1 /* 2 * fs/dcache.c 3 * 4 * Complete reimplementation 5 * (C) 1997 Thomas Schoebel-Theuer, 6 * with heavy changes by Linus Torvalds 7 */ 8 9 /* 10 * Notes on the allocation strategy: 11 * 12 * The dcache is a master of the icache - whenever a dcache entry 13 * exists, the inode will always exist. "iput()" is done either when 14 * the dcache entry is deleted or garbage collected. 15 */ 16 17 #include <linux/syscalls.h> 18 #include <linux/string.h> 19 #include <linux/mm.h> 20 #include <linux/fs.h> 21 #include <linux/fsnotify.h> 22 #include <linux/slab.h> 23 #include <linux/init.h> 24 #include <linux/hash.h> 25 #include <linux/cache.h> 26 #include <linux/export.h> 27 #include <linux/mount.h> 28 #include <linux/file.h> 29 #include <asm/uaccess.h> 30 #include <linux/security.h> 31 #include <linux/seqlock.h> 32 #include <linux/swap.h> 33 #include <linux/bootmem.h> 34 #include <linux/fs_struct.h> 35 #include <linux/hardirq.h> 36 #include <linux/bit_spinlock.h> 37 #include <linux/rculist_bl.h> 38 #include <linux/prefetch.h> 39 #include <linux/ratelimit.h> 40 #include <linux/list_lru.h> 41 #include <linux/kasan.h> 42 43 #include "internal.h" 44 #include "mount.h" 45 46 /* 47 * Usage: 48 * dcache->d_inode->i_lock protects: 49 * - i_dentry, d_u.d_alias, d_inode of aliases 50 * dcache_hash_bucket lock protects: 51 * - the dcache hash table 52 * s_anon bl list spinlock protects: 53 * - the s_anon list (see __d_drop) 54 * dentry->d_sb->s_dentry_lru_lock protects: 55 * - the dcache lru lists and counters 56 * d_lock protects: 57 * - d_flags 58 * - d_name 59 * - d_lru 60 * - d_count 61 * - d_unhashed() 62 * - d_parent and d_subdirs 63 * - childrens' d_child and d_parent 64 * - d_u.d_alias, d_inode 65 * 66 * Ordering: 67 * dentry->d_inode->i_lock 68 * dentry->d_lock 69 * dentry->d_sb->s_dentry_lru_lock 70 * dcache_hash_bucket lock 71 * s_anon lock 72 * 73 * If there is an ancestor relationship: 74 * dentry->d_parent->...->d_parent->d_lock 75 * ... 76 * dentry->d_parent->d_lock 77 * dentry->d_lock 78 * 79 * If no ancestor relationship: 80 * if (dentry1 < dentry2) 81 * dentry1->d_lock 82 * dentry2->d_lock 83 */ 84 int sysctl_vfs_cache_pressure __read_mostly = 100; 85 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure); 86 87 __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock); 88 89 EXPORT_SYMBOL(rename_lock); 90 91 static struct kmem_cache *dentry_cache __read_mostly; 92 93 /* 94 * This is the single most critical data structure when it comes 95 * to the dcache: the hashtable for lookups. Somebody should try 96 * to make this good - I've just made it work. 97 * 98 * This hash-function tries to avoid losing too many bits of hash 99 * information, yet avoid using a prime hash-size or similar. 100 */ 101 102 static unsigned int d_hash_mask __read_mostly; 103 static unsigned int d_hash_shift __read_mostly; 104 105 static struct hlist_bl_head *dentry_hashtable __read_mostly; 106 107 static inline struct hlist_bl_head *d_hash(const struct dentry *parent, 108 unsigned int hash) 109 { 110 hash += (unsigned long) parent / L1_CACHE_BYTES; 111 return dentry_hashtable + hash_32(hash, d_hash_shift); 112 } 113 114 #define IN_LOOKUP_SHIFT 10 115 static struct hlist_bl_head in_lookup_hashtable[1 << IN_LOOKUP_SHIFT]; 116 117 static inline struct hlist_bl_head *in_lookup_hash(const struct dentry *parent, 118 unsigned int hash) 119 { 120 hash += (unsigned long) parent / L1_CACHE_BYTES; 121 return in_lookup_hashtable + hash_32(hash, IN_LOOKUP_SHIFT); 122 } 123 124 125 /* Statistics gathering. */ 126 struct dentry_stat_t dentry_stat = { 127 .age_limit = 45, 128 }; 129 130 static DEFINE_PER_CPU(long, nr_dentry); 131 static DEFINE_PER_CPU(long, nr_dentry_unused); 132 133 #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS) 134 135 /* 136 * Here we resort to our own counters instead of using generic per-cpu counters 137 * for consistency with what the vfs inode code does. We are expected to harvest 138 * better code and performance by having our own specialized counters. 139 * 140 * Please note that the loop is done over all possible CPUs, not over all online 141 * CPUs. The reason for this is that we don't want to play games with CPUs going 142 * on and off. If one of them goes off, we will just keep their counters. 143 * 144 * glommer: See cffbc8a for details, and if you ever intend to change this, 145 * please update all vfs counters to match. 146 */ 147 static long get_nr_dentry(void) 148 { 149 int i; 150 long sum = 0; 151 for_each_possible_cpu(i) 152 sum += per_cpu(nr_dentry, i); 153 return sum < 0 ? 0 : sum; 154 } 155 156 static long get_nr_dentry_unused(void) 157 { 158 int i; 159 long sum = 0; 160 for_each_possible_cpu(i) 161 sum += per_cpu(nr_dentry_unused, i); 162 return sum < 0 ? 0 : sum; 163 } 164 165 int proc_nr_dentry(struct ctl_table *table, int write, void __user *buffer, 166 size_t *lenp, loff_t *ppos) 167 { 168 dentry_stat.nr_dentry = get_nr_dentry(); 169 dentry_stat.nr_unused = get_nr_dentry_unused(); 170 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos); 171 } 172 #endif 173 174 /* 175 * Compare 2 name strings, return 0 if they match, otherwise non-zero. 176 * The strings are both count bytes long, and count is non-zero. 177 */ 178 #ifdef CONFIG_DCACHE_WORD_ACCESS 179 180 #include <asm/word-at-a-time.h> 181 /* 182 * NOTE! 'cs' and 'scount' come from a dentry, so it has a 183 * aligned allocation for this particular component. We don't 184 * strictly need the load_unaligned_zeropad() safety, but it 185 * doesn't hurt either. 186 * 187 * In contrast, 'ct' and 'tcount' can be from a pathname, and do 188 * need the careful unaligned handling. 189 */ 190 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount) 191 { 192 unsigned long a,b,mask; 193 194 for (;;) { 195 a = *(unsigned long *)cs; 196 b = load_unaligned_zeropad(ct); 197 if (tcount < sizeof(unsigned long)) 198 break; 199 if (unlikely(a != b)) 200 return 1; 201 cs += sizeof(unsigned long); 202 ct += sizeof(unsigned long); 203 tcount -= sizeof(unsigned long); 204 if (!tcount) 205 return 0; 206 } 207 mask = bytemask_from_count(tcount); 208 return unlikely(!!((a ^ b) & mask)); 209 } 210 211 #else 212 213 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount) 214 { 215 do { 216 if (*cs != *ct) 217 return 1; 218 cs++; 219 ct++; 220 tcount--; 221 } while (tcount); 222 return 0; 223 } 224 225 #endif 226 227 static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount) 228 { 229 const unsigned char *cs; 230 /* 231 * Be careful about RCU walk racing with rename: 232 * use ACCESS_ONCE to fetch the name pointer. 233 * 234 * NOTE! Even if a rename will mean that the length 235 * was not loaded atomically, we don't care. The 236 * RCU walk will check the sequence count eventually, 237 * and catch it. And we won't overrun the buffer, 238 * because we're reading the name pointer atomically, 239 * and a dentry name is guaranteed to be properly 240 * terminated with a NUL byte. 241 * 242 * End result: even if 'len' is wrong, we'll exit 243 * early because the data cannot match (there can 244 * be no NUL in the ct/tcount data) 245 */ 246 cs = ACCESS_ONCE(dentry->d_name.name); 247 smp_read_barrier_depends(); 248 return dentry_string_cmp(cs, ct, tcount); 249 } 250 251 struct external_name { 252 union { 253 atomic_t count; 254 struct rcu_head head; 255 } u; 256 unsigned char name[]; 257 }; 258 259 static inline struct external_name *external_name(struct dentry *dentry) 260 { 261 return container_of(dentry->d_name.name, struct external_name, name[0]); 262 } 263 264 static void __d_free(struct rcu_head *head) 265 { 266 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu); 267 268 kmem_cache_free(dentry_cache, dentry); 269 } 270 271 static void __d_free_external(struct rcu_head *head) 272 { 273 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu); 274 kfree(external_name(dentry)); 275 kmem_cache_free(dentry_cache, dentry); 276 } 277 278 static inline int dname_external(const struct dentry *dentry) 279 { 280 return dentry->d_name.name != dentry->d_iname; 281 } 282 283 static inline void __d_set_inode_and_type(struct dentry *dentry, 284 struct inode *inode, 285 unsigned type_flags) 286 { 287 unsigned flags; 288 289 dentry->d_inode = inode; 290 flags = READ_ONCE(dentry->d_flags); 291 flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU); 292 flags |= type_flags; 293 WRITE_ONCE(dentry->d_flags, flags); 294 } 295 296 static inline void __d_clear_type_and_inode(struct dentry *dentry) 297 { 298 unsigned flags = READ_ONCE(dentry->d_flags); 299 300 flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU); 301 WRITE_ONCE(dentry->d_flags, flags); 302 dentry->d_inode = NULL; 303 } 304 305 static void dentry_free(struct dentry *dentry) 306 { 307 WARN_ON(!hlist_unhashed(&dentry->d_u.d_alias)); 308 if (unlikely(dname_external(dentry))) { 309 struct external_name *p = external_name(dentry); 310 if (likely(atomic_dec_and_test(&p->u.count))) { 311 call_rcu(&dentry->d_u.d_rcu, __d_free_external); 312 return; 313 } 314 } 315 /* if dentry was never visible to RCU, immediate free is OK */ 316 if (!(dentry->d_flags & DCACHE_RCUACCESS)) 317 __d_free(&dentry->d_u.d_rcu); 318 else 319 call_rcu(&dentry->d_u.d_rcu, __d_free); 320 } 321 322 /** 323 * dentry_rcuwalk_invalidate - invalidate in-progress rcu-walk lookups 324 * @dentry: the target dentry 325 * After this call, in-progress rcu-walk path lookup will fail. This 326 * should be called after unhashing, and after changing d_inode (if 327 * the dentry has not already been unhashed). 328 */ 329 static inline void dentry_rcuwalk_invalidate(struct dentry *dentry) 330 { 331 lockdep_assert_held(&dentry->d_lock); 332 /* Go through am invalidation barrier */ 333 write_seqcount_invalidate(&dentry->d_seq); 334 } 335 336 /* 337 * Release the dentry's inode, using the filesystem 338 * d_iput() operation if defined. Dentry has no refcount 339 * and is unhashed. 340 */ 341 static void dentry_iput(struct dentry * dentry) 342 __releases(dentry->d_lock) 343 __releases(dentry->d_inode->i_lock) 344 { 345 struct inode *inode = dentry->d_inode; 346 if (inode) { 347 __d_clear_type_and_inode(dentry); 348 hlist_del_init(&dentry->d_u.d_alias); 349 spin_unlock(&dentry->d_lock); 350 spin_unlock(&inode->i_lock); 351 if (!inode->i_nlink) 352 fsnotify_inoderemove(inode); 353 if (dentry->d_op && dentry->d_op->d_iput) 354 dentry->d_op->d_iput(dentry, inode); 355 else 356 iput(inode); 357 } else { 358 spin_unlock(&dentry->d_lock); 359 } 360 } 361 362 /* 363 * Release the dentry's inode, using the filesystem 364 * d_iput() operation if defined. dentry remains in-use. 365 */ 366 static void dentry_unlink_inode(struct dentry * dentry) 367 __releases(dentry->d_lock) 368 __releases(dentry->d_inode->i_lock) 369 { 370 struct inode *inode = dentry->d_inode; 371 372 raw_write_seqcount_begin(&dentry->d_seq); 373 __d_clear_type_and_inode(dentry); 374 hlist_del_init(&dentry->d_u.d_alias); 375 raw_write_seqcount_end(&dentry->d_seq); 376 spin_unlock(&dentry->d_lock); 377 spin_unlock(&inode->i_lock); 378 if (!inode->i_nlink) 379 fsnotify_inoderemove(inode); 380 if (dentry->d_op && dentry->d_op->d_iput) 381 dentry->d_op->d_iput(dentry, inode); 382 else 383 iput(inode); 384 } 385 386 /* 387 * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry 388 * is in use - which includes both the "real" per-superblock 389 * LRU list _and_ the DCACHE_SHRINK_LIST use. 390 * 391 * The DCACHE_SHRINK_LIST bit is set whenever the dentry is 392 * on the shrink list (ie not on the superblock LRU list). 393 * 394 * The per-cpu "nr_dentry_unused" counters are updated with 395 * the DCACHE_LRU_LIST bit. 396 * 397 * These helper functions make sure we always follow the 398 * rules. d_lock must be held by the caller. 399 */ 400 #define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x)) 401 static void d_lru_add(struct dentry *dentry) 402 { 403 D_FLAG_VERIFY(dentry, 0); 404 dentry->d_flags |= DCACHE_LRU_LIST; 405 this_cpu_inc(nr_dentry_unused); 406 WARN_ON_ONCE(!list_lru_add(&dentry->d_sb->s_dentry_lru, &dentry->d_lru)); 407 } 408 409 static void d_lru_del(struct dentry *dentry) 410 { 411 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST); 412 dentry->d_flags &= ~DCACHE_LRU_LIST; 413 this_cpu_dec(nr_dentry_unused); 414 WARN_ON_ONCE(!list_lru_del(&dentry->d_sb->s_dentry_lru, &dentry->d_lru)); 415 } 416 417 static void d_shrink_del(struct dentry *dentry) 418 { 419 D_FLAG_VERIFY(dentry, DCACHE_SHRINK_LIST | DCACHE_LRU_LIST); 420 list_del_init(&dentry->d_lru); 421 dentry->d_flags &= ~(DCACHE_SHRINK_LIST | DCACHE_LRU_LIST); 422 this_cpu_dec(nr_dentry_unused); 423 } 424 425 static void d_shrink_add(struct dentry *dentry, struct list_head *list) 426 { 427 D_FLAG_VERIFY(dentry, 0); 428 list_add(&dentry->d_lru, list); 429 dentry->d_flags |= DCACHE_SHRINK_LIST | DCACHE_LRU_LIST; 430 this_cpu_inc(nr_dentry_unused); 431 } 432 433 /* 434 * These can only be called under the global LRU lock, ie during the 435 * callback for freeing the LRU list. "isolate" removes it from the 436 * LRU lists entirely, while shrink_move moves it to the indicated 437 * private list. 438 */ 439 static void d_lru_isolate(struct list_lru_one *lru, struct dentry *dentry) 440 { 441 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST); 442 dentry->d_flags &= ~DCACHE_LRU_LIST; 443 this_cpu_dec(nr_dentry_unused); 444 list_lru_isolate(lru, &dentry->d_lru); 445 } 446 447 static void d_lru_shrink_move(struct list_lru_one *lru, struct dentry *dentry, 448 struct list_head *list) 449 { 450 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST); 451 dentry->d_flags |= DCACHE_SHRINK_LIST; 452 list_lru_isolate_move(lru, &dentry->d_lru, list); 453 } 454 455 /* 456 * dentry_lru_(add|del)_list) must be called with d_lock held. 457 */ 458 static void dentry_lru_add(struct dentry *dentry) 459 { 460 if (unlikely(!