xref: /openbmc/linux/fs/dcache.c (revision 4f3865fb)
1 /*
2  * fs/dcache.c
3  *
4  * Complete reimplementation
5  * (C) 1997 Thomas Schoebel-Theuer,
6  * with heavy changes by Linus Torvalds
7  */
8 
9 /*
10  * Notes on the allocation strategy:
11  *
12  * The dcache is a master of the icache - whenever a dcache entry
13  * exists, the inode will always exist. "iput()" is done either when
14  * the dcache entry is deleted or garbage collected.
15  */
16 
17 #include <linux/config.h>
18 #include <linux/syscalls.h>
19 #include <linux/string.h>
20 #include <linux/mm.h>
21 #include <linux/fs.h>
22 #include <linux/fsnotify.h>
23 #include <linux/slab.h>
24 #include <linux/init.h>
25 #include <linux/smp_lock.h>
26 #include <linux/hash.h>
27 #include <linux/cache.h>
28 #include <linux/module.h>
29 #include <linux/mount.h>
30 #include <linux/file.h>
31 #include <asm/uaccess.h>
32 #include <linux/security.h>
33 #include <linux/seqlock.h>
34 #include <linux/swap.h>
35 #include <linux/bootmem.h>
36 
37 
38 int sysctl_vfs_cache_pressure __read_mostly = 100;
39 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
40 
41  __cacheline_aligned_in_smp DEFINE_SPINLOCK(dcache_lock);
42 static seqlock_t rename_lock __cacheline_aligned_in_smp = SEQLOCK_UNLOCKED;
43 
44 EXPORT_SYMBOL(dcache_lock);
45 
46 static kmem_cache_t *dentry_cache __read_mostly;
47 
48 #define DNAME_INLINE_LEN (sizeof(struct dentry)-offsetof(struct dentry,d_iname))
49 
50 /*
51  * This is the single most critical data structure when it comes
52  * to the dcache: the hashtable for lookups. Somebody should try
53  * to make this good - I've just made it work.
54  *
55  * This hash-function tries to avoid losing too many bits of hash
56  * information, yet avoid using a prime hash-size or similar.
57  */
58 #define D_HASHBITS     d_hash_shift
59 #define D_HASHMASK     d_hash_mask
60 
61 static unsigned int d_hash_mask __read_mostly;
62 static unsigned int d_hash_shift __read_mostly;
63 static struct hlist_head *dentry_hashtable __read_mostly;
64 static LIST_HEAD(dentry_unused);
65 
66 /* Statistics gathering. */
67 struct dentry_stat_t dentry_stat = {
68 	.age_limit = 45,
69 };
70 
71 static void d_callback(struct rcu_head *head)
72 {
73 	struct dentry * dentry = container_of(head, struct dentry, d_u.d_rcu);
74 
75 	if (dname_external(dentry))
76 		kfree(dentry->d_name.name);
77 	kmem_cache_free(dentry_cache, dentry);
78 }
79 
80 /*
81  * no dcache_lock, please.  The caller must decrement dentry_stat.nr_dentry
82  * inside dcache_lock.
83  */
84 static void d_free(struct dentry *dentry)
85 {
86 	if (dentry->d_op && dentry->d_op->d_release)
87 		dentry->d_op->d_release(dentry);
88  	call_rcu(&dentry->d_u.d_rcu, d_callback);
89 }
90 
91 /*
92  * Release the dentry's inode, using the filesystem
93  * d_iput() operation if defined.
94  * Called with dcache_lock and per dentry lock held, drops both.
95  */
96 static void dentry_iput(struct dentry * dentry)
97 {
98 	struct inode *inode = dentry->d_inode;
99 	if (inode) {
100 		dentry->d_inode = NULL;
101 		list_del_init(&dentry->d_alias);
102 		spin_unlock(&dentry->d_lock);
103 		spin_unlock(&dcache_lock);
104 		if (!inode->i_nlink)
105 			fsnotify_inoderemove(inode);
106 		if (dentry->d_op && dentry->d_op->d_iput)
107 			dentry->d_op->d_iput(dentry, inode);
108 		else
109 			iput(inode);
110 	} else {
111 		spin_unlock(&dentry->d_lock);
112 		spin_unlock(&dcache_lock);
113 	}
114 }
115 
116 /*
117  * This is dput
118  *
119  * This is complicated by the fact that we do not want to put
120  * dentries that are no longer on any hash chain on the unused
121  * list: we'd much rather just get rid of them immediately.
122  *
123  * However, that implies that we have to traverse the dentry
124  * tree upwards to the parents which might _also_ now be
125  * scheduled for deletion (it may have been only waiting for
126  * its last child to go away).
127  *
128  * This tail recursion is done by hand as we don't want to depend
129  * on the compiler to always get this right (gcc generally doesn't).
130  * Real recursion would eat up our stack space.
131  */
132 
133 /*
134  * dput - release a dentry
135  * @dentry: dentry to release
136  *
137  * Release a dentry. This will drop the usage count and if appropriate
138  * call the dentry unlink method as well as removing it from the queues and
139  * releasing its resources. If the parent dentries were scheduled for release
140  * they too may now get deleted.
141  *
142  * no dcache lock, please.
143  */
144 
145 void dput(struct dentry *dentry)
146 {
147 	if (!dentry)
148 		return;
149 
150 repeat:
151 	if (atomic_read(&dentry->d_count) == 1)
152 		might_sleep();
153 	if (!atomic_dec_and_lock(&dentry->d_count, &dcache_lock))
154 		return;
155 
156 	spin_lock(&dentry->d_lock);
157 	if (atomic_read(&dentry->d_count)) {
158 		spin_unlock(&dentry->d_lock);
159 		spin_unlock(&dcache_lock);
160 		return;
161 	}
162 
163 	/*
164 	 * AV: ->d_delete() is _NOT_ allowed to block now.
165 	 */
166 	if (dentry->d_op && dentry->d_op->d_delete) {
167 		if (dentry->d_op->d_delete(dentry))
168 			goto unhash_it;
169 	}
170 	/* Unreachable? Get rid of it */
171  	if (d_unhashed(dentry))
172 		goto kill_it;
173   	if (list_empty(&dentry->d_lru)) {
174   		dentry->d_flags |= DCACHE_REFERENCED;
175   		list_add(&dentry->d_lru, &dentry_unused);
176   		dentry_stat.nr_unused++;
177   	}
178  	spin_unlock(&dentry->d_lock);
179 	spin_unlock(&dcache_lock);
180 	return;
181 
182 unhash_it:
183 	__d_drop(dentry);
184 
185 kill_it: {
186 		struct dentry *parent;
187 
188 		/* If dentry was on d_lru list
189 		 * delete it from there
190 		 */
191   		if (!list_empty(&dentry->d_lru)) {
192   			list_del(&dentry->d_lru);
193   			dentry_stat.nr_unused--;
194   		}
195   		list_del(&dentry->d_u.d_child);
196 		dentry_stat.nr_dentry--;	/* For d_free, below */
197 		/*drops the locks, at that point nobody can reach this dentry */
198 		dentry_iput(dentry);
199 		parent = dentry->d_parent;
200 		d_free(dentry);
201 		if (dentry == parent)
202 			return;
203 		dentry = parent;
204 		goto repeat;
205 	}
206 }
207 
208 /**
209  * d_invalidate - invalidate a dentry
210  * @dentry: dentry to invalidate
211  *
212  * Try to invalidate the dentry if it turns out to be
213  * possible. If there are other dentries that can be
214  * reached through this one we can't delete it and we
215  * return -EBUSY. On success we return 0.
216  *
217  * no dcache lock.
218  */
219 
220 int d_invalidate(struct dentry * dentry)
221 {
222 	/*
223 	 * If it's already been dropped, return OK.
224 	 */
225 	spin_lock(&dcache_lock);
226 	if (d_unhashed(dentry)) {
227 		spin_unlock(&dcache_lock);
228 		return 0;
229 	}
230 	/*
231 	 * Check whether to do a partial shrink_dcache
232 	 * to get rid of unused child entries.
