185 					0);
3186 	d_hash_shift = 32 - d_hash_shift;
3187 }
3188 
3189 /* SLAB cache for __getname() consumers */
3190 struct kmem_cache *names_cachep __read_mostly;
3191 EXPORT_SYMBOL(names_cachep);
3192 
3193 void __init vfs_caches_init_early(void)
3194 {
3195 	int i;
3196 
3197 	for (i = 0; i < ARRAY_SIZE(in_lookup_hashtable); i++)
3198 		INIT_HLIST_BL_HEAD(&in_lookup_hashtable[i]);
3199 
3200 	dcache_init_early();
3201 	inode_init_early();
3202 }
3203 
3204 void __init vfs_caches_init(void)
3205 {
3206 	names_cachep = kmem_cache_create_usercopy("names_cache", PATH_MAX, 0,
3207 			SLAB_HWCACHE_ALIGN|SLAB_PANIC, 0, PATH_MAX, NULL);
3208 
3209 	dcache_init();
3210 	inode_init();
3211 	files_init();
3212 	files_maxfiles_init();
3213 	mnt_init();
3214 	bdev_cache_init();
3215 	chrdev_init();
3216 }
3217