(dentry->d_flags & DCACHE_LRU_LIST))) 461 d_lru_add(dentry); 462 } 463 464 /** 465 * d_drop - drop a dentry 466 * @dentry: dentry to drop 467 * 468 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't 469 * be found through a VFS lookup any more. Note that this is different from 470 * deleting the dentry - d_delete will try to mark the dentry negative if 471 * possible, giving a successful _negative_ lookup, while d_drop will 472 * just make the cache lookup fail. 473 * 474 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some 475 * reason (NFS timeouts or autofs deletes). 476 * 477 * __d_drop requires dentry->d_lock. 478 */ 479 void __d_drop(struct dentry *dentry) 480 { 481 if (!d_unhashed(dentry)) { 482 struct hlist_bl_head *b; 483 /* 484 * Hashed dentries are normally on the dentry hashtable, 485 * with the exception of those newly allocated by 486 * d_obtain_alias, which are always IS_ROOT: 487 */ 488 if (unlikely(IS_ROOT(dentry))) 489 b = &dentry->d_sb->s_anon; 490 else 491 b = d_hash(dentry->d_parent, dentry->d_name.hash); 492 493 hlist_bl_lock(b); 494 __hlist_bl_del(&dentry->d_hash); 495 dentry->d_hash.pprev = NULL; 496 hlist_bl_unlock(b); 497 dentry_rcuwalk_invalidate(dentry); 498 } 499 } 500 EXPORT_SYMBOL(__d_drop); 501 502 void d_drop(struct dentry *dentry) 503 { 504 spin_lock(&dentry->d_lock); 505 __d_drop(dentry); 506 spin_unlock(&dentry->d_lock); 507 } 508 EXPORT_SYMBOL(d_drop); 509 510 static inline void dentry_unlist(struct dentry *dentry, struct dentry *parent) 511 { 512 struct dentry *next; 513 /* 514 * Inform d_walk() and shrink_dentry_list() that we are no longer 515 * attached to the dentry tree 516 */ 517 dentry->d_flags |= DCACHE_DENTRY_KILLED; 518 if (unlikely(list_empty(&dentry->d_child))) 519 return; 520 __list_del_entry(&dentry->d_child); 521 /* 522 * Cursors can move around the list of children. While we'd been 523 * a normal list member, it didn't matter - ->d_child.next would've 524 * been updated. However, from now on it won't be and for the 525 * things like d_walk() it might end up with a nasty surprise. 526 * Normally d_walk() doesn't care about cursors moving around - 527 * ->d_lock on parent prevents that and since a cursor has no children 528 * of its own, we get through it without ever unlocking the parent. 529 * There is one exception, though - if we ascend from a child that 530 * gets killed as soon as we unlock it, the next sibling is found 531 * using the value left in its ->d_child.next. And if _that_ 532 * pointed to a cursor, and cursor got moved (e.g. by lseek()) 533 * before d_walk() regains parent->d_lock, we'll end up skipping 534 * everything the cursor had been moved past. 535 * 536 * Solution: make sure that the pointer left behind in ->d_child.next 537 * points to something that won't be moving around. I.e. skip the 538 * cursors. 539 */ 540 while (dentry->d_child.next != &parent->d_subdirs) { 541 next = list_entry(dentry->d_child.next, struct dentry, d_child); 542 if (likely(!(next->d_flags & DCACHE_DENTRY_CURSOR))) 543 break; 544 dentry->d_child.next = next->d_child.next; 545 } 546 } 547 548 static void __dentry_kill(struct dentry *dentry) 549 { 550 struct dentry *parent = NULL; 551 bool can_free = true; 552 if (!IS_ROOT(dentry)) 553 parent = dentry->d_parent; 554 555 /* 556 * The dentry is now unrecoverably dead to the world. 557 */ 558 lockref_mark_dead(&dentry->d_lockref); 559 560 /* 561 * inform the fs via d_prune that this dentry is about to be 562 * unhashed and destroyed. 563 */ 564 if (dentry->d_flags & DCACHE_OP_PRUNE) 565 dentry->d_op->d_prune(dentry); 566 567 if (dentry->d_flags & DCACHE_LRU_LIST) { 568 if (!(dentry->d_flags & DCACHE_SHRINK_LIST)) 569 d_lru_del(dentry); 570 } 571 /* if it was on the hash then remove it */ 572 __d_drop(dentry); 573 dentry_unlist(dentry, parent); 574 if (parent) 575 spin_unlock(&parent->d_lock); 576 dentry_iput(dentry); 577 /* 578 * dentry_iput drops the locks, at which point nobody (except 579 * transient RCU lookups) can reach this dentry. 580 */ 581 BUG_ON(dentry->d_lockref.count > 0); 582 this_cpu_dec(nr_dentry); 583 if (dentry->d_op && dentry->d_op->d_release) 584 dentry->d_op->d_release(dentry); 585 586 spin_lock(&dentry->d_lock); 587 if (dentry->d_flags & DCACHE_SHRINK_LIST) { 588 dentry->d_flags |= DCACHE_MAY_FREE; 589 can_free = false; 590 } 591 spin_unlock(&dentry->d_lock); 592 if (likely(can_free)) 593 dentry_free(dentry); 594 } 595 596 /* 597 * Finish off a dentry we've decided to kill. 598 * dentry->d_lock must be held, returns with it unlocked. 599 * If ref is non-zero, then decrement the refcount too. 600 * Returns dentry requiring refcount drop, or NULL if we're done. 601 */ 602 static struct dentry *dentry_kill(struct dentry *dentry) 603 __releases(dentry->d_lock) 604 { 605 struct inode *inode = dentry->d_inode; 606 struct dentry *parent = NULL; 607 608 if (inode && unlikely(!spin_trylock(&inode->i_lock))) 609 goto failed; 610 611 if (!IS_ROOT(dentry)) { 612 parent = dentry->d_parent; 613 if (unlikely(!spin_trylock(&parent->d_lock))) { 614 if (inode) 615 spin_unlock(&inode->i_lock); 616 goto failed; 617 } 618 } 619 620 __dentry_kill(dentry); 621 return parent; 622 623 failed: 624 spin_unlock(&dentry->d_lock); 625 cpu_relax(); 626 return dentry; /* try again with same dentry */ 627 } 628 629 static inline struct dentry *lock_parent(struct dentry *dentry) 630 { 631 struct dentry *parent = dentry->d_parent; 632 if (IS_ROOT(dentry)) 633 return NULL; 634 if (unlikely(dentry->d_lockref.count < 0)) 635 return NULL; 636 if (likely(spin_trylock(&parent->d_lock))) 637 return parent; 638 rcu_read_lock(); 639 spin_unlock(&dentry->d_lock); 640 again: 641 parent = ACCESS_ONCE(dentry->d_parent); 642 spin_lock(&parent->d_lock); 643 /* 644 * We can't blindly lock dentry until we are sure 645 * that we won't violate the locking order. 646 * Any changes of dentry->d_parent must have 647 * been done with parent->d_lock held, so 648 * spin_lock() above is enough of a barrier 649 * for checking if it's still our child. 650 */ 651 if (unlikely(parent != dentry->d_parent)) { 652 spin_unlock(&parent->d_lock); 653 goto again; 654 } 655 rcu_read_unlock(); 656 if (parent != dentry) 657 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED); 658 else 659 parent = NULL; 660 return parent; 661 } 662 663 /* 664 * Try to do a lockless dput(), and return whether that was successful. 665 * 666 * If unsuccessful, we return false, having already taken the dentry lock. 667 * 668 * The caller needs to hold the RCU read lock, so that the dentry is 669 * guaranteed to stay around even if the refcount goes down to zero! 670 */ 671 static inline bool fast_dput(struct dentry *dentry) 672 { 673 int ret; 674 unsigned int d_flags; 675 676 /* 677 * If we have a d_op->d_delete() operation, we sould not 678 * let the dentry count go to zero, so use "put_or_lock". 679 */ 680 if (unlikely(dentry->d_flags & DCACHE_OP_DELETE)) 681 return lockref_put_or_lock(&dentry->d_lockref); 682 683 /* 684 * .. otherwise, we can try to just decrement the 685 * lockref optimistically. 686 */ 687 ret = lockref_put_return(&dentry->d_lockref); 688 689 /* 690 * If the lockref_put_return() failed due to the lock being held 691 * by somebody else, the fast path has failed. We will need to 692 * get the lock, and then check the count again. 693 */ 694 if (unlikely(ret < 0)) { 695 spin_lock(&dentry->d_lock); 696 if (dentry->d_lockref.count > 1) { 697 dentry->d_lockref.count--; 698 spin_unlock(&dentry->d_lock); 699 return 1; 700 } 701 return 0; 702 } 703 704 /* 705 * If we weren't the last ref, we're done. 706 */ 707 if (ret) 708 return 1; 709 710 /* 711 * Careful, careful. The reference count went down 712 * to zero, but we don't hold the dentry lock, so 713 * somebody else could get it again, and do another 714 * dput(), and we need to not race with that. 715 * 716 * However, there is a very special and common case 717 * where we don't care, because there is nothing to 718 * do: the dentry is still hashed, it does not have 719 * a 'delete' op, and it's referenced and already on 720 * the LRU list. 721 * 722 * NOTE! Since we aren't locked, these values are 723 * not "stable". However, it is sufficient that at 724 * some point after we dropped the reference the 725 * dentry was hashed and the flags had the proper 726 * value. Other dentry users may have re-gotten 727 * a reference to the dentry and change that, but 728 * our work is done - we can leave the dentry 729 * around with a zero refcount. 730 */ 731 smp_rmb(); 732 d_flags = ACCESS_ONCE(dentry->d_flags); 733 d_flags &= DCACHE_REFERENCED | DCACHE_LRU_LIST | DCACHE_DISCONNECTED; 734 735 /* Nothing to do? Dropping the reference was all we needed? */ 736 if (d_flags == (DCACHE_REFERENCED | DCACHE_LRU_LIST) && !d_unhashed(dentry)) 737 return 1; 738 739 /* 740 * Not the fast normal case? Get the lock. We've already decremented 741 * the refcount, but we'll need to re-check the situation after 742 * getting the lock. 743 */ 744 spin_lock(&dentry->d_lock); 745 746 /* 747 * Did somebody else grab a reference to it in the meantime, and 748 * we're no longer the last user after all? Alternatively, somebody 749 * else could have killed it and marked it dead. Either way, we 750 * don't need to do anything else. 751 */ 752 if (dentry->d_lockref.count) { 753 spin_unlock(&dentry->d_lock); 754 return 1; 755 } 756 757 /* 758 * Re-get the reference we optimistically dropped. We hold the 759 * lock, and we just tested that it was zero, so we can just 760 * set it to 1. 761 */ 762 dentry->d_lockref.count = 1; 763 return 0; 764 } 765 766 767 /* 768 * This is dput 769 * 770 * This is complicated by the fact that we do not want to put 771 * dentries that are no longer on any hash chain on the unused 772 * list: we'd much rather just get rid of them immediately. 773 * 774 * However, that implies that we have to traverse the dentry 775 * tree upwards to the parents which might _also_ now be 776 * scheduled for deletion (it may have been only waiting for 777 * its last child to go away). 778 * 779 * This tail recursion is done by hand as we don't want to depend 780 * on the compiler to always get this right (gcc generally doesn't). 781 * Real recursion would eat up our stack space. 782 */ 783 784 /* 785 * dput - release a dentry 786 * @dentry: dentry to release 787 * 788 * Release a dentry. This will drop the usage count and if appropriate 789 * call the dentry unlink method as well as removing it from the queues and 790 * releasing its resources. If the parent dentries were scheduled for release 791 * they too may now get deleted. 792 */ 793 void dput(struct dentry *dentry) 794 { 795 if (unlikely(!dentry)) 796 return; 797 798 repeat: 799 rcu_read_lock(); 800 if (likely(fast_dput(dentry))) { 801 rcu_read_unlock(); 802 return; 803 } 804 805 /* Slow case: now with the dentry lock held */ 806 rcu_read_unlock(); 807 808 WARN_ON(d_in_lookup(dentry)); 809 810 /* Unreachable? Get rid of it */ 811 if (unlikely(d_unhashed(dentry))) 812 goto kill_it; 813 814 if (unlikely(dentry->d_flags & DCACHE_DISCONNECTED)) 815 goto kill_it; 816 817 if (unlikely(dentry->d_flags & DCACHE_OP_DELETE)) { 818 if (dentry->d_op->d_delete(dentry)) 819 goto kill_it; 820 } 821 822 if (!(dentry->d_flags & DCACHE_REFERENCED)) 823 dentry->d_flags |= DCACHE_REFERENCED; 824 dentry_lru_add(dentry); 825 826 dentry->d_lockref.count--; 827 spin_unlock(&dentry->d_lock); 828 return; 829 830 kill_it: 831 dentry = dentry_kill(dentry); 832 if (dentry) 833 goto repeat; 834 } 835 EXPORT_SYMBOL(dput); 836 837 838 /* This must be called with d_lock held */ 839 static inline void __dget_dlock(struct dentry *dentry) 840 { 841 dentry->d_lockref.count++; 842 } 843 844 static inline void __dget(struct dentry *dentry) 845 { 846 lockref_get(&dentry->d_lockref); 847 } 848 849 struct dentry *dget_parent(struct dentry *dentry) 850 { 851 int gotref; 852 struct dentry *ret; 853 854 /* 855 * Do optimistic parent lookup without any 856 * locking. 857 */ 858 rcu_read_lock(); 859 ret = ACCESS_ONCE(dentry->d_parent); 860 gotref = lockref_get_not_zero(&ret->d_lockref); 861 rcu_read_unlock(); 862 if (likely(gotref)) { 863 if (likely(ret == ACCESS_ONCE(dentry->d_parent))) 864 return ret; 865 dput(ret); 866 } 867 868 repeat: 869 /* 870 * Don't need rcu_dereference because we re-check it was correct under 871 * the lock. 872 */ 873 rcu_read_lock(); 874 ret = dentry->d_parent; 875 spin_lock(&ret->d_lock); 876 if (unlikely(ret != dentry->d_parent)) { 877 spin_unlock(&ret->d_lock); 878 rcu_read_unlock(); 879 goto repeat; 880 } 881 rcu_read_unlock(); 882 BUG_ON(!ret->d_lockref.count); 883 ret->d_lockref.count++; 884 spin_unlock(&ret->d_lock); 885 return ret; 886 } 887 EXPORT_SYMBOL(dget_parent); 888 889 /** 890 * d_find_alias - grab a hashed alias of inode 891 * @inode: inode in question 892 * 893 * If inode has a hashed alias, or is a directory and has any alias, 894 * acquire the reference to alias and return it. Otherwise return NULL. 895 * Notice that if inode is a directory there can be only one alias and 896 * it can be unhashed only if it has no children, or if it is the root 897 * of a filesystem, or if the directory was renamed and d_revalidate 898 * was the first vfs operation to notice. 