233 	 */
234 	if (!list_empty(&dentry->d_subdirs)) {
235 		spin_unlock(&dcache_lock);
236 		shrink_dcache_parent(dentry);
237 		spin_lock(&dcache_lock);
238 	}
239 
240 	/*
241 	 * Somebody else still using it?
242 	 *
243 	 * If it's a directory, we can't drop it
244 	 * for fear of somebody re-populating it
245 	 * with children (even though dropping it
246 	 * would make it unreachable from the root,
247 	 * we might still populate it if it was a
248 	 * working directory or similar).
249 	 */
250 	spin_lock(&dentry->d_lock);
251 	if (atomic_read(&dentry->d_count) > 1) {
252 		if (dentry->d_inode && S_ISDIR(dentry->d_inode->i_mode)) {
253 			spin_unlock(&dentry->d_lock);
254 			spin_unlock(&dcache_lock);
255 			return -EBUSY;
256 		}
257 	}
258 
259 	__d_drop(dentry);
260 	spin_unlock(&dentry->d_lock);
261 	spin_unlock(&dcache_lock);
262 	return 0;
263 }
264 
265 /* This should be called _only_ with dcache_lock held */
266 
267 static inline struct dentry * __dget_locked(struct dentry *dentry)
268 {
269 	atomic_inc(&dentry->d_count);
270 	if (!list_empty(&dentry->d_lru)) {
271 		dentry_stat.nr_unused--;
272 		list_del_init(&dentry->d_lru);
273 	}
274 	return dentry;
275 }
276 
277 struct dentry * dget_locked(struct dentry *dentry)
278 {
279 	return __dget_locked(dentry);
280 }
281 
282 /**
283  * d_find_alias - grab a hashed alias of inode
284  * @inode: inode in question
285  * @want_discon:  flag, used by d_splice_alias, to request
286  *          that only a DISCONNECTED alias be returned.
287  *
288  * If inode has a hashed alias, or is a directory and has any alias,
289  * acquire the reference to alias and return it. Otherwise return NULL.
290  * Notice that if inode is a directory there can be only one alias and
291  * it can be unhashed only if it has no children, or if it is the root
292  * of a filesystem.
293  *
294  * If the inode has a DCACHE_DISCONNECTED alias, then prefer
295  * any other hashed alias over that one unless @want_discon is set,
296  * in which case only return a DCACHE_DISCONNECTED alias.
297  */
298 
299 static struct dentry * __d_find_alias(struct inode *inode, int want_discon)
300 {
301 	struct list_head *head, *next, *tmp;
302 	struct dentry *alias, *discon_alias=NULL;
303 
304 	head = &inode->i_dentry;
305 	next = inode->i_dentry.next;
306 	while (next != head) {
307 		tmp = next;
308 		next = tmp->next;
309 		prefetch(next);
310 		alias = list_entry(tmp, struct dentry, d_alias);
311  		if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
312 			if (alias->d_flags & DCACHE_DISCONNECTED)
313 				discon_alias = alias;
314 			else if (!want_discon) {
315 				__dget_locked(alias);
316 				return alias;
317 			}
318 		}
319 	}
320 	if (discon_alias)
321 		__dget_locked(discon_alias);
322 	return discon_alias;
323 }
324 
325 struct dentry * d_find_alias(struct inode *inode)
326 {
327 	struct dentry *de = NULL;
328 
329 	if (!list_empty(&inode->i_dentry)) {
330 		spin_lock(&dcache_lock);
331 		de = __d_find_alias(inode, 0);
332 		spin_unlock(&dcache_lock);
333 	}
334 	return de;
335 }
336 
337 /*
338  *	Try to kill dentries associated with this inode.
339  * WARNING: you must own a reference to inode.
340  */
341 void d_prune_aliases(struct inode *inode)
342 {
343 	struct dentry *dentry;
344 restart:
345 	spin_lock(&dcache_lock);
346 	list_for_each_entry(dentry, &inode->i_dentry, d_alias) {
347 		spin_lock(&dentry->d_lock);
348 		if (!atomic_read(&dentry->d_count)) {
349 			__dget_locked(dentry);
350 			__d_drop(dentry);
351 			spin_unlock(&dentry->d_lock);
352 			spin_unlock(&dcache_lock);
353 			dput(dentry);
354 			goto restart;
355 		}
356 		spin_unlock(&dentry->d_lock);
357 	}
358 	spin_unlock(&dcache_lock);
359 }
360 
361 /*
362  * Throw away a dentry - free the inode, dput the parent.  This requires that
363  * the LRU list has already been removed.
364  *
365  * Called with dcache_lock, drops it and then regains.
366  * Called with dentry->d_lock held, drops it.
367  */
368 static void prune_one_dentry(struct dentry * dentry)
369 {
370 	struct dentry * parent;
371 
372 	__d_drop(dentry);
373 	list_del(&dentry->d_u.d_child);
374 	dentry_stat.nr_dentry--;	/* For d_free, below */
375 	dentry_iput(dentry);
376 	parent = dentry->d_parent;
377 	d_free(dentry);
378 	if (parent != dentry)
379 		dput(parent);
380 	spin_lock(&dcache_lock);
381 }
382 
383 /**
384  * prune_dcache - shrink the dcache
385  * @count: number of entries to try and free
386  * @sb: if given, ignore dentries for other superblocks
387  *         which are being unmounted.
388  *
389  * Shrink the dcache. This is done when we need
390  * more memory, or simply when we need to unmount
391  * something (at which point we need to unuse
392  * all dentries).
393  *
394  * This function may fail to free any resources if
395  * all the dentries are in use.
396  */
397 
398 static void prune_dcache(int count, struct super_block *sb)
399 {
400 	spin_lock(&dcache_lock);
401 	for (; count ; count--) {
402 		struct dentry *dentry;
403 		struct list_head *tmp;
404 		struct rw_semaphore *s_umount;
405 
406 		cond_resched_lock(&dcache_lock);
407 
408 		tmp = dentry_unused.prev;
409 		if (unlikely(sb)) {
410 			/* Try to find a dentry for this sb, but don't try
411 			 * too hard, if they aren't near the tail they will
412 			 * be moved down again soon
413 			 */
414 			int skip = count;
415 			while (skip && tmp != &dentry_unused &&
416 			    list_entry(tmp, struct dentry, d_lru)->d_sb != sb) {
417 				skip--;
418 				tmp = tmp->prev;
419 			}
420 		}
421 		if (tmp == &dentry_unused)
422 			break;
423 		list_del_init(tmp);
424 		prefetch(dentry_unused.prev);
425  		dentry_stat.nr_unused--;
426 		dentry = list_entry(tmp, struct dentry, d_lru);
427 
428  		spin_lock(&dentry->d_lock);
429 		/*
430 		 * We found an inuse dentry which was not removed from
431 		 * dentry_unused because of laziness during lookup.  Do not free
432 		 * it - just keep it off the dentry_unused list.
433 		 */
434  		if (atomic_read(&dentry->d_count)) {
435  			spin_unlock(&dentry->d_lock);
436 			continue;
437 		}
438 		/* If the dentry was recently referenced, don't free it. */
439 		if (dentry->d_flags & DCACHE_REFERENCED) {
440 			dentry->d_flags &= ~DCACHE_REFERENCED;
441  			list_add(&dentry->d_lru, &dentry_unused);
442  			dentry_stat.nr_unused++;
443  			spin_unlock(&dentry->d_lock);
444 			continue;
445 		}
446 		/*
447 		 * If the dentry is not DCACHED_REFERENCED, it is time
448 		 * to remove it from the dcache, provided the super block is
449 		 * NULL (which means we are trying to reclaim memory)
450 		 * or this dentry belongs to the same super block that
451 		 * we want to shrink.
452 		 */
453 		/*
454 		 * If this dentry is for "my" filesystem, then I can prune it
455 		 * without taking the s_umount lock (I already hold it).
456 		 */
457 		if (sb && dentry->d_sb == sb) {
458 			prune_one_dentry(dentry);
459 			continue;
460 		}
461 		/*
462 		 * ...otherwise we need to be sure this filesystem isn't being
463 		 * unmounted, otherwise we could race with
464 		 * generic_shutdown_super(), and end up holding a reference to
465 		 * an inode while the filesystem is unmounted.
466 		 * So we try to get s_umount, and make sure s_root isn't NULL.