899 * 900 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer 901 * any other hashed alias over that one. 902 */ 903 static struct dentry *__d_find_alias(struct inode *inode) 904 { 905 struct dentry *alias, *discon_alias; 906 907 again: 908 discon_alias = NULL; 909 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) { 910 spin_lock(&alias->d_lock); 911 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) { 912 if (IS_ROOT(alias) && 913 (alias->d_flags & DCACHE_DISCONNECTED)) { 914 discon_alias = alias; 915 } else { 916 __dget_dlock(alias); 917 spin_unlock(&alias->d_lock); 918 return alias; 919 } 920 } 921 spin_unlock(&alias->d_lock); 922 } 923 if (discon_alias) { 924 alias = discon_alias; 925 spin_lock(&alias->d_lock); 926 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) { 927 __dget_dlock(alias); 928 spin_unlock(&alias->d_lock); 929 return alias; 930 } 931 spin_unlock(&alias->d_lock); 932 goto again; 933 } 934 return NULL; 935 } 936 937 struct dentry *d_find_alias(struct inode *inode) 938 { 939 struct dentry *de = NULL; 940 941 if (!hlist_empty(&inode->i_dentry)) { 942 spin_lock(&inode->i_lock); 943 de = __d_find_alias(inode); 944 spin_unlock(&inode->i_lock); 945 } 946 return de; 947 } 948 EXPORT_SYMBOL(d_find_alias); 949 950 /* 951 * Try to kill dentries associated with this inode. 952 * WARNING: you must own a reference to inode. 953 */ 954 void d_prune_aliases(struct inode *inode) 955 { 956 struct dentry *dentry; 957 restart: 958 spin_lock(&inode->i_lock); 959 hlist_for_each_entry(dentry, &inode->i_dentry, d_u.d_alias) { 960 spin_lock(&dentry->d_lock); 961 if (!dentry->d_lockref.count) { 962 struct dentry *parent = lock_parent(dentry); 963 if (likely(!dentry->d_lockref.count)) { 964 __dentry_kill(dentry); 965 dput(parent); 966 goto restart; 967 } 968 if (parent) 969 spin_unlock(&parent->d_lock); 970 } 971 spin_unlock(&dentry->d_lock); 972 } 973 spin_unlock(&inode->i_lock); 974 } 975 EXPORT_SYMBOL(d_prune_aliases); 976 977 static void shrink_dentry_list(struct list_head *list) 978 { 979 struct dentry *dentry, *parent; 980 981 while (!list_empty(list)) { 982 struct inode *inode; 983 dentry = list_entry(list->prev, struct dentry, d_lru); 984 spin_lock(&dentry->d_lock); 985 parent = lock_parent(dentry); 986 987 /* 988 * The dispose list is isolated and dentries are not accounted 989 * to the LRU here, so we can simply remove it from the list 990 * here regardless of whether it is referenced or not. 991 */ 992 d_shrink_del(dentry); 993 994 /* 995 * We found an inuse dentry which was not removed from 996 * the LRU because of laziness during lookup. Do not free it. 997 */ 998 if (dentry->d_lockref.count > 0) { 999 spin_unlock(&dentry->d_lock); 1000 if (parent) 1001 spin_unlock(&parent->d_lock); 1002 continue; 1003 } 1004 1005 1006 if (unlikely(dentry->d_flags & DCACHE_DENTRY_KILLED)) { 1007 bool can_free = dentry->d_flags & DCACHE_MAY_FREE; 1008 spin_unlock(&dentry->d_lock); 1009 if (parent) 1010 spin_unlock(&parent->d_lock); 1011 if (can_free) 1012 dentry_free(dentry); 1013 continue; 1014 } 1015 1016 inode = dentry->d_inode; 1017 if (inode && unlikely(!spin_trylock(&inode->i_lock))) { 1018 d_shrink_add(dentry, list); 1019 spin_unlock(&dentry->d_lock); 1020 if (parent) 1021 spin_unlock(&parent->d_lock); 1022 continue; 1023 } 1024 1025 __dentry_kill(dentry); 1026 1027 /* 1028 * We need to prune ancestors too. This is necessary to prevent 1029 * quadratic behavior of shrink_dcache_parent(), but is also 1030 * expected to be beneficial in reducing dentry cache 1031 * fragmentation. 1032 */ 1033 dentry = parent; 1034 while (dentry && !lockref_put_or_lock(&dentry->d_lockref)) { 1035 parent = lock_parent(dentry); 1036 if (dentry->d_lockref.count != 1) { 1037 dentry->d_lockref.count--; 1038 spin_unlock(&dentry->d_lock); 1039 if (parent) 1040 spin_unlock(&parent->d_lock); 1041 break; 1042 } 1043 inode = dentry->d_inode; /* can't be NULL */ 1044 if (unlikely(!spin_trylock(&inode->i_lock))) { 1045 spin_unlock(&dentry->d_lock); 1046 if (parent) 1047 spin_unlock(&parent->d_lock); 1048 cpu_relax(); 1049 continue; 1050 } 1051 __dentry_kill(dentry); 1052 dentry = parent; 1053 } 1054 } 1055 } 1056 1057 static enum lru_status dentry_lru_isolate(struct list_head *item, 1058 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg) 1059 { 1060 struct list_head *freeable = arg; 1061 struct dentry *dentry = container_of(item, struct dentry, d_lru); 1062 1063 1064 /* 1065 * we are inverting the lru lock/dentry->d_lock here, 1066 * so use a trylock. If we fail to get the lock, just skip 1067 * it 1068 */ 1069 if (!spin_trylock(&dentry->d_lock)) 1070 return LRU_SKIP; 1071 1072 /* 1073 * Referenced dentries are still in use. If they have active 1074 * counts, just remove them from the LRU. Otherwise give them 1075 * another pass through the LRU. 1076 */ 1077 if (dentry->d_lockref.count) { 1078 d_lru_isolate(lru, dentry); 1079 spin_unlock(&dentry->d_lock); 1080 return LRU_REMOVED; 1081 } 1082 1083 if (dentry->d_flags & DCACHE_REFERENCED) { 1084 dentry->d_flags &= ~DCACHE_REFERENCED; 1085 spin_unlock(&dentry->d_lock); 1086 1087 /* 1088 * The list move itself will be made by the common LRU code. At 1089 * this point, we've dropped the dentry->d_lock but keep the 1090 * lru lock. This is safe to do, since every list movement is 1091 * protected by the lru lock even if both locks are held. 1092 * 1093 * This is guaranteed by the fact that all LRU management 1094 * functions are intermediated by the LRU API calls like 1095 * list_lru_add and list_lru_del. List movement in this file 1096 * only ever occur through this functions or through callbacks 1097 * like this one, that are called from the LRU API. 1098 * 1099 * The only exceptions to this are functions like 1100 * shrink_dentry_list, and code that first checks for the 1101 * DCACHE_SHRINK_LIST flag. Those are guaranteed to be 1102 * operating only with stack provided lists after they are 1103 * properly isolated from the main list. It is thus, always a 1104 * local access. 1105 */ 1106 return LRU_ROTATE; 1107 } 1108 1109 d_lru_shrink_move(lru, dentry, freeable); 1110 spin_unlock(&dentry->d_lock); 1111 1112 return LRU_REMOVED; 1113 } 1114 1115 /** 1116 * prune_dcache_sb - shrink the dcache 1117 * @sb: superblock 1118 * @sc: shrink control, passed to list_lru_shrink_walk() 1119 * 1120 * Attempt to shrink the superblock dcache LRU by @sc->nr_to_scan entries. This 1121 * is done when we need more memory and called from the superblock shrinker 1122 * function. 1123 * 1124 * This function may fail to free any resources if all the dentries are in 1125 * use. 1126 */ 1127 long prune_dcache_sb(struct super_block *sb, struct shrink_control *sc) 1128 { 1129 LIST_HEAD(dispose); 1130 long freed; 1131 1132 freed = list_lru_shrink_walk(&sb->s_dentry_lru, sc, 1133 dentry_lru_isolate, &dispose); 1134 shrink_dentry_list(&dispose); 1135 return freed; 1136 } 1137 1138 static enum lru_status dentry_lru_isolate_shrink(struct list_head *item, 1139 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg) 1140 { 1141 struct list_head *freeable = arg; 1142 struct dentry *dentry = container_of(item, struct dentry, d_lru); 1143 1144 /* 1145 * we are inverting the lru lock/dentry->d_lock here, 1146 * so use a trylock. If we fail to get the lock, just skip 1147 * it 1148 */ 1149 if (!spin_trylock(&dentry->d_lock)) 1150 return LRU_SKIP; 1151 1152 d_lru_shrink_move(lru, dentry, freeable); 1153 spin_unlock(&dentry->d_lock); 1154 1155 return LRU_REMOVED; 1156 } 1157 1158 1159 /** 1160 * shrink_dcache_sb - shrink dcache for a superblock 1161 * @sb: superblock 1162 * 1163 * Shrink the dcache for the specified super block. This is used to free 1164 * the dcache before unmounting a file system. 1165 */ 1166 void shrink_dcache_sb(struct super_block *sb) 1167 { 1168 long freed; 1169 1170 do { 1171 LIST_HEAD(dispose); 1172 1173 freed = list_lru_walk(&sb->s_dentry_lru, 1174 dentry_lru_isolate_shrink, &dispose, UINT_MAX); 1175 1176 this_cpu_sub(nr_dentry_unused, freed); 1177 shrink_dentry_list(&dispose); 1178 } while (freed > 0); 1179 } 1180 EXPORT_SYMBOL(shrink_dcache_sb); 1181 1182 /** 1183 * enum d_walk_ret - action to talke during tree walk 1184 * @D_WALK_CONTINUE: contrinue walk 1185 * @D_WALK_QUIT: quit walk 1186 * @D_WALK_NORETRY: quit when retry is needed 1187 * @D_WALK_SKIP: skip this dentry and its children 1188 */ 1189 enum d_walk_ret { 1190 D_WALK_CONTINUE, 1191 D_WALK_QUIT, 1192 D_WALK_NORETRY, 1193 D_WALK_SKIP, 1194 }; 1195 1196 /** 1197 * d_walk - walk the dentry tree 1198 * @parent: start of walk 1199 * @data: data passed to @enter() and @finish() 1200 * @enter: callback when first entering the dentry 1201 * @finish: callback when successfully finished the walk 1202 * 1203 * The @enter() and @finish() callbacks are called with d_lock held. 1204 */ 1205 static void d_walk(struct dentry *parent, void *data, 1206 enum d_walk_ret (*enter)(void *, struct dentry *), 1207 void (*finish)(void *)) 1208 { 1209 struct dentry *this_parent; 1210 struct list_head *next; 1211 unsigned seq = 0; 1212 enum d_walk_ret ret; 1213 bool retry = true; 1214 1215 again: 1216 read_seqbegin_or_lock(&rename_lock, &seq); 1217 this_parent = parent; 1218 spin_lock(&this_parent->d_lock); 1219 1220 ret = enter(data, this_parent); 1221 switch (ret) { 1222 case D_WALK_CONTINUE: 1223 break; 1224 case D_WALK_QUIT: 1225 case D_WALK_SKIP: 1226 goto out_unlock; 1227 case D_WALK_NORETRY: 1228 retry = false; 1229 break; 1230 } 1231 repeat: 1232 next = this_parent->d_subdirs.next; 1233 resume: 1234 while (next != &this_parent->d_subdirs) { 1235 struct list_head *tmp = next; 1236 struct dentry *dentry = list_entry(tmp, struct dentry, d_child); 1237 next = tmp->next; 1238 1239 if (unlikely(dentry->d_flags & DCACHE_DENTRY_CURSOR)) 1240 continue; 1241 1242 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED); 1243 1244 ret = enter(data, dentry); 1245 switch (ret) { 1246 case D_WALK_CONTINUE: 1247 break; 1248 case D_WALK_QUIT: 1249 spin_unlock(&dentry->d_lock); 1250 goto out_unlock; 1251 case D_WALK_NORETRY: 1252 retry = false; 1253 break; 1254 case D_WALK_SKIP: 1255 spin_unlock(&dentry->d_lock); 1256 continue; 1257 } 1258 1259 if (!list_empty(&dentry->d_subdirs)) { 1260 spin_unlock(&this_parent->d_lock); 1261 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_); 1262 this_parent = dentry; 1263 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_); 1264 goto repeat; 1265 } 1266 spin_unlock(&dentry->d_lock); 1267 } 1268 /* 1269 * All done at this level ... ascend and resume the search. 1270 */ 1271 rcu_read_lock(); 1272 ascend: 1273 if (this_parent != parent) { 1274 struct dentry *child = this_parent; 1275 this_parent = child->d_parent; 1276 1277 spin_unlock(&child->d_lock); 1278 spin_lock(&this_parent->d_lock); 1279 1280 /* might go back up the wrong parent if we have had a rename. */ 1281 if (need_seqretry(&rename_lock, seq)) 1282 goto rename_retry; 1283 /* go into the first sibling still alive */ 1284 do { 1285 next = child->d_child.next; 1286 if (next == &this_parent->d_subdirs) 1287 goto ascend; 1288 child = list_entry(next, struct dentry, d_child); 1289 } while (unlikely(child->d_flags & DCACHE_DENTRY_KILLED)); 1290 rcu_read_unlock(); 1291 goto resume; 1292 } 1293 if (need_seqretry(&rename_lock, seq)) 1294 goto rename_retry; 1295 rcu_read_unlock(); 1296 if (finish) 1297 finish(data); 1298 1299 out_unlock: 1300 spin_unlock(&this_parent->d_lock); 1301 done_seqretry(&rename_lock, seq); 1302 return; 1303 1304 rename_retry: 1305 spin_unlock(&this_parent->d_lock); 1306 rcu_read_unlock(); 1307 BUG_ON(seq & 1); 1308 if (!retry) 1309 return; 1310 seq = 1; 1311 goto again; 1312 } 1313 1314 /* 1315 * Search for at least 1 mount point in the dentry's subdirs. 1316 * We descend to the next level whenever the d_subdirs 1317 * list is non-empty and continue searching. 1318 */ 1319 1320 static enum d_walk_ret check_mount(void *data, struct dentry *dentry) 1321 { 1322 int *ret = data; 1323 if (d_mountpoint(dentry)) { 1324 *ret = 1; 1325 return D_WALK_QUIT; 1326 } 1327 return D_WALK_CONTINUE; 1328 } 1329 1330 /** 1331 * have_submounts - check for mounts over a dentry 1332 * @parent: dentry to check. 1333 * 1334 * Return true if the parent or its subdirectories contain 1335 * a mount point 1336 */ 1337 int have_submounts(struct dentry *parent) 1338 { 1339 int ret = 0; 1340 1341 d_walk(parent, &ret, check_mount, NULL); 1342 1343 return ret; 1344 } 1345 EXPORT_SYMBOL(have_submounts); 1346 1347 /* 1348 * Called by mount code to set a mountpoint and check if the mountpoint is 1349 * reachable (e.g. NFS can unhash a directory dentry and then the complete 1350 * subtree can become unreachable). 1351 * 1352 * Only one of d_invalidate() and d_set_mounted() must succeed. For 1353 * this reason take rename_lock and d_lock on dentry and ancestors. 1354 */ 1355 int d_set_mounted(struct dentry *dentry) 1356 { 1357 struct dentry *p; 1358 int ret = -ENOENT; 1359 write_seqlock(&rename_lock); 1360 for (p = dentry->d_parent; !IS_ROOT(p); p = p->d_parent) { 1361 /* Need exclusion wrt. d_invalidate() */ 1362 spin_lock(&p->d_lock); 1363 if (unlikely(d_unhashed(p))) { 1364 spin_unlock(&p->d_lock); 1365 goto out; 1366 } 1367 spin_unlock(&p->d_lock); 1368 } 1369 spin_lock(&dentry->d_lock); 1370 if (!d_unlinked(dentry)) { 1371 dentry->d_flags |= DCACHE_MOUNTED; 1372 ret = 0; 1373 } 1374 spin_unlock(&dentry->d_lock); 1375 out: 1376 write_sequnlock(&rename_lock); 1377 return ret; 1378 } 1379 1380 /* 1381 * Search the dentry child list of the specified parent, 1382 * and move any unused dentries to the end of the unused 1383 * list for prune_dcache(). We descend to the next level 1384 * whenever the d_subdirs list is non-empty and continue 1385 * searching. 1386 * 1387 * It returns zero iff there are no unused children, 1388 * otherwise it returns the number of children moved to 1389 * the end of the unused list. This may not be the total 1390 * number of unused children, because select_parent can 1391 * drop the lock and return early due to latency 1392 * constraints. 1393 */ 1394 1395 struct select_data { 1396 struct dentry *start; 1397 struct list_head dispose; 1398 int found; 1399 }; 1400 1401 static enum d_walk_ret select_collect(void *_data, struct dentry *dentry) 1402 { 1403 struct select_data *data = _data; 1404 enum d_walk_ret ret = D_WALK_CONTINUE; 1405 1406 if (data->start == dentry) 1407 goto out; 1408 1409 if (dentry->d_flags & DCACHE_SHRINK_LIST) { 1410 data->found++; 1411 } else { 1412 if (dentry->d_flags & DCACHE_LRU_LIST) 1413 d_lru_del(dentry); 1414 if (!dentry->d_lockref.count) { 1415 d_shrink_add(dentry, &data->dispose); 1416 data->found++; 1417 } 1418 } 1419 /* 1420 * We can return to the caller if we have found some (this 1421 * ensures forward progress). We'll be coming back to find 1422 * the rest. 1423 */ 1424 if (!list_empty(&data->dispose)) 1425 ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY; 1426 out: 1427 return ret; 1428 } 1429 1430 /** 1431 * shrink_dcache_parent - prune dcache 1432 * @parent: parent of entries to prune 1433 * 1434 * Prune the dcache to remove unused children of the parent dentry. 1435 */ 1436 void shrink_dcache_parent(struct dentry *parent) 1437 { 1438 for (;;) { 1439 struct select_data data; 1440 1441 INIT_LIST_HEAD(&data.dispose); 1442 data.start = parent; 1443 data.found = 0; 1444 1445 d_walk(parent, &data, select_collect, NULL); 1446 if (!data.found) 1447 break; 1448 1449 shrink_dentry_list(&data.dispose); 1450 cond_resched(); 1451 } 1452 } 1453 EXPORT_SYMBOL(shrink_dcache_parent); 1454 1455 static enum d_walk_ret umount_check(void *_data, struct dentry *dentry) 1456 { 1457 /* it has busy descendents; complain about those instead */ 1458 if (!list_empty(&dentry->d_subdirs)) 1459 return D_WALK_CONTINUE; 1460 1461 /* root with refcount 1 is fine */ 1462 if (dentry == _data && dentry->d_lockref.count == 1) 1463 return D_WALK_CONTINUE; 1464 1465 printk(KERN_ERR "BUG: Dentry %p{i=%lx,n=%pd} " 1466 " still in use (%d) [unmount of %s %s]\n", 1467 dentry, 1468 dentry->d_inode ? 1469 dentry->d_inode->i_ino : 0UL, 1470 dentry, 1471 dentry->d_lockref.count, 1472 dentry->d_sb->s_type->name, 1473 dentry->d_sb->s_id); 1474 WARN_ON(1); 1475 return D_WALK_CONTINUE; 1476 } 1477 1478 static void do_one_tree(struct dentry *dentry) 1479 { 1480 shrink_dcache_parent(dentry); 1481 d_walk(dentry, dentry, umount_check, NULL); 1482 d_drop(dentry); 1483 dput(dentry); 1484 } 1485 1486 /* 1487 * destroy the dentries attached to a superblock on unmounting 1488 */ 1489 void shrink_dcache_for_umount(struct super_block *sb) 1490 { 1491 struct dentry *dentry; 1492 1493 WARN(down_read_trylock(&sb->s_umount), "s_umount should've been locked"); 1494 1495 dentry = sb->s_root; 1496 sb->s_root = NULL; 1497 do_one_tree(dentry); 1498 1499 while (!hlist_bl_empty(&sb->s_anon)) { 1500 dentry = dget(hlist_bl_entry(hlist_bl_first(&sb->s_anon), struct dentry, d_hash)); 1501 do_one_tree(dentry); 1502 } 1503 } 1504 1505 struct detach_data { 1506 struct select_data select; 1507 struct dentry *mountpoint; 1508 }; 1509 static enum d_walk_ret detach_and_collect(void *_data, struct dentry *dentry) 1510 { 1511 struct detach_data *data = _data; 1512 1513 if (d_mountpoint(dentry)) { 1514 __dget_dlock(dentry); 1515 data->mountpoint = dentry; 1516 return D_WALK_QUIT; 1517 } 1518 1519 return select_collect(&data->select, dentry); 1520 } 1521 1522 static void check_and_drop(void *_data) 1523 { 1524 struct detach_data *data = _data; 1525 1526 if (!data->mountpoint && !data->select.found) 1527 __d_drop(data->select.start); 1528 } 1529 1530 /** 1531 * d_invalidate - detach submounts, prune dcache, and drop 1532 * @dentry: dentry to invalidate (aka detach, prune and drop) 1533 * 1534 * no dcache lock. 1535 * 1536 * The final d_drop is done as an atomic operation relative to 1537 * rename_lock ensuring there are no races with d_set_mounted. This 1538 * ensures there are no unhashed dentries on the path to a mountpoint. 1539 */ 1540 void d_invalidate(struct dentry *dentry) 1541 { 1542 /* 1543 * If it's already been dropped, return OK. 1544 */ 1545 spin_lock(&dentry->d_lock); 1546 if (d_unhashed(dentry)) { 1547 spin_unlock(&dentry->d_lock); 1548 return; 1549 } 1550 spin_unlock(&dentry->d_lock); 1551 1552 /* Negative dentries can be dropped without further checks */ 1553 if (!dentry->d_inode) { 1554 d_drop(dentry); 1555 return; 1556 } 1557 1558 for (;;) { 1559 struct detach_data data; 1560 1561 data.mountpoint = NULL; 1562 INIT_LIST_HEAD(&data.select.dispose); 1563 data.select.start = dentry; 1564 data.select.found = 0; 1565 1566 d_walk(dentry, &data, detach_and_collect, check_and_drop); 1567 1568 if (data.select.found) 1569 shrink_dentry_list(&data.select.dispose); 1570 1571 if (data.mountpoint) { 1572 detach_mounts(data.mountpoint); 1573 dput(data.mountpoint); 1574 } 1575 1576 if (!data.mountpoint && !data.select.found) 1577 break; 1578 1579 cond_resched(); 1580 } 1581 } 1582 EXPORT_SYMBOL(d_invalidate); 1583 1584 /** 1585 * __d_alloc - allocate a dcache entry 1586 * @sb: filesystem it will belong to 1587 * @name: qstr of the name 1588 * 1589 * Allocates a dentry. It returns %NULL if there is insufficient memory 1590 * available. On a success the dentry is returned. The name passed in is 1591 * copied and the copy passed in may be reused after this call. 1592 */ 1593 1594 struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name) 1595 { 1596 struct dentry *dentry; 1597 char *dname; 1598 1599 dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL); 1600 if (!dentry) 1601 return NULL; 1602 1603 /* 1604 * We guarantee that the inline name is always NUL-terminated. 1605 * This way the memcpy() done by the name switching in rename 1606 * will still always have a NUL at the end, even if we might 1607 * be overwriting an internal NUL character 1608 */ 1609 dentry->d_iname[DNAME_INLINE_LEN-1] = 0; 1610 if (unlikely(!name)) { 1611 static const struct qstr anon = QSTR_INIT("/", 1); 1612 name = &anon; 1613 dname = dentry->d_iname; 1614 } else if (name->len > DNAME_INLINE_LEN-1) { 1615 size_t size = offsetof(struct external_name, name[1]); 1616 struct external_name *p = kmalloc(size + name->len, 1617 GFP_KERNEL_ACCOUNT); 1618 if (!p) { 1619 kmem_cache_free(dentry_cache, dentry); 1620 return NULL; 1621 } 1622 atomic_set(&p->u.count, 1); 1623 dname = p->name; 1624 if (IS_ENABLED(CONFIG_DCACHE_WORD_ACCESS)) 1625 kasan_unpoison_shadow(dname, 1626 round_up(name->len + 1, sizeof(unsigned long))); 1627 } else { 1628 dname = dentry->d_iname; 1629 } 1630 1631 dentry->d_name.len = name->len; 1632 dentry->d_name.hash = name->hash; 1633 memcpy(dname, name->name, name->len); 1634 dname[name->len] = 0; 1635 1636 /* Make sure we always see the terminating NUL character */ 1637 smp_wmb(); 1638 dentry->d_name.name = dname; 1639 1640 dentry->d_lockref.count = 1; 1641 dentry->d_flags = 0; 1642 spin_lock_init(&dentry->d_lock); 1643 seqcount_init(&dentry->d_seq); 1644 dentry->d_inode = NULL; 1645 dentry->d_parent = dentry; 1646 dentry->d_sb = sb; 1647 dentry->d_op = NULL; 1648 dentry->d_fsdata = NULL; 1649 INIT_HLIST_BL_NODE(&dentry->d_hash); 1650 INIT_LIST_HEAD(&dentry->d_lru); 1651 INIT_LIST_HEAD(&dentry->d_subdirs); 1652 INIT_HLIST_NODE(&dentry->d_u.d_alias); 1653 INIT_LIST_HEAD(&dentry->d_child); 1654 d_set_d_op(dentry, dentry->d_sb->s_d_op); 1655 1656 this_cpu_inc(nr_dentry); 1657 1658 return dentry; 1659 } 1660 1661 /** 1662 * d_alloc - allocate a dcache entry 1663 * @parent: parent of entry to allocate 1664 * @name: qstr of the name 1665 * 1666 * Allocates a dentry. It returns %NULL if there is insufficient memory 1667 * available. On a success the dentry is returned. The name passed in is 1668 * copied and the copy passed in may be reused after this call. 1669 */ 1670 struct dentry *d_alloc(struct dentry * parent, const struct qstr *name) 1671 { 1672 struct dentry *dentry = __d_alloc(parent->d_sb, name); 1673 if (!dentry) 1674 return NULL; 1675 dentry->d_flags |= DCACHE_RCUACCESS; 1676 spin_lock(&parent->d_lock); 1677 /* 1678 * don't need child lock because it is not subject 1679 * to concurrency here 1680 */ 1681 __dget_dlock(parent); 1682 dentry->d_parent = parent; 1683 list_add(&dentry->d_child, &parent->d_subdirs); 1684 spin_unlock(&parent->d_lock); 1685 1686 return dentry; 1687 } 1688 EXPORT_SYMBOL(d_alloc); 1689 1690 struct dentry *d_alloc_cursor(struct dentry * parent) 1691 { 1692 struct dentry *dentry = __d_alloc(parent->d_sb, NULL); 1693 if (dentry) { 1694 dentry->d_flags |= DCACHE_RCUACCESS | DCACHE_DENTRY_CURSOR; 1695 dentry->d_parent = dget(parent); 1696 } 1697 return dentry; 1698 } 1699 1700 /** 1701 * d_alloc_pseudo - allocate a dentry (for lookup-less filesystems) 1702 * @sb: the superblock 1703 * @name: qstr of the name 1704 * 1705 * For a filesystem that just pins its dentries in memory and never 1706 * performs lookups at all, return an unhashed IS_ROOT dentry. 1707 */ 1708 struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name) 1709 { 1710 return __d_alloc(sb, name); 1711 } 1712 EXPORT_SYMBOL(d_alloc_pseudo); 1713 1714 struct dentry *d_alloc_name(struct dentry *parent, const char *name) 1715 { 1716 struct qstr q; 1717 1718 q.name = name; 1719 q.hash_len = hashlen_string(name); 1720 return d_alloc(parent, &q); 1721 } 1722 EXPORT_SYMBOL(d_alloc_name); 1723 1724 void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op) 1725 { 1726 WARN_ON_ONCE(dentry->d_op); 1727 WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH | 1728 DCACHE_OP_COMPARE | 1729 DCACHE_OP_REVALIDATE | 1730 DCACHE_OP_WEAK_REVALIDATE | 1731 DCACHE_OP_DELETE | 1732 DCACHE_OP_SELECT_INODE | 1733 DCACHE_OP_REAL)); 1734 dentry->d_op = op; 1735 if (!op) 1736 return; 1737 if (op->d_hash) 1738 dentry->d_flags |= DCACHE_OP_HASH; 1739 if (op->d_compare) 1740 dentry->d_flags |= DCACHE_OP_COMPARE; 1741 if (op->d_revalidate) 1742 dentry->d_flags |= DCACHE_OP_REVALIDATE; 1743 if (op->d_weak_revalidate) 1744 dentry->d_flags |= DCACHE_OP_WEAK_REVALIDATE; 1745 if (op->d_delete) 1746 dentry->d_flags |= DCACHE_OP_DELETE; 1747 if (op->d_prune) 1748 dentry->d_flags |= DCACHE_OP_PRUNE; 1749 if (op->d_select_inode) 1750 dentry->d_flags |= DCACHE_OP_SELECT_INODE; 1751 if (op->d_real) 1752 dentry->d_flags |= DCACHE_OP_REAL; 1753 1754 } 1755 EXPORT_SYMBOL(d_set_d_op); 1756 1757 1758 /* 1759 * d_set_fallthru - Mark a dentry as falling through to a lower layer 1760 * @dentry - The dentry to mark 1761 * 1762 * Mark a dentry as falling through to the lower layer (as set with 1763 * d_pin_lower()). This flag may be recorded on the medium. 1764 */ 1765 void d_set_fallthru(struct dentry *dentry) 1766 { 1767 spin_lock(&dentry->d_lock); 1768 dentry->d_flags |= DCACHE_FALLTHRU; 1769 spin_unlock(&dentry->d_lock); 1770 } 1771 EXPORT_SYMBOL(d_set_fallthru); 1772 1773 static unsigned d_flags_for_inode(struct inode *inode) 1774 { 1775 unsigned add_flags = DCACHE_REGULAR_TYPE; 1776 1777 if (!inode) 1778 return DCACHE_MISS_TYPE; 1779 1780 if (S_ISDIR(inode->i_mode)) { 1781 add_flags = DCACHE_DIRECTORY_TYPE; 1782 if (unlikely(!(inode->i_opflags & IOP_LOOKUP))) { 1783 if (unlikely(!inode->i_op->lookup)) 1784 add_flags = DCACHE_AUTODIR_TYPE; 1785 else 1786 inode->i_opflags |= IOP_LOOKUP; 1787 } 1788 goto type_determined; 1789 } 1790 1791 if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) { 1792 if (unlikely(inode->i_op->get_link)) { 1793 add_flags = DCACHE_SYMLINK_TYPE; 1794 goto type_determined; 1795 } 1796 inode->i_opflags |= IOP_NOFOLLOW; 1797 } 1798 1799 if (unlikely(!S_ISREG(inode->i_mode))) 1800 add_flags = DCACHE_SPECIAL_TYPE; 1801 1802 type_determined: 1803 if (unlikely(IS_AUTOMOUNT(inode))) 1804 add_flags |= DCACHE_NEED_AUTOMOUNT; 1805 return add_flags; 1806 } 1807 1808 static void __d_instantiate(struct dentry *dentry, struct inode *inode) 1809 { 1810 unsigned add_flags = d_flags_for_inode(inode); 1811 WARN_ON(d_in_lookup(dentry)); 1812 1813 spin_lock(&dentry->d_lock); 1814 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry); 1815 raw_write_seqcount_begin(&dentry->d_seq); 1816 __d_set_inode_and_type(dentry, inode, add_flags); 1817 raw_write_seqcount_end(&dentry->d_seq); 1818 __fsnotify_d_instantiate(dentry); 1819 spin_unlock(&dentry->d_lock); 1820 } 1821 1822 /** 1823 * d_instantiate - fill in inode information for a dentry 1824 * @entry: dentry to complete 1825 * @inode: inode to attach to this dentry 1826 * 1827 * Fill in inode information in the entry. 1828 * 1829 * This turns negative dentries into productive full members 1830 * of society. 1831 * 1832 * NOTE! This assumes that the inode count has been incremented 1833 * (or otherwise set) by the caller to indicate that it is now 1834 * in use by the dcache. 1835 */ 1836 1837 void d_instantiate(struct dentry *entry, struct inode * inode) 1838 { 1839 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias)); 1840 if (inode) { 1841 security_d_instantiate(entry, inode); 1842 spin_lock(&inode->i_lock); 1843 __d_instantiate(entry, inode); 1844 spin_unlock(&inode->i_lock); 1845 } 1846 } 1847 EXPORT_SYMBOL(d_instantiate); 1848 1849 /** 1850 * d_instantiate_no_diralias - instantiate a non-aliased dentry 1851 * @entry: dentry to complete 1852 * @inode: inode to attach to this dentry 1853 * 1854 * Fill in inode information in the entry. If a directory alias is found, then 1855 * return an error (and drop inode). Together with d_materialise_unique() this 1856 * guarantees that a directory inode may never have more than one alias. 