467 		 * (Take a local copy of s_umount to avoid a use-after-free of
468 		 * `dentry').
469 		 */
470 		s_umount = &dentry->d_sb->s_umount;
471 		if (down_read_trylock(s_umount)) {
472 			if (dentry->d_sb->s_root != NULL) {
473 				prune_one_dentry(dentry);
474 				up_read(s_umount);
475 				continue;
476 			}
477 			up_read(s_umount);
478 		}
479 		spin_unlock(&dentry->d_lock);
480 		/* Cannot remove the first dentry, and it isn't appropriate
481 		 * to move it to the head of the list, so give up, and try
482 		 * later
483 		 */
484 		break;
485 	}
486 	spin_unlock(&dcache_lock);
487 }
488 
489 /*
490  * Shrink the dcache for the specified super block.
491  * This allows us to unmount a device without disturbing
492  * the dcache for the other devices.
493  *
494  * This implementation makes just two traversals of the
495  * unused list.  On the first pass we move the selected
496  * dentries to the most recent end, and on the second
497  * pass we free them.  The second pass must restart after
498  * each dput(), but since the target dentries are all at
499  * the end, it's really just a single traversal.
500  */
501 
502 /**
503  * shrink_dcache_sb - shrink dcache for a superblock
504  * @sb: superblock
505  *
506  * Shrink the dcache for the specified super block. This
507  * is used to free the dcache before unmounting a file
508  * system
509  */
510 
511 void shrink_dcache_sb(struct super_block * sb)
512 {
513 	struct list_head *tmp, *next;
514 	struct dentry *dentry;
515 
516 	/*
517 	 * Pass one ... move the dentries for the specified
518 	 * superblock to the most recent end of the unused list.
519 	 */
520 	spin_lock(&dcache_lock);
521 	list_for_each_safe(tmp, next, &dentry_unused) {
522 		dentry = list_entry(tmp, struct dentry, d_lru);
523 		if (dentry->d_sb != sb)
524 			continue;
525 		list_del(tmp);
526 		list_add(tmp, &dentry_unused);
527 	}
528 
529 	/*
530 	 * Pass two ... free the dentries for this superblock.
531 	 */
532 repeat:
533 	list_for_each_safe(tmp, next, &dentry_unused) {
534 		dentry = list_entry(tmp, struct dentry, d_lru);
535 		if (dentry->d_sb != sb)
536 			continue;
537 		dentry_stat.nr_unused--;
538 		list_del_init(tmp);
539 		spin_lock(&dentry->d_lock);
540 		if (atomic_read(&dentry->d_count)) {
541 			spin_unlock(&dentry->d_lock);
542 			continue;
543 		}
544 		prune_one_dentry(dentry);
545 		cond_resched_lock(&dcache_lock);
546 		goto repeat;
547 	}
548 	spin_unlock(&dcache_lock);
549 }
550 
551 /*
552  * Search for at least 1 mount point in the dentry's subdirs.
553  * We descend to the next level whenever the d_subdirs
554  * list is non-empty and continue searching.
555  */
556 
557 /**
558  * have_submounts - check for mounts over a dentry
559  * @parent: dentry to check.
560  *
561  * Return true if the parent or its subdirectories contain
562  * a mount point
563  */
564 
565 int have_submounts(struct dentry *parent)
566 {
567 	struct dentry *this_parent = parent;
568 	struct list_head *next;
569 
570 	spin_lock(&dcache_lock);
571 	if (d_mountpoint(parent))
572 		goto positive;
573 repeat:
574 	next = this_parent->d_subdirs.next;
575 resume:
576 	while (next != &this_parent->d_subdirs) {
577 		struct list_head *tmp = next;
578 		struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
579 		next = tmp->next;
580 		/* Have we found a mount point ? */
581 		if (d_mountpoint(dentry))
582 			goto positive;
583 		if (!list_empty(&dentry->d_subdirs)) {
584 			this_parent = dentry;
585 			goto repeat;
586 		}
587 	}
588 	/*
589 	 * All done at this level ... ascend and resume the search.
590 	 */
591 	if (this_parent != parent) {
592 		next = this_parent->d_u.d_child.next;
593 		this_parent = this_parent->d_parent;
594 		goto resume;
595 	}
596 	spin_unlock(&dcache_lock);
597 	return 0; /* No mount points found in tree */
598 positive:
599 	spin_unlock(&dcache_lock);
600 	return 1;
601 }
602 
603 /*
604  * Search the dentry child list for the specified parent,
605  * and move any unused dentries to the end of the unused
606  * list for prune_dcache(). We descend to the next level
607  * whenever the d_subdirs list is non-empty and continue
608  * searching.
609  *
610  * It returns zero iff there are no unused children,
611  * otherwise  it returns the number of children moved to
612  * the end of the unused list. This may not be the total
613  * number of unused children, because select_parent can
614  * drop the lock and return early due to latency
615  * constraints.
616  */
617 static int select_parent(struct dentry * parent)
618 {
619 	struct dentry *this_parent = parent;
620 	struct list_head *next;
621 	int found = 0;
622 
623 	spin_lock(&dcache_lock);
624 repeat:
625 	next = this_parent->d_subdirs.next;
626 resume:
627 	while (next != &this_parent->d_subdirs) {
628 		struct list_head *tmp = next;
629 		struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
630 		next = tmp->next;
631 
632 		if (!list_empty(&dentry->d_lru)) {
633 			dentry_stat.nr_unused--;
634 			list_del_init(&dentry->d_lru);
635 		}
636 		/*
637 		 * move only zero ref count dentries to the end
638 		 * of the unused list for prune_dcache
639 		 */
640 		if (!atomic_read(&dentry->d_count)) {
641 			list_add(&dentry->d_lru, dentry_unused.prev);
642 			dentry_stat.nr_unused++;
643 			found++;
644 		}
645 
646 		/*
647 		 * We can return to the caller if we have found some (this
648 		 * ensures forward progress). We'll be coming back to find
649 		 * the rest.
650 		 */
651 		if (found && need_resched())
652 			goto out;
653 
654 		/*
655 		 * Descend a level if the d_subdirs list is non-empty.
656 		 */
657 		if (!list_empty(&dentry->d_subdirs)) {
658 			this_parent = dentry;
659 			goto repeat;
660 		}
661 	}
662 	/*
663 	 * All done at this level ... ascend and resume the search.
664 	 */
665 	if (this_parent != parent) {
666 		next = this_parent->d_u.d_child.next;
667 		this_parent = this_parent->d_parent;
668 		goto resume;
669 	}
670 out:
671 	spin_unlock(&dcache_lock);
672 	return found;
673 }
674 
675 /**
676  * shrink_dcache_parent - prune dcache
677  * @parent: parent of entries to prune
678  *
679  * Prune the dcache to remove unused children of the parent dentry.
680  */
681 
682 void shrink_dcache_parent(struct dentry * parent)
683 {
684 	int found;
685 
686 	while ((found = select_parent(parent)) != 0)
687 		prune_dcache(found, parent->d_sb);
688 }
689 
690 /**
691  * shrink_dcache_anon - further prune the cache
692  * @head: head of d_hash list of dentries to prune
693  *
694  * Prune the dentries that are anonymous
695  *
696  * parsing d_hash list does not hlist_for_each_entry_rcu() as it
697  * done under dcache_lock.
698  *
699  */
700 void shrink_dcache_anon(struct super_block *sb)
701 {
702 	struct hlist_node *lp;
703 	struct hlist_head *head = &sb->s_anon;
704 	int found;
705 	do {
706 		found = 0;
707 		spin_lock(&dcache_lock);
708 		hlist_for_each(lp, head) {
709 			struct dentry *this = hlist_entry(lp, struct dentry, d_hash);
710 			if (!list_empty(&this->d_lru)) {
711 				dentry_stat.nr_unused--;
712 				list_del_init(&this->d_lru);
713 			}
714 
715 			/*
716 			 * move only zero ref count dentries to the end
717 			 * of the unused list for prune_dcache
718 			 */
719 			if (!atomic_read(&this->d_count)) {
720 				list_add_tail(&this->d_lru, &dentry_unused);
721 				dentry_stat.nr_unused++;
722 				found++;
723 			}
724 		}
725 		spin_unlock(&dcache_lock);
726 		prune_dcache(found, sb);
727 	} while(found);
728 }
729 
730 /*
731  * Scan `nr' dentries and return the number which remain.