1857 */ 1858 int d_instantiate_no_diralias(struct dentry *entry, struct inode *inode) 1859 { 1860 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias)); 1861 1862 security_d_instantiate(entry, inode); 1863 spin_lock(&inode->i_lock); 1864 if (S_ISDIR(inode->i_mode) && !hlist_empty(&inode->i_dentry)) { 1865 spin_unlock(&inode->i_lock); 1866 iput(inode); 1867 return -EBUSY; 1868 } 1869 __d_instantiate(entry, inode); 1870 spin_unlock(&inode->i_lock); 1871 1872 return 0; 1873 } 1874 EXPORT_SYMBOL(d_instantiate_no_diralias); 1875 1876 struct dentry *d_make_root(struct inode *root_inode) 1877 { 1878 struct dentry *res = NULL; 1879 1880 if (root_inode) { 1881 res = __d_alloc(root_inode->i_sb, NULL); 1882 if (res) 1883 d_instantiate(res, root_inode); 1884 else 1885 iput(root_inode); 1886 } 1887 return res; 1888 } 1889 EXPORT_SYMBOL(d_make_root); 1890 1891 static struct dentry * __d_find_any_alias(struct inode *inode) 1892 { 1893 struct dentry *alias; 1894 1895 if (hlist_empty(&inode->i_dentry)) 1896 return NULL; 1897 alias = hlist_entry(inode->i_dentry.first, struct dentry, d_u.d_alias); 1898 __dget(alias); 1899 return alias; 1900 } 1901 1902 /** 1903 * d_find_any_alias - find any alias for a given inode 1904 * @inode: inode to find an alias for 1905 * 1906 * If any aliases exist for the given inode, take and return a 1907 * reference for one of them. If no aliases exist, return %NULL. 1908 */ 1909 struct dentry *d_find_any_alias(struct inode *inode) 1910 { 1911 struct dentry *de; 1912 1913 spin_lock(&inode->i_lock); 1914 de = __d_find_any_alias(inode); 1915 spin_unlock(&inode->i_lock); 1916 return de; 1917 } 1918 EXPORT_SYMBOL(d_find_any_alias); 1919 1920 static struct dentry *__d_obtain_alias(struct inode *inode, int disconnected) 1921 { 1922 struct dentry *tmp; 1923 struct dentry *res; 1924 unsigned add_flags; 1925 1926 if (!inode) 1927 return ERR_PTR(-ESTALE); 1928 if (IS_ERR(inode)) 1929 return ERR_CAST(inode); 1930 1931 res = d_find_any_alias(inode); 1932 if (res) 1933 goto out_iput; 1934 1935 tmp = __d_alloc(inode->i_sb, NULL); 1936 if (!tmp) { 1937 res = ERR_PTR(-ENOMEM); 1938 goto out_iput; 1939 } 1940 1941 security_d_instantiate(tmp, inode); 1942 spin_lock(&inode->i_lock); 1943 res = __d_find_any_alias(inode); 1944 if (res) { 1945 spin_unlock(&inode->i_lock); 1946 dput(tmp); 1947 goto out_iput; 1948 } 1949 1950 /* attach a disconnected dentry */ 1951 add_flags = d_flags_for_inode(inode); 1952 1953 if (disconnected) 1954 add_flags |= DCACHE_DISCONNECTED; 1955 1956 spin_lock(&tmp->d_lock); 1957 __d_set_inode_and_type(tmp, inode, add_flags); 1958 hlist_add_head(&tmp->d_u.d_alias, &inode->i_dentry); 1959 hlist_bl_lock(&tmp->d_sb->s_anon); 1960 hlist_bl_add_head(&tmp->d_hash, &tmp->d_sb->s_anon); 1961 hlist_bl_unlock(&tmp->d_sb->s_anon); 1962 spin_unlock(&tmp->d_lock); 1963 spin_unlock(&inode->i_lock); 1964 1965 return tmp; 1966 1967 out_iput: 1968 iput(inode); 1969 return res; 1970 } 1971 1972 /** 1973 * d_obtain_alias - find or allocate a DISCONNECTED dentry for a given inode 1974 * @inode: inode to allocate the dentry for 1975 * 1976 * Obtain a dentry for an inode resulting from NFS filehandle conversion or 1977 * similar open by handle operations. The returned dentry may be anonymous, 1978 * or may have a full name (if the inode was already in the cache). 1979 * 1980 * When called on a directory inode, we must ensure that the inode only ever 1981 * has one dentry. If a dentry is found, that is returned instead of 1982 * allocating a new one. 1983 * 1984 * On successful return, the reference to the inode has been transferred 1985 * to the dentry. In case of an error the reference on the inode is released. 1986 * To make it easier to use in export operations a %NULL or IS_ERR inode may 1987 * be passed in and the error will be propagated to the return value, 1988 * with a %NULL @inode replaced by ERR_PTR(-ESTALE). 1989 */ 1990 struct dentry *d_obtain_alias(struct inode *inode) 1991 { 1992 return __d_obtain_alias(inode, 1); 1993 } 1994 EXPORT_SYMBOL(d_obtain_alias); 1995 1996 /** 1997 * d_obtain_root - find or allocate a dentry for a given inode 1998 * @inode: inode to allocate the dentry for 1999 * 2000 * Obtain an IS_ROOT dentry for the root of a filesystem. 2001 * 2002 * We must ensure that directory inodes only ever have one dentry. If a 2003 * dentry is found, that is returned instead of allocating a new one. 2004 * 2005 * On successful return, the reference to the inode has been transferred 2006 * to the dentry. In case of an error the reference on the inode is 2007 * released. A %NULL or IS_ERR inode may be passed in and will be the 2008 * error will be propagate to the return value, with a %NULL @inode 2009 * replaced by ERR_PTR(-ESTALE). 2010 */ 2011 struct dentry *d_obtain_root(struct inode *inode) 2012 { 2013 return __d_obtain_alias(inode, 0); 2014 } 2015 EXPORT_SYMBOL(d_obtain_root); 2016 2017 /** 2018 * d_add_ci - lookup or allocate new dentry with case-exact name 2019 * @inode: the inode case-insensitive lookup has found 2020 * @dentry: the negative dentry that was passed to the parent's lookup func 2021 * @name: the case-exact name to be associated with the returned dentry 2022 * 2023 * This is to avoid filling the dcache with case-insensitive names to the 2024 * same inode, only the actual correct case is stored in the dcache for 2025 * case-insensitive filesystems. 2026 * 2027 * For a case-insensitive lookup match and if the the case-exact dentry 2028 * already exists in in the dcache, use it and return it. 2029 * 2030 * If no entry exists with the exact case name, allocate new dentry with 2031 * the exact case, and return the spliced entry. 2032 */ 2033 struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode, 2034 struct qstr *name) 2035 { 2036 struct dentry *found, *res; 2037 2038 /* 2039 * First check if a dentry matching the name already exists, 2040 * if not go ahead and create it now. 2041 */ 2042 found = d_hash_and_lookup(dentry->d_parent, name); 2043 if (found) { 2044 iput(inode); 2045 return found; 2046 } 2047 if (d_in_lookup(dentry)) { 2048 found = d_alloc_parallel(dentry->d_parent, name, 2049 dentry->d_wait); 2050 if (IS_ERR(found) || !d_in_lookup(found)) { 2051 iput(inode); 2052 return found; 2053 } 2054 } else { 2055 found = d_alloc(dentry->d_parent, name); 2056 if (!found) { 2057 iput(inode); 2058 return ERR_PTR(-ENOMEM); 2059 } 2060 } 2061 res = d_splice_alias(inode, found); 2062 if (res) { 2063 dput(found); 2064 return res; 2065 } 2066 return found; 2067 } 2068 EXPORT_SYMBOL(d_add_ci); 2069 2070 /* 2071 * Do the slow-case of the dentry name compare. 2072 * 2073 * Unlike the dentry_cmp() function, we need to atomically 2074 * load the name and length information, so that the 2075 * filesystem can rely on them, and can use the 'name' and 2076 * 'len' information without worrying about walking off the 2077 * end of memory etc. 2078 * 2079 * Thus the read_seqcount_retry() and the "duplicate" info 2080 * in arguments (the low-level filesystem should not look 2081 * at the dentry inode or name contents directly, since 2082 * rename can change them while we're in RCU mode). 2083 */ 2084 enum slow_d_compare { 2085 D_COMP_OK, 2086 D_COMP_NOMATCH, 2087 D_COMP_SEQRETRY, 2088 }; 2089 2090 static noinline enum slow_d_compare slow_dentry_cmp( 2091 const struct dentry *parent, 2092 struct dentry *dentry, 2093 unsigned int seq, 2094 const struct qstr *name) 2095 { 2096 int tlen = dentry->d_name.len; 2097 const char *tname = dentry->d_name.name; 2098 2099 if (read_seqcount_retry(&dentry->d_seq, seq)) { 2100 cpu_relax(); 2101 return D_COMP_SEQRETRY; 2102 } 2103 if (parent->d_op->d_compare(parent, dentry, tlen, tname, name)) 2104 return D_COMP_NOMATCH; 2105 return D_COMP_OK; 2106 } 2107 2108 /** 2109 * __d_lookup_rcu - search for a dentry (racy, store-free) 2110 * @parent: parent dentry 2111 * @name: qstr of name we wish to find 2112 * @seqp: returns d_seq value at the point where the dentry was found 2113 * Returns: dentry, or NULL 2114 * 2115 * __d_lookup_rcu is the dcache lookup function for rcu-walk name 2116 * resolution (store-free path walking) design described in 2117 * Documentation/filesystems/path-lookup.txt. 2118 * 2119 * This is not to be used outside core vfs. 2120 * 2121 * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock 2122 * held, and rcu_read_lock held. The returned dentry must not be stored into 2123 * without taking d_lock and checking d_seq sequence count against @seq 2124 * returned here. 2125 * 2126 * A refcount may be taken on the found dentry with the d_rcu_to_refcount 2127 * function. 2128 * 2129 * Alternatively, __d_lookup_rcu may be called again to look up the child of 2130 * the returned dentry, so long as its parent's seqlock is checked after the 2131 * child is looked up. Thus, an interlocking stepping of sequence lock checks 2132 * is formed, giving integrity down the path walk. 2133 * 2134 * NOTE! The caller *has* to check the resulting dentry against the sequence 2135 * number we've returned before using any of the resulting dentry state! 2136 */ 2137 struct dentry *__d_lookup_rcu(const struct dentry *parent, 2138 const struct qstr *name, 2139 unsigned *seqp) 2140 { 2141 u64 hashlen = name->hash_len; 2142 const unsigned char *str = name->name; 2143 struct hlist_bl_head *b = d_hash(parent, hashlen_hash(hashlen)); 2144 struct hlist_bl_node *node; 2145 struct dentry *dentry; 2146 2147 /* 2148 * Note: There is significant duplication with __d_lookup_rcu which is 2149 * required to prevent single threaded performance regressions 2150 * especially on architectures where smp_rmb (in seqcounts) are costly. 2151 * Keep the two functions in sync. 2152 */ 2153 2154 /* 2155 * The hash list is protected using RCU. 2156 * 2157 * Carefully use d_seq when comparing a candidate dentry, to avoid 2158 * races with d_move(). 2159 * 2160 * It is possible that concurrent renames can mess up our list 2161 * walk here and result in missing our dentry, resulting in the 2162 * false-negative result. d_lookup() protects against concurrent 2163 * renames using rename_lock seqlock. 2164 * 2165 * See Documentation/filesystems/path-lookup.txt for more details. 2166 */ 2167 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) { 2168 unsigned seq; 2169 2170 seqretry: 2171 /* 2172 * The dentry sequence count protects us from concurrent 2173 * renames, and thus protects parent and name fields. 2174 * 2175 * The caller must perform a seqcount check in order 2176 * to do anything useful with the returned dentry. 2177 * 2178 * NOTE! We do a "raw" seqcount_begin here. That means that 2179 * we don't wait for the sequence count to stabilize if it 2180 * is in the middle of a sequence change. If we do the slow 2181 * dentry compare, we will do seqretries until it is stable, 2182 * and if we end up with a successful lookup, we actually 2183 * want to exit RCU lookup anyway. 2184 */ 2185 seq = raw_seqcount_begin(&dentry->d_seq); 2186 if (dentry->d_parent != parent) 2187 continue; 2188 if (d_unhashed(dentry)) 2189 continue; 2190 2191 if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) { 2192 if (dentry->d_name.hash != hashlen_hash(hashlen)) 2193 continue; 2194 *seqp = seq; 2195 switch (slow_dentry_cmp(parent, dentry, seq, name)) { 2196 case D_COMP_OK: 2197 return dentry; 2198 case D_COMP_NOMATCH: 2199 continue; 2200 default: 2201 goto seqretry; 2202 } 2203 } 2204 2205 if (dentry->d_name.hash_len != hashlen) 2206 continue; 2207 *seqp = seq; 2208 if (!dentry_cmp(dentry, str, hashlen_len(hashlen))) 2209 return dentry; 2210 } 2211 return NULL; 2212 } 2213 2214 /** 2215 * d_lookup - search for a dentry 2216 * @parent: parent dentry 2217 * @name: qstr of name we wish to find 2218 * Returns: dentry, or NULL 2219 * 2220 * d_lookup searches the children of the parent dentry for the name in 2221 * question. If the dentry is found its reference count is incremented and the 2222 * dentry is returned. The caller must use dput to free the entry when it has 2223 * finished using it. %NULL is returned if the dentry does not exist. 2224 */ 2225 struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name) 2226 { 2227 struct dentry *dentry; 2228 unsigned seq; 2229 2230 do { 2231 seq = read_seqbegin(&rename_lock); 2232 dentry = __d_lookup(parent, name); 2233 if (dentry) 2234 break; 2235 } while (read_seqretry(&rename_lock, seq)); 2236 return dentry; 2237 } 2238 EXPORT_SYMBOL(d_lookup); 2239 2240 /** 2241 * __d_lookup - search for a dentry (racy) 2242 * @parent: parent dentry 2243 * @name: qstr of name we wish to find 2244 * Returns: dentry, or NULL 2245 * 2246 * __d_lookup is like d_lookup, however it may (rarely) return a 2247 * false-negative result due to unrelated rename activity. 2248 * 2249 * __d_lookup is slightly faster by avoiding rename_lock read seqlock, 2250 * however it must be used carefully, eg. with a following d_lookup in 2251 * the case of failure. 2252 * 2253 * __d_lookup callers must be commented. 2254 */ 2255 struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name) 2256 { 2257 unsigned int len = name->len; 2258 unsigned int hash = name->hash; 2259 const unsigned char *str = name->name; 2260 struct hlist_bl_head *b = d_hash(parent, hash); 2261 struct hlist_bl_node *node; 2262 struct dentry *found = NULL; 2263 struct dentry *dentry; 2264 2265 /* 2266 * Note: There is significant duplication with __d_lookup_rcu which is 2267 * required to prevent single threaded performance regressions 2268 * especially on architectures where smp_rmb (in seqcounts) are costly. 2269 * Keep the two functions in sync. 2270 */ 2271 2272 /* 2273 * The hash list is protected using RCU. 2274 * 2275 * Take d_lock when comparing a candidate dentry, to avoid races 2276 * with d_move(). 2277 * 2278 * It is possible that concurrent renames can mess up our list 2279 * walk here and result in missing our dentry, resulting in the 2280 * false-negative result. d_lookup() protects against concurrent 2281 * renames using rename_lock seqlock. 2282 * 2283 * See Documentation/filesystems/path-lookup.txt for more details. 2284 */ 2285 rcu_read_lock(); 2286 2287 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) { 2288 2289 if (dentry->d_name.hash != hash) 2290 continue; 2291 2292 spin_lock(&dentry->d_lock); 2293 if (dentry->d_parent != parent) 2294 goto next; 2295 if (d_unhashed(dentry)) 2296 goto next; 2297 2298 /* 2299 * It is safe to compare names since d_move() cannot 2300 * change the qstr (protected by d_lock). 