732  *
733  * We need to avoid reentering the filesystem if the caller is performing a
734  * GFP_NOFS allocation attempt.  One example deadlock is:
735  *
736  * ext2_new_block->getblk->GFP->shrink_dcache_memory->prune_dcache->
737  * prune_one_dentry->dput->dentry_iput->iput->inode->i_sb->s_op->put_inode->
738  * ext2_discard_prealloc->ext2_free_blocks->lock_super->DEADLOCK.
739  *
740  * In this case we return -1 to tell the caller that we baled.
741  */
742 static int shrink_dcache_memory(int nr, gfp_t gfp_mask)
743 {
744 	if (nr) {
745 		if (!(gfp_mask & __GFP_FS))
746 			return -1;
747 		prune_dcache(nr, NULL);
748 	}
749 	return (dentry_stat.nr_unused / 100) * sysctl_vfs_cache_pressure;
750 }
751 
752 /**
753  * d_alloc	-	allocate a dcache entry
754  * @parent: parent of entry to allocate
755  * @name: qstr of the name
756  *
757  * Allocates a dentry. It returns %NULL if there is insufficient memory
758  * available. On a success the dentry is returned. The name passed in is
759  * copied and the copy passed in may be reused after this call.
760  */
761 
762 struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
763 {
764 	struct dentry *dentry;
765 	char *dname;
766 
767 	dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
768 	if (!dentry)
769 		return NULL;
770 
771 	if (name->len > DNAME_INLINE_LEN-1) {
772 		dname = kmalloc(name->len + 1, GFP_KERNEL);
773 		if (!dname) {
774 			kmem_cache_free(dentry_cache, dentry);
775 			return NULL;
776 		}
777 	} else  {
778 		dname = dentry->d_iname;
779 	}
780 	dentry->d_name.name = dname;
781 
782 	dentry->d_name.len = name->len;
783 	dentry->d_name.hash = name->hash;
784 	memcpy(dname, name->name, name->len);
785 	dname[name->len] = 0;
786 
787 	atomic_set(&dentry->d_count, 1);
788 	dentry->d_flags = DCACHE_UNHASHED;
789 	spin_lock_init(&dentry->d_lock);
790 	dentry->d_inode = NULL;
791 	dentry->d_parent = NULL;
792 	dentry->d_sb = NULL;
793 	dentry->d_op = NULL;
794 	dentry->d_fsdata = NULL;
795 	dentry->d_mounted = 0;
796 #ifdef CONFIG_PROFILING
797 	dentry->d_cookie = NULL;
798 #endif
799 	INIT_HLIST_NODE(&dentry->d_hash);
800 	INIT_LIST_HEAD(&dentry->d_lru);
801 	INIT_LIST_HEAD(&dentry->d_subdirs);
802 	INIT_LIST_HEAD(&dentry->d_alias);
803 
804 	if (parent) {
805 		dentry->d_parent = dget(parent);
806 		dentry->d_sb = parent->d_sb;
807 	} else {
808 		INIT_LIST_HEAD(&dentry->d_u.d_child);
809 	}
810 
811 	spin_lock(&dcache_lock);
812 	if (parent)
813 		list_add(&dentry->d_u.d_child, &parent->d_subdirs);
814 	dentry_stat.nr_dentry++;
815 	spin_unlock(&dcache_lock);
816 
817 	return dentry;
818 }
819 
820 struct dentry *d_alloc_name(struct dentry *parent, const char *name)
821 {
822 	struct qstr q;
823 
824 	q.name = name;
825 	q.len = strlen(name);
826 	q.hash = full_name_hash(q.name, q.len);
827 	return d_alloc(parent, &q);
828 }
829 
830 /**
831  * d_instantiate - fill in inode information for a dentry
832  * @entry: dentry to complete
833  * @inode: inode to attach to this dentry
834  *
835  * Fill in inode information in the entry.
836  *
837  * This turns negative dentries into productive full members
838  * of society.
839  *
840  * NOTE! This assumes that the inode count has been incremented
841  * (or otherwise set) by the caller to indicate that it is now
842  * in use by the dcache.
843  */
844 
845 void d_instantiate(struct dentry *entry, struct inode * inode)
846 {
847 	BUG_ON(!list_empty(&entry->d_alias));
848 	spin_lock(&dcache_lock);
849 	if (inode)
850 		list_add(&entry->d_alias, &inode->i_dentry);
851 	entry->d_inode = inode;
852 	fsnotify_d_instantiate(entry, inode);
853 	spin_unlock(&dcache_lock);
854 	security_d_instantiate(entry, inode);
855 }
856 
857 /**
858  * d_instantiate_unique - instantiate a non-aliased dentry
859  * @entry: dentry to instantiate
860  * @inode: inode to attach to this dentry
861  *
862  * Fill in inode information in the entry. On success, it returns NULL.
863  * If an unhashed alias of "entry" already exists, then we return the
864  * aliased dentry instead and drop one reference to inode.
865  *
866  * Note that in order to avoid conflicts with rename() etc, the caller
867  * had better be holding the parent directory semaphore.
868  *
869  * This also assumes that the inode count has been incremented
870  * (or otherwise set) by the caller to indicate that it is now
871  * in use by the dcache.
872  */
873 struct dentry *d_instantiate_unique(struct dentry *entry, struct inode *inode)
874 {
875 	struct dentry *alias;
876 	int len = entry->d_name.len;
877 	const char *name = entry->d_name.name;
878 	unsigned int hash = entry->d_name.hash;
879 
880 	BUG_ON(!list_empty(&entry->d_alias));
881 	spin_lock(&dcache_lock);
882 	if (!inode)
883 		goto do_negative;
884 	list_for_each_entry(alias, &inode->i_dentry, d_alias) {
885 		struct qstr *qstr = &alias->d_name;
886 
887 		if (qstr->hash != hash)
888 			continue;
889 		if (alias->d_parent != entry->d_parent)
890 			continue;
891 		if (qstr->len != len)
892 			continue;
893 		if (memcmp(qstr->name, name, len))
894 			continue;
895 		dget_locked(alias);
896 		spin_unlock(&dcache_lock);
897 		BUG_ON(!d_unhashed(alias));
898 		iput(inode);
899 		return alias;
900 	}
901 	list_add(&entry->d_alias, &inode->i_dentry);
902 do_negative:
903 	entry->d_inode = inode;
904 	fsnotify_d_instantiate(entry, inode);
905 	spin_unlock(&dcache_lock);
906 	security_d_instantiate(entry, inode);
907 	return NULL;
908 }
909 EXPORT_SYMBOL(d_instantiate_unique);
910 
911 /**
912  * d_alloc_root - allocate root dentry
913  * @root_inode: inode to allocate the root for
914  *
915  * Allocate a root ("/") dentry for the inode given. The inode is
916  * instantiated and returned. %NULL is returned if there is insufficient
917  * memory or the inode passed is %NULL.
918  */
919 
920 struct dentry * d_alloc_root(struct inode * root_inode)
921 {
922 	struct dentry *res = NULL;
923 
924 	if (root_inode) {
925 		static const struct qstr name = { .name = "/", .len = 1 };
926 
927 		res = d_alloc(NULL, &name);
928 		if (res) {
929 			res->d_sb = root_inode->i_sb;
930 			res->d_parent = res;
931 			d_instantiate(res, root_inode);
932 		}
933 	}
934 	return res;
935 }
936 
937 static inline struct hlist_head *d_hash(struct dentry *parent,
938 					unsigned long hash)
939 {
940 	hash += ((unsigned long) parent ^ GOLDEN_RATIO_PRIME) / L1_CACHE_BYTES;
941 	hash = hash ^ ((hash ^ GOLDEN_RATIO_PRIME) >> D_HASHBITS);
942 	return dentry_hashtable + (hash & D_HASHMASK);
943 }
944 
945 /**
946  * d_alloc_anon - allocate an anonymous dentry
947  * @inode: inode to allocate the dentry for
948  *
949  * This is similar to d_alloc_root.  It is used by filesystems when
950  * creating a dentry for a given inode, often in the process of
951  * mapping a filehandle to a dentry.  The returned dentry may be
952  * anonymous, or may have a full name (if the inode was already
953  * in the cache).  The file system may need to make further
954  * efforts to connect this dentry into the dcache properly.