2301 */ 2302 if (parent->d_flags & DCACHE_OP_COMPARE) { 2303 int tlen = dentry->d_name.len; 2304 const char *tname = dentry->d_name.name; 2305 if (parent->d_op->d_compare(parent, dentry, tlen, tname, name)) 2306 goto next; 2307 } else { 2308 if (dentry->d_name.len != len) 2309 goto next; 2310 if (dentry_cmp(dentry, str, len)) 2311 goto next; 2312 } 2313 2314 dentry->d_lockref.count++; 2315 found = dentry; 2316 spin_unlock(&dentry->d_lock); 2317 break; 2318 next: 2319 spin_unlock(&dentry->d_lock); 2320 } 2321 rcu_read_unlock(); 2322 2323 return found; 2324 } 2325 2326 /** 2327 * d_hash_and_lookup - hash the qstr then search for a dentry 2328 * @dir: Directory to search in 2329 * @name: qstr of name we wish to find 2330 * 2331 * On lookup failure NULL is returned; on bad name - ERR_PTR(-error) 2332 */ 2333 struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name) 2334 { 2335 /* 2336 * Check for a fs-specific hash function. Note that we must 2337 * calculate the standard hash first, as the d_op->d_hash() 2338 * routine may choose to leave the hash value unchanged. 2339 */ 2340 name->hash = full_name_hash(name->name, name->len); 2341 if (dir->d_flags & DCACHE_OP_HASH) { 2342 int err = dir->d_op->d_hash(dir, name); 2343 if (unlikely(err < 0)) 2344 return ERR_PTR(err); 2345 } 2346 return d_lookup(dir, name); 2347 } 2348 EXPORT_SYMBOL(d_hash_and_lookup); 2349 2350 /* 2351 * When a file is deleted, we have two options: 2352 * - turn this dentry into a negative dentry 2353 * - unhash this dentry and free it. 2354 * 2355 * Usually, we want to just turn this into 2356 * a negative dentry, but if anybody else is 2357 * currently using the dentry or the inode 2358 * we can't do that and we fall back on removing 2359 * it from the hash queues and waiting for 2360 * it to be deleted later when it has no users 2361 */ 2362 2363 /** 2364 * d_delete - delete a dentry 2365 * @dentry: The dentry to delete 2366 * 2367 * Turn the dentry into a negative dentry if possible, otherwise 2368 * remove it from the hash queues so it can be deleted later 2369 */ 2370 2371 void d_delete(struct dentry * dentry) 2372 { 2373 struct inode *inode; 2374 int isdir = 0; 2375 /* 2376 * Are we the only user? 2377 */ 2378 again: 2379 spin_lock(&dentry->d_lock); 2380 inode = dentry->d_inode; 2381 isdir = S_ISDIR(inode->i_mode); 2382 if (dentry->d_lockref.count == 1) { 2383 if (!spin_trylock(&inode->i_lock)) { 2384 spin_unlock(&dentry->d_lock); 2385 cpu_relax(); 2386 goto again; 2387 } 2388 dentry->d_flags &= ~DCACHE_CANT_MOUNT; 2389 dentry_unlink_inode(dentry); 2390 fsnotify_nameremove(dentry, isdir); 2391 return; 2392 } 2393 2394 if (!d_unhashed(dentry)) 2395 __d_drop(dentry); 2396 2397 spin_unlock(&dentry->d_lock); 2398 2399 fsnotify_nameremove(dentry, isdir); 2400 } 2401 EXPORT_SYMBOL(d_delete); 2402 2403 static void __d_rehash(struct dentry * entry, struct hlist_bl_head *b) 2404 { 2405 BUG_ON(!d_unhashed(entry)); 2406 hlist_bl_lock(b); 2407 hlist_bl_add_head_rcu(&entry->d_hash, b); 2408 hlist_bl_unlock(b); 2409 } 2410 2411 static void _d_rehash(struct dentry * entry) 2412 { 2413 __d_rehash(entry, d_hash(entry->d_parent, entry->d_name.hash)); 2414 } 2415 2416 /** 2417 * d_rehash - add an entry back to the hash 2418 * @entry: dentry to add to the hash 2419 * 2420 * Adds a dentry to the hash according to its name. 2421 */ 2422 2423 void d_rehash(struct dentry * entry) 2424 { 2425 spin_lock(&entry->d_lock); 2426 _d_rehash(entry); 2427 spin_unlock(&entry->d_lock); 2428 } 2429 EXPORT_SYMBOL(d_rehash); 2430 2431 static inline unsigned start_dir_add(struct inode *dir) 2432 { 2433 2434 for (;;) { 2435 unsigned n = dir->i_dir_seq; 2436 if (!(n & 1) && cmpxchg(&dir->i_dir_seq, n, n + 1) == n) 2437 return n; 2438 cpu_relax(); 2439 } 2440 } 2441 2442 static inline void end_dir_add(struct inode *dir, unsigned n) 2443 { 2444 smp_store_release(&dir->i_dir_seq, n + 2); 2445 } 2446 2447 static void d_wait_lookup(struct dentry *dentry) 2448 { 2449 if (d_in_lookup(dentry)) { 2450 DECLARE_WAITQUEUE(wait, current); 2451 add_wait_queue(dentry->d_wait, &wait); 2452 do { 2453 set_current_state(TASK_UNINTERRUPTIBLE); 2454 spin_unlock(&dentry->d_lock); 2455 schedule(); 2456 spin_lock(&dentry->d_lock); 2457 } while (d_in_lookup(dentry)); 2458 } 2459 } 2460 2461 struct dentry *d_alloc_parallel(struct dentry *parent, 2462 const struct qstr *name, 2463 wait_queue_head_t *wq) 2464 { 2465 unsigned int len = name->len; 2466 unsigned int hash = name->hash; 2467 const unsigned char *str = name->name; 2468 struct hlist_bl_head *b = in_lookup_hash(parent, hash); 2469 struct hlist_bl_node *node; 2470 struct dentry *new = d_alloc(parent, name); 2471 struct dentry *dentry; 2472 unsigned seq, r_seq, d_seq; 2473 2474 if (unlikely(!new)) 2475 return ERR_PTR(-ENOMEM); 2476 2477 retry: 2478 rcu_read_lock(); 2479 seq = smp_load_acquire(&parent->d_inode->i_dir_seq) & ~1; 2480 r_seq = read_seqbegin(&rename_lock); 2481 dentry = __d_lookup_rcu(parent, name, &d_seq); 2482 if (unlikely(dentry)) { 2483 if (!lockref_get_not_dead(&dentry->d_lockref)) { 2484 rcu_read_unlock(); 2485 goto retry; 2486 } 2487 if (read_seqcount_retry(&dentry->d_seq, d_seq)) { 2488 rcu_read_unlock(); 2489 dput(dentry); 2490 goto retry; 2491 } 2492 rcu_read_unlock(); 2493 dput(new); 2494 return dentry; 2495 } 2496 if (unlikely(read_seqretry(&rename_lock, r_seq))) { 2497 rcu_read_unlock(); 2498 goto retry; 2499 } 2500 hlist_bl_lock(b); 2501 if (unlikely(parent->d_inode->i_dir_seq != seq)) { 2502 hlist_bl_unlock(b); 2503 rcu_read_unlock(); 2504 goto retry; 2505 } 2506 /* 2507 * No changes for the parent since the beginning of d_lookup(). 2508 * Since all removals from the chain happen with hlist_bl_lock(), 2509 * any potential in-lookup matches are going to stay here until 2510 * we unlock the chain. All fields are stable in everything 2511 * we encounter. 2512 */ 2513 hlist_bl_for_each_entry(dentry, node, b, d_u.d_in_lookup_hash) { 2514 if (dentry->d_name.hash != hash) 2515 continue; 2516 if (dentry->d_parent != parent) 2517 continue; 2518 if (parent->d_flags & DCACHE_OP_COMPARE) { 2519 int tlen = dentry->d_name.len; 2520 const char *tname = dentry->d_name.name; 2521 if (parent->d_op->d_compare(parent, dentry, tlen, tname, name)) 2522 continue; 2523 } else { 2524 if (dentry->d_name.len != len) 2525 continue; 2526 if (dentry_cmp(dentry, str, len)) 2527 continue; 2528 } 2529 hlist_bl_unlock(b); 2530 /* now we can try to grab a reference */ 2531 if (!lockref_get_not_dead(&dentry->d_lockref)) { 2532 rcu_read_unlock(); 2533 goto retry; 2534 } 2535 2536 rcu_read_unlock(); 2537 /* 2538 * somebody is likely to be still doing lookup for it; 2539 * wait for them to finish 2540 */ 2541 spin_lock(&dentry->d_lock); 2542 d_wait_lookup(dentry); 2543 /* 2544 * it's not in-lookup anymore; in principle we should repeat 2545 * everything from dcache lookup, but it's likely to be what 2546 * d_lookup() would've found anyway. If it is, just return it; 2547 * otherwise we really have to repeat the whole thing. 2548 */ 2549 if (unlikely(dentry->d_name.hash != hash)) 2550 goto mismatch; 2551 if (unlikely(dentry->d_parent != parent)) 2552 goto mismatch; 2553 if (unlikely(d_unhashed(dentry))) 2554 goto mismatch; 2555 if (parent->d_flags & DCACHE_OP_COMPARE) { 2556 int tlen = dentry->d_name.len; 2557 const char *tname = dentry->d_name.name; 2558 if (parent->d_op->d_compare(parent, dentry, tlen, tname, name)) 2559 goto mismatch; 2560 } else { 2561 if (unlikely(dentry->d_name.len != len)) 2562 goto mismatch; 2563 if (unlikely(dentry_cmp(dentry, str, len))) 2564 goto mismatch; 2565 } 2566 /* OK, it *is* a hashed match; return it */ 2567 spin_unlock(&dentry->d_lock); 2568 dput(new); 2569 return dentry; 2570 } 2571 rcu_read_unlock(); 2572 /* we can't take ->d_lock here; it's OK, though. */ 2573 new->d_flags |= DCACHE_PAR_LOOKUP; 2574 new->d_wait = wq; 2575 hlist_bl_add_head_rcu(&new->d_u.d_in_lookup_hash, b); 2576 hlist_bl_unlock(b); 2577 return new; 2578 mismatch: 2579 spin_unlock(&dentry->d_lock); 2580 dput(dentry); 2581 goto retry; 2582 } 2583 EXPORT_SYMBOL(d_alloc_parallel); 2584 2585 void __d_lookup_done(struct dentry *dentry) 2586 { 2587 struct hlist_bl_head *b = in_lookup_hash(dentry->d_parent, 2588 dentry->d_name.hash); 2589 hlist_bl_lock(b); 2590 dentry->d_flags &= ~DCACHE_PAR_LOOKUP; 2591 __hlist_bl_del(&dentry->d_u.d_in_lookup_hash); 2592 wake_up_all(dentry->d_wait); 2593 dentry->d_wait = NULL; 2594 hlist_bl_unlock(b); 2595 INIT_HLIST_NODE(&dentry->d_u.d_alias); 2596 INIT_LIST_HEAD(&dentry->d_lru); 2597 } 2598 EXPORT_SYMBOL(__d_lookup_done); 2599 2600 /* inode->i_lock held if inode is non-NULL */ 2601 2602 static inline void __d_add(struct dentry *dentry, struct inode *inode) 2603 { 2604 struct inode *dir = NULL; 2605 unsigned n; 2606 spin_lock(&dentry->d_lock); 2607 if (unlikely(d_in_lookup(dentry))) { 2608 dir = dentry->d_parent->d_inode; 2609 n = start_dir_add(dir); 2610 __d_lookup_done(dentry); 2611 } 2612 if (inode) { 2613 unsigned add_flags = d_flags_for_inode(inode); 2614 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry); 2615 raw_write_seqcount_begin(&dentry->d_seq); 2616 __d_set_inode_and_type(dentry, inode, add_flags); 2617 raw_write_seqcount_end(&dentry->d_seq); 2618 __fsnotify_d_instantiate(dentry); 2619 } 2620 _d_rehash(dentry); 2621 if (dir) 2622 end_dir_add(dir, n); 2623 spin_unlock(&dentry->d_lock); 2624 if (inode) 2625 spin_unlock(&inode->i_lock); 2626 } 2627 2628 /** 2629 * d_add - add dentry to hash queues 2630 * @entry: dentry to add 2631 * @inode: The inode to attach to this dentry 2632 * 2633 * This adds the entry to the hash queues and initializes @inode. 2634 * The entry was actually filled in earlier during d_alloc(). 2635 */ 2636 2637 void d_add(struct dentry *entry, struct inode *inode) 2638 { 2639 if (inode) { 2640 security_d_instantiate(entry, inode); 2641 spin_lock(&inode->i_lock); 2642 } 2643 __d_add(entry, inode); 2644 } 2645 EXPORT_SYMBOL(d_add); 2646 2647 /** 2648 * d_exact_alias - find and hash an exact unhashed alias 2649 * @entry: dentry to add 2650 * @inode: The inode to go with this dentry 2651 * 2652 * If an unhashed dentry with the same name/parent and desired 2653 * inode already exists, hash and return it. Otherwise, return 2654 * NULL. 2655 * 2656 * Parent directory should be locked. 2657 */ 2658 struct dentry *d_exact_alias(struct dentry *entry, struct inode *inode) 2659 { 2660 struct dentry *alias; 2661 int len = entry->d_name.len; 2662 const char *name = entry->d_name.name; 2663 unsigned int hash = entry->d_name.hash; 2664 2665 spin_lock(&inode->i_lock); 2666 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) { 2667 /* 2668 * Don't need alias->d_lock here, because aliases with 2669 * d_parent == entry->d_parent are not subject to name or 2670 * parent changes, because the parent inode i_mutex is held. 2671 */ 2672 if (alias->d_name.hash != hash) 2673 continue; 2674 if (alias->d_parent != entry->d_parent) 2675 continue; 2676 if (alias->d_name.len != len) 2677 continue; 2678 if (dentry_cmp(alias, name, len)) 2679 continue; 2680 spin_lock(&alias->d_lock); 2681 if (!d_unhashed(alias)) { 2682 spin_unlock(&alias->d_lock); 2683 alias = NULL; 2684 } else { 2685 __dget_dlock(alias); 2686 _d_rehash(alias); 2687 spin_unlock(&alias->d_lock); 2688 } 2689 spin_unlock(&inode->i_lock); 2690 return alias; 2691 } 2692 spin_unlock(&inode->i_lock); 2693 return NULL; 2694 } 2695 EXPORT_SYMBOL(d_exact_alias); 2696 2697 /** 2698 * dentry_update_name_case - update case insensitive dentry with a new name 2699 * @dentry: dentry to be updated 2700 * @name: new name 2701 * 2702 * Update a case insensitive dentry with new case of name. 2703 * 2704 * dentry must have been returned by d_lookup with name @name. Old and new 2705 * name lengths must match (ie. no d_compare which allows mismatched name 2706 * lengths). 2707 * 2708 * Parent inode i_mutex must be held over d_lookup and into this call (to 2709 * keep renames and concurrent inserts, and readdir(2) away). 2710 */ 2711 void dentry_update_name_case(struct dentry *dentry, struct qstr *name) 2712 { 2713 BUG_ON(!inode_is_locked(dentry->d_parent->d_inode)); 2714 BUG_ON(dentry->d_name.len != name->len); /* d_lookup gives this */ 2715 2716 spin_lock(&dentry->d_lock); 2717 write_seqcount_begin(&dentry->d_seq); 2718 memcpy((unsigned char *)dentry->d_name.name, name->name, name->len); 2719 write_seqcount_end(&dentry->d_seq); 2720 spin_unlock(&dentry->d_lock); 2721 } 2722 EXPORT_SYMBOL(dentry_update_name_case); 2723 2724 static void swap_names(struct dentry *dentry, struct dentry *target) 2725 { 2726 if (unlikely(dname_external(target))) { 2727 if (unlikely(dname_external(dentry))) { 2728 /* 2729 * Both external: swap the pointers 2730 */ 2731 swap(target->d_name.name, dentry->d_name.name); 2732 } else { 2733 /* 2734 * dentry:internal, target:external. Steal target's 2735 * storage and make target internal. 2736 */ 2737 memcpy(target->d_iname, dentry->d_name.name, 2738 dentry->d_name.len + 1); 2739 dentry->d_name.name = target->d_name.name; 2740 target->d_name.name = target->d_iname; 2741 } 2742 } else { 2743 if (unlikely(dname_external(dentry))) { 2744 /* 2745 * dentry:external, target:internal. Give dentry's 2746 * storage to target and make dentry internal 2747 */ 2748 memcpy(dentry->d_iname, target->d_name.name, 2749 target->d_name.len + 1); 2750 target->d_name.name = dentry->d_name.name; 2751 dentry->d_name.name = dentry->d_iname; 2752 } else { 2753 /* 2754 * Both are internal. 2755 */ 2756 unsigned int i; 2757 BUILD_BUG_ON(!IS_ALIGNED(DNAME_INLINE_LEN, sizeof(long))); 2758 kmemcheck_mark_initialized(dentry->d_iname, DNAME_INLINE_LEN); 2759 kmemcheck_mark_initialized(target->d_iname, DNAME_INLINE_LEN); 2760 for (i = 0; i < DNAME_INLINE_LEN / sizeof(long); i++) { 2761 swap(((long *) &dentry->d_iname)[i], 2762 ((long *) &target->d_iname)[i]); 2763 } 2764 } 2765 } 2766 swap(dentry->d_name.hash_len, target->d_name.hash_len); 2767 } 2768 2769 static void copy_name(struct dentry *dentry, struct dentry *target) 2770 { 2771 struct external_name *old_name = NULL; 2772 if (unlikely(dname_external(dentry))) 2773 old_name = external_name(dentry); 2774 if (unlikely(dname_external(target))) { 2775 atomic_inc(&external_name(target)->u.count); 2776 dentry->d_name = target->d_name; 2777 } else { 2778 memcpy(dentry->d_iname, target->d_name.name, 2779 target->d_name.len + 1); 2780 dentry->d_name.name = dentry->d_iname; 2781 dentry->d_name.hash_len = target->d_name.hash_len; 2782 } 2783 if (old_name && likely(atomic_dec_and_test(&old_name->u.count))) 2784 kfree_rcu(old_name, u.head); 2785 } 2786 2787 static void dentry_lock_for_move(struct dentry *dentry, struct dentry *target) 2788 { 2789 /* 2790 * XXXX: do we really need to take target->d_lock? 2791 */ 2792 if (IS_ROOT(dentry) || dentry->d_parent == target->d_parent) 2793 spin_lock(&target->d_parent->d_lock); 2794 else { 2795 if (d_ancestor(dentry->d_parent, target->d_parent)) { 2796 spin_lock(&dentry->d_parent->d_lock); 2797 spin_lock_nested(&target->d_parent->d_lock, 2798 DENTRY_D_LOCK_NESTED); 2799 } else { 2800 spin_lock(&target->d_parent->d_lock); 2801 spin_lock_nested(&dentry->d_parent->d_lock, 2802 DENTRY_D_LOCK_NESTED); 2803 } 2804 } 2805 if (target < dentry) { 2806 spin_lock_nested(&target->d_lock, 2); 2807 spin_lock_nested(&dentry->d_lock, 3); 2808 } else { 2809 spin_lock_nested(&dentry->d_lock, 2); 2810 spin_lock_nested(&target->d_lock, 3); 2811 } 2812 } 2813 2814 static void dentry_unlock_for_move(struct dentry *dentry, struct dentry *target) 2815 { 2816 if (target->d_parent != dentry->d_parent) 2817 spin_unlock(&dentry->d_parent->d_lock); 2818 if (target->d_parent != target) 2819 spin_unlock(&target->d_parent->d_lock); 2820 spin_unlock(&target->d_lock); 2821 spin_unlock(&dentry->d_lock); 2822 } 2823 2824 /* 2825 * When switching names, the actual string doesn't strictly have to 2826 * be preserved in the target - because we're dropping the target 2827 * anyway. As such, we can just do a simple memcpy() to copy over 2828 * the new name before we switch, unless we are going to rehash 2829 * it. Note that if we *do* unhash the target, we are not allowed 2830 * to rehash it without giving it a new name/hash key - whether 2831 * we swap or overwrite the names here, resulting name won't match 2832 * the reality in filesystem; it's only there for d_path() purposes. 2833 * Note that all of this is happening under rename_lock, so the 2834 * any hash lookup seeing it in the middle of manipulations will 2835 * be discarded anyway. So we do not care what happens to the hash 2836 * key in that case. 2837 */ 2838 /* 2839 * __d_move - move a dentry 2840 * @dentry: entry to move 2841 * @target: new dentry 2842 * @exchange: exchange the two dentries 2843 * 2844 * Update the dcache to reflect the move of a file name. Negative 2845 * dcache entries should not be moved in this way. Caller must hold 2846 * rename_lock, the i_mutex of the source and target directories, 2847 * and the sb->s_vfs_rename_mutex if they differ. See lock_rename(). 2848 */ 2849 static void __d_move(struct dentry *dentry, struct dentry *target, 2850 bool exchange) 2851 { 2852 struct inode *dir = NULL; 2853 unsigned n; 2854 if (!dentry->d_inode) 2855 printk(KERN_WARNING "VFS: moving negative dcache entry\n"); 2856 2857 BUG_ON(d_ancestor(dentry, target)); 2858 BUG_ON(d_ancestor(target, dentry)); 2859 2860 dentry_lock_for_move(dentry, target); 2861 if (unlikely(d_in_lookup(target))) { 2862 dir = target->d_parent->d_inode; 2863 n = start_dir_add(dir); 2864 __d_lookup_done(target); 2865 } 2866 2867 write_seqcount_begin(&dentry->d_seq); 2868 write_seqcount_begin_nested(&target->d_seq, DENTRY_D_LOCK_NESTED); 2869 2870 /* __d_drop does write_seqcount_barrier, but they're OK to nest. */ 2871 2872 /* 2873 * Move the dentry to the target hash queue. Don't bother checking 2874 * for the same hash queue because of how unlikely it is. 2875 */ 2876 __d_drop(dentry); 2877 __d_rehash(dentry, d_hash(target->d_parent, target->d_name.hash)); 2878 2879 /* 2880 * Unhash the target (d_delete() is not usable here). If exchanging 2881 * the two dentries, then rehash onto the other's hash queue. 2882 */ 2883 __d_drop(target); 2884 if (exchange) { 2885 __d_rehash(target, 2886 d_hash(dentry->d_parent, dentry->d_name.hash)); 2887 } 2888 2889 /* Switch the names.. */ 2890 if (exchange) 2891 swap_names(dentry, target); 2892 else 2893 copy_name(dentry, target); 2894 2895 /* ... and switch them in the tree */ 2896 if (IS_ROOT(dentry)) { 2897 /* splicing a tree */ 2898 dentry->d_flags |= DCACHE_RCUACCESS; 2899 dentry->d_parent = target->d_parent; 2900 target->d_parent = target; 2901 list_del_init(&target->d_child); 2902 list_move(&dentry->d_child, &dentry->d_parent->d_subdirs); 2903 } else { 2904 /* swapping two dentries */ 2905 swap(dentry->d_parent, target->d_parent); 2906 list_move(&target->d_child, &target->d_parent->d_subdirs); 2907 list_move(&dentry->d_child, &dentry->d_parent->d_subdirs); 2908 if (exchange) 2909 fsnotify_d_move(target); 2910 fsnotify_d_move(dentry); 2911 } 2912 2913 write_seqcount_end(&target->d_seq); 2914 write_seqcount_end(&dentry->d_seq); 2915 2916 if (dir) 2917 end_dir_add(dir, n); 2918 dentry_unlock_for_move(dentry, target); 2919 } 2920 2921 /* 2922 * d_move - move a dentry 2923 * @dentry: entry to move 2924 * @target: new dentry 2925 * 2926 * Update the dcache to reflect the move of a file name. Negative 2927 * dcache entries should not be moved in this way. See the locking 2928 * requirements for __d_move. 2929 */ 2930 void d_move(struct dentry *dentry, struct dentry *target) 2931 { 2932 write_seqlock(&rename_lock); 2933 __d_move(dentry, target, false); 2934 write_sequnlock(&rename_lock); 2935 } 2936 EXPORT_SYMBOL(d_move); 2937 2938 /* 2939 * d_exchange - exchange two dentries 2940 * @dentry1: first dentry 2941 * @dentry2: second dentry 2942 */ 2943 void d_exchange(struct dentry *dentry1, struct dentry *dentry2) 2944 { 2945 write_seqlock(&rename_lock); 2946 2947 WARN_ON(!dentry1->d_inode); 2948 WARN_ON(!dentry2->d_inode); 2949 WARN_ON(IS_ROOT(dentry1)); 2950 WARN_ON(IS_ROOT(dentry2)); 2951 2952 __d_move(dentry1, dentry2, true); 2953 2954 write_sequnlock(&rename_lock); 2955 } 2956 2957 /** 2958 * d_ancestor - search for an ancestor 2959 * @p1: ancestor dentry 2960 * @p2: child dentry 2961 * 2962 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is 2963 * an ancestor of p2, else NULL. 2964 */ 2965 struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2) 2966 { 2967 struct dentry *p; 2968 2969 for (p = p2; !IS_ROOT(p); p = p->d_parent) { 2970 if (p->d_parent == p1) 2971 return p; 2972 } 2973 return NULL; 2974 } 2975 2976 /* 2977 * This helper attempts to cope with remotely renamed directories 2978 * 2979 * It assumes that the caller is already holding 2980 * dentry->d_parent->d_inode->i_mutex, and rename_lock 2981 * 2982 * Note: If ever the locking in lock_rename() changes, then please 2983 * remember to update this too... 2984 */ 2985 static int __d_unalias(struct inode *inode, 2986 struct dentry *dentry, struct dentry *alias) 2987 { 2988 struct mutex *m1 = NULL; 2989 struct rw_semaphore *m2 = NULL; 2990 int ret = -ESTALE; 2991 2992 /* If alias and dentry share a parent, then no extra locks required */ 2993 if (alias->d_parent == dentry->d_parent) 2994 goto out_unalias; 2995 2996 /* See lock_rename() */ 2997 if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex)) 2998 goto out_err; 2999 m1 = &dentry->d_sb->s_vfs_rename_mutex; 3000 if (!inode_trylock_shared(alias->d_parent->d_inode)) 3001 goto out_err; 3002 m2 = &alias->d_parent->d_inode->i_rwsem; 3003 out_unalias: 3004 __d_move(alias, dentry, false); 3005 ret = 0; 3006 out_err: 3007 if (m2) 3008 up_read(m2); 3009 if (m1) 3010 mutex_unlock(m1); 3011 return ret; 3012 } 3013 3014 /** 3015 * d_splice_alias - splice a disconnected dentry into the tree if one exists 3016 * @inode: the inode which may have a disconnected dentry 3017 * @dentry: a negative dentry which we want to point to the inode. 3018 * 3019 * If inode is a directory and has an IS_ROOT alias, then d_move that in 3020 * place of the given dentry and return it, else simply d_add the inode 3021 * to the dentry and return NULL. 3022 * 3023 * If a non-IS_ROOT directory is found, the filesystem is corrupt, and 3024 * we should error out: directories can't have multiple aliases. 3025 * 3026 * This is needed in the lookup routine of any filesystem that is exportable 3027 * (via knfsd) so that we can build dcache paths to directories effectively. 3028 * 3029 * If a dentry was found and moved, then it is returned. Otherwise NULL 3030 * is returned. This matches the expected return value of ->lookup. 3031 * 3032 * Cluster filesystems may call this function with a negative, hashed dentry. 3033 * In that case, we know that the inode will be a regular file, and also this 3034 * will only occur during atomic_open. So we need to check for the dentry 3035 * being already hashed only in the final case. 3036 */ 3037 struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry) 3038 { 3039 if (IS_ERR(inode)) 3040 return ERR_CAST(inode); 3041 3042 BUG_ON(!d_unhashed(dentry)); 3043 3044 if (!inode) 3045 goto out; 3046 3047 security_d_instantiate(dentry, inode); 3048 spin_lock(&inode->i_lock); 3049 if (S_ISDIR(inode->i_mode)) { 3050 struct dentry *new = __d_find_any_alias(inode); 3051 if (unlikely(new)) { 3052 /* The reference to new ensures it remains an alias */ 3053 spin_unlock(&inode->i_lock); 3054 write_seqlock(&rename_lock); 3055 if (unlikely(d_ancestor(new, dentry))) { 3056 write_sequnlock(&rename_lock); 3057 dput(new); 3058 new = ERR_PTR(-ELOOP); 3059 pr_warn_ratelimited( 3060 "VFS: Lookup of '%s' in %s %s" 3061 " would have caused loop\n", 3062 dentry->d_name.name, 3063 inode->i_sb->s_type->name, 3064 inode->i_sb->s_id); 3065 } else if (!IS_ROOT(new)) { 3066 int err = __d_unalias(inode, dentry, new); 3067 write_sequnlock(&rename_lock); 3068 if (err) { 3069 dput(new); 3070 new = ERR_PTR(err); 3071 } 3072 } else { 3073 __d_move(new, dentry, false); 3074 write_sequnlock(&rename_lock); 3075 } 3076 iput(inode); 3077 return new; 3078 } 3079 } 3080 out: 3081 __d_add(dentry, inode); 3082 return NULL; 3083 } 3084 EXPORT_SYMBOL(d_splice_alias); 3085 3086 static int prepend(char **buffer, int *buflen, const char *str, int namelen) 3087 { 3088 *buflen -= namelen; 3089 if (*buflen < 0) 3090 return -ENAMETOOLONG; 3091 *buffer -= namelen; 3092 memcpy(*buffer, str, namelen); 3093 return 0; 3094 } 3095 3096 /** 3097 * prepend_name - prepend a pathname in front of current buffer pointer 3098 * @buffer: buffer pointer 3099 * @buflen: allocated length of the buffer 3100 * @name: name string and length qstr structure 3101 * 3102 * With RCU path tracing, it may race with d_move(). Use ACCESS_ONCE() to 3103 * make sure that either the old or the new name pointer and length are 3104 * fetched. However, there may be mismatch between length and pointer. 3105 * The length cannot be trusted, we need to copy it byte-by-byte until 3106 * the length is reached or a null byte is found. It also prepends "/" at 3107 * the beginning of the name. The sequence number check at the caller will 3108 * retry it again when a d_move() does happen. So any garbage in the buffer 3109 * due to mismatched pointer and length will be discarded. 3110 * 3111 * Data dependency barrier is needed to make sure that we see that terminating 3112 * NUL. Alpha strikes again, film at 11... 3113 */ 3114 static int prepend_name(char **buffer, int *buflen, struct qstr *name) 3115 { 3116 const char *dname = ACCESS_ONCE(name->name); 3117 u32 dlen = ACCESS_ONCE(name->len); 3118 char *p; 3119 3120 smp_read_barrier_depends(); 3121 3122 *buflen -= dlen + 1; 3123 if (*buflen < 0) 3124 return -ENAMETOOLONG; 3125 p = *buffer -= dlen + 1; 3126 *p++ = '/'; 3127 while (dlen--) { 3128 char c = *dname++; 3129 if (!c) 3130 break; 3131 *p++ = c; 3132 } 3133 return 0; 3134 } 3135 3136 /** 3137 * prepend_path - Prepend path string to a buffer 3138 * @path: the dentry/vfsmount to report 3139 * @root: root vfsmnt/dentry 3140 * @buffer: pointer to the end of the buffer 3141 * @buflen: pointer to buffer length 3142 * 3143 * The function will first try to write out the pathname without taking any 3144 * lock other than the RCU read lock to make sure that dentries won't go away. 3145 * It only checks the sequence number of the global rename_lock as any change 3146 * in the dentry's d_seq will be preceded by changes in the rename_lock 3147 * sequence number. If the sequence number had been changed, it will restart 3148 * the whole pathname back-tracing sequence again by taking the rename_lock. 3149 * In this case, there is no need to take the RCU read lock as the recursive 3150 * parent pointer references will keep the dentry chain alive as long as no 3151 * rename operation is performed. 3152 */ 3153 static int prepend_path(const struct path *path, 3154 const struct path *root, 3155 char **buffer, int *buflen) 3156 { 3157 struct dentry *dentry; 3158 struct vfsmount *vfsmnt; 3159 struct mount *mnt; 3160 int error = 0; 3161 unsigned seq, m_seq = 0; 3162 char *bptr; 3163 int blen; 3164 3165 rcu_read_lock(); 3166 restart_mnt: 3167 read_seqbegin_or_lock(&mount_lock, &m_seq); 3168 seq = 0; 3169 rcu_read_lock(); 3170 restart: 3171 bptr = *buffer; 3172 blen = *buflen; 3173 error = 0; 3174 dentry = path->dentry; 3175 vfsmnt = path->mnt; 3176 mnt = real_mount(vfsmnt); 3177 read_seqbegin_or_lock(&rename_lock, &seq); 3178 while (dentry != root->dentry || vfsmnt != root->mnt) { 3179 struct dentry * parent; 3180 3181 if (dentry == vfsmnt->mnt_root || IS_ROOT(dentry)) { 3182 struct mount *parent = ACCESS_ONCE(mnt->mnt_parent); 3183 /* Escaped? */ 3184 if (dentry != vfsmnt->mnt_root) { 3185 bptr = *buffer; 3186 blen = *buflen; 3187 error = 3; 3188 break; 3189 } 3190 /* Global root? */ 3191 if (mnt != parent) { 3192 dentry = ACCESS_ONCE(mnt->mnt_mountpoint); 3193 mnt = parent; 3194 vfsmnt = &mnt->mnt; 3195 continue; 3196 } 3197 if (!error) 3198 error = is_mounted(vfsmnt) ? 