955  *
956  * When called on a directory inode, we must ensure that
957  * the inode only ever has one dentry.  If a dentry is
958  * found, that is returned instead of allocating a new one.
959  *
960  * On successful return, the reference to the inode has been transferred
961  * to the dentry.  If %NULL is returned (indicating kmalloc failure),
962  * the reference on the inode has not been released.
963  */
964 
965 struct dentry * d_alloc_anon(struct inode *inode)
966 {
967 	static const struct qstr anonstring = { .name = "" };
968 	struct dentry *tmp;
969 	struct dentry *res;
970 
971 	if ((res = d_find_alias(inode))) {
972 		iput(inode);
973 		return res;
974 	}
975 
976 	tmp = d_alloc(NULL, &anonstring);
977 	if (!tmp)
978 		return NULL;
979 
980 	tmp->d_parent = tmp; /* make sure dput doesn't croak */
981 
982 	spin_lock(&dcache_lock);
983 	res = __d_find_alias(inode, 0);
984 	if (!res) {
985 		/* attach a disconnected dentry */
986 		res = tmp;
987 		tmp = NULL;
988 		spin_lock(&res->d_lock);
989 		res->d_sb = inode->i_sb;
990 		res->d_parent = res;
991 		res->d_inode = inode;
992 		res->d_flags |= DCACHE_DISCONNECTED;
993 		res->d_flags &= ~DCACHE_UNHASHED;
994 		list_add(&res->d_alias, &inode->i_dentry);
995 		hlist_add_head(&res->d_hash, &inode->i_sb->s_anon);
996 		spin_unlock(&res->d_lock);
997 
998 		inode = NULL; /* don't drop reference */
999 	}
1000 	spin_unlock(&dcache_lock);
1001 
1002 	if (inode)
1003 		iput(inode);
1004 	if (tmp)
1005 		dput(tmp);
1006 	return res;
1007 }
1008 
1009 
1010 /**
1011  * d_splice_alias - splice a disconnected dentry into the tree if one exists
1012  * @inode:  the inode which may have a disconnected dentry
1013  * @dentry: a negative dentry which we want to point to the inode.
1014  *
1015  * If inode is a directory and has a 'disconnected' dentry (i.e. IS_ROOT and
1016  * DCACHE_DISCONNECTED), then d_move that in place of the given dentry
1017  * and return it, else simply d_add the inode to the dentry and return NULL.
1018  *
1019  * This is needed in the lookup routine of any filesystem that is exportable
1020  * (via knfsd) so that we can build dcache paths to directories effectively.
1021  *
1022  * If a dentry was found and moved, then it is returned.  Otherwise NULL
1023  * is returned.  This matches the expected return value of ->lookup.
1024  *
1025  */
1026 struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
1027 {
1028 	struct dentry *new = NULL;
1029 
1030 	if (inode) {
1031 		spin_lock(&dcache_lock);
1032 		new = __d_find_alias(inode, 1);
1033 		if (new) {
1034 			BUG_ON(!(new->d_flags & DCACHE_DISCONNECTED));
1035 			fsnotify_d_instantiate(new, inode);
1036 			spin_unlock(&dcache_lock);
1037 			security_d_instantiate(new, inode);
1038 			d_rehash(dentry);
1039 			d_move(new, dentry);
1040 			iput(inode);
1041 		} else {
1042 			/* d_instantiate takes dcache_lock, so we do it by hand */
1043 			list_add(&dentry->d_alias, &inode->i_dentry);
1044 			dentry->d_inode = inode;
1045 			fsnotify_d_instantiate(dentry, inode);
1046 			spin_unlock(&dcache_lock);
1047 			security_d_instantiate(dentry, inode);
1048 			d_rehash(dentry);
1049 		}
1050 	} else
1051 		d_add(dentry, inode);
1052 	return new;
1053 }
1054 
1055 
1056 /**
1057  * d_lookup - search for a dentry
1058  * @parent: parent dentry
1059  * @name: qstr of name we wish to find
1060  *
1061  * Searches the children of the parent dentry for the name in question. If
1062  * the dentry is found its reference count is incremented and the dentry
1063  * is returned. The caller must use d_put to free the entry when it has
1064  * finished using it. %NULL is returned on failure.
1065  *
1066  * __d_lookup is dcache_lock free. The hash list is protected using RCU.
1067  * Memory barriers are used while updating and doing lockless traversal.
1068  * To avoid races with d_move while rename is happening, d_lock is used.
1069  *
1070  * Overflows in memcmp(), while d_move, are avoided by keeping the length
1071  * and name pointer in one structure pointed by d_qstr.
1072  *
1073  * rcu_read_lock() and rcu_read_unlock() are used to disable preemption while
1074  * lookup is going on.
1075  *
1076  * dentry_unused list is not updated even if lookup finds the required dentry
1077  * in there. It is updated in places such as prune_dcache, shrink_dcache_sb,
1078  * select_parent and __dget_locked. This laziness saves lookup from dcache_lock
1079  * acquisition.
1080  *
1081  * d_lookup() is protected against the concurrent renames in some unrelated
1082  * directory using the seqlockt_t rename_lock.
1083  */
1084 
1085 struct dentry * d_lookup(struct dentry * parent, struct qstr * name)
1086 {
1087 	struct dentry * dentry = NULL;
1088 	unsigned long seq;
1089 
1090         do {
1091                 seq = read_seqbegin(&rename_lock);
1092                 dentry = __d_lookup(parent, name);
1093                 if (dentry)
1094 			break;
1095 	} while (read_seqretry(&rename_lock, seq));
1096 	return dentry;
1097 }
1098 
1099 struct dentry * __d_lookup(struct dentry * parent, struct qstr * name)
1100 {
1101 	unsigned int len = name->len;
1102 	unsigned int hash = name->hash;
1103 	const unsigned char *str = name->name;
1104 	struct hlist_head *head = d_hash(parent,hash);
1105 	struct dentry *found = NULL;
1106 	struct hlist_node *node;
1107 	struct dentry *dentry;
1108 
1109 	rcu_read_lock();
1110 
1111 	hlist_for_each_entry_rcu(dentry, node, head, d_hash) {
1112 		struct qstr *qstr;
1113 
1114 		if (dentry->d_name.hash != hash)
1115 			continue;
1116 		if (dentry->d_parent != parent)
1117 			continue;
1118 
1119 		spin_lock(&dentry->d_lock);
1120 
1121 		/*
1122 		 * Recheck the dentry after taking the lock - d_move may have
1123 		 * changed things.  Don't bother checking the hash because we're
1124 		 * about to compare the whole name anyway.
1125 		 */
1126 		if (dentry->d_parent != parent)
1127 			goto next;
1128 
1129 		/*
1130 		 * It is safe to compare names since d_move() cannot
1131 		 * change the qstr (protected by d_lock).
1132 		 */
1133 		qstr = &dentry->d_name;
1134 		if (parent->d_op && parent->d_op->d_compare) {
1135 			if (parent->d_op->d_compare(parent, qstr, name))
1136 				goto next;
1137 		} else {
1138 			if (qstr->len != len)
1139 				goto next;
1140 			if (memcmp(qstr->name, str, len))
1141 				goto next;
1142 		}
1143 
1144 		if (!d_unhashed(dentry)) {
1145 			atomic_inc(&dentry->d_count);
1146 			found = dentry;
1147 		}
1148 		spin_unlock(&dentry->d_lock);
1149 		break;
1150 next:
1151 		spin_unlock(&dentry->d_lock);
1152  	}
1153  	rcu_read_unlock();
1154 
1155  	return found;
1156 }
1157 
1158 /**
1159  * d_hash_and_lookup - hash the qstr then search for a dentry
1160  * @dir: Directory to search in
1161  * @name: qstr of name we wish to find
1162  *
1163  * On hash failure or on lookup failure NULL is returned.
1164  */
1165 struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
1166 {
1167 	struct dentry *dentry = NULL;
1168 
1169 	/*
1170 	 * Check for a fs-specific hash function. Note that we must
1171 	 * calculate the standard hash first, as the d_op->d_hash()
1172 	 * routine may choose to leave the hash value unchanged.
1173 	 */
1174 	name->hash = full_name_hash(name->name, name->len);
1175 	if (dir->d_op && dir->d_op->d_hash) {
1176 		if (dir->d_op->d_hash(dir, name) < 0)
1177 			goto out;
1178 	}
1179 	dentry = d_lookup(dir, name);
1180 out:
1181 	return dentry;
1182 }
1183 
1184 /**
1185  * d_validate - verify dentry provided from insecure source
1186  * @dentry: The dentry alleged to be valid child of @dparent
1187  * @dparent: The parent dentry (known to be valid)
1188  * @hash: Hash of the dentry
1189  * @len: Length of the name
1190  *
1191  * An insecure source has sent us a dentry, here we verify it and dget() it.
1192  * This is used by ncpfs in its readdir implementation.
1193  * Zero is returned in the dentry is invalid.
1194  */
1195 
1196 int d_validate(struct dentry *dentry, struct dentry *dparent)
1197 {
1198 	struct hlist_head *base;
1199 	struct hlist_node *lhp;
1200 
1201 	/* Check whether the ptr might be valid at all.. */
1202 	if (!kmem_ptr_validate(dentry_cache, dentry))
1203 		goto out;
1204 
1205 	if (dentry->d_parent != dparent)
1206 		goto out;
1207 
1208 	spin_lock(&dcache_lock);
1209 	base = d_hash(dparent, dentry->d_name.hash);
1210 	hlist_for_each(lhp,base) {
1211 		/* hlist_for_each_entry_rcu() not required for d_hash list
1212 		 * as it is parsed under dcache_lock
1213 		 */
1214 		if (dentry == hlist_entry(lhp, struct dentry, d_hash)) {
1215 			__dget_locked(dentry);
1216 			spin_unlock(&dcache_lock);
1217 			return 1;
1218 		}
1219 	}
1220 	spin_unlock(&dcache_lock);
1221 out:
1222 	return 0;
1223 }
1224 
1225 /*
1226  * When a file is deleted, we have two options:
1227  * - turn this dentry into a negative dentry
1228  * - unhash this dentry and free it.
1229  *
1230  * Usually, we want to just turn this into
1231  * a negative dentry, but if anybody else is
1232  * currently using the dentry or the inode
1233  * we can't do that and we fall back on removing
1234  * it from the hash queues and waiting for
1235  * it to be deleted later when it has no users
1236  */
1237 
1238 /**
1239  * d_delete - delete a dentry
1240  * @dentry: The dentry to delete
1241  *
1242  * Turn the dentry into a negative dentry if possible, otherwise
1243  * remove it from the hash queues so it can be deleted later
1244  */
1245 
1246 void d_delete(struct dentry * dentry)
1247 {
1248 	int isdir = 0;
1249 	/*
1250 	 * Are we the only user?
1251 	 */
1252 	spin_lock(&dcache_lock);
1253 	spin_lock(&dentry->d_lock);
1254 	isdir = S_ISDIR(dentry->d_inode->i_mode);
1255 	if (atomic_read(&dentry->d_count) == 1) {
1256 		dentry_iput(dentry);
1257 		fsnotify_nameremove(dentry, isdir);
1258 
1259 		/* remove this and other inotify debug checks after 2.6.18 */
1260 		dentry->d_flags &= ~DCACHE_INOTIFY_PARENT_WATCHED;
1261 		return;
1262 	}
1263 
1264 	if (!d_unhashed(dentry))
1265 		__d_drop(dentry);
1266 
1267 	spin_unlock(&dentry->d_lock);
1268 	spin_unlock(&dcache_lock);
1269 
1270 	fsnotify_nameremove(dentry, isdir);
1271 }
1272 
1273 static void __d_rehash(struct dentry * entry, struct hlist_head *list)
1274 {
1275 
1276  	entry->d_flags &= ~DCACHE_UNHASHED;
1277  	hlist_add_head_rcu(&entry->d_hash, list);
1278 }
1279 
1280 /**
1281  * d_rehash	- add an entry back to the hash
1282  * @entry: dentry to add to the hash
1283  *
1284  * Adds a dentry to the hash according to its name.
1285  */
1286 
1287 void d_rehash(struct dentry * entry)
1288 {
1289 	struct hlist_head *list = d_hash(entry->d_parent, entry->d_name.hash);
1290 
1291 	spin_lock(&dcache_lock);
1292 	spin_lock(&entry->d_lock);
1293 	__d_rehash(entry, list);
1294 	spin_unlock(&entry->d_lock);
1295 	spin_unlock(&dcache_lock);
1296 }
1297 
1298 #define do_switch(x,y) do { \
1299 	__typeof__ (x) __tmp = x; \
1300 	x = y; y = __tmp; } while (0)
1301 
1302 /*
1303  * When switching names, the actual string doesn't strictly have to
1304  * be preserved in the target - because we're dropping the target
1305  * anyway. As such, we can just do a simple memcpy() to copy over
1306  * the new name before we switch.
1307  *
1308  * Note that we have to be a lot more careful about getting the hash
1309  * switched - we have to switch the hash value properly even if it
1310  * then no longer matches the actual (corrupted) string of the target.
1311  * The hash value has to match the hash queue that the dentry is on..
1312  */
1313 static void switch_names(struct dentry *dentry, struct dentry *target)
1314 {
1315 	if (dname_external(target)) {
1316 		if (dname_external(dentry)) {
1317 			/*
1318 			 * Both external: swap the pointers
1319 			 */
1320 			do_switch(target->d_name.name, dentry->d_name.name);
1321 		} else {
1322 			/*
1323 			 * dentry:internal, target:external.  Steal target's
1324 			 * storage and make target internal.
1325 			 */
1326 			dentry->d_name.name = target->d_name.name;
1327 			target->d_name.name = target->d_iname;
1328 		}
1329 	} else {
1330 		if (dname_external(dentry)) {
1331 			/*
1332 			 * dentry:external, target:internal.  Give dentry's
1333 			 * storage to target and make dentry internal
1334 			 */
1335 			memcpy(dentry->d_iname, target->d_name.name,
1336 					target->d_name.len + 1);
1337 			target->d_name.name = dentry->d_name.name;
1338 			dentry->d_name.name = dentry->d_iname;
1339 		} else {
1340 			/*
1341 			 * Both are internal.  Just copy target to dentry
1342 			 */
1343 			memcpy(dentry->d_iname, target->d_name.name,
1344 					target->d_name.len + 1);
1345 		}
1346 	}
1347 }
1348 
1349 /*
1350  * We cannibalize "target" when moving dentry on top of it,
1351  * because it's going to be thrown away anyway. We could be more
1352  * polite about it, though.
1353  *
1354  * This forceful removal will result in ugly /proc output if
1355  * somebody holds a file open that got deleted due to a rename.
1356  * We could be nicer about the deleted file, and let it show
1357  * up under the name it got deleted rather than the name that
1358  * deleted it.
1359  */
1360 
1361 /**
1362  * d_move - move a dentry
1363  * @dentry: entry to move
1364  * @target: new dentry
1365  *
1366  * Update the dcache to reflect the move of a file name. Negative
1367  * dcache entries should not be moved in this way.
1368  */
1369 
1370 void d_move(struct dentry * dentry, struct dentry * target)
1371 {
1372 	struct hlist_head *list;
1373 
1374 	if (!dentry->d_inode)
1375 		printk(KERN_WARNING "VFS: moving negative dcache entry\n");
1376 
1377 	spin_lock(&dcache_lock);
1378 	write_seqlock(&rename_lock);
1379 	/*
1380 	 * XXXX: do we really need to take target->d_lock?