1 : 2; 3199 break; 3200 } 3201 parent = dentry->d_parent; 3202 prefetch(parent); 3203 error = prepend_name(&bptr, &blen, &dentry->d_name); 3204 if (error) 3205 break; 3206 3207 dentry = parent; 3208 } 3209 if (!(seq & 1)) 3210 rcu_read_unlock(); 3211 if (need_seqretry(&rename_lock, seq)) { 3212 seq = 1; 3213 goto restart; 3214 } 3215 done_seqretry(&rename_lock, seq); 3216 3217 if (!(m_seq & 1)) 3218 rcu_read_unlock(); 3219 if (need_seqretry(&mount_lock, m_seq)) { 3220 m_seq = 1; 3221 goto restart_mnt; 3222 } 3223 done_seqretry(&mount_lock, m_seq); 3224 3225 if (error >= 0 && bptr == *buffer) { 3226 if (--blen < 0) 3227 error = -ENAMETOOLONG; 3228 else 3229 *--bptr = '/'; 3230 } 3231 *buffer = bptr; 3232 *buflen = blen; 3233 return error; 3234 } 3235 3236 /** 3237 * __d_path - return the path of a dentry 3238 * @path: the dentry/vfsmount to report 3239 * @root: root vfsmnt/dentry 3240 * @buf: buffer to return value in 3241 * @buflen: buffer length 3242 * 3243 * Convert a dentry into an ASCII path name. 3244 * 3245 * Returns a pointer into the buffer or an error code if the 3246 * path was too long. 3247 * 3248 * "buflen" should be positive. 3249 * 3250 * If the path is not reachable from the supplied root, return %NULL. 3251 */ 3252 char *__d_path(const struct path *path, 3253 const struct path *root, 3254 char *buf, int buflen) 3255 { 3256 char *res = buf + buflen; 3257 int error; 3258 3259 prepend(&res, &buflen, "\0", 1); 3260 error = prepend_path(path, root, &res, &buflen); 3261 3262 if (error < 0) 3263 return ERR_PTR(error); 3264 if (error > 0) 3265 return NULL; 3266 return res; 3267 } 3268 3269 char *d_absolute_path(const struct path *path, 3270 char *buf, int buflen) 3271 { 3272 struct path root = {}; 3273 char *res = buf + buflen; 3274 int error; 3275 3276 prepend(&res, &buflen, "\0", 1); 3277 error = prepend_path(path, &root, &res, &buflen); 3278 3279 if (error > 1) 3280 error = -EINVAL; 3281 if (error < 0) 3282 return ERR_PTR(error); 3283 return res; 3284 } 3285 3286 /* 3287 * same as __d_path but appends "(deleted)" for unlinked files. 3288 */ 3289 static int path_with_deleted(const struct path *path, 3290 const struct path *root, 3291 char **buf, int *buflen) 3292 { 3293 prepend(buf, buflen, "\0", 1); 3294 if (d_unlinked(path->dentry)) { 3295 int error = prepend(buf, buflen, " (deleted)", 10); 3296 if (error) 3297 return error; 3298 } 3299 3300 return prepend_path(path, root, buf, buflen); 3301 } 3302 3303 static int prepend_unreachable(char **buffer, int *buflen) 3304 { 3305 return prepend(buffer, buflen, "(unreachable)", 13); 3306 } 3307 3308 static void get_fs_root_rcu(struct fs_struct *fs, struct path *root) 3309 { 3310 unsigned seq; 3311 3312 do { 3313 seq = read_seqcount_begin(&fs->seq); 3314 *root = fs->root; 3315 } while (read_seqcount_retry(&fs->seq, seq)); 3316 } 3317 3318 /** 3319 * d_path - return the path of a dentry 3320 * @path: path to report 3321 * @buf: buffer to return value in 3322 * @buflen: buffer length 3323 * 3324 * Convert a dentry into an ASCII path name. If the entry has been deleted 3325 * the string " (deleted)" is appended. Note that this is ambiguous. 3326 * 3327 * Returns a pointer into the buffer or an error code if the path was 3328 * too long. Note: Callers should use the returned pointer, not the passed 3329 * in buffer, to use the name! The implementation often starts at an offset 3330 * into the buffer, and may leave 0 bytes at the start. 3331 * 3332 * "buflen" should be positive. 3333 */ 3334 char *d_path(const struct path *path, char *buf, int buflen) 3335 { 3336 char *res = buf + buflen; 3337 struct path root; 3338 int error; 3339 3340 /* 3341 * We have various synthetic filesystems that never get mounted. On 3342 * these filesystems dentries are never used for lookup purposes, and 3343 * thus don't need to be hashed. They also don't need a name until a 3344 * user wants to identify the object in /proc/pid/fd/. The little hack 3345 * below allows us to generate a name for these objects on demand: 3346 * 3347 * Some pseudo inodes are mountable. When they are mounted 3348 * path->dentry == path->mnt->mnt_root. In that case don't call d_dname 3349 * and instead have d_path return the mounted path. 3350 */ 3351 if (path->dentry->d_op && path->dentry->d_op->d_dname && 3352 (!IS_ROOT(path->dentry) || path->dentry != path->mnt->mnt_root)) 3353 return path->dentry->d_op->d_dname(path->dentry, buf, buflen); 3354 3355 rcu_read_lock(); 3356 get_fs_root_rcu(current->fs, &root); 3357 error = path_with_deleted(path, &root, &res, &buflen); 3358 rcu_read_unlock(); 3359 3360 if (error < 0) 3361 res = ERR_PTR(error); 3362 return res; 3363 } 3364 EXPORT_SYMBOL(d_path); 3365 3366 /* 3367 * Helper function for dentry_operations.d_dname() members 3368 */ 3369 char *dynamic_dname(struct dentry *dentry, char *buffer, int buflen, 3370 const char *fmt, ...) 3371 { 3372 va_list args; 3373 char temp[64]; 3374 int sz; 3375 3376 va_start(args, fmt); 3377 sz = vsnprintf(temp, sizeof(temp), fmt, args) + 1; 3378 va_end(args); 3379 3380 if (sz > sizeof(temp) || sz > buflen) 3381 return ERR_PTR(-ENAMETOOLONG); 3382 3383 buffer += buflen - sz; 3384 return memcpy(buffer, temp, sz); 3385 } 3386 3387 char *simple_dname(struct dentry *dentry, char *buffer, int buflen) 3388 { 3389 char *end = buffer + buflen; 3390 /* these dentries are never renamed, so d_lock is not needed */ 3391 if (prepend(&end, &buflen, " (deleted)", 11) || 3392 prepend(&end, &buflen, dentry->d_name.name, dentry->d_name.len) || 3393 prepend(&end, &buflen, "/", 1)) 3394 end = ERR_PTR(-ENAMETOOLONG); 3395 return end; 3396 } 3397 EXPORT_SYMBOL(simple_dname); 3398 3399 /* 3400 * Write full pathname from the root of the filesystem into the buffer. 3401 */ 3402 static char *__dentry_path(struct dentry *d, char *buf, int buflen) 3403 { 3404 struct dentry *dentry; 3405 char *end, *retval; 3406 int len, seq = 0; 3407 int error = 0; 3408 3409 if (buflen < 2) 3410 goto Elong; 3411 3412 rcu_read_lock(); 3413 restart: 3414 dentry = d; 3415 end = buf + buflen; 3416 len = buflen; 3417 prepend(&end, &len, "\0", 1); 3418 /* Get '/' right */ 3419 retval = end-1; 3420 *retval = '/'; 3421 read_seqbegin_or_lock(&rename_lock, &seq); 3422 while (!IS_ROOT(dentry)) { 3423 struct dentry *parent = dentry->d_parent; 3424 3425 prefetch(parent); 3426 error = prepend_name(&end, &len, &dentry->d_name); 3427 if (error) 3428 break; 3429 3430 retval = end; 3431 dentry = parent; 3432 } 3433 if (!(seq & 1)) 3434 rcu_read_unlock(); 3435 if (need_seqretry(&rename_lock, seq)) { 3436 seq = 1; 3437 goto restart; 3438 } 3439 done_seqretry(&rename_lock, seq); 3440 if (error) 3441 goto Elong; 3442 return retval; 3443 Elong: 3444 return ERR_PTR(-ENAMETOOLONG); 3445 } 3446 3447 char *dentry_path_raw(struct dentry *dentry, char *buf, int buflen) 3448 { 3449 return __dentry_path(dentry, buf, buflen); 3450 } 3451 EXPORT_SYMBOL(dentry_path_raw); 3452 3453 char *dentry_path(struct dentry *dentry, char *buf, int buflen) 3454 { 3455 char *p = NULL; 3456 char *retval; 3457 3458 if (d_unlinked(dentry)) { 3459 p = buf + buflen; 3460 if (prepend(&p, &buflen, "//deleted", 10) != 0) 3461 goto Elong; 3462 buflen++; 3463 } 3464 retval = __dentry_path(dentry, buf, buflen); 3465 if (!IS_ERR(retval) && p) 3466 *p = '/'; /* restore '/' overriden with '\0' */ 3467 return retval; 3468 Elong: 3469 return ERR_PTR(-ENAMETOOLONG); 3470 } 3471 3472 static void get_fs_root_and_pwd_rcu(struct fs_struct *fs, struct path *root, 3473 struct path *pwd) 3474 { 3475 unsigned seq; 3476 3477 do { 3478 seq = read_seqcount_begin(&fs->seq); 3479 *root = fs->root; 3480 *pwd = fs->pwd; 3481 } while (read_seqcount_retry(&fs->seq, seq)); 3482 } 3483 3484 /* 3485 * NOTE! The user-level library version returns a 3486 * character pointer. The kernel system call just 3487 * returns the length of the buffer filled (which 3488 * includes the ending '\0' character), or a negative 3489 * error value. So libc would do something like 3490 * 3491 * char *getcwd(char * buf, size_t size) 3492 * { 3493 * int retval; 3494 * 3495 * retval = sys_getcwd(buf, size); 3496 * if (retval >= 0) 3497 * return buf; 3498 * errno = -retval; 3499 * return NULL; 3500 * } 3501 */ 3502 SYSCALL_DEFINE2(getcwd, char __user *, buf, unsigned long, size) 3503 { 3504 int error; 3505 struct path pwd, root; 3506 char *page = __getname(); 3507 3508 if (!page) 3509 return -ENOMEM; 3510 3511 rcu_read_lock(); 3512 get_fs_root_and_pwd_rcu(current->fs, &root, &pwd); 3513 3514 error = -ENOENT; 3515 if (!d_unlinked(pwd.dentry)) { 3516 unsigned long len; 3517 char *cwd = page + PATH_MAX; 3518 int buflen = PATH_MAX; 3519 3520 prepend(&cwd, &buflen, "\0", 1); 3521 error = prepend_path(&pwd, &root, &cwd, &buflen); 3522 rcu_read_unlock(); 3523 3524 if (error < 0) 3525 goto out; 3526 3527 /* Unreachable from current root */ 3528 if (error > 0) { 3529 error = prepend_unreachable(&cwd, &buflen); 3530 if (error) 3531 goto out; 3532 } 3533 3534 error = -ERANGE; 3535 len = PATH_MAX + page - cwd; 3536 if (len <= size) { 3537 error = len; 3538 if (copy_to_user(buf, cwd, len)) 3539 error = -EFAULT; 3540 } 3541 } else { 3542 rcu_read_unlock(); 3543 } 3544 3545 out: 3546 __putname(page); 3547 return error; 3548 } 3549 3550 /* 3551 * Test whether new_dentry is a subdirectory of old_dentry. 3552 * 3553 * Trivially implemented using the dcache structure 3554 */ 3555 3556 /** 3557 * is_subdir - is new dentry a subdirectory of old_dentry 3558 * @new_dentry: new dentry 3559 * @old_dentry: old dentry 3560 * 3561 * Returns true if new_dentry is a subdirectory of the parent (at any depth). 3562 * Returns false otherwise. 3563 * Caller must ensure that "new_dentry" is pinned before calling is_subdir() 3564 */ 3565 3566 bool is_subdir(struct dentry *new_dentry, struct dentry *old_dentry) 3567 { 3568 bool result; 3569 unsigned seq; 3570 3571 if (new_dentry == old_dentry) 3572 return true; 3573 3574 do { 3575 /* for restarting inner loop in case of seq retry */ 3576 seq = read_seqbegin(&rename_lock); 3577 /* 3578 * Need rcu_readlock to protect against the d_parent trashing 3579 * due to d_move 3580 */ 3581 rcu_read_lock(); 3582 if (d_ancestor(old_dentry, new_dentry)) 3583 result = true; 3584 else 3585 result = false; 3586 rcu_read_unlock(); 3587 } while (read_seqretry(&rename_lock, seq)); 3588 3589 return result; 3590 } 3591 3592 static enum d_walk_ret d_genocide_kill(void *data, struct dentry *dentry) 3593 { 3594 struct dentry *root = data; 3595 if (dentry != root) { 3596 if (d_unhashed(dentry) || !dentry->d_inode) 3597 return D_WALK_SKIP; 3598 3599 if (!(dentry->d_flags & DCACHE_GENOCIDE)) { 3600 dentry->d_flags |= DCACHE_GENOCIDE; 3601 dentry->d_lockref.count--; 3602 } 3603 } 3604 return D_WALK_CONTINUE; 3605 } 3606 3607 void d_genocide(struct dentry *parent) 3608 { 3609 d_walk(parent, parent, d_genocide_kill, NULL); 3610 } 3611 3612 void d_tmpfile(struct dentry *dentry, struct inode *inode) 3613 { 3614 inode_dec_link_count(inode); 3615 BUG_ON(dentry->d_name.name != dentry->d_iname || 3616 !hlist_unhashed(&dentry->d_u.d_alias) || 3617 !d_unlinked(dentry)); 3618 spin_lock(&dentry->d_parent->d_lock); 3619 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED); 3620 dentry->d_name.len = sprintf(dentry->d_iname, "#%llu", 3621 (unsigned long long)inode->i_ino); 3622 spin_unlock(&dentry->d_lock); 3623 spin_unlock(&dentry->d_parent->d_lock); 3624 d_instantiate(dentry, inode); 3625 } 3626 EXPORT_SYMBOL(d_tmpfile); 3627 3628 static __initdata unsigned long dhash_entries; 3629 static int __init set_dhash_entries(char *str) 3630 { 3631 if (!str) 3632 return 0; 3633 dhash_entries = simple_strtoul(str, &str, 0); 3634 return 1; 3635 } 3636 __setup("dhash_entries=", set_dhash_entries); 3637 3638 static void __init dcache_init_early(void) 3639 { 3640 unsigned int loop; 3641 3642 /* If hashes are distributed across NUMA nodes, defer 3643 * hash allocation until vmalloc space is available. 3644 */ 3645 if (hashdist) 3646 return; 3647 3648 dentry_hashtable = 3649 alloc_large_system_hash("Dentry cache", 3650 sizeof(struct hlist_bl_head), 3651 dhash_entries, 3652 13, 3653 HASH_EARLY, 3654 &d_hash_shift, 3655 &d_hash_mask, 3656 0, 3657 0); 3658 3659 for (loop = 0; loop < (1U << d_hash_shift); loop++) 3660 INIT_HLIST_BL_HEAD(dentry_hashtable + loop); 3661 } 3662 3663 static void __init dcache_init(void) 3664 { 3665 unsigned int loop; 3666 3667 /* 3668 * A constructor could be added for stable state like the lists, 3669 * but it is probably not worth it because of the cache nature 3670 * of the dcache. 3671 */ 3672 dentry_cache = KMEM_CACHE(dentry, 3673 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD|SLAB_ACCOUNT); 3674 3675 /* Hash may have been set up in dcache_init_early */ 3676 if (!hashdist) 3677 return; 3678 3679 dentry_hashtable = 3680 alloc_large_system_hash("Dentry cache", 3681 sizeof(struct hlist_bl_head), 3682 dhash_entries, 3683 13, 3684 0, 3685 &d_hash_shift, 3686 &d_hash_mask, 3687 0, 3688 0); 3689 3690 for (loop = 0; loop < (1U << d_hash_shift); loop++) 3691 INIT_HLIST_BL_HEAD(dentry_hashtable + loop); 3692 } 3693 3694 /* SLAB cache for __getname() consumers */ 3695 struct kmem_cache *names_cachep __read_mostly; 3696 EXPORT_SYMBOL(names_cachep); 3697 3698 EXPORT_SYMBOL(d_genocide); 3699 3700 void __init vfs_caches_init_early(void) 3701 { 3702 dcache_init_early(); 3703 inode_init_early(); 3704 } 3705 3706 void __init vfs_caches_init(void) 3707 { 3708 names_cachep = kmem_cache_create("names_cache", PATH_MAX, 0, 3709 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL); 3710 3711 dcache_init(); 3712 inode_init(); 3713 files_init(); 3714 files_maxfiles_init(); 3715 mnt_init(); 3716 bdev_cache_init(); 3717 chrdev_init(); 3718 } 3719