1381 	 */
1382 	if (target < dentry) {
1383 		spin_lock(&target->d_lock);
1384 		spin_lock(&dentry->d_lock);
1385 	} else {
1386 		spin_lock(&dentry->d_lock);
1387 		spin_lock(&target->d_lock);
1388 	}
1389 
1390 	/* Move the dentry to the target hash queue, if on different bucket */
1391 	if (dentry->d_flags & DCACHE_UNHASHED)
1392 		goto already_unhashed;
1393 
1394 	hlist_del_rcu(&dentry->d_hash);
1395 
1396 already_unhashed:
1397 	list = d_hash(target->d_parent, target->d_name.hash);
1398 	__d_rehash(dentry, list);
1399 
1400 	/* Unhash the target: dput() will then get rid of it */
1401 	__d_drop(target);
1402 
1403 	list_del(&dentry->d_u.d_child);
1404 	list_del(&target->d_u.d_child);
1405 
1406 	/* Switch the names.. */
1407 	switch_names(dentry, target);
1408 	do_switch(dentry->d_name.len, target->d_name.len);
1409 	do_switch(dentry->d_name.hash, target->d_name.hash);
1410 
1411 	/* ... and switch the parents */
1412 	if (IS_ROOT(dentry)) {
1413 		dentry->d_parent = target->d_parent;
1414 		target->d_parent = target;
1415 		INIT_LIST_HEAD(&target->d_u.d_child);
1416 	} else {
1417 		do_switch(dentry->d_parent, target->d_parent);
1418 
1419 		/* And add them back to the (new) parent lists */
1420 		list_add(&target->d_u.d_child, &target->d_parent->d_subdirs);
1421 	}
1422 
1423 	list_add(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs);
1424 	spin_unlock(&target->d_lock);
1425 	fsnotify_d_move(dentry);
1426 	spin_unlock(&dentry->d_lock);
1427 	write_sequnlock(&rename_lock);
1428 	spin_unlock(&dcache_lock);
1429 }
1430 
1431 /**
1432  * d_path - return the path of a dentry
1433  * @dentry: dentry to report
1434  * @vfsmnt: vfsmnt to which the dentry belongs
1435  * @root: root dentry
1436  * @rootmnt: vfsmnt to which the root dentry belongs
1437  * @buffer: buffer to return value in
1438  * @buflen: buffer length
1439  *
1440  * Convert a dentry into an ASCII path name. If the entry has been deleted
1441  * the string " (deleted)" is appended. Note that this is ambiguous.
1442  *
1443  * Returns the buffer or an error code if the path was too long.
1444  *
1445  * "buflen" should be positive. Caller holds the dcache_lock.
1446  */
1447 static char * __d_path( struct dentry *dentry, struct vfsmount *vfsmnt,
1448 			struct dentry *root, struct vfsmount *rootmnt,
1449 			char *buffer, int buflen)
1450 {
1451 	char * end = buffer+buflen;
1452 	char * retval;
1453 	int namelen;
1454 
1455 	*--end = '\0';
1456 	buflen--;
1457 	if (!IS_ROOT(dentry) && d_unhashed(dentry)) {
1458 		buflen -= 10;
1459 		end -= 10;
1460 		if (buflen < 0)
1461 			goto Elong;
1462 		memcpy(end, " (deleted)", 10);
1463 	}
1464 
1465 	if (buflen < 1)
1466 		goto Elong;
1467 	/* Get '/' right */
1468 	retval = end-1;
1469 	*retval = '/';
1470 
1471 	for (;;) {
1472 		struct dentry * parent;
1473 
1474 		if (dentry == root && vfsmnt == rootmnt)
1475 			break;
1476 		if (dentry == vfsmnt->mnt_root || IS_ROOT(dentry)) {
1477 			/* Global root? */
1478 			spin_lock(&vfsmount_lock);
1479 			if (vfsmnt->mnt_parent == vfsmnt) {
1480 				spin_unlock(&vfsmount_lock);
1481 				goto global_root;
1482 			}
1483 			dentry = vfsmnt->mnt_mountpoint;
1484 			vfsmnt = vfsmnt->mnt_parent;
1485 			spin_unlock(&vfsmount_lock);
1486 			continue;
1487 		}
1488 		parent = dentry->d_parent;
1489 		prefetch(parent);
1490 		namelen = dentry->d_name.len;
1491 		buflen -= namelen + 1;
1492 		if (buflen < 0)
1493 			goto Elong;
1494 		end -= namelen;
1495 		memcpy(end, dentry->d_name.name, namelen);
1496 		*--end = '/';
1497 		retval = end;
1498 		dentry = parent;
1499 	}
1500 
1501 	return retval;
1502 
1503 global_root:
1504 	namelen = dentry->d_name.len;
1505 	buflen -= namelen;
1506 	if (buflen < 0)
1507 		goto Elong;
1508 	retval -= namelen-1;	/* hit the slash */
1509 	memcpy(retval, dentry->d_name.name, namelen);
1510 	return retval;
1511 Elong:
1512 	return ERR_PTR(-ENAMETOOLONG);
1513 }
1514 
1515 /* write full pathname into buffer and return start of pathname */
1516 char * d_path(struct dentry *dentry, struct vfsmount *vfsmnt,
1517 				char *buf, int buflen)
1518 {
1519 	char *res;
1520 	struct vfsmount *rootmnt;
1521 	struct dentry *root;
1522 
1523 	read_lock(&current->fs->lock);
1524 	rootmnt = mntget(current->fs->rootmnt);
1525 	root = dget(current->fs->root);
1526 	read_unlock(&current->fs->lock);
1527 	spin_lock(&dcache_lock);
1528 	res = __d_path(dentry, vfsmnt, root, rootmnt, buf, buflen);
1529 	spin_unlock(&dcache_lock);
1530 	dput(root);
1531 	mntput(rootmnt);
1532 	return res;
1533 }
1534 
1535 /*
1536  * NOTE! The user-level library version returns a
1537  * character pointer. The kernel system call just
1538  * returns the length of the buffer filled (which
1539  * includes the ending '\0' character), or a negative
1540  * error value. So libc would do something like
1541  *
1542  *	char *getcwd(char * buf, size_t size)
1543  *	{
1544  *		int retval;
1545  *
1546  *		retval = sys_getcwd(buf, size);
1547  *		if (retval >= 0)
1548  *			return buf;
1549  *		errno = -retval;
1550  *		return NULL;
1551  *	}
1552  */
1553 asmlinkage long sys_getcwd(char __user *buf, unsigned long size)
1554 {
1555 	int error;
1556 	struct vfsmount *pwdmnt, *rootmnt;
1557 	struct dentry *pwd, *root;
1558 	char *page = (char *) __get_free_page(GFP_USER);
1559 
1560 	if (!page)
1561 		return -ENOMEM;
1562 
1563 	read_lock(&current->fs->lock);
1564 	pwdmnt = mntget(current->fs->pwdmnt);
1565 	pwd = dget(current->fs->pwd);
1566 	rootmnt = mntget(current->fs->rootmnt);
1567 	root = dget(current->fs->root);
1568 	read_unlock(&current->fs->lock);
1569 
1570 	error = -ENOENT;
1571 	/* Has the current directory has been unlinked? */
1572 	spin_lock(&dcache_lock);
1573 	if (pwd->d_parent == pwd || !d_unhashed(pwd)) {
1574 		unsigned long len;
1575 		char * cwd;
1576 
1577 		cwd = __d_path(pwd, pwdmnt, root, rootmnt, page, PAGE_SIZE);
1578 		spin_unlock(&dcache_lock);
1579 
1580 		error = PTR_ERR(cwd);
1581 		if (IS_ERR(cwd))
1582 			goto out;
1583 
1584 		error = -ERANGE;
1585 		len = PAGE_SIZE + page - cwd;
1586 		if (len <= size) {
1587 			error = len;
1588 			if (copy_to_user(buf, cwd, len))
1589 				error = -EFAULT;
1590 		}
1591 	} else
1592 		spin_unlock(&dcache_lock);
1593 
1594 out:
1595 	dput(pwd);
1596 	mntput(pwdmnt);
1597 	dput(root);
1598 	mntput(rootmnt);
1599 	free_page((unsigned long) page);
1600 	return error;
1601 }
1602 
1603 /*
1604  * Test whether new_dentry is a subdirectory of old_dentry.
1605  *
1606  * Trivially implemented using the dcache structure
1607  */
1608 
1609 /**
1610  * is_subdir - is new dentry a subdirectory of old_dentry
1611  * @new_dentry: new dentry
1612  * @old_dentry: old dentry
1613  *
1614  * Returns 1 if new_dentry is a subdirectory of the parent (at any depth).
1615  * Returns 0 otherwise.
1616  * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
1617  */
1618 
1619 int is_subdir(struct dentry * new_dentry, struct dentry * old_dentry)
1620 {
1621 	int result;
1622 	struct dentry * saved = new_dentry;
1623 	unsigned long seq;
1624 
1625 	/* need rcu_readlock to protect against the d_parent trashing due to
1626 	 * d_move
1627 	 */
1628 	rcu_read_lock();
1629         do {
1630 		/* for restarting inner loop in case of seq retry */
1631 		new_dentry = saved;
1632 		result = 0;
1633 		seq = read_seqbegin(&rename_lock);
1634 		for (;;) {
1635 			if (new_dentry != old_dentry) {
1636 				struct dentry * parent = new_dentry->d_parent;
1637 				if (parent == new_dentry)
1638 					break;
1639 				new_dentry = parent;
1640 				continue;
1641 			}
1642 			result = 1;
1643 			break;
1644 		}
1645 	} while (read_seqretry(&rename_lock, seq));
1646 	rcu_read_unlock();
1647 
1648 	return result;
1649 }
1650 
1651 void d_genocide(struct dentry *root)
1652 {
1653 	struct dentry *this_parent = root;
1654 	struct list_head *next;
1655 
1656 	spin_lock(&dcache_lock);
1657 repeat:
1658 	next = this_parent->d_subdirs.next;
1659 resume:
1660 	while (next != &this_parent->d_subdirs) {
1661 		struct list_head *tmp = next;
1662 		struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
1663 		next = tmp->next;
1664 		if (d_unhashed(dentry)||!dentry->d_inode)
1665 			continue;
1666 		if (!list_empty(&dentry->d_subdirs)) {
1667 			this_parent = dentry;
1668 			goto repeat;
1669 		}
1670 		atomic_dec(&dentry->d_count);
1671 	}
1672 	if (this_parent != root) {
1673 		next = this_parent->d_u.d_child.next;
1674 		atomic_dec(&this_parent->d_count);
1675 		this_parent = this_parent->d_parent;
1676 		goto resume;
1677 	}
1678 	spin_unlock(&dcache_lock);
1679 }
1680 
1681 /**
1682  * find_inode_number - check for dentry with name
1683  * @dir: directory to check
1684  * @name: Name to find.
1685  *
1686  * Check whether a dentry already exists for the given name,
1687  * and return the inode number if it has an inode. Otherwise
1688  * 0 is returned.
1689  *
1690  * This routine is used to post-process directory listings for
1691  * filesystems using synthetic inode numbers, and is necessary
1692  * to keep getcwd() working.
1693  */
1694 
1695 ino_t find_inode_number(struct dentry *dir, struct qstr *name)
1696 {
1697 	struct dentry * dentry;
1698 	ino_t ino = 0;
1699 
1700 	dentry = d_hash_and_lookup(dir, name);
1701 	if (dentry) {
1702 		if (dentry->d_inode)
1703 			ino = dentry->d_inode->i_ino;
1704 		dput(dentry);
1705 	}
1706 	return ino;
1707 }
1708 
1709 static __initdata unsigned long dhash_entries;
1710 static int __init set_dhash_entries(char *str)
1711 {
1712 	if (!str)
1713 		return 0;
1714 	dhash_entries = simple_strtoul(str, &str, 0);
1715 	return 1;
1716 }
1717 __setup("dhash_entries=", set_dhash_entries);
1718 
1719 static void __init dcache_init_early(void)
1720 {
1721 	int loop;
1722 
1723 	/* If hashes are distributed across NUMA nodes, defer
1724 	 * hash allocation until vmalloc space is available.
1725 	 */
1726 	if (hashdist)
1727 		return;
1728 
1729 	dentry_hashtable =
1730 		alloc_large_system_hash("Dentry cache",
1731 					sizeof(struct hlist_head),
1732 					dhash_entries,
1733 					13,
1734 					HASH_EARLY,
1735 					&d_hash_shift,
1736 					&d_hash_mask,
1737 					0);
1738 
1739 	for (loop = 0; loop < (1 << d_hash_shift); loop++)
1740 		INIT_HLIST_HEAD(&dentry_hashtable[loop]);
1741 }
1742 
1743 static void __init dcache_init(unsigned long mempages)
1744 {
1745 	int loop;
1746 
1747 	/*
1748 	 * A constructor could be added for stable state like the lists,
1749 	 * but it is probably not worth it because of the cache nature
1750 	 * of the dcache.
1751 	 */
1752 	dentry_cache = kmem_cache_create("dentry_cache",
1753 					 sizeof(struct dentry),
1754 					 0,
1755 					 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
1756 					 SLAB_MEM_SPREAD),
1757 					 NULL, NULL);
1758 
1759 	set_shrinker(DEFAULT_SEEKS, shrink_dcache_memory);
1760 
1761 	/* Hash may have been set up in dcache_init_early */
1762 	if (!hashdist)
1763 		return;
1764 
1765 	dentry_hashtable =
1766 		alloc_large_system_hash("Dentry cache",
1767 					sizeof(struct hlist_head),
1768 					dhash_entries,
1769 					13,
1770 					0,
1771 					&d_hash_shift,
1772 					&d_hash_mask,
1773 					0);
1774 
1775 	for (loop = 0; loop < (1 << d_hash_shift); loop++)
1776 		INIT_HLIST_HEAD(&dentry_hashtable[loop]);
1777 }
1778 
1779 /* SLAB cache for __getname() consumers */
1780 kmem_cache_t *names_cachep __read_mostly;
1781 
1782 /* SLAB cache for file structures */
1783 kmem_cache_t *filp_cachep __read_mostly;
1784 
1785 EXPORT_SYMBOL(d_genocide);
1786 
1787 extern void bdev_cache_init(void);
1788 extern void chrdev_init(void);
1789 
1790 void __init vfs_caches_init_early(void)
1791 {
1792 	dcache_init_early();
1793 	inode_init_early();
1794 }
1795 
1796 void __init vfs_caches_init(unsigned long mempages)
1797 {
1798 	unsigned long reserve;
1799 
1800 	/* Base hash sizes on available memory, with a reserve equal to
1801            150% of current kernel size */
1802 
1803 	reserve = min((mempages - nr_free_pages()) * 3/2, mempages - 1);
1804 	mempages -= reserve;
1805 
1806 	names_cachep = kmem_cache_create("names_cache", PATH_MAX, 0,
1807 			SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1808 
1809 	filp_cachep = kmem_cache_create("filp", sizeof(struct file), 0,
1810 			SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1811 
1812 	dcache_init(mempages);
1813 	inode_init(mempages);
1814 	files_init(mempages);
1815 	mnt_init(mempages);
1816 	bdev_cache_init();
1817 	chrdev_init();
1818 }
1819 
1820 EXPORT_SYMBOL(d_alloc);
1821 EXPORT_SYMBOL(d_alloc_anon);
1822 EXPORT_SYMBOL(d_alloc_root);
1823 EXPORT_SYMBOL(d_delete);
1824 EXPORT_SYMBOL(d_find_alias);
1825 EXPORT_SYMBOL(d_instantiate);
1826 EXPORT_SYMBOL(d_invalidate);
1827 EXPORT_SYMBOL(d_lookup);
1828 EXPORT_SYMBOL(d_move);
1829 EXPORT_SYMBOL(d_path);
1830 EXPORT_SYMBOL(d_prune_aliases);
1831 EXPORT_SYMBOL(d_rehash);
1832 EXPORT_SYMBOL(d_splice_alias);
1833 EXPORT_SYMBOL(d_validate);
1834 EXPORT_SYMBOL(dget_locked);
1835 EXPORT_SYMBOL(dput);
1836 EXPORT_SYMBOL(find_inode_number);
1837 EXPORT_SYMBOL(have_submounts);
1838 EXPORT_SYMBOL(names_cachep);
1839 EXPORT_SYMBOL(shrink_dcache_parent);
1840 EXPORT_SYMBOL(shrink_dcache_sb);
1841